1
|
Chen HQ, Wang N, Zeng Y, Shi Y, Zhang Z, Li JY, Li YW, Deng SW, Zhou ZY, Liu WB. KCNJ15 inhibits chemical-induced lung carcinogenesis and progression through GNB1 mediated Hippo pathway. Toxicology 2025; 511:154034. [PMID: 39725264 DOI: 10.1016/j.tox.2024.154034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are important environmental carcinogens that can cause lung cancer. However, the underlying epigenetic mechanism during PAHs-induced lung carcinogenesis has remained largely unknown. Previously, we screened some novel epigenetic regulatory genes during 3-methylcholanthrene (3-MCA)-induced lung carcinogenesis, including the potassium inwardly rectifying channel subfamily J member 15 (KCNJ15) gene. This study aimed to investigate the expression regulation, function, and mechanism of KCNJ15 through database analysis, malignant transformed cell model, and xenograft tumor models. We found that KCNJ15 was remarkably under-expressed during lung carcinogenesis and progression. High levels of DNA methylation led to low KCNJ15 expression in 3-MCA-induced malignantly transformed HBE cells. High expression of KCNJ15 was positively correlated with good survival prognosis in lung cancer patients. KCNJ15 overexpression significantly inhibited the growth, invasion, and migration of lung cancer cells both in vitro and in vivo. Knockdown of KCNJ15 resulted in an opposite phenotype. KCNJ15 regulated the Hippo pathway by activating YAP phosphorylation and inhibiting YAP expression. There was a significant protein-protein interaction between KCNJ15 and the G protein subunit beta 1 (GNB1). GNB1 overexpression effectively reduced the effect of KCNJ15 on Hippo pathway. Our data demonstrated that KCNJ15, as a novel epigenetic silencing tumor suppressor, regulates cell growth, invasion, and migration by interaction with GNB1 protein mediating the Hippo-YAP signaling pathway during chemical-induced lung carcinogenesis and progression. It provides novel insights into epigenetic regulation mechanism during carcinogenesis induced by environmental pollutants.
Collapse
Affiliation(s)
- Hong-Qiang Chen
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Na Wang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Yong Zeng
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Shi
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zhe Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Jiang-Ying Li
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Ya-Wen Li
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shuang-Wu Deng
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Zi-Yuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wen-Bin Liu
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
2
|
Wang Y, Yang H, Li N, Wang L, Guo C, Ma W, Liu S, Peng C, Chen J, Song H, Chen H, Ma X, Yi J, Lian J, Kong W, Dong J, Tu X, Shah M, Tian X, Huang Z. A Novel Ubiquitin Ligase Adaptor PTPRN Suppresses Seizure Susceptibility through Endocytosis of Na V1.2 Sodium Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400560. [PMID: 38874331 PMCID: PMC11304301 DOI: 10.1002/advs.202400560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/06/2024] [Indexed: 06/15/2024]
Abstract
Intrinsic plasticity, a fundamental process enabling neurons to modify their intrinsic properties, plays a crucial role in shaping neuronal input-output function and is implicated in various neurological and psychiatric disorders. Despite its importance, the underlying molecular mechanisms of intrinsic plasticity remain poorly understood. In this study, a new ubiquitin ligase adaptor, protein tyrosine phosphatase receptor type N (PTPRN), is identified as a regulator of intrinsic neuronal excitability in the context of temporal lobe epilepsy. PTPRN recruits the NEDD4 Like E3 Ubiquitin Protein Ligase (NEDD4L) to NaV1.2 sodium channels, facilitating NEDD4L-mediated ubiquitination, and endocytosis of NaV1.2. Knockout of PTPRN in hippocampal granule cells leads to augmented NaV1.2-mediated sodium currents and higher intrinsic excitability, resulting in increased seizure susceptibility in transgenic mice. Conversely, adeno-associated virus-mediated delivery of PTPRN in the dentate gyrus region decreases intrinsic excitability and reduces seizure susceptibility. Moreover, the present findings indicate that PTPRN exerts a selective modulation effect on voltage-gated sodium channels. Collectively, PTPRN plays a significant role in regulating intrinsic excitability and seizure susceptibility, suggesting a potential strategy for precise modulation of NaV1.2 channels' function.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Hui Yang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Na Li
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Lili Wang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Chang Guo
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Weining Ma
- Department of NeurologyShengjing Hospital Affiliated to China Medical UniversityShenyang110022China
| | - Shiqi Liu
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Chao Peng
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jiexin Chen
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Huifang Song
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Hedan Chen
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Xinyue Ma
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jingyun Yi
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jingjing Lian
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Weikaixin Kong
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jie Dong
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Xinyu Tu
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Mala Shah
- UCL School of PharmacyUniversity College LondonLondonWC1N 1AXUK
| | - Xin Tian
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory of NeurologyChongqing400016China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| |
Collapse
|
3
|
Holt LM, Nestler EJ. Astrocytic transcriptional and epigenetic mechanisms of drug addiction. J Neural Transm (Vienna) 2024; 131:409-424. [PMID: 37940687 PMCID: PMC11066772 DOI: 10.1007/s00702-023-02716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Addiction is a leading cause of disease burden worldwide and remains a challenge in current neuroscience research. Drug-induced lasting changes in gene expression are mediated by transcriptional and epigenetic regulation in the brain and are thought to underlie behavioral adaptations. Emerging evidence implicates astrocytes in regulating drug-seeking behaviors and demonstrates robust transcriptional response to several substances of abuse. This review focuses on the astrocytic transcriptional and epigenetic mechanisms of drug action.
Collapse
Affiliation(s)
- Leanne M Holt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Ferreira G, Santander A, Cardozo R, Chavarría L, Domínguez L, Mujica N, Benítez M, Sastre S, Sobrevia L, Nicolson GL. Nutrigenomics of inward rectifier potassium channels. Biochim Biophys Acta Mol Basis Dis 2023:166803. [PMID: 37406972 DOI: 10.1016/j.bbadis.2023.166803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Inwardly rectifying potassium (Kir) channels play a key role in maintaining the resting membrane potential and supporting potassium homeostasis. There are many variants of Kir channels, which are usually tetramers in which the main subunit has two trans-membrane helices attached to two N- and C-terminal cytoplasmic tails with a pore-forming loop in between that contains the selectivity filter. These channels have domains that are strongly modulated by molecules present in nutrients found in different diets, such as phosphoinositols, polyamines and Mg2+. These molecules can impact these channels directly or indirectly, either allosterically by modulation of enzymes or via the regulation of channel expression. A particular type of these channels is coupled to cell metabolism and inhibited by ATP (KATP channels, essential for insulin release and for the pathogenesis of metabolic diseases like diabetes mellitus). Genomic changes in Kir channels have a significant impact on metabolism, such as conditioning the nutrients and electrolytes that an individual can take. Thus, the nutrigenomics of ion channels is an important emerging field in which we are attempting to understand how nutrients and diets can affect the activity and expression of ion channels and how genomic changes in such channels may be the basis for pathological conditions that limit nutrition and electrolyte intake. In this contribution we briefly review Kir channels, discuss their nutrigenomics, characterize how different components in the diet affect their function and expression, and suggest how their genomic changes lead to pathological phenotypes that affect diet and electrolyte intake.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay.
| | - Axel Santander
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Romina Cardozo
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Luisina Chavarría
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Lucía Domínguez
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Nicolás Mujica
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Milagros Benítez
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Santiago Sastre
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo CP 11800, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Brazil; University of Queensland, Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, 4029, Queensland, Australia; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
5
|
O'Neill KM, Saracino E, Barile B, Mennona NJ, Mola MG, Pathak S, Posati T, Zamboni R, Nicchia GP, Benfenati V, Losert W. Decoding Natural Astrocyte Rhythms: Dynamic Actin Waves Result from Environmental Sensing by Primary Rodent Astrocytes. Adv Biol (Weinh) 2023; 7:e2200269. [PMID: 36709481 DOI: 10.1002/adbi.202200269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Indexed: 01/30/2023]
Abstract
Astrocytes are key regulators of brain homeostasis, equilibrating ion, water, and neurotransmitter concentrations and maintaining essential conditions for proper cognitive function. Recently, it has been shown that the excitability of the actin cytoskeleton manifests in second-scale dynamic fluctuations and acts as a sensor of chemophysical environmental cues. However, it is not known whether the cytoskeleton is excitable in astrocytes and how the homeostatic function of astrocytes is linked to the dynamics of the cytoskeleton. Here it is shown that homeostatic regulation involves the excitable dynamics of actin in certain subcellular regions of astrocytes, especially near the cell boundary. The results further indicate that actin dynamics concentrate into "hotspot" regions that selectively respond to certain chemophysical stimuli, specifically the homeostatic challenges of ion or water concentration increases. Substrate topography makes the actin dynamics of astrocytes weaker. Super-resolution images demonstrate that surface topography is also associated with the predominant perpendicular alignment of actin filaments near the cell boundary, whereas flat substrates result in an actin cortex mainly parallel to the cell boundary. Additionally, coculture with neurons increases both the probability of actin dynamics and the strength of hotspots. The excitable systems character of actin thus makes astrocytes direct participants in neural cell network dynamics.
Collapse
Affiliation(s)
- Kate M O'Neill
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Emanuela Saracino
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Barbara Barile
- Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Nicholas J Mennona
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
- Physics Department, University of Maryland, College Park, MD, 20742, USA
| | - Maria Grazia Mola
- Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Spandan Pathak
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Tamara Posati
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Roberto Zamboni
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Grazia P Nicchia
- Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Valentina Benfenati
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
- Physics Department, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
6
|
Procacci NM, Hastings RL, Aziz AA, Christiansen NM, Zhao J, DeAngeli C, LeBlanc N, Notterpek L, Valdez G, Gould TW. Kir4.1 is specifically expressed and active in non-myelinating Schwann cells. Glia 2023; 71:926-944. [PMID: 36479906 PMCID: PMC9931657 DOI: 10.1002/glia.24315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
Non-myelinating Schwann cells (NMSC) play important roles in peripheral nervous system formation and function. However, the molecular identity of these cells remains poorly defined. We provide evidence that Kir4.1, an inward-rectifying K+ channel encoded by the KCNJ10 gene, is specifically expressed and active in NMSC. Immunostaining revealed that Kir4.1 is present in terminal/perisynaptic SCs (TPSC), synaptic glia at neuromuscular junctions (NMJ), but not in myelinating SCs (MSC) of adult mice. To further examine the expression pattern of Kir4.1, we generated BAC transgenic Kir4.1-CreERT2 mice and crossed them to the tdTomato reporter line. Activation of CreERT2 with tamoxifen after the completion of myelination onset led to robust expression of tdTomato in NMSC, including Remak Schwann cells (RSC) along peripheral nerves and TPSC, but not in MSC. In contrast, activating CreERT2 before and during the onset of myelination led to tdTomato expression in NMSC and MSC. These observations suggest that immature SC express Kir4.1, and its expression is then downregulated selectively in myelin-forming SC. In support, we found that while activating CreERT2 induces tdTomato expression in immature SC, it fails to induce tdTomato in MSC associated with sensory axons in culture. NMSC derived from neonatal sciatic nerve were shown to express Kir4.1 and exhibit barium-sensitive inwardly rectifying macroscopic K+ currents. Thus, this study identified Kir4.1 as a potential modulator of immature SC and NMSC function. Additionally, it established a novel transgenic mouse line to introduce or delete genes in NMSC.
Collapse
Affiliation(s)
- Nicole M Procacci
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Robert Louis Hastings
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Aamir A Aziz
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Nina M Christiansen
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Jie Zhao
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Claire DeAngeli
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Normand LeBlanc
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Lucia Notterpek
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Gregorio Valdez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Thomas W Gould
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| |
Collapse
|
7
|
Nozawa O, Miyata M, Shiotani H, Kameyama T, Komaki R, Shimizu T, Kuriu T, Kashiwagi Y, Sato Y, Koebisu M, Aiba A, Okabe S, Mizutani K, Takai Y. Necl2/3-mediated mechanism for tripartite synapse formation. Development 2023; 150:285820. [PMID: 36458527 DOI: 10.1242/dev.200931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Ramified, polarized protoplasmic astrocytes interact with synapses via perisynaptic astrocyte processes (PAPs) to form tripartite synapses. These astrocyte-synapse interactions mutually regulate their structures and functions. However, molecular mechanisms for tripartite synapse formation remain elusive. We developed an in vitro co-culture system for mouse astrocytes and neurons that induced astrocyte ramifications and PAP formation. Co-cultured neurons were required for astrocyte ramifications in a neuronal activity-dependent manner, and synaptically-released glutamate and activation of astrocytic mGluR5 metabotropic glutamate receptor were likely involved in astrocyte ramifications. Astrocytic Necl2 trans-interacted with axonal Necl3, inducing astrocyte-synapse interactions and astrocyte functional polarization by recruiting EAAT1/2 glutamate transporters and Kir4.1 K+ channel to the PAPs, without affecting astrocyte ramifications. This Necl2/3 trans-interaction increased functional synapse number. Thus, astrocytic Necl2, synaptically-released glutamate and axonal Necl3 cooperatively formed tripartite glutamatergic synapses in vitro. Studies on hippocampal mossy fiber synapses in Necl3 knockout and Necl2/3 double knockout mice confirmed these previously unreported mechanisms for astrocyte-synapse interactions and astrocyte functional polarization in vivo.
Collapse
Affiliation(s)
- Osamu Nozawa
- Division of Pathogenetic Signaling, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| | - Hajime Shiotani
- Division of Pathogenetic Signaling, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| | - Takeshi Kameyama
- Division of Pathogenetic Signaling, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| | - Ryouhei Komaki
- Division of Pathogenetic Signaling, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| | - Tatsuhiro Shimizu
- Division of Pathogenetic Signaling, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| | - Toshihiko Kuriu
- Osaka Medical and Pharmaceutical University, Research and Development Center, Takatsuki, Osaka 569-8686, Japan
| | - Yutaro Kashiwagi
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuka Sato
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Michinori Koebisu
- Section of Animal Research and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Atsu Aiba
- Section of Animal Research and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
8
|
Wang S, Wang B, Shang D, Zhang K, Yan X, Zhang X. Ion Channel Dysfunction in Astrocytes in Neurodegenerative Diseases. Front Physiol 2022; 13:814285. [PMID: 35222082 PMCID: PMC8864228 DOI: 10.3389/fphys.2022.814285] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytes play an important role in the central nervous system (CNS). Ion channels in these cells not only function in ion transport, and maintain water/ion metabolism homeostasis, but also participate in physiological processes of neurons and glial cells by regulating signaling pathways. Increasing evidence indicates the ion channel proteins of astrocytes, such as aquaporins (AQPs), transient receptor potential (TRP) channels, adenosine triphosphate (ATP)-sensitive potassium (K-ATP) channels, and P2X7 receptors (P2X7R), are strongly associated with oxidative stress, neuroinflammation and characteristic proteins in neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS). Since ion channel protein dysfunction is a significant pathological feature of astrocytes in neurodegenerative diseases, we discuss these critical proteins and their signaling pathways in order to understand the underlying molecular mechanisms, which may yield new therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- Sijian Wang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Dehao Shang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Kaige Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
9
|
Mulkey DK, Olsen ML, Ou M, Cleary CM, Du G. Putative Roles of Astrocytes in General Anesthesia. Curr Neuropharmacol 2022; 20:5-15. [PMID: 33588730 PMCID: PMC9199541 DOI: 10.2174/1570159x19666210215120755] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/06/2021] [Indexed: 02/08/2023] Open
Abstract
General anesthetics are a mainstay of modern medicine, and although much progress has been made towards identifying molecular targets of anesthetics and neural networks contributing to endpoints of general anesthesia, our understanding of how anesthetics work remains unclear. Reducing this knowledge gap is of fundamental importance to prevent unwanted and life-threatening side-effects associated with general anesthesia. General anesthetics are chemically diverse, yet they all have similar behavioral endpoints, and so for decades, research has sought to identify a single underlying mechanism to explain how anesthetics work. However, this effort has given way to the 'multiple target hypothesis' as it has become clear that anesthetics target many cellular proteins, including GABAA receptors, glutamate receptors, voltage-independent K+ channels, and voltagedependent K+, Ca2+ and Na+ channels, to name a few. Yet, despite evidence that astrocytes are capable of modulating multiple aspects of neural function and express many anesthetic target proteins, they have been largely ignored as potential targets of anesthesia. The purpose of this brief review is to highlight the effects of anesthetic on astrocyte processes and identify potential roles of astrocytes in behavioral endpoints of anesthesia (hypnosis, amnesia, analgesia, and immobilization).
Collapse
Affiliation(s)
- Daniel K. Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, StorrsCT, USA;,Address correspondence to this author at the Department of Physiology and Neurobiology, University of Connecticut, Storrs CT, USA; E-mail:
| | | | | | - Colin M. Cleary
- Department of Physiology and Neurobiology, University of Connecticut, StorrsCT, USA
| | | |
Collapse
|
10
|
Dynamic expression of homeostatic ion channels in differentiated cortical astrocytes in vitro. Pflugers Arch 2021; 474:243-260. [PMID: 34734327 PMCID: PMC8766406 DOI: 10.1007/s00424-021-02627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/02/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022]
Abstract
The capacity of astrocytes to adapt their biochemical and functional features upon physiological and pathological stimuli is a fundamental property at the basis of their ability to regulate the homeostasis of the central nervous system (CNS). It is well known that in primary cultured astrocytes, the expression of plasma membrane ion channels and transporters involved in homeostatic tasks does not closely reflect the pattern observed in vivo. The individuation of culture conditions that promote the expression of the ion channel array found in vivo is crucial when aiming at investigating the mechanisms underlying their dynamics upon various physiological and pathological stimuli. A chemically defined medium containing growth factors and hormones (G5) was previously shown to induce the growth, differentiation, and maturation of primary cultured astrocytes. Here we report that under these culture conditions, rat cortical astrocytes undergo robust morphological changes acquiring a multi-branched phenotype, which develops gradually during the 2-week period of culturing. The shape changes were paralleled by variations in passive membrane properties and background conductance owing to the differential temporal development of inwardly rectifying chloride (Cl−) and potassium (K+) currents. Confocal and immunoblot analyses showed that morphologically differentiated astrocytes displayed a large increase in the expression of the inward rectifier Cl− and K+ channels ClC-2 and Kir4.1, respectively, which are relevant ion channels in vivo. Finally, they exhibited a large diminution of the intermediate filaments glial fibrillary acidic protein (GFAP) and vimentin which are upregulated in reactive astrocytes in vivo. Taken together the data indicate that long-term culturing of cortical astrocytes in this chemical-defined medium promotes a quiescent functional phenotype. This culture model could aid to address the regulation of ion channel expression involved in CNS homeostasis in response to physiological and pathological challenges.
Collapse
|
11
|
Zhou M, Du Y, Aten S, Terman D. On the electrical passivity of astrocyte potassium conductance. J Neurophysiol 2021; 126:1403-1419. [PMID: 34525325 DOI: 10.1152/jn.00330.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Predominant expression of leak-type K+ channels provides astrocytes a high membrane permeability to K+ ions and a hyperpolarized membrane potential that are crucial for astrocyte function in brain homeostasis. In functionally mature astrocytes, the expression of leak K+ channels creates a unique membrane K+ conductance that lacks voltage-dependent rectification. Accordingly, the conductance is named ohmic or passive K+ conductance. Several inwardly rectifying and two-pore domain K+ channels have been investigated for their contributions to passive conductance. Meanwhile, gap junctional coupling has been postulated to underlie the passive behavior of membrane conductance. It is now clear that the intrinsic properties of K+ channels and gap junctional coupling can each act alone or together to bring about a passive behavior of astrocyte conductance. Additionally, while the passive conductance can generally be viewed as a K+ conductance, the actual representation of this conductance is a combined expression of multiple known and unknown K+ channels, which has been further modified by the intricate morphology of individual astrocytes and syncytial gap junctional coupling. The expression of the inwardly rectifying K+ channels explains the inward-going component of passive conductance disobeying Goldman-Hodgkin-Katz constant field outward rectification. However, the K+ channels encoding the outward-going passive currents remain to be determined in the future. Here, we review our current understanding of ion channels and biophysical mechanisms engaged in the passive astrocyte K+ conductance, propose new studies to resolve this long-standing puzzle in astrocyte physiology, and discuss the functional implication(s) of passive behavior of K+ conductance on astrocyte physiology.
Collapse
Affiliation(s)
- Min Zhou
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Yixing Du
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sydney Aten
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - David Terman
- Department of Mathematics, Ohio State University, Columbus, Ohio
| |
Collapse
|
12
|
Stephan J, Eitelmann S, Zhou M. Approaches to Study Gap Junctional Coupling. Front Cell Neurosci 2021; 15:640406. [PMID: 33776652 PMCID: PMC7987795 DOI: 10.3389/fncel.2021.640406] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Astrocytes and oligodendrocytes are main players in the brain to ensure ion and neurotransmitter homeostasis, metabolic supply, and fast action potential propagation in axons. These functions are fostered by the formation of large syncytia in which mainly astrocytes and oligodendrocytes are directly coupled. Panglial networks constitute on connexin-based gap junctions in the membranes of neighboring cells that allow the passage of ions, metabolites, and currents. However, these networks are not uniform but exhibit a brain region-dependent heterogeneous connectivity influencing electrical communication and intercellular ion spread. Here, we describe different approaches to analyze gap junctional communication in acute tissue slices that can be implemented easily in most electrophysiology and imaging laboratories. These approaches include paired recordings, determination of syncytial isopotentiality, tracer coupling followed by analysis of network topography, and wide field imaging of ion sensitive dyes. These approaches are capable to reveal cellular heterogeneity causing electrical isolation of functional circuits, reduced ion-transfer between different cell types, and anisotropy of tracer coupling. With a selective or combinatory use of these methods, the results will shed light on cellular properties of glial cells and their contribution to neuronal function.
Collapse
Affiliation(s)
- Jonathan Stephan
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sara Eitelmann
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Min Zhou
- Department of Neuroscience, Wexner Medical Center, Ohio State University, Columbus, OH, United States
| |
Collapse
|
13
|
Patterson KC, Kahanovitch U, Gonçalves CM, Hablitz JJ, Staruschenko A, Mulkey DK, Olsen ML. K ir 5.1-dependent CO 2 /H + -sensitive currents contribute to astrocyte heterogeneity across brain regions. Glia 2021; 69:310-325. [PMID: 32865323 PMCID: PMC8665280 DOI: 10.1002/glia.23898] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 09/19/2023]
Abstract
Astrocyte heterogeneity is an emerging concept in which astrocytes within or between brain regions show variable morphological and/or gene expression profiles that presumably reflect different functional roles. Recent evidence indicates that retrotrapezoid nucleus (RTN) astrocytes sense changes in tissue CO2/ H+ to regulate respiratory activity; however, mechanism(s) by which they do so remain unclear. Alterations in inward K+ currents represent a potential mechanism by which CO2 /H+ signals may be conveyed to neurons. Here, we use slice electrophysiology in rats of either sex to show that RTN astrocytes intrinsically respond to CO2 /H+ by inhibition of an inward rectifying potassium (Kir ) conductance and depolarization of the membrane, while cortical astrocytes do not exhibit such CO2 /H+ -sensitive properties. Application of Ba2+ mimics the effect of CO2 /H+ on RTN astrocytes as measured by reductions in astrocyte Kir -like currents and increased RTN neuronal firing. These CO2 /H+ -sensitive currents increase developmentally, in parallel to an increased expression in Kir 4.1 and Kir 5.1 in the brainstem. Finally, the involvement of Kir 5.1 in the CO2 /H+ -sensitive current was verified using a Kir5.1 KO rat. These data suggest that Kir inhibition by CO2 /H+ may govern the degree to which astrocytes mediate downstream chemoreceptive signaling events through cell-autonomous mechanisms. These results identify Kir channels as potentially important regional CO2 /H+ sensors early in development, thus expanding our understanding of how astrocyte heterogeneity may uniquely support specific neural circuits and behaviors.
Collapse
Affiliation(s)
- Kelsey C Patterson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Uri Kahanovitch
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | - John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
14
|
Ou M, Kuo FS, Chen X, Kahanovitch U, Olsen ML, Du G, Mulkey DK. Isoflurane inhibits a Kir4.1/5.1-like conductance in neonatal rat brainstem astrocytes and recombinant Kir4.1/5.1 channels in a heterologous expression system. J Neurophysiol 2020; 124:740-749. [PMID: 32727273 PMCID: PMC7509298 DOI: 10.1152/jn.00358.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 02/08/2023] Open
Abstract
All inhalation anesthetics used clinically including isoflurane can suppress breathing; since this unwanted side effect can persist during the postoperative period and complicate patient recovery, there is a need to better understand how isoflurane affects cellular and molecular elements of respiratory control. Considering that astrocytes in a brainstem region known as the retrotrapezoid nucleus (RTN) contribute to the regulation of breathing in response to changes in CO2/H+ (i.e., function as respiratory chemoreceptors), and astrocytes in other brain regions are highly sensitive to isoflurane, we wanted to determine whether and how RTN astrocytes respond to isoflurane. We found that RTN astrocytes in slices from neonatal rat pups (7-12 days postnatal) respond to clinically relevant levels of isoflurane by inhibition of a CO2/H+-sensitive Kir4.1/5.1-like conductance [50% effective concentration (EC50) = 0.8 mM or ~1.7%]. We went on to confirm that similar levels of isoflurane (EC50 = 0.53 mM or 1.1%) inhibit recombinant Kir4.1/5.1 channels but not homomeric Kir4.1 channels expressed in HEK293 cells. We also found that exposure to CO2/H+ occluded subsequent effects of isoflurane on both native and recombinant Kir4.1/5.1 currents. These results identify Kir4.1/5.1 channels in astrocytes as novel targets of isoflurane. These results suggest astrocyte Kir4.1/5.1 channels contribute to certain aspects of general anesthesia including altered respiratory control.NEW & NOTEWORTHY An unwanted side effect of isoflurane anesthesia is suppression of breathing. Despite this clinical significance, effects of isoflurane on cellular and molecular elements of respiratory control are not well understood. Here, we show that isoflurane inhibits heteromeric Kir4.1/5.1 channels in a mammalian expression system and a Kir4.1/5.1-like conductance in astrocytes in a brainstem respiratory center. These results identify astrocyte Kir4.1/5.1 channels as novel targets of isoflurane and potential substrates for altered respiratory control during isoflurane anesthesia.
Collapse
Affiliation(s)
- Mengchan Ou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu City, China
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Fu-Shan Kuo
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Xinnian Chen
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Uri Kahanovitch
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Guizhi Du
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu City, China
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
15
|
Moroni RF, Regondi MC, de Curtis M, Frassoni C, Librizzi L. Kir4.1 RNA Interference by In Utero Electroporation Fails to Affect Ictogenesis and Reveals a Possible role of Kir4.1 in Corticogenesis. Neuroscience 2020; 441:65-76. [PMID: 32590038 DOI: 10.1016/j.neuroscience.2020.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/24/2020] [Accepted: 06/15/2020] [Indexed: 11/26/2022]
Abstract
Astrocyte dysfunction, and in particular impaired extracellular potassium spatial buffering, has been postulated to have a potential role in seizure susceptibility and ictogenesis. Inwardly rectifying potassium (Kir) channels, and specifically KIR4.1, have a predominant role in K+ homeostasis and their involvement in neuronal excitability control have been hypothesized. To avoid the severe side effects observed in Kir4.1 cKO, we studied the effects of Kir4.1 down-regulation in cortical astrocytes by using Kir4.1 RNA interference (RNAi) technique combined with in utero electroporation (IUE) at E16 and a piggyBac transposon system. Kir4.1 down-regulation was confirmed by immunohistochemistry and field fraction analysis. To investigate if Kir4.1 silencing affects 4AP-induced seizure threshold and extracellular potassium homeostasis, simultaneous in vitro field potential and extracellular K+ recordings were performed on somatosensory cortex slices obtained from rats electroporated with a piggyBac-Kir4.1-shRNA (Kir4.1-) and scrambled shRNA (Kir4.1Sc). Electrophysiological data revealed no significant differences in terms of seizure onset and seizure-induced extracellular K+ changes between Kir4.1- and Kir4.1Sc rats. Intriguingly, immunohistochemical analysis performed on slices studied with electrophysiology revealed a reduced number of neurons generated from radial glial cells in Kir4.1- rats. We conclude that focal down-regulation of Kir4.1 channel in cortical astrocytes by Kir4.1 RNAi technique combined with IUE is not effective in altering potassium homeostasis and seizure susceptibility. This technique revealed a possible role of Kir4.1 during corticogenesis.
Collapse
Affiliation(s)
- Ramona Frida Moroni
- Epilepsy Unit, Fondazione I.R.C.C.S. Istituto Neurologico "C. Besta", via Celoria 11, 20133 Milan, Italy.
| | - Maria Cristina Regondi
- Epilepsy Unit, Fondazione I.R.C.C.S. Istituto Neurologico "C. Besta", via Celoria 11, 20133 Milan, Italy.
| | - Marco de Curtis
- Epilepsy Unit, Fondazione I.R.C.C.S. Istituto Neurologico "C. Besta", via Celoria 11, 20133 Milan, Italy.
| | - Carolina Frassoni
- Epilepsy Unit, Fondazione I.R.C.C.S. Istituto Neurologico "C. Besta", via Celoria 11, 20133 Milan, Italy.
| | - Laura Librizzi
- Epilepsy Unit, Fondazione I.R.C.C.S. Istituto Neurologico "C. Besta", via Celoria 11, 20133 Milan, Italy.
| |
Collapse
|
16
|
Boni JL, Kahanovitch U, Nwaobi SE, Floyd CL, Olsen ML. DNA methylation: A mechanism for sustained alteration of KIR4.1 expression following central nervous system insult. Glia 2020; 68:1495-1512. [PMID: 32068308 PMCID: PMC8665281 DOI: 10.1002/glia.23797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/22/2022]
Abstract
Kir4.1, a glial-specific inwardly rectifying potassium channel, is implicated in astrocytic maintenance of K+ homeostasis. Underscoring the role of Kir4.1 in central nervous system (CNS) functioning, genetic mutations in KCNJ10, the gene which encodes Kir4.1, causes seizures, ataxia and developmental disability in humans. Kir4.1 protein and mRNA loss are consistently observed in CNS injury and neurological diseases linked to hyperexcitability and neuronal dysfunction, leading to the notion that Kir4.1 represents an attractive therapeutic target. Despite this, little is understood regarding the mechanisms that underpin this downregulation. Previous work by our lab revealed that DNA hypomethylation of the Kcnj10 gene functions to regulate mRNA levels during astrocyte maturation whereas hypermethylation in vitro led to decreased promoter activity. In the present study, we utilized two vastly different injury models with known acute and chronic loss of Kir4.1 protein and mRNA to evaluate the methylation status of Kcnj10 as a candidate molecular mechanism for reduced transcription and subsequent protein loss. Examining whole hippocampal tissue and isolated astrocytes, in a lithium-pilocarpine model of epilepsy, we consistently identified hypermethylation of CpG island two, which resides in the large intronic region spanning the Kcnj10 gene. Strikingly similar results were observed using the second injury paradigm, a fifth cervical (C5) vertebral hemi-contusion model of spinal cord injury. Our previous work indicates the same gene region is significantly hypomethylated when transcription increases during astrocyte maturation. Our results suggest that DNA methylation can bidirectionally modulate Kcnj10 transcription and may represent a targetable molecular mechanism for the restoring astroglial Kir4.1 expression following CNS insult.
Collapse
Affiliation(s)
- Jessica L Boni
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Uri Kahanovitch
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Sinifunanya E Nwaobi
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Pediatric Neurology, UCLA Mattel Children's Hospital, University of California Los Angeles, Los Angeles, California
| | - Candace L Floyd
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Physical Medicine and Rehabilitation, University of Utah Health, Salt Lake City, Utah
| | - Michelle L Olsen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| |
Collapse
|
17
|
Felix L, Stephan J, Rose CR. Astrocytes of the early postnatal brain. Eur J Neurosci 2020; 54:5649-5672. [PMID: 32406559 DOI: 10.1111/ejn.14780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
Abstract
In the rodent forebrain, the majority of astrocytes are generated during the early postnatal phase. Following differentiation, astrocytes undergo maturation which accompanies the development of the neuronal network. Neonate astrocytes exhibit a distinct morphology and domain size which differs to their mature counterparts. Moreover, many of the plasma membrane proteins prototypical for fully developed astrocytes are only expressed at low levels at neonatal stages. These include connexins and Kir4.1, which define the low membrane resistance and highly negative membrane potential of mature astrocytes. Newborn astrocytes moreover express only low amounts of GLT-1, a glutamate transporter critical later in development. Furthermore, they show specific differences in the properties and spatio-temporal pattern of intracellular calcium signals, resulting from differences in their repertoire of receptors and signalling pathways. Therefore, roles fulfilled by mature astrocytes, including ion and transmitter homeostasis, are underdeveloped in the young brain. Similarly, astrocytic ion signalling in response to neuronal activity, a process central to neuron-glia interaction, differs between the neonate and mature brain. This review describes the unique functional properties of astrocytes in the first weeks after birth and compares them to later stages of development. We conclude that with an immature neuronal network and wider extracellular space, astrocytic support might not be as demanding and critical compared to the mature brain. The delayed differentiation and maturation of astrocytes in the first postnatal weeks might thus reflect a reduced need for active, energy-consuming regulation of the extracellular space and a less tight control of glial feedback onto synaptic transmission.
Collapse
Affiliation(s)
- Lisa Felix
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Jonathan Stephan
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
18
|
Abstract
Astrocytes are the most abundant cell type in the central nervous system and have diverse functions in blood–brain barrier maintenance, neural circuitry formation and function, and metabolic regulation. To better understand the diverse roles of astrocytes, we will summarize what is known about astrocyte development and the challenges limiting our understanding of this process. We will also discuss new approaches and technologies advancing the field.
Collapse
Affiliation(s)
- Ekin Su Akdemir
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anna Yu-Szu Huang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
19
|
van Loo KMJ, Becker AJ. Transcriptional Regulation of Channelopathies in Genetic and Acquired Epilepsies. Front Cell Neurosci 2020; 13:587. [PMID: 31992970 PMCID: PMC6971179 DOI: 10.3389/fncel.2019.00587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/23/2019] [Indexed: 01/03/2023] Open
Abstract
Epilepsy is a common neurological disorder characterized by recurrent uncontrolled seizures and has an idiopathic “genetic” etiology or a symptomatic “acquired” component. Genetic studies have revealed that many epilepsy susceptibility genes encode ion channels, including voltage-gated sodium, potassium and calcium channels. The high prevalence of ion channels in epilepsy pathogenesis led to the causative concept of “ion channelopathies,” which can be elicited by specific mutations in the coding or promoter regions of genes in genetic epilepsies. Intriguingly, expression changes of the same ion channel genes by augmentation of specific transcription factors (TFs) early after an insult can underlie acquired epilepsies. In this study, we review how the transcriptional regulation of ion channels in both genetic and acquired epilepsies can be controlled, and compare these epilepsy “ion channelopathies” with other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Karen M J van Loo
- Department of Neuropathology, Section for Translational Epilepsy Research, University of Bonn Medical Center, Bonn, Germany
| | - Albert J Becker
- Department of Neuropathology, Section for Translational Epilepsy Research, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
20
|
Gomez L, Odom GJ, Young JI, Martin ER, Liu L, Chen X, Griswold AJ, Gao Z, Zhang L, Wang L. coMethDMR: accurate identification of co-methylated and differentially methylated regions in epigenome-wide association studies with continuous phenotypes. Nucleic Acids Res 2019; 47:e98. [PMID: 31291459 PMCID: PMC6753499 DOI: 10.1093/nar/gkz590] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/09/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Recent technology has made it possible to measure DNA methylation profiles in a cost-effective and comprehensive genome-wide manner using array-based technology for epigenome-wide association studies. However, identifying differentially methylated regions (DMRs) remains a challenging task because of the complexities in DNA methylation data. Supervised methods typically focus on the regions that contain consecutive highly significantly differentially methylated CpGs in the genome, but may lack power for detecting small but consistent changes when few CpGs pass stringent significance threshold after multiple comparison. Unsupervised methods group CpGs based on genomic annotations first and then test them against phenotype, but may lack specificity because the regional boundaries of methylation are often not well defined. We present coMethDMR, a flexible, powerful, and accurate tool for identifying DMRs. Instead of testing all CpGs within a genomic region, coMethDMR carries out an additional step that selects co-methylated sub-regions first. Next, coMethDMR tests association between methylation levels within the sub-region and phenotype via a random coefficient mixed effects model that models both variations between CpG sites within the region and differential methylation simultaneously. coMethDMR offers well-controlled Type I error rate, improved specificity, focused testing of targeted genomic regions, and is available as an open-source R package.
Collapse
Affiliation(s)
- Lissette Gomez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gabriel J Odom
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Juan I Young
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Dr. John T. Macdonald Foundation, Department of Human Genetics, University of Miami, Miami, FL 33136, USA
| | - Eden R Martin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Dr. John T. Macdonald Foundation, Department of Human Genetics, University of Miami, Miami, FL 33136, USA
| | - Lizhong Liu
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xi Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Dr. John T. Macdonald Foundation, Department of Human Genetics, University of Miami, Miami, FL 33136, USA
| | - Zhen Gao
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lanyu Zhang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lily Wang
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Dr. John T. Macdonald Foundation, Department of Human Genetics, University of Miami, Miami, FL 33136, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
21
|
Potassium and glutamate transport is impaired in scar-forming tumor-associated astrocytes. Neurochem Int 2019; 133:104628. [PMID: 31825815 PMCID: PMC6957761 DOI: 10.1016/j.neuint.2019.104628] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 01/09/2023]
Abstract
Unprovoked recurrent seizures are a serious comorbidity affecting most patients who suffer from glioma, a primary brain tumor composed of malignant glial cells. Cellular mechanisms contributing to the development of recurrent spontaneous seizures include the release of the excitatory neurotransmitter glutamate from glioma into extracellular space. Under physiological conditions, astrocytes express two high affinity glutamate transporters, Glt-1 and Glast, which are responsible for the removal of excess extracellular glutamate. In the context of neurological disease or brain injury, astrocytes become reactive which can negatively affect neuronal function, causing hyperexcitability and/or death. Using electrophysiology, immunohistochemistry, fluorescent in situ hybridization, and Western blot analysis in different orthotopic xenograft and allograft models of human and mouse gliomas, we find that peritumoral astrocytes exhibit astrocyte scar formation characterized by proliferation, cellular hypertrophy, process elongation, and increased GFAP and pSTAT3. Overall, peritumoral reactive astrocytes show a significant reduction in glutamate and potassium uptake, as well as decreased glutamine synthetase activity. A subset of peritumoral astrocytes displayed a depolarized resting membrane potential, further contributing to reduced potassium and glutamate homeostasis. These changes may contribute to the propagation of peritumoral neuronal hyperexcitability and excitotoxic death.
Collapse
|
22
|
Holt LM, Hernandez RD, Pacheco NL, Torres Ceja B, Hossain M, Olsen ML. Astrocyte morphogenesis is dependent on BDNF signaling via astrocytic TrkB.T1. eLife 2019; 8:44667. [PMID: 31433295 PMCID: PMC6726422 DOI: 10.7554/elife.44667] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 08/20/2019] [Indexed: 12/31/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a critical growth factor involved in the maturation of the CNS, including neuronal morphology and synapse refinement. Herein, we demonstrate astrocytes express high levels of BDNF’s receptor, TrkB (in the top 20 of protein-coding transcripts), with nearly exclusive expression of the truncated isoform, TrkB.T1, which peaks in expression during astrocyte morphological maturation. Using a novel culture paradigm, we show that astrocyte morphological complexity is increased in the presence of BDNF and is dependent upon BDNF/TrkB.T1 signaling. Deletion of TrkB.T1, globally and astrocyte-specifically, in mice revealed morphologically immature astrocytes with significantly reduced volume, as well as dysregulated expression of perisynaptic genes associated with mature astrocyte function. Indicating a role for functional astrocyte maturation via BDNF/TrkB.T1 signaling, TrkB.T1 KO astrocytes do not support normal excitatory synaptogenesis or function. These data suggest a significant role for BDNF/TrkB.T1 signaling in astrocyte morphological maturation, a critical process for CNS development.
Collapse
Affiliation(s)
- Leanne M Holt
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, United States.,School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, United States
| | - Raymundo D Hernandez
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, United States.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, United States
| | - Natasha L Pacheco
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, United States
| | - Beatriz Torres Ceja
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, United States
| | - Muhannah Hossain
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, United States
| | - Michelle L Olsen
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, United States.,School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, United States
| |
Collapse
|
23
|
Kahanovitch U, Patterson KC, Hernandez R, Olsen ML. Glial Dysfunction in MeCP2 Deficiency Models: Implications for Rett Syndrome. Int J Mol Sci 2019; 20:ijms20153813. [PMID: 31387202 PMCID: PMC6696322 DOI: 10.3390/ijms20153813] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT) is a rare, X-linked neurodevelopmental disorder typically affecting females, resulting in a range of symptoms including autistic features, intellectual impairment, motor deterioration, and autonomic abnormalities. RTT is primarily caused by the genetic mutation of the Mecp2 gene. Initially considered a neuronal disease, recent research shows that glial dysfunction contributes to the RTT disease phenotype. In the following manuscript, we review the evidence regarding glial dysfunction and its effects on disease etiology.
Collapse
Affiliation(s)
- Uri Kahanovitch
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences I Building Room 212, 970 Washington St. SW, Blacksburg, VA 24061, USA
| | - Kelsey C Patterson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA
| | - Raymundo Hernandez
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences I Building Room 212, 970 Washington St. SW, Blacksburg, VA 24061, USA
- Graduate Program in Translational Biology Medicine and Health, Virginia Tech, Roanoke, VL 24014, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences I Building Room 212, 970 Washington St. SW, Blacksburg, VA 24061, USA.
| |
Collapse
|
24
|
Larsen BR, Stoica A, MacAulay N. Developmental maturation of activity-induced K + and pH transients and the associated extracellular space dynamics in the rat hippocampus. J Physiol 2019; 597:583-597. [PMID: 30357826 PMCID: PMC6332761 DOI: 10.1113/jp276768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/22/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neuronal activity induces fluctuation in extracellular space volume, [K+ ]o and pHo , the management of which influences neuronal function The neighbour astrocytes buffer the K+ and pH and swell during the process, causing shrinkage of the extracellular space In the present study, we report the developmental rise of the homeostatic control of the extracellular space dynamics, for which regulation becomes tighter with maturation and thus is proposed to ensure efficient synaptic transmission in the mature animals The extracellular space dynamics of volume, [K+ ]o and pHo evolve independently with developmental maturation and, although all of them are inextricably tied to neuronal activity, they do not couple directly. ABSTRACT Neuronal activity in the mammalian central nervous system associates with transient extracellular space (ECS) dynamics involving elevated K+ and pH and shrinkage of the ECS. These ECS properties affect membrane potentials, neurotransmitter concentrations and protein function and are thus anticipated to be under tight regulatory control. It remains unresolved to what extent these ECS dynamics are developmentally regulated as synaptic precision arises and whether they are directly or indirectly coupled. To resolve the development of homeostatic control of [K+ ]o , pH, and ECS and their interaction, we utilized ion-sensitive microelectrodes in electrically stimulated rat hippocampal slices from rats of different developmental stages (postnatal days 3-28). With the employed stimulation paradigm, the stimulus-evoked peak [K+ ]o and pHo transients were stable across age groups, until normalized to neuronal activity (field potential amplitude), in which case the K+ and pH shifted significantly more in the younger animals. By contrast, ECS dynamics increased with age until normalized to the field potential, and thus correlated with neuronal activity. With age, the animals not only managed the peak [K+ ]o better, but also displayed swifter post-stimulus removal of [K+ ]o , in correlation with the increased expression of the α1-3 isoforms of the Na+ /K+ -ATPase, and a swifter return of ECS volume. The different ECS dynamics approached a near-identical temporal pattern in the more mature animals. In conclusion, although these phenomena are inextricably tied to neuronal activity, our data suggest that they do not couple directly.
Collapse
Affiliation(s)
- Brian Roland Larsen
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Anca Stoica
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Nanna MacAulay
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
25
|
Shi GD, Zhang XL, Cheng X, Wang X, Fan BY, Liu S, Hao Y, Wei ZJ, Zhou XH, Feng SQ. Abnormal DNA Methylation in Thoracic Spinal Cord Tissue Following Transection Injury. Med Sci Monit 2018; 24:8878-8890. [PMID: 30531681 PMCID: PMC6295140 DOI: 10.12659/msm.913141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Spinal cord injury (SCI) is a serious disease with high disability and mortality rates, with no effective therapeutic strategies available. In SCI, abnormal DNA methylation is considered to be associated with axonal regeneration and cell proliferation. However, the roles of key genes in potential molecular mechanisms of SCI are not clear. Material/Methods Subacute spinal cord injury models were established in Wistar rats. Histological observations and motor function assessments were performed separately. Whole-genome bisulfite sequencing (WGBS) was used to detect the methylation of genes. Gene ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed using the DAVID database. Protein–protein interaction (PPI) networks were analyzed by Cytoscape software. Results After SCI, many cavities, areas of necrotic tissue, and many inflammatory cells were observed, and motor function scores were low. After the whole-genome bisulfite sequencing, approximately 96 DMGs were screened, of which 50 were hypermethylated genes and 46 were hypomethylated genes. KEGG pathway analysis highlighted the Axon Guidance pathway, Endocytosis pathway, T cell receptor signaling pathway, and Hippo signaling pathway. Expression patterns of hypermethylated genes and hypomethylated genes detected by qRT-PCR were the opposite of WGBS data, and the difference was significant. Conclusions Abnormal methylated genes and key signaling pathways involved in spinal cord injury were identified through histological observation, behavioral assessment, and bioinformatics analysis. This research can serve as a source of additional information to expand understanding of spinal cord-induced epigenetic changes.
Collapse
Affiliation(s)
- Gui-Dong Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China (mainland)
| | - Xiao-Lei Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China (mainland)
| | - Xin Cheng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China (mainland)
| | - Xu Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China (mainland)
| | - Bao-You Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China (mainland)
| | - Shen Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China (mainland)
| | - Yan Hao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China (mainland)
| | - Zhi-Jian Wei
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China (mainland)
| | - Xian-Hu Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China (mainland)
| | - Shi-Qing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China (mainland)
| |
Collapse
|
26
|
Schirmer L, Möbius W, Zhao C, Cruz-Herranz A, Ben Haim L, Cordano C, Shiow LR, Kelley KW, Sadowski B, Timmons G, Pröbstel AK, Wright JN, Sin JH, Devereux M, Morrison DE, Chang SM, Sabeur K, Green AJ, Nave KA, Franklin RJ, Rowitch DH. Oligodendrocyte-encoded Kir4.1 function is required for axonal integrity. eLife 2018; 7:36428. [PMID: 30204081 PMCID: PMC6167053 DOI: 10.7554/elife.36428] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/09/2018] [Indexed: 12/17/2022] Open
Abstract
Glial support is critical for normal axon function and can become dysregulated in white matter (WM) disease. In humans, loss-of-function mutations of KCNJ10, which encodes the inward-rectifying potassium channel KIR4.1, causes seizures and progressive neurological decline. We investigated Kir4.1 functions in oligodendrocytes (OLs) during development, adulthood and after WM injury. We observed that Kir4.1 channels localized to perinodal areas and the inner myelin tongue, suggesting roles in juxta-axonal K+ removal. Conditional knockout (cKO) of OL-Kcnj10 resulted in late onset mitochondrial damage and axonal degeneration. This was accompanied by neuronal loss and neuro-axonal dysfunction in adult OL-Kcnj10 cKO mice as shown by delayed visual evoked potentials, inner retinal thinning and progressive motor deficits. Axon pathologies in OL-Kcnj10 cKO were exacerbated after WM injury in the spinal cord. Our findings point towards a critical role of OL-Kir4.1 for long-term maintenance of axonal function and integrity during adulthood and after WM injury.
Collapse
Affiliation(s)
- Lucas Schirmer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, United States.,Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Chao Zhao
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Andrés Cruz-Herranz
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Lucile Ben Haim
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, United States
| | - Christian Cordano
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Lawrence R Shiow
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, United States
| | - Kevin W Kelley
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, United States
| | - Boguslawa Sadowski
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Garrett Timmons
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Anne-Katrin Pröbstel
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Jackie N Wright
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, United States
| | - Jung Hyung Sin
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Michael Devereux
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States
| | - Daniel E Morrison
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Sandra M Chang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, United States
| | - Khalida Sabeur
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, United States
| | - Ari J Green
- Department of Neurology, University of California, San Francisco, San Francisco, United States.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, United States.,Department of Ophthalmology, University of California, San Francisco, San Francisco, United States
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Robin Jm Franklin
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - David H Rowitch
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, United States.,Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Neurosurgery, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
27
|
Sanosaka T, Imamura T, Hamazaki N, Chai M, Igarashi K, Ideta-Otsuka M, Miura F, Ito T, Fujii N, Ikeo K, Nakashima K. DNA Methylome Analysis Identifies Transcription Factor-Based Epigenomic Signatures of Multilineage Competence in Neural Stem/Progenitor Cells. Cell Rep 2018; 20:2992-3003. [PMID: 28930691 DOI: 10.1016/j.celrep.2017.08.086] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/10/2017] [Accepted: 08/25/2017] [Indexed: 12/17/2022] Open
Abstract
Regulation of the epigenome during in vivo specification of brain stem cells is still poorly understood. Here, we report DNA methylome analyses of directly sampled cortical neural stem and progenitor cells (NS/PCs) at different development stages, as well as those of terminally differentiated cortical neurons, astrocytes, and oligodendrocytes. We found that sequential specification of cortical NS/PCs is regulated by two successive waves of demethylation at early and late development stages, which are responsible for the establishment of neuron- and glia-specific low-methylated regions (LMRs), respectively. The regulatory role of demethylation of the gliogenic genes was substantiated by the enrichment of nuclear factor I (NFI)-binding sites. We provide evidence that de novo DNA methylation of neuron-specific LMRs establishes glia-specific epigenotypes, essentially by silencing neuronal genes. Our data highlight the in vivo implications of DNA methylation dynamics in shaping epigenomic features that confer the differentiation potential of NS/PCs sequentially during development.
Collapse
Affiliation(s)
- Tsukasa Sanosaka
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Takuya Imamura
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Nobuhiko Hamazaki
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - MuhChyi Chai
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Katsuhide Igarashi
- Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-5801, Japan
| | - Maky Ideta-Otsuka
- Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-5801, Japan
| | - Fumihito Miura
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Nobuyuki Fujii
- Center for Information Biology, National Institute of Genetics, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Kazuho Ikeo
- Center for Information Biology, National Institute of Genetics, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
28
|
MeCP2 Deficiency Leads to Loss of Glial Kir4.1. eNeuro 2018; 5:eN-NWR-0194-17. [PMID: 29464197 PMCID: PMC5818552 DOI: 10.1523/eneuro.0194-17.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 02/01/2018] [Accepted: 02/08/2018] [Indexed: 01/05/2023] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder usually caused by mutations in methyl-CpG-binding protein 2 (MeCP2). RTT is typified by apparently normal development until 6-18 mo of age, when motor and communicative skills regress and hand stereotypies, autonomic symptoms, and seizures present. Restoration of MeCP2 function selectively to astrocytes reversed several deficits in a murine model of RTT, but the mechanism of this rescue is unknown. Astrocytes carry out many essential functions required for normal brain functioning, including extracellular K+ buffering. Kir4.1, an inwardly rectifying K+ channel, is largely responsible for the channel-mediated K+ regulation by astrocytes. Loss-of-function mutations in Kir4.1 in human patients result in a severe neurodevelopmental disorder termed EAST or SESAME syndrome. Here, we evaluated astrocytic Kir4.1 expression in a murine model of Rett syndrome. We demonstrate by chromatin immunoprecipitation analysis that Kir4.1 is a direct molecular target of MeCP2. Astrocytes from Mecp2-deficient mice express significantly less Kir4.1 mRNA and protein, which translates into a >50% deficiency in Ba2+-sensitive Kir4.1-mediated currents, and impaired extracellular potassium dynamics. By examining astrocytes in isolation, we demonstrate that loss of Kir4.1 is cell autonomous. Assessment through postnatal development revealed that Kir4.1 expression in Mecp2-deficient animals never reaches adult, wild-type levels, consistent with a neurodevelopmental disorder. These are the first data implicating a direct MeCP2 molecular target in astrocytes and provide novel mechanistic insight explaining a potential mechanism by which astrocytic dysfunction may contribute to RTT.
Collapse
|
29
|
Zhang SP, Zhang M, Tao H, Luo Y, He T, Wang CH, Li XC, Chen L, Zhang LN, Sun T, Hu QK. Dimethylation of Histone 3 Lysine 9 is sensitive to the epileptic activity, and affects the transcriptional regulation of the potassium channel Kcnj10 gene in epileptic rats. Mol Med Rep 2017; 17:1368-1374. [PMID: 29115470 DOI: 10.3892/mmr.2017.7942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 09/13/2017] [Indexed: 11/06/2022] Open
Abstract
Potassium channels can be affected by epileptic seizures and serve a crucial role in the pathophysiology of epilepsy. Dimethylation of histone 3 lysine 9 (H3K9me2) and its enzyme euchromatic histone‑lysine N‑methyltransferase 2 (G9a) are the major epigenetic modulators and are associated with gene silencing. Insight into whether H3K9me2 and G9a can respond to epileptic seizures and regulate expression of genes encoding potassium channels is the main purpose of the present study. A total of 16 subtypes of potassium channel genes in pilocarpine‑modelled epileptic rats were screened by reverse transcription‑quantitative polymerase chain reaction, and it was determined that the expression ATP‑sensitive inward rectifier potassium channel 10 (Kcnj10) increased in hippocampus and insular cortex, while the expression of most of the other subtypes decreased. The total level of H3K9me2 decreased in the model group compared with the control. The Kcnj10 gene encoding the Kir4.1 channel was selected to analyse changes in H3K9me2 in the promoter region by the chromatin immuno‑precipitation method. Anti‑H3K9me2 and anti‑G9a antibodies were used to identify the modified DNAs. Five primers were designed across the promoter region of the Kcnj10 gene. In epileptic hippocampi, the relative abundance of H3K9me2 and G9a in the promoter region of Kcnj10 decreased markedly. Removal of the H3K9me2 repressive mark resulted in decreased transcriptional inhibition of the Kcnj10 gene and therefore increased its expression. In the cultured C6 cells, specific inhibition of the enzymatic activity of G9a by 2‑(Hexahydro‑4‑methyl‑1H‑1,4‑diazepin‑1‑yl)‑6,7‑di‑ methoxy‑N‑(1‑(phenyl‑methyl)‑4‑piperidinyl)‑4‑quinazolinamine tri‑hydrochloride hydrate (bix01294) resulted in upregulation of the expression of Kir4.1 proteins. The present study demonstrated that H3K9me2 and G9a are sensitive to epileptic seizure activity during the acute phase of epilepsy and can affect the transcriptional regulation of the Kcnj10 channel.
Collapse
Affiliation(s)
- Shao-Ping Zhang
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Man Zhang
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hong Tao
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yan Luo
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Tao He
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Chun-Hui Wang
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiao-Cheng Li
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Ling Chen
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Lin-Na Zhang
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Qi-Kuan Hu
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
30
|
Shao Y, Chen Y. Pathophysiology and Clinical Utility of Non-coding RNAs in Epilepsy. Front Mol Neurosci 2017; 10:249. [PMID: 28848386 PMCID: PMC5554344 DOI: 10.3389/fnmol.2017.00249] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022] Open
Abstract
Epilepsy is a common neurologic disorder. The underlying pathological processes include synaptic strength, inflammation, ion channels, and apoptosis. Acting as epigenetic factors, non-coding RNAs (ncRNAs) participate in the regulation of pathophysiologic processes of epilepsy and are dysregulated during epileptogenesis. Aberrant expression of ncRNAs are observed in epilepsy patients and animal models of epilepsy. Furthermore, ncRNAs might also be used as biomarkers for diagnosis and the prognosis of treatment response in epilepsy. In this review, we will summarize the role of ncRNAs in the pathophysiology of epilepsy and the putative utilization of ncRNAs as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yiye Shao
- Department of Neurology, Jinshan Hospital, Fudan UniversityShanghai, China.,Department of Neurology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan UniversityShanghai, China.,Department of Neurology, Shanghai Medical College, Fudan UniversityShanghai, China
| |
Collapse
|
31
|
Palygin O, Pochynyuk O, Staruschenko A. Role and mechanisms of regulation of the basolateral K ir 4.1/K ir 5.1K + channels in the distal tubules. Acta Physiol (Oxf) 2017; 219:260-273. [PMID: 27129733 PMCID: PMC5086442 DOI: 10.1111/apha.12703] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/28/2016] [Accepted: 04/28/2016] [Indexed: 12/11/2022]
Abstract
Epithelial K+ channels are essential for maintaining electrolyte and fluid homeostasis in the kidney. It is recognized that basolateral inward-rectifying K+ (Kir ) channels play an important role in the control of resting membrane potential and transepithelial voltage, thereby modulating water and electrolyte transport in the distal part of nephron and collecting duct. Monomeric Kir 4.1 (encoded by Kcnj10 gene) and heteromeric Kir 4.1/Kir 5.1 (Kir 4.1 together with Kir 5.1 (Kcnj16)) channels are abundantly expressed at the basolateral membranes of the distal convoluted tubule and the cortical collecting duct cells. Loss-of-function mutations in KCNJ10 cause EAST/SeSAME tubulopathy in humans associated with salt wasting, hypomagnesaemia, metabolic alkalosis and hypokalaemia. In contrast, mice lacking Kir 5.1 have severe renal phenotype that, apart from hypokalaemia, is the opposite of the phenotype seen in EAST/SeSAME syndrome. Experimental advances using genetic animal models provided critical insights into the physiological role of these channels in electrolyte homeostasis and the control of kidney function. Here, we discuss current knowledge about K+ channels at the basolateral membrane of the distal tubules with specific focus on the homomeric Kir 4.1 and heteromeric Kir 4.1/Kir 5.1 channels. Recently identified molecular mechanisms regulating expression and activity of these channels, such as cell acidification, dopamine, insulin and insulin-like growth factor-1, Src family protein tyrosine kinases, as well as the role of these channels in NCC-mediated transport in the distal convoluted tubules, are also described.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | |
Collapse
|
32
|
Gain-of-function defects of astrocytic Kir4.1 channels in children with autism spectrum disorders and epilepsy. Sci Rep 2016; 6:34325. [PMID: 27677466 PMCID: PMC5039625 DOI: 10.1038/srep34325] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/07/2016] [Indexed: 12/23/2022] Open
Abstract
Dysfunction of the inwardly-rectifying potassium channels Kir4.1 (KCNJ10) represents a pathogenic mechanism contributing to Autism-Epilepsy comorbidity. To define the role of Kir4.1 variants in the disorder, we sequenced KCNJ10 in a sample of affected individuals, and performed genotype-phenotype correlations. The effects of mutations on channel activity, protein trafficking, and astrocyte function were investigated in Xenopus laevis oocytes, and in human astrocytoma cell lines. An in vivo model of the disorder was also explored through generation of kcnj10a morphant zebrafish overexpressing the mutated human KCNJ10. We detected germline heterozygous KCNJ10 variants in 19/175 affected children. Epileptic spasms with dysregulated sensory processing represented the main disease phenotype. When investigated on astrocyte-like cells, the p.R18Q mutation exerted a gain-of-function effect by enhancing Kir4.1 membrane expression and current density. Similarly, the p.R348H variant led to gain of channel function through hindrance of pH-dependent current inhibition. The frequent polymorphism p.R271C seemed, instead, to have no obvious functional effects. Our results confirm that variants in KCNJ10 deserve attention in autism-epilepsy, and provide insight into the molecular mechanisms of autism and seizures. Similar to neurons, astrocyte dysfunction may result in abnormal synaptic transmission and electrical discharge, and should be regarded as a possible pharmacological target in autism-epilepsy.
Collapse
|
33
|
Abstract
Epilepsy is among the most prevalent chronic neurological diseases and affects an estimated 2.2 million people in the United States alone. About one third of patients are resistant to currently available antiepileptic drugs, which are exclusively targeting neuronal function. Yet, reactive astrocytes have emerged as potential contributors to neuronal hyperexcitability and seizures. Astrocytes react to any kind of CNS insult with a range of cellular adjustments to form a scar and protect uninjured brain regions. This process changes astrocyte physiology and can affect neuronal network function in various ways. Traumatic brain injury and stroke, both conditions that trigger astroglial scar formation, are leading causes of acquired epilepsies and surgical removal of this glial scar in patients with drug-resistant epilepsy can alleviate the seizures. This review will summarize the currently available evidence suggesting that epilepsy is not a disease of neurons alone, but that astrocytes, glial cells in the brain, can be major contributors to the disease, especially when they adopt a reactive state in response to central nervous system insult.
Collapse
Affiliation(s)
- Stefanie Robel
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA
- Virginia Tech School of Neuroscience, Blacksburg, VA, USA
| |
Collapse
|
34
|
Nwaobi SE, Cuddapah VA, Patterson KC, Randolph AC, Olsen ML. The role of glial-specific Kir4.1 in normal and pathological states of the CNS. Acta Neuropathol 2016; 132:1-21. [PMID: 26961251 PMCID: PMC6774634 DOI: 10.1007/s00401-016-1553-1] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/16/2016] [Accepted: 02/25/2016] [Indexed: 12/15/2022]
Abstract
Kir4.1 is an inwardly rectifying K(+) channel expressed exclusively in glial cells in the central nervous system. In glia, Kir4.1 is implicated in several functions including extracellular K(+) homeostasis, maintenance of astrocyte resting membrane potential, cell volume regulation, and facilitation of glutamate uptake. Knockout of Kir4.1 in rodent models leads to severe neurological deficits, including ataxia, seizures, sensorineural deafness, and early postnatal death. Accumulating evidence indicates that Kir4.1 plays an integral role in the central nervous system, prompting many laboratories to study the potential role that Kir4.1 plays in human disease. In this article, we review the growing evidence implicating Kir4.1 in a wide array of neurological disease. Recent literature suggests Kir4.1 dysfunction facilitates neuronal hyperexcitability and may contribute to epilepsy. Genetic screens demonstrate that mutations of KCNJ10, the gene encoding Kir4.1, causes SeSAME/EAST syndrome, which is characterized by early onset seizures, compromised verbal and motor skills, profound cognitive deficits, and salt-wasting. KCNJ10 has also been linked to developmental disorders including autism. Cerebral trauma, ischemia, and inflammation are all associated with decreased astrocytic Kir4.1 current amplitude and astrocytic dysfunction. Additionally, neurodegenerative diseases such as Alzheimer disease and amyotrophic lateral sclerosis demonstrate loss of Kir4.1. This is particularly exciting in the context of Huntington disease, another neurodegenerative disorder in which restoration of Kir4.1 ameliorated motor deficits, decreased medium spiny neuron hyperexcitability, and extended survival in mouse models. Understanding the expression and regulation of Kir4.1 will be critical in determining if this channel can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Sinifunanya E Nwaobi
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Vishnu A Cuddapah
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Kelsey C Patterson
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Anita C Randolph
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Michelle L Olsen
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK.
| |
Collapse
|
35
|
Holt LM, Olsen ML. Novel Applications of Magnetic Cell Sorting to Analyze Cell-Type Specific Gene and Protein Expression in the Central Nervous System. PLoS One 2016; 11:e0150290. [PMID: 26919701 PMCID: PMC4769085 DOI: 10.1371/journal.pone.0150290] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/11/2016] [Indexed: 12/21/2022] Open
Abstract
The isolation and study of cell-specific populations in the central nervous system (CNS) has gained significant interest in the neuroscience community. The ability to examine cell-specific gene and protein expression patterns in healthy and pathological tissue is critical for our understanding of CNS function. Several techniques currently exist to isolate cell-specific populations, each having their own inherent advantages and shortcomings. Isolation of distinct cell populations using magnetic sorting is a technique which has been available for nearly 3 decades, although rarely used in adult whole CNS tissue homogenate. In the current study we demonstrate that distinct cell populations can be isolated in rodents from early postnatal development through adulthood. We found this technique to be amendable to customization using commercially available membrane-targeted antibodies, allowing for cell-specific isolation across development and animal species. This technique yields RNA which can be utilized for downstream applications—including quantitative PCR and RNA sequencing—at relatively low cost and without the need for specialized equipment or fluorescently labeled cells. Adding to its utility, we demonstrate that cells can be isolated largely intact, retaining their processes, enabling analysis of extrasomatic proteins. We propose that magnetic cell sorting will prove to be a highly useful technique for the examination of cell specific CNS populations.
Collapse
Affiliation(s)
- Leanne Melissa Holt
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Michelle Lynne Olsen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
36
|
Ohya S, Kito H, Hatano N, Muraki K. Recent advances in therapeutic strategies that focus on the regulation of ion channel expression. Pharmacol Ther 2016; 160:11-43. [PMID: 26896566 DOI: 10.1016/j.pharmthera.2016.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A number of different ion channel types are involved in cell signaling networks, and homeostatic regulatory mechanisms contribute to the control of ion channel expression. Profiling of global gene expression using microarray technology has recently provided novel insights into the molecular mechanisms underlying the homeostatic and pathological control of ion channel expression. It has demonstrated that the dysregulation of ion channel expression is associated with the pathogenesis of neural, cardiovascular, and immune diseases as well as cancers. In addition to the transcriptional, translational, and post-translational regulation of ion channels, potentially important evidence on the mechanisms controlling ion channel expression has recently been accumulated. The regulation of alternative pre-mRNA splicing is therefore a novel therapeutic strategy for the treatment of dominant-negative splicing disorders. Epigenetic modification plays a key role in various pathological conditions through the regulation of pluripotency genes. Inhibitors of pre-mRNA splicing and histone deacetyalase/methyltransferase have potential as potent therapeutic drugs for cancers and autoimmune and inflammatory diseases. Moreover, membrane-anchoring proteins, lysosomal and proteasomal degradation-related molecules, auxiliary subunits, and pharmacological agents alter the protein folding, membrane trafficking, and post-translational modifications of ion channels, and are linked to expression-defect channelopathies. In this review, we focused on recent insights into the transcriptional, spliceosomal, epigenetic, and proteasomal regulation of ion channel expression: Ca(2+) channels (TRPC/TRPV/TRPM/TRPA/Orai), K(+) channels (voltage-gated, KV/Ca(2+)-activated, KCa/two-pore domain, K2P/inward-rectifier, Kir), and Ca(2+)-activated Cl(-) channels (TMEM16A/TMEM16B). Furthermore, this review highlights expression of these ion channels in expression-defect channelopathies.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan.
| |
Collapse
|
37
|
Du Y, Kiyoshi CM, Wang Q, Wang W, Ma B, Alford CC, Zhong S, Wan Q, Chen H, Lloyd EE, Bryan RM, Zhou M. Genetic Deletion of TREK-1 or TWIK-1/TREK-1 Potassium Channels does not Alter the Basic Electrophysiological Properties of Mature Hippocampal Astrocytes In Situ. Front Cell Neurosci 2016; 10:13. [PMID: 26869883 PMCID: PMC4738265 DOI: 10.3389/fncel.2016.00013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/14/2016] [Indexed: 01/03/2023] Open
Abstract
We have recently shown that a linear current-to-voltage (I-V) relationship of membrane conductance (passive conductance) reflects the intrinsic property of K+ channels in mature astrocytes. While passive conductance is known to underpin a highly negative and stable membrane potential (VM) essential for the basic homeostatic function of astrocytes, a complete repertoire of the involved K+ channels remains elusive. TREK-1 two-pore domain K+ channel (K2P) is highly expressed in astrocytes, and covalent association of TREK-1 with TWIK-1, another highly expressed astrocytic K2P, has been reported as a mechanism underlying the trafficking of heterodimer TWIK-1/TREK-1 channel to the membrane and contributing to astrocyte passive conductance. To decipher the individual contribution of TREK-1 and address whether the appearance of passive conductance is conditional to the co-expression of TWIK-1/TREK-1 in astrocytes, TREK-1 single and TWIK-1/TREK-1 double gene knockout mice were used in the present study. The relative quantity of mRNA encoding other astrocyte K+ channels, such as Kir4.1, Kir5.1, and TREK-2, was not altered in these gene knockout mice. Whole-cell recording from hippocampal astrocytes in situ revealed no detectable changes in astrocyte passive conductance, VM, or membrane input resistance (Rin) in either kind of gene knockout mouse. Additionally, TREK-1 proteins were mainly located in the intracellular compartments of the hippocampus. Altogether, genetic deletion of TREK-1 alone or together with TWIK-1 produced no obvious alteration in the basic electrophysiological properties of hippocampal astrocytes. Thus, future research focusing on other K+ channels may shed light on this long-standing and important question in astrocyte physiology.
Collapse
Affiliation(s)
- Yixing Du
- Department of Neuroscience, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Department of Neurology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Conrad M Kiyoshi
- Department of Neuroscience, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Qi Wang
- Department of Neuroscience, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Department of Neurology, Meitan General HospitalXibahe Nanli, Beijing, China
| | - Wei Wang
- Department of Physiology, Institute of Brain Research, School of Basic Medicine, Huazhong University of Science and Technology Wuhan, China
| | - Baofeng Ma
- Department of Neuroscience, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Catherine C Alford
- Department of Neuroscience, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Shiying Zhong
- Department of Neuroscience, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Qi Wan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University Nanjing, China
| | - Haijun Chen
- Department of Biological Science, University at Albany, State University of New York Albany, NY, USA
| | - Eric E Lloyd
- Department of Anesthesiology, Baylor College of Medicine Houston, TX, USA
| | - Robert M Bryan
- Department of Anesthesiology, Baylor College of Medicine Houston, TX, USA
| | - Min Zhou
- Department of Neuroscience, The Ohio State University Wexner Medical Center Columbus, OH, USA
| |
Collapse
|
38
|
New Insights on Astrocyte Ion Channels: Critical for Homeostasis and Neuron-Glia Signaling. J Neurosci 2016; 35:13827-35. [PMID: 26468182 DOI: 10.1523/jneurosci.2603-15.2015] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Initial biophysical studies on glial cells nearly 50 years ago identified these cells as being electrically silent. These first studies also demonstrated a large K(+) conductance, which led to the notion that glia may regulate extracellular K(+) levels homeostatically. This view has now gained critical support from the study of multiple disease models discussed herein. Dysfunction of a major astrocyte K(+) channel, Kir4.1, appears as an early pathological event underlying neuronal phenotypes in several neurodevelopmental and neurodegenerative diseases. An expanding list of other astrocyte ion channels, including the calcium-activated ion channel BEST-1, hemichannels, and two-pore domain K(+) channels, all contribute to astrocyte biology and CNS function and underpin new forms of crosstalk between neurons and glia. Once considered merely the glue that holds the brain together, it is now increasingly recognized that astrocytes contribute in several fundamental ways to neuronal function. Emerging new insights and future perspectives of this active research area are highlighted within. SIGNIFICANCE STATEMENT The critical role of astrocyte potassium channels in CNS homeostasis has been reemphasized by recent studies conducted in animal disease models. Emerging evidence also supports the signaling role mediated by astrocyte ion channels such as BEST1, hemichannels, and two-pore channels, which enable astrocytes to interact with neurons and regulate synaptic transmission and plasticity. This minisymposium highlights recent developments and future perspectives of these research areas.
Collapse
|
39
|
Minkel HR, Anwer TZ, Arps KM, Brenner M, Olsen ML. Elevated GFAP induces astrocyte dysfunction in caudal brain regions: A potential mechanism for hindbrain involved symptoms in type II Alexander disease. Glia 2015; 63:2285-97. [PMID: 26190408 PMCID: PMC4555878 DOI: 10.1002/glia.22893] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/01/2015] [Indexed: 12/14/2022]
Abstract
Alexander Disease (AxD) is a "gliopathy" caused by toxic, dominant gain-of-function mutations in the glial fibrillary acidic protein (GFAP) gene. Two distinct types of AxD exist. Type I AxD affected individuals develop cerebral symptoms by 4 years of age and suffer from macrocephaly, seizures, and physical and mental delays. As detection and diagnosis have improved, approximately half of all AxD patients diagnosed have onset >4 years and brainstem/spinal cord involvement. Type II AxD patients experience ataxia, palatal myoclonus, dysphagia, and dysphonia. No study has examined a mechanistic link between the GFAP mutations and caudal symptoms present in type II AxD patients. We demonstrate that two key astrocytic functions, the ability to regulate extracellular glutamate and to take up K(+) via K+ channels, are compromised in hindbrain regions and spinal cord in AxD mice. Spinal cord astrocytes in AxD transgenic mice are depolarized relative to WT littermates, and have a three-fold reduction in Ba(2+) -sensitive Kir4.1 mediated currents and six-fold reduction in glutamate uptake currents. The loss of these two functions is due to significant decreases in Kir4.1 (>70%) and GLT-1 (>60%) protein expression. mRNA expression for KCNJ10 and SLC1A2, the genes that code for Kir4.1 and GLT-1, are significantly reduced by postnatal Day 7. Protein and mRNA reductions for Kir4.1 and GLT-1 are exacerbated in AxD models that demonstrate earlier accumulation of GFAP and increased Rosenthal fiber formation. These findings provide a mechanistic link between the GFAP mutations/overexpression and the symptoms in those affected with Type II AxD.
Collapse
Affiliation(s)
- Heather R Minkel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tooba Z Anwer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kara M Arps
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michael Brenner
- Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michelle L Olsen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
40
|
Wang W, Kiyoshi CM, Du Y, Ma B, Alford CC, Chen H, Zhou M. mGluR3 Activation Recruits Cytoplasmic TWIK-1 Channels to Membrane that Enhances Ammonium Uptake in Hippocampal Astrocytes. Mol Neurobiol 2015; 53:6169-6182. [PMID: 26553349 DOI: 10.1007/s12035-015-9496-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 10/16/2015] [Indexed: 12/29/2022]
Abstract
TWIK-1 two-pore domain K+ channels are highly expressed in mature hippocampal astrocytes. While the TWIK-1 activity is readily detectable on astrocyte membrane, the majority of channels are retained in the intracellular compartments, which raises an intriguing question of whether the membrane TWIK-1 channels could be dynamically regulated for functions yet unknown. Here, the regulation of TWIK-1 membrane expression by Gi/Go-coupled metabotropic glutamate receptor 3 (mGluR3) and its functional impact on ammonium uptake has been studied. Activation of mGluR3 induced a marked translocation of TWIK-1 channels from the cytoplasm to the membrane surface. Consistent with our early observation that membrane TWIK-1 behaves as nonselective monovalent cation channel, mGluR3-mediated TWIK-1 membrane expression was associated with a depolarizing membrane potential (V M). As TWIK-1 exhibits a discernibly high permeability to ammonium (NH4+), a critical substrate in glutamate-glutamine cycle for neurotransmitter replenishment, regulation of NH4+ uptake capacity by TWIK-1 membrane expression was determined by response of astrocyte V M to bath application of 5 mM NH4Cl. Stimulation of mGluR3 potentiated NH4+-induced V M depolarization by ∼30 % in wild type, but not in TWIK-1 knockout astrocytes. Furthermore, activation of mGluR3 mediated a coordinated translocation of TWIK-1 channels with recycling endosomes toward astrocyte membrane and the mGluR3-mediated potentiation of NH4+ uptake required a functional Rab-mediated trafficking pathway. Altogether, we demonstrate that the activation of mGluR3 up-regulates the membrane expression of TWIK-1 that in turn enhances NH4+ uptake in astrocytes, a mechanism potentially important for functional coupling of astrocyte glutamate-glutamine cycle with the replenishment of neurotransmitters in neurons.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA. .,Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Institute of Brain Research, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.
| | - Conrad M Kiyoshi
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Yixing Du
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Baofeng Ma
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Catherine C Alford
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Haijun Chen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Min Zhou
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
41
|
Developmental expression of Kir4.1 in astrocytes and oligodendrocytes of rat somatosensory cortex and hippocampus. Int J Dev Neurosci 2015; 47:198-205. [DOI: 10.1016/j.ijdevneu.2015.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 12/31/2022] Open
|
42
|
Nwaobi SE, Olsen ML. Correlating Gene-specific DNA Methylation Changes with Expression and Transcriptional Activity of Astrocytic KCNJ10 (Kir4.1). J Vis Exp 2015. [PMID: 26436772 DOI: 10.3791/52406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA methylation serves to regulate gene expression through the covalent attachment of a methyl group onto the C5 position of a cytosine in a cytosine-guanine dinucleotide. While DNA methylation provides long-lasting and stable changes in gene expression, patterns and levels of DNA methylation are also subject to change based on a variety of signals and stimuli. As such, DNA methylation functions as a powerful and dynamic regulator of gene expression. The study of neuroepigenetics has revealed a variety of physiological and pathological states that are associated with both global and gene-specific changes in DNA methylation. Specifically, striking correlations between changes in gene expression and DNA methylation exist in neuropsychiatric and neurodegenerative disorders, during synaptic plasticity, and following CNS injury. However, as the field of neuroepigenetics continues to expand its understanding of the role of DNA methylation in CNS physiology, delineating causal relationships in regards to changes in gene expression and DNA methylation are essential. Moreover, in regards to the larger field of neuroscience, the presence of vast region and cell-specific differences requires techniques that address these variances when studying the transcriptome, proteome, and epigenome. Here we describe FACS sorting of cortical astrocytes that allows for subsequent examination of a both RNA transcription and DNA methylation. Furthermore, we detail a technique to examine DNA methylation, methylation sensitive high resolution melt analysis (MS-HRMA) as well as a luciferase promoter assay. Through the use of these combined techniques one is able to not only explore correlative changes between DNA methylation and gene expression, but also directly assess if changes in the DNA methylation status of a given gene region are sufficient to affect transcriptional activity.
Collapse
Affiliation(s)
- Sinifunanya E Nwaobi
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham
| | - Michelle L Olsen
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham;
| |
Collapse
|
43
|
Larson VA, Zhang Y, Bergles DE. Electrophysiological properties of NG2(+) cells: Matching physiological studies with gene expression profiles. Brain Res 2015; 1638:138-160. [PMID: 26385417 DOI: 10.1016/j.brainres.2015.09.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 01/11/2023]
Abstract
NG2(+) glial cells are a dynamic population of non-neuronal cells that give rise to myelinating oligodendrocytes in the central nervous system. These cells express numerous ion channels and neurotransmitter receptors, which endow them with a complex electrophysiological profile that is unique among glial cells. Despite extensive analysis of the electrophysiological properties of these cells, relatively little was known about the molecular identity of the channels and receptors that they express. The generation of new RNA-Seq datasets for NG2(+) cells has provided the means to explore how distinct genes contribute to the physiological properties of these progenitors. In this review, we systematically compare the results obtained through RNA-Seq transcriptional analysis of purified NG2(+) cells to previous physiological and molecular studies of these cells to define the complement of ion channels and neurotransmitter receptors expressed by NG2(+) cells in the mammalian brain and discuss the potential significance of the unique physiological properties of these cells. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
Affiliation(s)
- Valerie A Larson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ye Zhang
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
44
|
Turovsky E, Karagiannis A, Abdala AP, Gourine AV. Impaired CO2 sensitivity of astrocytes in a mouse model of Rett syndrome. J Physiol 2015; 593:3159-68. [PMID: 25981852 PMCID: PMC4532534 DOI: 10.1113/jp270369] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/11/2015] [Indexed: 12/13/2022] Open
Abstract
Rett syndrome, a prototypical neurological disorder caused by loss of function of the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2) gene, is associated with a severely disordered breathing pattern and reduced ventilatory CO2 sensitivity. In a mouse model of Rett syndrome (MeCP2 knockout), re-introduction of the MeCP2 gene selectively in astrocytes rescues normal respiratory phenotype. In the present study we determined whether the metabolic and/or signalling functions of astrocytes are affected by testing the hypotheses that in conditions of MeCP2 deficiency, medullary astrocytes are unable to produce/release appropriate amounts of lactate or detect changes in PCO2/[H(+) ], or both. No differences in tonic or hypoxia-induced release of lactate from the ventral surface of the medulla oblongata or cerebral cortex in brain slices of MeCP2-knockout and wild-type mice were found. In brainstem slices of wild-type mice, respiratory acidosis triggered robust elevations in [Ca(2+) ]i in astrocytes residing near the ventral surface of the medulla oblongata. The magnitude of CO2 -induced [Ca(2+) ]i responses in medullary astrocytes was markedly reduced in conditions of MeCP2 deficiency, whereas [Ca(2+) ]i responses to ATP were unaffected. These data suggest that (i) metabolic function of astrocytes in releasing lactate into the extracellular space is not affected by MeCP2 deficiency, and (ii) MeCP2 deficiency impairs the ability of medullary astrocytes to sense changes in PCO2/[H(+) ]. Taken together with the evidence of severely blunted ventilatory sensitivity to CO2 in mice with conditional MeCP2 deletion in astroglia, these data support the hypothesis of an important role played by astrocytes in central respiratory CO2 /pH chemosensitivity.
Collapse
Affiliation(s)
- Egor Turovsky
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.,Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Anastassios Karagiannis
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ana Paula Abdala
- School of Physiology & Pharmacology, University of Bristol, Bristol, BS8 1TD, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
45
|
Robel S, Buckingham SC, Boni JL, Campbell SL, Danbolt NC, Riedemann T, Sutor B, Sontheimer H. Reactive astrogliosis causes the development of spontaneous seizures. J Neurosci 2015; 35:3330-45. [PMID: 25716834 PMCID: PMC4339349 DOI: 10.1523/jneurosci.1574-14.2015] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 12/16/2014] [Accepted: 01/12/2015] [Indexed: 11/21/2022] Open
Abstract
Epilepsy is one of the most common chronic neurologic diseases, yet approximately one-third of affected patients do not respond to anticonvulsive drugs that target neurons or neuronal circuits. Reactive astrocytes are commonly found in putative epileptic foci and have been hypothesized to be disease contributors because they lose essential homeostatic capabilities. However, since brain pathology induces astrocytes to become reactive, it is difficult to distinguish whether astrogliosis is a cause or a consequence of epileptogenesis. We now present a mouse model of genetically induced, widespread chronic astrogliosis after conditional deletion of β1-integrin (Itgβ1). In these mice, astrogliosis occurs in the absence of other pathologies and without BBB breach or significant inflammation. Electroencephalography with simultaneous video recording revealed that these mice develop spontaneous seizures during the first six postnatal weeks of life and brain slices show neuronal hyperexcitability. This was not observed in mice with neuronal-targeted β1-integrin deletion, supporting the hypothesis that astrogliosis is sufficient to induce epileptic seizures. Whole-cell patch-clamp recordings from astrocytes further suggest that the heightened excitability was associated with impaired astrocytic glutamate uptake. Moreover, the relative expression of the cation-chloride cotransporters (CCC) NKCC1 (Slc12a2) and KCC2 (Slc12a5), which are responsible for establishing the neuronal Cl(-) gradient that governs GABAergic inhibition were altered and the NKCC1 inhibitor bumetanide eliminated seizures in a subgroup of mice. These data suggest that a shift in the relative expression of neuronal NKCC1 and KCC2, similar to that observed in immature neurons during development, may contribute to astrogliosis-associated seizures.
Collapse
Affiliation(s)
- Stefanie Robel
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35209,
| | - Susan C Buckingham
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35209
| | - Jessica L Boni
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35209
| | - Susan L Campbell
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35209
| | - Niels C Danbolt
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway, and
| | - Therese Riedemann
- Institute of Physiology, Department of Physiological Genomics, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | - Bernd Sutor
- Institute of Physiology, Department of Physiological Genomics, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | - Harald Sontheimer
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35209
| |
Collapse
|
46
|
Chen XS, Huang N, Michael N, Xiao L. Advancements in the Underlying Pathogenesis of Schizophrenia: Implications of DNA Methylation in Glial Cells. Front Cell Neurosci 2015; 9:451. [PMID: 26696822 PMCID: PMC4667081 DOI: 10.3389/fncel.2015.00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/02/2015] [Indexed: 02/05/2023] Open
Abstract
Schizophrenia (SZ) is a chronic and severe mental illness for which currently there is no cure. At present, the exact molecular mechanism involved in the underlying pathogenesis of SZ is unknown. The disease is thought to be caused by a combination of genetic, biological, psychological, and environmental factors. Recent studies have shown that epigenetic regulation is involved in SZ pathology. Specifically, DNA methylation, one of the earliest found epigenetic modifications, has been extensively linked to modulation of neuronal function, leading to psychiatric disorders such as SZ. However, increasing evidence indicates that glial cells, especially dysfunctional oligodendrocytes undergo DNA methylation changes that contribute to the pathogenesis of SZ. This review primarily focuses on DNA methylation involved in glial dysfunctions in SZ. Clarifying this mechanism may lead to the development of new therapeutic interventional strategies for the treatment of SZ and other illnesses by correcting abnormal methylation in glial cells.
Collapse
Affiliation(s)
- Xing-Shu Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
| | - Nanxin Huang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
| | - Namaka Michael
- College of Pharmacy and Medicine, Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and the College of Medicine, University of ManitobaWinnipeg, MB, Canada
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
- *Correspondence: Lan Xiao
| |
Collapse
|
47
|
Matsuba S, Niwa S, Muraki K, Kanatsuka S, Nakazono Y, Hatano N, Fujii M, Zhan P, Suzuki T, Ohya S. Downregulation of Ca2+-activated Cl- channel TMEM16A by the inhibition of histone deacetylase in TMEM16A-expressing cancer cells. J Pharmacol Exp Ther 2014; 351:510-8. [PMID: 25232193 DOI: 10.1124/jpet.114.217315] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Ca(2+)-activated Cl(-) channel transmembrane proteins with unknown function 16 A (TMEM16A; also known as anoctamin 1 or discovered on gastrointestinal stromal tumor 1) plays an important role in facilitating the cell growth and metastasis of TMEM16A-expressing cancer cells. Histone deacetylase (HDAC) inhibitors (HDACi) are useful agents for cancer therapy, but it remains unclear whether ion channels are epigenetically regulated by them. Using real-time polymerase chain reaction, Western blot analysis, and whole-cell patch-clamp assays, we found a significant decrease in TMEM16A expression and its functional activity was induced by the vorinostat, a pan-HDACi in TMEM16A-expressing human cancer cell lines, the prostatic cancer cell line PC-3, and the breast cancer cell line YMB-1. TMEM16A downregulation was not induced by the chemotherapy drug paclitaxel in either cell type. Pharmacologic blockade of HDAC3 by 1 μM T247 [N-(2-aminophenyl)-4-[1-(2-thiophen-3-ylethyl)-1H-[1],[2],[3]triazol-4-yl]benzamide], a HDAC3-selective HDACi, elicited a large decrease in TMEM16A expression and functional activity in both cell types, and pharmacologic blockade of HDAC2 by AATB [4-(acetylamino)-N-[2-amino-5-(2-thienyl)phenyl]-benzamide; 300 nM] elicited partial inhibition of TMEM16A expression (∼40%) in both. Pharmacologic blockade of HDAC1 or HDAC6 did not elicit any significant change in TMEM16A expression, respectively. In addition, inhibition of HDAC3 induced by small interfering RNA elicited a large decrease in TMEM16A transcripts in both cell types. Taken together, in malignancies with a frequent gene amplification of TMEM16A, HDAC3 inhibition may exert suppressive effects on cancer cell viability via downregulation of TMEM16A.
Collapse
Affiliation(s)
- Sayo Matsuba
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan (S.M., S.N., S.K., Y.N., M.F., S.O.); Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan (K.M., N.H.); and Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (P.Z., T.S.)
| | - Satomi Niwa
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan (S.M., S.N., S.K., Y.N., M.F., S.O.); Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan (K.M., N.H.); and Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (P.Z., T.S.)
| | - Katsuhiko Muraki
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan (S.M., S.N., S.K., Y.N., M.F., S.O.); Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan (K.M., N.H.); and Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (P.Z., T.S.)
| | - Saki Kanatsuka
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan (S.M., S.N., S.K., Y.N., M.F., S.O.); Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan (K.M., N.H.); and Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (P.Z., T.S.)
| | - Yurika Nakazono
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan (S.M., S.N., S.K., Y.N., M.F., S.O.); Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan (K.M., N.H.); and Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (P.Z., T.S.)
| | - Noriyuki Hatano
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan (S.M., S.N., S.K., Y.N., M.F., S.O.); Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan (K.M., N.H.); and Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (P.Z., T.S.)
| | - Masanori Fujii
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan (S.M., S.N., S.K., Y.N., M.F., S.O.); Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan (K.M., N.H.); and Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (P.Z., T.S.)
| | - Peng Zhan
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan (S.M., S.N., S.K., Y.N., M.F., S.O.); Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan (K.M., N.H.); and Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (P.Z., T.S.)
| | - Takayoshi Suzuki
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan (S.M., S.N., S.K., Y.N., M.F., S.O.); Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan (K.M., N.H.); and Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (P.Z., T.S.)
| | - Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan (S.M., S.N., S.K., Y.N., M.F., S.O.); Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan (K.M., N.H.); and Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (P.Z., T.S.)
| |
Collapse
|
48
|
Novel molecular biomarkers at the blood-brain barrier in ALS. BIOMED RESEARCH INTERNATIONAL 2014; 2014:907545. [PMID: 24949481 PMCID: PMC4037612 DOI: 10.1155/2014/907545] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/04/2014] [Accepted: 04/20/2014] [Indexed: 12/12/2022]
Abstract
Recently neuroinflammation has gained a particular focus as a key mechanism of ALS. Several studies in vivo as well as in vitro have nominated immunoglobulin G (IgG) isolated from ALS patients as an active contributor to disease onset and progression. We have shown that ALS IgG affects astroglial Ca2+ excitability and induces downstream activation of phosphatidylinositol 3-kinase. These studies were hampered by a lack of knowledge of the pathway of entry of immune factors in the CNS. Our MRI data revealed the blood-brain barrier BBB leakage and T cell infiltration into brain parenchyma in ALS G93A rats. Since astrocyte ensheathes blood vessel wall contributing to BBB stability and plays an important role in ALS pathogenesis, we have studied astrocytic membrane proteins water channel aquaporin-4 and the inwardly rectifying potassium channel. In this review, we will summarize data related to BBB disruption with particular emphasis on impaired function of astrocytes in ALS. We will discuss implication of membrane proteins expressed on astrocytic endfeet, aquaporin-4, and inwardly rectifying potassium channel in the pathology of ALS. In addition to ALS-specific IgGs, these membrane proteins are proposed as novel biomarkers of the disease.
Collapse
|