1
|
Qi K, Li H, Tao J, Liu M, Zhang W, Liu Y, Liu Y, Gong H, Wei J, Wang A, Xu J, Li X. Glutamate chemical exchange saturation transfer (GluCEST) MRI to evaluate the relationship between demyelination and glutamate content in depressed mice. Behav Brain Res 2025; 476:115247. [PMID: 39277141 DOI: 10.1016/j.bbr.2024.115247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Glutamatergic alteration is one of the potential mechanisms of depression. However, there is no consensus on whether glutamate metabolism changes affect the myelin structure of depression in mouse models. Glutamate chemical exchange saturation transfer (GluCEST) is a novel and powerful molecular imaging technique that can visualize glutamate distribution. In this study, we used the GluCEST imaging technique to look at glutamate levels in mice under chronic unpredictable mild stress (CUMS) and how they relate to demyelination. The CUMS mice were exposed to different stress factors for 6 weeks. Evaluated of depression in CUMS mice by behavioral tests. MRI scans were then performed, including T2-mapping, GluCEST, and diffusion tensor imaging (DTI) sequences. Brain tissues were collected for Luxol Fast Blue staining and immunofluorescence staining to analyze the changes in the myelin sheath. Artificially sketched regions of interest (ROI) (corpus callosum, hippocampus, and thalamus) were used to calculate the GluCEST value, fractional anisotropy (FA), and T2 value. Compared with the control group, the GluCEST value in the ROIs of CUMS mice significantly decreased. Similarly, the FA value in ROIs was lower in the CUMS group than in the CTRL group, but the T2 value did not differ significantly between the two groups. The histological results showed that ROIs in the CUMS group had demyelination compared with the CTRL group, indicating that DTI was more sensitive than T2 mapping in detecting myelin abnormalities. Furthermore, the GluCEST value in the ROIs correlates positively with the FA value. These findings suggest that altered glutamate metabolism may be one of the important factors leading to demyelination in depression, and GluCEST is expected to serve as an imaging biological marker for the diagnosis of demyelination in depression.
Collapse
Affiliation(s)
- Kai Qi
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Hao Li
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Jin Tao
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Miaomiao Liu
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Wei Zhang
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Yan Liu
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Yuwei Liu
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - He Gong
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Junhui Wei
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Ailing Wang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China.
| | - Junhai Xu
- College of Intelligence and Computing, Tianjin University, Tianjin 300350, China.
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
2
|
Gobbo D, Rieder P, Fang LP, Buttigieg E, Schablowski M, Damo E, Bosche N, Dallorto E, May P, Bai X, Kirchhoff F, Scheller A. Genetic Downregulation of GABA B Receptors from Oligodendrocyte Precursor Cells Protects Against Demyelination in the Mouse Spinal Cord. Cells 2024; 13:2014. [PMID: 39682762 DOI: 10.3390/cells13232014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
GABAergic signaling and GABAB receptors play crucial roles in regulating the physiology of oligodendrocyte-lineage cells, including their proliferation, differentiation, and myelination. Therefore, they are promising targets for studying how spinal oligodendrocyte precursor cells (OPCs) respond to injuries and neurodegenerative diseases like multiple sclerosis. Taking advantage of the temporally controlled and cell-specific genetic downregulation of GABAB receptors from OPCs, our investigation addresses their specific influence on OPC behavior in the gray and white matter of the mouse spinal cord. Our results show that, while GABAB receptors do not significantly alter spinal cord myelination under physiological conditions, they distinctly regulate the OPC differentiation and Ca2+ signaling. In addition, we investigate the impact of OPC-GABAB receptors in two models of toxic demyelination, namely, the cuprizone and the lysolecithin models. The genetic downregulation of OPC-GABAB receptors protects against demyelination and oligodendrocyte loss. Additionally, we observe the enhanced resilience to cuprizone-induced pathological alterations in OPC Ca2+ signaling. Our results provide valuable insights into the potential therapeutic implications of manipulating GABAB receptors in spinal cord OPCs and deepen our understanding of the interplay between GABAergic signaling and spinal cord OPCs, providing a basis for future research.
Collapse
Affiliation(s)
- Davide Gobbo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
| | - Phillip Rieder
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
| | - Li-Pao Fang
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
| | - Emeline Buttigieg
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
- Institut des Neurosciences de la Timone (INT), Aix-Marseille Université, CNRS UMR7289, 13005 Marseille, France
| | - Moritz Schablowski
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
| | - Elisa Damo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
| | - Nathalie Bosche
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
| | - Eleonora Dallorto
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
| | - Pascal May
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
| | - Xianshu Bai
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, 66421 Homburg, Germany
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, 66421 Homburg, Germany
- Chengdu Center for Gender-Specific Biology and Medicine (CGBM Chengdu), Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anja Scheller
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, 66421 Homburg, Germany
| |
Collapse
|
3
|
Sasaki K, Becker J, Ong J, Ciaghi S, Guldin LS, Savastano S, Fukumitsu S, Kuwata H, Szele FG, Isoda H. Rosemary extract activates oligodendrogenesis genes in mouse brain and improves learning and memory ability. Biomed Pharmacother 2024; 179:117350. [PMID: 39197189 DOI: 10.1016/j.biopha.2024.117350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024] Open
Abstract
Rosemary (Rosmarinus officinalis L.) is a rich source of dietary bioactive compounds such as rosmarinic acid and carnosol with a large repertoire of pharmacological properties, including anti-inflammatory and neuroprotective activities. In the present study, we investigated rosemary as a potential new therapeutic agent for cognitive function and other symptoms of aging. In this present study, we have aimed to investigate the effects of oral administration of rosemary extract (RME) on learning and memory in the context of other biomarkers-related cognitive function and neurotransmitter levels in senescent accelerated prone 8 (SAMP8) mouse, a model of accelerating aging and Alzheimer's disease. The Morris water maze (MWM) test showed improved spatial learning and memory behavior in RME treated SAMP8 mouse. Moreover, RME decreased Aβ42 and inflammatory cytokine levels and increased BDNF, Sirt1, and neurotransmitter levels in SAMP8 mouse. Whole-genome microarray analysis revealed that RME significantly increased gene expression related to oligodendrocyte differentiation, myelination, and ATP production in the hippocampus and decreased gene expression related to stress, neuroinflammation, and apoptosis. Also, in the SAMP8 hippocampus, RME significantly increased Olig1 and Olig2 expression. Altogether, our study is the first to report improvement of spatial learning and memory of RME, modulation of genes important for oligodendrogenesis, and Anti-neuroinflammatory effect by suppressing Aβ42 levels in mouse brain and thus highlights the prospects of RME in the treatment of cognitive dysfunction and aging.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan; AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, Tsukuba, Japan
| | - Jemima Becker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Jun Ong
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Sabina Ciaghi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Lynn S Guldin
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Sofia Savastano
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Satoshi Fukumitsu
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Japan
| | - Hidetoshi Kuwata
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan; AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, Tsukuba, Japan; Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
4
|
Liu P, Zhang K, Tong C, Liu T, Zheng J. Progesterone alleviates esketamine-induced hypomyelination via PI3K/Akt signaling pathway in the developing rat brain. Biotechnol Genet Eng Rev 2024; 40:1202-1217. [PMID: 36946765 DOI: 10.1080/02648725.2023.2193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
The neurodevelopmental toxicity of anesthetics has been confirmed repeatedly, and esketamine is now widely used in pediatric surgeries. Oligodendrocyte precursor cells (OPCs) evolved into mature oligodendrocytes (OLs) and formed myeline sheath during the early brain development. In this study, we investigated whether esketamine exposure interrupted development of OPCs and induced hypomyelination in rats. Further we explored the roles of PI3K/Akt phosphorylation in OPCs development and myelination. Sprague Dawley rats with different ages (postnatal day (P) 1, 3, 7 and 12) were exposed to 40mg/kg esketamine. Progesterone treatment was given (16 mg/kg per day for 3 days) 24 h after esketamine exposure via the intraperitoneal route. Corpus callosum tissues were collected at P8 or P14 for western blot and immunofluorescence analyses. Esketamine exposure at P7 and P12 significantly reduced myelin basic protein (MBP) expression and CC1+ OLs number in corpus callosum. Esketamine exposure at P7 not only aggravated the mature OLs apoptosis, also decreased the OPCs proliferation and differentiation, which was related with dephosphorylation of PI3K/Akt. Progesterone was able to promote OPCs differentiation and ameliorate esketamine-induced hypomyelination by enhancing PI3K/Akt phosphorylation. Stage-dependent abnormality of OPCs/OLs after esketamine leads to the esketamine-induced hypomyelination. Esketamine interrupted OPCs evolution via PI3K/Akt signaling pathway, which can be ameliorated by progesterone.
Collapse
Affiliation(s)
- Peiwen Liu
- Department of Anesthesiology, Shanghai Children's Medical Center & National Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kan Zhang
- Department of Anesthesiology, Shanghai Children's Medical Center & National Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chaoyang Tong
- Department of Anesthesiology, Shanghai Children's Medical Center & National Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Liu
- Department of Anesthesiology, Shanghai Children's Medical Center & National Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jijian Zheng
- Department of Anesthesiology, Shanghai Children's Medical Center & National Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Altunay ZM, Biswas J, Cheung HW, Pijewski RS, Papile LE, Akinlaja YO, Tang A, Kresic LC, Schouw AD, Ugrak MV, Caro K, Peña Palomino PA, Ressl S, Nishiyama A, Crocker SJ, Martinelli DC. C1ql1 expression in oligodendrocyte progenitor cells promotes oligodendrocyte differentiation. FEBS J 2024. [PMID: 39257292 DOI: 10.1111/febs.17256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
Myelinating oligodendrocytes arise from the stepwise differentiation of oligodendrocyte progenitor cells (OPCs). Approximately 5% of all adult brain cells are OPCs. Why would a mature brain need such a large number of OPCs? New myelination is possibly required for higher-order functions such as cognition and learning. Additionally, this pool of OPCs represents a source of new oligodendrocytes to replace those lost during injury, inflammation, or in diseases such as multiple sclerosis (MS). How OPCs are instructed to differentiate into oligodendrocytes is poorly understood, and for reasons presently unclear, resident pools of OPCs are progressively less utilized in MS. The complement component 1, q subcomponent-like (C1QL) protein family has been studied for their functions at neuron-neuron synapses, but we show that OPCs express C1ql1. We created OPC-specific conditional knockout mice and show that C1QL1 deficiency reduces the differentiation of OPCs into oligodendrocytes and reduces myelin production during both development and recovery from cuprizone-induced demyelination. In vivo over-expression of C1QL1 causes the opposite phenotype: increased oligodendrocyte density and myelination during recovery from demyelination. We further used primary cultured OPCs to show that C1QL1 levels can bidirectionally regulate the extent of OPC differentiation in vitro. Our results suggest that C1QL1 may initiate a previously unrecognized signaling pathway to promote differentiation of OPCs into oligodendrocytes. This study has relevance for possible novel therapies for demyelinating diseases and may illuminate a previously undescribed mechanism to regulate the function of myelination in cognition and learning.
Collapse
Affiliation(s)
- Zeynep M Altunay
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Joyshree Biswas
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Hiu W Cheung
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Robert S Pijewski
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
- Department of Biology, Anna Maria College, Paxton, MA, USA
| | - Lucille E Papile
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Yetunde O Akinlaja
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Andrew Tang
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Lyndsay C Kresic
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Alexander D Schouw
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Maksym V Ugrak
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Keaven Caro
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | | | - Susanne Ressl
- Department of Neuroscience, The University of Texas at Austin, TX, USA
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
- The Connecticut Institute for the Brain and Cognitive Sciences (IBACS), Storrs, CT, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
- The Connecticut Institute for the Brain and Cognitive Sciences (IBACS), Storrs, CT, USA
| | - David C Martinelli
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
- The Connecticut Institute for the Brain and Cognitive Sciences (IBACS), Storrs, CT, USA
| |
Collapse
|
6
|
Marangon D, Castro e Silva JH, Cerrato V, Boda E, Lecca D. Oligodendrocyte Progenitors in Glial Scar: A Bet on Remyelination. Cells 2024; 13:1024. [PMID: 38920654 PMCID: PMC11202012 DOI: 10.3390/cells13121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) represent a subtype of glia, giving rise to oligodendrocytes, the myelin-forming cells in the central nervous system (CNS). While OPCs are highly proliferative during development, they become relatively quiescent during adulthood, when their fate is strictly influenced by the extracellular context. In traumatic injuries and chronic neurodegenerative conditions, including those of autoimmune origin, oligodendrocytes undergo apoptosis, and demyelination starts. Adult OPCs become immediately activated; they migrate at the lesion site and proliferate to replenish the damaged area, but their efficiency is hampered by the presence of a glial scar-a barrier mainly formed by reactive astrocytes, microglia and the deposition of inhibitory extracellular matrix components. If, on the one hand, a glial scar limits the lesion spreading, it also blocks tissue regeneration. Therapeutic strategies aimed at reducing astrocyte or microglia activation and shifting them toward a neuroprotective phenotype have been proposed, whereas the role of OPCs has been largely overlooked. In this review, we have considered the glial scar from the perspective of OPCs, analysing their behaviour when lesions originate and exploring the potential therapies aimed at sustaining OPCs to efficiently differentiate and promote remyelination.
Collapse
Affiliation(s)
- Davide Marangon
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (J.H.C.e.S.)
| | - Juliana Helena Castro e Silva
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (J.H.C.e.S.)
| | - Valentina Cerrato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy; (V.C.); (E.B.)
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy; (V.C.); (E.B.)
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (J.H.C.e.S.)
| |
Collapse
|
7
|
Deng Q, Parker E, Wu C, Zhu L, Liu TCY, Duan R, Yang L. Repurposing Ketamine in the Therapy of Depression and Depression-Related Disorders: Recent Advances and Future Potential. Aging Dis 2024:AD.2024.0239. [PMID: 38916735 DOI: 10.14336/ad.2024.0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Depression represents a prevalent and enduring mental disorder of significant concern within the clinical domain. Extensive research indicates that depression is very complex, with many interconnected pathways involved. Most research related to depression focuses on monoamines, neurotrophic factors, the hypothalamic-pituitary-adrenal axis, tryptophan metabolism, energy metabolism, mitochondrial function, the gut-brain axis, glial cell-mediated inflammation, myelination, homeostasis, and brain neural networks. However, recently, Ketamine, an ionotropic N-methyl-D-aspartate (NMDA) receptor antagonist, has been discovered to have rapid antidepressant effects in patients, leading to novel and successful treatment approaches for mood disorders. This review aims to summarize the latest findings and insights into various signaling pathways and systems observed in depression patients and animal models, providing a more comprehensive view of the neurobiology of anxious-depressive-like behavior. Specifically, it highlights the key mechanisms of ketamine as a rapid-acting antidepressant, aiming to enhance the treatment of neuropsychiatric disorders. Moreover, we discuss the potential of ketamine as a prophylactic or therapeutic intervention for stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Qianting Deng
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Chongyun Wu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Ling Zhu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Timon Cheng-Yi Liu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Rui Duan
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Luodan Yang
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| |
Collapse
|
8
|
Luo S, Wu F, Fang Q, Hu Y, Zhang H, Yuan S, Yang C, Shi Y, Luo Y. Antidepressant effect of teriflunomide via oligodendrocyte protection in a mouse model. Heliyon 2024; 10:e29481. [PMID: 38655332 PMCID: PMC11036017 DOI: 10.1016/j.heliyon.2024.e29481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Addressing the treatment of depression is crucial; nevertheless, the etiology and pathogenesis remain unelucidated. Therefore, this study investigated the effects of teriflunomide (TF) on corticosterone (CORT)-induced depression-like behaviors in mice. Notably, TF administration resulted in a substantial amelioration of anxiety and depression-like behaviors observed in CORT-treated mice. This was evidenced by behavioral assessments conducted via the sucrose preference test (SPT), open-field test (OFT), novelty-suppressed feeding test (NSFT), forced swimming test (FST), and tail suspension test (TST). The administration of CORT inflicts damage upon oligodendrocytes and neurons within the hippocampus. Our findings indicate that TF offers significant protective effects on oligodendrocytes, mitigating apoptosis both invivo and invitro. Additionally, TF was found to counteract the CORT-induced neuronal loss and synaptic damage, as demonstrated by an increase in Nissl-positive cells across hippocampal regions CA1, CA3, and the dentate gyrus (DG) alongside elevated levels of synapse-related proteins including PSD-95 and synaptophysin. Additionally, TF treatment facilitated a reduction in the levels of apoptosis-related proteins while simultaneously augmenting the levels of Bcl2. Our findings indicate that TF administration effectively mitigates CORT-induced depression-like behaviors and reverses damage to oligodendrocytes and neurons in the hippocampus, suggesting TF as a promising candidate for depression.
Collapse
Affiliation(s)
- Shuting Luo
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Feilong Wu
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Qian Fang
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Yue Hu
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Huihui Zhang
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Shishan Yuan
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Chang Yang
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Yan Shi
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Yixiao Luo
- School of Medicine, Hunan Normal University, Changsha, 410081, China
- Hunan Province People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
9
|
Camberos-Barraza J, Camacho-Zamora A, Bátiz-Beltrán JC, Osuna-Ramos JF, Rábago-Monzón ÁR, Valdez-Flores MA, Angulo-Rojo CE, Guadrón-Llanos AM, Picos-Cárdenas VJ, Calderón-Zamora L, Norzagaray-Valenzuela CD, Cárdenas-Torres FI, De la Herrán-Arita AK. Sleep, Glial Function, and the Endocannabinoid System: Implications for Neuroinflammation and Sleep Disorders. Int J Mol Sci 2024; 25:3160. [PMID: 38542134 PMCID: PMC10970053 DOI: 10.3390/ijms25063160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 11/11/2024] Open
Abstract
The relationship between sleep, glial cells, and the endocannabinoid system represents a multifaceted regulatory network with profound implications for neuroinflammation and cognitive function. The molecular underpinnings of sleep modulation by the endocannabinoid system and its influence on glial cell activity are discussed, shedding light on the reciprocal relationships that govern these processes. Emphasis is placed on understanding the role of glial cells in mediating neuroinflammatory responses and their modulation by sleep patterns. Additionally, this review examines how the endocannabinoid system interfaces with glia-immune signaling to regulate inflammatory cascades within the central nervous system. Notably, the cognitive consequences of disrupted sleep, neuroinflammation, and glial dysfunction are addressed, encompassing implications for neurodegenerative disorders, mood disturbances, and cognitive decline. Insights into the bidirectional modulation of cognitive function by the endocannabinoid system in the context of sleep and glial activity are explored, providing a comprehensive perspective on the potential mechanisms underlying cognitive impairments associated with sleep disturbances. Furthermore, this review examines potential therapeutic avenues targeting the endocannabinoid system to mitigate neuroinflammation, restore glial homeostasis, and normalize sleep patterns. The identification of novel therapeutic targets within this intricate regulatory network holds promise for addressing conditions characterized by disrupted sleep, neuroinflammation, and cognitive dysfunction. This work aims to examine the complexities of neural regulation and identify potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | - Juan F. Osuna-Ramos
- Faculty of Medicine, Autonomous University of Sinaloa, Culiacán 80019, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hill RA, Nishiyama A, Hughes EG. Features, Fates, and Functions of Oligodendrocyte Precursor Cells. Cold Spring Harb Perspect Biol 2024; 16:a041425. [PMID: 38052500 PMCID: PMC10910408 DOI: 10.1101/cshperspect.a041425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) are a central nervous system resident population of glia with a distinct molecular identity and an ever-increasing list of functions. OPCs generate oligodendrocytes throughout development and across the life span in most regions of the brain and spinal cord. This process involves a complex coordination of molecular checkpoints and biophysical cues from the environment that initiate the differentiation and integration of new oligodendrocytes that synthesize myelin sheaths on axons. Outside of their progenitor role, OPCs have been proposed to play other functions including the modulation of axonal and synaptic development and the participation in bidirectional signaling with neurons and other glia. Here, we review OPC identity and known functions and discuss recent findings implying other roles for these glial cells in brain physiology and pathology.
Collapse
Affiliation(s)
- Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Ethan G Hughes
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
11
|
Benarroch E. What Are the Roles of Oligodendrocyte Precursor Cells in Normal and Pathologic Conditions? Neurology 2023; 101:958-965. [PMID: 37985182 PMCID: PMC10663025 DOI: 10.1212/wnl.0000000000208000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/22/2023] Open
|
12
|
Caldwell M, Ayo-Jibunoh V, Mendoza JC, Brimblecombe KR, Reynolds LM, Zhu Jiang XY, Alarcon C, Fiore E, N Tomaio J, Phillips GR, Mingote S, Flores C, Casaccia P, Liu J, Cragg SJ, McCloskey DP, Yetnikoff L. Axo-glial interactions between midbrain dopamine neurons and oligodendrocyte lineage cells in the anterior corpus callosum. Brain Struct Funct 2023; 228:1993-2006. [PMID: 37668732 PMCID: PMC10516790 DOI: 10.1007/s00429-023-02695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023]
Abstract
Oligodendrocyte progenitor cells (OPCs) receive synaptic innervation from glutamatergic and GABAergic axons and can be dynamically regulated by neural activity, resulting in activity-dependent changes in patterns of axon myelination. However, it remains unclear to what extent other types of neurons may innervate OPCs. Here, we provide evidence implicating midbrain dopamine neurons in the innervation of oligodendrocyte lineage cells in the anterior corpus callosum and nearby white matter tracts of male and female adult mice. Dopaminergic axon terminals were identified in the corpus callosum of DAT-Cre mice after injection of an eYFP reporter virus into the midbrain. Furthermore, fast-scan cyclic voltammetry revealed monoaminergic transients in the anterior corpus callosum, consistent with the anatomical findings. Using RNAscope, we further demonstrate that ~ 40% of Olig2 + /Pdfgra + cells and ~ 20% of Olig2 + /Pdgfra- cells in the anterior corpus callosum express Drd1 and Drd2 transcripts. These results suggest that oligodendrocyte lineage cells may respond to dopamine released from midbrain dopamine axons, which could affect myelination. Together, this work broadens our understanding of neuron-glia interactions with important implications for myelin plasticity by identifying midbrain dopamine axons as a potential regulator of corpus callosal oligodendrocyte lineage cells.
Collapse
Affiliation(s)
- Megan Caldwell
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Vanessa Ayo-Jibunoh
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Josue Criollo Mendoza
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Katherine R Brimblecombe
- Centre for Integrative Neuroscience, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Lauren M Reynolds
- Plasticité du Cerveau, CNRS UMR8249, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Paris, France
| | - Xin Yan Zhu Jiang
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Colin Alarcon
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Elizabeth Fiore
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Jacquelyn N Tomaio
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Greg R Phillips
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
- Center for Developmental Neuroscience, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Susana Mingote
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Cecilia Flores
- Department of Psychiatry and of Neurology and Neuroscience, McGill University, and Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
- Department of Neuroscience and Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Stephanie J Cragg
- Centre for Integrative Neuroscience, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Dan P McCloskey
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Leora Yetnikoff
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA.
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA.
| |
Collapse
|
13
|
Fang LP, Bai X. Oligodendrocyte precursor cells: the multitaskers in the brain. Pflugers Arch 2023; 475:1035-1044. [PMID: 37401986 PMCID: PMC10409806 DOI: 10.1007/s00424-023-02837-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
In the central nervous system, oligodendrocyte precursor cells (OPCs) are recognized as the progenitors responsible for the generation of oligodendrocytes, which play a critical role in myelination. Extensive research has shed light on the mechanisms underlying OPC proliferation and differentiation into mature myelin-forming oligodendrocytes. However, recent advances in the field have revealed that OPCs have multiple functions beyond their role as progenitors, exerting control over neural circuits and brain function through distinct pathways. This review aims to provide a comprehensive understanding of OPCs by first introducing their well-established features. Subsequently, we delve into the emerging roles of OPCs in modulating brain function in both healthy and diseased states. Unraveling the cellular and molecular mechanisms by which OPCs influence brain function holds great promise for identifying novel therapeutic targets for central nervous system diseases.
Collapse
Affiliation(s)
- Li-Pao Fang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66421 Homburg, Germany
| | - Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66421 Homburg, Germany
| |
Collapse
|
14
|
Brivio E, Kos A, Ulivi AF, Karamihalev S, Ressle A, Stoffel R, Hirsch D, Stelzer G, Schmidt MV, Lopez JP, Chen A. Sex shapes cell-type-specific transcriptional signatures of stress exposure in the mouse hypothalamus. Cell Rep 2023; 42:112874. [PMID: 37516966 DOI: 10.1016/j.celrep.2023.112874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 05/19/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Stress-related psychiatric disorders and the stress system show prominent differences between males and females, as well as strongly divergent transcriptional changes. Despite several proposed mechanisms, we still lack the understanding of the molecular processes at play. Here, we explore the contribution of cell types to transcriptional sex dimorphism using single-cell RNA sequencing. We identify cell-type-specific signatures of acute restraint stress in the paraventricular nucleus of the hypothalamus, a central hub of the stress response, in male and female mice. Further, we show that a history of chronic mild stress alters these signatures in a sex-specific way, and we identify oligodendrocytes as a major target for these sex-specific effects. This dataset, which we provide as an online interactive app, offers the transcriptomes of thousands of individual cells as a molecular resource for an in-depth dissection of the interplay between cell types and sex on the mechanisms of the stress response.
Collapse
Affiliation(s)
- Elena Brivio
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aron Kos
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | - Stoyo Karamihalev
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Andrea Ressle
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Rainer Stoffel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Dana Hirsch
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gil Stelzer
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Juan Pablo Lopez
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
15
|
Yajie H, Shenglan W, Wei Z, Rufang L, Tingting Y, Yunhui Z, Jie S. Global quantitative proteomic analysis profiles of host protein expression in response to Enterovirus A71 infection in bronchial epithelial cells based on tandem mass tag (TMT) peptide labeling coupled with LC-MS/MS uncovers the key role of proteasome in virus replication. Virus Res 2023; 330:199118. [PMID: 37072100 DOI: 10.1016/j.virusres.2023.199118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 04/20/2023]
Abstract
Enterovirus A71 (EV-A71) is a neurotropic human pathogen which mainly caused hand, foot and mouth disease (HFMD) mostly in children under 5 years-old. Generally, EV-A71-associated HFMD is a relatively self-limiting febrile disease, but there will still be a small percentage of patients with rapid disease progression and severe neurological complications. To date, the underlying mechanism of EV-A71 inducing pathological injury of central nervous system (CNS) remains largely unclear. It has been investigated and discussed the changes of mRNA, miRNA and circRNA expression profile during infection by EV-A71 in our previous studies. However, these studies were only analyzed at the RNA level, not at the protein level. It's the protein levels that ultimately do the work in the body. Here, to address this, we performed a tandem mass tag (TMT) peptide labeling coupled with LC-MS/MS approach to quantitatively identify cellular proteome changes at 24 h post-infection (hpi) in EV-A71-infected 16HBE cells. In total, 6615 proteins were identified by using TMT coupled with LC-MS/MS in this study. In the EV-A71- and mock-infected groups, 210 differentially expressed proteins were found, including 86 upregulated and 124 downregulated proteins, at 24 hpi. To ensure the validity and reliability of the proteomics data, 3 randomly selected proteins were verified by Western blot and Immunofluorescence analysis, and the results were consistent with the TMT results. Subsequently, functional enrichment analysis indicated that the up-regulated and down-regulated proteins were individually involved in various biological processes and signaling pathways, including metabolic process, AMPK signaling pathway, Neurotrophin signaling pathway, Viral myocarditis, GABAergic synapse, and so on. Moreover, among these enriched functional analysis, the "Proteasome" pathway was up-regulated, which has caught our attention. Inhibition of proteasome was found to obviously suppress the EV-A71 replication. Finally, further in-depth analysis revealed that these differentially expressed proteins contained distinct domains and localized in different subcellular components. Taken together, our data provided a comprehensive view of host cell response to EV-A71 and identified host proteins may lead to better understanding of the pathogenic mechanisms and host responses to EV-A71 infection, and also to the identification of new therapeutic targets for EV-A71 infection.
Collapse
Affiliation(s)
- Hu Yajie
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.; Yunnan Provincial Key Laboratory of Clinical Virology
| | - Wang Shenglan
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhao Wei
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Li Rufang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang Tingting
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhang Yunhui
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China..
| | - Song Jie
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.
| |
Collapse
|
16
|
Liu Y, Shen X, Zhang Y, Zheng X, Cepeda C, Wang Y, Duan S, Tong X. Interactions of glial cells with neuronal synapses, from astrocytes to microglia and oligodendrocyte lineage cells. Glia 2023; 71:1383-1401. [PMID: 36799296 DOI: 10.1002/glia.24343] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 02/18/2023]
Abstract
The mammalian brain is a complex organ comprising neurons, glia, and more than 1 × 1014 synapses. Neurons are a heterogeneous group of electrically active cells, which form the framework of the complex circuitry of the brain. However, glial cells, which are primarily divided into astrocytes, microglia, oligodendrocytes (OLs), and oligodendrocyte precursor cells (OPCs), constitute approximately half of all neural cells in the mammalian central nervous system (CNS) and mainly provide nutrition and tropic support to neurons in the brain. In the last two decades, the concept of "tripartite synapses" has drawn great attention, which emphasizes that astrocytes are an integral part of the synapse and regulate neuronal activity in a feedback manner after receiving neuronal signals. Since then, synaptic modulation by glial cells has been extensively studied and substantially revised. In this review, we summarize the latest significant findings on how glial cells, in particular, microglia and OL lineage cells, impact and remodel the structure and function of synapses in the brain. Our review highlights the cellular and molecular aspects of neuron-glia crosstalk and provides additional information on how aberrant synaptic communication between neurons and glia may contribute to neural pathologies.
Collapse
Affiliation(s)
- Yao Liu
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Shen
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Zhang
- College of Basic Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Zheng
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Yao Wang
- Department of Assisted Reproduction, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shumin Duan
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
| | - Xiaoping Tong
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| |
Collapse
|
17
|
Gao F, Gao K, Zhang P, Fu Y, Liu X, Bai S, Li W, Qian Z. A biomimetic sensor using neurotransmitter detection to decode odor perception by an olfactory network. Biosens Bioelectron 2022; 211:114391. [DOI: 10.1016/j.bios.2022.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/08/2022] [Accepted: 05/15/2022] [Indexed: 11/02/2022]
|
18
|
Ribosomes and Ribosomal Proteins Promote Plasticity and Stemness Induction in Glioma Cells via Reprogramming. Cells 2022; 11:cells11142142. [PMID: 35883585 PMCID: PMC9323835 DOI: 10.3390/cells11142142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a lethal tumor that develops in the adult brain. Despite advances in therapeutic strategies related to surgical resection and chemo-radiotherapy, the overall survival of patients with GBM remains unsatisfactory. Genetic research on mutation, amplification, and deletion in GBM cells is important for understanding the biological aggressiveness, diagnosis, and prognosis of GBM. However, the efficacy of drugs targeting the genetic abnormalities in GBM cells is limited. Investigating special microenvironments that induce chemo-radioresistance in GBM cells is critical to improving the survival and quality of life of patients with GBM. GBM cells acquire and maintain stem-cell-like characteristics via their intrinsic potential and extrinsic factors from their special microenvironments. The acquisition of stem-cell-like phenotypes and aggressiveness may be referred to as a reprogramming of GBM cells. In addition to protein synthesis, deregulation of ribosome biogenesis is linked to several diseases including cancer. Ribosomal proteins possess both tumor-promotive and -suppressive functions as extra-ribosomal functions. Incorporation of ribosomes and overexpression of ribosomal protein S6 reprogram and induce stem-cell-like phenotypes in GBM cells. Herein, we review recent literature and our published data on the acquisition of aggressiveness by GBM and discuss therapeutic options through reprogramming.
Collapse
|
19
|
The 5-HT and PLC Signaling Pathways Regulate the Secretion of IL-1β, TNF-α and BDNF from NG2 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7425538. [PMID: 35600957 PMCID: PMC9122684 DOI: 10.1155/2022/7425538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/26/2023]
Abstract
The present study was clarified the relationship between NG2 glial cells and 5-hydroxytryptamine (5-HT) to further revealed a role in the regulation of cortical excitability. The co-localization of NG2 cells and 5-HT in rat prefrontal cortex was determined using immunofluorescence. Different concentrations of 5-HT were applied to cultured NG2 cells. Real-time PCR measured the expression of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and brain-derived neurotrophic factor (BDNF). Changes in the expression of IL-1β, TNF-α, and BDNF in NG2 cells were detected after the addition of 5-HT receptor specific blockers and phospholipase C (PLC) specific activators and inhibitors. The results confirmed that the NG2 protein and 5-HT co-localized in the prefrontal cortex. 5-HT treatment of NG2 cells significantly reduced the expression of IL-1β and BDNF mRNA and increased the expression of TNF-α. The 5-HT receptor specific inhibitors alverine citrate, ketanserin, ondansetron and SB-399885 blocked the regulatory effects of 5-HT on NG2 cells. The PLC signal was linked to the secretion of IL-1β, TNF-α and BDNF in NG2 cells. These results indicated that 5-HT affected IL-1β, TNF-α, and BDNF secretion from NG2 cells via the 5-HT1A, 5-HT2A, 5-HT3, 5-HT6 receptors and the PLC signaling pathway.
Collapse
|
20
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
21
|
Bloom MS, Orthmann-Murphy J, Grinspan JB. Motor Learning and Physical Exercise in Adaptive Myelination and Remyelination. ASN Neuro 2022; 14:17590914221097510. [PMID: 35635130 PMCID: PMC9158406 DOI: 10.1177/17590914221097510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
The idea that myelination is driven by both intrinsic and extrinsic cues has gained much traction in recent years. Studies have demonstrated that myelination occurs in an intrinsic manner during early development and continues through adulthood in an activity-dependent manner called adaptive myelination. Motor learning, the gradual acquisition of a specific novel motor skill, promotes adaptive myelination in both the healthy and demyelinated central nervous system (CNS). On the other hand, exercise, a physical activity that involves planned, structured and repetitive bodily movements that expend energy and benefits one's fitness, promotes remyelination in pathology, but it is less clear whether it promotes adaptive myelination in healthy subjects. Studies on these topics have also investigated whether the timing of motor learning or physical exercise is important for successful addition of myelin. Here we review our current understanding of the relationship of motor skill learning and physical exercise on myelination.
Collapse
Affiliation(s)
- Mara S. Bloom
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer Orthmann-Murphy
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Judith B. Grinspan
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
22
|
Sood A, Preeti K, Fernandes V, Khatri DK, Singh SB. Glia: A major player in glutamate-GABA dysregulation-mediated neurodegeneration. J Neurosci Res 2021; 99:3148-3189. [PMID: 34748682 DOI: 10.1002/jnr.24977] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
The imbalance between glutamate and γ-aminobutyric acid (GABA) results in the loss of synaptic strength leading to neurodegeneration. The dogma on the field considered neurons as the main players in this excitation-inhibition (E/I) balance. However, current strategies focusing only on neurons have failed to completely understand this condition, bringing up the importance of glia as an alternative modulator for neuroinflammation as glia alter the activity of neurons and is a source of both neurotrophic and neurotoxic factors. This review's primary goal is to illustrate the role of glia over E/I balance in the central nervous system and its interaction with neurons. Rather than focusing only on the neuronal targets, we take a deeper look at glial receptors and proteins that could also be explored as drug targets, as they are early responders to neurotoxic insults. This review summarizes the neuron-glia interaction concerning GABA and glutamate, possible targets, and its involvement in the E/I imbalance in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis.
Collapse
Affiliation(s)
- Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
23
|
Altered gene expression in slc4a11 -/- mouse cornea highlights SLC4A11 roles. Sci Rep 2021; 11:20885. [PMID: 34686736 PMCID: PMC8536660 DOI: 10.1038/s41598-021-98921-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
SLC4A11 is a H+/NH3/water transport protein, of corneal endothelial cells. SLC4A11 mutations cause congenital hereditary endothelial dystrophy and some cases of Fuchs endothelial corneal dystrophy. To probe SLC4A11’s roles, we compared gene expression in RNA from corneas of 17-week-old slc4a11−/− (n = 3) and slc4a11+/+ mice (n = 3) and subjected to RNA sequencing. mRNA levels for a subset of genes were also assessed by quantitative real-time reverse transcription PCR (qRT RT-PCR). Cornea expressed 13,173 genes, which were rank-ordered for their abundance. In slc4a11−/− corneas, 100 genes had significantly altered expression. Abundant slc14a1 expression, encoding the urea transporter UT-A, suggests a significant role in the cornea. The set of genes with altered expression was subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, revealing that alterations clustered into extracellular region, cytoskeleton, cell adhesion and plasma membrane functions. Gene expression changes further clustered into classes (with decreasing numbers of genes): cell fate and development, extracellular matrix and cell adhesion, cytoskeleton, ion homeostasis and energy metabolism. Together these gene changes confirm earlier suggestions of a role of SLC4A11 in ion homeostasis, energy metabolism, cell adhesion, and reveal an unrecognized SLC4A11 role in cytoskeletal organization.
Collapse
|
24
|
Scheuer T, dem Brinke EA, Grosser S, Wolf SA, Mattei D, Sharkovska Y, Barthel PC, Endesfelder S, Friedrich V, Bührer C, Vida I, Schmitz T. Reduction of cortical parvalbumin-expressing GABAergic interneurons in a rodent hyperoxia model of preterm birth brain injury with deficits in social behavior and cognition. Development 2021; 148:272278. [PMID: 34557899 DOI: 10.1242/dev.198390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/17/2021] [Indexed: 12/18/2022]
Abstract
The inhibitory GABAergic system in the brain is involved in the etiology of various psychiatric problems, including autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD) and others. These disorders are influenced not only by genetic but also by environmental factors, such as preterm birth, although the underlying mechanisms are not known. In a translational hyperoxia model, exposing mice pups at P5 to 80% oxygen for 48 h to mimic a steep rise of oxygen exposure caused by preterm birth from in utero into room air, we documented a persistent reduction of cortical mature parvalbumin-expressing interneurons until adulthood. Developmental delay of cortical myelin was observed, together with decreased expression of oligodendroglial glial cell-derived neurotrophic factor (GDNF), a factor involved in interneuronal development. Electrophysiological and morphological properties of remaining interneurons were unaffected. Behavioral deficits were observed for social interaction, learning and attention. These results demonstrate that neonatal oxidative stress can lead to decreased interneuron density and to psychiatric symptoms. The obtained cortical myelin deficit and decreased oligodendroglial GDNF expression indicate that an impaired oligodendroglial-interneuronal interplay contributes to interneuronal damage.
Collapse
Affiliation(s)
- Till Scheuer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Elena Auf dem Brinke
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Sabine Grosser
- Institute for Integrative Neuroanatomy, NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Susanne A Wolf
- Cellular Neurocience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.,Department of Experimental Ophthalmology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Daniele Mattei
- Cellular Neurocience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.,Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich CH-8057, Switzerland
| | - Yuliya Sharkovska
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany.,Institute for Cell and Neurobiology, Center for Anatomy, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany.,Berlin Institute of Health (BIH), Berlin 10178, Germany
| | - Paula C Barthel
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany.,Institute for Cell and Neurobiology, Center for Anatomy, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Stefanie Endesfelder
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Vivien Friedrich
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany.,Berlin Institute of Health (BIH), Berlin 10178, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Thomas Schmitz
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| |
Collapse
|
25
|
Pudasaini S, Friedrich V, Bührer C, Endesfelder S, Scheuer T, Schmitz T. Postnatal myelination of the immature rat cingulum is regulated by GABA B receptor activity. Dev Neurobiol 2021; 82:16-28. [PMID: 34605209 DOI: 10.1002/dneu.22853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/26/2021] [Accepted: 09/20/2021] [Indexed: 11/08/2022]
Abstract
Myelination of axons in the neonatal brain is a highly complex process primarily achieved by oligodendroglial cells (OLs). OLs express receptors for γ-aminobutyric acid (GABA) which is released from cortical interneurons on a basal level, while glial cells can be a source of GABA, too. We investigated GABA-induced oligodendroglial maturation, proliferation, apoptosis, and myelin production after pharmacological inhibition of GABAA and GABAB in the neonatal rat brain. Daily injections of the reverse GABAA receptor agonist (DMCM) and the GABAB receptor antagonist (CGP35348) were performed from postnatal day 6 (P6) to P11. MBP expression was examined by Western blots and immunohistochemistry. Furthermore, we determined the number of CC1+ OLIG2+ and CNP+ OLIG2+ cells to assess maturation, the number of PCNA+ OLIG2+ oligodendrocytes to assess proliferation, the number of oligodendrocyte precursor cells (PDGFRα+ OLIG2+ ), and apoptosis of OLs (CASP3A+ OLIG2+ ) as well as apoptotic cells in total (CASP3A+ DAPI+ ) at P11 and P15. In addition, we analyzed the expression Pdgfrα and CNP. MBP expression was significantly reduced after CGP treatment at P15. In the same animal group, CNP expression and CNP+ OLIG2+ cells decreased temporarily at P11. At P15, the proliferation of PCNA+ OLIG2+ cells and the number of PDGFRα+ OLIG2+ cells increased after GABAB receptor antagonization whereas no significant differences were visible in the Pdgfrα gene expression. No changes in apoptotic cell death were observed. CGP treatment induced a transient maturational delay at P11 and deficits in myelin expression at P15 with increased oligodendroglial proliferation. Our in vivo study indicates GABAB receptor activity as a potential modulator of oligodendroglial development.
Collapse
Affiliation(s)
- Samipa Pudasaini
- Department of Neonatology, Charité University Hospital Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Vivien Friedrich
- Department of Neonatology, Charité University Hospital Berlin, Augustenburger Platz 1, Berlin, 13353, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, Berlin, 10178, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité University Hospital Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Stefanie Endesfelder
- Department of Neonatology, Charité University Hospital Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Till Scheuer
- Department of Neonatology, Charité University Hospital Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Thomas Schmitz
- Department of Neonatology, Charité University Hospital Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| |
Collapse
|
26
|
Histotype-Dependent Oligodendroglial PrP Pathology in Sporadic CJD: A Frequent Feature of the M2C "Strain". Viruses 2021; 13:v13091796. [PMID: 34578377 PMCID: PMC8473396 DOI: 10.3390/v13091796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/20/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
In sporadic Creutzfeldt-Jakob disease, molecular subtypes are neuropathologically well identified by the lesioning profile and the immunohistochemical PrPd deposition pattern in the grey matter (histotypes). While astrocytic PrP pathology has been reported in variant CJD and some less frequent histotypes (e.g., MV2K), oligodendroglial pathology has been rarely addressed. We assessed a series of sCJD cases with the aim to identify particular histotypes that could be more prone to harbor oligodendroglial PrPd. Particularly, the MM2C phenotype, in both its more “pure” and its mixed MM1+2C or MV2K+2C forms, showed more frequent oligodendroglial PrP pathology in the underlying white matter than the more common MM1/MV1 and VV2 histotypes, and was more abundant in patients with a longer disease duration. We concluded that the MM2C strain was particularly prone to accumulate PrPd in white matter oligodendrocytes.
Collapse
|
27
|
Franklin RJM, Frisén J, Lyons DA. Revisiting remyelination: Towards a consensus on the regeneration of CNS myelin. Semin Cell Dev Biol 2021; 116:3-9. [PMID: 33082115 DOI: 10.1016/j.semcdb.2020.09.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
The biology of CNS remyelination has attracted considerable interest in recent years because of its translational potential to yield regenerative therapies for the treatment of chronic and progressive demyelinating diseases such as multiple sclerosis (MS). Critical to devising myelin regenerative therapies is a detailed understanding of how remyelination occurs. The accepted dogma, based on animal studies, has been that the myelin sheaths of remyelination are made by oligodendrocytes newly generated from adult oligodendrocyte progenitor cells in a classical regenerative process of progenitor migration, proliferation and differentiation. However, recent human and a growing number of animal studies have revealed a second mode of remyelination in which mature oligodendrocytes surviving within an area of demyelination are able to regenerate new myelin sheaths. This discovery, while opening up new opportunities for therapeutic remyelination, has also raised the question of whether there are fundamental differences in myelin regeneration between humans and some of the species in which experimental remyelination studies are conducted. Here we review how this second mode of remyelination can be integrated into a wider and revised framework for understanding remyelination in which apparent species differences can be reconciled but that also raises important questions for future research.
Collapse
Affiliation(s)
- Robin J M Franklin
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden.
| | - David A Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
28
|
Ion Channels as New Attractive Targets to Improve Re-Myelination Processes in the Brain. Int J Mol Sci 2021; 22:ijms22147277. [PMID: 34298893 PMCID: PMC8305962 DOI: 10.3390/ijms22147277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is the most demyelinating disease of the central nervous system (CNS) characterized by neuroinflammation. Oligodendrocyte progenitor cells (OPCs) are cycling cells in the developing and adult CNS that, under demyelinating conditions, migrate to the site of lesions and differentiate into mature oligodendrocytes to remyelinate damaged axons. However, this process fails during disease chronicization due to impaired OPC differentiation. Moreover, OPCs are crucial players in neuro-glial communication as they receive synaptic inputs from neurons and express ion channels and neurotransmitter/neuromodulator receptors that control their maturation. Ion channels are recognized as attractive therapeutic targets, and indeed ligand-gated and voltage-gated channels can both be found among the top five pharmaceutical target groups of FDA-approved agents. Their modulation ameliorates some of the symptoms of MS and improves the outcome of related animal models. However, the exact mechanism of action of ion-channel targeting compounds is often still unclear due to the wide expression of these channels on neurons, glia, and infiltrating immune cells. The present review summarizes recent findings in the field to get further insights into physio-pathophysiological processes and possible therapeutic mechanisms of drug actions.
Collapse
|
29
|
Baudouin L, Adès N, Bouslama-Oueghlani L. [Myelin: A new player in brain plasticity]. Med Sci (Paris) 2021; 37:535-538. [PMID: 34003100 DOI: 10.1051/medsci/2021045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lucas Baudouin
- Sorbonne Université, Inserm U1127, CNRS UMR7225, Institut du cerveau-ICM, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - Noémie Adès
- Sorbonne Université, Inserm U1127, CNRS UMR7225, Institut du cerveau-ICM, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - Lamia Bouslama-Oueghlani
- Sorbonne Université, Inserm U1127, CNRS UMR7225, Institut du cerveau-ICM, 47, boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
30
|
Oligodendrocyte Development and Regenerative Therapeutics in Multiple Sclerosis. Life (Basel) 2021; 11:life11040327. [PMID: 33918664 PMCID: PMC8069894 DOI: 10.3390/life11040327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/23/2022] Open
Abstract
Myelination by oligodendrocytes (OLs) is an important biological process essential for central nervous system (CNS) development and functions. Oligodendroglial lineage cells undergo several morphological and molecular changes at different stages of their lineage progression into myelinating OLs. The transition steps of the oligodendrocyte progenitor cells (OPCs) to myelinating oligodendrocytes are defined by a specific pattern of regulated gene expression, which is under the control of coordinated signaling pathways. Any abnormal development, loss or failure of oligodendrocytes to myelinate axons can lead to several neurodegenerative diseases like multiple sclerosis (MS). MS is characterized by inflammation and demyelination, and current treatments target only the immune component of the disease, but have little impact on remyelination. Recently, several pharmacological compounds enhancing remyelination have been identified and some of them are in clinical trials. Here, we will review the current knowledge on oligodendrocyte differentiation, myelination and remyelination. We will focus on MS as a pathological condition, the most common chronic inflammatory demyelinating disease of the CNS in young adults.
Collapse
|
31
|
Mazuir E, Fricker D, Sol-Foulon N. Neuron-Oligodendrocyte Communication in Myelination of Cortical GABAergic Cells. Life (Basel) 2021; 11:216. [PMID: 33803153 PMCID: PMC7999565 DOI: 10.3390/life11030216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022] Open
Abstract
Axonal myelination by oligodendrocytes increases the speed and reliability of action potential propagation, and so plays a pivotal role in cortical information processing. The extent and profile of myelination vary between different cortical layers and groups of neurons. Two subtypes of cortical GABAergic neurons are myelinated: fast-spiking parvalbumin-expressing cells and somatostatin-containing cells. The expression of pre-nodes on the axon of these inhibitory cells before myelination illuminates communication between oligodendrocytes and neurons. We explore the consequences of myelination for action potential propagation, for patterns of neuronal connectivity and for the expression of behavioral plasticity.
Collapse
Affiliation(s)
- Elisa Mazuir
- Inserm, CNRS, Paris Brain Institute, ICM, Sorbonne University, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - Desdemona Fricker
- CNRS UMR 8002, Integrative Neuroscience and Cognition Center, Université de Paris, F-75006 Paris, France
| | - Nathalie Sol-Foulon
- Inserm, CNRS, Paris Brain Institute, ICM, Sorbonne University, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| |
Collapse
|
32
|
Abstract
In the twentieth century, neuropsychiatric disorders have been perceived solely from a neurone-centric point of view, which considers neurones as the key cellular elements of pathological processes. This dogma has been challenged thanks to the better comprehension of the brain functioning, which, even if far from being complete, has revealed the complexity of interactions that exist between neurones and neuroglia. Glial cells represent a highly heterogeneous population of cells of neural (astroglia and oligodendroglia) and non-neural (microglia) origin populating the central nervous system. The variety of glia reflects the innumerable functions that glial cells perform to support functions of the nervous system. Aberrant execution of glial functions contributes to the development of neuropsychiatric pathologies. Arguably, all types of glial cells are implicated in the neuropathology; however, astrocytes have received particular attention in recent years because of their pleiotropic functions that make them decisive in maintaining cerebral homeostasis. This chapter describes the multiple roles of astrocytes in the healthy central nervous system and discusses the diversity of astroglial responses in neuropsychiatric disorders suggesting that targeting astrocytes may represent an effective therapeutic strategy.
Collapse
Affiliation(s)
- Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
33
|
Shaw JC, Crombie GK, Palliser HK, Hirst JJ. Impaired Oligodendrocyte Development Following Preterm Birth: Promoting GABAergic Action to Improve Outcomes. Front Pediatr 2021; 9:618052. [PMID: 33634057 PMCID: PMC7901941 DOI: 10.3389/fped.2021.618052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
Preterm birth is associated with poor long-term neurodevelopmental and behavioral outcomes, even in the absence of obvious brain injury at the time of birth. In particular, behavioral disorders characterized by inattention, social difficulties and anxiety are common among children and adolescents who were born moderately to late preterm (32-37 weeks' gestation). Diffuse deficits in white matter microstructure are thought to play a role in these poor outcomes with evidence suggesting that a failure of oligodendrocytes to mature and myelinate axons is responsible. However, there remains a major knowledge gap over the mechanisms by which preterm birth interrupts normal oligodendrocyte development. In utero neurodevelopment occurs in an inhibitory-dominant environment due to the action of placentally derived neurosteroids on the GABAA receptor, thus promoting GABAergic inhibitory activity and maintaining the fetal behavioral state. Following preterm birth, and the subsequent premature exposure to the ex utero environment, this action of neurosteroids on GABAA receptors is greatly reduced. Coinciding with a reduction in GABAergic inhibition, the preterm neonatal brain is also exposed to ex utero environmental insults such as periods of hypoxia and excessive glucocorticoid concentrations. Together, these insults may increase levels of the excitatory neurotransmitter glutamate in the developing brain and result in a shift in the balance of inhibitory: excitatory activity toward excitatory. This review will outline the normal development of oligodendrocytes, how it is disrupted under excitation-dominated conditions and highlight how shifting the balance back toward an inhibitory-dominated environment may improve outcomes.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Gabrielle K Crombie
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
34
|
Zhou B, Zhu Z, Ransom BR, Tong X. Oligodendrocyte lineage cells and depression. Mol Psychiatry 2021; 26:103-117. [PMID: 33144710 PMCID: PMC7815509 DOI: 10.1038/s41380-020-00930-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022]
Abstract
Depression is a common mental illness, affecting more than 300 million people worldwide. Decades of investigation have yielded symptomatic therapies for this disabling condition but have not led to a consensus about its pathogenesis. There are data to support several different theories of causation, including the monoamine hypothesis, hypothalamic-pituitary-adrenal axis changes, inflammation and immune system alterations, abnormalities of neurogenesis and a conducive environmental milieu. Research in these areas and others has greatly advanced the current understanding of depression; however, there are other, less widely known theories of pathogenesis. Oligodendrocyte lineage cells, including oligodendrocyte progenitor cells and mature oligodendrocytes, have numerous important functions, which include forming myelin sheaths that enwrap central nervous system axons, supporting axons metabolically, and mediating certain forms of neuroplasticity. These specialized glial cells have been implicated in psychiatric disorders such as depression. In this review, we summarize recent findings that shed light on how oligodendrocyte lineage cells might participate in the pathogenesis of depression, and we discuss new approaches for targeting these cells as a novel strategy to treat depression.
Collapse
Affiliation(s)
- Butian Zhou
- Center for Brain Science, Shanghai Children's Medical Center; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bruce R Ransom
- Neuroscience Department, City University of Hong Kong, Hong Kong, China.
| | - Xiaoping Tong
- Center for Brain Science, Shanghai Children's Medical Center; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Glutamatergic Receptor Trafficking and Delivery: Role of the Exocyst Complex. Cells 2020; 9:cells9112402. [PMID: 33153008 PMCID: PMC7693776 DOI: 10.3390/cells9112402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/29/2022] Open
Abstract
Cells comprise several intracellular membrane compartments that allow them to function properly. One of these functions is cargo movement, typically proteins and membranes within cells. These cargoes ride microtubules through vesicles from Golgi and recycling endosomes to the plasma membrane in order to be delivered and exocytosed. In neurons, synaptic functions employ this cargo trafficking to maintain inter-neuronal communication optimally. One of the complexes that oversee vesicle trafficking and tethering is the exocyst. The exocyst is a protein complex containing eight subunits first identified in yeast and then characterized in multicellular organisms. This complex is related to several cellular processes, including cellular growth, division, migration, and morphogenesis, among others. It has been associated with glutamatergic receptor trafficking and tethering into the synapse, providing the molecular machinery to deliver receptor-containing vesicles into the plasma membrane in a constitutive manner. In this review, we discuss the evidence so far published regarding receptor trafficking and the exocyst complex in both basal and stimulated levels, comparing constitutive trafficking and long-term potentiation-related trafficking.
Collapse
|
36
|
Benamer N, Vidal M, Balia M, Angulo MC. Myelination of parvalbumin interneurons shapes the function of cortical sensory inhibitory circuits. Nat Commun 2020; 11:5151. [PMID: 33051462 PMCID: PMC7555533 DOI: 10.1038/s41467-020-18984-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Myelination of projection neurons by oligodendrocytes is key to optimize action potential conduction over long distances. However, a large fraction of myelin enwraps the axons of parvalbumin-positive fast-spiking interneurons (FSI), exclusively involved in local cortical circuits. Whether FSI myelination contributes to the fine‐tuning of intracortical networks is unknown. Here we demonstrate that FSI myelination is required for the establishment and maintenance of the powerful FSI-mediated feedforward inhibition of cortical sensory circuits. The disruption of GABAergic synaptic signaling of oligodendrocyte precursor cells prior to myelination onset resulted in severe FSI myelination defects characterized by longer internodes and nodes, aberrant myelination of branch points and proximal axon malformation. Consequently, high-frequency FSI discharges as well as FSI-dependent postsynaptic latencies and strengths of excitatory neurons were reduced. These dysfunctions generated a strong excitation-inhibition imbalance that correlated with whisker-dependent texture discrimination impairments. FSI myelination is therefore critical for the function of mature cortical inhibitory circuits. Myelination optimizes conduction speed of excitatory neurons. However, whether myelination of interneurons (INs) refines cortical networks is unclear. Here, the authors show that INs myelination shapes feedforward inhibition of mouse cortical sensory circuits and impacts whisker-mediated behaviour.
Collapse
Affiliation(s)
- Najate Benamer
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team Interactions between neurons and oligodendroglia in myelination and myelin repair", F-75014, Paris, France.
| | - Marie Vidal
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team Interactions between neurons and oligodendroglia in myelination and myelin repair", F-75014, Paris, France
| | - Maddalena Balia
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team Interactions between neurons and oligodendroglia in myelination and myelin repair", F-75014, Paris, France.,Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Centre Broca Nouvelle-Aquitaine, F-33076, Bordeaux, France
| | - María Cecilia Angulo
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team Interactions between neurons and oligodendroglia in myelination and myelin repair", F-75014, Paris, France. .,GHU PARIS psychiatrie & neurosciences, F-75014, Paris, France.
| |
Collapse
|
37
|
Du X, Zhang Z, Zhou H, Zhou J. Differential Modulators of NG2-Glia Differentiation into Neurons and Glia and Their Crosstalk. Cell Mol Neurobiol 2020; 41:1-15. [PMID: 32285247 DOI: 10.1007/s10571-020-00843-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
Abstract
As the fifth main cell population in the brain, NG2-glia are also known as oligodendrocyte precursor cells. NG2-glia express receptors and ion channels for fast modulation of neuronal activities and signaling with neuronal synapses, which are of functional significance in both physiological and pathological states. NG2-glia also participate in fast signaling with peripheral neurons via direct synaptic contacts in the brain. These distinctive glia have the unique capability of proliferating and differentiating into oligodendrocytes, which are critical for axonal myelination in the early developing brain. In neurodegenerative diseases, NG2-glia play an important role and undergo morphological modification, adapt the expression of their membrane receptors and ion channels, and display gene-modulated cell reprogramming and excitotoxicity-caused cell death. These modifications directly and indirectly influence populations of neurons and other glial cells. NG2-glia regulate their action and dynamics in response to neuronal behavior and disease, indicating a critical function to preserve and remodel myelin in physiological states and to repair it in pathological states. Here, we review in detail the differential modulators of NG2-glia into neurons and astrocytes, as well as interactions of NG2-glia with neurons, astrocytes, and microglia. We will also summarize a future potential exploitation of NG2-glia.
Collapse
Affiliation(s)
- Xiaohuang Du
- Department of Scientific Research, Army Medical University, Chongqing, 400037, China
| | - Zuo Zhang
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Hongli Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
38
|
Çomakli S, Özdemir S, Değirmençay Ş. Canine distemper virus induces downregulation of GABA A,GABA B, and GAT1 expression in brain tissue of dogs. Arch Virol 2020; 165:1321-1331. [PMID: 32253618 DOI: 10.1007/s00705-020-04617-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/11/2020] [Indexed: 02/08/2023]
Abstract
The aim of the study was to determine the expression profiles of GABAA, GABAB, and GAT1 using RT-PCR and the immunoreactivity of GAT1 via immunohistochemical and immunofluorescence assays in CDV-infected brain tissue of dogs. For this purpose, dogs with CDV and dogs without CDV were selected. The mRNA transcript levels of GABAA, GABAB, and GAT1 were significantly downregulated in brain tissue in the CDV-infected group as compared with that in non-CDV-infected brain tissue in the control group (p < 0.01, p < 0.001). In addition, the immunoreactivity of GAT1 in CDV-infected brain tissue was significantly lower than in the uninfected group (p < 0.05). We conclude that one of the main causes of myoclonus in CDV infections may be the blockage of postsynaptic inhibition in neurons or a lack of metabolism of GABA. In addition, a GABA neurotransmission imbalance could play a role in demyelination in CDV infections.
Collapse
Affiliation(s)
- Selim Çomakli
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Selçuk Özdemir
- Department of Genetic, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Şükrü Değirmençay
- Department of Internal Medicine, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
39
|
Labrada-Moncada FE, Martínez-Torres A, Reyes-Haro D. GABA A Receptors are Selectively Expressed in NG2 Glia of the Cerebellar White Matter. Neuroscience 2020; 433:132-143. [PMID: 32171821 DOI: 10.1016/j.neuroscience.2020.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/22/2020] [Accepted: 03/03/2020] [Indexed: 12/20/2022]
Abstract
The cerebellum is involved in the coordination of movement. Its cellular composition is dominated by GABAergic neuronal types, and glial cells are known to express functional receptors. GABAergic signaling regulates cell proliferation, differentiation, and migration during neurodevelopment. However, little is known about the functional expression of GABA receptors in the cerebellar white matter (WM). Thus, the aim of this study was to test whether glial cells express functional GABA receptors during postnatal development (P7-P9) of cerebellar WM. Immunofluorescence showed that half of the astrocytes express GAD67, suggesting that glial cells synthesize GABA. Calcium imaging in cerebellar slices revealed that GABA and the GABAA agonist muscimol evoked calcium transients in sulforhodamine B negative cells, whereas the GABAB agonist baclofen failed to evoke responses in cerebellar WM. Whole-cell patch-clamp recordings of GFAP+ cells showed dye coupling and a passive current-voltage relation typical of astrocytes. Surprisingly, these cells did not respond to muscimol. Two additional populations were identified as GFAP- cells. The first population showed dye coupling, slow decaying inward and outward currents with no voltage dependence, and did not respond to GABAA agonists. The second population showed an outward-rectifying current-voltage relationship and responded to muscimol, but dye coupling was absent. These cells received synaptic input and were NG2+, but evoked calcium waves failed to modulate the frequency of spontaneous postsynaptic currents (sPSCs) or signaling into NG2 glia. We conclude that GABAA receptor-mediated signaling is selective for NG2 glia in the WM of the cerebellum.
Collapse
Affiliation(s)
- Francisco Emmanuel Labrada-Moncada
- Departamento Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, Mexico
| | - Ataúlfo Martínez-Torres
- Departamento Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, Mexico
| | - Daniel Reyes-Haro
- Departamento Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, Mexico.
| |
Collapse
|
40
|
Abstract
Cells of the oligodendrocyte lineage express a wide range of Ca2+ channels and receptors that regulate oligodendrocyte progenitor cell (OPC) and oligodendrocyte formation and function. Here we define those key channels and receptors that regulate Ca2+ signaling and OPC development and myelination. We then discuss how the regulation of intracellular Ca2+ in turn affects OPC and oligodendrocyte biology in the healthy nervous system and under pathological conditions. Activation of Ca2+ channels and receptors in OPCs and oligodendrocytes by neurotransmitters converges on regulating intracellular Ca2+, making Ca2+ signaling a central candidate mediator of activity-driven myelination. Indeed, recent evidence indicates that localized changes in Ca2+ in oligodendrocytes can regulate the formation and remodeling of myelin sheaths and perhaps additional functions of oligodendrocytes and OPCs. Thus, decoding how OPCs and myelinating oligodendrocytes integrate and process Ca2+ signals will be important to fully understand central nervous system formation, health, and function.
Collapse
Affiliation(s)
- Pablo M Paez
- Department of Pharmacology and Toxicology and Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York 14203, USA;
| | - David A Lyons
- Centre for Discovery Brain Sciences, Centre for Multiple Sclerosis Research, and Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom;
| |
Collapse
|
41
|
Spencer SA, Suárez-Pozos E, Escalante M, Myo YP, Fuss B. Sodium-Calcium Exchangers of the SLC8 Family in Oligodendrocytes: Functional Properties in Health and Disease. Neurochem Res 2020; 45:1287-1297. [PMID: 31927687 DOI: 10.1007/s11064-019-02949-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022]
Abstract
The solute carrier 8 (SLC8) family of sodium-calcium exchangers (NCXs) functions as an essential regulatory system that couples opposite fluxes of sodium and calcium ions across plasmalemmal membranes. NCXs, thereby, play key roles in maintaining an ion homeostasis that preserves cellular integrity. Hence, alterations in NCX expression and regulation have been found to lead to ionic imbalances that are often associated with intracellular calcium overload and cell death. On the other hand, intracellular calcium has been identified as a key driver for a multitude of downstream signaling events that are crucial for proper functioning of biological systems, thus highlighting the need for a tightly controlled balance. In the CNS, NCXs have been primarily characterized in the context of synaptic transmission and ischemic brain damage. However, a much broader picture is emerging. NCXs are expressed by virtually all cells of the CNS including oligodendrocytes (OLGs), the cells that generate the myelin sheath. With a growing appreciation of dynamic calcium signals in OLGs, NCXs are becoming increasingly recognized for their crucial roles in shaping OLG function under both physiological and pathophysiological conditions. In order to provide a current update, this review focuses on the importance of NCXs in cells of the OLG lineage. More specifically, it provides a brief introduction into plasmalemmal NCXs and their modes of activity, and it discusses the roles of OLG expressed NCXs in regulating CNS myelination and in contributing to CNS pathologies associated with detrimental effects on OLG lineage cells.
Collapse
Affiliation(s)
- Samantha A Spencer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA
| | - Edna Suárez-Pozos
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA
| | - Miguel Escalante
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA.,Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Yu Par Myo
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA.
| |
Collapse
|
42
|
Hide T, Komohara Y. Oligodendrocyte Progenitor Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1234:107-122. [PMID: 32040858 DOI: 10.1007/978-3-030-37184-5_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glioblastoma (GBM) develops from adult brain white matter and is the most common and lethal primary brain tumor, characterized by rapid growth and invasion. GBM tumors frequently spread into the contralateral hemisphere, including in the beginning of tumor development. However, after complete resection of the tumor mass and chemo-radiotherapy, GBM commonly recurs around the tumor removal site, suggesting that the microenvironment at the tumor border provides therapeutic resistance to GBM cells. To improve patient prognosis, understanding the microenvironment at the tumor border is critical. Several microRNAs (miRNAs) show higher expression at the tumor border, with the top three involved in oligodendrocyte differentiation. Oligodendrocyte progenitor cells (OPCs) may induce stemness and chemo-radioresistance in GBM cells, providing a supportive function to promote GBM. This review describes important features of OPCs and insights into the "border niche," a unique microenvironment that allows GBM cells to survive and recur at the tumor border.
Collapse
Affiliation(s)
- Takuichiro Hide
- Department of Neurosurgery, Kitasato University School of Medicine, Kanagawa, Japan.
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
43
|
Elkjaer ML, Frisch T, Reynolds R, Kacprowski T, Burton M, Kruse TA, Thomassen M, Baumbach J, Illes Z. Molecular signature of different lesion types in the brain white matter of patients with progressive multiple sclerosis. Acta Neuropathol Commun 2019; 7:205. [PMID: 31829262 PMCID: PMC6907342 DOI: 10.1186/s40478-019-0855-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022] Open
Abstract
To identify pathogenetic markers and potential drivers of different lesion types in the white matter (WM) of patients with progressive multiple sclerosis (PMS), we sequenced RNA from 73 different WM areas. Compared to 25 WM controls, 6713 out of 18,609 genes were significantly differentially expressed in MS tissues (FDR < 0.05). A computational systems medicine analysis was performed to describe the MS lesion endophenotypes. The cellular source of specific molecules was examined by RNAscope, immunohistochemistry, and immunofluorescence. To examine common lesion specific mechanisms, we performed de novo network enrichment based on shared differentially expressed genes (DEGs), and found TGFβ-R2 as a central hub. RNAscope revealed astrocytes as the cellular source of TGFβ-R2 in remyelinating lesions. Since lesion-specific unique DEGs were more common than shared signatures, we examined lesion-specific pathways and de novo networks enriched with unique DEGs. Such network analysis indicated classic inflammatory responses in active lesions; catabolic and heat shock protein responses in inactive lesions; neuronal/axonal specific processes in chronic active lesions. In remyelinating lesions, de novo analyses identified axonal transport responses and adaptive immune markers, which was also supported by the most heterogeneous immunoglobulin gene expression. The signature of the normal-appearing white matter (NAWM) was more similar to control WM than to lesions: only 465 DEGs differentiated NAWM from controls, and 16 were unique. The upregulated marker CD26/DPP4 was expressed by microglia in the NAWM but by mononuclear cells in active lesions, which may indicate a special subset of microglia before the lesion develops, but also emphasizes that omics related to MS lesions should be interpreted in the context of different lesions types. While chronic active lesions were the most distinct from control WM based on the highest number of unique DEGs (n = 2213), remyelinating lesions had the highest gene expression levels, and the most different molecular map from chronic active lesions. This may suggest that these two lesion types represent two ends of the spectrum of lesion evolution in PMS. The profound changes in chronic active lesions, the predominance of synaptic/neural/axonal signatures coupled with minor inflammation may indicate end-stage irreversible molecular events responsible for this less treatable phase.
Collapse
|
44
|
Stedehouder J, Brizee D, Slotman JA, Pascual-Garcia M, Leyrer ML, Bouwen BL, Dirven CM, Gao Z, Berson DM, Houtsmuller AB, Kushner SA. Local axonal morphology guides the topography of interneuron myelination in mouse and human neocortex. eLife 2019; 8:48615. [PMID: 31742557 PMCID: PMC6927753 DOI: 10.7554/elife.48615] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022] Open
Abstract
GABAergic fast-spiking parvalbumin-positive (PV) interneurons are frequently myelinated in the cerebral cortex. However, the factors governing the topography of cortical interneuron myelination remain incompletely understood. Here, we report that segmental myelination along neocortical interneuron axons is strongly predicted by the joint combination of interbranch distance and local axon caliber. Enlargement of PV+ interneurons increased axonal myelination, while reduced cell size led to decreased myelination. Next, we considered regular-spiking SOM+ cells, which normally have relatively shorter interbranch distances and thinner axon diameters than PV+ cells, and are rarely myelinated. Consistent with the importance of axonal morphology for guiding interneuron myelination, enlargement of SOM+ cell size dramatically increased the frequency of myelinated axonal segments. Lastly, we confirm that these findings also extend to human neocortex by quantifying interneuron axonal myelination from ex vivo surgical tissue. Together, these findings establish a predictive model of neocortical GABAergic interneuron myelination determined by local axonal morphology.
Collapse
Affiliation(s)
- Jeffrey Stedehouder
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Demi Brizee
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Johan A Slotman
- Erasmus Optical Imaging Center, Department of Pathology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Maria Pascual-Garcia
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Megan L Leyrer
- Department of Neuroscience, Brown University, Providence, United States
| | - Bibi Lj Bouwen
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Clemens Mf Dirven
- Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - David M Berson
- Department of Neuroscience, Brown University, Providence, United States
| | - Adriaan B Houtsmuller
- Erasmus Optical Imaging Center, Department of Pathology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
45
|
Benamer N, Vidal M, Angulo MC. The cerebral cortex is a substrate of multiple interactions between GABAergic interneurons and oligodendrocyte lineage cells. Neurosci Lett 2019; 715:134615. [PMID: 31711979 DOI: 10.1016/j.neulet.2019.134615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 01/02/2023]
Abstract
In the cerebral cortex, GABAergic interneurons and oligodendrocyte lineage cells share different characteristics and interact despite being neurons and glial cells, respectively. These two distinct cell types share common embryonic origins and are born from precursors expressing similar transcription factors. Moreover, they highly interact with each other through different communication mechanisms during development. Notably, cortical oligodendrocyte precursor cells (OPCs) receive a major and transient GABAergic synaptic input, preferentially from parvalbumin-expressing interneurons, a specific interneuron subtype recently recognized as highly myelinated. In this review, we highlight the similarities and interactions between GABAergic interneurons and oligodendrocyte lineage cells in the cerebral cortex and suggest potential roles of this intimate interneuron-oligodendroglia relationship in cortical construction. We also propose new lines of research to understand the role of the close link between interneurons and oligodendroglia during cortical development and in pathological conditions such as schizophrenia.
Collapse
Affiliation(s)
- Najate Benamer
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France; Université de Paris, Paris, France
| | - Marie Vidal
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France; Université de Paris, Paris, France
| | - Maria Cecilia Angulo
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France; Université de Paris, Paris, France.
| |
Collapse
|
46
|
Abstract
Oligodendrocytes are the myelinating cells of the CNS, producing the insulating myelin sheath that facilitates rapid electrical conduction of axonal action potentials. Oligodendrocytes arise from oligodendrocyte progenitor cells (OPCs) under the control of multiple factors, including neurotransmitters and other neuron-derived factors. A significant population of OPCs persists in the adult CNS, where they are often referred to as NG2-glia, because they are identified by their expression of the NG2 chondroitin sulphate proteoglycan (CSPG4). In the adult brain, the primary function of NG2-glia is the life-long generation of oligodendrocytes to replace myelin lost through natural 'wear and tear' and pathology, as well as to provide new oligodendrocytes to myelinate new connections formed in response to new life experiences. NG2-glia contact synapses and respond to neurotransmitters and potassium released during neuronal transmission; to this end, NG2-glia (OPCs) express multiple neurotransmitter receptors and ion channels, with prominent roles being identified for glutamatergic signalling and potassium channels in oligodendrocyte differentiation. Myelinating oligodendrocytes also express a wide range of neurotransmitter receptors and ion channels, together with transporters and gap junctions; together, these have critical functions in cellular ion and water homeostasis, as well as metabolism, which is essential for maintaining myelin and axon integrity. An overriding theme is that oligodendrocyte function and myelination is not only essential for rapid axonal conduction, but is essential for learning and the long-term integrity of axons and neurones. Hence, myelination underpins cognitive function and the massive computing power of the human brain and myelin loss has devastating effects on CNS function. This chapter focuses on normal oligodendrocyte physiology.
Collapse
|