1
|
Syversen IF, Reznik D, Witter MP, Kobro-Flatmoen A, Navarro Schröder T, Doeller CF. A combined DTI-fMRI approach for optimizing the delineation of posteromedial versus anterolateral entorhinal cortex. Hippocampus 2024; 34:659-672. [PMID: 39305289 DOI: 10.1002/hipo.23639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/14/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024]
Abstract
In the entorhinal cortex (EC), attempts have been made to identify the human homologue regions of the medial (MEC) and lateral (LEC) subregions using either functional magnetic resonance imaging (fMRI) or diffusion tensor imaging (DTI). However, there are still discrepancies between entorhinal subdivisions depending on the choice of connectivity seed regions and the imaging modality used. While DTI can be used to follow the white matter tracts of the brain, fMRI can identify functionally connected brain regions. In this study, we used both DTI and resting-state fMRI in 103 healthy adults to investigate both structural and functional connectivity between the EC and associated cortical brain regions. Differential connectivity with these regions was then used to predict the locations of the human homologues of MEC and LEC. Our results from combining DTI and fMRI support a subdivision into posteromedial (pmEC) and anterolateral (alEC) EC and reveal a confined border between the pmEC and alEC. Furthermore, the EC subregions obtained by either imaging modality showed similar distinct whole-brain connectivity profiles. Optimizing the delineation of the human homologues of MEC and LEC with a combined, cross-validated DTI-fMRI approach allows to define a likely border between the two subdivisions and has implications for both cognitive and translational neuroscience research.
Collapse
Affiliation(s)
- Ingrid Framås Syversen
- Kavli Institute for Systems Neuroscience, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Diagnostic Imaging, Akershus University Hospital, Lørenskog, Norway
| | - Daniel Reznik
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Centre for Alzheimer's Disease, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Centre for Alzheimer's Disease, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Tobias Navarro Schröder
- Kavli Institute for Systems Neuroscience, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian F Doeller
- Kavli Institute for Systems Neuroscience, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- K.G. Jebsen Centre for Alzheimer's Disease, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
2
|
Zilioli A, Pancaldi B, Baumeister H, Busi G, Misirocchi F, Mutti C, Florindo I, Morelli N, Mohanty R, Berron D, Westman E, Spallazzi M. Unveiling the hippocampal subfield changes across the Alzheimer's disease continuum: a systematic review of neuroimaging studies. Brain Imaging Behav 2024:10.1007/s11682-024-00952-0. [PMID: 39443362 DOI: 10.1007/s11682-024-00952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Studies exploring the hippocampal subfield atrophy in Alzheimer's disease (AD) have shown contradictory results. This review aims to disentangle such heterogeneity by investigating the dynamic changes of hippocampal subfields across the AD continuum. We systematically searched the PubMed and EMBASE databases for case-control studies. Selected studies included investigations of biomarker-based amyloid status and reported data on hippocampal subfield atrophy using advanced MRI techniques. Twelve studies were included. Despite high heterogeneity, a distinguishable pattern of vulnerability of hippocampal subfields can be recognized from the cognitively unimpaired phase to the dementia stage, shedding light on hippocampal changes with disease progression. Consistent findings revealed atrophy in the subiculum and presubiculum, along with a potential increase in volume in the cornu ammonis (CA) among the cognitively unimpaired group, a feature not observed in patients experiencing subjective cognitive decline. Atrophy in the subiculum, presubiculum, CA 1-4, and the dentate gyrus characterized the mild cognitive impairment stage, with a more pronounced severity in the progression to dementia.
Collapse
Affiliation(s)
- Alessandro Zilioli
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Beatrice Pancaldi
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Hannah Baumeister
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Gabriele Busi
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Francesco Misirocchi
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Carlotta Mutti
- Department of Medicine and Surgery, Unit of Neurology, University-Hospital of Parma, Parma, Italy
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Irene Florindo
- Department of Medicine and Surgery, Unit of Neurology, University-Hospital of Parma, Parma, Italy
| | - Nicola Morelli
- Department of Neurology, G. da Saliceto Hospital, Piacenza, Italy
| | - Rosaleena Mohanty
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Blickagången 16 (NEO building, floor 7th), 14152, Huddinge, Stockholm, Sweden
| | - David Berron
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120, Magdeburg, Germany
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Blickagången 16 (NEO building, floor 7th), 14152, Huddinge, Stockholm, Sweden
- Department of Neuroimaging, Center for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marco Spallazzi
- Department of Medicine and Surgery, Unit of Neurology, University-Hospital of Parma, Parma, Italy
| |
Collapse
|
3
|
Mazloum‐Farzaghi N, Barense M, Ryan J, Stark C, Olsen R. The Effect of Segmentation Method on Medial Temporal Lobe Subregion Volumes in Aging. Hum Brain Mapp 2024; 45:e70054. [PMID: 39450487 PMCID: PMC11502966 DOI: 10.1002/hbm.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/04/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Early stages of Alzheimer's disease (AD) are associated with volume reductions in specific subregions of the medial temporal lobe (MTL). Using a manual segmentation method-the Olsen-Amaral-Palombo (OAP) protocol-previous work in healthy older adults showed that reductions in grey matter volumes in MTL subregions were associated with lower scores on the Montreal Cognitive Assessment (MoCA), suggesting atrophy may occur prior to diagnosis of mild cognitive impairment, a condition that often progresses to AD. However, current "gold standard" manual segmentation methods are labour intensive and time consuming. Here, we examined the utility of Automatic Segmentation of Hippocampal Subfields (ASHS) to detect volumetric differences in MTL subregions of healthy older adults who varied in cognitive status as determined by the MoCA. We trained ASHS on the OAP protocol to create the ASHS-OAP atlas and then examined how well automated segmentation replicated manual segmentation. Volumetric measures obtained from the ASHS-OAP atlas were also contrasted against those from the ASHS-PMC atlas, a widely used atlas provided by the ASHS team. The pattern of volumetric results was similar between the ASHS-OAP atlas and manual segmentation for anterolateral entorhinal cortex and perirhinal cortex, suggesting that ASHS-OAP is a viable alternative to current manual segmentation methods for detecting group differences based on cognitive status. Although ASHS-OAP and ASHS-PMC produced varying volumes for most regions of interest, they both identified early signs of neurodegeneration in CA2/CA3/DG and identified marginal differences in entorhinal cortex. Our findings highlight the utility of automated segmentation methods but still underscore the need for a unified and harmonized MTL segmentation atlas.
Collapse
Affiliation(s)
- Negar Mazloum‐Farzaghi
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Rotman Research InstituteBaycrest Academy for Research and EducationTorontoOntarioCanada
| | - Morgan D. Barense
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Rotman Research InstituteBaycrest Academy for Research and EducationTorontoOntarioCanada
| | - Jennifer D. Ryan
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Rotman Research InstituteBaycrest Academy for Research and EducationTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Craig E. L. Stark
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Rosanna K. Olsen
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Rotman Research InstituteBaycrest Academy for Research and EducationTorontoOntarioCanada
| |
Collapse
|
4
|
Canada KL, Mazloum‐Farzaghi N, Rådman G, Adams JN, Bakker A, Baumeister H, Berron D, Bocchetta M, Carr VA, Dalton MA, de Flores R, Keresztes A, La Joie R, Mueller SG, Raz N, Santini T, Shaw T, Stark CEL, Tran TT, Wang L, Wisse LEM, Wuestefeld A, Yushkevich PA, Olsen RK, Daugherty AM. A (sub)field guide to quality control in hippocampal subfield segmentation on high-resolution T 2-weighted MRI. Hum Brain Mapp 2024; 45:e70004. [PMID: 39450914 PMCID: PMC11503726 DOI: 10.1002/hbm.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 10/26/2024] Open
Abstract
Inquiries into properties of brain structure and function have progressed due to developments in magnetic resonance imaging (MRI). To sustain progress in investigating and quantifying neuroanatomical details in vivo, the reliability and validity of brain measurements are paramount. Quality control (QC) is a set of procedures for mitigating errors and ensuring the validity and reliability of brain measurements. Despite its importance, there is little guidance on best QC practices and reporting procedures. The study of hippocampal subfields in vivo is a critical case for QC because of their small size, inter-dependent boundary definitions, and common artifacts in the MRI data used for subfield measurements. We addressed this gap by surveying the broader scientific community studying hippocampal subfields on their views and approaches to QC. We received responses from 37 investigators spanning 10 countries, covering different career stages, and studying both healthy and pathological development and aging. In this sample, 81% of researchers considered QC to be very important or important, and 19% viewed it as fairly important. Despite this, only 46% of researchers reported on their QC processes in prior publications. In many instances, lack of reporting appeared due to ambiguous guidance on relevant details and guidance for reporting, rather than absence of QC. Here, we provide recommendations for correcting errors to maximize reliability and minimize bias. We also summarize threats to segmentation accuracy, review common QC methods, and make recommendations for best practices and reporting in publications. Implementing the recommended QC practices will collectively improve inferences to the larger population, as well as have implications for clinical practice and public health.
Collapse
Affiliation(s)
- Kelsey L. Canada
- Institute of Gerontology, Wayne State UniversityDetroitMichiganUSA
| | - Negar Mazloum‐Farzaghi
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Rotman Research Institute, Baycrest Academy for Research and EducationTorontoOntarioCanada
| | - Gustaf Rådman
- Department of Clinical Sciences LundLund UniversityLundSweden
| | - Jenna N. Adams
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Arnold Bakker
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - David Berron
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative DiseaseUCL Queen Square Institute of Neurology, University College LondonLondonUK
- Centre for Cognitive and Clinical Neuroscience, Division of Psychology, Department of Life Sciences, College of HealthMedicine and Life Sciences, Brunel University LondonLondonUK
| | - Valerie A. Carr
- Department of PsychologySan Jose State UniversitySan JoseCaliforniaUSA
| | - Marshall A. Dalton
- School of Psychology, Faculty of ScienceThe University of SydneySydneyAustralia
- Brain and Mind CentreThe University of SydneySydneyAustralia
| | - Robin de Flores
- INSERM UMR‐S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain Caen‐Normandie, Caen‐Normandie University, GIP CyceronCaenFrance
| | - Attila Keresztes
- Brain Imaging Centre, HUN‐REN Research Centre for Natural SciencesBudapestHungary
- Institute of Psychology, ELTE Eötvös Loránd UniversityBudapestHungary
- Center for Lifespan Psychology, Max Planck Institute for Human DevelopmentBerlinGermany
| | - Renaud La Joie
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
| | - Susanne G. Mueller
- Department of RadiologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
| | - Naftali Raz
- Center for Lifespan Psychology, Max Planck Institute for Human DevelopmentBerlinGermany
- Department of PsychologyStony Brook UniversityStony BrookNew YorkUSA
| | - Tales Santini
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Thomas Shaw
- School of Electrical Engineering and Computer Science, The University of QueenslandBrisbaneAustralia
| | - Craig E. L. Stark
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Tammy T. Tran
- Department of PsychologyStanford UniversityStanfordCaliforniaUSA
| | - Lei Wang
- Department of Psychiatry and Behavioral HealthThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | | | - Anika Wuestefeld
- Clinical Memory Research Unit, Department of Clinical Sciences, MalmöLund UniversityMalmoSweden
| | - Paul A. Yushkevich
- Penn Image Computing and Science Laboratory, Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Rosanna K. Olsen
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Rotman Research Institute, Baycrest Academy for Research and EducationTorontoOntarioCanada
| | - Ana M. Daugherty
- Institute of Gerontology, Wayne State UniversityDetroitMichiganUSA
- Department of PsychologyWayne State UniversityDetroitMichiganUSA
- Michigan Alzheimer's Disease Research CenterAnn ArborMichiganUSA
| | | |
Collapse
|
5
|
Meier TB, Savitz J, España LY, Goeckner BD, Kent Teague T, Jan van der Horn H, Tugan Muftuler L, Mayer AR, Brett BL. Association of concussion history with psychiatric symptoms, limbic system structure, and kynurenine pathway metabolites in healthy, collegiate-aged athletes. Brain Behav Immun 2024; 123:S0889-1591(24)00656-1. [PMID: 39414174 DOI: 10.1016/j.bbi.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
Psychiatric outcomes are commonly observed in individuals with repeated concussions, though their underlying mechanism is unknown. One potential mechanism linking concussion with psychiatric symptoms is inflammation-induced activation of the kynurenine pathway, which is thought to play a role in the pathogenesis of mood disorders. Here, we investigated the association of prior concussion with multiple psychiatric-related outcomes in otherwise healthy male and female collegiate-aged athletes (N = 212) with varying histories of concussion recruited from the community. Specially, we tested the hypotheses that concussion history is associated with worse psychiatric symptoms, limbic system structural abnormalities (hippocampal volume, white matter microstructure assessed using neurite orientation dispersion and density imaging; NODDI), and elevations in kynurenine pathway (KP) metabolites (e.g., Quinolinic acid; QuinA). Given known sex-effects on concussion risk and recovery, psychiatric outcomes, and the kynurenine pathway, the moderating effect of sex was considered for all analyses. More concussions were associated with greater depression, anxiety, and anhedonia symptoms in female athletes (ps ≤ 0.005) and greater depression symptoms in male athletes (p = 0.011). More concussions were associated with smaller bilateral hippocampal tail (ps < 0.010) and left hippocampal body (p < 0.001) volumes across male and female athletes. Prior concussion was also associated with elevations in the orientation dispersion index (ODI) and lower intracellular volume fraction in several white matter tracts including the in uncinate fasciculus, cingulum-gyrus, and forceps major and minor, with evidence of female-specific associations in select regions. Regarding serum KP metabolites, more concussions were associated with elevated QuinA in females and lower tryptophan in males (ps ≤ 0.010). Finally, serum levels of QuinA were associated with elevated ODI (male and female athletes) and worse anxiety symptoms (females only), while higher ODI in female athletes and smaller hippocampal volumes in male athletes were associated with more severe anxiety and depression symptoms (ps ≤ 0.05). These data suggest that cumulative concussion is associated with psychiatric symptoms and limbic system structure in healthy athletes, with increased susceptibility to these effects in female athletes. Moreover, the associations of outcomes with serum KP metabolites highlight the KP as one potential molecular pathway underlying these observations.
Collapse
Affiliation(s)
- Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, the United States of America; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, the United States of America; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, the United States of America.
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK 74136, the United States of America; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, the United States of America
| | - Lezlie Y España
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, the United States of America
| | - Bryna D Goeckner
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, the United States of America
| | - T Kent Teague
- Department of Psychiatry, The University of Oklahoma School of Community Medicine, Tulsa, OK 74135, the United States of America; Department of Surgery, The University of Oklahoma School of Community Medicine, Tulsa, OK 74135, the United States of America; Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Tulsa, OK 74135, the United States of America
| | - Harm Jan van der Horn
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, the United States of America; University of Groningen, University Medical Center Groningen, the Netherlands
| | - L Tugan Muftuler
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, the United States of America
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, the United States of America; Departments of Neurology and Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, the United States of America; Department of Psychology, University of New Mexico, Albuquerque, NM, the United States of America
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, the United States of America; Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, the United States of America
| |
Collapse
|
6
|
Rahimi S, Joyce L, Fenzl T, Drexel M. Crosstalk between the subiculum and sleep-wake regulation: A review. J Sleep Res 2024; 33:e14134. [PMID: 38196146 DOI: 10.1111/jsr.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024]
Abstract
The circuitry underlying the initiation, maintenance, and coordination of wakefulness, rapid eye movement sleep, and non-rapid eye movement sleep is not thoroughly understood. Sleep is thought to arise due to decreased activity in the ascending reticular arousal system, which originates in the brainstem and awakens the thalamus and cortex during wakefulness. Despite the conventional association of sleep-wake states with hippocampal rhythms, the mutual influence of the hippocampal formation in regulating vigilance states has been largely neglected. Here, we focus on the subiculum, the main output region of the hippocampal formation. The subiculum, particulary the ventral part, sends extensive monosynaptic projections to crucial regions implicated in sleep-wake regulation, including the thalamus, lateral hypothalamus, tuberomammillary nucleus, basal forebrain, ventrolateral preoptic nucleus, ventrolateral tegmental area, and suprachiasmatic nucleus. Additionally, second-order projections from the subiculum are received by the laterodorsal tegmental nucleus, locus coeruleus, and median raphe nucleus, suggesting the potential involvement of the subiculum in the regulation of the sleep-wake cycle. We also discuss alterations in the subiculum observed in individuals with sleep disorders and in sleep-deprived mice, underscoring the significance of investigating neuronal communication between the subiculum and pathways promoting both sleep and wakefulness.
Collapse
Affiliation(s)
- Sadegh Rahimi
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Leesa Joyce
- Clinic of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, München, Germany
| | - Thomas Fenzl
- Clinic of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, München, Germany
| | - Meinrad Drexel
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Sackl M, Tinauer C, Urschler M, Enzinger C, Stollberger R, Ropele S. Fully Automated Hippocampus Segmentation using T2-informed Deep Convolutional Neural Networks. Neuroimage 2024; 298:120767. [PMID: 39103064 DOI: 10.1016/j.neuroimage.2024.120767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024] Open
Abstract
Hippocampal atrophy (tissue loss) has become a fundamental outcome parameter in clinical trials on Alzheimer's disease. To accurately estimate hippocampus volume and track its volume loss, a robust and reliable segmentation is essential. Manual hippocampus segmentation is considered the gold standard but is extensive, time-consuming, and prone to rater bias. Therefore, it is often replaced by automated programs like FreeSurfer, one of the most commonly used tools in clinical research. Recently, deep learning-based methods have also been successfully applied to hippocampus segmentation. The basis of all approaches are clinically used T1-weighted whole-brain MR images with approximately 1 mm isotropic resolution. However, such T1 images show low contrast-to-noise ratios (CNRs), particularly for many hippocampal substructures, limiting delineation reliability. To overcome these limitations, high-resolution T2-weighted scans are suggested for better visualization and delineation, as they show higher CNRs and usually allow for higher resolutions. Unfortunately, such time-consuming T2-weighted sequences are not feasible in a clinical routine. We propose an automated hippocampus segmentation pipeline leveraging deep learning with T2-weighted MR images for enhanced hippocampus segmentation of clinical T1-weighted images based on a series of 3D convolutional neural networks and a specifically acquired multi-contrast dataset. This dataset consists of corresponding pairs of T1- and high-resolution T2-weighted images, with the T2 images only used to create more accurate manual ground truth annotations and to train the segmentation network. The T2-based ground truth labels were also used to evaluate all experiments by comparing the masks visually and by various quantitative measures. We compared our approach with four established state-of-the-art hippocampus segmentation algorithms (FreeSurfer, ASHS, HippoDeep, HippMapp3r) and demonstrated a superior segmentation performance. Moreover, we found that the automated segmentation of T1-weighted images benefits from the T2-based ground truth data. In conclusion, this work showed the beneficial use of high-resolution, T2-based ground truth data for training an automated, deep learning-based hippocampus segmentation and provides the basis for a reliable estimation of hippocampal atrophy in clinical studies.
Collapse
Affiliation(s)
- Maximilian Sackl
- Department of Neurology, Medical University of Graz, Austria; BioTechMed-Graz, Austria
| | | | - Martin Urschler
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Austria; BioTechMed-Graz, Austria
| | | | - Rudolf Stollberger
- Institute of Biomedical Imaging, Graz University of Technology, Austria; BioTechMed-Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Austria; BioTechMed-Graz, Austria.
| |
Collapse
|
8
|
Valk SL, Engert V, Puhlmann L, Linz R, Caldairou B, Bernasconi A, Bernasconi N, Bernhardt BC, Singer T. Differential increase of hippocampal subfield volume after socio-affective mental training relates to reductions in diurnal cortisol. eLife 2024; 12:RP87634. [PMID: 39196261 DOI: 10.7554/elife.87634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
The hippocampus is a central modulator of the HPA-axis, impacting the regulation of stress on brain structure, function, and behavior. The current study assessed whether three different types of 3 months mental Training Modules geared towards nurturing (a) attention-based mindfulness, (b) socio-affective, or (c) socio-cognitive skills may impact hippocampal organization by reducing stress. We evaluated mental training-induced changes in hippocampal subfield volume and intrinsic functional connectivity, by combining longitudinal structural and resting-state fMRI connectivity analysis in 332 healthy adults. We related these changes to changes in diurnal and chronic cortisol levels. We observed increases in bilateral cornu ammonis volume (CA1-3) following the 3 months compassion-based module targeting socio-affective skills (Affect module), as compared to socio-cognitive skills (Perspective module) or a waitlist cohort with no training intervention. Structural changes were paralleled by relative increases in functional connectivity of CA1-3 when fostering socio-affective as compared to socio-cognitive skills. Furthermore, training-induced changes in CA1-3 structure and function consistently correlated with reductions in cortisol output. Notably, using a multivariate approach, we found that other subfields that did not show group-level changes also contributed to changes in cortisol levels. Overall, we provide a link between a socio-emotional behavioural intervention, changes in hippocampal subfield structure and function, and reductions in cortisol in healthy adults.
Collapse
Affiliation(s)
- Sofie Louise Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- INM-7, FZ Jülich, Jülich, Germany
- Institute for System Neurosciences, Heinrich Heine University, Düsseldorf, Germany
| | - Veronika Engert
- Institute for Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Lara Puhlmann
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Roman Linz
- Research Group Social Stress and Family Health, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Benoit Caldairou
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Andrea Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Tania Singer
- Social Neuroscience Lab, Max Planck Society, Berlin, Germany
| |
Collapse
|
9
|
Sudimac S, Kühn S. Can a nature walk change your brain? Investigating hippocampal brain plasticity after one hour in a forest. ENVIRONMENTAL RESEARCH 2024; 262:119813. [PMID: 39155041 DOI: 10.1016/j.envres.2024.119813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
In cities, the incidence of mental disorders is higher, while visits to nature have been reported to benefit mental health and brain function. However, there is a lack of knowledge about how exposure to natural and urban environments affects brain structure. To explore the causal relationship between exposure to these environments and the hippocampal formation, 60 participants were sent on a one hour walk in either a natural (forest) or an urban environment (busy street), and high-resolution hippocampal imaging was performed before and after the walks. We found that the participants who walked in the forest had an increase in subiculum volume, a hippocampal subfield involved in stress response inhibition, while no change was observed after the urban walk. However, this result did not withstand Bonferroni correction for multiple comparisons. Furthermore, the increase in subiculum volume after the forest walk was associated with a decrease in self-reported rumination. These results indicate that visits to nature can lead to observable alterations in brain structure, with potential benefits for mental health and implications for public health and urban planning policies.
Collapse
Affiliation(s)
- Sonja Sudimac
- Max Planck Institute for Human Development, Center for Environmental Neuroscience, Lentzeallee 94, 14195, Berlin, Germany.
| | - Simone Kühn
- Max Planck Institute for Human Development, Center for Environmental Neuroscience, Lentzeallee 94, 14195, Berlin, Germany; University Medical Center Hamburg-Eppendorf, Department of Psychiatry and Psychotherapy, Martinistr. 52, 20251, Hamburg, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research Berlin, Germany and London, UK, Lentzeallee 94, 14195, Berlin, Germany
| |
Collapse
|
10
|
Li M, Li Y, Tan X, Qin C, Chen Y, Liang Y, Qiu S, An J. Resting-state neural activity and cerebral blood flow alterations in type 2 diabetes mellitus: Insights from hippocampal subfields. Brain Behav 2024; 14:e3600. [PMID: 38988142 PMCID: PMC11237339 DOI: 10.1002/brb3.3600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 07/12/2024] Open
Abstract
OBJECTIVE In this study, multimodal magnetic resonance imaging (MRI) imaging was used to deeply analyze the changes of hippocampal subfields perfusion and function in patients with type 2 diabetes mellitus (T2DM), aiming to provide image basis for the diagnosis of hippocampal-related nerve injury in patients with T2DM. METHODS We recruited 35 patients with T2DM and 40 healthy control subjects (HCs). They underwent resting-state functional MRI (rs-fMRI), arterial spin labeling (ASL) scans, and a series of cognitive tests. Then, we compared the differences of two groups in the cerebral blood flow (CBF) value, amplitude of low-frequency fluctuation (ALFF) value, and regional homogeneity (ReHo) value of the bilateral hippocampus subfields. RESULTS The CBF values of cornu ammonis area 1 (CA1), dentate gyrus (DG), and subiculum in the right hippocampus of T2DM group were significantly lower than those of HCs. The ALFF values of left hippocampal CA3, subiculum, and bilateral hippocampus amygdala transition area (HATA) were higher than those of HCs in T2DM group. The ReHo values of CA3, DG, subiculum, and HATA in the left hippocampus of T2DM group were higher than those of HCs. In the T2DM group, HbAc1 and FINS were negatively correlated with imaging characteristics in some hippocampal subregions. CONCLUSION This study indicates that T2DM patients had decreased perfusion in the CA1, DG, and subiculum of the right hippocampus, and the right hippocampus subiculum was associated with chronic hyperglycemia. Additionally, we observed an increase in spontaneous neural activity within the left hippocampal CA3, subiculum, and bilateral HATA regions, as well as an enhanced local neural coordination in the left hippocampal CA3, DG, HATA, and subiculum among patients with type 2 diabetes, which may reflect an adaptive compensation for cognitive decline. However, this compensation may decline with the exacerbation of metabolic disorders.
Collapse
Affiliation(s)
- Mingrui Li
- Department of Magnetic Resonance ImagingZhanjiang First Hospital of Traditional Chinese MedicineZhanjiangChina
| | - Yifan Li
- Department of RadiologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhouChina
| | - Xin Tan
- Department of RadiologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhouChina
| | - Chunhong Qin
- Department of RadiologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhouChina
| | - Yuna Chen
- Department of RadiologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhouChina
| | - Yi Liang
- Department of RadiologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhouChina
| | - Shijun Qiu
- Department of RadiologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhouChina
| | - Jie An
- Department of RadiologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhouChina
| |
Collapse
|
11
|
Ye R, Goodheart AE, Locascio JJ, Peterec E, Properzi M, Thibault EG, Chuba E, Johnson KA, Brickhouse MJ, Touroutoglou A, Growdon JH, Dickerson BC, Gomperts SN. Differential Vulnerability of Hippocampal Subfields to Amyloid and Tau Deposition in the Lewy Body Diseases. Neurology 2024; 102:e209460. [PMID: 38815233 PMCID: PMC11244748 DOI: 10.1212/wnl.0000000000209460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/11/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Alzheimer disease (AD) copathologies of β-amyloid and tau are common in the Lewy body diseases (LBD), dementia with Lewy bodies (DLB) and Parkinson disease (PD), and target distinct hippocampal subfields compared with Lewy pathology, including subiculum and CA1. We investigated the hypothesis that AD copathologies impact the pattern of hippocampal subregion volume loss and cognitive function in LBD. METHODS This was a cross-sectional and longitudinal, single-center, observational cohort study. Participants underwent neuropsychological testing and 3T-MRI with hippocampal segmentation using FreeSurferV7. PiB-PET and flortaucipir-PET imaging of comorbid β-amyloid (A) and tau (T) were acquired. The association of functional cognition, β-amyloid, and tau loads with hippocampal subregion volume was assessed. The contribution of subregion volumes to the relationship of AD-related deposits on functional cognition was examined with mediation analysis. The effects of AD-related deposits on the rate of subregion atrophy were evaluated with mixed-effects models. RESULTS Of 103 participants (mean age: 70.3 years; 37.3% female), 52 had LBD with impaired cognition (LBD-I), 26 had normal cognition (LBD-N), and 25 were A- healthy controls (HCs). Volumes of hippocampal subregions prone to AD copathologies, including subiculum (F = 6.9, p = 0.002), presubiculum (F = 7.3, p = 0.001), and parasubiculum (F = 5.9, p = 0.004), were reduced in LBD-I compared with LBD-N and HC. Volume was preserved in CA2/3, Lewy pathology susceptible subregions. In LBD-I, reduced CA1, subiculum, and presubiculum volumes were associated with greater functional cognitive impairment (all p < 0.05). Compared with HC, subiculum volume was reduced in A+T+ but not A-T- participants (F = 2.62, p = 0.043). Reduced subiculum volume mediated the effect of amyloid on functional cognition (0.12, 95% CI: 0.005 to 0.26, p = 0.040). In 26 longitudinally-evaluated participants, baseline tau deposition was associated with faster CA1 (p = 0.021) and subiculum (p = 0.002) atrophy. DISCUSSION In LBD, volume loss in hippocampal output subregions-particularly the subiculum-is associated with functional cognition and AD-related deposits. Tau deposition appears to accelerate subiculum and CA1 atrophy, whereas Aβ does not. Subiculum volume may have value as a biomarker of AD copathology-mediated neurodegeneration and disease progression.
Collapse
Affiliation(s)
- Rong Ye
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Anna E Goodheart
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Joseph J Locascio
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Erin Peterec
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Michael Properzi
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Emma G Thibault
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Erin Chuba
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Keith A Johnson
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Michael J Brickhouse
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Alexandra Touroutoglou
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - John H Growdon
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Bradford C Dickerson
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Stephen N Gomperts
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| |
Collapse
|
12
|
Li Y, Xie L, Khandelwal P, Wisse LEM, Brown CA, Prabhakaran K, Dylan Tisdall M, Mechanic-Hamilton D, Detre JA, Das SR, Wolk DA, Yushkevich PA. Automatic segmentation of medial temporal lobe subregions in multi-scanner, multi-modality MRI of variable quality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595190. [PMID: 38826413 PMCID: PMC11142184 DOI: 10.1101/2024.05.21.595190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background Volumetry of subregions in the medial temporal lobe (MTL) computed from automatic segmentation in MRI can track neurodegeneration in Alzheimer's disease. However, image quality may vary in MRI. Poor quality MR images can lead to unreliable segmentation of MTL subregions. Considering that different MRI contrast mechanisms and field strengths (jointly referred to as "modalities" here) offer distinct advantages in imaging different parts of the MTL, we developed a muti-modality segmentation model using both 7 tesla (7T) and 3 tesla (3T) structural MRI to obtain robust segmentation in poor-quality images. Method MRI modalities including 3T T1-weighted, 3T T2-weighted, 7T T1-weighted and 7T T2-weighted (7T-T2w) of 197 participants were collected from a longitudinal aging study at the Penn Alzheimer's Disease Research Center. Among them, 7T-T2w was used as the primary modality, and all other modalities were rigidly registered to the 7T-T2w. A model derived from nnU-Net took these registered modalities as input and outputted subregion segmentation in 7T-T2w space. 7T-T2w images most of which had high quality from 25 selected training participants were manually segmented to train the multi-modality model. Modality augmentation, which randomly replaced certain modalities with Gaussian noise, was applied during training to guide the model to extract information from all modalities. To compare our proposed model with a baseline single-modality model in the full dataset with mixed high/poor image quality, we evaluated the ability of derived volume/thickness measures to discriminate Amyloid+ mild cognitive impairment (A+MCI) and Amyloid- cognitively unimpaired (A-CU) groups, as well as the stability of these measurements in longitudinal data. Results The multi-modality model delivered good performance regardless of 7T-T2w quality, while the single-modality model under-segmented subregions in poor-quality images. The multi-modality model generally demonstrated stronger discrimination of A+MCI versus A-CU. Intra-class correlation and Bland-Altman plots demonstrate that the multi-modality model had higher longitudinal segmentation consistency in all subregions while the single-modality model had low consistency in poor-quality images. Conclusion The multi-modality MRI segmentation model provides an improved biomarker for neurodegeneration in the MTL that is robust to image quality. It also provides a framework for other studies which may benefit from multimodal imaging.
Collapse
Affiliation(s)
- Yue Li
- Penn Image Computing and Science Laboratory, University of Pennsylvania, Philadelphia, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Long Xie
- Department of Digital Technology and Innovation, Siemens Healthineers, Princeton, USA
| | - Pulkit Khandelwal
- Penn Image Computing and Science Laboratory, University of Pennsylvania, Philadelphia, USA
| | - Laura E M Wisse
- Department of Diagnostic Radiology, Lund University, Lund, Sweden
| | | | | | - M Dylan Tisdall
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Dawn Mechanic-Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
- Penn Memory Center, University of Pennsylvania, Philadelphia, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Sandhitsu R Das
- Penn Image Computing and Science Laboratory, University of Pennsylvania, Philadelphia, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
- Penn Memory Center, University of Pennsylvania, Philadelphia, USA
| | - Paul A Yushkevich
- Penn Image Computing and Science Laboratory, University of Pennsylvania, Philadelphia, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
13
|
González-Marrero I, Hernandez-Garcia JA, Gonzalez-Davila E, Carmona-Calero EM, Gonzalez-Toledo JM, Catañeyra-Ruiz L, Henandez-Abad LG, Castañeyra-Perdomo A. Variations of the grid and place cells in the entorhinal cortex and dentate gyrus of 6 individuals aged 56 to 87 years. Neurologia 2024; 39:244-253. [PMID: 37442425 DOI: 10.1016/j.nrleng.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 07/15/2023] Open
Abstract
INTRODUCTION The relationship between the entorhinal cortex (EC) and the hippocampus has been studied by different authors, who have highlighted the importance of grid cells, place cells, and the trisynaptic circuit in the processes that they regulate: the persistence of spatial, explicit, and recent memory and their possible impairment with ageing. OBJECTIVE We aimed to determine whether older age causes changes in the size and number of grid cells contained in layer III of the EC and in the granular layer of the dentate gyrus (DG) of the hippocampus. METHODS We conducted post-mortem studies of the brains of 6 individuals aged 56-87 years. The brain sections containing the DG and the adjacent EC were stained according to the Klüver-Barrera method, then the ImageJ software was used to measure the individual neuronal area, the total neuronal area, and the number of neurons contained in rectangular areas in layer III of the EC and layer II of the DG. Statistical analysis was subsequently performed. RESULTS We observed an age-related reduction in the cell population of the external pyramidal layer of the EC, and in the number of neurons in the granular layer of the DG. CONCLUSION Our results indicate that ageing causes a decrease in the size and density of grid cells of the EC and place cells of the DG.
Collapse
Affiliation(s)
- I González-Marrero
- Unidad de Anatomía y Embriología Humana, Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Universidad de La Laguna, Tenerife, Islas Canarias, Spain
| | - J A Hernandez-Garcia
- Unidad de Anatomía y Embriología Humana, Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Universidad de La Laguna, Tenerife, Islas Canarias, Spain
| | - E Gonzalez-Davila
- Departamento de Matemáticas, Estadística e Investigación Operativa, Universidad de La Laguna, Tenerife, Islas Canarias, Spain
| | - E M Carmona-Calero
- Unidad de Anatomía y Embriología Humana, Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Universidad de La Laguna, Tenerife, Islas Canarias, Spain; Instituto de Investigación y Ciencias, Puerto del Rosario, Fuerteventura, Islas Canarias, Spain
| | - J M Gonzalez-Toledo
- Unidad de Anatomía y Embriología Humana, Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Universidad de La Laguna, Tenerife, Islas Canarias, Spain
| | - L Catañeyra-Ruiz
- Department of Neurological Surgery, Washington University School of Medicine and the St. Louis Children's Hospital, St. Louis, Missouri, United States
| | - L G Henandez-Abad
- Unidad de Anatomía y Embriología Humana, Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Universidad de La Laguna, Tenerife, Islas Canarias, Spain; Instituto de Investigación y Ciencias, Puerto del Rosario, Fuerteventura, Islas Canarias, Spain
| | - A Castañeyra-Perdomo
- Unidad de Anatomía y Embriología Humana, Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Universidad de La Laguna, Tenerife, Islas Canarias, Spain; Instituto de Investigación y Ciencias, Puerto del Rosario, Fuerteventura, Islas Canarias, Spain.
| |
Collapse
|
14
|
Kim J, Li Y, Shin BS. Volumetric Imitation Generative Adversarial Networks for Anatomical Human Body Modeling. Bioengineering (Basel) 2024; 11:163. [PMID: 38391649 PMCID: PMC10886047 DOI: 10.3390/bioengineering11020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Volumetric representation is a technique used to express 3D objects in various fields, such as medical applications. On the other hand, tomography images for reconstructing volumetric data have limited utilization because they contain personal information. Existing GAN-based medical image generation techniques can produce virtual tomographic images for volume reconstruction while preserving the patient's privacy. Nevertheless, these images often do not consider vertical correlations between the adjacent slices, leading to erroneous results in 3D reconstruction. Furthermore, while volume generation techniques have been introduced, they often focus on surface modeling, making it challenging to represent the internal anatomical features accurately. This paper proposes volumetric imitation GAN (VI-GAN), which imitates a human anatomical model to generate volumetric data. The primary goal of this model is to capture the attributes and 3D structure, including the external shape, internal slices, and the relationship between the vertical slices of the human anatomical model. The proposed network consists of a generator for feature extraction and up-sampling based on a 3D U-Net and ResNet structure and a 3D-convolution-based LFFB (local feature fusion block). In addition, a discriminator utilizes 3D convolution to evaluate the authenticity of the generated volume compared to the ground truth. VI-GAN also devises reconstruction loss, including feature and similarity losses, to converge the generated volumetric data into a human anatomical model. In this experiment, the CT data of 234 people were used to assess the reliability of the results. When using volume evaluation metrics to measure similarity, VI-GAN generated a volume that realistically represented the human anatomical model compared to existing volume generation methods.
Collapse
Affiliation(s)
- Jion Kim
- Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Yan Li
- Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Byeong-Seok Shin
- Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
15
|
McHugo M, Roeske MJ, Vandekar SN, Armstrong K, Avery SN, Heckers S. Smaller anterior hippocampal subfields in the early stage of psychosis. Transl Psychiatry 2024; 14:69. [PMID: 38296964 PMCID: PMC10830481 DOI: 10.1038/s41398-023-02719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024] Open
Abstract
Hippocampal volume is smaller in schizophrenia, but it is unclear when in the illness the changes appear and whether specific regions (anterior, posterior) and subfields (CA1, CA2/3, dentate gyrus, subiculum) are affected. Here, we used a high-resolution T2-weighted sequence specialized for imaging hippocampal subfields to test the hypothesis that anterior CA1 volume is lower in early psychosis. We measured subfield volumes across hippocampal regions in a group of 90 individuals in the early stage of a non-affective psychotic disorder and 70 demographically similar healthy individuals. We observed smaller volume in the anterior CA1 and dentate gyrus subfields in the early psychosis group. Our findings support models that implicate anterior CA1 and dentate gyrus subfield deficits in the mechanism of psychosis.
Collapse
Affiliation(s)
- Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Maxwell J Roeske
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon N Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristan Armstrong
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Suzanne N Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
16
|
Perosa V, Zanon Zotin MC, Schoemaker D, Sveikata L, Etherton MR, Charidimou A, Greenberg SM, Viswanathan A. Association Between Hippocampal Volumes and Cognition in Cerebral Amyloid Angiopathy. Neurology 2024; 102:e207854. [PMID: 38165326 PMCID: PMC10870737 DOI: 10.1212/wnl.0000000000207854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Accumulating evidence suggests that gray matter atrophy, often considered a marker of Alzheimer disease (AD), can also result from cerebral small vessel disease (CSVD). Cerebral amyloid angiopathy (CAA) is a form of sporadic CSVD, diagnosed through neuroimaging criteria, that often co-occurs with AD pathology and leads to cognitive impairment. We sought to identify the role of hippocampal integrity in the development of cognitive impairment in a cohort of patients with possible and probable CAA. METHODS Patients were recruited from an ongoing CAA study at Massachusetts General Hospital. Composite scores defined performance in the cognitive domains of memory, language, executive function, and processing speed. Hippocampal subfields' volumes were measured from 3T MRI, using an automated method, and multivariate linear regression models were used to estimate their association with each cognitive domain and relationship to CAA-related neuroimaging markers. RESULTS One hundred twenty patients, 36 with possible (age mean [range]: 75.6 [65.6-88.9]), 67 with probable CAA (75.9 [59.0-94.0]), and 17 controls without cognitive impairment and CSVD (72.4 [62.5-82.7]; 76.4% female patients), were included in this study. We found a positive association between all investigated hippocampal subfields and memory and language, whereas specific subfields accounted for executive function (CA4 [Estimate = 5.43; 95% CI 1.26-9.61; p = 0.020], subiculum [Estimate = 2.85; 95% CI 0.67-5.02; p = 0.022]), and processing speed (subiculum [Estimate = 1.99; 95% CI 0.13-3.85; p = 0.036]). These findings were independent of other CAA-related markers, which did not have an influence on cognition in this cohort. Peak width of skeletonized mean diffusivity (PSMD), a measure of white matter integrity, was negatively associated with hippocampal subfields' volumes (CA3 [Estimate = -0.012; 95% CI -0.020 to -0.004; p = 0.034], CA4 [Estimate = -0.010; 95% CI -0.020 to -0.0007; p = 0.037], subiculum [Estimate = -0.019; 95% CI -0.042 to -0.0001; p = 0.003]). DISCUSSION These results suggest that hippocampal integrity is an independent contributor to cognitive impairment in patients with CAA and that it might be related to loss of integrity in the white matter. Further studies exploring potential causes and directionality of the relationship between white matter and hippocampal integrity may be warranted.
Collapse
Affiliation(s)
- Valentina Perosa
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Maria Clara Zanon Zotin
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Dorothee Schoemaker
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Lukas Sveikata
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Mark R Etherton
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Andreas Charidimou
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Steven M Greenberg
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Anand Viswanathan
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
17
|
O'Neill A, Dooley N, Roddy D, Healy C, Carey E, Frodl T, O'Hanlon E, Cannon M. Longitudinal hippocampal subfield development associated with psychotic experiences in young people. Transl Psychiatry 2024; 14:44. [PMID: 38245522 PMCID: PMC10799917 DOI: 10.1038/s41398-024-02746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Hippocampal volumetric reductions are observed across the psychosis spectrum, with interest in the localisation of these reductions within the hippocampal subfields increasing. Deficits of the CA1 subfield in particular have been implicated in the neuropathophysiology of psychotic disorders. Investigating the trajectory of these abnormalities in healthy adolescents reporting sub-threshold psychotic experiences (PE) can provide insight into the neural mechanisms underlying psychotic symptoms without the potentially confounding effects of a formal disorder, or antipsychotic medication. In this novel investigation, a sample of 211 young people aged 11-13 participated initially in the Adolescent Brain Development study. PE classification was determined by expert consensus at each timepoint. Participants underwent neuroimaging at 3 timepoints, over 6 years. 78 participants with at least one scan were included in the final sample; 33 who met criteria for a definite PE at least once across all the timepoints (PE group), and 45 controls. Data from bilateral subfields of interest (CA1, CA2/3, CA4/DG, presubiculum and subiculum) were extracted for Linear Mixed Effects analyses. Before correction, subfield volumes were found to increase in the control group and decrease in the PE group for the right CA2 and CA2/3 subfields, with moderate to large effect sizes (d = -0.61, and d = -0.79, respectively). Before correction, right subiculum and left presubiculum volumes were reduced in the PE group compared to controls, regardless of time, with moderate effect sizes (d = -0.52, and d = -0.59, respectively). However, none of these effects survived correction. Severity of symptoms were not associated with any of the noted subfields. These findings provide novel insight to the discussion of the role of hippocampal subfield abnormalities in the pathophysiology underlying psychotic experiences.
Collapse
Affiliation(s)
- Aisling O'Neill
- Department of Psychology, St Patrick's Mental Health Services, Dublin, Ireland.
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, St Stephens Green, Dublin, Ireland.
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | - Niamh Dooley
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, St Stephens Green, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Darren Roddy
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, St Stephens Green, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Colm Healy
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, St Stephens Green, Dublin, Ireland
- Department of Medicine, University College Dublin, Dublin, Ireland
| | - Eleanor Carey
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, St Stephens Green, Dublin, Ireland
| | - Thomas Frodl
- Department of Medicine, University College Dublin, Dublin, Ireland
- Klinik für Psychiatrie, Psychotherapie und Psychosomatik, Uniklinik RWTH Aachen, Aachen, Germany
| | - Erik O'Hanlon
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, St Stephens Green, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Mary Cannon
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, St Stephens Green, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Ben-Zion Z, Korem N, Fine NB, Katz S, Siddhanta M, Funaro MC, Duek O, Spiller TR, Danböck SK, Levy I, Harpaz-Rotem I. Structural Neuroimaging of Hippocampus and Amygdala Subregions in Posttraumatic Stress Disorder: A Scoping Review. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:120-134. [PMID: 38298789 PMCID: PMC10829655 DOI: 10.1016/j.bpsgos.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 02/02/2024] Open
Abstract
Numerous studies have explored the relationship between posttraumatic stress disorder (PTSD) and the hippocampus and the amygdala because both regions are implicated in the disorder's pathogenesis and pathophysiology. Nevertheless, those key limbic regions consist of functionally and cytoarchitecturally distinct substructures that may play different roles in the etiology of PTSD. Spurred by the availability of automatic segmentation software, structural neuroimaging studies of human hippocampal and amygdala subregions have proliferated in recent years. Here, we present a preregistered scoping review of the existing structural neuroimaging studies of the hippocampus and amygdala subregions in adults diagnosed with PTSD. A total of 3513 studies assessing subregion volumes were identified, 1689 of which were screened, and 21 studies were eligible for this review (total N = 2876 individuals). Most studies examined hippocampal subregions and reported decreased CA1, CA3, dentate gyrus, and subiculum volumes in PTSD. Fewer studies investigated amygdala subregions and reported altered lateral, basal, and central nuclei volumes in PTSD. This review further highlights the conceptual and methodological limitations of the current literature and identifies future directions to increase understanding of the distinct roles of hippocampal and amygdalar subregions in posttraumatic psychopathology.
Collapse
Affiliation(s)
- Ziv Ben-Zion
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Nachshon Korem
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Naomi B. Fine
- Sagol Brain Institute Tel-Aviv, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Social Sciences, School of Psychological Science, Tel Aviv University, Tel Aviv, Israel
| | - Sophia Katz
- Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Megha Siddhanta
- Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Melissa C. Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, Connecticut
| | - Or Duek
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Department of Epidemiology, Biostatistics and Community Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tobias R. Spiller
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Sarah K. Danböck
- Yale School of Medicine, Yale University, New Haven, Connecticut
- Division of Clinical Psychology and Psychopathology, Department of Psychology, Paris London University of Salzburg, Salzburg, Austria
| | - Ifat Levy
- Yale School of Medicine, Yale University, New Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Ilan Harpaz-Rotem
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| |
Collapse
|
19
|
Pine JG, Agrawal A, Bogdan R, Kandala S, Cooper S, Barch DM. Shared and unique heritability of hippocampal subregion volumes in children and adults. Neuroimage 2024; 285:120471. [PMID: 38007188 DOI: 10.1016/j.neuroimage.2023.120471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023] Open
Abstract
Behavioral genetic analyses have not demonstrated robust, unique, genetic correlates of hippocampal subregion volume. Genetic differentiation of hippocampal longitudinal axis subregion volume has not yet been investigated in population-based samples, although this has been demonstrated in rodent and post-mortem human tissue work. The following study is the first population-based investigation of genetic factors that contribute to gray matter volume along the hippocampal longitudinal axis. Twin-based biometric analyses demonstrated that longitudinal axis subregions are associated with significant, unique, genetic variance, and that longitudinal axis subregions are also associated with significant shared, hippocampus-general, genetic factors. Our study's findings suggest that genetic differences in hippocampal longitudinal axis structure can be detected in individual differences in gray matter volume in population-level research designs.
Collapse
Affiliation(s)
- Jacob G Pine
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, United States of America.
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, United States of America
| | - Sridhar Kandala
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Shelly Cooper
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, United States of America
| | - Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, United States of America; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| |
Collapse
|
20
|
Doran S, Carey D, Knight S, Meaney JF, Kenny RA, De Looze C. Relationship between hippocampal subfield volumes and cognitive decline in healthy subjects. Front Aging Neurosci 2023; 15:1284619. [PMID: 38131011 PMCID: PMC10733466 DOI: 10.3389/fnagi.2023.1284619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
We examined the relationship between hippocampal subfield volumes and cognitive decline over a 4-year period in a healthy older adult population with the goal of identifying subjects at risk of progressive cognitive impairment which could potentially guide therapeutic interventions and monitoring. 482 subjects (68.1 years +/- 7.4; 52.9% female) from the Irish Longitudinal Study on Ageing underwent magnetic resonance brain imaging and a series of cognitive tests. Using K-means longitudinal clustering, subjects were first grouped into three separate global and domain-specific cognitive function trajectories; High-Stable, Mid-Stable and Low-Declining. Linear mixed effects models were then used to establish associations between hippocampal subfield volumes and cognitive groups. Decline in multiple hippocampal subfields was associated with global cognitive decline, specifically the presubiculum (estimate -0.20; 95% confidence interval (CI) -0.78 - -0.02; p = 0.03), subiculum (-0.44; -0.82 - -0.06; p = 0.02), CA1 (-0.34; -0.78 - -0.02; p = 0.04), CA4 (-0.55; -0.93 - -0.17; p = 0.005), molecular layer (-0.49; -0.87 - -0.11; p = 0.01), dentate gyrus (-0.57; -0.94 - -0.19; p = 0.003), hippocampal tail (-0.53; -0.91 - -0.15; p = 0.006) and HATA (-0.41; -0.79 - -0.03; p = 0.04), with smaller volumes for the Low-Declining cognition group compared to the High-Stable cognition group. In contrast to global cognitive decline, when specifically assessing the memory domain, cornu ammonis 1 subfield was not found to be associated with low declining cognition (-0.14; -0.37 - 0.10; p = 0.26). Previously published data shows that atrophy of specific hippocampal subfields is associated with cognitive decline but our study confirms the same effect in subjects asymptomatic at time of enrolment. This strengthens the predictive value of hippocampal subfield atrophy in risk of cognitive decline and may provide a biomarker for monitoring treatment efficacy.
Collapse
Affiliation(s)
- Simon Doran
- Department of Radiology, St James’s Hospital, Dublin, Ireland
- The Thomas Mitchell Centre for Advanced Medical Imaging, St James’s Hospital, Dublin, Ireland
| | - Daniel Carey
- The Irish Longitudinal Study on Ageing, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Silvin Knight
- The Irish Longitudinal Study on Ageing, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - James F. Meaney
- Department of Radiology, St James’s Hospital, Dublin, Ireland
- The Thomas Mitchell Centre for Advanced Medical Imaging, St James’s Hospital, Dublin, Ireland
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing, School of Medicine, Trinity College Dublin, Dublin, Ireland
- The Mercer’s Institute for Successful Ageing (MISA), St James’s Hospital, Dublin, Ireland
| | - Céline De Looze
- The Irish Longitudinal Study on Ageing, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Zhang J, Xie L, Cheng C, Liu Y, Zhang X, Wang H, Hu J, Yu H, Xu J. Hippocampal subfield volumes in mild cognitive impairment and alzheimer's disease: a systematic review and meta-analysis. Brain Imaging Behav 2023; 17:778-793. [PMID: 37768441 DOI: 10.1007/s11682-023-00804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
The hippocampus is a complex structure that consists of several subfields with distinct and specialized functions. Although numerous studies have been performed to explore hippocampal atrophy at the sub-regional level in mild cognitive impairment (MCI) and Alzheimer's disease (AD), the results have been inconsistent especially for whether and which subfields can be served as the most potential biomarkers in MCI and AD. Herein, we used a meta-analytic approach to synthesize the extant literatures on hippocampal subfields in MCI and AD through PubMed, Web of Science, and Embase (PROSPERO CRD42021257586). As a result, a total of twenty studies using Freesurfer 5 and Freesurfer 6 were included in this investigation. These studies revealed that at the sub-regional level, hippocampal subfield volume reductions in MCI and AD were not restricted to specific subfields, and subiculum and presubiculum had the largest z-scores across most comparisons. However, none of the subfield performed much better in discriminating MCI and HC, AD and MCI, AD and HC as compared to whole hippocampus volume. These results suggested that we should explore the changes in the hippocampal subfields in subtypes of MCI or even at an earlier stage, that is subjective cognitive impairment.
Collapse
Affiliation(s)
- Jinhuan Zhang
- The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Linlin Xie
- The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Changjiang Cheng
- The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Yongfeng Liu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Xiaodong Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haoyu Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jingting Hu
- College of Creative Design, Shenzhen Technology University, Shenzhen, China
| | - Haibo Yu
- The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
22
|
Canada K, Mazloum-Farzaghi N, Rådman G, Adams J, Bakker A, Baumeister H, Berron D, Bocchetta M, Carr V, Dalton M, de Flores R, Keresztes A, La Joie R, Mueller S, Raz N, Santini T, Shaw T, Stark C, Tran T, Wang L, Wisse L, Wuestefeld A, Yushkevich P, Olsen R, Daugherty A. A (Sub)field Guide to Quality Control in Hippocampal Subfield Segmentation on Highresolution T 2-weighted MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.568895. [PMID: 38076964 PMCID: PMC10705396 DOI: 10.1101/2023.11.29.568895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Inquiries into properties of brain structure and function have progressed due to developments in magnetic resonance imaging (MRI). To sustain progress in investigating and quantifying neuroanatomical details in vivo, the reliability and validity of brain measurements are paramount. Quality control (QC) is a set of procedures for mitigating errors and ensuring the validity and reliability of brain measurements. Despite its importance, there is little guidance on best QC practices and reporting procedures. The study of hippocampal subfields in vivo is a critical case for QC because of their small size, inter-dependent boundary definitions, and common artifacts in the MRI data used for subfield measurements. We addressed this gap by surveying the broader scientific community studying hippocampal subfields on their views and approaches to QC. We received responses from 37 investigators spanning 10 countries, covering different career stages, and studying both healthy and pathological development and aging. In this sample, 81% of researchers considered QC to be very important or important, and 19% viewed it as fairly important. Despite this, only 46% of researchers reported on their QC processes in prior publications. In many instances, lack of reporting appeared due to ambiguous guidance on relevant details and guidance for reporting, rather than absence of QC. Here, we provide recommendations for correcting errors to maximize reliability and minimize bias. We also summarize threats to segmentation accuracy, review common QC methods, and make recommendations for best practices and reporting in publications. Implementing the recommended QC practices will collectively improve inferences to the larger population, as well as have implications for clinical practice and public health.
Collapse
Affiliation(s)
- K.L. Canada
- Institute of Gerontology, Wayne State University, Detroit, MI 48202
| | - N. Mazloum-Farzaghi
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - G. Rådman
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - J.N. Adams
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697
| | - A. Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - H. Baumeister
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - D. Berron
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - M. Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Centre for Cognitive and Clinical Neuroscience, Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, UK
| | - V. Carr
- Department of Psychology, San Jose State University, San Jose, CA 95192
| | - M.A. Dalton
- School of Psychology, University of Sydney, Sydney, Australia
| | - R. de Flores
- INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | - A. Keresztes
- Brain Imaging Centre, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - R. La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
| | - S.G. Mueller
- Department of Radiology, University of California, San Francisco, CA 94143
- Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center, San Francisco, California 94121
| | - N. Raz
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Department of Psychology, Stony Brook University, Stony Brook, NY 11794
| | - T. Santini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - T. Shaw
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Australia
| | - C.E.L. Stark
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697
| | - T.T. Tran
- Department of Psychology, Stanford University, Stanford, CA 94305
| | - L. Wang
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - L.E.M. Wisse
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - A. Wuestefeld
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
| | - P.A. Yushkevich
- Penn Image, Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - R.K. Olsen
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - A.M. Daugherty
- Institute of Gerontology, Wayne State University, Detroit, MI 48202
- Department of Psychology, Wayne State University, Detroit, MI 48202
- Michigan Alzheimer’s Disease Research Center, Ann Arbor, MI 48105
| |
Collapse
|
23
|
Yoo HJ, Nashiro K, Dutt S, Min J, Cho C, Thayer JF, Lehrer P, Chang C, Mather M. Daily biofeedback to modulate heart rate oscillations affects structural volume in hippocampal subregions targeted by the locus coeruleus in older adults but not younger adults. Neurobiol Aging 2023; 132:85-99. [PMID: 37769491 PMCID: PMC10840698 DOI: 10.1016/j.neurobiolaging.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
Using data from a clinical trial, we tested the hypothesis that daily sessions modulating heart rate oscillations affect older adults' volume of a region-of-interest (ROI) comprised of adjacent hippocampal subregions with relatively strong locus coeruleus (LC) noradrenergic input. Younger and older adults were randomly assigned to one of two daily biofeedback practices for 5 weeks: (1) engage in slow-paced breathing to increase the amplitude of oscillations in heart rate at their breathing frequency (Osc+); (2) engage in self-selected strategies to decrease heart rate oscillations (Osc-). The interventions did not significantly affect younger adults' hippocampal volume. Among older adults, the two conditions affected volume in the LC-targeted hippocampal ROI differentially as reflected in a significant condition × time-point interaction on ROI volume. These condition differences were driven by opposing changes in the two conditions (increased volume in Osc+ and decreased volume in Osc-) and were mediated by the degree of heart rate oscillation during training sessions.
Collapse
Affiliation(s)
- Hyun Joo Yoo
- University of Southern California, Los Angeles, CA 90089, USA
| | - Kaoru Nashiro
- University of Southern California, Los Angeles, CA 90089, USA
| | - Shubir Dutt
- University of Southern California, Los Angeles, CA 90089, USA
| | - Jungwon Min
- University of Southern California, Los Angeles, CA 90089, USA
| | - Christine Cho
- University of Southern California, Los Angeles, CA 90089, USA
| | | | - Paul Lehrer
- Rutgers University, New Brunswick, NJ 08852, USA
| | - Catie Chang
- Vanderbilt University, Nashville, TN 37235, USA
| | - Mara Mather
- University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
24
|
Modo M, Sparling K, Novotny J, Perry N, Foley LM, Hitchens TK. Mapping mesoscale connectivity within the human hippocampus. Neuroimage 2023; 282:120406. [PMID: 37827206 PMCID: PMC10623761 DOI: 10.1016/j.neuroimage.2023.120406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023] Open
Abstract
The connectivity of the hippocampus is essential to its functions. To gain a whole system view of intrahippocampal connectivity, ex vivo mesoscale (100 μm isotropic resolution) multi-shell diffusion MRI (11.7T) and tractography were performed on entire post-mortem human right hippocampi. Volumetric measurements indicated that the head region was largest followed by the body and tail regions. A unique anatomical organization in the head region reflected a complex organization of the granule cell layer (GCL) of the dentate gyrus. Tractography revealed the volumetric distribution of the perforant path, including both the tri-synaptic and temporoammonic pathways, as well as other well-established canonical connections, such as Schaffer collaterals. Visualization of the perforant path provided a means to verify the borders between the pro-subiculum and CA1, as well as between CA1/CA2. A specific angularity of different layers of fibers in the alveus was evident across the whole sample and allowed a separation of afferent and efferent connections based on their origin (i.e. entorhinal cortex) or destination (i.e. fimbria) using a cluster analysis of streamlines. Non-canonical translamellar connections running along the anterior-posterior axis were also discerned in the hilus. In line with "dentations" of the GCL, mossy fibers were bunching together in the sagittal plane revealing a unique lamellar organization and connections between these. In the head region, mossy fibers projected to the origin of the fimbria, which was distinct from the body and tail region. Mesoscale tractography provides an unprecedented systems view of intrahippocampal connections that underpin cognitive and emotional processing.
Collapse
Affiliation(s)
- Michel Modo
- Department of Radiology; Department of BioEngineering; McGowan Institute for Regenerative Medicine; Centre for Neuroscience University of Pittsburgh (CNUP); Centre for the Neural Basis of Cognition (CNBC).
| | | | | | | | | | - T Kevin Hitchens
- Small Animal Imaging Center; Departmnet of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| |
Collapse
|
25
|
Schira MM, Isherwood ZJ, Kassem MS, Barth M, Shaw TB, Roberts MM, Paxinos G. HumanBrainAtlas: an in vivo MRI dataset for detailed segmentations. Brain Struct Funct 2023; 228:1849-1863. [PMID: 37277567 PMCID: PMC10516788 DOI: 10.1007/s00429-023-02653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/13/2023] [Indexed: 06/07/2023]
Abstract
We introduce HumanBrainAtlas, an initiative to construct a highly detailed, open-access atlas of the living human brain that combines high-resolution in vivo MR imaging and detailed segmentations previously possible only in histological preparations. Here, we present and evaluate the first step of this initiative: a comprehensive dataset of two healthy male volunteers reconstructed to a 0.25 mm isotropic resolution for T1w, T2w, and DWI contrasts. Multiple high-resolution acquisitions were collected for each contrast and each participant, followed by averaging using symmetric group-wise normalisation (Advanced Normalisation Tools). The resulting image quality permits structural parcellations rivalling histology-based atlases, while maintaining the advantages of in vivo MRI. For example, components of the thalamus, hypothalamus, and hippocampus are often impossible to identify using standard MRI protocols-can be identified within the present data. Our data are virtually distortion free, fully 3D, and compatible with the existing in vivo Neuroimaging analysis tools. The dataset is suitable for teaching and is publicly available via our website (hba.neura.edu.au), which also provides data processing scripts. Instead of focusing on coordinates in an averaged brain space, our approach focuses on providing an example segmentation at great detail in the high-quality individual brain. This serves as an illustration on what features contrasts and relations can be used to interpret MRI datasets, in research, clinical, and education settings.
Collapse
Affiliation(s)
- Mark M Schira
- School of Psychology, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia.
| | - Zoey J Isherwood
- School of Psychology, University of Wollongong, Wollongong, NSW, 2522, Australia
- Department of Psychology, University of Nevada, Reno, NV, 89557, USA
| | - Mustafa S Kassem
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- School of Psychology, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4067, Australia
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, 7067, Australia
| | - Thomas B Shaw
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4067, Australia
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, 7067, Australia
| | - Michelle M Roberts
- School of Psychology, University of Wollongong, Wollongong, NSW, 2522, Australia
- School of Psychology, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - George Paxinos
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- School of Psychology, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
26
|
Li X, Wang L, Liu H, Ma B, Chu L, Dong X, Zeng D, Che T, Jiang X, Wang W, Hu J, Li S. Syn_SegNet: A Joint Deep Neural Network for Ultrahigh-Field 7T MRI Synthesis and Hippocampal Subfield Segmentation in Routine 3T MRI. IEEE J Biomed Health Inform 2023; 27:4866-4877. [PMID: 37581964 DOI: 10.1109/jbhi.2023.3305377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Precise delineation of hippocampus subfields is crucial for the identification and management of various neurological and psychiatric disorders. However, segmenting these subfields automatically in routine 3T MRI is challenging due to their complex morphology and small size, as well as the limited signal contrast and resolution of the 3T images. This research proposes Syn_SegNet, an end-to-end, multitask joint deep neural network that leverages ultrahigh-field 7T MRI synthesis to improve hippocampal subfield segmentation in 3T MRI. Our approach involves two key components. First, we employ a modified Pix2PixGAN as the synthesis model, incorporating self-attention modules, image and feature matching loss, and ROI loss to generate high-quality 7T-like MRI around the hippocampal region. Second, we utilize a variant of 3D-U-Net with multiscale deep supervision as the segmentation subnetwork, incorporating an anatomic weighted cross-entropy loss that capitalizes on prior anatomical knowledge. We evaluate our method on hippocampal subfield segmentation in paired 3T MRI and 7T MRI with seven different anatomical structures. The experimental findings demonstrate that Syn_SegNet's segmentation performance benefits from integrating synthetic 7T data in an online manner and is superior to competing methods. Furthermore, we assess the generalizability of the proposed approach using a publicly accessible 3T MRI dataset. The developed method would be an efficient tool for segmenting hippocampal subfields in routine clinical 3T MRI.
Collapse
|
27
|
Aberathne I, Kulasiri D, Samarasinghe S. Detection of Alzheimer's disease onset using MRI and PET neuroimaging: longitudinal data analysis and machine learning. Neural Regen Res 2023; 18:2134-2140. [PMID: 37056120 PMCID: PMC10328296 DOI: 10.4103/1673-5374.367840] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 02/17/2023] Open
Abstract
The scientists are dedicated to studying the detection of Alzheimer's disease onset to find a cure, or at the very least, medication that can slow the progression of the disease. This article explores the effectiveness of longitudinal data analysis, artificial intelligence, and machine learning approaches based on magnetic resonance imaging and positron emission tomography neuroimaging modalities for progression estimation and the detection of Alzheimer's disease onset. The significance of feature extraction in highly complex neuroimaging data, identification of vulnerable brain regions, and the determination of the threshold values for plaques, tangles, and neurodegeneration of these regions will extensively be evaluated. Developing automated methods to improve the aforementioned research areas would enable specialists to determine the progression of the disease and find the link between the biomarkers and more accurate detection of Alzheimer's disease onset.
Collapse
Affiliation(s)
- Iroshan Aberathne
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand
| | - Sandhya Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand
| |
Collapse
|
28
|
Lai YM, Chang YL. Age-related differences in associative memory recognition of Chinese characters and hippocampal subfield volumes. Biol Psychol 2023; 183:108657. [PMID: 37562576 DOI: 10.1016/j.biopsycho.2023.108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Associative memory is a type of hippocampal-dependent episodic memory that declines with age. Studies have examined the neural substrates underlying associative memory and considered the hippocampus holistically; however, the association between associative memory decline and volumetric change in hippocampal subfields in the context of normal aging remains uncharacterized. Leveraging the distinct linguistic features of Chinese characters to evaluate distinct types of false recognition, we investigated age-related differences in associative recognition and hippocampal subfield volumes, as well as the relationship between behavioral performance and hippocampal morphometry in 25 younger adults and 32 older adults. The results showed an age-related associative memory deficit, which was exacerbated after a 30-min delay. Older adults showed higher susceptibility to false alarm errors with recombined and orthographically related foils compared to phonologically or semantically related ones. Moreover, we detected a disproportionately age-related, time-dependent increase in orthographic errors. Older adults exhibited smaller volumes in all hippocampal subfields when compared to younger adults, with a less pronounced effect observed in the CA2/3 subfield. Group-collapsed correlational analyses revealed associations between specific hippocampal subfields and associative memory but not item memory. Additionally, multi-subfield regions had prominent associations with delayed recognition. These findings underscore the significance of multiple hippocampal subfields in various hippocampal-dependent processes including associative memory, recollection-based retrieval, and pattern separation ability. Moreover, our observations of age-related difficulty in differentiating perceptually similar foils from targets provide a unique opportunity for examining the essential contribution of individual hippocampal subfields to the pattern separation process in mnemonic recognition.
Collapse
Affiliation(s)
- Ya-Mei Lai
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Clinical Psychology Center, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ling Chang
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan; Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
29
|
Yoo HJ, Nashiro K, Dutt S, Min J, Cho C, Thayer JF, Lehrer P, Chang C, Mather M. Daily biofeedback to modulate heart rate oscillations affects structural volume in hippocampal subregions targeted by the locus coeruleus in older adults but not younger adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.02.23286715. [PMID: 37745356 PMCID: PMC10516053 DOI: 10.1101/2023.03.02.23286715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Using data from a clinical trial, we tested the hypothesis that daily sessions modulating heart rate oscillations affect older adults' volume of a region-of-interest (ROI) comprised of adjacent hippocampal subregions with relatively strong locus coeruleus (LC) noradrenergic input. Younger and older adults were randomly assigned to one of two daily biofeedback practices for 5 weeks: 1) engage in slow-paced breathing to increase the amplitude of oscillations in heart rate at their breathing frequency (Osc+); 2) engage in self-selected strategies to decrease heart rate oscillations (Osc-). The interventions did not significantly affect younger adults' hippocampal volume. Among older adults, the two conditions affected volume in the LC-targeted hippocampal ROI differentially as reflected in a significant condition x time-point interaction on ROI volume. These condition differences were driven by opposing changes in the two conditions (increased volume in Osc+ and decreased volume in Osc-) and were mediated by the degree of heart rate oscillation during training sessions.
Collapse
Affiliation(s)
- Hyun Joo Yoo
- University of Southern California, Los Angeles, CA 90089
| | - Kaoru Nashiro
- University of Southern California, Los Angeles, CA 90089
| | - Shubir Dutt
- University of Southern California, Los Angeles, CA 90089
| | - Jungwon Min
- University of Southern California, Los Angeles, CA 90089
| | - Christine Cho
- University of Southern California, Los Angeles, CA 90089
| | | | | | | | - Mara Mather
- University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
30
|
Osiecka Z, Fausto BA, Gills JL, Sinha N, Malin SK, Gluck MA. Obesity reduces hippocampal structure and function in older African Americans with the APOE-ε4 Alzheimer's disease risk allele. Front Aging Neurosci 2023; 15:1239727. [PMID: 37731955 PMCID: PMC10507275 DOI: 10.3389/fnagi.2023.1239727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Excess body weight and Alzheimer's disease (AD) disproportionately affect older African Americans. While mid-life obesity increases risk for AD, few data exist on the relationship between late-life obesity and AD, or how obesity-based and genetic risk for AD interact. Although the APOE-ε4 allele confers a strong genetic risk for AD, it is unclear if late-life obesity poses a greater risk for APOE-ε4 carriers compared to non-carriers. Here we assessed: (1) the influence of body mass index (BMI) (normal; overweight; class 1 obese; ≥ class 2 obese) on cognitive and structural MRI measures of AD risk; and (2) the interaction between BMI and APOE-ε4 in older African Americans. Methods Seventy cognitively normal older African American participants (Mage = 69.50 years; MBMI = 31.01 kg/m2; 39% APOE-ε4 allele carriers; 86% female) completed anthropometric measurements, physical assessments, saliva collection for APOE-ε4 genotyping, cognitive testing, health and lifestyle questionnaires, and structural neuroimaging [volume/surface area (SA) for medial temporal lobe subregions and hippocampal subfields]. Covariates included age, sex, education, literacy, depressive symptomology, and estimated aerobic fitness. Results Using ANCOVAs, we observed that individuals who were overweight demonstrated better hippocampal cognitive function (generalization of learning: a sensitive marker of preclinical AD) than individuals with normal BMI, p = 0.016, ηp2 = 0.18. However, individuals in the obese categories who were APOE-ε4 non-carriers had larger hippocampal subfield cornu Ammonis region 1 (CA1) volumes, while those who were APOE-ε4 carriers had smaller CA1 volumes, p = 0.003, ηp2 = 0.23. Discussion Thus, being overweight by BMI standards may preserve hippocampal function, but obesity reduces hippocampal structure and function in older African Americans with the APOE-ε4 Alzheimer's disease risk allele.
Collapse
Affiliation(s)
- Zuzanna Osiecka
- Aging and Brain Health Alliance, Center for Molecular and Behavioral Neuroscience, Rutgers University–Newark, Newark, NJ, United States
| | - Bernadette A. Fausto
- Aging and Brain Health Alliance, Center for Molecular and Behavioral Neuroscience, Rutgers University–Newark, Newark, NJ, United States
| | - Joshua L. Gills
- Aging and Brain Health Alliance, Center for Molecular and Behavioral Neuroscience, Rutgers University–Newark, Newark, NJ, United States
| | - Neha Sinha
- Aging and Brain Health Alliance, Center for Molecular and Behavioral Neuroscience, Rutgers University–Newark, Newark, NJ, United States
| | - Steven K. Malin
- Department of Kinesiology and Health, School of Arts and Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Mark A. Gluck
- Aging and Brain Health Alliance, Center for Molecular and Behavioral Neuroscience, Rutgers University–Newark, Newark, NJ, United States
| |
Collapse
|
31
|
Canada KL, Saifullah S, Gardner JC, Sutton BP, Fabiani M, Gratton G, Raz N, Daugherty AM. Development and validation of a quality control procedure for automatic segmentation of hippocampal subfields. Hippocampus 2023; 33:1048-1057. [PMID: 37246462 PMCID: PMC10524242 DOI: 10.1002/hipo.23552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/03/2023] [Accepted: 05/13/2023] [Indexed: 05/30/2023]
Abstract
Automatic segmentation methods for in vivo magnetic resonance imaging are increasing in popularity because of their high efficiency and reproducibility. However, automatic methods can be perfectly reliable and consistently wrong, and the validity of automatic segmentation methods cannot be taken for granted. Quality control (QC) by trained and reliable human raters is necessary to ensure the validity of automatic measurements. Yet QC practices for applied neuroimaging research are underdeveloped. We report a detailed QC and correction procedure to accompany our validated atlas for hippocampal subfield segmentation. We document a two-step QC procedure for identifying segmentation errors, along with a taxonomy of errors and an error severity rating scale. This detailed procedure has high between-rater reliability for error identification and manual correction. The latter introduces at maximum 3% error variance in volume measurement. All procedures were cross-validated on an independent sample collected at a second site with different imaging parameters. The analysis of error frequency revealed no evidence of bias. An independent rater with a third sample replicated procedures with high within-rater reliability for error identification and correction. We provide recommendations for implementing the described method along with hypothesis testing strategies. In sum, we present a detailed QC procedure that is optimized for efficiency while prioritizing measurement validity and suits any automatic atlas.
Collapse
Affiliation(s)
| | | | - Jennie C. Gardner
- Department of Psychology, University of Illinois at
Urbana-Champaign, Urbana, IL
- Beckman Institute for Advanced Science and Technology,
University of Illinois at Urbana-Champaign, Champaign, IL
| | - Bradley P. Sutton
- Beckman Institute for Advanced Science and Technology,
University of Illinois at Urbana-Champaign, Champaign, IL
| | - Monica Fabiani
- Department of Psychology, University of Illinois at
Urbana-Champaign, Urbana, IL
- Beckman Institute for Advanced Science and Technology,
University of Illinois at Urbana-Champaign, Champaign, IL
| | - Gabriele Gratton
- Department of Psychology, University of Illinois at
Urbana-Champaign, Urbana, IL
- Beckman Institute for Advanced Science and Technology,
University of Illinois at Urbana-Champaign, Champaign, IL
| | - Naftali Raz
- Department of Psychology, Stony Brook University, Stony
Brook, NY
- Max Planck Institute for Human Development, Berlin,
Germany
| | - Ana M. Daugherty
- Institute of Gerontology, Wayne State University, Detroit,
MI
- Department of Psychology, Wayne State University, Detroit,
MI
| |
Collapse
|
32
|
Canada KL, Homayouni R, Yu Q, Foster DJ, Ramesh S, Raz S, Daugherty AM, Ofen N. Household socioeconomic status relates to specific hippocampal subfield volumes across development. Hippocampus 2023; 33:1067-1072. [PMID: 37132590 PMCID: PMC10524471 DOI: 10.1002/hipo.23542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/22/2023] [Accepted: 04/08/2023] [Indexed: 05/04/2023]
Abstract
The hippocampus is composed of cytoarchitecturally distinct subfields that support specific memory functions. Variations in total hippocampal volume across development have been linked to socioeconomic status (SES), a proxy for access to material resources, medical care, and quality education. High childhood household SES is associated with greater cognitive abilities in adulthood. Currently, it is not known whether household SES differentially impacts specific hippocampal subfield volumes. We assessed susceptibility of subfields to variations in household SES across development in a sample of 167 typically developing 5- to 25-year-old. Bilateral cornu ammonis (CA) 1-2, combined CA3-dentate gyrus (DG), and subiculum (Sub) volumes were measured by highly reliable manual segmentation of high-resolution T2-weighted images and adjusted for intracranial volume. A summary component score of SES measures (paternal education, maternal education, and income-to-needs ratio) was used to examine variability in volumes across ages. We did not identify age-related differences in any of the regional volumes, nor did age modify SES-related effects. Controlling for age, larger volumes of CA3-DG and CA1-2 were associated with lower SES, while Sub volume was not. Overall, these findings support the specific impact of SES on CA3-DG and CA1-2 and highlight the importance of considering environmental influences on hippocampal subfield development.
Collapse
Affiliation(s)
| | - Roya Homayouni
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| | - Qijing Yu
- Institute of Gerontology, Wayne State University, Detroit, MI
| | - Da’ Jonae Foster
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| | - Sruthi Ramesh
- Current address: NYU Grossman School of Medicine, New York, NY
| | - Sarah Raz
- Department of Psychology, Wayne State University, Detroit, MI
- Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI
| | - Ana M. Daugherty
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
- Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI
| |
Collapse
|
33
|
Elliott ML, Hanford LC, Hamadeh A, Hilbert T, Kober T, Dickerson BC, Mair RW, Eldaief MC, Buckner RL. Brain morphometry in older adults with and without dementia using extremely rapid structural scans. Neuroimage 2023; 276:120173. [PMID: 37201641 PMCID: PMC10330834 DOI: 10.1016/j.neuroimage.2023.120173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023] Open
Abstract
T1-weighted structural MRI is widely used to measure brain morphometry (e.g., cortical thickness and subcortical volumes). Accelerated scans as fast as one minute or less are now available but it is unclear if they are adequate for quantitative morphometry. Here we compared the measurement properties of a widely adopted 1.0 mm resolution scan from the Alzheimer's Disease Neuroimaging Initiative (ADNI = 5'12'') with two variants of highly accelerated 1.0 mm scans (compressed-sensing, CSx6 = 1'12''; and wave-controlled aliasing in parallel imaging, WAVEx9 = 1'09'') in a test-retest study of 37 older adults aged 54 to 86 (including 19 individuals diagnosed with a neurodegenerative dementia). Rapid scans produced highly reliable morphometric measures that largely matched the quality of morphometrics derived from the ADNI scan. Regions of lower reliability and relative divergence between ADNI and rapid scan alternatives tended to occur in midline regions and regions with susceptibility-induced artifacts. Critically, the rapid scans yielded morphometric measures similar to the ADNI scan in regions of high atrophy. The results converge to suggest that, for many current uses, extremely rapid scans can replace longer scans. As a final test, we explored the possibility of a 0'49'' 1.2 mm CSx6 structural scan, which also showed promise. Rapid structural scans may benefit MRI studies by shortening the scan session and reducing cost, minimizing opportunity for movement, creating room for additional scan sequences, and allowing for the repetition of structural scans to increase precision of the estimates.
Collapse
Affiliation(s)
- Maxwell L Elliott
- Department of Psychology, Center for Brain Science, Harvard University, 52 Oxford Street, Northwest Laboratory 280.10, Cambridge, MA 02138, USA.
| | - Lindsay C Hanford
- Department of Psychology, Center for Brain Science, Harvard University, 52 Oxford Street, Northwest Laboratory 280.10, Cambridge, MA 02138, USA
| | - Aya Hamadeh
- Baylor College of Medicine, Houston, TX 77030, USA
| | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Massachusetts General Hospital, USA; Alzheimer's Disease Research Center, Massachusetts General Hospital, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, USA; Department of Neurology, Massachusetts General Hospital & Harvard Medical School, USA; Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA
| | - Ross W Mair
- Department of Psychology, Center for Brain Science, Harvard University, 52 Oxford Street, Northwest Laboratory 280.10, Cambridge, MA 02138, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, USA
| | - Mark C Eldaief
- Frontotemporal Disorders Unit, Massachusetts General Hospital, USA; Alzheimer's Disease Research Center, Massachusetts General Hospital, USA; Department of Neurology, Massachusetts General Hospital & Harvard Medical School, USA; Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, 52 Oxford Street, Northwest Laboratory 280.10, Cambridge, MA 02138, USA; Alzheimer's Disease Research Center, Massachusetts General Hospital, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, USA; Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
34
|
Henzen NA, Reinhardt J, Blatow M, Kressig RW, Krumm S. Excellent Interrater Reliability for Manual Segmentation of the Medial Perirhinal Cortex. Brain Sci 2023; 13:850. [PMID: 37371329 DOI: 10.3390/brainsci13060850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Objective: Evaluation of interrater reliability for manual segmentation of brain structures that are affected first by neurofibrillary tau pathology in Alzheimer's disease. Method: Medial perirhinal cortex, lateral perirhinal cortex, and entorhinal cortex were manually segmented by two raters on structural magnetic resonance images of 44 adults (20 men; mean age = 69.2 ± 10.4 years). Intraclass correlation coefficients (ICC) of cortical thickness and volumes were calculated. Results: Very high ICC values of manual segmentation for the cortical thickness of all regions (0.953-0.986) and consistently lower ICC values for volume estimates of the medial and lateral perirhinal cortex (0.705-0.874). Conclusions: The applied manual segmentation protocol allows different raters to achieve remarkably similar cortical thickness estimates for regions of the parahippocampal gyrus. In addition, the results suggest a preference for cortical thickness over volume as a reliable measure of atrophy, especially for regions affected by collateral sulcus variability (i.e., medial and lateral perirhinal cortex). The results provide a basis for future automated segmentation and collection of normative data.
Collapse
Affiliation(s)
- Nicolas A Henzen
- University Department of Geriatric Medicine FELIX PLATTER, 4055 Basel, Switzerland
- Faculty of Psychology, University of Basel, 4001 Basel, Switzerland
| | - Julia Reinhardt
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland
- Department of Orthopedic Surgery and Traumatology, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland
| | - Maria Blatow
- Section of Neuroradiology, Department of Radiology and Nuclear Medicine, Neurocenter, Cantonal Hospital Lucerne, University of Lucerne, 6000 Lucerne, Switzerland
| | - Reto W Kressig
- University Department of Geriatric Medicine FELIX PLATTER, 4055 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
| | - Sabine Krumm
- University Department of Geriatric Medicine FELIX PLATTER, 4055 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
35
|
Pine JG, Paul SE, Johnson E, Bogdan R, Kandala S, Barch DM. Polygenic Risk for Schizophrenia, Major Depression, and Post-traumatic Stress Disorder and Hippocampal Subregion Volumes in Middle Childhood. Behav Genet 2023; 53:279-291. [PMID: 36720770 PMCID: PMC10875985 DOI: 10.1007/s10519-023-10134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/17/2023] [Indexed: 02/02/2023]
Abstract
Studies demonstrate that individuals with diagnoses for Major Depressive Disorder (MDD), Post-traumatic Stress Disorder (PTSD), and Schizophrenia (SCZ) may exhibit smaller hippocampal gray matter relative to otherwise healthy controls, although the effect sizes vary in each disorder. Existing work suggests that hippocampal abnormalities in each disorder may be attributable to genetic liability and/or environmental variables. The following study uses baseline data from the Adolescent Brain and Cognitive Development[Formula: see text] Study (ABCD Study[Formula: see text]) to address three open questions regarding the relationship between genetic risk for each disorder and hippocampal volume reductions: (a) whether polygenic risk scores (PGRS) for MDD, PTSD, and SCZ are related to hippocampal volume; (b) whether PGRS for MDD, PTSD, and SCZ are differentially related to specific hippocampal subregions along the longitudinal axis; and (c) whether the association between PGRS for MDD, PTSD, and SCZ and hippocampal volume is moderated by sex and/or environmental adversity. In short, we did not find associations between PGRS for MDD, PTSD, and SCZ to be significantly related to any hippocampal subregion volumes. Furthermore, neither sex nor enviornmental adversity significantly moderated these associations. Our study provides an important null finding on the relationship genetic risk for MDD, PTSD, and SCZ to measures of hippocampal volume.
Collapse
Affiliation(s)
- Jacob G Pine
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Sarah E Paul
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Emma Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sridhar Kandala
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
36
|
Wolf EJ, Hawn SE, Sullivan DR, Miller MW, Sanborn V, Brown E, Neale Z, Fein-Schaffer D, Zhao X, Logue MW, Fortier CB, McGlinchey RE, Milberg WP. Neurobiological and genetic correlates of the dissociative subtype of posttraumatic stress disorder. JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE 2023; 132:409-427. [PMID: 37023279 PMCID: PMC10286858 DOI: 10.1037/abn0000795] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Approximately 10%-30% of individuals with posttraumatic stress disorder (PTSD) exhibit a dissociative subtype of the condition defined by symptoms of depersonalization and derealization. This study examined the psychometric evidence for the dissociative subtype of PTSD in a sample of young, primarily male post-9/11-era Veterans (n = 374 at baseline and n = 163 at follow-up) and evaluated its biological correlates with respect to resting state functional connectivity (default mode network [DMN]; n = 275), brain morphology (hippocampal subfield volume and cortical thickness; n = 280), neurocognitive functioning (n = 337), and genetic variation (n = 193). Multivariate analyses of PTSD and dissociation items suggested a class structure was superior to dimensional and hybrid ones, with 7.5% of the sample comprising the dissociative class; this group showed stability over 1.5 years. Covarying for age, sex, and PTSD severity, linear regression models revealed that derealization/depersonalization severity was associated with: decreased DMN connectivity between bilateral posterior cingulate cortex and right isthmus (p = .015; adjusted-p [padj] = .097); increased bilateral whole hippocampal, hippocampal head, and molecular layer head volume (p = .010-.034; padj = .032-.053); worse self-monitoring (p = .018; padj = .079); and a candidate genetic variant (rs263232) in the adenylyl cyclase 8 gene (p = .026), previously associated with dissociation. Results converged on biological structures and systems implicated in sensory integration, the neural representation of spatial awareness, and stress-related spatial learning and memory, suggesting possible mechanisms underlying the dissociative subtype of PTSD. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Erika J. Wolf
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA
| | - Sage E. Hawn
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA
| | - Danielle R. Sullivan
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA
| | - Mark W. Miller
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA
| | - Victoria Sanborn
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
| | - Emma Brown
- Translational Research Center for TBI and Stress Disorders and Geriatric Research Educational and Clinical Center, VA Boston Healthcare System, Boston, MA
| | - Zoe Neale
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA
| | | | - Xiang Zhao
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA
| | - Mark W. Logue
- National Center for PTSD at VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA
- Department of Biostatistics, Boston University School of Public Health Boston, MA
- Biomedical Genetics, Boston University School of Medicine, Boston, MA
| | - Catherine B. Fortier
- Translational Research Center for TBI and Stress Disorders and Geriatric Research Educational and Clinical Center, VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Regina E. McGlinchey
- Translational Research Center for TBI and Stress Disorders and Geriatric Research Educational and Clinical Center, VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - William P. Milberg
- Translational Research Center for TBI and Stress Disorders and Geriatric Research Educational and Clinical Center, VA Boston Healthcare System, Boston, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| |
Collapse
|
37
|
de Flores R, Demeilliez-Servouin S, Kuhn E, Chauveau L, Landeau B, Delcroix N, Gonneaud J, Vivien D, Chételat G. Respective influence of beta-amyloid and APOE ε4 genotype on medial temporal lobe subregions in cognitively unimpaired older adults. Neurobiol Dis 2023; 181:106127. [PMID: 37061167 DOI: 10.1016/j.nbd.2023.106127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023] Open
Abstract
Medial temporal lobe (MTL) subregions are differentially affected in Alzheimer's disease (AD), with a specific involvement of the entorhinal cortex (ERC), perirhinal cortex and hippocampal cornu ammonis (CA)1. While amyloid (Aβ) and APOEε4 are respectively the first molecular change and the main genetic risk factor in AD, their links with MTL atrophy remain relatively unclear. Our aim was to uncover these effects using baseline data from 130 participants included in the Age-Well study, for whom ultra-high-resolution structural MRI, amyloid-PET and APOEε4 genotype were available. No volume differences were observed between Aβ + (n = 24) and Aβ- (n = 103), nor between APOE4+ (n = 35) and APOE4- (n = 95) participants. However, our analyses showed that both Aβ and APOEε4 status interacted with age on CA1, which is known to be specifically atrophied in early AD. In addition, APOEε4 status moderated the effects of age on other subregions (subiculum, ERC), suggesting a more important contribution of APOEε4 than Aβ to MTL atrophy in cognitively unimpaired population. These results are crucial to develop MRI-based biomarkers to detect early AD.
Collapse
Affiliation(s)
- Robin de Flores
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France.
| | - Solène Demeilliez-Servouin
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | - Elizabeth Kuhn
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | - Léa Chauveau
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | - Brigitte Landeau
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | | | - Julie Gonneaud
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | - Denis Vivien
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | - Gaël Chételat
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| |
Collapse
|
38
|
Kahhale I, Buser NJ, Madan CR, Hanson JL. Quantifying numerical and spatial reliability of hippocampal and amygdala subdivisions in FreeSurfer. Brain Inform 2023; 10:9. [PMID: 37029203 PMCID: PMC10082143 DOI: 10.1186/s40708-023-00189-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
On-going, large-scale neuroimaging initiatives can aid in uncovering neurobiological causes and correlates of poor mental health, disease pathology, and many other important conditions. As projects grow in scale with hundreds, even thousands, of individual participants and scans collected, quantification of brain structures by automated algorithms is becoming the only truly tractable approach. Here, we assessed the spatial and numerical reliability for newly deployed automated segmentation of hippocampal subfields and amygdala nuclei in FreeSurfer 7. In a sample of participants with repeated structural imaging scans (N = 928), we found numerical reliability (as assessed by intraclass correlations, ICCs) was reasonable. Approximately 95% of hippocampal subfields had "excellent" numerical reliability (ICCs ≥ 0.90), while only 67% of amygdala subnuclei met this same threshold. In terms of spatial reliability, 58% of hippocampal subfields and 44% of amygdala subnuclei had Dice coefficients ≥ 0.70. Notably, multiple regions had poor numerical and/or spatial reliability. We also examined correlations between spatial reliability and person-level factors (e.g., participant age; T1 image quality). Both sex and image scan quality were related to variations in spatial reliability metrics. Examined collectively, our work suggests caution should be exercised for a few hippocampal subfields and amygdala nuclei with more variable reliability.
Collapse
|
39
|
Adams JN, Márquez F, Larson MS, Janecek JT, Miranda BA, Noche JA, Taylor L, Hollearn MK, McMillan L, Keator DB, Head E, Rissman RA, Yassa MA. Differential involvement of hippocampal subfields in the relationship between Alzheimer's pathology and memory interference in older adults. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12419. [PMID: 37035460 PMCID: PMC10075195 DOI: 10.1002/dad2.12419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 04/11/2023]
Abstract
Introduction We tested whether Alzheimer's disease (AD) pathology predicts memory deficits in non-demented older adults through its effects on medial temporal lobe (MTL) subregional volume. Methods Thirty-two, non-demented older adults with cerebrospinal fluid (CSF) (amyloid-beta [Aβ]42/Aβ40, phosphorylated tau [p-tau]181, total tau [t-tau]), positron emission tomography (PET; 18F-florbetapir), high-resolution structural magnetic resonance imaging (MRI), and neuropsychological assessment were analyzed. We examined relationships between biomarkers and a highly granular measure of memory consolidation, retroactive interference (RI). Results Biomarkers of AD pathology were related to RI. Dentate gyrus (DG) and CA3 volume were uniquely associated with RI, whereas CA1 and BA35 volume were related to both RI and overall memory recall. AD pathology was associated with reduced BA35, CA1, and subiculum volume. DG volume and Aβ were independently associated with RI, whereas CA1 volume mediated the relationship between AD pathology and RI. Discussion Integrity of distinct hippocampal subfields demonstrate differential relationships with pathology and memory function, indicating specificity in vulnerability and contribution to different memory processes.
Collapse
Affiliation(s)
- Jenna N. Adams
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Freddie Márquez
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Myra S. Larson
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineCaliforniaUSA
| | - John T. Janecek
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Blake A. Miranda
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Jessica A. Noche
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Lisa Taylor
- Department of Psychiatry and Human BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Martina K. Hollearn
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Liv McMillan
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineCaliforniaUSA
| | - David B. Keator
- Department of Psychiatry and Human BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Elizabeth Head
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaIrvineCaliforniaUSA
- Department of NeurologyUniversity of CaliforniaIrvineCaliforniaUSA
- Department of NeurologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Robert A. Rissman
- Department of NeurosciencesUniversity of CaliforniaSan DiegoCaliforniaUSA
- Veterans Affairs San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Michael A. Yassa
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
40
|
Insausti R, Insausti AM, Muñoz López M, Medina Lorenzo I, Arroyo-Jiménez MDM, Marcos Rabal MP, de la Rosa-Prieto C, Delgado-González JC, Montón Etxeberria J, Cebada-Sánchez S, Raspeño-García JF, Iñiguez de Onzoño MM, Molina Romero FJ, Benavides-Piccione R, Tapia-González S, Wisse LEM, Ravikumar S, Wolk DA, DeFelipe J, Yushkevich P, Artacho-Pérula E. Ex vivo, in situ perfusion protocol for human brain fixation compatible with microscopy, MRI techniques, and anatomical studies. Front Neuroanat 2023; 17:1149674. [PMID: 37034833 PMCID: PMC10076536 DOI: 10.3389/fnana.2023.1149674] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
We present a method for human brain fixation based on simultaneous perfusion of 4% paraformaldehyde through carotids after a flush with saline. The left carotid cannula is used to perfuse the body with 10% formalin, to allow further use of the body for anatomical research or teaching. The aim of our method is to develop a vascular fixation protocol for the human brain, by adapting protocols that are commonly used in experimental animal studies. We show that a variety of histological procedures can be carried out (cyto- and myeloarchitectonics, histochemistry, immunohistochemistry, intracellular cell injection, and electron microscopy). In addition, ex vivo, ex situ high-resolution MRI (9.4T) can be obtained in the same specimens. This procedure resulted in similar morphological features to those obtained by intravascular perfusion in experimental animals, provided that the postmortem interval was under 10 h for several of the techniques used and under 4 h in the case of intracellular injections and electron microscopy. The use of intravascular fixation of the brain inside the skull provides a fixed whole human brain, perfectly fitted to the skull, with negligible deformation compared to conventional techniques. Given this characteristic of ex vivo, in situ fixation, this procedure can probably be considered the most suitable one available for ex vivo MRI scans of the brain. We describe the compatibility of the method proposed for intravascular fixation of the human brain and fixation of the donor's body for anatomical purposes. Thus, body donor programs can provide human brain tissue, while the remainder of the body can also be fixed for anatomical studies. Therefore, this method of human brain fixation through the carotid system optimizes the procurement of human brain tissue, allowing a greater understanding of human neurological diseases, while benefiting anatomy departments by making the remainder of the body available for teaching purposes.
Collapse
Affiliation(s)
- Ricardo Insausti
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Ana María Insausti
- Department of Health, School of Medicine, Public University of Navarra, Pamplona, Spain
| | - Mónica Muñoz López
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Isidro Medina Lorenzo
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Maria del Mar Arroyo-Jiménez
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - María Pilar Marcos Rabal
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Carlos de la Rosa-Prieto
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - José Carlos Delgado-González
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Javier Montón Etxeberria
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Sandra Cebada-Sánchez
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Juan Francisco Raspeño-García
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - María Mercedes Iñiguez de Onzoño
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Francisco Javier Molina Romero
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Ruth Benavides-Piccione
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, and Instituto Cajal, CSIC, Madrid, Spain
| | - Silvia Tapia-González
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, and Instituto Cajal, CSIC, Madrid, Spain
| | | | - Sadhana Ravikumar
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - David A. Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, and Instituto Cajal, CSIC, Madrid, Spain
| | - Paul Yushkevich
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Emilio Artacho-Pérula
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| |
Collapse
|
41
|
Hanson JL, Adkins DJ, Nacewicz BM, Barry KR. Impact of Socioeconomic Status on Amygdala and Hippocampus Subdivisions in Children and Adolescents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532071. [PMID: 36993362 PMCID: PMC10054998 DOI: 10.1101/2023.03.10.532071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Socioeconomic status (SES) in childhood can impact behavioral and brain development. Past work has consistently focused on the amygdala and hippocampus, two brain areas critical for emotion and behavioral responding. While there are SES differences in amygdala and hippocampal volumes, there are many unanswered questions in this domain connected to neurobiological specificity, and for whom these effects may be more pronounced. We may be able to investigate some anatomical subdivisions of these brain areas, as well as if relations with SES vary by participant age and sex. No work to date has however completed these types of analyses. To overcome these limitations, here, we combined multiple, large neuroimaging datasets of children and adolescents with information about neurobiology and SES (N=2,765). We examined subdivisions of the amygdala and hippocampus and found multiple amygdala subdivisions, as well as the head of the hippocampus, were related to SES. Greater volumes in these areas were seen for higher-SES youth participants. Looking at age- and sex-specific subgroups, we tended to see stronger effects in older participants, for both boys and girls. Paralleling effects for the full sample, we see significant positive associations between SES and volumes for the accessory basal amygdala and head of the hippocampus. We more consistently found associations between SES and volumes of the hippocampus and amygdala in boys (compared to girls). We discuss these results in relation to conceptions of "sex-as-a-biological variable" and broad patterns of neurodevelopment across childhood and adolescence. These results fill in important gaps on the impact of SES on neurobiology critical for emotion, memory, and learning.
Collapse
|
42
|
Sun Y, Hu N, Wang M, Lu L, Luo C, Tang B, Yao C, Sweeney JA, Gong Q, Qiu C, Lui S. Hippocampal subfield alterations in schizophrenia and major depressive disorder: a systematic review and network meta-analysis of anatomic MRI studies. J Psychiatry Neurosci 2023; 48:E34-E49. [PMID: 36750240 PMCID: PMC9911126 DOI: 10.1503/jpn.220086] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/28/2022] [Accepted: 10/30/2022] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Hippocampal disturbances are important in the pathophysiology of both schizophrenia and major depressive disorder (MDD). Imaging studies have shown selective volume deficits across hippocampal subfields in both disorders. We aimed to investigate whether these volumetric alterations in hippocampal subfields are shared or divergent across disorders. METHODS We searched PubMed and Embase from database inception to May 8, 2021. We identified MRI studies in patients with schizophrenia, MDD or both, in which hippocampal subfield volumes were measured. We excluded nonoriginal, animal or postmortem studies, and studies that used other imaging modalities or overlapping data. We conducted a network meta-analysis to estimate and contrast alterations in subfield volumes in the 2 disorders. RESULTS We identified 45 studies that met the initial criteria for systematic review, of which 15 were eligible for network metaanalysis. Compared to healthy controls, patients with schizophrenia had reduced volumes in the bilateral cornu ammonis (CA) 1, granule cell layer of the dentate gyrus, subiculum, parasubiculum, molecular layer, hippocampal tail and hippocampus-amygdala transition area (HATA); in the left CA4 and presubiculum; and in the right fimbria. Patients with MDD had decreased volumes in the left CA3 and CA4 and increased volumes in the right HATA compared to healthy controls. The bilateral parasubiculum and right HATA were smaller in patients with schizophrenia than in patients with MDD. LIMITATIONS We did not investigate medication effects because of limited information. Study heterogeneity was noteworthy in direct comparisons between patients with MDD and healthy controls. CONCLUSION The volumes of multiple hippocampal subfields are selectively altered in patients with schizophrenia and MDD, with overlap and differentiation in subfield alterations across disorders. Rigorous head-to-head studies are needed to validate our findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Changjian Qiu
- From the Huaxi MR Research Center, Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Sun, Lu, Tang, Yao, Sweeney, Gong, Lui); the Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Hu, Luo); the Chinese Evidence-Based Medicine Center and Cochrane China Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Wang); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); the Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Qiu); the Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China (Lui); the Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Lui)
| | - Su Lui
- From the Huaxi MR Research Center, Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Sun, Lu, Tang, Yao, Sweeney, Gong, Lui); the Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Hu, Luo); the Chinese Evidence-Based Medicine Center and Cochrane China Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Wang); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); the Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Qiu); the Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China (Lui); the Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Lui)
| |
Collapse
|
43
|
Ben-Zion Z, Korem N, Spiller TR, Duek O, Keynan JN, Admon R, Harpaz-Rotem I, Liberzon I, Shalev AY, Hendler T. Longitudinal volumetric evaluation of hippocampus and amygdala subregions in recent trauma survivors. Mol Psychiatry 2023; 28:657-667. [PMID: 36280750 PMCID: PMC9918676 DOI: 10.1038/s41380-022-01842-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022]
Abstract
The hippocampus and the amygdala play a central role in post-traumatic stress disorder (PTSD) pathogenesis. While alternations in volumes of both regions have been consistently observed in individuals with PTSD, it remains unknown whether these reflect pre-trauma vulnerability traits or acquired post-trauma consequences of the disorder. Here, we conducted a longitudinal panel study of adult civilian trauma survivors admitted to a general hospital emergency department (ED). One hundred eligible participants (mean age = 32.97 ± 10.97, n = 56 females) completed both clinical interviews and structural MRI scans at 1-, 6-, and 14-months after ED admission (alias T1, T2, and T3). While all participants met PTSD diagnosis at T1, only n = 29 still met PTSD diagnosis at T3 (a "non-Remission" Group), while n = 71 did not (a "Remission" Group). Bayesian multilevel modeling analysis showed robust evidence for smaller right hippocampus volume (P+ of ~0.014) and moderate evidence for larger left amygdala volume (P+ of ~0.870) at T1 in the "non-Remission" group, compared to the "Remission" group. Subregion analysis further demonstrated robust evidence for smaller volume in the subiculum and right CA1 hippocampal subregions (P+ of ~0.021-0.046) in the "non-Remission" group. No time-dependent volumetric changes (T1 to T2 to T3) were observed across all participants or between groups. Results support the "vulnerability trait" hypothesis, suggesting that lower initial volumes of specific hippocampus subregions are associated with non-remitting PTSD. The stable volume of all hippocampal and amygdala subregions does not support the idea of consequential, progressive, stress-related atrophy during the first critical year following trauma exposure.
Collapse
Affiliation(s)
- Ziv Ben-Zion
- Yale School of Medicine, Yale University, New Haven, CT, USA.
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, CT, USA.
- Sagol Brain Institute Tel Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Nachshon Korem
- Yale School of Medicine, Yale University, New Haven, CT, USA
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Tobias R Spiller
- Yale School of Medicine, Yale University, New Haven, CT, USA
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Or Duek
- Yale School of Medicine, Yale University, New Haven, CT, USA
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Jackob Nimrod Keynan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Roee Admon
- School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Ilan Harpaz-Rotem
- Yale School of Medicine, Yale University, New Haven, CT, USA
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Israel Liberzon
- Department of Psychiatry, College of Medicine, Texas A&M, College Station, TX, USA
| | - Arieh Y Shalev
- Department of Psychiatry, NYU Grossman School of Medicine, New York City, NY, USA
| | - Talma Hendler
- Sagol Brain Institute Tel Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Faculty of Social Sciences and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
44
|
Rogojin A, Gorbet DJ, Hawkins KM, Sergio LE. Differences in structural MRI and diffusion tensor imaging underlie visuomotor performance declines in older adults with an increased risk for Alzheimer's disease. Front Aging Neurosci 2023; 14:1054516. [PMID: 36711200 PMCID: PMC9877535 DOI: 10.3389/fnagi.2022.1054516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Visuomotor impairments have been demonstrated in preclinical AD in individuals with a positive family history of dementia and APOE e4 carriers. Previous behavioral findings have also reported sex-differences in performance of visuomotor tasks involving a visual feedback reversal. The current study investigated the relationship between grey and white matter changes and non-standard visuomotor performance, as well as the effects of APOE status, family history of dementia, and sex on these brain-behavior relationships. Methods Older adults (n = 49) with no cognitive impairments completed non-standard visuomotor tasks involving a visual feedback reversal, plane-change, or combination of the two. Participants with a family history of dementia or who were APOE e4 carriers were considered at an increased risk for AD. T1-weighted anatomical scans were used to quantify grey matter volume and thickness, and diffusion tensor imaging measures were used to quantify white matter integrity. Results In APOE e4 carriers, grey and white matter structural measures were associated with visuomotor performance. Regression analyses showed that visuomotor deficits were predicted by lower grey matter thickness and volume in areas of the medial temporal lobe previously implicated in visuomotor control (entorhinal and parahippocampal cortices). This finding was replicated in the diffusion data, where regression analyses revealed that lower white matter integrity (lower FA, higher MD, higher RD, higher AxD) was a significant predictor of worse visuomotor performance in the forceps minor, forceps major, cingulum, inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), and uncinate fasciculus (UF). Some of these tracts overlap with those important for visuomotor integration, namely the forceps minor, forceps major, SLF, IFOF, and ILF. Conclusion These findings suggest that measuring the dysfunction of brain networks underlying visuomotor control in early-stage AD may provide a novel behavioral target for dementia risk detection that is easily accessible, non-invasive, and cost-effective. The results also provide insight into the structural differences in inferior parietal lobule that may underlie previously reported sex-differences in performance of the visual feedback reversal task.
Collapse
Affiliation(s)
- Alica Rogojin
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada,Centre for Vision Research, York University, Toronto, ON, Canada,Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| | - Diana J. Gorbet
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada,Centre for Vision Research, York University, Toronto, ON, Canada
| | - Kara M. Hawkins
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Lauren E. Sergio
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada,Centre for Vision Research, York University, Toronto, ON, Canada,*Correspondence: Lauren E. Sergio, ✉
| |
Collapse
|
45
|
Jarholm JA, Bjørnerud A, Dalaker TO, Akhavi MS, Kirsebom BE, Pålhaugen L, Nordengen K, Grøntvedt GR, Nakling A, Kalheim LF, Almdahl IS, Tecelão S, Fladby T, Selnes P. Medial Temporal Lobe Atrophy in Predementia Alzheimer's Disease: A Longitudinal Multi-Site Study Comparing Staging and A/T/N in a Clinical Research Cohort. J Alzheimers Dis 2023; 94:259-279. [PMID: 37248900 PMCID: PMC10657682 DOI: 10.3233/jad-221274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Atrophy of the medial temporal lobe (MTL) is a biological characteristic of Alzheimer's disease (AD) and can be measured by segmentation of magnetic resonance images (MRI). OBJECTIVE To assess the clinical utility of automated volumetry in a cognitively well-defined and biomarker-classified multi-center longitudinal predementia cohort. METHODS We used Automatic Segmentation of Hippocampal Subfields (ASHS) to determine MTL morphometry from MRI. We harmonized scanner effects using the recently developed longitudinal ComBat. Subjects were classified according to the A/T/N system, and as normal controls (NC), subjective cognitive decline (SCD), or mild cognitive impairment (MCI). Positive or negative values of A, T, and N were determined by cerebrospinal fluid measurements of the Aβ42/40 ratio, phosphorylated and total tau. From 406 included subjects, longitudinal data was available for 206 subjects by stage, and 212 subjects by A/T/N. RESULTS Compared to A-/T-/N- at baseline, the entorhinal cortex, anterior and posterior hippocampus were smaller in A+/T+orN+. Compared to NC A- at baseline, these subregions were also smaller in MCI A+. Longitudinally, SCD A+ and MCI A+, and A+/T-/N- and A+/T+orN+, had significantly greater atrophy compared to controls in both anterior and posterior hippocampus. In the entorhinal and parahippocampal cortices, longitudinal atrophy was observed only in MCI A+ compared to NC A-, and in A+/T-/N- and A+/T+orN+ compared to A-/T-/N-. CONCLUSION We found MTL neurodegeneration largely consistent with existing models, suggesting that harmonized MRI volumetry may be used under conditions that are common in clinical multi-center cohorts.
Collapse
Affiliation(s)
- Jonas Alexander Jarholm
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Atle Bjørnerud
- Department of Physics, University of Oslo, Oslo, Norway
- Unit for Computational Radiology and Artificial Intelligence, Oslo University hospital, Oslo, Norway
- Department of Psychology, Faculty for Social Sciences, University of Oslo, Oslo, Norway
| | - Turi Olene Dalaker
- Department of Radiology, Stavanger Medical Imaging Laboratory, Stavanger University Hospital, Stavanger, Norway
| | - Mehdi Sadat Akhavi
- Department of Technology and Innovation, The Intervention Center, Oslo University Hospital, Oslo, Norway
| | - Bjørn Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, Tromso, Norway
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - Lene Pålhaugen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kaja Nordengen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gøril Rolfseng Grøntvedt
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arne Nakling
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Lisa F. Kalheim
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ina S. Almdahl
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sandra Tecelão
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
46
|
Ayoub LJ, Zhu J, Lee SJ, Mugisha N, Patel K, Duerden EG, Stinson J, Verriotis M, Noel M, Kong D, Moayedi M, McAndrews MP. Age-related effects on the anterior and posterior hippocampal volumes in 6-21 year olds: A model selection approach. Hippocampus 2023; 33:37-46. [PMID: 36519826 DOI: 10.1002/hipo.23487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Although recent studies support significant differences in intrinsic structure, function, and connectivity along the longitudinal axis of the hippocampus, few studies have investigated the normative development of this dimension. In addition, factors known to influence hippocampal structure, such as sex or puberty, have yet to be characterized when assessing age-related effects on its subregions. This study addresses this gap by investigating the relationship of the anterior (antHC) and posterior (postHC) hippocampus volumes with age, and how these are moderated by sex or puberty, in structural magnetic resonance imaging scans from 183 typically developing participants aged 6-21 years. Based on previous literature, we first anticipated that non-linear models would best represent the relationship between age and the antHC and postHC volumes. We found that age-related effects are region-specific, such that the antHC volume remains stable with increasing age, while the postHC shows a cubic function characterized by overall volume increase with age but a slower rate during adolescence. Second, we hypothesized that models, which include biological sex or pubertal status would best describe these relationships. Contrary to expectation, models comprising either biological sex or pubertal status did not significantly improve model performance. Further longitudinal research is needed to evaluate their effects on the antHC and postHC development.
Collapse
Affiliation(s)
- Lizbeth J Ayoub
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada.,Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Junhao Zhu
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Steven J Lee
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Nancy Mugisha
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Kyle Patel
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Emma G Duerden
- Applied Psychology, Faculty of Education, Western University, London, Ontario, Canada
| | - Jennifer Stinson
- Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Madeleine Verriotis
- Pain Research, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Anaesthesia and Pain Management, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Melanie Noel
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Dehan Kong
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Massieh Moayedi
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada.,Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Department of Dentistry, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Mary Pat McAndrews
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
LaBar KS. Neuroimaging of Fear Extinction. Curr Top Behav Neurosci 2023; 64:79-101. [PMID: 37455302 DOI: 10.1007/7854_2023_429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Extinguishing fear and defensive responses to environmental threats when they are no longer warranted is a critical learning ability that can promote healthy self-regulation and, ultimately, reduce susceptibility to or maintenance of affective-, trauma-, stressor-,and anxiety-related disorders. Neuroimaging tools provide an important means to uncover the neural mechanisms of effective extinction learning that, in turn, can abate the return of fear. Here I review the promises and pitfalls of functional neuroimaging as a method to investigate fear extinction circuitry in the healthy human brain. I discuss the extent to which neuroimaging has validated the core circuits implicated in rodent models and has expanded the scope of the brain regions implicated in extinction processes. Finally, I present new advances made possible by multivariate data analysis tools that yield more refined insights into the brain-behavior relationships involved.
Collapse
Affiliation(s)
- Kevin S LaBar
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA.
| |
Collapse
|
48
|
Kannappan B, te Nijenhuis J, Choi YY, Lee JJ, Choi KY, Balzekas I, Jung HY, Choe Y, Song MK, Chung JY, Ha JM, Choi SM, Kim H, Kim BC, Jo HJ, Lee KH. Can hippocampal subfield measures supply information that could be used to improve the diagnosis of Alzheimer's disease? PLoS One 2022; 17:e0275233. [PMID: 36327265 PMCID: PMC9632892 DOI: 10.1371/journal.pone.0275233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022] Open
Abstract
The diagnosis of Alzheimer's disease (AD) needs to be improved. We investigated if hippocampal subfield volume measured by structural imaging, could supply information, so that the diagnosis of AD could be improved. In this study, subjects were classified based on clinical, neuropsychological, and amyloid positivity or negativity using PET scans. Data from 478 elderly Korean subjects grouped as cognitively unimpaired β-amyloid-negative (NC), cognitively unimpaired β-amyloid-positive (aAD), mild cognitively impaired β-amyloid-positive (pAD), mild cognitively impaired-specific variations not due to dementia β-amyloid-negative (CIND), severe cognitive impairment β-amyloid-positive (ADD+) and severe cognitive impairment β-amyloid-negative (ADD-) were used. NC and aAD groups did not show significant volume differences in any subfields. The CIND did not show significant volume differences when compared with either the NC or the aAD (except L-HATA). However, pAD showed significant volume differences in Sub, PrS, ML, Tail, GCMLDG, CA1, CA4, HATA, and CA3 when compared with the NC and aAD. The pAD group also showed significant differences in the hippocampal tail, CA1, CA4, molecular layer, granule cells/molecular layer/dentate gyrus, and CA3 when compared with the CIND group. The ADD- group had significantly larger volumes than the ADD+ group in the bilateral tail, SUB, PrS, and left ML. The results suggest that early amyloid depositions in cognitive normal stages are not accompanied by significant bilateral subfield volume atrophy. There might be intense and accelerated subfield volume atrophy in the later stages associated with the cognitive impairment in the pAD stage, which subsequently could drive the progression to AD dementia. Early subfield volume atrophy associated with the β-amyloid burden may be characterized by more symmetrical atrophy in CA regions than in other subfields. We conclude that the hippocampal subfield volumetric differences from structural imaging show promise for improving the diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Balaji Kannappan
- Gwangju Alzheimer’s & Related Dementias Cohort Research Center, Chosun University, Gwangju, South Korea
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| | - Jan te Nijenhuis
- Gwangju Alzheimer’s & Related Dementias Cohort Research Center, Chosun University, Gwangju, South Korea
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| | - Yu Yong Choi
- Gwangju Alzheimer’s & Related Dementias Cohort Research Center, Chosun University, Gwangju, South Korea
| | - Jang Jae Lee
- Gwangju Alzheimer’s & Related Dementias Cohort Research Center, Chosun University, Gwangju, South Korea
| | - Kyu Yeong Choi
- Gwangju Alzheimer’s & Related Dementias Cohort Research Center, Chosun University, Gwangju, South Korea
| | - Irena Balzekas
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Ho Yub Jung
- Department of Computer Engineering, Chosun University, Gwangju, South Korea
| | | | - Min Kyung Song
- Department of Neurology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Ji Yeon Chung
- Gwangju Alzheimer’s & Related Dementias Cohort Research Center, Chosun University, Gwangju, South Korea
- Department of Neurology, Chosun University Hospital, Gwangju, South Korea
| | - Jung-Min Ha
- Gwangju Alzheimer’s & Related Dementias Cohort Research Center, Chosun University, Gwangju, South Korea
- Department of Nuclear Medicine, Chosun University Hospital, Gwangju, South Korea
| | - Seong-Min Choi
- Department of Neurology, Chonnam National University Medical School, Gwangju, South Korea
| | - Hoowon Kim
- Gwangju Alzheimer’s & Related Dementias Cohort Research Center, Chosun University, Gwangju, South Korea
- Department of Neurology, Chosun University Hospital, Gwangju, South Korea
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, South Korea
| | - Hang Joon Jo
- Department of Physiology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Kun Ho Lee
- Gwangju Alzheimer’s & Related Dementias Cohort Research Center, Chosun University, Gwangju, South Korea
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
- Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
49
|
Botdorf M, Dunstan J, Sorcher L, Dougherty LR, Riggins T. Socioeconomic disadvantage and episodic memory ability in the ABCD sample: Contributions of hippocampal subregion and subfield volumes. Dev Cogn Neurosci 2022; 57:101138. [PMID: 35907312 PMCID: PMC9335384 DOI: 10.1016/j.dcn.2022.101138] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/22/2022] [Accepted: 07/15/2022] [Indexed: 01/06/2023] Open
Abstract
Socioeconomic disadvantage is associated with volumetric differences in stress-sensitive neural structures, including the hippocampus, and deficits in episodic memory. Rodent studies provide evidence that memory deficits arise via stress-related structural differences in hippocampal subdivisions; however, human studies have only provided limited evidence to support this notion. We used a sample of 10,695 9-13-year-old participants from two timepoints of the Adolescent Brain and Cognitive Development (ABCD) Study to assess whether socioeconomic disadvantage relates to episodic memory performance through hippocampal volumes. We explored associations among socioeconomic disadvantage, measured via the Area Deprivation Index (ADI), concurrent subregion (anterior, posterior) and subfield volumes (CA1, CA3, CA4/DG, subiculum), and episodic memory, assessed via the NIH Toolbox Picture Sequence Memory Test at baseline and 2-year follow-up (Time 2). Results showed that higher baseline ADI related to smaller concurrent anterior, CA1, CA4/DG, and subiculum volumes and poorer Time 2 memory performance controlling for baseline memory. Moreover, anterior, CA1, and subiculum volumes mediated the longitudinal association between the ADI and memory. Results suggest that greater socioeconomic disadvantage relates to smaller hippocampal subregion and subfield volumes and less age-related improvement in memory. These findings shed light on the neural mechanisms linking socioeconomic disadvantage and cognitive ability in childhood.
Collapse
Affiliation(s)
- Morgan Botdorf
- University of Maryland, College Park, Department of Psychology, United States; University of Pennsylvania, Department of Psychology, United States.
| | - Jade Dunstan
- University of Maryland, College Park, Department of Psychology, United States
| | - Leah Sorcher
- University of Maryland, College Park, Department of Psychology, United States
| | - Lea R Dougherty
- University of Maryland, College Park, Department of Psychology, United States
| | - Tracy Riggins
- University of Maryland, College Park, Department of Psychology, United States
| |
Collapse
|
50
|
Knight S, McCutcheon R, Dwir D, Grace AA, O'Daly O, McGuire P, Modinos G. Hippocampal circuit dysfunction in psychosis. Transl Psychiatry 2022; 12:344. [PMID: 36008395 PMCID: PMC9411597 DOI: 10.1038/s41398-022-02115-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Despite strong evidence of the neurodevelopmental origins of psychosis, current pharmacological treatment is not usually initiated until after a clinical diagnosis is made, and is focussed on antagonising striatal dopamine receptors. These drugs are only partially effective, have serious side effects, fail to alleviate the negative and cognitive symptoms of the disorder, and are not useful as a preventive treatment. In recent years, attention has turned to upstream brain regions that regulate striatal dopamine function, such as the hippocampus. This review draws together these recent data to discuss why the hippocampus may be especially vulnerable in the pathophysiology of psychosis. First, we describe the neurodevelopmental trajectory of the hippocampus and its susceptibility to dysfunction, exploring this region's proneness to structural and functional imbalances, metabolic pressures, and oxidative stress. We then examine mechanisms of hippocampal dysfunction in psychosis and in individuals at high-risk for psychosis and discuss how and when hippocampal abnormalities may be targeted in these groups. We conclude with future directions for prospective studies to unlock the discovery of novel therapeutic strategies targeting hippocampal circuit imbalances to prevent or delay the onset of psychosis.
Collapse
Affiliation(s)
- Samuel Knight
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|