1
|
Josselsohn A, Zhao Y, Espinoza D, Hollander E. Oxytocin in neurodevelopmental disorders: Autism spectrum disorder and Prader-Willi syndrome. Pharmacol Ther 2024:108734. [PMID: 39455012 DOI: 10.1016/j.pharmthera.2024.108734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
This manuscript reviews recent work on oxytocin and its use in neurodevelopmental disorders including spectrum disorder (ASD) and Prader-Willi syndrome (PWS). Oxytocin is involved in social recognition, bonding, maternal behaviors, anxiety, food motivation, and hyperphagia. While the pathophysiology of ASD and PWS involve abnormalities in the oxytocin system, clinical trials have shown discrepant results in the effectiveness of oxytocin as a treatment for core symptoms associated with these disorders. In this review, we outline oxytocin's clinical pharmacology, safety considerations, and results in recent clinical trials. We propose that oxytocin may be most beneficial in these populations if dosed in a dynamic regimen (PRN) and paired with social interventions.
Collapse
Affiliation(s)
| | - Yin Zhao
- Albert Einstein College of Medicine, Montefiore Medical Center
| | | | - Eric Hollander
- Albert Einstein College of Medicine, Montefiore Medical Center.
| |
Collapse
|
2
|
Ding N, Fu L, Qian L, Sun B, Li C, Gao H, Lei T, Ke X. The correlation between brain structure characteristics and emotion regulation ability in children at high risk of autism spectrum disorder. Eur Child Adolesc Psychiatry 2024; 33:3247-3262. [PMID: 38402375 DOI: 10.1007/s00787-024-02369-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/08/2024] [Indexed: 02/26/2024]
Abstract
As indicated by longitudinal observation, autism has difficulty controlling emotions to a certain extent in early childhood, and most children's emotional and behavioral problems are further aggravated with the growth of age. This study aimed at exploring the correlation between white matter and white matter fiber bundle connectivity characteristics and their emotional regulation ability in children with autism using machine learning methods, which can lay an empirical basis for early clinical intervention of autism. Fifty-five high risk of autism spectrum disorder (HR-ASD) children and 52 typical development (TD) children were selected to complete the skull 3D-T1 structure and diffusion tensor imaging (DTI). The emotional regulation ability of the two groups was compared using the still-face paradigm (SFP). The classification and regression models of white matter characteristics and white matter fiber bundle connections of emotion regulation ability in the HR-ASD group were built based on the machine learning method. The volume of the right amygdala (R2 = 0.245) and the volume of the right hippocampus (R2 = 0.197) affected constructive emotion regulation strategies. FA (R2 = 0.32) and MD (R2 = 0.34) had the predictive effect on self-stimulating behaviour. White matter fiber bundle connection predicted constructive regulation strategies (positive edging R2 = 0.333, negative edging R2 = 0.334) and mother-seeking behaviors (positive edging R2 = 0.667, negative edging R2 = 0.363). The emotional regulation ability of HR-ASD children is significantly correlated with the connections of multiple white matter fiber bundles, which is a potential neuro-biomarker of emotional regulation ability.
Collapse
Affiliation(s)
- Ning Ding
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
- Qingdao Women and Children' s Hospital, Qingdao University, Qingdao, 266011, China
| | - Linyan Fu
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lu Qian
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bei Sun
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chunyan Li
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Huiyun Gao
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tianyu Lei
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaoyan Ke
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
3
|
Mills-Huffnagle SL, Zawatsky CN, Bryant G, Ebert M, Augusto CM, Sipe A, Horvath N, Nyland JE. Differences in withdrawal symptoms, microglia activity, and cognitive functioning in rats exposed to continuous low-dose heroin in-utero. Neurotoxicol Teratol 2024; 105:107385. [PMID: 39182528 PMCID: PMC11403577 DOI: 10.1016/j.ntt.2024.107385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Opioid use during pregnancy and subsequent neonatal opioid withdrawal syndrome (NOWS) have been associated with poor developmental outcomes including cognitive functioning. Less is known about the underlying molecular effects of prenatal opioid exposure and subsequent withdrawal; however, given the recent increase in NOWS cases, there is a pressing need to better understand these effects, which may partially explain cognitive deficits that have been observed in both preclinical NOWS models and patients with NOWS. This study evaluated the effects of prenatal heroin exposure and subsequent precipitated withdrawal symptoms on microglial reactivity in the nucleus accumbens (NAc), dorsal hippocampus (HC), and ventral tegmental area (VTA) in rat neonates, as well as cognitive functioning at three developmental time points using the Morris Water Maze (MWM) task. METHODS Heroin or saline (2 mg/kg) was randomly assigned and administered to six pregnant Sprague Dawley rat dams via osmotic minipump. A total of 63 rat neonates underwent naloxone-precipitated (5 mg/kg, subcutaneous injection) withdrawal testing at postnatal day 10 (PN10). Following withdrawal testing, neonates were randomly assigned to undergo perfusion and subsequent immunohistochemistry experiments to fluoresce Iba-1 for microglia detection, or to undergo the MWM task at three separate developmental time points (PN21-23; PN37; PN60) for cognitive testing. RESULTS Results suggest that in-utero heroin exposure led to an increase in ultrasonic vocalizations during naloxone-precipitated withdrawal; a sensitive index of withdrawal in rat neonates. Additional results suggest increased microglial reactivity in the HC and VTA, but not the NAc, as well as reduced performance during the MWM in the group exposed to heroin in-utero. DISCUSSION Together, these data suggest that in-utero opioid exposure is associated with microglial reactivity in brain regions associated with learning and memory, and may be associated with later cognitive deficits. Further research is needed to characterize these findings, which may inform future therapeutic strategies for this vulnerable population.
Collapse
Affiliation(s)
- Sara L Mills-Huffnagle
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences, 500 University Drive, Hershey, PA 17033, United States of America.
| | - Charles N Zawatsky
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences, 500 University Drive, Hershey, PA 17033, United States of America
| | - Gjhvona Bryant
- The Pennsylvania State University College of Medicine, Anatomy Graduate Program, 500 University Drive, Hershey, PA 17033, United States of America
| | - Michael Ebert
- The Pennsylvania State University College of Medicine, Anatomy Graduate Program, 500 University Drive, Hershey, PA 17033, United States of America
| | - Corinne M Augusto
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences, 500 University Drive, Hershey, PA 17033, United States of America
| | - Ann Sipe
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences, 500 University Drive, Hershey, PA 17033, United States of America
| | - Nelli Horvath
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences, 500 University Drive, Hershey, PA 17033, United States of America
| | - Jennifer E Nyland
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences, 500 University Drive, Hershey, PA 17033, United States of America
| |
Collapse
|
4
|
Qiu L, Liang C, Kochunov P, Hutchison KE, Sui J, Jiang R, Zhi D, Vergara VM, Yang X, Zhang D, Fu Z, Bustillo JR, Qi S, Calhoun VD. Associations of alcohol and tobacco use with psychotic, depressive and developmental disorders revealed via multimodal neuroimaging. Transl Psychiatry 2024; 14:326. [PMID: 39112461 PMCID: PMC11306356 DOI: 10.1038/s41398-024-03035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
People affected by psychotic, depressive and developmental disorders are at a higher risk for alcohol and tobacco use. However, the further associations between alcohol/tobacco use and symptoms/cognition in these disorders remain unexplored. We identified multimodal brain networks involving alcohol use (n = 707) and tobacco use (n = 281) via supervised multimodal fusion and evaluated if these networks affected symptoms and cognition in people with psychotic (schizophrenia/schizoaffective disorder/bipolar, n = 178/134/143), depressive (major depressive disorder, n = 260) and developmental (autism spectrum disorder/attention deficit hyperactivity disorder, n = 421/346) disorders. Alcohol and tobacco use scores were used as references to guide functional and structural imaging fusion to identify alcohol/tobacco use associated multimodal patterns. Correlation analyses between the extracted brain features and symptoms or cognition were performed to evaluate the relationships between alcohol/tobacco use with symptoms/cognition in 6 psychiatric disorders. Results showed that (1) the default mode network (DMN) and salience network (SN) were associated with alcohol use, whereas the DMN and fronto-limbic network (FLN) were associated with tobacco use; (2) the DMN and fronto-basal ganglia (FBG) related to alcohol/tobacco use were correlated with symptom and cognition in psychosis; (3) the middle temporal cortex related to alcohol/tobacco use was associated with cognition in depression; (4) the DMN related to alcohol/tobacco use was related to symptom, whereas the SN and limbic system (LB) were related to cognition in developmental disorders. In summary, alcohol and tobacco use were associated with structural and functional abnormalities in DMN, SN and FLN and had significant associations with cognition and symptoms in psychotic, depressive and developmental disorders likely via different brain networks. Further understanding of these relationships may assist clinicians in the development of future approaches to improve symptoms and cognition among psychotic, depressive and developmental disorders.
Collapse
Affiliation(s)
- Ling Qiu
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Chuang Liang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Peter Kochunov
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kent E Hutchison
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Rongtao Jiang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Dongmei Zhi
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Victor M Vergara
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Xiao Yang
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zening Fu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Juan R Bustillo
- Departments of Neurosciences and Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA.
| | - Shile Qi
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
- Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| |
Collapse
|
5
|
Hacohen-Brown S, Gilboa-Schechtman E, Zaidel A. Modality-specific effects of threat on self-motion perception. BMC Biol 2024; 22:120. [PMID: 38783286 PMCID: PMC11119305 DOI: 10.1186/s12915-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Threat and individual differences in threat-processing bias perception of stimuli in the environment. Yet, their effect on perception of one's own (body-based) self-motion in space is unknown. Here, we tested the effects of threat on self-motion perception using a multisensory motion simulator with concurrent threatening or neutral auditory stimuli. RESULTS Strikingly, threat had opposite effects on vestibular and visual self-motion perception, leading to overestimation of vestibular, but underestimation of visual self-motions. Trait anxiety tended to be associated with an enhanced effect of threat on estimates of self-motion for both modalities. CONCLUSIONS Enhanced vestibular perception under threat might stem from shared neural substrates with emotional processing, whereas diminished visual self-motion perception may indicate that a threatening stimulus diverts attention away from optic flow integration. Thus, threat induces modality-specific biases in everyday experiences of self-motion.
Collapse
Affiliation(s)
- Shira Hacohen-Brown
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Eva Gilboa-Schechtman
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel
- Department of Psychology, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Adam Zaidel
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel.
| |
Collapse
|
6
|
Presto P, Sehar U, Kopel J, Reddy PH. Mechanisms of pain in aging and age-related conditions: Focus on caregivers. Ageing Res Rev 2024; 95:102249. [PMID: 38417712 DOI: 10.1016/j.arr.2024.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Pain is a complex, subjective experience that can significantly impact quality of life, particularly in aging individuals, by adversely affecting physical and emotional well-being. Whereas acute pain usually serves a protective function, chronic pain is a persistent pathological condition that contributes to functional deficits, cognitive decline, and emotional disturbances in the elderly. Despite substantial progress that has been made in characterizing age-related changes in pain, complete mechanistic details of pain processing mechanisms in the aging patient remain unknown. Pain is particularly under-recognized and under-managed in the elderly, especially among patients with Alzheimer's disease (AD), Alzheimer's disease-related dementias (ADRD), and other age-related conditions. Furthermore, difficulties in assessing pain in patients with AD/ADRD and other age-related conditions may contribute to the familial caregiver burden. The purpose of this article is to discuss the mechanisms and risk factors for chronic pain development and persistence, with a particular focus on age-related changes. Our article also highlights the importance of caregivers working with aging chronic pain patients, and emphasizes the urgent need for increased legislative awareness and improved pain management in these populations to substantially alleviate caregiver burden.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jonathan Kopel
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
7
|
Wang J, Zhang H, Fang Y, Dong Y, Chao X, Xiao L, Jiang S, Yin D, Wang P, Sun W, Liu X. Functional connectome hierarchy of thalamus impacts fatigue in acute stroke patients. Cereb Cortex 2024; 34:bhad534. [PMID: 38212287 DOI: 10.1093/cercor/bhad534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/13/2024] Open
Abstract
This study aimed to explore the topographic features of thalamic subregions, functional connectomes and hierarchical organizations between thalamus and cortex in poststroke fatigue patients. We consecutively recruited 121 acute ischemic stroke patients (mean age: 59 years) and 46 healthy controls matched for age, sex, and educational level. The mean age was 59 years (range 19-80) and 38% of acute stroke patients were females. Resting-state functional and structural magnetic resonance imaging were conducted on all participants. The fatigue symptoms were measured using the Fatigue Severity Scale. The thalamic functional subdivisions corresponding to the canonical functional network were defined using the winner-take-all parcellation method. Thalamic functional gradients were derived using the diffusion embedding analysis. The results suggested abnormal functional connectivity of thalamic subregions primarily located in the temporal lobe, posterior cingulate gyrus, parietal lobe, and precuneus. The thalamus showed a gradual increase from the medial to the lateral in all groups, but the right thalamus shifted more laterally in poststroke fatigue patients than in non- poststroke fatigue patients. Poststroke fatigue patients also had higher gradient scores in the somatomotor network and the right medial prefrontal and premotor thalamic regions, but lower values in the right lateral prefrontal thalamus. The findings suggested that poststroke fatigue patients had altered functional connectivity and thalamocortical hierarchical organizations, providing new insights into the neural mechanisms of the thalamus.
Collapse
Affiliation(s)
- Jinjing Wang
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China
| | - Hanhong Zhang
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yirong Fang
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yiran Dong
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xian Chao
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Lulu Xiao
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China
| | - Shiyi Jiang
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Dawei Yin
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Peng Wang
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Wen Sun
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xinfeng Liu
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China
| |
Collapse
|
8
|
Sun S, Yu H, Yu R, Wang S. Functional connectivity between the amygdala and prefrontal cortex underlies processing of emotion ambiguity. Transl Psychiatry 2023; 13:334. [PMID: 37898626 PMCID: PMC10613296 DOI: 10.1038/s41398-023-02625-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/30/2023] Open
Abstract
Processing facial expressions of emotion draws on a distributed brain network. In particular, judging ambiguous facial emotions involves coordination between multiple brain areas. Here, we applied multimodal functional connectivity analysis to achieve network-level understanding of the neural mechanisms underlying perceptual ambiguity in facial expressions. We found directional effective connectivity between the amygdala, dorsomedial prefrontal cortex (dmPFC), and ventromedial PFC, supporting both bottom-up affective processes for ambiguity representation/perception and top-down cognitive processes for ambiguity resolution/decision. Direct recordings from the human neurosurgical patients showed that the responses of amygdala and dmPFC neurons were modulated by the level of emotion ambiguity, and amygdala neurons responded earlier than dmPFC neurons, reflecting the bottom-up process for ambiguity processing. We further found parietal-frontal coherence and delta-alpha cross-frequency coupling involved in encoding emotion ambiguity. We replicated the EEG coherence result using independent experiments and further showed modulation of the coherence. EEG source connectivity revealed that the dmPFC top-down regulated the activities in other brain regions. Lastly, we showed altered behavioral responses in neuropsychiatric patients who may have dysfunctions in amygdala-PFC functional connectivity. Together, using multimodal experimental and analytical approaches, we have delineated a neural network that underlies processing of emotion ambiguity.
Collapse
Affiliation(s)
- Sai Sun
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University 6-3 Aramaki aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.
- Research Institute of Electrical Communication, Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| | - Hongbo Yu
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Rongjun Yu
- Department of Management, Marketing, and Information Systems, Hong Kong Baptist University, Hong Kong, China
| | - Shuo Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
9
|
Iffland M, Livingstone N, Jorgensen M, Hazell P, Gillies D. Pharmacological intervention for irritability, aggression, and self-injury in autism spectrum disorder (ASD). Cochrane Database Syst Rev 2023; 10:CD011769. [PMID: 37811711 PMCID: PMC10561353 DOI: 10.1002/14651858.cd011769.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Pharmacological interventions are frequently used for people with autism spectrum disorder (ASD) to manage behaviours of concern, including irritability, aggression, and self-injury. Some pharmacological interventions might help treat some behaviours of concern, but can also have adverse effects (AEs). OBJECTIVES To assess the effectiveness and AEs of pharmacological interventions for managing the behaviours of irritability, aggression, and self-injury in ASD. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, 11 other databases and two trials registers up to June 2022. We also searched reference lists of relevant studies, and contacted study authors, experts and pharmaceutical companies. SELECTION CRITERIA We included randomised controlled trials of participants of any age with a clinical diagnosis of ASD, that compared any pharmacological intervention to an alternative drug, standard care, placebo, or wait-list control. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Primary outcomes were behaviours of concern in ASD, (irritability, aggression and self-injury); and AEs. Secondary outcomes were quality of life, and tolerability and acceptability. Two review authors independently assessed each study for risk of bias, and used GRADE to judge the certainty of the evidence for each outcome. MAIN RESULTS We included 131 studies involving 7014 participants in this review. We identified 26 studies as awaiting classification and 25 as ongoing. Most studies involved children (53 studies involved only children under 13 years), children and adolescents (37 studies), adolescents only (2 studies) children and adults (16 studies), or adults only (23 studies). All included studies compared a pharmacological intervention to a placebo or to another pharmacological intervention. Atypical antipsychotics versus placebo At short-term follow-up (up to 6 months), atypical antipsychotics probably reduce irritability compared to placebo (standardised mean difference (SMD) -0.90, 95% confidence interval (CI) -1.25 to -0.55, 12 studies, 973 participants; moderate-certainty evidence), which may indicate a large effect. However, there was no clear evidence of a difference in aggression between groups (SMD -0.44, 95% CI -0.89 to 0.01; 1 study, 77 participants; very low-certainty evidence). Atypical antipsychotics may also reduce self-injury (SMD -1.43, 95% CI -2.24 to -0.61; 1 study, 30 participants; low-certainty evidence), possibly indicating a large effect. There may be higher rates of neurological AEs (dizziness, fatigue, sedation, somnolence, and tremor) in the intervention group (low-certainty evidence), but there was no clear evidence of an effect on other neurological AEs. Increased appetite may be higher in the intervention group (low-certainty evidence), but we found no clear evidence of an effect on other metabolic AEs. There was no clear evidence of differences between groups in musculoskeletal or psychological AEs. Neurohormones versus placebo At short-term follow-up, neurohormones may have minimal to no clear effect on irritability when compared to placebo (SMD -0.18, 95% CI -0.37 to -0.00; 8 studies; 466 participants; very low-certainty evidence), although the evidence is very uncertain. No data were reported for aggression or self -injury. Neurohormones may reduce the risk of headaches slightly in the intervention group, although the evidence is very uncertain. There was no clear evidence of an effect of neurohormones on any other neurological AEs, nor on any psychological, metabolic, or musculoskeletal AEs (low- and very low-certainty evidence). Attention-deficit hyperactivity disorder (ADHD)-related medications versus placebo At short-term follow-up, ADHD-related medications may reduce irritability slightly (SMD -0.20, 95% CI -0.40 to -0.01; 10 studies, 400 participants; low-certainty evidence), which may indicate a small effect. However, there was no clear evidence that ADHD-related medications have an effect on self-injury (SMD -0.62, 95% CI -1.63 to 0.39; 1 study, 16 participants; very low-certainty evidence). No data were reported for aggression. Rates of neurological AEs (drowsiness, emotional AEs, fatigue, headache, insomnia, and irritability), metabolic AEs (decreased appetite) and psychological AEs (depression) may be higher in the intervention group, although the evidence is very uncertain (very low-certainty evidence). There was no evidence of a difference between groups for any other metabolic, neurological, or psychological AEs (very low-certainty evidence). No data were reported for musculoskeletal AEs. Antidepressants versus placebo At short-term follow-up, there was no clear evidence that antidepressants have an effect on irritability (SMD -0.06, 95% CI -0.30 to 0.18; 3 studies, 267 participants; low-certainty evidence). No data for aggression or self-injury were reported or could be included in the analysis. Rates of metabolic AEs (decreased energy) may be higher in participants receiving antidepressants (very low-certainty evidence), although no other metabolic AEs showed clear evidence of a difference. Rates of neurological AEs (decreased attention) and psychological AEs (impulsive behaviour and stereotypy) may also be higher in the intervention group (very low-certainty evidence) although the evidence is very uncertain. There was no clear evidence of any difference in the other metabolic, neurological, or psychological AEs (very low-certainty evidence), nor between groups in musculoskeletal AEs (very low-certainty evidence). Risk of bias We rated most of the studies across the four comparisons at unclear overall risk of bias due to having multiple domains rated as unclear, very few rated as low across all domains, and most having at least one domain rated as high risk of bias. AUTHORS' CONCLUSIONS Evidence suggests that atypical antipsychotics probably reduce irritability, ADHD-related medications may reduce irritability slightly, and neurohormones may have little to no effect on irritability in the short term in people with ASD. There was some evidence that atypical antipsychotics may reduce self-injury in the short term, although the evidence is uncertain. There was no clear evidence that antidepressants had an effect on irritability. There was also little to no difference in aggression between atypical antipsychotics and placebo, or self-injury between ADHD-related medications and placebo. However, there was some evidence that atypical antipsychotics may result in a large reduction in self-injury, although the evidence is uncertain. No data were reported (or could be used) for self-injury or aggression for neurohormones versus placebo. Studies reported a wide range of potential AEs. Atypical antipsychotics and ADHD-related medications in particular were associated with an increased risk of metabolic and neurological AEs, although the evidence is uncertain for atypical antipsychotics and very uncertain for ADHD-related medications. The other drug classes had minimal or no associated AEs.
Collapse
Affiliation(s)
- Michelle Iffland
- Senior Practitioner Branch, NDIS Quality and Safeguards Commission, Penrith, Australia
| | - Nuala Livingstone
- Cochrane Evidence Production and Methods Directorate , Cochrane, London, UK
| | - Mikaela Jorgensen
- Senior Practitioner Branch, NDIS Quality and Safeguards Commission, Penrith, Australia
| | - Philip Hazell
- Speciality of Psychiatry, University of Sydney School of Medicine, Sydney, Australia
| | - Donna Gillies
- Senior Practitioner Branch, NDIS Quality and Safeguards Commission, Penrith, Australia
- Sydney, Australia
| |
Collapse
|
10
|
Soylu F, May K, Kana R. White and gray matter correlates of theory of mind in autism: a voxel-based morphometry study. Brain Struct Funct 2023; 228:1671-1689. [PMID: 37452864 DOI: 10.1007/s00429-023-02680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
Autism spectrum disorder (ASD) is characterized by difficulties in theory of mind (ToM) and social communication. Studying structural and functional correlates of ToM in the brain and how autistic and nonautistic groups differ in terms of these correlates can help with diagnosis and understanding the biological mechanisms of ASD. In this study, we investigated white matter volume (WMV) and gray matter volume (GMV) differences between matching autistic and nonautistic samples, and how these structural features relate to age and ToM skills, indexed by the Reading the Mind in the Eyes (RMIE) measure. The results showed widespread GMV and WMV differences between the two groups in regions crucial for social processes. The autistic group did not express the typically observed negative GMV and positive WMV correlations with age at the same level as the nonautistic group, pointing to abnormalities in developmental structural changes. In addition, we found differences between the two groups in how GMV relates to ToM, particularly in the left frontal regions, and how WMV relates to ToM, mostly in the cingulate and corpus callosum. Finally, GMV in the left insula, a region that is part of the salience network, was found to be crucial in distinguishing ToM performance between the two groups.
Collapse
Affiliation(s)
- Firat Soylu
- Educational Psychology Program, The University of Alabama, Tuscaloosa, USA.
| | - Kaitlyn May
- Educational Psychology Program, The University of Alabama, Tuscaloosa, USA
| | - Rajesh Kana
- Department of Psychology, & the Center for Innovative Research in Autism, University of Alabama, Tuscaloosa, USA
| |
Collapse
|
11
|
Yen C, Lin CL, Chiang MC. Exploring the Frontiers of Neuroimaging: A Review of Recent Advances in Understanding Brain Functioning and Disorders. Life (Basel) 2023; 13:1472. [PMID: 37511847 PMCID: PMC10381462 DOI: 10.3390/life13071472] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Neuroimaging has revolutionized our understanding of brain function and has become an essential tool for researchers studying neurological disorders. Functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) are two widely used neuroimaging techniques to review changes in brain activity. fMRI is a noninvasive technique that uses magnetic fields and radio waves to produce detailed brain images. An EEG is a noninvasive technique that records the brain's electrical activity through electrodes placed on the scalp. This review overviews recent developments in noninvasive functional neuroimaging methods, including fMRI and EEG. Recent advances in fMRI technology, its application to studying brain function, and the impact of neuroimaging techniques on neuroscience research are discussed. Advances in EEG technology and its applications to analyzing brain function and neural oscillations are also highlighted. In addition, advanced courses in neuroimaging, such as diffusion tensor imaging (DTI) and transcranial electrical stimulation (TES), are described, along with their role in studying brain connectivity, white matter tracts, and potential treatments for schizophrenia and chronic pain. Application. The review concludes by examining neuroimaging studies of neurodevelopmental and neurological disorders such as autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), Alzheimer's disease (AD), and Parkinson's disease (PD). We also described the role of transcranial direct current stimulation (tDCS) in ASD, ADHD, AD, and PD. Neuroimaging techniques have significantly advanced our understanding of brain function and provided essential insights into neurological disorders. However, further research into noninvasive treatments such as EEG, MRI, and TES is necessary to continue to develop new diagnostic and therapeutic strategies for neurological disorders.
Collapse
Affiliation(s)
- Chiahui Yen
- Department of International Business, Ming Chuan University, Taipei 111, Taiwan
| | - Chia-Li Lin
- Department of International Business, Ming Chuan University, Taipei 111, Taiwan
| | - Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
12
|
Li G, Chen MH, Li G, Wu D, Lian C, Sun Q, Rushmore RJ, Wang L. Volumetric Analysis of Amygdala and Hippocampal Subfields for Infants with Autism. J Autism Dev Disord 2023; 53:2475-2489. [PMID: 35389185 PMCID: PMC9537344 DOI: 10.1007/s10803-022-05535-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Previous studies have demonstrated abnormal brain overgrowth in children with autism spectrum disorder (ASD), but the development of specific brain regions, such as the amygdala and hippocampal subfields in infants, is incompletely documented. To address this issue, we performed the first MRI study of amygdala and hippocampal subfields in infants from 6 to 24 months of age using a longitudinal dataset. A novel deep learning approach, Dilated-Dense U-Net, was proposed to address the challenge of low tissue contrast and small structural size of these subfields. We performed a volume-based analysis on the segmentation results. Our results show that infants who were later diagnosed with ASD had larger left and right volumes of amygdala and hippocampal subfields than typically developing controls.
Collapse
Affiliation(s)
- Guannan Li
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Department of Radiology and Biomedical Research Imaging Center, Bioinformatics Building, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Meng-Hsiang Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, Bioinformatics Building, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chunfeng Lian
- Department of Radiology and Biomedical Research Imaging Center, Bioinformatics Building, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Quansen Sun
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - R Jarrett Rushmore
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Center for Morphometric Analysis, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, Bioinformatics Building, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
13
|
Wang S, Li X. A revisit of the amygdala theory of autism: Twenty years after. Neuropsychologia 2023; 183:108519. [PMID: 36803966 PMCID: PMC10824605 DOI: 10.1016/j.neuropsychologia.2023.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
The human amygdala has long been implicated to play a key role in autism spectrum disorder (ASD). Yet it remains unclear to what extent the amygdala accounts for the social dysfunctions in ASD. Here, we review studies that investigate the relationship between amygdala function and ASD. We focus on studies that employ the same task and stimuli to directly compare people with ASD and patients with focal amygdala lesions, and we also discuss functional data associated with these studies. We show that the amygdala can only account for a limited number of deficits in ASD (primarily face perception tasks but not social attention tasks), a network view is, therefore, more appropriate. We next discuss atypical brain connectivity in ASD, factors that can explain such atypical brain connectivity, and novel tools to analyze brain connectivity. Lastly, we discuss new opportunities from multimodal neuroimaging with data fusion and human single-neuron recordings that can enable us to better understand the neural underpinnings of social dysfunctions in ASD. Together, the influential amygdala theory of autism should be extended with emerging data-driven scientific discoveries such as machine learning-based surrogate models to a broader framework that considers brain connectivity at the global scale.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA.
| | - Xin Li
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
14
|
Sun S, Yu H, Yu R, Wang S. Functional connectivity between the amygdala and prefrontal cortex underlies processing of emotion ambiguity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525116. [PMID: 36747862 PMCID: PMC9900805 DOI: 10.1101/2023.01.24.525116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Processing facial expressions of emotion draws on a distributed brain network. In particular, judging ambiguous facial emotions involves coordination between multiple brain areas. Here, we applied multimodal functional connectivity analysis to achieve network-level understanding of the neural mechanisms underlying perceptual ambiguity in facial expressions. We found directional effective connectivity between the amygdala, dorsomedial prefrontal cortex (dmPFC), and ventromedial PFC, supporting both bottom-up affective processes for ambiguity representation/perception and top-down cognitive processes for ambiguity resolution/decision. Direct recordings from the human neurosurgical patients showed that the responses of amygdala and dmPFC neurons were modulated by the level of emotion ambiguity, and amygdala neurons responded earlier than dmPFC neurons, reflecting the bottom-up process for ambiguity processing. We further found parietal-frontal coherence and delta-alpha cross-frequency coupling involved in encoding emotion ambiguity. We replicated the EEG coherence result using independent experiments and further showed modulation of the coherence. EEG source connectivity revealed that the dmPFC top-down regulated the activities in other brain regions. Lastly, we showed altered behavioral responses in neuropsychiatric patients who may have dysfunctions in amygdala-PFC functional connectivity. Together, using multimodal experimental and analytical approaches, we have delineated a neural network that underlies processing of emotion ambiguity. Significance Statement A large number of different brain regions participate in emotion processing. However, it remains elusive how these brain regions interact and coordinate with each other and collectively encode emotions, especially when the task requires orchestration between different brain areas. In this study, we employed multimodal approaches that well complemented each other to comprehensively study the neural mechanisms of emotion ambiguity. Our results provided a systematic understanding of the amygdala-PFC network underlying emotion ambiguity with fMRI-based connectivity, EEG coordination of cortical regions, synchronization of brain rhythms, directed information flow of the source signals, and latency of single-neuron responses. Our results further shed light on neuropsychiatric patients who have abnormal amygdala-PFC connectivity.
Collapse
|
15
|
Xing L, Wu C, Wang J, Wei S, Yuan K, Qin D. Editorial: Using novel technologies and models to identify biomarkers and explore therapeutic strategies for neurological disorders. Front Behav Neurosci 2023; 17:1151667. [PMID: 37035626 PMCID: PMC10076828 DOI: 10.3389/fnbeh.2023.1151667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Liwei Xing
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chengbiao Wu
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Sheng Wei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kai Yuan
- The Second Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Kai Yuan
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Dongdong Qin
| |
Collapse
|
16
|
Sultan S. Translating neuroimaging changes to neuro-endophenotypes of autistic spectrum disorder: a narrative review. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Abstract
Background
Autism-spectrum disorder is a neurodevelopmental disorder with heterogeneity in etiopathogenesis and clinical presentation. Neuroanatomical and neurophysiological abnormalities may represent neural endophenotypes for autism spectrum disorders which may help identify subgroups of patients seemingly similar in clinical presentation yet different in their pathophysiological underpinnings. Furthermore, a thorough understanding of the pathophysiology of disease can pave the way to effective treatments, prevention, and prognostic predictions. The aim of this review is to identify the predominant neural endophenotypes in autism-spectrum disorder. The evidence was researched at the following electronic databases: Pubmed, PsycINFO, Scopus, Web of Science, and EMBASE.
Results
Enlarged brain, especially frontotemporal cortices have been consistently reported by structural neuroimaging, whereas functional neuroimaging has revealed frontotemporal dysconnectivity.
Conclusions
Regrettably, many of these findings have not been consistent. Therefore, translating these findings into neural endophenotype is by far an attempt in its budding stage. The structural and functional neuroimaging changes may represent neural endophenotypes unique to autism-spectrum disorder. Despite inconsistent results, a clinically meaningful finding may require combined efforts of autism-spectrum-disorder researchers focused on different aspects of basic, genetic, neuroimaging, and clinical research.
Collapse
|
17
|
Del Casale A, Ferracuti S, Alcibiade A, Simone S, Modesti MN, Pompili M. Neuroanatomical correlates of autism spectrum disorders: A meta-analysis of structural magnetic resonance imaging (MRI) studies. Psychiatry Res Neuroimaging 2022; 325:111516. [PMID: 35882091 DOI: 10.1016/j.pscychresns.2022.111516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/21/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders correlated to various neuroanatomical modifications. We aimed to identify neuroanatomical changes assessed in magnetic resonance imaging (MRI) studies of autism spectrum disorder (ASD) through Activation Likelihood Estimate (ALE) meta-analysis. We included 19 peer-reviewed magnetic resonance imaging (MRI) studies that analyzed cortical volume in patients with ASD compared to healthy control subjects (HCs). The between-group analyses comparing subjects with ASD to HCs showed a volumetric reduction of a large cluster in the right brain, including the uncus/amygdala, parahippocampal gyrus, and entorhinal cortex, and putamen. The anomalies are primarily found in the right hemisphere, involved in social cognitive function, particularly impaired in ASD. These results correlate with several clinical aspects of ASD. These volumetric alterations can be considered a major correlate of disease in the context of multifactorial etiology. Further studies on brain lateralization in ASD are needed, considering the clinical phenotype variability of these disorders.
Collapse
Affiliation(s)
- Antonio Del Casale
- Department of Dynamic and Clinical Psychology, and Health Studies; Faculty of Medicine and Psychology; Sapienza University of Rome, Italy.
| | - Stefano Ferracuti
- Department of Human Neuroscience; Faculty of Medicine and Dentistry; Sapienza University of Rome, Italy
| | | | - Sara Simone
- Faculty of Medicine and Psychology; Sapienza University of Rome, Italy
| | | | - Maurizio Pompili
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS); Faculty of Medicine and Psychology; Sapienza University of Rome, Italy
| |
Collapse
|
18
|
Bogdanova OV, Bogdanov VB, Pizano A, Bouvard M, Cazalets JR, Mellen N, Amestoy A. The Current View on the Paradox of Pain in Autism Spectrum Disorders. Front Psychiatry 2022; 13:910824. [PMID: 35935443 PMCID: PMC9352888 DOI: 10.3389/fpsyt.2022.910824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/17/2022] [Indexed: 01/18/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, which affects 1 in 44 children and may cause severe disabilities. Besides socio-communicational difficulties and repetitive behaviors, ASD also presents as atypical sensorimotor function and pain reactivity. While chronic pain is a frequent co-morbidity in autism, pain management in this population is often insufficient because of difficulties in pain evaluation, worsening their prognosis and perhaps driving higher mortality rates. Previous observations have tended to oversimplify the experience of pain in autism as being insensitive to painful stimuli. Various findings in the past 15 years have challenged and complicated this dogma. However, a relatively small number of studies investigates the physiological correlates of pain reactivity in ASD. We explore the possibility that atypical pain perception in people with ASD is mediated by alterations in pain perception, transmission, expression and modulation, and through interactions between these processes. These complex interactions may account for the great variability and sometimes contradictory findings from the studies. A growing body of evidence is challenging the idea of alterations in pain processing in ASD due to a single factor, and calls for an integrative view. We propose a model of the pain cycle that includes the interplay between the molecular and neurophysiological pathways of pain processing and it conscious appraisal that may interfere with pain reactivity and coping in autism. The role of social factors in pain-induced response is also discussed. Pain assessment in clinical care is mostly based on subjective rather than objective measures. This review clarifies the strong need for a consistent methodology, and describes innovative tools to cope with the heterogeneity of pain expression in ASD, enabling individualized assessment. Multiple measures, including self-reporting, informant reporting, clinician-assessed, and purely physiological metrics may provide more consistent results. An integrative view on the regulation of the pain cycle offers a more robust framework to characterize the experience of pain in autism.
Collapse
Affiliation(s)
- Olena V. Bogdanova
- CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Université de Bordeaux, Bordeaux, France
| | - Volodymyr B. Bogdanov
- Laboratoire EA 4136 – Handicap Activité Cognition Santé HACS, Collège Science de la Sante, Institut Universitaire des Sciences de la Réadaptation, Université de Bordeaux, Bordeaux, France
| | - Adrien Pizano
- CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Université de Bordeaux, Bordeaux, France
- Centre Hospitalier Charles-Perrens, Pôle Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Bordeaux, France
| | - Manuel Bouvard
- CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Université de Bordeaux, Bordeaux, France
- Centre Hospitalier Charles-Perrens, Pôle Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Bordeaux, France
| | - Jean-Rene Cazalets
- CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Université de Bordeaux, Bordeaux, France
| | - Nicholas Mellen
- Department of Neurology, University of Louisville, Louisville, KY, United States
| | - Anouck Amestoy
- CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, INCIA, UMR 5287, Université de Bordeaux, Bordeaux, France
- Centre Hospitalier Charles-Perrens, Pôle Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Bordeaux, France
| |
Collapse
|
19
|
Wang J, Huang H, Liu C, Zhang Y, Wang W, Zou Z, Yang L, He X, Wu J, Ma J, Liu Y. Research Progress on the Role of Vitamin D in Autism Spectrum Disorder. Front Behav Neurosci 2022; 16:859151. [PMID: 35619598 PMCID: PMC9128593 DOI: 10.3389/fnbeh.2022.859151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can lead to severe social behavioral difficulties, which mainly manifests as social communication and interaction disorders; narrow interests; and repetitive, stereotyped behaviors. In recent years, the prevalence of ASD has increased annually, and it has evolved from a rare disease to one with a high incidence among childhood developmental disorders. The pathogenesis of ASD is considered to be the interaction of genetic and environmental factors. There is increasing evidence that vitamin D deficiency in pregnancy and early childhood can lead to the occurrence of ASD. Studies have demonstrated that vitamin D intervention can significantly improve the symptoms of ASD, but the underlying mechanism is still unclear. Therefore, exploring the neuroprotective mechanism of vitamin D against ASD is a huge challenge currently being worked on by current basic and clinical researchers, a task which is of great significance for the clinical promotion and optimization of vitamin D in the treatment of ASD. To further clarify the relationship between vitamin D and ASD, this review summarizes the correlation between vitamin D level and ASD, the effects of vitamin D supplementation on ASD, the possible mechanism of vitamin D involved in ASD, and insights from ASD animal models.
Collapse
Affiliation(s)
- Jing Wang
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Haoyu Huang
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Chunming Liu
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Yangping Zhang
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Wenjuan Wang
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Zhuo Zou
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Lei Yang
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Xuemei He
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Jinting Wu
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Jing Ma
- Department of Otolaryngology, Head and Neck Surgery, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
- *Correspondence: Jing Ma,
| | - Yun Liu
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
- *Correspondence: Jing Ma,
| |
Collapse
|
20
|
Blume J, Kahathuduwa C, Mastergeorge A. Intrinsic Structural Connectivity of the Default Mode Network and Behavioral Correlates of Executive Function and Social Skills in Youth with Autism Spectrum Disorders. J Autism Dev Disord 2022; 53:1930-1941. [PMID: 35141816 DOI: 10.1007/s10803-022-05460-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 12/21/2022]
Abstract
Brain connectivity of individuals with autism spectrum disorders (ASD) is heterogenous, as are the behavioral manifestations. The current study investigated brain-behavior relationships in the context of social skills and executive function profiles with data from the Autism Brain Imaging Database Exchange II. We calculated connectivity measures from diffusion tensor imaging using Bayesian estimation and probabilistic tractography. Subsequently, we performed structural equation modeling by regressing three latent factors, yielded from an exploratory factor analysis, onto total default mode network (DMN) connectivity. Both social regulation processing and self-directed cognitive processing factors moderately, negatively correlated with total DMN connectivity. Our findings indicate social regulation processing difficulties in youth with ASD may be attributable to impaired connectivity between the anterior and posterior DMN.
Collapse
Affiliation(s)
- Jessica Blume
- Department of Human Development and Family Sciences, Texas Tech University, P.O. Box 41230, Lubbock, TX, 79409-1230, USA.
| | - Chanaka Kahathuduwa
- Department of Laboratory Sciences and Primary Care, Department of Psychiatry, Texas Tech University Health Sciences Center, Lubbock, USA
| | - Ann Mastergeorge
- Department of Human Development and Family Sciences, Texas Tech University, P.O. Box 41230, Lubbock, TX, 79409-1230, USA
| |
Collapse
|
21
|
Rong P, Fu Q, Zhang X, Liu H, Zhao S, Song X, Gao P, Ma R. A bibliometrics analysis and visualization of autism spectrum disorder. Front Psychiatry 2022; 13:884600. [PMID: 35923445 PMCID: PMC9339633 DOI: 10.3389/fpsyt.2022.884600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The prevalence of autism spectrum disorder (ASD) increased rapidly in the last 20 years. Although related research has developed rapidly, little is known about its etiology, diagnostic marker, or drug treatment, which forces researchers to review and summarize its development process and look for the future development direction. METHODS We used bibliometrics to analyze papers of ASD in the Web of Science from 1998 to 2021, to draw the network of authors, institutions, countries, and keywords in the ASD field, and visualize the results. RESULTS A total of 40,597 papers were included with a continually increasing trend. It turns out that the research on ASD is mainly concentrated in universities. The United States has the largest number of ASD studies, followed by England and Canada. The quality of papers related to ASD is generally high, which shows that ASD research has become a hot spot of scientific research. The keywords of ASD etiology and diagnostic markers can be classified into at least 7 aspects. The detection of keywords shows that ASD research is mostly based on its subtypes, takes children as the study population, focuses on neurodevelopmental imaging or genetics, and pays attention to individual differences. And ASD research has changed greatly under the impact of Corona Virus Disease 2019 in the past 2 years. CONCLUSION We consider the future development direction should be based on the improvement of case identification, accurate clinical phenotype, large-scale cohort study, the discovery of ASD etiology and diagnostic markers, drug randomized controlled trials, and telehealth.
Collapse
Affiliation(s)
- Ping Rong
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qianfang Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xilian Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hui Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shuyi Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xinxin Song
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Puxing Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Rong Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
22
|
Chernikova MA, Flores GD, Kilroy E, Labus JS, Mayer EA, Aziz-Zadeh L. The Brain-Gut-Microbiome System: Pathways and Implications for Autism Spectrum Disorder. Nutrients 2021; 13:nu13124497. [PMID: 34960049 PMCID: PMC8704412 DOI: 10.3390/nu13124497] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal dysfunction is one of the most prevalent physiological symptoms of autism spectrum disorder (ASD). A growing body of largely preclinical research suggests that dysbiotic gut microbiota may modulate brain function and social behavior, yet little is known about the mechanisms that underlie these relationships and how they may influence the pathogenesis or severity of ASD. While various genetic and environmental risk factors have been implicated in ASD, this review aims to provide an overview of studies elucidating the mechanisms by which gut microbiota, associated metabolites, and the brain interact to influence behavior and ASD development, in at least a subgroup of individuals with gastrointestinal problems. Specifically, we review the brain-gut-microbiome system and discuss findings from current animal and human studies as they relate to social-behavioral and neurological impairments in ASD, microbiota-targeted therapies (i.e., probiotics, fecal microbiota transplantation) in ASD, and how microbiota may influence the brain at molecular, structural, and functional levels, with a particular interest in social and emotion-related brain networks. A deeper understanding of microbiome-brain-behavior interactions has the potential to inform new therapies aimed at modulating this system and alleviating both behavioral and physiological symptomatology in individuals with ASD.
Collapse
Affiliation(s)
- Michelle A. Chernikova
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Psychology Department, Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Genesis D. Flores
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Psychology Department, California State Polytechnic University, Pomona, CA 91768, USA
| | - Emily Kilroy
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Jennifer S. Labus
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Gonda (Goldschmied) Neuroscience and Genetics Research Center, Brain Research Institute UCLA, Los Angeles, CA 90095, USA
| | - Emeran A. Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: (E.A.M.); (L.A.-Z.)
| | - Lisa Aziz-Zadeh
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence: (E.A.M.); (L.A.-Z.)
| |
Collapse
|
23
|
Assari S. Cingulo-opercular and Cingulo-parietal Brain Networks Functional Connectivity in Pre-adolescents: Multiplicative Effects of Race, Ethnicity, and Parental Education. ACTA ACUST UNITED AC 2021; 6:76-99. [PMID: 34734154 DOI: 10.22158/rhs.v6n2p76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction A growing body of research has shown a diminished association between socioeconomic status (SES) indicators and a wide range of neuroimaging indicators for racial and ethnic minorities compared to majority groups. However, less is known about these effects for resting-state functional connectivity between various brain networks. Purpose This study investigated racial and ethnic variation in the correlation between parental education and resting-state functional connectivity between the cingulo-opercular (CO) and cingulo-parietal (CP) networks in children. Methods This cross-sectional study used data from the Adolescent Brain Cognitive Development (ABCD) study; we analyzed the resting-state functional Magnetic Resonance Imaging (rsfMRI) data of 8,464 American pre-adolescents between the ages of 9 and 10. The main outcome measured was resting-state functional connectivity between the CO and CP networks calculated using rsfMRI. The independent variable was parental education, which was treated as a nominal variable. Age, sex, and family marital status were the study covariates. Race and ethnicity were the moderators. Mixed-effects regression models were used for data analysis, with and without interaction terms between parental education and race and ethnicity. Results Higher parental education was associated with higher resting-state functional connectivity between the CO and CP networks. Race and ethnicity both showed statistically significant interactions with parental education on children's resting-state functional connectivity between CO and CP networks, suggesting that the correlation between parental education and the resting-state functional connectivity was significantly weaker for Black and Hispanic pre-adolescents compared to White and non-Hispanic pre-adolescents. Conclusions In line with the Minorities' Diminished Returns theory, the association between parental education and pre-adolescents resting-state functional connectivity between CO and CP networks may be weaker in Black and Hispanic children than in White and non-Hispanic children. The weaker link between parental education and brain functional connectivity for Blacks and Hispanics than for Whites and non-Hispanics may reflect racism, racialization, and social stratification that collectively minimize the returns of SES indicators, such as parental education for non-Whites, who become others in the US.
Collapse
Affiliation(s)
- Shervin Assari
- Department of Family Medicine, College of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA.,Department of Urban Public Health, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA.,Marginalization-related Diminished Returns (MDRs) Research Center, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| |
Collapse
|
24
|
Kovacevic M, Macuzic IZ, Milosavljevic J, Lukovic T, Aleksic D, Gavrilovic J, Milosavljevic M, Jankovic S, Pejcic A. Amygdala Volumes in Autism Spectrum Disorders: Meta-analysis of Magnetic Resonance Imaging Studies. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2021. [DOI: 10.1007/s40489-021-00281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Gyori NG, Clark CA, Alexander DC, Kaden E. On the potential for mapping apparent neural soma density via a clinically viable diffusion MRI protocol. Neuroimage 2021; 239:118303. [PMID: 34174390 PMCID: PMC8363942 DOI: 10.1016/j.neuroimage.2021.118303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
B-tensor encoding enables estimation of spherical cellular structures in the brain. Spherical compartments may provide markers for apparent neural soma density. Model parameters can be estimated in a fast and robust way using deep learning. Practical acquisition times are achievable on widely available clinical scanners.
Diffusion MRI is a valuable tool for probing tissue microstructure in the brain noninvasively. Today, model-based techniques are widely available and used for white matter characterisation where their development is relatively mature. Conversely, tissue modelling in grey matter is more challenging, and no generally accepted models exist. With advances in measurement technology and modelling efforts, a clinically viable technique that reveals salient features of grey matter microstructure, such as the density of quasi-spherical cell bodies and quasi-cylindrical cell projections, is an exciting prospect. As a step towards capturing the microscopic architecture of grey matter in clinically feasible settings, this work uses a biophysical model that is designed to disentangle the diffusion signatures of spherical and cylindrical structures in the presence of orientation heterogeneity, and takes advantage of B-tensor encoding measurements, which provide additional sensitivity compared to standard single diffusion encoding sequences. For the fast and robust estimation of microstructural parameters, we leverage recent advances in machine learning and replace conventional fitting techniques with an artificial neural network that fits complex biophysical models within seconds. Our results demonstrate apparent markers of spherical and cylindrical geometries in healthy human subjects, and in particular an increased volume fraction of spherical compartments in grey matter compared to white matter. We evaluate the extent to which spherical and cylindrical geometries may be interpreted as correlates of neural soma and neural projections, respectively, and quantify parameter estimation errors in the presence of various departures from the modelling assumptions. While further work is necessary to translate the ideas presented in this work to the clinic, we suggest that biomarkers focussing on quasi-spherical cellular geometries may be valuable for the enhanced assessment of neurodevelopmental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Noemi G Gyori
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.
| | - Christopher A Clark
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Enrico Kaden
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
26
|
Qian L, Li Y, Wang Y, Wang Y, Cheng X, Li C, Cui X, Jiao G, Ke X. Shared and Distinct Topologically Structural Connectivity Patterns in Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder. Front Neurosci 2021; 15:664363. [PMID: 34177449 PMCID: PMC8226092 DOI: 10.3389/fnins.2021.664363] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/10/2021] [Indexed: 12/04/2022] Open
Abstract
Background Previous neuroimaging studies have described shared and distinct neurobiological mechanisms between autism spectrum disorders (ASDs) and attention-deficit/hyperactivity disorder (ADHD). However, little is known about the similarities and differences in topologically structural connectivity patterns between the two disorders. Methods Diffusion tensor imaging (DTI) and deterministic tractography were used to construct the brain white matter (WM) structural networks of children and adolescents (age range, 6–16 years); 31 had ASD, 34 had ADHD, and 30 were age- and sex-matched typically developing (TD) individuals. Then, graph theoretical analysis was performed to investigate the alterations in the global and node-based properties of the WM structural networks in these groups. Next, measures of ASD traits [Social Responsiveness Scale (SRS)] and ADHD traits (Swanson, Nolan, and Pelham, version IV scale, SNAP-IV) were correlated with the alterations to determine the functional significance of such changes. Results First, there were no significant differences in the global network properties among the three groups; moreover, compared with that of the TD group, nodal degree (Ki) of the right amygdala (AMYG.R) and right parahippocampal gyrus (PHG.R) were found in both the ASD and ADHD groups. Also, the ASD and ADHD groups shared four additional hubs, including the left middle temporal gyrus (MTG.L), left superior temporal gyrus (STG.L), left postcentral gyrus (PoCG.L), and right middle frontal gyrus (MFG.R) compared with the TD group. Moreover, the ASD and ADHD groups exhibited no significant differences regarding regional connectivity characteristics. Second, the ADHD group showed significantly increased nodal betweenness centrality (Bi) of the left hippocampus (HIP.L) compared with the ASD group; also, compared with the ADHD group, the ASD group lacked the left anterior cingulate gyrus (ACG.L) as a hub. Last, decreased nodal efficiency (Enodal) of the AMYG.R, Ki of the AMYG.R, and Ki of the PHG.R were associated with higher SRS scores in the ASD group. Decreased Ki of the PHG.R was associated with higher SRS scores in the full sample, whereas decreased Bi of the PHG.R was associated with lower oppositional defiance subscale scores of the SNAP-IV in the ADHD group, and decreased Bi of the HIP.L was associated with lower inattention subscale scores of the SNAP-IV in the full sample. Conclusion From the perspective of the topological properties of brain WM structural networks, ADHD and ASD have both shared and distinct features. More interestingly, some shared and distinct topological properties of WM structures are related to the core symptoms of these disorders.
Collapse
Affiliation(s)
- Lu Qian
- Child Mental Health Research Center, Nanjing Brain Hospital Affiliated of Nanjing Medical University, Nanjing, China.,Department of Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Yun Li
- Child Mental Health Research Center, Nanjing Brain Hospital Affiliated of Nanjing Medical University, Nanjing, China
| | - Yao Wang
- Child Mental Health Research Center, Nanjing Brain Hospital Affiliated of Nanjing Medical University, Nanjing, China
| | - Yue Wang
- Child Mental Health Research Center, Nanjing Brain Hospital Affiliated of Nanjing Medical University, Nanjing, China
| | - Xin Cheng
- Child Mental Health Research Center, Nanjing Brain Hospital Affiliated of Nanjing Medical University, Nanjing, China
| | - Chunyan Li
- Child Mental Health Research Center, Nanjing Brain Hospital Affiliated of Nanjing Medical University, Nanjing, China
| | - Xiwen Cui
- Child Mental Health Research Center, Nanjing Brain Hospital Affiliated of Nanjing Medical University, Nanjing, China
| | - Gongkai Jiao
- Child Mental Health Research Center, Nanjing Brain Hospital Affiliated of Nanjing Medical University, Nanjing, China
| | - Xiaoyan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital Affiliated of Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Morová M, Kršková L. Autistic-like traits in laboratory rodents exposed to phthalic acid esters during early development - an animal model of autism? Physiol Res 2021; 70:345-361. [PMID: 33982578 DOI: 10.33549/physiolres.934570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phthalates are chemical substances that are widely used to provide flexibility and durability to plastic materials. They leach from products in which they are mixed and reach living organisms. Results from experimental studies suggest that exposure to phthalates can have a negative impact on an individual's neuronal system and behavior. In this regard, exposure during early ontogenesis seems to be particularly dangerous due to the extensive growth and development of body structures and functions. Disruption during this critical time can result in alterations of behavior and the emergence of neurodevelopmental disorders, such as autism spectrum disorder (ASD). Various animal models have been used to elucidate the pathogenesis of this disease. They are fundamental for research, and although the translation of results to humans is difficult, new animal models are being developed. The aim of this review is to summarize laboratory rodent studies in which early developmental phthalate exposure resulted in brain alterations and autistic-like behavioral traits. We also discuss the possibility of using early developmental phthalate exposure in rodents to create a new animal model of autism.
Collapse
Affiliation(s)
- M Morová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava 4, Slovak Republic.
| | | |
Collapse
|
28
|
Liloia D, Mancuso L, Uddin LQ, Costa T, Nani A, Keller R, Manuello J, Duca S, Cauda F. Gray matter abnormalities follow non-random patterns of co-alteration in autism: Meta-connectomic evidence. Neuroimage Clin 2021; 30:102583. [PMID: 33618237 PMCID: PMC7903137 DOI: 10.1016/j.nicl.2021.102583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 01/30/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by atypical brain anatomy and connectivity. Graph-theoretical methods have mainly been applied to detect altered patterns of white matter tracts and functional brain activation in individuals with ASD. The network topology of gray matter (GM) abnormalities in ASD remains relatively unexplored. METHODS An innovative meta-connectomic analysis on voxel-based morphometry data (45 experiments, 1,786 subjects with ASD) was performed in order to investigate whether GM variations can develop in a distinct pattern of co-alteration across the brain. This pattern was then compared with normative profiles of structural and genetic co-expression maps. Graph measures of centrality and clustering were also applied to identify brain areas with the highest topological hierarchy and core sub-graph components within the co-alteration network observed in ASD. RESULTS Individuals with ASD exhibit a distinctive and topologically defined pattern of GM co-alteration that moderately follows the structural connectivity constraints. This was not observed with respect to the pattern of genetic co-expression. Hub regions of the co-alteration network were mainly left-lateralized, encompassing the precuneus, ventral anterior cingulate, and middle occipital gyrus. Regions of the default mode network appear to be central in the topology of co-alterations. CONCLUSION These findings shed new light on the pathobiology of ASD, suggesting a network-level dysfunction among spatially distributed GM regions. At the same time, this study supports pathoconnectomics as an insightful approach to better understand neuropsychiatric disorders.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Lorenzo Mancuso
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy.
| | - Andrea Nani
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy.
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy.
| |
Collapse
|
29
|
Fóthi Á, Soorya L, Lőrincz A. The Autism Palette: Combinations of Impairments Explain the Heterogeneity in ASD. Front Psychiatry 2020; 11:503462. [PMID: 33343403 PMCID: PMC7738611 DOI: 10.3389/fpsyt.2020.503462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neuropsychiatric condition traditionally defined by core symptoms in social behavior, speech/communication, repetitive behavior, and restricted interests. Beyond the core symptoms, autism has strong association with other disorders such as intellectual disability (ID), epilepsy, schizophrenia among many others. This paper outlines a theory of ASD with capacity to connect heterogeneous "core" symptoms, medical and psychiatric comorbidities as well as other etiological theories of autism in a unifying cognitive framework rooted in neuroscience and genetics. Cognition is embedded into an ever-developing structure modified by experiences, including the outcomes of environment influencing behaviors. The key constraint of cognition is that the brain can handle only 7±2 relevant variables at a time, whereas sensory variables, i.e., the number of sensory neurons is orders of magnitude larger. As a result, (a) the extraction, (b) the encoding, and (c) the capability for the efficient cognitive manipulation of the relevant variables, and (d) the compensatory mechanisms that counteract computational delays of the distributed components are critical. We outline our theoretical model to describe a Cartesian Factor (CF) forming, autoencoder-like cognitive mechanism which breaks combinatorial explosion and is accelerated by internal reinforcing machineries and discuss the neural processes that support CF formation. Impairments in any of these aspects may disrupt learning, cognitive manipulation, decisions on interactions, and execution of decisions. We suggest that social interactions are the most susceptible to combinations of diverse small impairments and can be spoiled in many ways that pile up. Comorbidity is experienced, if any of the many potential impairments is relatively strong. We consider component spoiling impairments as the basic colors of autism, whereas the combinations of individual impairments make the palette of autism. We put forth arguments on the possibility of dissociating the different main elements of the impairments that can appear together. For example, impairments of generalization (domain general learning) and impairments of dealing with many variable problems, such as social situations may appear independently and may mutually enhance their impacts. We also consider mechanisms that may lead to protection.
Collapse
Affiliation(s)
- Ábel Fóthi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Artificial Intelligence, Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
| | - Latha Soorya
- Department of Psychiatry and Behavioral Sciences, Rush Medical College, Chicago, IL, United States
| | - András Lőrincz
- Department of Artificial Intelligence, Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
30
|
Niego A, Benítez-Burraco A. Autism and Williams syndrome: truly mirror conditions in the socio-cognitive domain? INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2020; 68:399-415. [PMID: 35937179 PMCID: PMC9351567 DOI: 10.1080/20473869.2020.1817717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 06/15/2023]
Abstract
Autism Spectrum Disorders (ASD) and Williams Syndrome (WS) are frequently characterized as mirror conditions in the socio-cognitive domain, with ASD entailing restrictive social interests and with WS exhibiting hypersociability. In this review paper, we examine in detail the strong points and deficits of people with ASD or WS in the socio-cognitive domain and show that both conditions also share some common features. Moreover, we explore the neurobiological basis of the social profile of ASD and WS and found a similar mixture of common affected areas and condition-specific impaired regions. We discuss these findings under the hypothesis of a continuum of the socio-cognitive abilities in humans.
Collapse
Affiliation(s)
- Amy Niego
- Faculty of Philology, University of Seville, Seville, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, Seville, Spain
| |
Collapse
|
31
|
Hodge SM, Haselgrove C, Honor L, Kennedy DN, Frazier JA. An assessment of the autism neuroimaging literature for the prospects of re-executability. F1000Res 2020; 9:1031. [PMID: 33796274 PMCID: PMC7968525 DOI: 10.12688/f1000research.25306.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The degree of reproducibility of the neuroimaging literature in psychiatric application areas has been called into question and the issues that relate to this reproducibility are extremely complex. Some of these complexities have to do with the underlying biology of the disorders that we study and others arise due to the technology we apply to the analysis of the data we collect. Ultimately, the observations we make get communicated to the rest of the community through publications in the scientific literature. Methods: We sought to perform a 're-executability survey' to evaluate the recent neuroimaging literature with an eye toward seeing if the technical aspects of our publication practices are helping or hindering the overall quest for a more reproducible understanding of brain development and aging. The topic areas examined include availability of the data, the precision of the imaging method description and the reporting of the statistical analytic approach, and the availability of the complete results. We applied the survey to 50 publications in the autism neuroimaging literature that were published between September 16, 2017 to October 1, 2018. Results: The results of the survey indicate that for the literature examined, data that is not already part of a public repository is rarely available, software tools are usually named but versions and operating system are not, it is expected that reasonably skilled analysts could approximately perform the analyses described, and the complete results of the studies are rarely available. Conclusions: We have identified that there is ample room for improvement in research publication practices. We hope exposing these issues in the retrospective literature can provide guidance and motivation for improving this aspect of our reporting practices in the future.
Collapse
Affiliation(s)
- Steven M. Hodge
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Christian Haselgrove
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Leah Honor
- Lamar Soutter Library, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - David N. Kennedy
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Jean A. Frazier
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| |
Collapse
|
32
|
Hodge SM, Haselgrove C, Honor L, Kennedy DN, Frazier JA. An assessment of the autism neuroimaging literature for the prospects of re-executability. F1000Res 2020; 9:1031. [PMID: 33796274 PMCID: PMC7968525 DOI: 10.12688/f1000research.25306.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2020] [Indexed: 05/04/2024] Open
Abstract
Background: The degree of reproducibility of the neuroimaging literature in psychiatric application areas has been called into question and the issues that relate to this reproducibility are extremely complex. Some of these complexities have to do with the underlying biology of the disorders that we study and others arise due to the technology we apply to the analysis of the data we collect. Ultimately, the observations we make get communicated to the rest of the community through publications in the scientific literature. Methods: We sought to perform a 're-executability survey' to evaluate the recent neuroimaging literature with an eye toward seeing if our publication practices are helping or hindering the overall quest for a more reproducible understanding of brain development and aging. The topic areas examined include availability of the data, the precision of the imaging method description and the reporting of the statistical analytic approach, and the availability of the complete results. We applied the survey to 50 publications in the autism neuroimaging literature that were published between September 16, 2017 to October 1, 2018. Results: The results of the survey indicate that for the literature examined, data that is not already part of a public repository is rarely available, software tools are usually named but versions and operating system are not, it is expected that reasonably skilled analysts could approximately perform the analyses described, and the complete results of the studies are rarely available. Conclusions: We have identified that there is ample room for improvement in research publication practices. We hope exposing these issues in the retrospective literature can provide guidance and motivation for improving this aspect of our reporting practices in the future.
Collapse
Affiliation(s)
- Steven M. Hodge
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Christian Haselgrove
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Leah Honor
- Lamar Soutter Library, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - David N. Kennedy
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Jean A. Frazier
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| |
Collapse
|
33
|
Maniscalco L, Frédérique BB, Roccella M, Matranga D, Tripi G. A Preliminary Study on Cranio-Facial Characteristics Associated with Minor Neurological Dysfunctions (MNDs) in Children with Autism Spectrum Disorders (ASD). Brain Sci 2020; 10:brainsci10080566. [PMID: 32824853 PMCID: PMC7465923 DOI: 10.3390/brainsci10080566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022] Open
Abstract
Background. Craniofacial anomalies and minor neurological dysfunction (MNDs) have been identified, in literature, as risk factors for neurodevelopmental disorders. They represent physical indicators of embryonic development suggesting a possible contributory role of complications during early, even pre-conceptional, phases of ontogeny in autism spectrum disorders (ASD). Limited research has been conducted about the co-occurrence of the two biomarkers in children with ASD. This study investigates the associative patterns of cranio-facial anomalies and MNDs in ASD children, and whether these neurodevelopmental markers correlate with intensity of ASD symptoms and overall functioning. Methods. Caucasian children with ASD (n = 33) were examined. Measures were based on five anthropometric cranio-facial indexes and a standardized and detailed neurological examination according to Touwen. Relationships between anthropometric z-scores, MNDs and participant characteristics (i.e., age, cognitive abilities, severity of autistic symptoms measured using the Childhood Autism Rating Scale (CARS) checklist) were assessed. Results. With respect to specific MNDs, significant positive correlations were found between Cephalic Index and Sensory deficits (p-value < 0.001), which did not correlate with CARS score. Importantly, CARS score was positively linked with Intercanthal Index (p-value < 0.001), and negatively associated with posture and muscle tone (p-value = 0.027) and Facial Index (p-value = 0.004). Conclusion. Our data show a link between a specific facial phenotype and anomalies in motor responses, suggesting early brain dysmaturation involving subcortical structures in cerebro-craniofacial development of autistic children. This research supports the concept of a “social brain functional morphology” in autism spectrum disorders.
Collapse
Affiliation(s)
- Laura Maniscalco
- Department of Biomedicine, Neuroscience and Advanced Diagnostics-BIND-University of Palermo, 90127 Palermo, Italy;
| | | | - Michele Roccella
- Department of Psychological Sciences, Pedagogical and Education, University of Palermo, 90128 Palermo, Italy;
| | - Domenica Matranga
- Department Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza, “G. D’Alessandro”-PROMISE-University of Palermo, 90127 Palermo, Italy;
| | - Gabriele Tripi
- Department Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza, “G. D’Alessandro”-PROMISE-University of Palermo, 90127 Palermo, Italy;
- Department of Childhood Psychiatry for Neurodevelopmentals Disorders, Centre Hospitalier du Chinonais, 37500 Saint-Benoît-la-Forêt, France
- Correspondence:
| |
Collapse
|
34
|
Three dimensional reconstructions of the superior olivary complex from children with autism spectrum disorder. Hear Res 2020; 393:107974. [DOI: 10.1016/j.heares.2020.107974] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/18/2020] [Accepted: 04/14/2020] [Indexed: 11/18/2022]
|
35
|
Heather Hsu CC, Rolls ET, Huang CC, Chong ST, Zac Lo CY, Feng J, Lin CP. Connections of the Human Orbitofrontal Cortex and Inferior Frontal Gyrus. Cereb Cortex 2020; 30:5830-5843. [PMID: 32548630 DOI: 10.1093/cercor/bhaa160] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/27/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
The direct connections of the orbitofrontal cortex (OFC) were traced with diffusion tractography imaging and statistical analysis in 50 humans, to help understand better its roles in emotion and its disorders. The medial OFC and ventromedial prefrontal cortex have direct connections with the pregenual and subgenual parts of the anterior cingulate cortex; all of which are reward-related areas. The lateral OFC (OFClat) and its closely connected right inferior frontal gyrus (rIFG) have direct connections with the supracallosal anterior cingulate cortex; all of which are punishment or nonreward-related areas. The OFClat and rIFG also have direct connections with the right supramarginal gyrus and inferior parietal cortex, and with some premotor cortical areas, which may provide outputs for the OFClat and rIFG. Another key finding is that the ventromedial prefrontal cortex shares with the medial OFC especially strong outputs to the nucleus accumbens and olfactory tubercle, which comprise the ventral striatum, whereas the other regions have more widespread outputs to the striatum. Direct connections of the OFC and IFG were with especially the temporal pole part of the temporal lobe. The left IFG, which includes Broca's area, has direct connections with the left angular and supramarginal gyri.
Collapse
Affiliation(s)
- Chih-Chin Heather Hsu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 11221, Taiwan
| | - Edmund T Rolls
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200433, China.,Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.,Oxford Centre for Computational Neuroscience, Oxford, UK
| | - Chu-Chung Huang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Shin Tai Chong
- Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.,Oxford Centre for Computational Neuroscience, Oxford, UK.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, 200433, China
| | - Ching-Po Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 11221, Taiwan.,Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200433, China.,Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
36
|
Thompson A, Shahidiani A, Fritz A, O’Muircheartaigh J, Walker L, D’Almeida V, Murphy C, Daly E, Murphy D, Williams S, Deoni S, Ecker C. Age-related differences in white matter diffusion measures in autism spectrum condition. Mol Autism 2020; 11:36. [PMID: 32423424 PMCID: PMC7236504 DOI: 10.1186/s13229-020-00325-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 03/03/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Autism spectrum condition (ASC) is accompanied by developmental differences in brain anatomy and connectivity. White matter differences in ASC have been widely studied with diffusion imaging but results are heterogeneous and vary across the age range of study participants and varying methodological approaches. To characterize the neurodevelopmental trajectory of white matter maturation, it is necessary to examine a broad age range of individuals on the autism spectrum and typically developing controls, and investigate age × group interactions. METHODS Here, we employed a spatially unbiased tract-based spatial statistics (TBSS) approach to examine age-related differences in white matter connectivity in a sample of 41 individuals with ASC, and 41 matched controls between 7-17 years of age. RESULTS We found significant age-related differences between the ASC and control group in widespread brain regions. This included age-related differences in the uncinate fasciculus, corticospinal tract, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, anterior thalamic radiation, superior longitudinal fasciculus and forceps major. Measures of fractional anisotropy (FA) were significantly positively associated with age in both groups. However, this relationship was significantly stronger in the ASC group relative to controls. Measures of radial diffusivity (RD) were significantly negatively associated with age in both groups, but this relationship was significantly stronger in the ASC group relative to controls. LIMITATIONS The generalisability of our findings is limited by the restriction of the sample to right-handed males with an IQ > 70. Furthermore, a longitudinal design would be required to fully investigate maturational processes across this age group. CONCLUSIONS Taken together, our findings suggest that autistic males have an altered trajectory of white matter maturation relative to controls. Future longitudinal analyses are required to further characterize the extent and time course of these differences.
Collapse
Affiliation(s)
- Abigail Thompson
- Department of Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Developmental Change & Plasticity Lab, Department of Psychology & Language Sciences, University College London, 26 Bedford Way, Bloomsbury, London, WC1H 0AP UK
| | - Asal Shahidiani
- Department of Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Anne Fritz
- The Centre for Research in Autism and Education (CRAE), Psychology and Human Development, UCL, London, UK
| | - Jonathan O’Muircheartaigh
- Department of Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, St. Thomas’ Hospital, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Lindsay Walker
- Advanced Baby Imaging Lab, Hasbro Childrens Hospital, Providence, RI USA
- Pediatrics and Radiology, Warren Alpert medical school, Brown University, Providence, USA
| | - Vera D’Almeida
- Department of Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Clodagh Murphy
- Department of Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Eileen Daly
- Department of Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Declan Murphy
- Department of Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Steve Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Sean Deoni
- Advanced Baby Imaging Lab, Hasbro Childrens Hospital, Providence, RI USA
- Pediatrics and Radiology, Warren Alpert medical school, Brown University, Providence, USA
- Maternal, Newborn & Child Health Discovery & Tools at the Bill and Melinda Gates Foundation, Seattle, USA
| | - Christine Ecker
- Department of Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt am Main, Deutschordenstrasse 50, 60528 Frankfurt am Main, Germany
| |
Collapse
|
37
|
Sato W, Uono S, Kochiyama T. Neurocognitive Mechanisms Underlying Social Atypicalities in Autism: Weak Amygdala's Emotional Modulation Hypothesis. Front Psychiatry 2020; 11:864. [PMID: 33088275 PMCID: PMC7500257 DOI: 10.3389/fpsyt.2020.00864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition associated with atypicalities in social interaction. Although psychological and neuroimaging studies have revealed divergent impairments in psychological processes (e.g., emotion and perception) and neural activity (e.g., amygdala, superior temporal sulcus, and inferior frontal gyrus) related to the processing of social stimuli, it remains difficult to integrate these findings. In an effort to resolve this issue, we review our psychological and functional magnetic resonance imaging (fMRI) findings and present a hypothetical neurocognitive model. Our psychological study showed that emotional modulation of reflexive joint attention is impaired in individuals with ASD. Our fMRI study showed that modulation from the amygdala to the neocortex during observation of dynamic facial expressions is reduced in the ASD group. Based on these findings and other evidence, we hypothesize that weak modulation from the amygdala to the neocortex-through which emotion rapidly modulates various types of perceptual, cognitive, and motor processing functions-underlies the social atypicalities in individuals with ASD.
Collapse
Affiliation(s)
- Wataru Sato
- Psychological Process Team, BZP, RIKEN, Kyoto, Japan
| | - Shota Uono
- Organization for Promoting Neurodevelopmental Disorder Research, Kyoto, Japan.,Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | |
Collapse
|
38
|
Andrews DS, Lee JK, Solomon M, Rogers SJ, Amaral DG, Nordahl CW. A diffusion-weighted imaging tract-based spatial statistics study of autism spectrum disorder in preschool-aged children. J Neurodev Disord 2019; 11:32. [PMID: 31839001 PMCID: PMC6913008 DOI: 10.1186/s11689-019-9291-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 11/11/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The core symptoms of autism spectrum disorder (ASD) are widely theorized to result from altered brain connectivity. Diffusion-weighted magnetic resonance imaging (DWI) has been a versatile method for investigating underlying microstructural properties of white matter (WM) in ASD. Despite phenotypic and etiological heterogeneity, DWI studies in majority male samples of older children, adolescents, and adults with ASD have largely reported findings of decreased fractional anisotropy (FA) across several commissural, projection, and association fiber tracts. However, studies in preschool-aged children (i.e., < 30-40 months) suggest individuals with ASD have increased measures of WM FA earlier in development. METHODS We analyzed 127 individuals with ASD (85♂, 42♀) and 54 typically developing (TD) controls (42♂, 26♀), aged 25.1-49.6 months. Voxel-wise effects of ASD diagnosis, sex, age, and their interaction on DWI measures of FA, mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were investigated using tract-based spatial statistics (TBSS) while controlling mean absolute and relative motion. RESULTS Compared to TD controls, males and females with ASD had significantly increased measures of FA in eight clusters (threshold-free cluster enhancement p < 0.05) that incorporated several WM tracts including regions of the genu, body, and splenium of the corpus callosum, inferior frontal-occipital fasciculi, inferior and superior longitudinal fasciculi, middle and superior cerebellar peduncles, and corticospinal tract. A diagnosis by sex interaction was observed in measures of AD across six significant clusters incorporating areas of the body, genu, and splenium of the corpus collosum. In these tracts, females with ASD showed increased AD compared to TD females, while males with ASD showed decreased AD compared to TD males. CONCLUSIONS The current findings support growing evidence that preschool-aged children with ASD have atypical measures of WM microstructure that appear to differ in directionality from alterations observed in older individuals with the condition. To our knowledge, this study represents the largest sample of preschool-aged females with ASD to be evaluated using DWI. Microstructural differences associated with ASD largely overlapped between sexes. However, differential relationships of AD measures indicate that sex likely modulates ASD neuroanatomical phenotypes. Further longitudinal study is needed to confirm and quantify the developmental relationship of WM structure in ASD.
Collapse
Affiliation(s)
- Derek Sayre Andrews
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA USA
| | - Joshua K. Lee
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA USA
| | - Marjorie Solomon
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA USA
| | - Sally J. Rogers
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA USA
| | - David G. Amaral
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA USA
| | - Christine Wu Nordahl
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA USA
| |
Collapse
|
39
|
The atypical social brain network in autism: advances in structural and functional MRI studies. Curr Opin Neurol 2019; 32:617-621. [DOI: 10.1097/wco.0000000000000713] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Kilroy E, Aziz-Zadeh L, Cermak S. Ayres Theories of Autism and Sensory Integration Revisited: What Contemporary Neuroscience Has to Say. Brain Sci 2019; 9:brainsci9030068. [PMID: 30901886 PMCID: PMC6468444 DOI: 10.3390/brainsci9030068] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 11/17/2022] Open
Abstract
Abnormal sensory-based behaviors are a defining feature of autism spectrum disorders (ASD). Dr. A. Jean Ayres was the first occupational therapist to conceptualize Sensory Integration (SI) theories and therapies to address these deficits. Her work was based on neurological knowledge of the 1970’s. Since then, advancements in neuroimaging techniques make it possible to better understand the brain areas that may underlie sensory processing deficits in ASD. In this article, we explore the postulates proposed by Ayres (i.e., registration, modulation, motivation) through current neuroimaging literature. To this end, we review the neural underpinnings of sensory processing and integration in ASD by examining the literature on neurophysiological responses to sensory stimuli in individuals with ASD as well as structural and network organization using a variety of neuroimaging techniques. Many aspects of Ayres’ hypotheses about the nature of the disorder were found to be highly consistent with current literature on sensory processing in children with ASD but there are some discrepancies across various methodological techniques and ASD development. With additional characterization, neurophysiological profiles of sensory processing in ASD may serve as valuable biomarkers for diagnosis and monitoring of therapeutic interventions, such as SI therapy.
Collapse
Affiliation(s)
- Emily Kilroy
- Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University Southern California, Los Angeles, CA 90089, USA.
- Brain and Creativity Institute, University Southern California, Los Angeles, CA 90089, USA.
| | - Lisa Aziz-Zadeh
- Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University Southern California, Los Angeles, CA 90089, USA.
- Brain and Creativity Institute, University Southern California, Los Angeles, CA 90089, USA.
| | - Sharon Cermak
- Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
41
|
A Protective Mechanism against Illusory Perceptions Is Amygdala-Dependent. J Neurosci 2019; 39:3301-3308. [PMID: 30804094 DOI: 10.1523/jneurosci.2577-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/17/2019] [Accepted: 02/08/2019] [Indexed: 11/21/2022] Open
Abstract
Most people have a clear sense of body ownership, preserving them from physical harm. However, perceptual body illusions - famously the rubber hand illusion (RHI) - can be elicited experimentally in healthy individuals. We hypothesize that the amygdala, a core component of neural circuits of threat processing, is involved in protective mechanisms against disturbed body perceptions. To test this hypothesis, we started by investigating two monozygotic human twin sisters with focal bilateral amygdala damage due to Urbach-Wiethe disease. Relative to 20 healthy women, the twins exhibited, on two occasions 1 year apart, augmented RHI responses in form of faster illusion onset and increased vividness ratings. Following up on these findings, we conducted a volumetric brain morphometry study involving an independent, gender-mixed sample of 57 healthy human volunteers (36 female, 21 male). Our results revealed a positive correlation between amygdala volume and RHI onset, i.e., the smaller the amygdala, the less time it took the RHI to emerge. This raised the question of whether a similar phenotype would result from experimental amygdala inhibition. To dampen amygdala reactivity, we intranasally administered the peptide hormone oxytocin to the same 57 individuals in a randomized trial before conducting the RHI. Compared with placebo, oxytocin treatment yielded enhanced RHI responses, again evident in accelerated illusion onset and increased vividness ratings. Together, the present series of experiments provides converging evidence for the amygdala's unprecedented role in reducing susceptibility to the RHI, thus protecting the organism from the potentially fatal threats of a distorted bodily self.SIGNIFICANCE STATEMENT Compelling evidence indicates that the amygdala is of vital importance for danger detection and fear processing. However, lethal threats can arise not only from menacing external stimuli but also from distortions in bodily self-perception. Intriguingly, the amygdala's modulatory role in such illusory body perceptions is still elusive. To probe the amygdala's involvement in illusory body experiences, we conducted a multi-methodological series of experiments in a rare human amygdala lesion model, complemented by a morphological and pharmaco-modulatory experiment in healthy volunteers. Our findings convergently suggest that the amygdala's integrity is indispensable for maintaining an unbiased, precise perception of our bodily self. Hence, the amygdala might shield us against distortions in self-perception and the resultant loss of behavioral control of our organism.
Collapse
|
42
|
Kinnaird E, Stewart C, Tchanturia K. Investigating alexithymia in autism: A systematic review and meta-analysis. Eur Psychiatry 2019; 55:80-89. [PMID: 30399531 PMCID: PMC6331035 DOI: 10.1016/j.eurpsy.2018.09.004] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/06/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND New research suggests that, rather than representing a core feature of autism spectrum disorder (ASD), emotional processing difficulties reflect co-occurring alexithymia. Autistic individuals with alexithymia could therefore represent a specific subgroup of autism who may benefit from tailored interventions. The aim of this systematic review and meta-analysis was to explore the nature and prevalence of alexithymia in autism using the Toronto Alexithymia Scale (TAS). METHODS Online scientific databases were searched systematically for studies on ASD popu lations using the TAS. Meta-analyses were performed to evaluate differences in scores between the ASD and neurotypical groups, and to determine the prevalence of alexithymia in these populations. RESULTS 15 articles comparing autistic and neurotypical (NT) groups were identified. Autistic people scored significantly higher on all scores compared to the NT group. There was also a higher prevalence of alexithymia in the ASD group (49.93% compared to 4.89%), with a significantly increased risk of alexithymia in autistic participants. CONCLUSIONS This review highlights that alexithymia is common, rather than universal, in ASD, supporting a growing body of evidence that co-occurring autism and alexithymia represents a specific subgroup in the ASD population that may have specific clinical needs. More research is needed to understand the nature and implications of co-occurring ASD and alexithymia.
Collapse
Affiliation(s)
- Emma Kinnaird
- King's College London, London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, UK
| | - Catherine Stewart
- King's College London, London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, UK; South London and Maudsley NHS Foundation Trust, London, UK
| | - Kate Tchanturia
- King's College London, London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, UK; South London and Maudsley NHS Foundation Trust, London, UK; Illia State University, Tbilisi, Georgia.
| |
Collapse
|
43
|
Neuroinflammation in preterm babies and autism spectrum disorders. Pediatr Res 2019; 85:155-165. [PMID: 30446768 DOI: 10.1038/s41390-018-0208-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Genetic anomalies have a role in autism spectrum disorders (ASD). Each genetic factor is responsible for a small fraction of cases. Environment factors, like preterm delivery, have an important role in ASD. Preterm infants have a 10-fold higher risk of developing ASD. Preterm birth is often associated with maternal/fetal inflammation, leading to a fetal/neonatal inflammatory syndrome. There are demonstrated experimental links between fetal inflammation and the later development of behavioral symptoms consistent with ASD. Preterm infants have deficits in connectivity. Most ASD genes encode synaptic proteins, suggesting that ASD are connectivity pathologies. Microglia are essential for normal synaptogenesis. Microglia are diverted from homeostatic functions towards inflammatory phenotypes during perinatal inflammation, impairing synaptogenesis. Preterm infants with ASD have a different phenotype from term born peers. Our original hypothesis is that exposure to inflammation in preterm infants, combined with at risk genetic background, deregulates brain development leading to ASD.
Collapse
|
44
|
Gibbard CR, Ren J, Skuse DH, Clayden JD, Clark CA. Structural connectivity of the amygdala in young adults with autism spectrum disorder. Hum Brain Mapp 2018; 39:1270-1282. [PMID: 29265723 PMCID: PMC5838552 DOI: 10.1002/hbm.23915] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 01/11/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impairments in social cognition, a function associated with the amygdala. Subdivisions of the amygdala have been identified which show specificity of structure, connectivity, and function. Little is known about amygdala connectivity in ASD. The aim of this study was to investigate the microstructural properties of amygdala-cortical connections and their association with ASD behaviours, and whether connectivity of specific amygdala subregions is associated with particular ASD traits. The brains of 51 high-functioning young adults (25 with ASD; 26 controls) were scanned using MRI. Amygdala volume was measured, and amygdala-cortical connectivity estimated using probabilistic tractography. An iterative 'winner takes all' algorithm was used to parcellate the amygdala based on its primary cortical connections. Measures of amygdala connectivity were correlated with clinical scores. In comparison with controls, amygdala volume was greater in ASD (F(1,94) = 4.19; p = .04). In white matter (WM) tracts connecting the right amygdala to the right cortex, ASD subjects showed increased mean diffusivity (t = 2.35; p = .05), which correlated with the severity of emotion recognition deficits (rho = -0.53; p = .01). Following amygdala parcellation, in ASD subjects reduced fractional anisotropy in WM connecting the left amygdala to the temporal cortex was associated with with greater attention switching impairment (rho = -0.61; p = .02). This study demonstrates that both amygdala volume and the microstructure of connections between the amygdala and the cortex are altered in ASD. Findings indicate that the microstructure of right amygdala WM tracts are associated with overall ASD severity, but that investigation of amygdala subregions can identify more specific associations.
Collapse
Affiliation(s)
- Clare R. Gibbard
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford StreetLondonWC1N 1EHUnited Kingdom
| | - Juejing Ren
- Behavioural Sciences UnitUCL Great Ormond Street Institute of Child Health, 30 Guilford StreetLondonWC1N 1EHUnited Kingdom
| | - David H. Skuse
- Behavioural Sciences UnitUCL Great Ormond Street Institute of Child Health, 30 Guilford StreetLondonWC1N 1EHUnited Kingdom
| | - Jonathan D. Clayden
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford StreetLondonWC1N 1EHUnited Kingdom
| | - Chris A. Clark
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford StreetLondonWC1N 1EHUnited Kingdom
| |
Collapse
|