1
|
Seghier ML. Symptomatology after damage to the angular gyrus through the lenses of modern lesion-symptom mapping. Cortex 2024; 179:77-90. [PMID: 39153389 DOI: 10.1016/j.cortex.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024]
Abstract
Brain-behavior relationships are complex. For instance, one might know a brain region's function(s) but still be unable to accurately predict deficit type or severity after damage to that region. Here, I discuss the case of damage to the angular gyrus (AG) that can cause left-right confusion, finger agnosia, attention deficit, and lexical agraphia, as well as impairment in sentence processing, episodic memory, number processing, and gesture imitation. Some of these symptoms are grouped under AG syndrome or Gerstmann's syndrome, though its exact underlying neuronal systems remain elusive. This review applies recent frameworks of brain-behavior modes and principles from modern lesion-symptom mapping to explain symptomatology after AG damage. It highlights four major issues for future studies: (1) functionally heterogeneous symptoms after AG damage need to be considered in terms of the degree of damage to (i) different subdivisions of the AG, (ii) different AG connectivity profiles that disconnect AG from distant regions, and (iii) lesion extent into neighboring regions damaged by the same infarct. (2) To explain why similar symptoms can also be observed after damage to other regions, AG damage needs to be studied in terms of the networks of regions that AG functions with, and other independent networks that might subsume the same functions. (3) To explain inter-patient variability on AG symptomatology, the degree of recovery-related brain reorganisation needs to account for time post-stroke, demographics, therapy input, and pre-stroke differences in functional anatomy. (4) A better integration of the results from lesion and functional neuroimaging investigations of AG function is required, with only the latter so far considering AG function in terms of a hub within the default mode network. Overall, this review discusses why it is so difficult to fully characterize the AG syndrome from lesion data, and how this might be addressed with modern lesion-symptom mapping.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Muller AM, Manning V, Wong CYF, Pennington DL. The Neural Correlates of Alcohol Approach Bias - New Insights from a Whole-Brain Network Analysis Perspective. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.26.24314399. [PMID: 39399042 PMCID: PMC11469381 DOI: 10.1101/2024.09.26.24314399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Alcohol approach bias, a tendency to approach rather than to avoid alcohol and alcohol-related cues regardless of associated negative consequences, is an emerging key characteristic of alcohol use disorder (AUD). Reaction times from the Approach-Avoidance Task (AAT) can be used to quantify alcohol approach bias. However, only a handful of studies have investigated the neural correlates of implicit alcohol approach behavior. Graph Theory Analysis (GTA) metrics, specifically, weighted global efficiency (wGE), community detection, and inter-community information integration were used to analyze functional magnetic resonance imaging (fMRI) data of an in-scanner version of the AAT from 31 heavy drinking Veterans with AUD (HDV) engaged in out-patient treatment and 19 healthy Veterans as controls (HC). We found a functional imprint of alcohol approach bias in HDVs. HDVs showed significantly higher wGE values for approaching than for avoiding alcohol, indicating that their brain was more efficiently organized or functionally set to approach alcohol in the presence to alcohol-related external cues. In contrast, Brains of HCs did not show such a processing advantage for either the approach or avoid condition. Further post-hoc analyses revealed that HDVs and HCs differed in how they implemented top-down control when approaching/avoiding alcohol and in how the fronto-parietal control network interacted with subsystems of the default mode network. These findings contribute to understanding the complex neural underpinnings of alcohol approach bias and lay the foundation for developing more potent and targeted interventions to modify these neural patterns in AUD patients.
Collapse
Affiliation(s)
- Angela M Muller
- University of California San Francisco, Department of Psychiatry, San Francisco, California, USA
- Northern California Institute for Research and Education (NCIRE), San Francisco, California, USA
| | - Victoria Manning
- Monash Addiction Research Centre, Eastern Health Clinical School, Monash University, Clayton, Australia
- Turning Point, Eastern Health, Melbourne, Victoria, Australia
| | - Christy Y F Wong
- University of California San Francisco, Department of Psychiatry, San Francisco, California, USA
- Northern California Institute for Research and Education (NCIRE), San Francisco, California, USA
| | - David L Pennington
- University of California San Francisco, Department of Psychiatry, San Francisco, California, USA
- San Francisco Veterans Affairs Health Care System, Mental Health, San Francisco, California, USA
- Melantha Health, San Francisco, California, USA
| |
Collapse
|
3
|
Schilling L, Singleton SP, Tozlu C, Hédo M, Zhao Q, Pohl KM, Jamison K, Kuceyeski A. Sex-specific differences in brain activity dynamics of youth with a family history of substance use disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.610959. [PMID: 39282344 PMCID: PMC11398379 DOI: 10.1101/2024.09.03.610959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
An individual's risk of substance use disorder (SUD) is shaped by a complex interplay of potent biosocial factors. Current neurodevelopmental models posit vulnerability to SUD in youth is due to an overreactive reward system and reduced inhibitory control. Having a family history of SUD is a particularly strong risk factor, yet few studies have explored its impact on brain function and structure prior to substance exposure. Herein, we utilized a network control theory approach to quantify sex-specific differences in brain activity dynamics in youth with and without a family history of SUD, drawn from a large cohort of substance-naïve youth from the Adolescent Brain Cognitive Development Study. We summarize brain dynamics by calculating transition energy, which probes the ease with which a whole brain, region or network drives the brain towards a specific spatial pattern of activation (i.e., brain state). Our findings reveal that a family history of SUD is associated with alterations in the brain's dynamics wherein: i) independent of sex, certain regions' transition energies are higher in those with a family history of SUD and ii) there exist sex-specific differences in SUD family history groups at multiple levels of transition energy (global, network, and regional). Family history-by-sex effects reveal that energetic demand is increased in females with a family history of SUD and decreased in males with a family history of SUD, compared to their same-sex counterparts with no SUD family history. Specifically, we localize these effects to higher energetic demands of the default mode network in females with a family history of SUD and lower energetic demands of attention networks in males with a family history of SUD. These results suggest a family history of SUD may increase reward saliency in males and decrease efficiency of top-down inhibitory control in females. This work could be used to inform personalized intervention strategies that may target differing cognitive mechanisms that predispose individuals to the development of SUD.
Collapse
Affiliation(s)
- Louisa Schilling
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Ceren Tozlu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Marie Hédo
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Qingyu Zhao
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Kilian M Pohl
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Keith Jamison
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
Mechtenberg H, Heffner CC, Myers EB, Guediche S. The Cerebellum Is Sensitive to the Lexical Properties of Words During Spoken Language Comprehension. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:757-773. [PMID: 39175786 PMCID: PMC11338305 DOI: 10.1162/nol_a_00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/30/2023] [Indexed: 08/24/2024]
Abstract
Over the past few decades, research into the function of the cerebellum has expanded far beyond the motor domain. A growing number of studies are probing the role of specific cerebellar subregions, such as Crus I and Crus II, in higher-order cognitive functions including receptive language processing. In the current fMRI study, we show evidence for the cerebellum's sensitivity to variation in two well-studied psycholinguistic properties of words-lexical frequency and phonological neighborhood density-during passive, continuous listening of a podcast. To determine whether, and how, activity in the cerebellum correlates with these lexical properties, we modeled each word separately using an amplitude-modulated regressor, time-locked to the onset of each word. At the group level, significant effects of both lexical properties landed in expected cerebellar subregions: Crus I and Crus II. The BOLD signal correlated with variation in each lexical property, consistent with both language-specific and domain-general mechanisms. Activation patterns at the individual level also showed that effects of phonological neighborhood and lexical frequency landed in Crus I and Crus II as the most probable sites, though there was activation seen in other lobules (especially for frequency). Although the exact cerebellar mechanisms used during speech and language processing are not yet evident, these findings highlight the cerebellum's role in word-level processing during continuous listening.
Collapse
Affiliation(s)
- Hannah Mechtenberg
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Christopher C. Heffner
- Department of Communicative Sciences and Disorders, University at Buffalo, Buffalo, NY, USA
| | - Emily B. Myers
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
- Department of Speech, Language and Hearing Sciences, University of Connecticut, Storrs, CT, USA
| | - Sara Guediche
- College of Science and Mathematics, Augusta University, Augusta, GA, USA
| |
Collapse
|
5
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard J, Carhart-Harris RL, Williams GB, Craig MM, Finoia P, Owen AM, Naci L, Menon DK, Bor D, Stamatakis EA. A synergistic workspace for human consciousness revealed by Integrated Information Decomposition. eLife 2024; 12:RP88173. [PMID: 39022924 PMCID: PMC11257694 DOI: 10.7554/elife.88173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a 'synergistic global workspace', comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain's default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Pedro AM Mediano
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Center for Complexity Science, Imperial College LondonLondonUnited Kingdom
- Data Science Institute, Imperial College LondonLondonUnited Kingdom
| | - Judith Allanson
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - John Pickard
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Psychedelics Division - Neuroscape, Department of Neurology, University of CaliforniaSan FranciscoUnited States
| | - Guy B Williams
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Michael M Craig
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Paola Finoia
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Adrian M Owen
- Department of Psychology and Department of Physiology and Pharmacology, The Brain and Mind Institute, University of Western OntarioLondonCanada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Lloyd Building, Trinity CollegeDublinIreland
| | - David K Menon
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Daniel Bor
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Emmanuel A Stamatakis
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
6
|
Pinto J, Comprido C, Moreira V, Maccarone MT, Cogoni C, Faustino R, Pignatelli D, Cera N. The Complex Role Played by the Default Mode Network during Sexual Stimulation: A Cluster-Based fMRI Meta-Analysis. Behav Sci (Basel) 2024; 14:570. [PMID: 39062393 PMCID: PMC11273531 DOI: 10.3390/bs14070570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The default mode network (DMN) is a complex network that plays a significant and active role during naturalistic stimulation. Previous studies that have used naturalistic stimuli, such as real-life stories or silent or sonorous films, have found that the information processing involved a complex hierarchical set of brain regions, including the DMN nodes. The DMN is not involved in low-level features and is only associated with high-level content-related incoming information. The human sexual experience involves a complex set of processes related to both external context and inner processes. Since the DMN plays an active role in the integration of naturalistic stimuli and aesthetic perception with beliefs, thoughts, and episodic autobiographical memories, we aimed at quantifying the involvement of the nodes of the DMN during visual sexual stimulation. After a systematic search in the principal electronic databases, we selected 83 fMRI studies, and an ALE meta-analysis was calculated. We performed conjunction analyses to assess differences in the DMN related to stimulus modalities, sex differences, and sexual orientation. The results show that sexual stimulation alters the topography of the DMN and highlights the DMN's active role in the integration of sexual stimuli with sexual schemas and beliefs.
Collapse
Affiliation(s)
- Joana Pinto
- Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal (C.C.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Camila Comprido
- Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal (C.C.)
| | - Vanessa Moreira
- Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal (C.C.)
| | | | - Carlotta Cogoni
- Instituto de Biofísica e Engenharia Biomédica, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Ricardo Faustino
- Research Unit in Medical Imaging and Radiotherapy, Cross I&D Lisbon Research Center, Escola Superior de Saúde da Cruz Vermelha Portuguesa, 1300-125 Lisbon, Portugal;
| | - Duarte Pignatelli
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Endocrinology, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - Nicoletta Cera
- Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal (C.C.)
- Research Unit in Medical Imaging and Radiotherapy, Cross I&D Lisbon Research Center, Escola Superior de Saúde da Cruz Vermelha Portuguesa, 1300-125 Lisbon, Portugal;
| |
Collapse
|
7
|
van der Schaaf ME, Geerligs L, Toni I, Knoop H, Oosterman JM. Disentangling pain and fatigue in chronic fatigue syndrome: a resting state connectivity study before and after cognitive behavioral therapy. Psychol Med 2024; 54:1735-1748. [PMID: 38193344 DOI: 10.1017/s0033291723003690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
BACKGROUND Fatigue is a central feature of myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS), but many ME/CFS patients also report comorbid pain symptoms. It remains unclear whether these symptoms are related to similar or dissociable brain networks. This study used resting-state fMRI to disentangle networks associated with fatigue and pain symptoms in ME/CFS patients, and to link changes in those networks to clinical improvements following cognitive behavioral therapy (CBT). METHODS Relationships between pain and fatigue symptoms and cortico-cortical connectivity were assessed within ME/CFS patients at baseline (N = 72) and after CBT (N = 33) and waiting list (WL, N = 18) and compared to healthy controls (HC, N = 29). The analyses focused on four networks previously associated with pain and/or fatigue, i.e. the fronto-parietal network (FPN), premotor network (PMN), somatomotor network (SMN), and default mode network (DMN). RESULTS At baseline, variation in pain and fatigue symptoms related to partially dissociable brain networks. Fatigue was associated with higher SMN-PMN connectivity and lower SMN-DMN connectivity. Pain was associated with lower PMN-DMN connectivity. CBT improved SMN-DMN connectivity, compared to WL. Larger clinical improvements were associated with larger increases in frontal SMN-DMN connectivity. No CBT effects were observed for PMN-DMN or SMN-PMN connectivity. CONCLUSIONS These results provide insight into the dissociable neural mechanisms underlying fatigue and pain symptoms in ME/CFS and how they are affected by CBT in successfully treated patients. Further investigation of how and in whom behavioral and biomedical treatments affect these networks is warranted to improve and individualize existing or new treatments for ME/CFS.
Collapse
Affiliation(s)
- Marieke E van der Schaaf
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, the Netherlands
- Radboud University, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
- Department of cognitive neuropsychology Tilburg University, Tilburg, The Netherlands
| | - Linda Geerligs
- Radboud University, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Ivan Toni
- Radboud University, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Hans Knoop
- Department of Medical Psychology and Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joukje M Oosterman
- Radboud University, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| |
Collapse
|
8
|
Luppi AI, Rosas FE, Noonan MP, Mediano PAM, Kringelbach ML, Carhart-Harris RL, Stamatakis EA, Vernon AC, Turkheimer FE. Oxygen and the Spark of Human Brain Evolution: Complex Interactions of Metabolism and Cortical Expansion across Development and Evolution. Neuroscientist 2024; 30:173-198. [PMID: 36476177 DOI: 10.1177/10738584221138032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Scientific theories on the functioning and dysfunction of the human brain require an understanding of its development-before and after birth and through maturation to adulthood-and its evolution. Here we bring together several accounts of human brain evolution by focusing on the central role of oxygen and brain metabolism. We argue that evolutionary expansion of human transmodal association cortices exceeded the capacity of oxygen delivery by the vascular system, which led these brain tissues to rely on nonoxidative glycolysis for additional energy supply. We draw a link between the resulting lower oxygen tension and its effect on cytoarchitecture, which we posit as a key driver of genetic developmental programs for the human brain-favoring lower intracortical myelination and the presence of biosynthetic materials for synapse turnover. Across biological and temporal scales, this protracted capacity for neural plasticity sets the conditions for cognitive flexibility and ongoing learning, supporting complex group dynamics and intergenerational learning that in turn enabled improved nutrition to fuel the metabolic costs of further cortical expansion. Our proposed model delineates explicit mechanistic links among metabolism, molecular and cellular brain heterogeneity, and behavior, which may lead toward a clearer understanding of brain development and its disorders.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
- Centre for Complexity Science, Imperial College London, London, UK
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - MaryAnn P Noonan
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychology, Queen Mary University of London, London, UK
- Department of Computing, Imperial College London, London, UK
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
9
|
Bzdok D, Thieme A, Levkovskyy O, Wren P, Ray T, Reddy S. Data science opportunities of large language models for neuroscience and biomedicine. Neuron 2024; 112:698-717. [PMID: 38340718 DOI: 10.1016/j.neuron.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Large language models (LLMs) are a new asset class in the machine-learning landscape. Here we offer a primer on defining properties of these modeling techniques. We then reflect on new modes of investigation in which LLMs can be used to reframe classic neuroscience questions to deliver fresh answers. We reason that LLMs have the potential to (1) enrich neuroscience datasets by adding valuable meta-information, such as advanced text sentiment, (2) summarize vast information sources to overcome divides between siloed neuroscience communities, (3) enable previously unthinkable fusion of disparate information sources relevant to the brain, (4) help deconvolve which cognitive concepts most usefully grasp phenomena in the brain, and much more.
Collapse
Affiliation(s)
- Danilo Bzdok
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada; TheNeuro - Montreal Neurological Institute (MNI), Department of Biomedical Engineering, McGill University, Montreal, QC, Canada.
| | | | | | - Paul Wren
- Mindstate Design Labs, San Francisco, CA, USA
| | - Thomas Ray
- Mindstate Design Labs, San Francisco, CA, USA
| | - Siva Reddy
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada; Facebook CIFAR AI Chair; ServiceNow Research
| |
Collapse
|
10
|
Yoon L, Keenan KE, Hipwell AE, Forbes EE, Guyer AE. Hooked on a thought: Associations between rumination and neural responses to social rejection in adolescent girls. Dev Cogn Neurosci 2023; 64:101320. [PMID: 37922608 PMCID: PMC10641579 DOI: 10.1016/j.dcn.2023.101320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023] Open
Abstract
Rumination is a significant risk factor for psychopathology in adolescent girls and is associated with heightened and prolonged physiological arousal following social rejection. However, no study has examined how rumination relates to neural responses to social rejection in adolescent girls; thus, the current study aimed to address this gap. Adolescent girls (N = 116; ages 16.95-19.09) self-reported on their rumination tendency and completed a social evaluation fMRI task where they received fictitious feedback (acceptance, rejection) from peers they liked or disliked. Rejection-related neural activity and subgenual anterior cingulate cortex (sgACC) connectivity were regressed on rumination, controlling for rejection sensitivity and depressive symptoms. Rumination was associated with distinctive neural responses following rejection from liked peers including increased neural activity in the precuneus, inferior parietal gyrus, dorsolateral prefrontal cortex, and supplementary motor area (SMA) and reduced sgACC connectivity with multiple regions including medial prefrontal cortex, precuneus and ventrolateral prefrontal cortex. Greater precuneus and SMA activity mediated the effect of rumination on slower response time to report emotional state after receiving rejection from liked peers. These findings provide clues for distinctive cognitive processes (e.g., mentalizing, conflict processing, memory encoding) following the receipt of rejection in girls with high levels of rumination.
Collapse
Affiliation(s)
- Leehyun Yoon
- Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA
| | - Kate E Keenan
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Alison E Hipwell
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Erika E Forbes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Amanda E Guyer
- Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA; Department of Human Ecology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
11
|
Breault MS, Sacré P, Fitzgerald ZB, Gale JT, Cullen KE, González-Martínez JA, Sarma SV. Internal states as a source of subject-dependent movement variability are represented by large-scale brain networks. Nat Commun 2023; 14:7837. [PMID: 38030611 PMCID: PMC10687170 DOI: 10.1038/s41467-023-43257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Humans' ability to adapt and learn relies on reflecting on past performance. These experiences form latent representations called internal states that induce movement variability that improves how we interact with our environment. Our study uncovered temporal dynamics and neural substrates of two states from ten subjects implanted with intracranial depth electrodes while they performed a goal-directed motor task with physical perturbations. We identified two internal states using state-space models: one tracking past errors and the other past perturbations. These states influenced reaction times and speed errors, revealing how subjects strategize from trial history. Using local field potentials from over 100 brain regions, we found large-scale brain networks such as the dorsal attention and default mode network modulate visuospatial attention based on recent performance and environmental feedback. Notably, these networks were more prominent in higher-performing subjects, emphasizing their role in improving motor performance by regulating movement variability through internal states.
Collapse
Affiliation(s)
- Macauley Smith Breault
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Pierre Sacré
- Department of Electrical Engineering and Computer Science, School of Engineering, University of Liège, Liège, Belgium
| | - Zachary B Fitzgerald
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Sridevi V Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
12
|
Ozkul B, Candemir C, Oguz K, Eroglu-Koc S, Kizilates-Evin G, Ugurlu O, Erdogan Y, Mull DD, Eker MC, Kitis O, Gonul AS. Gradual Loss of Social Group Support during Competition Activates Anterior TPJ and Insula but Deactivates Default Mode Network. Brain Sci 2023; 13:1509. [PMID: 38002470 PMCID: PMC10669722 DOI: 10.3390/brainsci13111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Group forming behaviors are common in many species to overcome environmental challenges. In humans, bonding, trust, group norms, and a shared past increase consolidation of social groups. Being a part of a social group increases resilience to mental stress; conversely, its loss increases vulnerability to depression. However, our knowledge on how social group support affects brain functions is limited. This study observed that default mode network (DMN) activity reduced with the loss of social group support from real-life friends in a challenging social competition. The loss of support induced anterior temporoparietal activity followed by anterior insula and the dorsal attentional network activity. Being a part of a social group and having support provides an environment for high cognitive functioning of the DMN, while the loss of group support acts as a threat signal and activates the anterior temporoparietal junction (TPJ) and insula regions of salience and attentional networks for individual survival.
Collapse
Affiliation(s)
- Burcu Ozkul
- School of Nursing and Midwifery, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Cemre Candemir
- SoCAT Lab Department of Psychiatry, School of Medicine, Ege University, Izmir 35080, Turkey; (C.C.); (S.E.-K.); (Y.E.); (M.C.E.)
- International Computer Institute, Ege University, Izmir 35100, Turkey
| | - Kaya Oguz
- Department of Computer Engineering, Izmir University of Economics, Izmir 35330, Turkey;
| | - Seda Eroglu-Koc
- SoCAT Lab Department of Psychiatry, School of Medicine, Ege University, Izmir 35080, Turkey; (C.C.); (S.E.-K.); (Y.E.); (M.C.E.)
- Department of Psychology, Faculty of Letters, Dokuz Eylul University, Izmir 35390, Turkey
| | - Gozde Kizilates-Evin
- Neuroimaging Unit, Hulusi Behcet Life Sciences Research Laboratory, Istanbul University, Istanbul 34093, Turkey;
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34093, Turkey
| | - Onur Ugurlu
- Department of Fundamental Sciences, Faculty of Engineering and Architecture, Izmir Bakircay University, Izmir 35665, Turkey;
| | - Yigit Erdogan
- SoCAT Lab Department of Psychiatry, School of Medicine, Ege University, Izmir 35080, Turkey; (C.C.); (S.E.-K.); (Y.E.); (M.C.E.)
- Department of Neuroscience, Health Sciences Institute, Ege University, Izmir 35080, Turkey
| | - Defne Dakota Mull
- SoCAT Lab Department of Psychiatry, School of Medicine, Ege University, Izmir 35080, Turkey; (C.C.); (S.E.-K.); (Y.E.); (M.C.E.)
- Department of Neuroscience, Health Sciences Institute, Ege University, Izmir 35080, Turkey
| | - Mehmet Cagdas Eker
- SoCAT Lab Department of Psychiatry, School of Medicine, Ege University, Izmir 35080, Turkey; (C.C.); (S.E.-K.); (Y.E.); (M.C.E.)
| | - Omer Kitis
- Department of Radiology, School of Medicine, Ege University, Izmir 35080, Turkey;
| | - Ali Saffet Gonul
- SoCAT Lab Department of Psychiatry, School of Medicine, Ege University, Izmir 35080, Turkey; (C.C.); (S.E.-K.); (Y.E.); (M.C.E.)
| |
Collapse
|
13
|
Koslov SR, Kable JW, Foster BL. Dissociable contributions of the medial parietal cortex to recognition memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557048. [PMID: 37745317 PMCID: PMC10515876 DOI: 10.1101/2023.09.12.557048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Human neuroimaging studies of episodic memory retrieval routinely observe the engagement of specific cortical regions beyond the medial temporal lobe. Of these, medial parietal cortex (MPC) is of particular interest given its ubiquitous, and yet distinct, functional characteristics during different types of retrieval tasks. Specifically, while recognition memory and autobiographical recall tasks are both used to probe episodic retrieval, these paradigms consistently drive distinct patterns of response within MPC. This dissociation adds to growing evidence suggesting a common principle of functional organization across memory related brain structures, specifically regarding the control or content demands of memory-based decisions. To carefully examine this putative organization, we used a high-resolution fMRI dataset collected at ultra-high field (7T) while subjects performed thousands of recognition-memory trials to identify MPC regions responsive to recognition-decisions or semantic content of stimuli within and across individuals. We observed interleaving, though distinct, functional subregions of MPC where responses were sensitive to either recognition decisions or the semantic representation of stimuli, but rarely both. In addition, this functional dissociation within MPC was further accentuated by distinct profiles of connectivity bias with the hippocampus during task and rest. Finally, we show that recent observations of person and place selectivity within MPC reflect category specific responses from within identified semantic regions that are sensitive to mnemonic demands. Together, these data better account for how distinct patterns of MPC responses can occur as a result of task demands during episodic retrieval and may reflect a common principle of organization throughout hippocampal-neocortical memory systems.
Collapse
Affiliation(s)
- Seth R. Koslov
- Department of Neurosurgery, Perelman School of Medicine; University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Joseph W. Kable
- Department of Psychology; University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Brett L. Foster
- Department of Neurosurgery, Perelman School of Medicine; University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
14
|
Erata MC, Eroğlu S, Özkul B, Uslu Ö, Erdoğan Y, Kitiş Ö, Gönül AS. The Reflection of Self-Esteem on the Brain Structure: A Voxel Based Morphometry Study in Healthy Young Adults. Noro Psikiyatr Ars 2023; 60:202-206. [PMID: 37645074 PMCID: PMC10461769 DOI: 10.29399/npa.28318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/16/2022] [Indexed: 08/31/2023] Open
Abstract
Introduction Low self-esteem is a known risk factor for mental illnesses. Neuroimaging studies have identified evidence for a functional association between default mode network (DMN) and self-esteem levels. However, it is not clear whether there is a similar association between trait self-esteem and the structures composing DMN. This study aimed to investigate the relationship between the DMN associated brain structures and trait self-esteem. Methods We obtained 3T structural magnetic resonance imaging (MRI) data of 75 healthy subjects and detected anatomical regions correlated with their Rosenberg Self-Esteem scores via voxel-based morphometry (VBM). Results We found positive associations between self-esteem and regional grey matter volumes in the right temporoparietal junction/inferior parietal lobule (BA 39), cortical midline regions at precuneus/dorsal cingulate cortex (BA 31), rostral and dorsal anterior cingulate cortices (BA 32). Conclusion The results of the current study support the fMRI studies suggesting self-esteem levels associated with DMN. Further neuroimaging studies should consider the functional and structural coupling of the default mode network during the execution of the functions related to self-esteem.
Collapse
Affiliation(s)
- Mehmet C. Erata
- SoCAT Lab, Department of Psychiatry, School of Medicine, Ege University, İzmir, Turkey
- Department of Child and Adolescence Psychiatry, Bakırköy Mazhar Osman Mental Health and Neurological Diseases Education and Research Hospital, İstanbul, Turkey
| | - Seda Eroğlu
- SoCAT Lab, Department of Psychiatry, School of Medicine, Ege University, İzmir, Turkey
- Department of Psychology, Faculty of Letters, Dokuz Eylül University, İzmir, Turkey
| | - Burcu Özkul
- SoCAT Lab, Department of Psychiatry, School of Medicine, Ege University, İzmir, Turkey
- Department of Nursing, Faculty of Health Sciences, İzmir University of Economics, İzmir, Turkey
| | - Özgül Uslu
- SoCAT Lab, Department of Psychiatry, School of Medicine, Ege University, İzmir, Turkey
| | - Yiğit Erdoğan
- SoCAT Lab, Department of Psychiatry, School of Medicine, Ege University, İzmir, Turkey
| | - Ömer Kitiş
- SoCAT Lab, Department of Psychiatry, School of Medicine, Ege University, İzmir, Turkey
- Department of Radiology, School of Medicine Ege University, İzmir, Turkey
| | - Ali Saffet Gönül
- SoCAT Lab, Department of Psychiatry, School of Medicine, Ege University, İzmir, Turkey
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Mercer University, Macon, GA, USA
| |
Collapse
|
15
|
Honey CJ, Mahabal A, Bellana B. Psychological Momentum. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2023; 32:284-292. [PMID: 37786409 PMCID: PMC10545321 DOI: 10.1177/09637214221143053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Our mental experience is largely continuous on the scale of seconds and minutes. However, this continuity does not always arise from a volitional carrying forward of ideas. Instead, recent actions, thoughts, dispositions, and emotions can persist in mind, continually shaping our later experience. Aspects of this fundamental property of human cognition - psychological momentum - have been studied under the rubrics of memory, task set, mood, mind-wandering, and mindset. Reviewing these largely independent threads of research, we argue that psychological momentum is best understood from an integrated perspective, as an adaptation that helps us meet the current demands of our environment and to form lasting memories.
Collapse
|
16
|
Ainslie G. "Switching" between fast and slow processes is just reward-based branching. Behav Brain Sci 2023; 46:e113. [PMID: 37462211 DOI: 10.1017/s0140525x22002990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Shortcuts to goals are rewarded by faster attainment and punished by more frequent failure, so selection of the various kinds - heuristics, cached sequences (habits or macros), gut instincts - depends on reward history just like other kinds of choice. The speeds of shortcuts lie on continua along with speeds of deliberation, and these continua have no obvious separation points.
Collapse
|
17
|
Yang E, Milisav F, Kopal J, Holmes AJ, Mitsis GD, Misic B, Finn ES, Bzdok D. The default network dominates neural responses to evolving movie stories. Nat Commun 2023; 14:4197. [PMID: 37452058 PMCID: PMC10349102 DOI: 10.1038/s41467-023-39862-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Neuroscientific studies exploring real-world dynamic perception often overlook the influence of continuous changes in narrative content. In our research, we utilize machine learning tools for natural language processing to examine the relationship between movie narratives and neural responses. By analyzing over 50,000 brain images of participants watching Forrest Gump from the studyforrest dataset, we find distinct brain states that capture unique semantic aspects of the unfolding story. The default network, associated with semantic information integration, is the most engaged during movie watching. Furthermore, we identify two mechanisms that underlie how the default network liaises with the amygdala and hippocampus. Our findings demonstrate effective approaches to understanding neural processes in everyday situations and their relation to conscious awareness.
Collapse
Affiliation(s)
- Enning Yang
- Department of Biomedical Engineering, TheNeuro-Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre (BIC), McGill University, Montreal, QC, Canada
- Mila-Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Filip Milisav
- Department of Biomedical Engineering, TheNeuro-Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre (BIC), McGill University, Montreal, QC, Canada
| | - Jakub Kopal
- Department of Biomedical Engineering, TheNeuro-Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre (BIC), McGill University, Montreal, QC, Canada
- Mila-Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Avram J Holmes
- Department of Psychology and Psychiatry, Yale University, New Haven, CT, USA
| | - Georgios D Mitsis
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Bratislav Misic
- Department of Biomedical Engineering, TheNeuro-Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre (BIC), McGill University, Montreal, QC, Canada
| | - Emily S Finn
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Danilo Bzdok
- Department of Biomedical Engineering, TheNeuro-Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre (BIC), McGill University, Montreal, QC, Canada.
- Mila-Quebec Artificial Intelligence Institute, Montreal, QC, Canada.
| |
Collapse
|
18
|
Baumann AW, Schäfer TAJ, Ruge H. Instructional load induces functional connectivity changes linked to task automaticity and mnemonic preference. Neuroimage 2023:120262. [PMID: 37394046 DOI: 10.1016/j.neuroimage.2023.120262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/05/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023] Open
Abstract
Learning new rules rapidly and effectively via instructions is ubiquitous in our daily lives, yet the underlying cognitive and neural mechanisms are complex. Using functional magnetic resonance imaging we examined the effects of different instructional load conditions (4 vs. 10 stimulus-response rules) on functional couplings during rule implementation (always 4 rules). Focusing on connections of lateral prefrontal cortex (LPFC) regions, the results emphasized an opposing trend of load-related changes in LPFC-seeded couplings. On the one hand, during the low-load condition LPFC regions were more strongly coupled with cortical areas mostly assigned to networks such as the fronto-parietal network and the dorsal attention network. On the other hand, during the high-load condition, the same LPFC areas were more strongly coupled with default mode network areas. These results suggest differences in automated processing evoked by features of the instruction and an enduring response conflict mediated by lingering episodic long-term memory traces when instructional load exceeds working memory capacity limits. The ventrolateral prefrontal cortex (VLPFC) exhibited hemispherical differences regarding whole-brain coupling and practice-related dynamics. Left VLPFC connections showed a persistent load-related effect independent of practice and were associated with 'objective' learning success in overt behavioral performance, consistent with a role in mediating the enduring influence of the initially instructed task rules. Right VLPFC's connections, in turn, were more susceptible to practice-related effects, suggesting a more flexible role possibly related to ongoing rule updating processes throughout rule implementation.
Collapse
Affiliation(s)
| | - Theo A J Schäfer
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Hannes Ruge
- Faculty of Psychology, Technische Universität Dresden, Germany
| |
Collapse
|
19
|
Johnson EL, Lin JJ, King-Stephens D, Weber PB, Laxer KD, Saez I, Girgis F, D'Esposito M, Knight RT, Badre D. A rapid theta network mechanism for flexible information encoding. Nat Commun 2023; 14:2872. [PMID: 37208373 DOI: 10.1038/s41467-023-38574-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
Flexible behavior requires gating mechanisms that encode only task-relevant information in working memory. Extant literature supports a theoretical division of labor whereby lateral frontoparietal interactions underlie information maintenance and the striatum enacts the gate. Here, we reveal neocortical gating mechanisms in intracranial EEG patients by identifying rapid, within-trial changes in regional and inter-regional activities that predict subsequent behavioral outputs. Results first demonstrate information accumulation mechanisms that extend prior fMRI (i.e., regional high-frequency activity) and EEG evidence (inter-regional theta synchrony) of distributed neocortical networks in working memory. Second, results demonstrate that rapid changes in theta synchrony, reflected in changing patterns of default mode network connectivity, support filtering. Graph theoretical analyses further linked filtering in task-relevant information and filtering out irrelevant information to dorsal and ventral attention networks, respectively. Results establish a rapid neocortical theta network mechanism for flexible information encoding, a role previously attributed to the striatum.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL, USA.
| | - Jack J Lin
- Department of Neurology and Center for Mind and Brain, University of California, Davis, CA, USA
| | - David King-Stephens
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Peter B Weber
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
| | - Kenneth D Laxer
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
| | - Ignacio Saez
- Department of Neurological Surgery, University of California, Davis, CA, USA
- Departments of Neuroscience, Neurosurgery, and Neurology, Ichan School of Medicine at Mt. Sinai, New York, NY, USA
| | - Fady Girgis
- Department of Neurological Surgery, University of California, Davis, CA, USA
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA, USA
| | - Robert T Knight
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA, USA
| | - David Badre
- Department of Cognitive, Linguistic, and Psychological Sciences, and Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
20
|
Lin Y, Hsu CC, Lin CJ, Kuroda R, Chiang DL, Lai F, Wu SI. Neurobiological mechanisms of dialectical behavior therapy and Morita therapy, two psychotherapies inspired by Zen. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02644-3. [PMID: 37145166 DOI: 10.1007/s00702-023-02644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Psychotherapy is a learning process. Updating the prediction models of the brain may be the mechanism underlying psychotherapeutic changes. Although developed in different eras and cultures, dialectical behavior therapy (DBT) and Morita therapy are influenced by Zen principles, and both emphasize the acceptance of reality and suffering. This article reviews these two treatments, their common and distinct therapeutic factors, and their neuroscientific implications. Additionally, it proposes a framework that includes the predictive function of the mind, constructed emotions, mindfulness, therapeutic relationship, and changes enabled via reward predictions. Brain networks, including the Default Mode Network (DMN), amygdala, fear circuitry, and reward pathways, contribute to the constructive process of brain predictions. Both treatments target the assimilation of prediction errors, gradual reorganization of predictive models, and creation of a life with step-by-step constructive rewards. By elucidating the possible neurobiological mechanisms of these psychotherapeutic techniques, this article is expected to serve as the first step towards filling the cultural gap and creating more teaching methods based on these concepts.
Collapse
Affiliation(s)
- Ying Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Department of Psychiatry, MacKay Memorial Hospital, No. 92, Section 2, Chung-Shan North Rd, Taipei, 10449, Taiwan
| | - Chen-Chi Hsu
- Department of Psychiatry, MacKay Memorial Hospital, No. 92, Section 2, Chung-Shan North Rd, Taipei, 10449, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chen-Ju Lin
- Department of Psychiatry, MacKay Memorial Hospital, No. 92, Section 2, Chung-Shan North Rd, Taipei, 10449, Taiwan
- Institute of Health and Welfare Policy, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Reiko Kuroda
- Division for Environment, Health and Safety, The University of Tokyo, Tokyo, Japan
| | - Dai-Lun Chiang
- Financial Technology Applications Program, Ming-Chuan University, Taoyuan, Taiwan
| | - Feipei Lai
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Shu-I Wu
- Department of Psychiatry, MacKay Memorial Hospital, No. 92, Section 2, Chung-Shan North Rd, Taipei, 10449, Taiwan.
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
21
|
Zhang L, Wang X, Alain C, Du Y. Successful aging of musicians: Preservation of sensorimotor regions aids audiovisual speech-in-noise perception. SCIENCE ADVANCES 2023; 9:eadg7056. [PMID: 37126550 PMCID: PMC10132752 DOI: 10.1126/sciadv.adg7056] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Musicianship can mitigate age-related declines in audiovisual speech-in-noise perception. We tested whether this benefit originates from functional preservation or functional compensation by comparing fMRI responses of older musicians, older nonmusicians, and young nonmusicians identifying noise-masked audiovisual syllables. Older musicians outperformed older nonmusicians and showed comparable performance to young nonmusicians. Notably, older musicians retained similar neural specificity of speech representations in sensorimotor areas to young nonmusicians, while older nonmusicians showed degraded neural representations. In the same region, older musicians showed higher neural alignment to young nonmusicians than older nonmusicians, which was associated with their training intensity. In older nonmusicians, the degree of neural alignment predicted better performance. In addition, older musicians showed greater activation in frontal-parietal, speech motor, and visual motion regions and greater deactivation in the angular gyrus than older nonmusicians, which predicted higher neural alignment in sensorimotor areas. Together, these findings suggest that musicianship-related benefit in audiovisual speech-in-noise processing is rooted in preserving youth-like representations in sensorimotor regions.
Collapse
Affiliation(s)
- Lei Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Claude Alain
- Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, ON M6A 2E1, Canada
- Department of Psychology, University of Toronto, ON M8V 2S4, Canada
| | - Yi Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
22
|
Foster BL, Koslov SR, Aponik-Gremillion L, Monko ME, Hayden BY, Heilbronner SR. A tripartite view of the posterior cingulate cortex. Nat Rev Neurosci 2023; 24:173-189. [PMID: 36456807 PMCID: PMC10041987 DOI: 10.1038/s41583-022-00661-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/03/2022]
Abstract
The posterior cingulate cortex (PCC) is one of the least understood regions of the cerebral cortex. By contrast, the anterior cingulate cortex has been the subject of intensive investigation in humans and model animal systems, leading to detailed behavioural and computational theoretical accounts of its function. The time is right for similar progress to be made in the PCC given its unique anatomical and physiological properties and demonstrably important contributions to higher cognitive functions and brain diseases. Here, we describe recent progress in understanding the PCC, with a focus on convergent findings across species and techniques that lay a foundation for establishing a formal theoretical account of its functions. Based on this converging evidence, we propose that the broader PCC region contains three major subregions - the dorsal PCC, ventral PCC and retrosplenial cortex - that respectively support the integration of executive, mnemonic and spatial processing systems. This tripartite subregional view reconciles inconsistencies in prior unitary theories of PCC function and offers promising new avenues for progress.
Collapse
Affiliation(s)
- Brett L Foster
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Seth R Koslov
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lyndsey Aponik-Gremillion
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.,Department of Health Sciences, Dumke College for Health Professionals, Weber State University, Ogden, UT, USA
| | - Megan E Monko
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Y Hayden
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,Center for Magnetic Resonance Research and Center for Neural Engineering, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
23
|
Stoliker D, Novelli L, Vollenweider FX, Egan GF, Preller KH, Razi A. Effective Connectivity of Functionally Anticorrelated Networks Under Lysergic Acid Diethylamide. Biol Psychiatry 2023; 93:224-232. [PMID: 36270812 DOI: 10.1016/j.biopsych.2022.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Classic psychedelic-induced ego dissolution involves a shift in the sense of self and a blurring of the boundary between the self and the world. A similar phenomenon is identified in psychopathology and is associated with the balance of anticorrelated activity between the default mode network, which directs attention inward, and the salience network, which recruits the dorsal attention network to direct attention outward. METHODS To test whether changes in anticorrelated networks underlie the peak effects of lysergic acid diethylamide (LSD), we applied dynamic causal modeling to infer effective connectivity of resting-state functional magnetic resonance imaging scans from a study of 25 healthy adults who were administered 100 μg of LSD or placebo. RESULTS We found that inhibitory effective connectivity from the salience network to the default mode network became excitatory, and inhibitory effective connectivity from the default mode network to the dorsal attention network decreased under the peak effect of LSD. CONCLUSIONS The effective connectivity changes we identified may reflect diminution of the functional anticorrelation between resting-state networks that may be a key neural mechanism of LSD and underlie ego dissolution. Our findings suggest that changes to the sense of self and subject-object boundaries across different states of consciousness may depend upon the organized balance of effective connectivity of resting-state networks.
Collapse
Affiliation(s)
- Devon Stoliker
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia.
| | - Leonardo Novelli
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Franz X Vollenweider
- Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Gary F Egan
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Katrin H Preller
- Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Mehta K, Pines A, Adebimpe A, Larsen B, Bassett DS, Calkins ME, Baller E, Gell M, Patrick LM, Gur RE, Gur RC, Roalf DR, Romer D, Wolf DH, Kable JW, Satterthwaite TD. Individual Differences in Delay Discounting are Associated with Dorsal Prefrontal Cortex Connectivity in Youth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525577. [PMID: 36747838 PMCID: PMC9900814 DOI: 10.1101/2023.01.25.525577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Delay discounting is a measure of impulsive choice relevant in adolescence as it predicts many real-life outcomes, including substance use disorders, obesity, and academic achievement. However, the functional networks underlying individual differences in delay discounting during youth remain incompletely described. Here we investigate the association between multivariate patterns of functional connectivity and individual differences in impulsive choice in a large sample of youth. A total of 293 youth (9-23 years) completed a delay discounting task and underwent resting-state fMRI at 3T. A connectome-wide analysis using multivariate distance-based matrix regression was used to examine whole-brain relationships between delay discounting and functional connectivity was then performed. These analyses revealed that individual differences in delay discounting were associated with patterns of connectivity emanating from the left dorsal prefrontal cortex, a hub of the default mode network. Delay discounting was associated with greater functional connectivity between the dorsal prefrontal cortex and other parts of the default mode network, and reduced connectivity with regions in the dorsal and ventral attention networks. These results suggest that delay discounting in youth is associated with individual differences in relationships both within the default mode network and between the default mode and networks involved in attentional and cognitive control.
Collapse
Affiliation(s)
- Kahini Mehta
- Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam Pines
- Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Azeez Adebimpe
- Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bart Larsen
- Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dani S. Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, PA 19104, USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Santa Fe Institute, Santa Fe, NM, 87051, USA
| | - Monica E. Calkins
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erica Baller
- Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Martin Gell
- Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany
| | - Lauren M. Patrick
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David R. Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel Romer
- Annenberg Public Policy Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel H. Wolf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph W. Kable
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Theodore D. Satterthwaite
- Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Caria A, Grecucci A. Neuroanatomical predictors of real‐time
fMRI
‐based anterior insula regulation. A supervised machine learning study. Psychophysiology 2022; 60:e14237. [PMID: 36523140 DOI: 10.1111/psyp.14237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/18/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Increasing evidence showed that learned control of metabolic activity in selected brain regions can support emotion regulation. Notably, a number of studies demonstrated that neurofeedback-based regulation of fMRI activity in several emotion-related areas leads to modifications of emotional behavior along with changes of neural activity in local and distributed networks, in both healthy individuals and individuals with emotional disorders. However, the current understanding of the neural mechanisms underlying self-regulation of the emotional brain, as well as their relationship with other emotion regulation strategies, is still limited. In this study, we attempted to delineate neuroanatomical regions mediating real-time fMRI-based emotion regulation by exploring whole brain GM and WM features predictive of self-regulation of anterior insula (AI) activity, a neuromodulation procedure that can successfully support emotional brain regulation in healthy individuals and patients. To this aim, we employed a multivariate kernel ridge regression model to assess brain volumetric features, at regional and network level, predictive of real-time fMRI-based AI regulation. Our results showed that several GM regions including fronto-occipital and medial temporal areas and the basal ganglia as well as WM regions including the fronto-occipital fasciculus, tapetum and fornix significantly predicted learned AI regulation. Remarkably, we observed a substantial contribution of the cerebellum in relation to both the most effective regulation run and average neurofeedback performance. Overall, our findings highlighted specific neurostructural features contributing to individual differences of AI-guided emotion regulation. Notably, such neuroanatomical topography partially overlaps with the neurofunctional network associated with cognitive emotion regulation strategies, suggesting common neural mechanisms.
Collapse
Affiliation(s)
- Andrea Caria
- Department of Psychology and Cognitive Science University of Trento Rovereto Italy
| | - Alessandro Grecucci
- Department of Psychology and Cognitive Science University of Trento Rovereto Italy
| |
Collapse
|
26
|
Chen Y, Chaudhary S, Li CSR. Shared and distinct neural activity during anticipation and outcome of win and loss: A meta-analysis of the monetary incentive delay task. Neuroimage 2022; 264:119764. [PMID: 36427755 PMCID: PMC9837714 DOI: 10.1016/j.neuroimage.2022.119764] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Reward and punishment motivate decision making and behavioral changes. Numerous studies have examined regional activities during anticipation and outcome of win and loss in the monetary incentive delay task (MIDT). However, the great majority of studies reported findings of anticipation or outcome and of win or loss alone. It remains unclear how the neural correlates share and differentiate amongst these processes. We conducted an Activation Likelihood Estimation meta-analysis of 81 studies of the MIDT (5,864 subjects), including 24 published since the most recent meta-analysis, to identify and, with conjunction and subtraction, contrast regional responses to win anticipation, loss anticipation, win outcome, and loss outcome. Win and loss anticipation engaged a shared network of bilateral anterior insula (AI), striatum, thalamus, supplementary motor area (SMA), and precentral gyrus. Win and loss outcomes did not share regional activities. Win and loss outcome each engaged higher activity in medial orbitofrontal cortex (mOFC) and dorsal anterior cingulate cortex. Bilateral striatum and right occipital cortex responded to both anticipation and outcome of win, and right AI to both phases of loss. Win anticipation vs. outcome engaged higher activity in bilateral AI, striatum, SMA and precentral gyrus and right thalamus, and lower activity in bilateral mOFC and posterior cingulate cortex as well as right inferior frontal and angular gyri. Loss anticipation relative to outcome involved higher activity in bilateral striatum and left AI. These findings collectively suggest shared and distinct regional responses during monetary wins and losses. Delineating the neural correlates of these component processes may facilitate empirical research of motivated behaviors and dysfunctional approach and avoidance in psychopathology.
Collapse
Affiliation(s)
- Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Inter-department Neuroscience Program, Yale University, New Haven, CT 06520, USA; Wu Tsai Institute, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
27
|
Safron A. Integrated world modeling theory expanded: Implications for the future of consciousness. Front Comput Neurosci 2022; 16:642397. [PMID: 36507308 PMCID: PMC9730424 DOI: 10.3389/fncom.2022.642397] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/24/2022] [Indexed: 11/27/2022] Open
Abstract
Integrated world modeling theory (IWMT) is a synthetic theory of consciousness that uses the free energy principle and active inference (FEP-AI) framework to combine insights from integrated information theory (IIT) and global neuronal workspace theory (GNWT). Here, I first review philosophical principles and neural systems contributing to IWMT's integrative perspective. I then go on to describe predictive processing models of brains and their connections to machine learning architectures, with particular emphasis on autoencoders (perceptual and active inference), turbo-codes (establishment of shared latent spaces for multi-modal integration and inferential synergy), and graph neural networks (spatial and somatic modeling and control). Future directions for IIT and GNWT are considered by exploring ways in which modules and workspaces may be evaluated as both complexes of integrated information and arenas for iterated Bayesian model selection. Based on these considerations, I suggest novel ways in which integrated information might be estimated using concepts from probabilistic graphical models, flow networks, and game theory. Mechanistic and computational principles are also considered with respect to the ongoing debate between IIT and GNWT regarding the physical substrates of different kinds of conscious and unconscious phenomena. I further explore how these ideas might relate to the "Bayesian blur problem," or how it is that a seemingly discrete experience can be generated from probabilistic modeling, with some consideration of analogies from quantum mechanics as potentially revealing different varieties of inferential dynamics. I go on to describe potential means of addressing critiques of causal structure theories based on network unfolding, and the seeming absurdity of conscious expander graphs (without cybernetic symbol grounding). Finally, I discuss future directions for work centered on attentional selection and the evolutionary origins of consciousness as facilitated "unlimited associative learning." While not quite solving the Hard problem, this article expands on IWMT as a unifying model of consciousness and the potential future evolution of minds.
Collapse
Affiliation(s)
- Adam Safron
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Center for Psychedelic and Consciousness Research, Baltimore, MD, United States
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
- Institute for Advanced Consciousness Studies (IACS), Santa Monica, CA, United States
| |
Collapse
|
28
|
Oestreich LKL, Wright P, O’Sullivan MJ. Hyperconnectivity and altered interactions of a nucleus accumbens network in post-stroke depression. Brain Commun 2022; 4:fcac281. [PMCID: PMC9677459 DOI: 10.1093/braincomms/fcac281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract
Post-stroke depression is a common complication of stroke. To date, no consistent locus of injury is associated with this complication. Here, we probed network dynamics and structural alterations in post-stroke depression in four functional circuits linked to major depressive disorder and a visual network, which served as a control network. Forty-four participants with recent stroke (mean age = 69.03, standard deviation age = 8.59, age range = 51–86 and gender: female = 10) and 16 healthy volunteers (mean age = 71.53, standard deviation age = 10.62, age range = 51–84 and gender: female = 11) were imaged with 3-Tesla structural, diffusion and resting-state functional MRI. The Geriatric Depression Scale was administered to measure depression severity. Associations between depression severity and functional connectivity were investigated within networks seeded from nucleus accumbens, amygdala, dorsolateral prefrontal cortex and primary visual cortex. In addition, the default mode network was identified by connectivity with medial prefrontal cortex and posterior cingulate cortex. Circuits that exhibited altered activity associated with depression severity were further investigated by extracting within-network volumetric and microstructural measures from structural images. In the stroke group, functional connectivity within the nucleus accumbens-seeded network (left hemisphere: P = 0.001; and right hemisphere: P = 0.004) and default mode network (cluster one: P < 0.001; and cluster two: P < 0.001) correlated positively with depressive symptoms. Normal anticorrelations between these two networks were absent in patients with post-stroke depression. Grey matter volume of the right posterior cingulate cortex (Pearson correlation coefficient = −0.286, P = 0.03), as well as microstructural measures in the posterior cingulate cortex (right: Pearson correlation coefficient = 0.4, P = 0.024; and left: Pearson correlation coefficient = 0.3, P = 0.048), right medial prefrontal cortex (Pearson correlation coefficient = 0.312, P = 0.039) and the medial forebrain bundle (Pearson correlation coefficient = 0.450, P = 0.003), a major projection pathway interconnecting the nucleus accumbens-seeded network and linking to medial prefrontal cortex, were associated with depression severity. Depression after stroke is marked by reduced mutual inhibition between functional circuits involving nucleus accumbens and default mode network as well as volumetric and microstructural changes within these networks. Aberrant network dynamics present in patients with post-stroke depression are therefore likely to be influenced by secondary, pervasive alterations in grey and white matter, remote from the site of injury.
Collapse
Affiliation(s)
- Lena K L Oestreich
- UQ Centre for Clinical Research, The University of Queensland , Brisbane 4072 , Australia
- Centre for Advanced Imaging, The University of Queensland , Brisbane 4072 , Australia
| | - Paul Wright
- Biomedical Engineering Department, King’s College London , London , UK
| | - Michael J O’Sullivan
- UQ Centre for Clinical Research, The University of Queensland , Brisbane 4072 , Australia
- Biomedical Engineering Department, King’s College London , London , UK
- Department of Neurology, Royal Brisbane and Women’s Hospital , Brisbane 4072 , Australia
- Institute of Molecular Bioscience, The University of Queensland , Brisbane 4072 , Australia
| |
Collapse
|
29
|
Structural and Functional Brain Alterations in Populations with Familial Risk for Depression: A Narrative Review. Harv Rev Psychiatry 2022; 30:327-349. [PMID: 36534836 DOI: 10.1097/hrp.0000000000000350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
LEARNING OBJECTIVES After completing this activity, practitioners will be better able to:• Discuss the association between brain alterations and vulnerability or resilience to MDD in people with familial risk• Define how structural and functional brain alterations associated with vulnerability or resilience could lead to a better understanding of the pathophysiology of MDD. AIM Familial history is associated with an increased risk for major depressive disorder (MDD). Despite the increased risk, some members of the familial high-risk population remain healthy, that is, resilient. Defining the structural and functional brain alterations associated with vulnerability or resilience could lead to a better understanding of the pathophysiology of MDD. This study aimed to review the current literature and discuss the association between brain alterations and vulnerability or resilience to MDD in people with familial risk. METHODS A literature search on MRI studies investigating structural and functional alterations in populations at familial risk for MDD was performed using the PubMed and SCOPUS databases. The search was conducted through June 13, 2022. RESULTS We reviewed and summarized the data of 72 articles (25 structural MRI, 35 functional MRI, 10 resting-state fMRI, one structural/functional MRI combined, and one structural/functional/resting-state fMRI combined). These findings suggested that resilience in high-risk individuals is related to the amygdala structure, frontal lobe activity, and functional connectivity between the amygdala and multiple frontal regions. CONCLUSION Resilient and vulnerable individuals exhibit structural and functional differences in multiple frontal and limbic regions. However, further systematic longitudinal research incorporating environmental factors is required to validate the current findings.
Collapse
|
30
|
Sipes BS, Jakary A, Li Y, Max JE, Yang TT, Tymofiyeva O. Resting state brain subnetwork relates to prosociality and compassion in adolescents. Front Psychol 2022; 13:1012745. [PMID: 36337478 PMCID: PMC9632179 DOI: 10.3389/fpsyg.2022.1012745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022] Open
Abstract
Adolescence is a crucial time for social development, especially for helping (prosocial) and compassionate behaviors; yet brain networks involved in adolescent prosociality and compassion currently remain underexplored. Here, we sought to evaluate a recently proposed domain-general developmental (Do-GooD) network model of prosocial cognition by relating adolescent functional and structural brain networks with prosocial and compassionate disposition. We acquired resting state fMRI and diffusion MRI from 95 adolescents (ages 14–19 years; 46 males; 49 females) along with self-report questionnaires assessing prosociality and compassion. We then applied the Network-Based Statistic (NBS) to inductively investigate whether there is a significant subnetwork related to prosociality and compassion while controlling for age and sex. Based on the Do-GooD model, we expected that this subnetwork would involve connectivity to the ventromedial prefrontal cortex (VMPFC) from three domain-general networks, the default mode network (DMN), the salience network, and the control network, as well as from the DMN to the mirror neuron systems. NBS revealed a significant functional (but not structural) subnetwork related to prosociality and compassion connecting 31 regions (p = 0.02), showing DMN and DLPFC connectivity to the VMPFC; DMN connectivity to mirror neuron systems; and connectivity between the DMN and cerebellum. These findings largely support and extend the Do-GooD model of prosocial cognition in adolescents by further illuminating network-based relationships that have the potential to advance our understanding of brain mechanisms of prosociality.
Collapse
Affiliation(s)
- Benjamin S. Sipes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Angela Jakary
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Yi Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffrey E. Max
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
- Rady Children’s Hospital San Diego, San Diego, CA, United States
| | - Tony T. Yang
- Department of Psychiatry and Behavioral Sciences, The Langley Porter Psychiatric Institute, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Olga Tymofiyeva
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Olga Tymofiyeva,
| |
Collapse
|
31
|
Stoliker D, Egan GF, Friston KJ, Razi A. Neural Mechanisms and Psychology of Psychedelic Ego Dissolution. Pharmacol Rev 2022; 74:876-917. [PMID: 36786290 DOI: 10.1124/pharmrev.121.000508] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Neuroimaging studies of psychedelics have advanced our understanding of hierarchical brain organization and the mechanisms underlying their subjective and therapeutic effects. The primary mechanism of action of classic psychedelics is binding to serotonergic 5-HT2A receptors. Agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy that can have a profound effect on hierarchical message-passing in the brain. Here, we review the cognitive and neuroimaging evidence for the effects of psychedelics: in particular, their influence on selfhood and subject-object boundaries-known as ego dissolution-surmised to underwrite their subjective and therapeutic effects. Agonism of 5-HT2A receptors, located at the apex of the cortical hierarchy, may have a particularly powerful effect on sentience and consciousness. These effects can endure well after the pharmacological half-life, suggesting that psychedelics may have effects on neural plasticity that may play a role in their therapeutic efficacy. Psychologically, this may be accompanied by a disarming of ego resistance that increases the repertoire of perceptual hypotheses and affords alternate pathways for thought and behavior, including those that undergird selfhood. We consider the interaction between serotonergic neuromodulation and sentience through the lens of hierarchical predictive coding, which speaks to the value of psychedelics in understanding how we make sense of the world and specific predictions about effective connectivity in cortical hierarchies that can be tested using functional neuroimaging. SIGNIFICANCE STATEMENT: Classic psychedelics bind to serotonergic 5-HT2A receptors. Their agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy, resulting in a profound effect on information processing in the brain. Here, we synthesize an abundance of brain imaging research with pharmacological and psychological interpretations informed by the framework of predictive coding. Moreover, predictive coding is suggested to offer more sophisticated interpretations of neuroimaging findings by bridging the role between the 5-HT2A receptors and large-scale brain networks.
Collapse
Affiliation(s)
- Devon Stoliker
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Gary F Egan
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Karl J Friston
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Adeel Razi
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| |
Collapse
|
32
|
Safron A, Çatal O, Verbelen T. Generalized Simultaneous Localization and Mapping (G-SLAM) as unification framework for natural and artificial intelligences: towards reverse engineering the hippocampal/entorhinal system and principles of high-level cognition. Front Syst Neurosci 2022; 16:787659. [PMID: 36246500 PMCID: PMC9563348 DOI: 10.3389/fnsys.2022.787659] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Simultaneous localization and mapping (SLAM) represents a fundamental problem for autonomous embodied systems, for which the hippocampal/entorhinal system (H/E-S) has been optimized over the course of evolution. We have developed a biologically-inspired SLAM architecture based on latent variable generative modeling within the Free Energy Principle and Active Inference (FEP-AI) framework, which affords flexible navigation and planning in mobile robots. We have primarily focused on attempting to reverse engineer H/E-S "design" properties, but here we consider ways in which SLAM principles from robotics may help us better understand nervous systems and emergent minds. After reviewing LatentSLAM and notable features of this control architecture, we consider how the H/E-S may realize these functional properties not only for physical navigation, but also with respect to high-level cognition understood as generalized simultaneous localization and mapping (G-SLAM). We focus on loop-closure, graph-relaxation, and node duplication as particularly impactful architectural features, suggesting these computational phenomena may contribute to understanding cognitive insight (as proto-causal-inference), accommodation (as integration into existing schemas), and assimilation (as category formation). All these operations can similarly be describable in terms of structure/category learning on multiple levels of abstraction. However, here we adopt an ecological rationality perspective, framing H/E-S functions as orchestrating SLAM processes within both concrete and abstract hypothesis spaces. In this navigation/search process, adaptive cognitive equilibration between assimilation and accommodation involves balancing tradeoffs between exploration and exploitation; this dynamic equilibrium may be near optimally realized in FEP-AI, wherein control systems governed by expected free energy objective functions naturally balance model simplicity and accuracy. With respect to structure learning, such a balance would involve constructing models and categories that are neither too inclusive nor exclusive. We propose these (generalized) SLAM phenomena may represent some of the most impactful sources of variation in cognition both within and between individuals, suggesting that modulators of H/E-S functioning may potentially illuminate their adaptive significances as fundamental cybernetic control parameters. Finally, we discuss how understanding H/E-S contributions to G-SLAM may provide a unifying framework for high-level cognition and its potential realization in artificial intelligences.
Collapse
Affiliation(s)
- Adam Safron
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
| | - Ozan Çatal
- IDLab, Department of Information Technology, Ghent University—imec, Ghent, Belgium
| | - Tim Verbelen
- IDLab, Department of Information Technology, Ghent University—imec, Ghent, Belgium
| |
Collapse
|
33
|
Narrative thinking lingers in spontaneous thought. Nat Commun 2022; 13:4585. [PMID: 35933422 PMCID: PMC9357042 DOI: 10.1038/s41467-022-32113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/16/2022] [Indexed: 11/28/2022] Open
Abstract
Some experiences linger in mind, spontaneously returning to our thoughts for minutes after their conclusion. Other experiences fall out of mind immediately. It remains unclear why. We hypothesize that an input is more likely to persist in our thoughts when it has been deeply processed: when we have extracted its situational meaning rather than its physical properties or low-level semantics. Here, participants read sequences of words with different levels of coherence (word-, sentence-, or narrative-level). We probe participants’ spontaneous thoughts via free word association, before and after reading. By measuring lingering subjectively (via self-report) and objectively (via changes in free association content), we find that information lingers when it is coherent at the narrative level. Furthermore, and an individual’s feeling of transportation into reading material predicts lingering better than the material’s objective coherence. Thus, our thoughts in the present moment echo prior experiences that have been incorporated into deeper, narrative forms of thinking. Some experiences linger in our minds, while others quickly fade. Here, the authors show that the extent to which our recent experiences linger into subsequent thought increases as a function of processing depth.
Collapse
|
34
|
Reward enhances connectivity between the ventral striatum and the default mode network. Neuroimage 2022; 258:119398. [PMID: 35724856 PMCID: PMC9343171 DOI: 10.1016/j.neuroimage.2022.119398] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 05/23/2022] [Accepted: 06/16/2022] [Indexed: 11/24/2022] Open
Abstract
The default mode network (DMN) has been theorized to participate in a range of social, cognitive, and affective functions. Yet, previous accounts do not consider how the DMN contributes to other brain regions depending on psychological context, thus rendering our understanding of DMN function incomplete. We addressed this gap by applying a novel network-based psychophysiological interaction (nPPI) analysis to the reward task within the Human Connectome Project. We first focused on the task-evoked responses of the DMN and other networks involving the prefrontal cortex, including the executive control network (salience network) and the left and right frontoparietal networks. Consistent with a host of prior studies, the DMN exhibited a relative decrease in activation during the task, while the other networks exhibited a relative increase during the task. Next, we used nPPI analyses to assess whether these networks exhibit task-dependent changes in connectivity with other brain regions. Strikingly, we found that the experience of reward enhances task-dependent connectivity between the DMN and the ventral striatum, an effect that was specific to the DMN. Surprisingly, the strength of DMN-VS connectivity was correlated with personality characteristics relating to openness. Taken together, these results advance models of DMN by demonstrating how it contributes to other brain systems during task performance and how those contributions relate to individual differences.
Collapse
|
35
|
Kang Y, Kang W, Han KM, Tae WS, Ham BJ. Associations between cognitive impairment and cortical thickness alterations in patients with euthymic and depressive bipolar disorder. Psychiatry Res Neuroimaging 2022; 322:111462. [PMID: 35231679 DOI: 10.1016/j.pscychresns.2022.111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
Affiliation(s)
- Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Korea University, Brain Convergence Research Center
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Involvement of the default mode network under varying levels of cognitive effort. Sci Rep 2022; 12:6303. [PMID: 35428802 PMCID: PMC9012747 DOI: 10.1038/s41598-022-10289-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/29/2022] [Indexed: 01/04/2023] Open
Abstract
Everyday cognitive functioning is characterized by constant alternations between different modes of information processing, driven by constant fluctuations in environmental demands. At the neural level, this is realized through corresponding dynamic shifts in functional activation and network connectivity. A distinction is often made between resting and task processing and between task-negative and task-positive functional networks. The Default Mode Network (DMN) is classically considered as a resting state (i.e. task-negative) network, upregulated in the absence of cognitive demands. In contrast, task-positive networks have been labelled the Extrinsic Mode Network (EMN). We investigated changes in brain activation and functional network connectivity in an experimental situation of repeated alterations between levels of cognitive effort, following a block-design. Using fMRI and a classic Stroop paradigm, participants switched back and forth between periods of no effort (resting), low effort (word reading, i.e. automatic processing based on learned internal representations and rules) and high effort (color naming, i.e. cognitively controlled perceptual processing of specific features of external stimuli). Results showed an expected EMN-activation for task versus resting contrasts, and DMN-activation for rest versus task contrasts. The DMN was in addition more strongly activated during periods of low effort contrasted with high effort, suggesting a gradual up- and down-regulation of the DMN network, depending on the level of demand and the type of processing required. The often reported “anti-correlation” between DMN and EMN was strongest during periods of low effort, indicating intermittent contributions of both networks. Taken together, these results challenge the traditional view of the DMN as solely a task-negative network. Instead, both the EMN and DMN may contribute to low-effort cognitive processing. In contrast, periods of resting and high effort are dominated by the DMN and EMN, respectively.
Collapse
|
37
|
Potter HD, Mitchell KJ. Naturalising Agent Causation. ENTROPY 2022; 24:e24040472. [PMID: 35455135 PMCID: PMC9030586 DOI: 10.3390/e24040472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
The idea of agent causation—that a system such as a living organism can be a cause of things in the world—is often seen as mysterious and deemed to be at odds with the physicalist thesis that is now commonly embraced in science and philosophy. Instead, the causal power of organisms is attributed to mechanistic components within the system or derived from the causal activity at the lowest level of physical description. In either case, the ‘agent’ itself (i.e., the system as a whole) is left out of the picture entirely, and agent causation is explained away. We argue that this is not the right way to think about causation in biology or in systems more generally. We present a framework of eight criteria that we argue, collectively, describe a system that overcomes the challenges concerning agent causality in an entirely naturalistic and non-mysterious way. They are: (1) thermodynamic autonomy, (2) persistence, (3) endogenous activity, (4) holistic integration, (5) low-level indeterminacy, (6) multiple realisability, (7) historicity, (8) agent-level normativity. Each criterion is taken to be dimensional rather than categorical, and thus we conclude with a short discussion on how researchers working on quantifying agency may use this multidimensional framework to situate and guide their research.
Collapse
Affiliation(s)
- Henry D. Potter
- Smurfit Institute of Genetics, Trinity College Dublin, D02 VF25 Dublin, Ireland;
- Institute of Neuroscience, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Kevin J. Mitchell
- Smurfit Institute of Genetics, Trinity College Dublin, D02 VF25 Dublin, Ireland;
- Institute of Neuroscience, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Correspondence:
| |
Collapse
|
38
|
Dubey S, Dubey MJ, Ghosh R, Mitchell AJ, Chatterjee S, Das S, Pandit A, Ray BK, Das G, Benito-León J. The cognitive basis of psychosocial impact in COVID-19 pandemic. Does it encircle the default mode network of the brain? A pragmatic proposal. MEDICAL RESEARCH ARCHIVES 2022; 10:10.18103/mra.v10i3.2707. [PMID: 35530572 PMCID: PMC9071110 DOI: 10.18103/mra.v10i3.2707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Epigenetics, hypothalamic-pituitary axes, environmental and metabolic influences, and transgenerational plasticity govern social behavior. Cognitive research considers the brain's default mode network (DMN) as a central hub that integrates various cognitive and social processing domains responsible for emotion perception, empathy, theory of mind, and morality. Hence, DMN is regarded as the "social brain." Upsurge in social turmoil, social anxiety, panic, depression, post-traumatic stress, hoarding, herd behavior, substance and behavioral addictions, sexual abuse, and violence in the time of the COVID-19 pandemic are intricately related to personality traits resulting in disruptive social cognition and social behavior, conceptualized as the result of unsettling and disruption of the functional nexus of the DMN. Considering overt and conspicuous display of neuroticism during the current pandemic, its impact upon modulation of the DMN functional nexus and the DMN itself, and the potential to presage cognitive impairment in the future, the authors caution that an increase in the global burden of dementia may be one of the long-term ramifications of COVID-19. Social behavior, a functional derivative of the DMN, can strikingly affect the functional nexus of DMN and the DMN itself, in a centripetal way via the phenomenon called "Experience-Dependent Plasticity," with long-term consequences. In this review, we intend to 1) decipher the association between social cognition and social behavior with the DMN, in time of COVID-19; and to 2) discuss the prospective aftermath of disrupted social behavior during the pandemic on modulation/alteration of functional connectomes of DMN or the DMN itself in the time ahead.
Collapse
Affiliation(s)
- Souvik Dubey
- Department of Neuromedicine, Bangur Institute of Neurosciences, Kolkata, India
| | - Mahua Jana Dubey
- Department of Psychiatry, Berhampore Mental Hospital, Murshidabad, India
| | - Ritwik Ghosh
- Department of General Medicine, Burdwan Medical College & Hospital, Burdwan, West Bengal, India
| | - Alex J Mitchell
- University Hospitals of Leicester, University of Leicester, Leicester, U.K
| | - Subhankar Chatterjee
- Department of Medicine, RG Kar Medical College, and Hospital, Kolkata, West Bengal, India
| | - Shambaditya Das
- Department of Neuromedicine, Bangur Institute of Neurosciences, Kolkata, India
| | - Alak Pandit
- Department of Neuromedicine, Bangur Institute of Neurosciences, Kolkata, India
| | - Biman Kanti Ray
- Department of Neuromedicine, Bangur Institute of Neurosciences, Kolkata, India
| | - Gautam Das
- Department of Neuromedicine, Bangur Institute of Neurosciences, Kolkata, India
| | - Julián Benito-León
- Department of Neurology, University Hospital "12 de Octubre", Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
39
|
Abraham E, Wang Y, Svob C, Semanek D, Gameroff MJ, Shankman SA, Weissman MM, Talati A, Posner J. Organization of the social cognition network predicts future depression and interpersonal impairment: a prospective family-based study. Neuropsychopharmacology 2022; 47:531-542. [PMID: 34162998 PMCID: PMC8674240 DOI: 10.1038/s41386-021-01065-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Deficits in social cognition and functioning are common in major depressive disorder (MDD). Still, no study into the pathophysiology of MDD has examined the social cognition-related neural pathways through which familial risk for MDD leads to depression and interpersonal impairments. Using resting-state fMRI, we applied a graph theoretical analysis to quantify the influence of nodes within the fronto-temporo-parietal cortical social cognition network in 108 generation 2 and generation 3 offspring at high and low-risk for MDD, defined by the presence or absence, respectively, of moderate to severe MDD in generation 1. New MDD episodes, future depressive symptoms, and interpersonal impairments were tested for associations with social cognition nodal influence, using regression analyses applied in a generalized estimating equations approach. Increased familial risk was associated with reduced nodal influence within the network, and this predicted new depressive episodes, worsening depressive symptomatology, and interpersonal impairments, 5-8 years later. Findings remained significant after controlling for current depressive/anxiety symptoms and current/lifetime MDD and anxiety disorders. Path-analysis models indicate that increased familial risk impacted offspring's brain function in two ways. First, high familial risk was indirectly associated with future depression, both new MDD episodes and symptomatology, via reduced nodal influence of the right posterior superior temporal gyrus (pSTG). Second, high familial risk was indirectly associated with future interpersonal impairments via reduced nodal influence of right inferior frontal gyrus (IFG). Finally, reduced nodal influence was associated with high familial risk in (1) those who had never had MDD at the time of scanning and (2) a subsample (n = 52) rescanned 8 years later. Together, findings reveal a potential pathway for the intergenerational transmission of vulnerability via the aberrant social cognition network organization and suggest using the connectome of neural network related to social cognition to identify intervention and prevention targets for those particularly at risk.
Collapse
Affiliation(s)
- Eyal Abraham
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Divisions of Translational Epidemiology and New York State Psychiatric Institute, New York, NY, USA.
| | - Yun Wang
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Child Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Connie Svob
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Divisions of Translational Epidemiology and New York State Psychiatric Institute, New York, NY, USA
| | - David Semanek
- Child Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Marc J Gameroff
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Divisions of Translational Epidemiology and New York State Psychiatric Institute, New York, NY, USA
| | - Stewart A Shankman
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Evanston, USA
| | - Myrna M Weissman
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Divisions of Translational Epidemiology and New York State Psychiatric Institute, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ardesheer Talati
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Divisions of Translational Epidemiology and New York State Psychiatric Institute, New York, NY, USA
| | - Jonathan Posner
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Child Psychiatry, New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
40
|
Zajner C, Spreng RN, Bzdok D. Loneliness is linked to specific subregional alterations in hippocampus-default network covariation. J Neurophysiol 2021; 126:2138-2157. [PMID: 34817294 PMCID: PMC8715056 DOI: 10.1152/jn.00339.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Social interaction complexity makes humans unique. But in times of social deprivation, this strength risks exposure of important vulnerabilities. Human social neuroscience studies have placed a premium on the default network (DN). In contrast, hippocampus (HC) subfields have been intensely studied in rodents and monkeys. To bridge these two literatures, we here quantified how DN subregions systematically covary with specific HC subfields in the context of subjective social isolation (i.e., loneliness). By codecomposition using structural brain scans of ∼40,000 UK Biobank participants, loneliness was specially linked to midline subregions in the uncovered DN patterns. These association cortex patterns coincided with concomitant HC patterns implicating especially CA1 and molecular layer. These patterns also showed a strong affiliation with the fornix white matter tract and the nucleus accumbens. In addition, separable signatures of structural HC-DN covariation had distinct associations with the genetic predisposition for loneliness at the population level. NEW & NOTEWORTHY The hippocampus and default network have been implicated in rich social interaction. Yet, these allocortical and neocortical neural systems have been interrogated in mostly separate literatures. Here, we conjointly investigate the hippocampus and default network at a subregion level, by capitalizing structural brain scans from ∼40,000 participants. We thus reveal unique insights on the nature of the “lonely brain” by estimating the regimes of covariation between the hippocampus and default network at population scale.
Collapse
Affiliation(s)
- Chris Zajner
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - R Nathan Spreng
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Departments of Psychiatry and Psychology, McGill University, Montreal, QC, Canada.,Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Danilo Bzdok
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Mila-Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| |
Collapse
|
41
|
Onofrj M, Russo M, Carrarini C, Delli Pizzi S, Thomas A, Bonanni L, Espay AJ, Sensi SL. Functional neurological disorder and somatic symptom disorder in Parkinson's disease. J Neurol Sci 2021; 433:120017. [PMID: 34629180 DOI: 10.1016/j.jns.2021.120017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/02/2021] [Accepted: 09/29/2021] [Indexed: 11/15/2022]
Abstract
The occurrence of Functional Neurological Disorder (FND) and Somatic Symptom Disorder (SSD) in PD was not commonly accepted until recently, despite some evidence that emerged in the pre and early L-Dopa era. More recently, the recognition of FND and SSD were noted to be relevant for the management of PD. FND and SSD appear early in the course of PD, often preceding motor symptoms, may interfere with treatment outcomes, often acquire psychotic features during progression, and are mixed with and often concealed by the progressive cognitive decline. We review the related features from the range of the available reports and discuss theoretical models conceived to explain the potential pathophysiological background of these disorders. Finally, we suggest that FND and SSD should be included among the non-motor symptoms of PD and be considered a prodromal feature in a subset of patients. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
Affiliation(s)
- Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mirella Russo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Claudia Carrarini
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefano Delli Pizzi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology and Behavioral Neurology Units, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Astrid Thomas
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology and Behavioral Neurology Units, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Laura Bonanni
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Stefano L Sensi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Molecular Neurology and Behavioral Neurology Units, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Institute for Mind Impairments and Neurological Disorders-iMIND, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
42
|
The autonomic brain: Multi-dimensional generative hierarchical modelling of the autonomic connectome. Cortex 2021; 143:164-179. [PMID: 34438298 PMCID: PMC8500219 DOI: 10.1016/j.cortex.2021.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/11/2021] [Accepted: 06/20/2021] [Indexed: 01/08/2023]
Abstract
The autonomic nervous system governs the body's multifaceted internal adaptation to diverse changes in the external environment, a role more complex than is accessible to the methods-and data scales-hitherto used to illuminate its operation. Here we apply generative graphical modelling to large-scale multimodal neuroimaging data encompassing normal and abnormal states to derive a comprehensive hierarchical representation of the autonomic brain. We demonstrate that whereas conventional structural and functional maps identify regions jointly modulated by parasympathetic and sympathetic systems, only graphical analysis discriminates between them, revealing the cardinal roles of the autonomic system to be mediated by high-level distributed interactions. We provide a novel representation of the autonomic system-a multidimensional, generative network-that renders its richness tractable within future models of its function in health and disease.
Collapse
|
43
|
Suárez LE, Richards BA, Lajoie G, Misic B. Learning function from structure in neuromorphic networks. NAT MACH INTELL 2021. [DOI: 10.1038/s42256-021-00376-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
Jauhar S, Fortea L, Solanes A, Albajes-Eizagirre A, McKenna PJ, Radua J. Brain activations associated with anticipation and delivery of monetary reward: A systematic review and meta-analysis of fMRI studies. PLoS One 2021; 16:e0255292. [PMID: 34351957 PMCID: PMC8341642 DOI: 10.1371/journal.pone.0255292] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/13/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND While multiple studies have examined the brain functional correlates of reward, meta-analyses have either focused on studies using the monetary incentive delay (MID) task, or have adopted a broad strategy, combining data from studies using both monetary and non-monetary reward, as probed using a wide range of tasks. OBJECTIVE To meta-analyze fMRI studies that used monetary reward and in which there was a definable cue-reward contingency. Studies were limited to those using monetary reward in order to avoid potential heterogeneity from use of other rewards, especially social rewards. Studies using gambling or delay discounting tasks were excluded on the grounds that reward anticipation is not easily quantifiable. STUDY ELIGIBILITY English-language fMRI studies (i) that reported fMRI findings on healthy adults; (ii) that used monetary reward; and (iii) in which a cue that was predictive of reward was compared to a no win (or lesser win) condition. Only voxel-based studies were included; those where brain coverage was incomplete were excluded. DATA SOURCES Ovid, Medline and PsycInfo, from 2000 to 2020, plus checking of review articles and meta-analyses. DATA SYNTHESIS Data were pooled using Seed-based d Mapping with Permutation of Subject Images (SDM-PSI). Heterogeneity among studies was examined using the I2 statistic. Publication bias was examined using funnel plots and statistical examination of asymmetries. Moderator variables including whether the task was pre-learnt, sex distribution, amount of money won and width of smoothing kernel were examined. RESULTS Pooled data from 45 studies of reward anticipation revealed activations in the ventral striatum, the middle cingulate cortex/supplementary motor area and the insula. Pooled data from 28 studies of reward delivery again revealed ventral striatal activation, plus cortical activations in the anterior and posterior cingulate cortex. There was relatively little evidence of publication bias. Among moderating variables, only whether the task was pre-learnt exerted an influence. CONCLUSIONS According to this meta-analysis monetary reward anticipation and delivery both activate the ventral but not the dorsal striatum, and are associated with different patterns of cortical activation.
Collapse
Affiliation(s)
- S. Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - L. Fortea
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - A. Solanes
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- FIDMAG, Germanes Hospitalàries Research foundation, Barcelona, Spain
- Antonomous University of Barcelona, Barcelona, Spain
| | - A. Albajes-Eizagirre
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- FIDMAG, Germanes Hospitalàries Research foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - P. J. McKenna
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - J. Radua
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- FIDMAG, Germanes Hospitalàries Research foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
45
|
The default mode network in cognition: a topographical perspective. Nat Rev Neurosci 2021; 22:503-513. [PMID: 34226715 DOI: 10.1038/s41583-021-00474-4] [Citation(s) in RCA: 330] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
The default mode network (DMN) is a set of widely distributed brain regions in the parietal, temporal and frontal cortex. These regions often show reductions in activity during attention-demanding tasks but increase their activity across multiple forms of complex cognition, many of which are linked to memory or abstract thought. Within the cortex, the DMN has been shown to be located in regions furthest away from those contributing to sensory and motor systems. Here, we consider how our knowledge of the topographic characteristics of the DMN can be leveraged to better understand how this network contributes to cognition and behaviour.
Collapse
|
46
|
Hartwigsen G, Bengio Y, Bzdok D. How does hemispheric specialization contribute to human-defining cognition? Neuron 2021; 109:2075-2090. [PMID: 34004139 PMCID: PMC8273110 DOI: 10.1016/j.neuron.2021.04.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022]
Abstract
Uniquely human cognitive faculties arise from flexible interplay between specific local neural modules, with hemispheric asymmetries in functional specialization. Here, we discuss how these computational design principles provide a scaffold that enables some of the most advanced cognitive operations, such as semantic understanding of world structure, logical reasoning, and communication via language. We draw parallels to dual-processing theories of cognition by placing a focus on Kahneman's System 1 and System 2. We propose integration of these ideas with the global workspace theory to explain dynamic relay of information products between both systems. Deepening the current understanding of how neurocognitive asymmetry makes humans special can ignite the next wave of neuroscience-inspired artificial intelligence.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Max Planck Institute for Human Cognitive and Brain Sciences, Lise Meitner Research Group Cognition and Plasticity, Leipzig, Germany.
| | - Yoshua Bengio
- Mila, Montreal, QC, Canada; University of Montreal, Montreal, QC, Canada
| | - Danilo Bzdok
- Mila, Montreal, QC, Canada; Montreal Neurological Institute, McConnell Brain Imaging Centre, Faculty of Medicine, McGill University, Montreal, QC, Canada; Department of Biomedical Engineering, Faculty of Medicine, and School of Computer Science, McGill University, Montreal, QC, Canada.
| |
Collapse
|
47
|
Safron A. The Radically Embodied Conscious Cybernetic Bayesian Brain: From Free Energy to Free Will and Back Again. ENTROPY (BASEL, SWITZERLAND) 2021; 23:783. [PMID: 34202965 PMCID: PMC8234656 DOI: 10.3390/e23060783] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022]
Abstract
Drawing from both enactivist and cognitivist perspectives on mind, I propose that explaining teleological phenomena may require reappraising both "Cartesian theaters" and mental homunculi in terms of embodied self-models (ESMs), understood as body maps with agentic properties, functioning as predictive-memory systems and cybernetic controllers. Quasi-homuncular ESMs are suggested to constitute a major organizing principle for neural architectures due to their initial and ongoing significance for solutions to inference problems in cognitive (and affective) development. Embodied experiences provide foundational lessons in learning curriculums in which agents explore increasingly challenging problem spaces, so answering an unresolved question in Bayesian cognitive science: what are biologically plausible mechanisms for equipping learners with sufficiently powerful inductive biases to adequately constrain inference spaces? Drawing on models from neurophysiology, psychology, and developmental robotics, I describe how embodiment provides fundamental sources of empirical priors (as reliably learnable posterior expectations). If ESMs play this kind of foundational role in cognitive development, then bidirectional linkages will be found between all sensory modalities and frontal-parietal control hierarchies, so infusing all senses with somatic-motoric properties, thereby structuring all perception by relevant affordances, so solving frame problems for embodied agents. Drawing upon the Free Energy Principle and Active Inference framework, I describe a particular mechanism for intentional action selection via consciously imagined (and explicitly represented) goal realization, where contrasts between desired and present states influence ongoing policy selection via predictive coding mechanisms and backward-chained imaginings (as self-realizing predictions). This embodied developmental legacy suggests a mechanism by which imaginings can be intentionally shaped by (internalized) partially-expressed motor acts, so providing means of agentic control for attention, working memory, imagination, and behavior. I further describe the nature(s) of mental causation and self-control, and also provide an account of readiness potentials in Libet paradigms wherein conscious intentions shape causal streams leading to enaction. Finally, I provide neurophenomenological handlings of prototypical qualia including pleasure, pain, and desire in terms of self-annihilating free energy gradients via quasi-synesthetic interoceptive active inference. In brief, this manuscript is intended to illustrate how radically embodied minds may create foundations for intelligence (as capacity for learning and inference), consciousness (as somatically-grounded self-world modeling), and will (as deployment of predictive models for enacting valued goals).
Collapse
Affiliation(s)
- Adam Safron
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
- Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
- Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
48
|
Vaisvaser S. The Embodied-Enactive-Interactive Brain: Bridging Neuroscience and Creative Arts Therapies. Front Psychol 2021; 12:634079. [PMID: 33995190 PMCID: PMC8121022 DOI: 10.3389/fpsyg.2021.634079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/07/2021] [Indexed: 01/10/2023] Open
Abstract
The recognition and incorporation of evidence-based neuroscientific concepts into creative arts therapeutic knowledge and practice seem valuable and advantageous for the purpose of integration and professional development. Moreover, exhilarating insights from the field of neuroscience coincide with the nature, conceptualization, goals, and methods of Creative Arts Therapies (CATs), enabling comprehensive understandings of the clinical landscape, from a translational perspective. This paper contextualizes and discusses dynamic brain functions that have been suggested to lie at the heart of intra- and inter-personal processes. Touching upon fundamental aspects of the self and self-other interaction, the state-of-the-art neuroscientific-informed views will shed light on mechanisms of the embodied, predictive and relational brain. The conceptual analysis introduces and interweaves the following contemporary perspectives of brain function: firstly, the grounding of mental activity in the lived, bodily experience will be delineated; secondly, the enactive account of internal models, or generative predictive representations, shaped by experience, will be defined and extensively deliberated; and thirdly, the interpersonal simulation and synchronization mechanisms that support empathy and mentalization will be thoroughly considered. Throughout the paper, the cross-talks between the brain and the body, within the brain through functionally connected neural networks and in the context of agent-environment dynamics, will be addressed. These communicative patterns will be elaborated on to unfold psychophysiological linkage, as well as psychopathological shifts, concluding with the neuroplastic change associated with the formulation of CATs. The manuscript suggests an integrative view of the brain-body-mind in contexts relevant to the therapeutic potential of the expressive creative arts and the main avenues by which neuroscience may ground, enlighten and enrich the clinical psychotherapeutic practice.
Collapse
Affiliation(s)
- Sharon Vaisvaser
- School of Society and the Arts, Ono Academic College, Kiryat Ono, Israel
| |
Collapse
|
49
|
Numssen O, Bzdok D, Hartwigsen G. Functional specialization within the inferior parietal lobes across cognitive domains. eLife 2021; 10:63591. [PMID: 33650486 PMCID: PMC7946436 DOI: 10.7554/elife.63591] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
The inferior parietal lobe (IPL) is a key neural substrate underlying diverse mental processes, from basic attention to language and social cognition, that define human interactions. Its putative domain-global role appears to tie into poorly understood differences between cognitive domains in both hemispheres. Across attentional, semantic, and social cognitive tasks, our study explored functional specialization within the IPL. The task specificity of IPL subregion activity was substantiated by distinct predictive signatures identified by multivariate pattern-learning algorithms. Moreover, the left and right IPL exerted domain-specific modulation of effective connectivity among their subregions. Task-evoked functional interactions of the anterior and posterior IPL subregions involved recruitment of distributed cortical partners. While anterior IPL subregions were engaged in strongly lateralized coupling links, both posterior subregions showed more symmetric coupling patterns across hemispheres. Our collective results shed light on how under-appreciated hemispheric specialization in the IPL supports some of the most distinctive human mental capacities.
Collapse
Affiliation(s)
- Ole Numssen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada.,Mila - Quebec Artificial Intelligence Institute, Montreal, Canada
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
| |
Collapse
|
50
|
Yeshurun Y, Nguyen M, Hasson U. The default mode network: where the idiosyncratic self meets the shared social world. Nat Rev Neurosci 2021; 22:181-192. [PMID: 33483717 PMCID: PMC7959111 DOI: 10.1038/s41583-020-00420-w] [Citation(s) in RCA: 237] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 01/29/2023]
Abstract
The default mode network (DMN) is classically considered an 'intrinsic' system, specializing in internally oriented cognitive processes such as daydreaming, reminiscing and future planning. In this Perspective, we suggest that the DMN is an active and dynamic 'sense-making' network that integrates incoming extrinsic information with prior intrinsic information to form rich, context-dependent models of situations as they unfold over time. We review studies that relied on naturalistic stimuli, such as stories and movies, to demonstrate how an individual's DMN neural responses are influenced both by external information accumulated as events unfold over time and by the individual's idiosyncratic past memories and knowledge. The integration of extrinsic and intrinsic information over long timescales provides a space for negotiating a shared neural code, which is necessary for establishing shared meaning, shared communication tools, shared narratives and, above all, shared communities and social networks.
Collapse
Affiliation(s)
- Yaara Yeshurun
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel.
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| | - Mai Nguyen
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- Department of Psychology, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Uri Hasson
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel.
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
- Department of Psychology, Princeton University, Princeton, NJ, USA.
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|