1
|
Schneider A, Won S, Armstrong EA, Cooper AJ, Suresh A, Rivera R, Barrett-Wilt G, Denu JM, Simcox JA, Svaren J. The role of ATP citrate lyase in myelin formation and maintenance. Glia 2024. [PMID: 39318247 DOI: 10.1002/glia.24620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
Formation of myelin by Schwann cells is tightly coupled to peripheral nervous system development and is important for neuronal function and long-term maintenance. Perturbation of myelin causes a number of specific disorders that are among the most prevalent diseases affecting the nervous system. Schwann cells synthesize myelin lipids de novo rather than relying on uptake of circulating lipids, yet one unresolved matter is how acetyl CoA, a central metabolite in lipid formation is generated during myelin formation and maintenance. Recent studies have shown that glucose-derived acetyl CoA itself is not required for myelination. However, the importance of mitochondrially-derived acetyl CoA has never been tested for myelination in vivo. Therefore, we have developed a Schwann cell-specific knockout of the ATP citrate lyase (Acly) gene to determine the importance of mitochondrial metabolism to supply acetyl CoA in nerve development. Intriguingly, the ACLY pathway is important for myelin maintenance rather than myelin formation. In addition, ACLY is required to maintain expression of a myelin-associated gene program and to inhibit activation of the latent Schwann cell injury program.
Collapse
Affiliation(s)
- Andrew Schneider
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Seongsik Won
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric A Armstrong
- Wisconsin Institute of Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aaron J Cooper
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amulya Suresh
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rachell Rivera
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - John M Denu
- Wisconsin Institute of Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Judith A Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Yang X, Zhou B. Unleashing metabolic power for axonal regeneration. Trends Endocrinol Metab 2024:S1043-2760(24)00182-6. [PMID: 39069446 DOI: 10.1016/j.tem.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Axon regeneration requires the mobilization of intracellular resources, including proteins, lipids, and nucleotides. After injury, neurons need to adapt their metabolism to meet the biosynthetic demands needed to achieve axonal regeneration. However, the exact contribution of cellular metabolism to this process remains elusive. Insights into the metabolic characteristics of proliferative cells may illuminate similar mechanisms operating in axon regeneration; therefore, unraveling previously unappreciated roles of metabolic adaptation is critical to achieving neuron regrowth, which is connected to the therapeutic strategies for neurological conditions necessitating nerve repairs, such as spinal cord injury and stroke. Here, we outline the metabolic role in axon regeneration and discuss factors enhancing nerve regrowth, highlighting potential novel metabolic treatments for restoring nerve function.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China; School of Engineering Medicine, Beihang University, Beijing 100191, China.
| |
Collapse
|
3
|
Min K, Yenilmez B, Kelly M, Echeverria D, Elleby M, Lifshitz LM, Raymond N, Tsagkaraki E, Harney SM, DiMarzio C, Wang H, McHugh N, Bramato B, Morrison B, Rothstein JD, Khvorova A, Czech MP. Lactate transporter MCT1 in hepatic stellate cells promotes fibrotic collagen expression in nonalcoholic steatohepatitis. eLife 2024; 12:RP89136. [PMID: 38564479 PMCID: PMC10987092 DOI: 10.7554/elife.89136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Circulating lactate is a fuel source for liver metabolism but may exacerbate metabolic diseases such as nonalcoholic steatohepatitis (NASH). Indeed, haploinsufficiency of lactate transporter monocarboxylate transporter 1 (MCT1) in mice reportedly promotes resistance to hepatic steatosis and inflammation. Here, we used adeno-associated virus (AAV) vectors to deliver thyroxin binding globulin (TBG)-Cre or lecithin-retinol acyltransferase (Lrat)-Cre to MCT1fl/fl mice on a choline-deficient, high-fat NASH diet to deplete hepatocyte or stellate cell MCT1, respectively. Stellate cell MCT1KO (AAV-Lrat-Cre) attenuated liver type 1 collagen protein expression and caused a downward trend in trichrome staining. MCT1 depletion in cultured human LX2 stellate cells also diminished collagen 1 protein expression. Tetra-ethylenglycol-cholesterol (Chol)-conjugated siRNAs, which enter all hepatic cell types, and hepatocyte-selective tri-N-acetyl galactosamine (GN)-conjugated siRNAs were then used to evaluate MCT1 function in a genetically obese NASH mouse model. MCT1 silencing by Chol-siRNA decreased liver collagen 1 levels, while hepatocyte-selective MCT1 depletion by AAV-TBG-Cre or by GN-siRNA unexpectedly increased collagen 1 and total fibrosis without effect on triglyceride accumulation. These findings demonstrate that stellate cell lactate transporter MCT1 significantly contributes to liver fibrosis through increased collagen 1 protein expression in vitro and in vivo, while hepatocyte MCT1 appears not to be an attractive therapeutic target for NASH.
Collapse
Affiliation(s)
- Kyounghee Min
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, United States
| | - Batuhan Yenilmez
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, United States
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, United States
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, United States
| | - Michael Elleby
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, United States
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, United States
| | - Naideline Raymond
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, United States
| | - Emmanouela Tsagkaraki
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, United States
| | - Shauna M Harney
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, United States
| | - Chloe DiMarzio
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, United States
| | - Hui Wang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, United States
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, United States
| | - Brianna Bramato
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, United States
| | - Brett Morrison
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, United States
| | - Jeffery D Rothstein
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, United States
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, United States
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, United States
| |
Collapse
|
4
|
Trimarco A, Audano M, Marca RL, Cariello M, Falco M, Pedretti S, Imperato G, Cestaro A, Podini P, Dina G, Quattrini A, Massimino L, Caruso D, Mitro N, Taveggia C. Prostaglandin D2 synthase controls Schwann cells metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582775. [PMID: 38496560 PMCID: PMC10942270 DOI: 10.1101/2024.02.29.582775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
We previously reported that in the absence of Prostaglandin D2 synthase (L-PGDS) peripheral nerves are hypomyelinated in development and that with aging they present aberrant myelin sheaths. We now demonstrate that L-PGDS expressed in Schwann cells is part of a coordinated program aiming at preserving myelin integrity. In vivo and in vitro lipidomic, metabolomic and transcriptomic analyses confirmed that myelin lipids composition, Schwann cells energetic metabolism and key enzymes controlling these processes are altered in the absence of L-PGDS. Moreover, Schwann cells undergo a metabolic rewiring and turn to acetate as the main energetic source. Further, they produce ketone bodies to ensure glial cell and neuronal survival. Importantly, we demonstrate that all these changes correlate with morphological myelin alterations and describe the first physiological pathway implicated in preserving PNS myelin. Collectively, we posit that myelin lipids serve as a reservoir to provide ketone bodies, which together with acetate represent the adaptive substrates Schwann cells can rely on to sustain the axo-glial unit and preserve the integrity of the PNS.
Collapse
|
5
|
Reddy A, Winther S, Tran N, Xiao H, Jakob J, Garrity R, Smith A, Ordonez M, Laznik-Bogoslavski D, Rothstein JD, Mills EL, Chouchani ET. Monocarboxylate transporters facilitate succinate uptake into brown adipocytes. Nat Metab 2024; 6:567-577. [PMID: 38378996 DOI: 10.1038/s42255-024-00981-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
Uptake of circulating succinate by brown adipose tissue (BAT) and beige fat elevates whole-body energy expenditure, counteracts obesity and antagonizes systemic tissue inflammation in mice. The plasma membrane transporters that facilitate succinate uptake in these adipocytes remain undefined. Here we elucidate a mechanism underlying succinate import into BAT via monocarboxylate transporters (MCTs). We show that succinate transport is strongly dependent on the proportion that is present in the monocarboxylate form. MCTs facilitate monocarboxylate succinate uptake, which is promoted by alkalinization of the cytosol driven by adrenoreceptor stimulation. In brown adipocytes, we show that MCT1 primarily facilitates succinate import. In male mice, we show that both acute pharmacological inhibition of MCT1 and congenital depletion of MCT1 decrease succinate uptake into BAT and consequent catabolism. In sum, we define a mechanism of succinate uptake in BAT that underlies its protective activity in mouse models of metabolic disease.
Collapse
Affiliation(s)
- Anita Reddy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Sally Winther
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Nhien Tran
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Josefine Jakob
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ryan Garrity
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Arianne Smith
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martha Ordonez
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Jeffrey D Rothstein
- Brain Science Institute, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Evanna L Mills
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Dong X, Zhang H, Duan P, Liu K, Yu Y, Wei W, Wang W, Liu Y, Cheng Q, Liang X, Huo Y, Yan L, Yu A, Dai H. An injectable and adaptable hydrogen sulfide delivery system for modulating neuroregenerative microenvironment. SCIENCE ADVANCES 2023; 9:eadi1078. [PMID: 38117891 PMCID: PMC10732521 DOI: 10.1126/sciadv.adi1078] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/17/2023] [Indexed: 12/22/2023]
Abstract
Peripheral nerve regeneration is a complex physiological process. Single-function nerve scaffolds often struggle to quickly adapt to the imbalanced regenerative microenvironment, leading to slow nerve regeneration and limited functional recovery. In this study, we demonstrate a "pleiotropic gas transmitter" strategy based on endogenous reactive oxygen species (ROS), which trigger the on-demand H2S release at the defect area for transected peripheral nerve injury (PNI) repair through concurrent neuroregeneration and neuroprotection processing. This H2S delivery system consists of an H2S donor (peroxyTCM) encapsulated in a ROS-responsive polymer (mPEG-PMet) and loaded into a temperature-sensitive poly (amino acid) hydrogel (mPEG-PA-PP). This multi-effect combination strategy greatly promotes the regeneration of PNI, attributed to the physiological effects of H2S. These effects include the inhibition of inflammation and oxidative stress, protection of nerve cells, promotion of angiogenesis, and the restoration of normal mitochondrial function. The adaptive release of pleiotropic messengers to modulate the tissue regeneration microenvironment offers promising peripheral nerve repair and tissue engineering opportunities.
Collapse
Affiliation(s)
- Xianzhen Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Hao Zhang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ping Duan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Yifeng Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Weixing Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuhang Liu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qiang Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Xinyue Liang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Yuanfang Huo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Lesan Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000, China
| |
Collapse
|
7
|
Min K, Yenilmez B, Kelly M, Echeverria D, Elleby M, Lifshitz LM, Raymond N, Tsagkaraki E, Harney SM, DiMarzio C, Wang H, McHugh N, Bramato B, Morrision B, Rothstein JD, Khvorova A, Czech MP. Lactate transporter MCT1 in hepatic stellate cells promotes fibrotic collagen expression in nonalcoholic steatohepatitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539244. [PMID: 37205462 PMCID: PMC10187148 DOI: 10.1101/2023.05.03.539244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Circulating lactate is a fuel source for liver metabolism but may exacerbate metabolic diseases such as nonalcoholic steatohepatitis (NASH). Indeed, haploinsufficiency of lactate transporter monocarboxylate transporter 1 (MCT1) in mice reportedly promotes resistance to hepatic steatosis and inflammation. Here, we used adeno-associated virus (AAV) vectors to deliver thyroxin binding globulin (TBG)-Cre or lecithin-retinol acyltransferase (Lrat)-Cre to MCT1fl/fl mice on a choline deficient, high fat NASH diet to deplete hepatocyte or stellate cell MCT1, respectively. Stellate cell MCT1KO (AAV-Lrat-Cre) attenuated liver type 1 collagen protein expression and caused a downward trend in trichrome staining. MCT1 depletion in cultured human LX2 stellate cells also diminished collagen 1 protein expression. Tetra-ethylenglycol-cholesterol (Chol)-conjugated siRNAs, which enter all hepatic cell types, and hepatocyte-selective tri-N-acetyl galactosamine (GN)-conjugated siRNAs were then used to evaluate MCT1 function in a genetically obese NASH mouse model. MCT1 silencing by Chol-siRNA decreased liver collagen 1 levels, while hepatocyte-selective MCT1 depletion by AAV-TBG-Cre or by GN-siRNA unexpectedly increased collagen 1 and total fibrosis without effect on triglyceride accumulation. These findings demonstrate that stellate cell lactate transporter MCT1 significantly contributes to liver fibrosis through increased collagen 1 protein expression in vitro and in vivo, while hepatocyte MCT1 appears not to be an attractive therapeutic target for NASH.
Collapse
Affiliation(s)
- Kyounghee Min
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Batuhan Yenilmez
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, USA
| | - Michael Elleby
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Naideline Raymond
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | | | - Shauna M Harney
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Chloe DiMarzio
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Hui Wang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, USA
| | - Brianna Bramato
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, USA
| | - Brett Morrision
- Department of Neurology, Johns Hopkins School of Medicine, USA
| | | | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| |
Collapse
|
8
|
Eid SA, Rumora AE, Beirowski B, Bennett DL, Hur J, Savelieff MG, Feldman EL. New perspectives in diabetic neuropathy. Neuron 2023; 111:2623-2641. [PMID: 37263266 PMCID: PMC10525009 DOI: 10.1016/j.neuron.2023.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023]
Abstract
Diabetes prevalence continues to climb with the aging population. Type 2 diabetes (T2D), which constitutes most cases, is metabolically acquired. Diabetic peripheral neuropathy (DPN), the most common microvascular complication, is length-dependent damage to peripheral nerves. DPN pathogenesis is complex, but, at its core, it can be viewed as a state of impaired metabolism and bioenergetics failure operating against the backdrop of long peripheral nerve axons supported by glia. This unique peripheral nerve anatomy and the injury consequent to T2D underpins the distal-to-proximal symptomatology of DPN. Earlier work focused on the impact of hyperglycemia on nerve damage and bioenergetics failure, but recent evidence additionally implicates contributions from obesity and dyslipidemia. This review will cover peripheral nerve anatomy, bioenergetics, and glia-axon interactions, building the framework for understanding how hyperglycemia and dyslipidemia induce bioenergetics failure in DPN. DPN and painful DPN still lack disease-modifying therapies, and research on novel mechanism-based approaches is also covered.
Collapse
Affiliation(s)
- Stephanie A Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy E Rumora
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Bogdan Beirowski
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Neuroscience Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Masha G Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Reddy A, Winther S, Tran N, Xiao H, Jakob J, Garrity R, Smith A, Mills EL, Chouchani ET. Monocarboxylate transporters facilitate succinate uptake into brown adipocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530625. [PMID: 36909624 PMCID: PMC10002717 DOI: 10.1101/2023.03.01.530625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Uptake of circulating succinate by brown adipose tissue (BAT) and beige fat elevates whole body energy expenditure, counteracts obesity, and antagonizes systemic tissue inflammation in mice. The plasma membrane transporters that facilitate succinate uptake in these adipocytes remain undefined. Here we elucidate a mechanism underlying succinate import into BAT via monocarboxylate transporters (MCTs). We show that succinate transport is strongly dependent on the proportion of it present in the monocarboxylate form. MCTs facilitate monocarboxylate succinate uptake, which is promoted by alkalinization of the cytosol driven by adrenoreceptor stimulation. In brown adipocytes, we show that MCT1 primarily facilitates succinate import, however other members of the MCT family can partially compensate and fulfill this role in the absence of MCT1. In mice, we show that acute pharmacological inhibition of MCT1 and 2 decreases succinate uptake into BAT. Conversely, congenital genetic depletion of MCT1 alone has little effect on BAT succinate uptake, indicative of additional transport mechanisms with high capacity in vivo . In sum, we define a mechanism of succinate uptake in BAT that underlies its protective activity in mouse models of metabolic disease.
Collapse
|
10
|
Takenaka T, Ohnishi Y, Yamamoto M, Setoyama D, Kishima H. Glycolytic System in Axons Supplement Decreased ATP Levels after Axotomy of the Peripheral Nerve. eNeuro 2023; 10:ENEURO.0353-22.2023. [PMID: 36894321 PMCID: PMC10035771 DOI: 10.1523/eneuro.0353-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/04/2023] [Accepted: 02/25/2023] [Indexed: 03/11/2023] Open
Abstract
Wallerian degeneration (WD) occurs in the early stages of numerous neurologic disorders, and clarifying WD pathology is crucial for the advancement of neurologic therapies. ATP is acknowledged as one of the key pathologic substances in WD. The ATP-related pathologic pathways that regulate WD have been defined. The elevation of ATP levels in axon contributes to delay WD and protects axons. However, ATP is necessary for the active processes to proceed WD, given that WD is stringently managed by auto-destruction programs. But little is known about the bioenergetics during WD. In this study, we made sciatic nerve transection models for GO-ATeam2 knock-in rats and mice. We presented the spatiotemporal ATP distribution in the injured axons with in vivo ATP imaging systems, and investigated the metabolic source of ATP in the distal nerve stump. A gradual decrease in ATP levels was observed before the progression of WD. In addition, the glycolytic system and monocarboxylate transporters (MCTs) were activated in Schwann cells following axotomy. Interestingly, in axons, we found the activation of glycolytic system and the inactivation of the tricarboxylic acid (TCA) cycle. Glycolytic inhibitors, 2-deoxyglucose (2-DG) and MCT inhibitors, a-cyano-4-hydroxycinnamic acid (4-CIN) decreased ATP and enhanced WD progression, whereas mitochondrial pyruvate carrier (MPC) inhibitors (MSDC-0160) did not change. Finally, ethyl pyruvate (EP) increased ATP levels and delayed WD. Together, our findings suggest that glycolytic system, both in Schwann cells and axons, is the main source of maintaining ATP levels in the distal nerve stump.
Collapse
Affiliation(s)
- Tomofumi Takenaka
- Department of neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Yuichiro Ohnishi
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
- Department of Neurosurgery, Osaka Gyoumeikan Hospital, Osaka, 554-0012, Japan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Haruhiko Kishima
- Department of neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
Rossi G, Ordazzo G, Vanni NN, Castoldi V, Iannielli A, Di Silvestre D, Bellini E, Bernardo L, Giannelli SG, Luoni M, Muggeo S, Leocani L, Mauri P, Broccoli V. MCT1-dependent energetic failure and neuroinflammation underlie optic nerve degeneration in Wolfram syndrome mice. eLife 2023; 12:81779. [PMID: 36645345 PMCID: PMC9891717 DOI: 10.7554/elife.81779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Wolfram syndrome 1 (WS1) is a rare genetic disorder caused by mutations in the WFS1 gene leading to a wide spectrum of clinical dysfunctions, among which blindness, diabetes, and neurological deficits are the most prominent. WFS1 encodes for the endoplasmic reticulum (ER) resident transmembrane protein wolframin with multiple functions in ER processes. However, the WFS1-dependent etiopathology in retinal cells is unknown. Herein, we showed that Wfs1 mutant mice developed early retinal electrophysiological impairments followed by marked visual loss. Interestingly, axons and myelin disruption in the optic nerve preceded the degeneration of the retinal ganglion cell bodies in the retina. Transcriptomics at pre-degenerative stage revealed the STAT3-dependent activation of proinflammatory glial markers with reduction of the homeostatic and pro-survival factors glutamine synthetase and BDNF. Furthermore, label-free comparative proteomics identified a significant reduction of the monocarboxylate transport isoform 1 (MCT1) and its partner basigin that are highly enriched on retinal glia and myelin-forming oligodendrocytes in optic nerve together with wolframin. Loss of MCT1 caused a failure in lactate transfer from glial to neuronal cell bodies and axons leading to a chronic hypometabolic state. Thus, this bioenergetic impairment is occurring concurrently both within the axonal regions and cell bodies of the retinal ganglion cells, selectively endangering their survival while impacting less on other retinal cells. This metabolic dysfunction occurs months before the frank RGC degeneration suggesting an extended time-window for intervening with new therapeutic strategies focused on boosting retinal and optic nerve bioenergetics in WS1.
Collapse
Affiliation(s)
- Greta Rossi
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
| | - Gabriele Ordazzo
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
| | - Niccolò N Vanni
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
| | - Valerio Castoldi
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific InstituteMilanItaly
| | - Angelo Iannielli
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
- National Research Council of Italy, Institute of NeuroscienceMilanoItaly
| | - Dario Di Silvestre
- National Research Council of Italy, Institute of Technologies in BiomedicineMilanItaly
| | - Edoardo Bellini
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
| | - Letizia Bernardo
- National Research Council of Italy, Institute of Technologies in BiomedicineMilanItaly
| | | | - Mirko Luoni
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
- National Research Council of Italy, Institute of NeuroscienceMilanoItaly
| | - Sharon Muggeo
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
| | - Letizia Leocani
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific InstituteMilanItaly
| | - PierLuigi Mauri
- National Research Council of Italy, Institute of Technologies in BiomedicineMilanItaly
| | - Vania Broccoli
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
- National Research Council of Italy, Institute of NeuroscienceMilanoItaly
| |
Collapse
|
12
|
Shackleford G, Marziali LN, Sasaki Y, Claessens A, Ferri C, Weinstock NI, Rossor AM, Silvestri NJ, Wilson ER, Hurley E, Kidd GJ, Manohar S, Ding D, Salvi RJ, Feltri ML, D’Antonio M, Wrabetz L. A new mouse model of Charcot-Marie-Tooth 2J neuropathy replicates human axonopathy and suggest alteration in axo-glia communication. PLoS Genet 2022; 18:e1010477. [PMID: 36350884 PMCID: PMC9707796 DOI: 10.1371/journal.pgen.1010477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/29/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
Myelin is essential for rapid nerve impulse propagation and axon protection. Accordingly, defects in myelination or myelin maintenance lead to secondary axonal damage and subsequent degeneration. Studies utilizing genetic (CNPase-, MAG-, and PLP-null mice) and naturally occurring neuropathy models suggest that myelinating glia also support axons independently from myelin. Myelin protein zero (MPZ or P0), which is expressed only by Schwann cells, is critical for myelin formation and maintenance in the peripheral nervous system. Many mutations in MPZ are associated with demyelinating neuropathies (Charcot-Marie-Tooth disease type 1B [CMT1B]). Surprisingly, the substitution of threonine by methionine at position 124 of P0 (P0T124M) causes axonal neuropathy (CMT2J) with little to no myelin damage. This disease provides an excellent paradigm to understand how myelinating glia support axons independently from myelin. To study this, we generated targeted knock-in MpzT124M mutant mice, a genetically authentic model of T124M-CMT2J neuropathy. Similar to patients, these mice develop axonopathy between 2 and 12 months of age, characterized by impaired motor performance, normal nerve conduction velocities but reduced compound motor action potential amplitudes, and axonal damage with only minor compact myelin modifications. Mechanistically, we detected metabolic changes that could lead to axonal degeneration, and prominent alterations in non-compact myelin domains such as paranodes, Schmidt-Lanterman incisures, and gap junctions, implicated in Schwann cell-axon communication and axonal metabolic support. Finally, we document perturbed mitochondrial size and distribution along MpzT124M axons suggesting altered axonal transport. Our data suggest that Schwann cells in P0T124M mutant mice cannot provide axons with sufficient trophic support, leading to reduced ATP biosynthesis and axonopathy. In conclusion, the MpzT124M mouse model faithfully reproduces the human neuropathy and represents a unique tool for identifying the molecular basis for glial support of axons.
Collapse
Affiliation(s)
- Ghjuvan’Ghjacumu Shackleford
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Leandro N. Marziali
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
| | - Yo Sasaki
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, United States of America
| | - Anke Claessens
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Cinzia Ferri
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Nadav I. Weinstock
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
| | - Alexander M. Rossor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Nicholas J. Silvestri
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
| | - Emma R. Wilson
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
| | - Edward Hurley
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
| | - Grahame J. Kidd
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Richard J. Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - M. Laura Feltri
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
| | - Maurizio D’Antonio
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Lawrence Wrabetz
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
| |
Collapse
|
13
|
IWANAGA T, TAKAHASHI-IWANAGA H, NIO-KOBAYASHI J, EBARA S. Structure and barrier functions of the perineurium and its relationship with associated sensory corpuscles: A review. Biomed Res 2022; 43:145-159. [DOI: 10.2220/biomedres.43.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Toshihiko IWANAGA
- Department of Anatomy, Hokkaido University Graduate School of Medicine
| | | | | | | |
Collapse
|
14
|
Henn RE, Noureldein MH, Elzinga SE, Kim B, Savelieff MG, Feldman EL. Glial-neuron crosstalk in health and disease: A focus on metabolism, obesity, and cognitive impairment. Neurobiol Dis 2022; 170:105766. [PMID: 35584728 PMCID: PMC10071699 DOI: 10.1016/j.nbd.2022.105766] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Dementia is a complex set of disorders affecting normal cognitive function. Recently, several clinical studies have shown that diabetes, obesity, and components of the metabolic syndrome (MetS) are associated with cognitive impairment, including dementias such as Alzheimer's disease. Maintaining normal cognitive function is an intricate process involving coordination of neuron function with multiple brain glia. Well-orchestrated bioenergetics is a central requirement of neurons, which need large amounts of energy but lack significant energy storage capacity. Thus, one of the most important glial functions is to provide metabolic support and ensure an adequate energy supply for neurons. Obesity and metabolic disease dysregulate glial function, leading to a failure to respond to neuron energy demands, which results in neuronal damage. In this review, we outline evidence for links between diabetes, obesity, and MetS components to cognitive impairment. Next, we focus on the metabolic crosstalk between the three major glial cell types, oligodendrocytes, astrocytes, and microglia, with neurons under physiological conditions. Finally, we outline how diabetes, obesity, and MetS components can disrupt glial function, and how this disruption might impair glia-neuron metabolic crosstalk and ultimately promote cognitive impairment.
Collapse
Affiliation(s)
- Rosemary E Henn
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Mohamed H Noureldein
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Sarah E Elzinga
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Bhumsoo Kim
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Masha G Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America.
| | - Eva L Feldman
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
15
|
Elbaz B, Yang L, Vardy M, Isaac S, Rader BL, Kawaguchi R, Traka M, Woolf CJ, Renthal W, Popko B. Sensory neurons display cell-type-specific vulnerability to loss of neuron-glia interactions. Cell Rep 2022; 40:111130. [PMID: 35858549 PMCID: PMC9354470 DOI: 10.1016/j.celrep.2022.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/22/2021] [Accepted: 07/01/2022] [Indexed: 11/11/2022] Open
Abstract
Peripheral nervous system (PNS) injuries initiate transcriptional changes in glial cells and sensory neurons that promote axonal regeneration. While the factors that initiate the transcriptional changes in glial cells are well characterized, the full range of stimuli that initiate the response of sensory neurons remain elusive. Here, using a genetic model of glial cell ablation, we find that glial cell loss results in transient PNS demyelination without overt axonal loss. By profiling sensory ganglia at single-cell resolution, we show that glial cell loss induces a transcriptional injury response preferentially in proprioceptive and Aβ RA-LTMR neurons. The transcriptional response of sensory neurons to mechanical injury has been assumed to be a cell-autonomous response. By identifying a similar response in non-injured, demyelinated neurons, our study suggests that this represents a non-cell-autonomous transcriptional response of sensory neurons to glial cell loss and demyelination.
Collapse
Affiliation(s)
- Benayahu Elbaz
- Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| | - Lite Yang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Maia Vardy
- Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Sara Isaac
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Braesen L Rader
- Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Maria Traka
- Department of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA 02115, USA
| | - William Renthal
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Brian Popko
- Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
16
|
Abstract
Schwann cells in the peripheral nervous system (PNS) are essential for the support and myelination of axons, ensuring fast and accurate communication between the central nervous system and the periphery. Schwann cells and related glia accompany innervating axons in virtually all tissues in the body, where they exhibit remarkable plasticity and the ability to modulate pathology in extraordinary, and sometimes surprising, ways. Here, we provide a brief overview of the various glial cell types in the PNS and describe the cornerstone cellular and molecular processes that enable Schwann cells to perform their canonical functions. We then dive into discussing exciting noncanonical functions of Schwann cells and related PNS glia, which include their role in organizing the PNS, in regulating synaptic activity and pain, in modulating immunity, in providing a pool of stem cells for different organs, and, finally, in influencing cancer.
Collapse
Affiliation(s)
- Carla Taveggia
- Axo-Glial Interaction Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy;
| | - M. Laura Feltri
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
17
|
Stanescu S, Bravo-Alonso I, Belanger-Quintana A, Pérez B, Medina-Diaz M, Ruiz-Sala P, Flores NP, Buenache R, Arrieta F, Rodríguez-Pombo P. Mitochondrial bioenergetic is impaired in Monocarboxylate transporter 1 deficiency: a new clinical case and review of the literature. Orphanet J Rare Dis 2022; 17:243. [PMID: 35729663 PMCID: PMC9215049 DOI: 10.1186/s13023-022-02389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
Background Monocarboxylate transporter 1 (MCT1) deficiency has recently been described as a rare cause of recurrent ketosis, the result of impaired ketone utilization in extrahepatic tissues. To date, only six patients with this condition have been identified, and clinical and biochemical details remain incomplete. Results The present work reports a patient suffering from severe, recurrent episodes of metabolic acidosis and psychomotor delay, showing a pathogenic loss-of-function variation c.747_750del in homozygosity in SLC16A1 (which codes for MCT1). Persistent ketotic and lactic acidosis was accompanied by an abnormal excretion of organic acids related to redox balance disturbances. Together with an altered bioenergetic profile detected in patient-derived fibroblasts, this suggests possible mitochondrial dysfunction. Brain MRI revealed extensive, diffuse bilateral, symmetric signal alterations for the subcortical white matter and basal ganglia, together with corpus callosum agenesia. Conclusions These findings suggest that the clinical spectrum of MCT1 deficiency not only involves recurrent atacks of ketoacidosis, but may also cause lactic acidosis and neuromotor delay with a distinctive neuroimaging pattern including agenesis of corpus callosum and other brain signal alterations. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02389-4.
Collapse
Affiliation(s)
- Sinziana Stanescu
- Unidad de Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, IRYCIS, Crta de Colmenar Viejo, km 9,100, 28034, Madrid, Spain.
| | - Irene Bravo-Alonso
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, UAM-CSIC, CIBERER, IdiPAZ, C/Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
| | - Amaya Belanger-Quintana
- Unidad de Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, IRYCIS, Crta de Colmenar Viejo, km 9,100, 28034, Madrid, Spain
| | - Belen Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, UAM-CSIC, CIBERER, IdiPAZ, C/Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
| | - Montserrat Medina-Diaz
- Department of Neuroradiology, Hospital Universitario Ramón y Cajal, IRYCIS, Crta de Colmenar Viejo, km 9,100, 28034, Madrid, Spain
| | - Pedro Ruiz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, C/Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
| | - Nathaly Paola Flores
- Paediatric Department, Hospital General La Mancha Centro, Av. Constitución, 3, 13600, Alcázar de San Juan, Ciudad Real, Spain
| | - Raquel Buenache
- Neuropediatric Department, Hospital Universitario Ramón y Cajal, IRYCIS, Crta de Colmenar Viejo, km 9,100, 28034, Madrid, Spain
| | - Francisco Arrieta
- Unidad de Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, IRYCIS, CIBER-OBN, Crta de Colmenar Viejo, km 9,100, 28034, Madrid, Spain
| | - Pilar Rodríguez-Pombo
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, UAM-CSIC, CIBERER, IdiPAZ, C/Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
| |
Collapse
|
18
|
Babetto E, Beirowski B. Of axons that struggle to make ends meet: Linking axonal bioenergetic failure to programmed axon degeneration. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148545. [PMID: 35339437 DOI: 10.1016/j.bbabio.2022.148545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
Axons are the long, fragile, and energy-hungry projections of neurons that are challenging to sustain. Together with their associated glia, they form the bulk of the neuronal network. Pathological axon degeneration (pAxD) is a driver of irreversible neurological disability in a host of neurodegenerative conditions. Halting pAxD is therefore an attractive therapeutic strategy. Here we review recent work demonstrating that pAxD is regulated by an auto-destruction program that revolves around axonal bioenergetics. We then focus on the emerging concept that axonal and glial energy metabolism are intertwined. We anticipate that these discoveries will encourage the pursuit of new treatment strategies for neurodegeneration.
Collapse
Affiliation(s)
- Elisabetta Babetto
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| | - Bogdan Beirowski
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
19
|
Metabolism-related MOGS Gene is Dysregulated After Peripheral Nerve Injury and Negatively Regulates Schwann Cell Plasticity. J Mol Neurosci 2022; 72:1402-1412. [PMID: 35575968 PMCID: PMC9170655 DOI: 10.1007/s12031-022-02024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/05/2022] [Indexed: 10/26/2022]
Abstract
Cellular metabolism is essentially linked to tissue remodeling and organ regeneration. MOGS, a gene that encodes cellular metabolism-related protein mannosyl-oligosaccharide glucosidase, was found to be upregulated in nerve segments after peripheral nerve injury. Bioinformatic analyses identified upstream regulators of MOGS and MOGS-associated genes and indicated the significant involvement of cellular metabolism in peripheral nerve regeneration. Functional assessment showed that siRNA-mediated knockdown of MOGS led to elevated proliferation, migration, and differentiation of Schwann cells, indicating the negative regulation of MOGS on Schwann cell plasticity. Schwann cells transfected with MOGS siRNA also showed lower expression of fatty acid synthase (FASN), demonstrating that dysregulated MOGS in Schwann cells may affect neuronal behavior through the metabolic coupling between Schwann cells and axons. Taken together, this study demonstrated that MOGS may be a key regulating factor of Schwann cells and neuronal phenotype during peripheral nerve regeneration.
Collapse
|
20
|
Beirowski B. Emerging evidence for compromised axonal bioenergetics and axoglial metabolic coupling as drivers of neurodegeneration. Neurobiol Dis 2022; 170:105751. [PMID: 35569720 DOI: 10.1016/j.nbd.2022.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022] Open
Abstract
Impaired bioenergetic capacity of the nervous system is thought to contribute to the pathogenesis of many neurodegenerative diseases (NDD). Since neuronal synapses are believed to be the major energy consumers in the nervous system, synaptic derangements resulting from energy deficits have been suggested to play a central role for the development of many of these disorders. However, long axons constitute the largest compartment of the neuronal network, require large amounts of energy, are metabolically and structurally highly vulnerable, and undergo early injurious stresses in many NDD. These stresses likely impose additional energy demands for continuous adaptations and repair processes, and may eventually overwhelm axonal maintenance mechanisms. Indeed, pathological axon degeneration (pAxD) is now recognized as an etiological focus in a wide array of NDD associated with bioenergetic abnormalities. In this paper I first discuss the recognition that a simple experimental model for pAxD is regulated by an auto-destruction program that exhausts distressed axons energetically. Provision of the energy substrate pyruvate robustly counteracts this axonal breakdown. Importantly, energy decline in axons is not only a consequence but also an initiator of this program. This opens the intriguing possibility that axon dysfunction and pAxD can be suppressed by preemptively energizing distressed axons. Second, I focus on the emerging concept that axons communicate energetically with their flanking glia. This axoglial metabolic coupling can help offset the axonal energy decline that activates the pAxD program but also jeopardize axon integrity as a result of perturbed glial metabolism. Third, I present compelling evidence that abnormal axonal energetics and compromised axoglial metabolic coupling accompany the activation of the pAxD auto-destruction pathway in models of glaucoma, a widespread neurodegenerative condition with pathogenic overlap to other common NDD. In conclusion, I propose a novel conceptual framework suggesting that therapeutic interventions focused on bioenergetic support of the nervous system should also address axons and their metabolic interactions with glia.
Collapse
Affiliation(s)
- Bogdan Beirowski
- Institute for Myelin and Glia Exploration, New York State Center of Excellence in Bioinformatics & Life Sciences (CBLS), University at Buffalo, Buffalo, NY 14203, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
21
|
Verdone BM, Cicardi ME, Wen X, Sriramoji S, Russell K, Markandaiah SS, Jensen BK, Krishnamurthy K, Haeusler AR, Pasinelli P, Trotti D. A mouse model with widespread expression of the C9orf72-linked glycine-arginine dipeptide displays non-lethal ALS/FTD-like phenotypes. Sci Rep 2022; 12:5644. [PMID: 35379876 PMCID: PMC8979946 DOI: 10.1038/s41598-022-09593-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022] Open
Abstract
Translation of the hexanucleotide G4C2 expansion associated with C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) produces five different dipeptide repeat protein (DPR) species that can confer toxicity. There is yet much to learn about the contribution of a single DPR to disease pathogenesis. We show here that a short repeat length is sufficient for the DPR poly-GR to confer neurotoxicity in vitro, a phenomenon previously unobserved. This toxicity is also reported in vivo in our novel knock-in mouse model characterized by widespread central nervous system (CNS) expression of the short-length poly-GR. We observe sex-specific chronic ALS/FTD-like phenotypes in these mice, including mild motor neuron loss, but no TDP-43 mis-localization, as well as motor and cognitive impairments. We suggest that this model can serve as the foundation for phenotypic exacerbation through second-hit forms of stress.
Collapse
Affiliation(s)
- Brandie Morris Verdone
- Jefferson Weinberg ALS Center, Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria Elena Cicardi
- Jefferson Weinberg ALS Center, Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Xinmei Wen
- Jefferson Weinberg ALS Center, Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sindhu Sriramoji
- Jefferson Weinberg ALS Center, Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Katelyn Russell
- Jefferson Weinberg ALS Center, Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shashirekha S Markandaiah
- Jefferson Weinberg ALS Center, Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Brigid K Jensen
- Jefferson Weinberg ALS Center, Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Karthik Krishnamurthy
- Jefferson Weinberg ALS Center, Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aaron R Haeusler
- Jefferson Weinberg ALS Center, Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Nguyen YTK, Ha HTT, Nguyen TH, Nguyen LN. The role of SLC transporters for brain health and disease. Cell Mol Life Sci 2021; 79:20. [PMID: 34971415 PMCID: PMC11071821 DOI: 10.1007/s00018-021-04074-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/05/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
The brain exchanges nutrients and small molecules with blood via the blood-brain barrier (BBB). Approximately 20% energy intake for the body is consumed by the brain. Glucose is known for its critical roles for energy production and provides substrates for biogenesis in neurons. The brain takes up glucose via glucose transporters GLUT1 and 3, which are expressed in several neural cell types. The brain is also equipped with various transport systems for acquiring amino acids, lactate, ketone bodies, lipids, and cofactors for neuronal functions. Unraveling the mechanisms by which the brain takes up and metabolizes these nutrients will be key in understanding the nutritional requirements in the brain. This could also offer opportunities for therapeutic interventions in several neurological disorders. For instance, emerging evidence suggests a critical role of lactate as an alternative energy source for neurons. Neuronal cells express monocarboxylic transporters to acquire lactate. As such, treatment of GLUT1-deficient patients with ketogenic diets to provide the brain with alternative sources of energy has been shown to improve the health of the patients. Many transporters are present in the brain, but only a small number has been characterized. In this review, we will discuss about the roles of solute carrier (SLC) transporters at the blood brain barrier (BBB) and neural cells, in transport of nutrients and metabolites in the brain.
Collapse
Affiliation(s)
- Yen T K Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Hoa T T Ha
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Tra H Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.
- SLING/Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
- Immunology Translational and Cardiovascular Disease Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
| |
Collapse
|
23
|
Jha MK, Passero JV, Rawat A, Ament XH, Yang F, Vidensky S, Collins SL, Horton MR, Hoke A, Rutter GA, Latremoliere A, Rothstein JD, Morrison BM. Macrophage monocarboxylate transporter 1 promotes peripheral nerve regeneration after injury in mice. J Clin Invest 2021; 131:e141964. [PMID: 34491913 DOI: 10.1172/jci141964] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/02/2021] [Indexed: 12/28/2022] Open
Abstract
Peripheral nerves have the capacity for regeneration, but the rate of regeneration is so slow that many nerve injuries lead to incomplete recovery and permanent disability for patients. Macrophages play a critical role in the peripheral nerve response to injury, contributing to both Wallerian degeneration and nerve regeneration, and their function has recently been shown to be dependent on intracellular metabolism. To date, the impact of their intracellular metabolism on peripheral nerve regeneration has not been studied. We examined conditional transgenic mice with selective ablation in macrophages of solute carrier family 16, member 1 (Slc16a1), which encodes monocarboxylate transporter 1 (MCT1), and found that MCT1 contributed to macrophage metabolism, phenotype, and function, specifically in regard to phagocytosis and peripheral nerve regeneration. Adoptive cell transfer of wild-type macrophages ameliorated the impaired nerve regeneration in macrophage-selective MCT1-null mice. We also developed a mouse model that overexpressed MCT1 in macrophages and found that peripheral nerves in these mice regenerated more rapidly than in control mice. Our study provides further evidence that MCT1 has an important biological role in macrophages and that manipulations of macrophage metabolism can enhance recovery from peripheral nerve injuries, for which there are currently no approved medical therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Samuel L Collins
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maureen R Horton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Alban Latremoliere
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
24
|
Abstract
Myelin is a key evolutionary specialization and adaptation of vertebrates formed by the plasma membrane of glial cells, which insulate axons in the nervous system. Myelination not only allows rapid and efficient transmission of electric impulses in the axon by decreasing capacitance and increasing resistance but also influences axonal metabolism and the plasticity of neural circuits. In this review, we will focus on Schwann cells, the glial cells which form myelin in the peripheral nervous system. Here, we will describe the main extrinsic and intrinsic signals inducing Schwann cell differentiation and myelination and how myelin biogenesis is achieved. Finally, we will also discuss how the study of human disorders in which molecules and pathways relevant for myelination are altered has enormously contributed to the current knowledge on myelin biology.
Collapse
Affiliation(s)
- Alessandra Bolino
- Human Inherited Neuropathies Unit, Institute of Experimental Neurology INSPE, Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
25
|
Rawat A, Morrison BM. Metabolic Transporters in the Peripheral Nerve-What, Where, and Why? Neurotherapeutics 2021; 18:2185-2199. [PMID: 34773210 PMCID: PMC8804006 DOI: 10.1007/s13311-021-01150-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
Cellular metabolism is critical not only for cell survival, but also for cell fate, function, and intercellular communication. There are several different metabolic transporters expressed in the peripheral nervous system, and they each play important roles in maintaining cellular energy. The major source of energy in the peripheral nervous system is glucose, and glucose transporters 1 and 3 are expressed and allow blood glucose to be imported and utilized by peripheral nerves. There is also increasing evidence that other sources of energy, particularly monocarboxylates such as lactate that are transported primarily by monocarboxylate transporters 1 and 2 in peripheral nerves, can be efficiently utilized by peripheral nerves. Finally, emerging evidence supports an important role for connexins and possibly pannexins in the supply and regulation of metabolic energy. In this review, we will first define these critical metabolic transporter subtypes and then examine their localization in the peripheral nervous system. We will subsequently discuss the evidence, which comes both from experiments in animal models and observations from human diseases, supporting critical roles played by these metabolic transporters in the peripheral nervous system. Despite progress made in understanding the function of these transporters, many questions and some discrepancies remain, and these will also be addressed throughout this review. Peripheral nerve metabolism is fundamentally important and renewed interest in these pathways should help to answer many of these questions and potentially provide new treatments for neurologic diseases that are partly, or completely, caused by disruption of metabolism.
Collapse
Affiliation(s)
- Atul Rawat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brett M Morrison
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Finsterwald C, Dias S, Magistretti PJ, Lengacher S. Ganglioside GM1 Targets Astrocytes to Stimulate Cerebral Energy Metabolism. Front Pharmacol 2021; 12:653842. [PMID: 33995070 PMCID: PMC8115125 DOI: 10.3389/fphar.2021.653842] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/13/2021] [Indexed: 02/01/2023] Open
Abstract
Gangliosides are major constituents of the plasma membrane and are known to promote a number of physiological actions in the brain, including synaptic plasticity and neuroprotection. In particular, the ganglioside GM1 was found to have a wide range of preclinical and clinical benefits in brain diseases such as spinal cord injury, Huntington’s disease and Parkinson’s disease. However, little is known about the underlying cellular and molecular mechanisms of GM1 in the brain. In the present study, we show that GM1 exerts its actions through the promotion of glycolysis in astrocytes, which leads to glucose uptake and lactate release by these cells. In astrocytes, GM1 stimulates the expression of several genes involved in the regulation of glucose metabolism. GM1 also enhances neuronal mitochondrial activity and triggers the expression of neuroprotection genes when neurons are cultured in the presence of astrocytes. Finally, GM1 leads to a neuroprotective effect in astrocyte-neuron co-culture. Together, these data identify a previously unrecognized mechanism mediated by astrocytes by which GM1 exerts its metabolic and neuroprotective effects.
Collapse
|
27
|
Cilostazol is an effective causal therapy for preventing paclitaxel-induced peripheral neuropathy by suppression of Schwann cell dedifferentiation. Neuropharmacology 2021; 188:108514. [PMID: 33684416 DOI: 10.1016/j.neuropharm.2021.108514] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 12/28/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) can lead to discontinuation of chemotherapy and is consequently a serious impediment to effective cancer treatment. Due to our limited understanding of mechanisms underlying the pathogenesis of CIPN, no causal therapy has been approved for relief of this condition. We previously demonstrated that taxanes (paclitaxel and docetaxel) induce Schwann cell dedifferentiation, characterized by increased expression of p75 and galectin-3, ultimately leading to demyelination. These changes appear to be responsible for CIPN pathogenesis. This study was designed to identify a novel candidate therapeutic for CIPN with the ability to suppress paclitaxel-induced Schwann cell dedifferentiation. Given that elevation of cyclic adenosine monophosphate (cAMP) signaling participates in Schwann cell differentiation, we performed immunocytochemical screening of phosphodiesterase (PDE) inhibitors. We found that the PDE3 inhibitor cilostazol strongly promoted differentiation of primary cultures of rat Schwann cells via a mechanism involving cAMP/exchange protein directly activated by cAMP (Epac) signaling. Co-treatment with cilostazol prevented paclitaxel-induced dedifferentiation of Schwann cell cultures and demyelination in a mixed culture of Schwann cells and dorsal root ganglia neurons. Notably, continuous oral administration of cilostazol suppressed Schwann cell dedifferentiation within the sciatic nerve and the development of mechanical hypersensitivity in a mouse model of paclitaxel-related CIPN. Importantly, cilostazol potentiated, rather than inhibited, the anti-cancer effect of paclitaxel on the human breast cancer cell line MDA-MB-231. These findings highlight the potential utility of cilostazol as a causal therapeutic that avoids the development of paclitaxel-related CIPN without compromising anti-cancer properties.
Collapse
|
28
|
Watson MJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM, Grebinoski S, Menk AV, Rittenhouse NL, DePeaux K, Whetstone RD, Vignali DAA, Hand TW, Poholek AC, Morrison BM, Rothstein JD, Wendell SG, Delgoffe GM. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 2021; 591:645-651. [PMID: 33589820 PMCID: PMC7990682 DOI: 10.1038/s41586-020-03045-2] [Citation(s) in RCA: 552] [Impact Index Per Article: 184.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/14/2020] [Indexed: 01/31/2023]
Abstract
Regulatory T (Treg) cells, although vital for immune homeostasis, also represent a major barrier to anti-cancer immunity, as the tumour microenvironment (TME) promotes the recruitment, differentiation and activity of these cells1,2. Tumour cells show deregulated metabolism, leading to a metabolite-depleted, hypoxic and acidic TME3, which places infiltrating effector T cells in competition with the tumour for metabolites and impairs their function4-6. At the same time, Treg cells maintain a strong suppression of effector T cells within the TME7,8. As previous studies suggested that Treg cells possess a distinct metabolic profile from effector T cells9-11, we hypothesized that the altered metabolic landscape of the TME and increased activity of intratumoral Treg cells are linked. Here we show that Treg cells display broad heterogeneity in their metabolism of glucose within normal and transformed tissues, and can engage an alternative metabolic pathway to maintain suppressive function and proliferation. Glucose uptake correlates with poorer suppressive function and long-term instability, and high-glucose conditions impair the function and stability of Treg cells in vitro. Treg cells instead upregulate pathways involved in the metabolism of the glycolytic by-product lactic acid. Treg cells withstand high-lactate conditions, and treatment with lactate prevents the destabilizing effects of high-glucose conditions, generating intermediates necessary for proliferation. Deletion of MCT1-a lactate transporter-in Treg cells reveals that lactate uptake is dispensable for the function of peripheral Treg cells but required intratumorally, resulting in slowed tumour growth and an increased response to immunotherapy. Thus, Treg cells are metabolically flexible: they can use 'alternative' metabolites in the TME to maintain their suppressive identity. Further, our results suggest that tumours avoid destruction by not only depriving effector T cells of nutrients, but also metabolically supporting regulatory populations.
Collapse
Affiliation(s)
- McLane J Watson
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Paolo D A Vignali
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Steven J Mullett
- Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abigail E Overacre-Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Ronal M Peralta
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephanie Grebinoski
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ashley V Menk
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Natalie L Rittenhouse
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Kristin DePeaux
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ryan D Whetstone
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Timothy W Hand
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Brett M Morrison
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey D Rothstein
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stacy G Wendell
- Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, PA, USA
- Departments of Pharmacology and Chemical Biology and Clinical Translational Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Philips T, Mironova YA, Jouroukhin Y, Chew J, Vidensky S, Farah MH, Pletnikov MV, Bergles DE, Morrison BM, Rothstein JD. MCT1 Deletion in Oligodendrocyte Lineage Cells Causes Late-Onset Hypomyelination and Axonal Degeneration. Cell Rep 2021; 34:108610. [PMID: 33440165 PMCID: PMC8020895 DOI: 10.1016/j.celrep.2020.108610] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/08/2020] [Accepted: 12/16/2020] [Indexed: 11/22/2022] Open
Abstract
Oligodendrocytes (OLs) are important for myelination and shuttling energy metabolites lactate and pyruvate toward axons through their expression of monocarboxylate transporter 1 (MCT1). Recent studies suggest that loss of OL MCT1 causes axonal degeneration. However, it is unknown how widespread and chronic loss of MCT1 in OLs specifically affects neuronal energy homeostasis with aging. To answer this, MCT1 conditional null mice were generated that allow for OL-specific MCT1 ablation. We observe that MCT1 loss from OL lineage cells is dispensable for normal myelination and axonal energy homeostasis early in life. By contrast, loss of OL lineage MCT1 expression with aging leads to significant axonal degeneration with concomitant hypomyelination. These data support the hypothesis that MCT1 is important for neuronal energy homeostasis in the aging central nervous system (CNS). The reduction in OL MCT1 that occurs with aging may enhance the risk for axonal degeneration and atrophy in neurodegenerative diseases. Using conditional cell-specific deletion of MCT1, Philips et al. learn that oligodendrocyte lineage cells are actually dispensable for normal myelination and axonal energy homeostasis during early life but that the oligodendroglial lactate/MCT1-based support is critical for the aging of the nervous system.
Collapse
Affiliation(s)
- Thomas Philips
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yevgeniya A Mironova
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yan Jouroukhin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeannie Chew
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Svetlana Vidensky
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mohamed H Farah
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences SUNY, University at Buffalo, Buffalo, NY 14203, USA
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Brett M Morrison
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Jeffrey D Rothstein
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
30
|
Powell CL, Davidson AR, Brown AM. Universal Glia to Neurone Lactate Transfer in the Nervous System: Physiological Functions and Pathological Consequences. BIOSENSORS-BASEL 2020; 10:bios10110183. [PMID: 33228235 PMCID: PMC7699491 DOI: 10.3390/bios10110183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
Whilst it is universally accepted that the energy support of the brain is glucose, the form in which the glucose is taken up by neurones is the topic of intense debate. In the last few decades, the concept of lactate shuttling between glial elements and neural elements has emerged in which the glial cells glycolytically metabolise glucose/glycogen to lactate, which is shuttled to the neural elements via the extracellular fluid. The process occurs during periods of compromised glucose availability where glycogen stored in astrocytes provides lactate to the neurones, and is an integral part of the formation of learning and memory where the energy intensive process of learning requires neuronal lactate uptake provided by astrocytes. More recently sleep, myelination and motor end plate integrity have been shown to involve lactate shuttling. The sequential aspect of lactate production in the astrocyte followed by transport to the neurones is vulnerable to interruption and it is reported that such disparate pathological conditions as Alzheimer's disease, amyotrophic lateral sclerosis, depression and schizophrenia show disrupted lactate signalling between glial cells and neurones.
Collapse
Affiliation(s)
- Carolyn L. Powell
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (C.L.P.); (A.R.D.)
| | - Anna R. Davidson
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (C.L.P.); (A.R.D.)
| | - Angus M. Brown
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (C.L.P.); (A.R.D.)
- Department of Neurology, University of Washington, Seattle, WA 98105, USA
- Correspondence:
| |
Collapse
|
31
|
Jha MK, Ament XH, Yang F, Liu Y, Polydefkis MJ, Pellerin L, Morrison BM. Reducing monocarboxylate transporter MCT1 worsens experimental diabetic peripheral neuropathy. Exp Neurol 2020; 333:113415. [PMID: 32717355 PMCID: PMC7502508 DOI: 10.1016/j.expneurol.2020.113415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common complications in diabetic patients. Though the exact mechanism for DPN is unknown, it clearly involves metabolic dysfunction and energy failure in multiple cells within the peripheral nervous system. Lactate is an alternate source of metabolic energy that is increasingly recognized for its role in supporting neurons. The primary transporter for lactate in the nervous system, monocarboxylate transporter-1 (MCT1), has been shown to be critical for peripheral nerve regeneration and metabolic support to neurons/axons. In this study, MCT1 was reduced in both sciatic nerve and dorsal root ganglia in wild-type mice treated with streptozotocin (STZ), a common model of type-1 diabetes. Heterozygous MCT1 null mice that developed hyperglycemia following STZ treatment developed a more severe DPN compared to wild-type mice, as measured by greater axonal demyelination, decreased peripheral nerve function, and increased numbness to innocuous low-threshold mechanical stimulation. Given that MCT1 inhibitors are being developed as both immunosuppressive and chemotherapeutic medications, our results suggest that clinical development in patients with diabetes should proceed with caution. Collectively, our findings uncover an important role for MCT1 in DPN and provide a potential lead toward developing novel treatments for this currently untreatable disease.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Xanthe H Ament
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Fang Yang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Ying Liu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Michael J Polydefkis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Luc Pellerin
- Inserm U1082, Universite de Poitiers, Poitiers Cedex 86021, France; Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, Bordeaux Cedex 33760, France
| | - Brett M Morrison
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
32
|
Wang HJ, Lee CS, Yee RSZ, Groom L, Friedman I, Babcock L, Georgiou DK, Hong J, Hanna AD, Recio J, Choi JM, Chang T, Agha NH, Romero J, Sarkar P, Voermans N, Gaber MW, Jung SY, Baker ML, Pautler RG, Dirksen RT, Riazi S, Hamilton SL. Adaptive thermogenesis enhances the life-threatening response to heat in mice with an Ryr1 mutation. Nat Commun 2020; 11:5099. [PMID: 33037202 PMCID: PMC7547078 DOI: 10.1038/s41467-020-18865-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/18/2020] [Indexed: 11/17/2022] Open
Abstract
Mutations in the skeletal muscle Ca2+ release channel, the type 1 ryanodine receptor (RYR1), cause malignant hyperthermia susceptibility (MHS) and a life-threatening sensitivity to heat, which is most severe in children. Mice with an MHS-associated mutation in Ryr1 (Y524S, YS) display lethal muscle contractures in response to heat. Here we show that the heat response in the YS mice is exacerbated by brown fat adaptive thermogenesis. In addition, the YS mice have more brown adipose tissue thermogenic capacity than their littermate controls. Blood lactate levels are elevated in both heat-sensitive MHS patients with RYR1 mutations and YS mice due to Ca2+ driven increases in muscle metabolism. Lactate increases brown adipogenesis in both mouse and human brown preadipocytes. This study suggests that simple lifestyle modifications such as avoiding extreme temperatures and maintaining thermoneutrality could decrease the risk of life-threatening responses to heat and exercise in individuals with RYR1 pathogenic variants.
Collapse
Affiliation(s)
- Hui J Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Chang Seok Lee
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Rachel Sue Zhen Yee
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Inbar Friedman
- Department of Anesthesiology, University of Toronto, Toronto, ON, Canada
| | - Lyle Babcock
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Dimitra K Georgiou
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jin Hong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Amy D Hanna
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Recio
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jong Min Choi
- Advance Technology Core, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Ting Chang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Nadia H Agha
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan Romero
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Poonam Sarkar
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Nicol Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, Netherlands
| | - M Waleed Gaber
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Sung Yun Jung
- Advance Technology Core, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Matthew L Baker
- Advance Technology Core, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Robia G Pautler
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Sheila Riazi
- Department of Anesthesiology, University of Toronto, Toronto, ON, Canada
| | - Susan L Hamilton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
33
|
Jha MK, Morrison BM. Lactate Transporters Mediate Glia-Neuron Metabolic Crosstalk in Homeostasis and Disease. Front Cell Neurosci 2020; 14:589582. [PMID: 33132853 PMCID: PMC7550678 DOI: 10.3389/fncel.2020.589582] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/09/2020] [Indexed: 12/28/2022] Open
Abstract
Research over the last couple of decades has provided novel insights into lactate neurobiology and the implications of lactate transport-driven neuroenergetics in health and diseases of peripheral nerve and the brain. The expression pattern of lactate transporters in glia and neurons has now been described, though notable controversies and discrepancies remain. Importantly, down- and up-regulation experiments are underway to better understand the function of these transporters in different systems. Lactate transporters in peripheral nerves are important for maintenance of axon and myelin integrity, motor end-plate integrity, the development of diabetic peripheral neuropathy (DPN), and the functional recovery following nerve injuries. Similarly, brain energy metabolism and functions ranging from development to synaptic plasticity to axonal integrity are also dependent on lactate transport primarily between glia and neurons. This review is focused on critically analysing the expression pattern and the functions of lactate transporters in peripheral nerves and the brain and highlighting their role in glia-neuron metabolic crosstalk in physiological and pathological conditions.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Brett M Morrison
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
34
|
A glycolytic shift in Schwann cells supports injured axons. Nat Neurosci 2020; 23:1215-1228. [PMID: 32807950 DOI: 10.1038/s41593-020-0689-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 07/07/2020] [Indexed: 01/09/2023]
Abstract
Axon degeneration is a hallmark of many neurodegenerative disorders. The current assumption is that the decision of injured axons to degenerate is cell-autonomously regulated. Here we show that Schwann cells (SCs), the glia of the peripheral nervous system, protect injured axons by virtue of a dramatic glycolytic upregulation that arises in SCs as an inherent adaptation to axon injury. This glycolytic response, paired with enhanced axon-glia metabolic coupling, supports the survival of axons. The glycolytic shift in SCs is largely driven by the metabolic signaling hub, mammalian target of rapamycin complex 1, and the downstream transcription factors hypoxia-inducible factor 1-alpha and c-Myc, which together promote glycolytic gene expression. The manipulation of glial glycolytic activity through this pathway enabled us to accelerate or delay the degeneration of perturbed axons in acute and subacute rodent axon degeneration models. Thus, we demonstrate a non-cell-autonomous metabolic mechanism that controls the fate of injured axons.
Collapse
|
35
|
Bouçanova F, Pollmeier G, Sandor K, Morado Urbina C, Nijssen J, Médard JJ, Bartesaghi L, Pellerin L, Svensson CI, Hedlund E, Chrast R. Disrupted function of lactate transporter MCT1, but not MCT4, in Schwann cells affects the maintenance of motor end-plate innervation. Glia 2020; 69:124-136. [PMID: 32686211 DOI: 10.1002/glia.23889] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022]
Abstract
Recent studies in neuron-glial metabolic coupling have shown that, in the CNS, astrocytes and oligodendrocytes support neurons with energy-rich lactate/pyruvate via monocarboxylate transporters (MCTs). The presence of such transporters in the PNS, in both Schwann cells and neurons, has prompted us to question if a similar interaction may be present. Here we describe the generation and characterization of conditional knockout mouse models where MCT1 or MCT4 is specifically deleted in Schwann cells (named MCT1 and MCT4 cKO). We show that MCT1 cKO and MCT4 cKO mice develop normally and that myelin in the PNS is preserved. However, MCT1 expressed by Schwann cells is necessary for long-term maintenance of motor end-plate integrity as revealed by disrupted neuromuscular innervation in mutant mice, while MCT4 appears largely dispensable for the support of motor neurons. Concomitant to detected structural alterations, lumbar motor neurons from MCT1 cKO mice show transcriptional changes affecting cytoskeletal components, transcriptional regulators, and mitochondria related transcripts, among others. Together, our data indicate that MCT1 plays a role in Schwann cell-mediated maintenance of motor end-plate innervation thus providing further insight into the emerging picture of the biology of the axon-glia metabolic crosstalk.
Collapse
Affiliation(s)
- Filipa Bouçanova
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gill Pollmeier
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Morado Urbina
- Department of Physiology and Pharmacology and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jik Nijssen
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jean-Jacques Médard
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Luca Bartesaghi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, Bordeaux Cedex, France.,Inserm U1082, Université de Poitiers, Poitiers Cedex, France
| | - Camilla I Svensson
- Department of Physiology and Pharmacology and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Roman Chrast
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Marshall-Phelps KL, Kegel L, Baraban M, Ruhwedel T, Almeida RG, Rubio-Brotons M, Klingseisen A, Benito-Kwiecinski SK, Early JJ, Bin JM, Suminaite D, Livesey MR, Möbius W, Poole RJ, Lyons DA. Neuronal activity disrupts myelinated axon integrity in the absence of NKCC1b. J Cell Biol 2020; 219:e201909022. [PMID: 32364583 PMCID: PMC7337504 DOI: 10.1083/jcb.201909022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/09/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Through a genetic screen in zebrafish, we identified a mutant with disruption to myelin in both the CNS and PNS caused by a mutation in a previously uncharacterized gene, slc12a2b, predicted to encode a Na+, K+, and Cl- (NKCC) cotransporter, NKCC1b. slc12a2b/NKCC1b mutants exhibited a severe and progressive pathology in the PNS, characterized by dysmyelination and swelling of the periaxonal space at the axon-myelin interface. Cell-type-specific loss of slc12a2b/NKCC1b in either neurons or myelinating Schwann cells recapitulated these pathologies. Given that NKCC1 is critical for ion homeostasis, we asked whether the disruption to myelinated axons in slc12a2b/NKCC1b mutants is affected by neuronal activity. Strikingly, we found that blocking neuronal activity completely prevented and could even rescue the pathology in slc12a2b/NKCC1b mutants. Together, our data indicate that NKCC1b is required to maintain neuronal activity-related solute homeostasis at the axon-myelin interface, and the integrity of myelinated axons.
Collapse
Affiliation(s)
| | - Linde Kegel
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Marion Baraban
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Torben Ruhwedel
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Rafael G. Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Anna Klingseisen
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Jason J. Early
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jenea M. Bin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Daumante Suminaite
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Matthew R. Livesey
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Richard J. Poole
- Department of Cell and Developmental Biology, University College London, London, UK
| | - David A. Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
37
|
Bouçanova F, Chrast R. Metabolic Interaction Between Schwann Cells and Axons Under Physiological and Disease Conditions. Front Cell Neurosci 2020; 14:148. [PMID: 32547370 PMCID: PMC7274022 DOI: 10.3389/fncel.2020.00148] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Recent research into axon-glial interactions in the nervous system has made a compelling case that glial cells have a relevant role in the metabolic support of axons, and that, in the case of myelinating cells, this role is independent of myelination itself. In this mini-review article, we summarize some of those observations and focus on Schwann cells (SC), drawing parallels between glia of the central and peripheral nervous systems (PNS), pointing out limitations in current knowledge, and discussing its potential clinical relevance. First, we introduce SC, their development and main roles, and follow with an evolutionary perspective of glial metabolic function. Then we provide evidence of the myelin-independent aspects of axonal support and their coupling to neuronal metabolism. Finally, we address the opportunity to use SC-axon metabolic interactions as therapeutic targets to treat peripheral neuropathies.
Collapse
Affiliation(s)
- Filipa Bouçanova
- Department of Neuroscience, KarolinskaInstitutet, Stockholm, Sweden.,Department of Clinical Neuroscience, KarolinskaInstitutet, Stockholm, Sweden
| | - Roman Chrast
- Department of Neuroscience, KarolinskaInstitutet, Stockholm, Sweden.,Department of Clinical Neuroscience, KarolinskaInstitutet, Stockholm, Sweden
| |
Collapse
|
38
|
Wilson ER, Della-Flora Nunes G, Weaver MR, Frick LR, Feltri ML. Schwann cell interactions during the development of the peripheral nervous system. Dev Neurobiol 2020; 81:464-489. [PMID: 32281247 DOI: 10.1002/dneu.22744] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/14/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
Abstract
Schwann cells play a critical role in the development of the peripheral nervous system (PNS), establishing important relationships both with the extracellular milieu and other cell types, particularly neurons. In this review, we discuss various Schwann cell interactions integral to the proper establishment, spatial arrangement, and function of the PNS. We include signals that cascade onto Schwann cells from axons and from the extracellular matrix, bidirectional signals that help to establish the axo-glial relationship and how Schwann cells in turn support the axon. Further, we speculate on how Schwann cell interactions with other components of the developing PNS ultimately promote the complete construction of the peripheral nerve.
Collapse
Affiliation(s)
- Emma R Wilson
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Gustavo Della-Flora Nunes
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Michael R Weaver
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Luciana R Frick
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - M Laura Feltri
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
39
|
Luo L, Ambrozkiewicz MC, Benseler F, Chen C, Dumontier E, Falkner S, Furlanis E, Gomez AM, Hoshina N, Huang WH, Hutchison MA, Itoh-Maruoka Y, Lavery LA, Li W, Maruo T, Motohashi J, Pai ELL, Pelkey KA, Pereira A, Philips T, Sinclair JL, Stogsdill JA, Traunmüller L, Wang J, Wortel J, You W, Abumaria N, Beier KT, Brose N, Burgess HA, Cepko CL, Cloutier JF, Eroglu C, Goebbels S, Kaeser PS, Kay JN, Lu W, Luo L, Mandai K, McBain CJ, Nave KA, Prado MA, Prado VF, Rothstein J, Rubenstein JL, Saher G, Sakimura K, Sanes JR, Scheiffele P, Takai Y, Umemori H, Verhage M, Yuzaki M, Zoghbi HY, Kawabe H, Craig AM. Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors. Neuron 2020; 106:37-65.e5. [PMID: 32027825 PMCID: PMC7377387 DOI: 10.1016/j.neuron.2020.01.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/12/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022]
Abstract
The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities.
Collapse
Affiliation(s)
- Lin Luo
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Mateusz C. Ambrozkiewicz
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany,Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Fritz Benseler
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Cui Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Emilie Dumontier
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | | | | | | | - Naosuke Hoshina
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei-Hsiang Huang
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA,Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Mary Anne Hutchison
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yu Itoh-Maruoka
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Laura A. Lavery
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77003, USA,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Tomohiko Maruo
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan,Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Junko Motohashi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Emily Ling-Lin Pai
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kenneth A. Pelkey
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ariane Pereira
- Department of Neurobiology and Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas Philips
- Department of Neurology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jennifer L. Sinclair
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Jeff A. Stogsdill
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02139, USA
| | | | - Jiexin Wang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Joke Wortel
- Department of Functional Genomics and Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and University Medical Center Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Wenjia You
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA,Departments of Genetics, Harvard Medical School, Boston, MA 02115, USA,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nashat Abumaria
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China,Department of Laboratory Animal Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Kevin T. Beier
- Department of Physiology and Biophysics, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697, USA
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Harold A. Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Constance L. Cepko
- Departments of Genetics, Harvard Medical School, Boston, MA 02115, USA,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jean-François Cloutier
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Cagla Eroglu
- Department of Cell Biology, Department of Neurobiology, and Duke Institute for Brain Sciences, Regeneration Next Initiative, Duke University Medical Center, Durham, NC 27710, USA
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Pascal S. Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy N. Kay
- Department of Neurobiology and Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Kenji Mandai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Chris J. McBain
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Marco A.M. Prado
- Robarts Research Institute, Department of Anatomy and Cell Biology, and Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5B7, Canada,Brain and Mind Institute, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Vania F. Prado
- Robarts Research Institute, Department of Anatomy and Cell Biology, and Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5B7, Canada,Brain and Mind Institute, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Jeffrey Rothstein
- Department of Neurology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John L.R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Joshua R. Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hisashi Umemori
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matthijs Verhage
- Department of Functional Genomics and Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and University Medical Center Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Huda Yahya Zoghbi
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77003, USA,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-minamimachi Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
40
|
Poitelon Y, Kopec AM, Belin S. Myelin Fat Facts: An Overview of Lipids and Fatty Acid Metabolism. Cells 2020; 9:cells9040812. [PMID: 32230947 PMCID: PMC7226731 DOI: 10.3390/cells9040812] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Myelin is critical for the proper function of the nervous system and one of the most complex cell–cell interactions of the body. Myelination allows for the rapid conduction of action potentials along axonal fibers and provides physical and trophic support to neurons. Myelin contains a high content of lipids, and the formation of the myelin sheath requires high levels of fatty acid and lipid synthesis, together with uptake of extracellular fatty acids. Recent studies have further advanced our understanding of the metabolism and functions of myelin fatty acids and lipids. In this review, we present an overview of the basic biology of myelin lipids and recent insights on the regulation of fatty acid metabolism and functions in myelinating cells. In addition, this review may serve to provide a foundation for future research characterizing the role of fatty acids and lipids in myelin biology and metabolic disorders affecting the central and peripheral nervous system.
Collapse
|
41
|
Siems SB, Jahn O, Eichel MA, Kannaiyan N, Wu LMN, Sherman DL, Kusch K, Hesse D, Jung RB, Fledrich R, Sereda MW, Rossner MJ, Brophy PJ, Werner HB. Proteome profile of peripheral myelin in healthy mice and in a neuropathy model. eLife 2020; 9:e51406. [PMID: 32130108 PMCID: PMC7056269 DOI: 10.7554/elife.51406] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Proteome and transcriptome analyses aim at comprehending the molecular profiles of the brain, its cell-types and subcellular compartments including myelin. Despite the relevance of the peripheral nervous system for normal sensory and motor capabilities, analogous approaches to peripheral nerves and peripheral myelin have fallen behind evolving technical standards. Here we assess the peripheral myelin proteome by gel-free, label-free mass-spectrometry for deep quantitative coverage. Integration with RNA-Sequencing-based developmental mRNA-abundance profiles and neuropathy disease genes illustrates the utility of this resource. Notably, the periaxin-deficient mouse model of the neuropathy Charcot-Marie-Tooth 4F displays a highly pathological myelin proteome profile, exemplified by the discovery of reduced levels of the monocarboxylate transporter MCT1/SLC16A1 as a novel facet of the neuropathology. This work provides the most comprehensive proteome resource thus far to approach development, function and pathology of peripheral myelin, and a straightforward, accurate and sensitive workflow to address myelin diversity in health and disease.
Collapse
Affiliation(s)
- Sophie B Siems
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Maria A Eichel
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Nirmal Kannaiyan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU MunichMunichGermany
| | - Lai Man N Wu
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Diane L Sherman
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Dörte Hesse
- Proteomics Group, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Robert Fledrich
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
- Institute of Anatomy, University of LeipzigLeipzigGermany
| | - Michael W Sereda
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
- Department of Clinical Neurophysiology, University Medical CenterGöttingenGermany
| | - Moritz J Rossner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU MunichMunichGermany
| | - Peter J Brophy
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| |
Collapse
|
42
|
Sun Y, Sun J, He Z, Wang G, Wang Y, Zhao D, Wang Z, Luo C, Tian C, Jiang Q. Monocarboxylate Transporter 1 in Brain Diseases and Cancers. Curr Drug Metab 2019; 20:855-866. [DOI: 10.2174/1389200220666191021103018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/21/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022]
Abstract
Background:
Monocarboxylate Transporter 1 (MCT1), an important membrane transport protein, mediates
the translocation of monocarboxylates together with protons across biological membranes. Due to its pathological
significance, MCT1 plays an important role in the progression of some diseases, such as brain diseases and cancers.
Methods:
We summarize the general description of MCT1 and provide a comprehensive understanding of the role of
MCT1 in brain diseases and cancers. Furthermore, this review discusses the opportunities and challenges of MCT1-
targeting drug-delivery systems in the treatment of brain diseases and cancers.
Results:
In the brain, loss of MCT1 function is associated with pathologies of degeneration and injury of the nervous
system. In tumors, MCT1 regulates the activity of signaling pathways and controls the exchange of monocarboxylates
in aerobic glycolysis to affect tumor metabolism, proliferation and invasion. Meanwhile, MCT1 also acts as a
good biomarker for the prediction and diagnosis of cancer progressions.
Conclusion:
MCT1 is an attractive transporter in brain diseases and cancers. Moreover, the development of MCT1-
based small molecule drugs and MCT1 inhibitors in the clinic is promising. This review systematically summarizes
the basic characteristics of MCT1 and its role in brain diseases and cancers, laying the foundation for further research
on MCT1.
Collapse
Affiliation(s)
- Yixin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yang Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Dongyang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhenjie Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|