1
|
Staller DW, Bennett RG, Mahato RI. Therapeutic perspectives on PDE4B inhibition in adipose tissue dysfunction and chronic liver injury. Expert Opin Ther Targets 2024; 28:545-573. [PMID: 38878273 PMCID: PMC11305103 DOI: 10.1080/14728222.2024.2369590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Chronic liver disease (CLD) is a complex disease associated with profound dysfunction. Despite an incredible burden, the first and only pharmacotherapy for metabolic-associated steatohepatitis was only approved in March of this year, indicating a gap in the translation of preclinical studies. There is a body of preclinical work on the application of phosphodiesterase 4 inhibitors in CLD, none of these molecules have been successfully translated into clinical use. AREAS COVERED To design therapies to combat CLD, it is essential to consider the dysregulation of other tissues that contribute to its development and progression. As such, proper therapies must combat this throughout the body rather than focusing only on the liver. To detail this, literature characterizing the pathogenesis of CLD was pulled from PubMed, with a particular focus placed on the role of PDE4 in inflammation and metabolism. Then, the focus is shifted to detailing the available information on existing PDE4 inhibitors. EXPERT OPINION This review gives a brief overview of some of the pathologies of organ systems that are distinct from the liver but contribute to disease progression. The demonstrated efficacy of PDE4 inhibitors in other human inflammatory diseases should earn them further examination for the treatment of CLD.
Collapse
Affiliation(s)
- Dalton W. Staller
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Robert G. Bennett
- Department of Internal Medicine, Division of Diabetes Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Ram I. Mahato
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
2
|
Wei J, Wang S, Huang J, Zhou X, Qian Z, Wu T, Fan Q, Liang Y, Cui G. Network medicine-based analysis of the hepatoprotective effects of Amomum villosum Lour. on alcoholic liver disease in rats. Food Sci Nutr 2024; 12:3759-3773. [PMID: 38726425 PMCID: PMC11077240 DOI: 10.1002/fsn3.4046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 05/12/2024] Open
Abstract
Alcoholic liver disease (ALD) is characterized by high morbidity and mortality, and mainly results from prolonged and excessive alcohol use. Amomum villosum Lour. (A. villosum), a well-known traditional Chinese medicine (TCM), has hepatoprotective properties. However, its ability to combat alcohol-induced liver injury has not been fully explored. The objective of this study was to investigate the hepatoprotective effects of A. villosum in a rat model of alcohol-induced liver disease, thereby establishing a scientific foundation for the potential preventive use of A. villosum in ALD. We established a Chinese liquor (Baijiu)-induced liver injury model in rats. Hematoxylin and eosin (HE) staining, in combination with biochemical tests, was used to evaluate the protective effects of A. villosum on the liver. The integration of network medicine analysis with experimental validation was used to explore the hepatoprotective effects and potential mechanisms of A. villosum in rats. Our findings showed that A. villosum ameliorated alcohol-induced changes in body weight, liver index, hepatic steatosis, inflammation, blood lipid metabolism, and liver function in rats. Network proximity analysis was employed to identify 18 potentially active ingredients of A. villosum for ALD treatment. These potentially active ingredients in the blood were further identified using mass spectrometry (MS). Our results showed that A. villosum plays a hepatoprotective role by modulating the protein levels of estrogen receptor 1 (ESR1), anti-nuclear receptor subfamily 3 group C member 1 (NR3C1), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α). In conclusion, the results of the current study suggested that A. villosum potentially exerts hepatoprotective effects on ALD in rats, possibly through regulating the protein levels of ESR1, NR3C1, IL-6, and TNF-α.
Collapse
Affiliation(s)
- Jing Wei
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Sihua Wang
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Junze Huang
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Xinhua Zhou
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | | | - Tingbiao Wu
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Qing Fan
- Basic Medical Science DepartmentZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Yongyin Liang
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Guozhen Cui
- School of BioengineeringZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| |
Collapse
|
3
|
Al Jadani JM, Albadr NA, Alshammari GM, Almasri SA, Alfayez FF, Yahya MA. Esculeogenin A, a Glycan from Tomato, Alleviates Nonalcoholic Fatty Liver Disease in Rats through Hypolipidemic, Antioxidant, and Anti-Inflammatory Effects. Nutrients 2023; 15:4755. [PMID: 38004149 PMCID: PMC10675668 DOI: 10.3390/nu15224755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
This study examined the preventative effects of esculeogenin A (ESGA), a newly discovered glycan from tomato, on liver damage and hepatic steatosis in high-fat-diet (HFD)-fed male rats. The animals were divided into six groups (each of eight rats): a control group fed a normal diet, control + ESGA (200 mg/kg), HFD, and HFD + ESAG in 3 doses (50, 100, and 200 mg/kg). Feeding and treatments were conducted for 12 weeks. Treatment with ESGA did not affect gains in the body or fat weight nor increases in fasting glucose, insulin, and HOMA-IR or serum levels of free fatty acids (FFAs), tumor-necrosis factor-α, and interleukin-6 (IL-6). On the contrary, it significantly reduced the serum levels of gamma-glutamyl transpeptidase (GGT), aspartate aminotransferase (AST), alanine aminotransferase (ALT), total triglycerides (TGs), cholesterol (CHOL), and low-density lipoprotein cholesterol (LDL-c) in the HFD-fed rats. In addition, it improved the liver structure, attenuating the increase in fat vacuoles; reduced levels of TGs and CHOL, and the mRNA levels of SREBP1 and acetyl CoA carboxylase (ACC); and upregulated the mRNA levels of proliferator-activated receptor α (PPARα) and carnitine palmitoyltransferase I (CPT I) in HFD-fed rats. These effects were concomitant with increases in the mRNA, cytoplasmic, and nuclear levels of nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and heme oxygenase-1 (HO); a reduction in the nuclear activity of nuclear factor-kappa beta (NF-κB); and inhibition of the activity of nuclear factor kappa B kinase subunit beta (IKKβ). All of these effects were dose-dependent effects in which a normal liver structure and normal levels of all measured parameters were seen in HFD + ESGA (200 mg/kg)-treated rats. In conclusion, ESGA prevents NAFLD in HFD-fed rats by attenuating hyperlipidemia, hepatic steatosis, oxidative stress, and inflammation by acting locally on Nrf2, NF-κB, SREBP1, and PPARα transcription factors.
Collapse
Affiliation(s)
- Jwharah M. Al Jadani
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| | - Nawal A. Albadr
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| | - Soheir A. Almasri
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| | - Farah Fayez Alfayez
- Department of Medicine and Surgery, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (J.M.A.J.); (G.M.A.); (S.A.A.); (M.A.Y.)
| |
Collapse
|
4
|
De Moraes ACF, Medeiros-Oliveira VC, Burford K, Schaan BD, Bloch K, de Carvalho KMB, Cureau FV, Nascimento-Ferreira MV. Association Between Sleep Time and Pro- and Anti-Inflammatory Biomarkers Is Mediated by Abdominal Obesity Among Adolescents. J Phys Act Health 2023; 20:926-933. [PMID: 37295784 DOI: 10.1123/jpah.2022-0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/03/2023] [Accepted: 04/27/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Movement behaviors and abdominal obesity are associated with higher inflammatory biomarkers. However, the role of waist circumference as a mediating factor is still unknown. Thus, our aims were to (1) test the associations between 24-hour movement behavior variables (physical activity, sedentary behavior, and sleep), abdominal obesity, and pro- and anti-inflammatory biomarkers; and (2) investigate whether abdominal obesity had a mediating effect between the investigated associations. METHODS This multicenter cross-sectional study included 3591 adolescents (aged 12-17 y) from 4 Brazilian cities. Waist circumference (in centimeters; at half the distance between the iliac crest and at the lower costal margin), 24-hour movement behaviors (validated questionnaire), high-sensitive C-reactive protein, and adiponectin (serum plasma) were evaluated. We used multiple mediation regression models (95% confidence interval) to determine if waist circumference mediated the association between 24-hour movement behaviors and pro- and anti-inflammatory biomarkers. RESULTS The results revealed that screen time and moderate to vigorous physical activity were not associated with pro- or anti-inflammatory biomarkers. However, sleep duration (in hours per day) was negatively associated with pro- (C-reactive protein, β = -0.08; 95% confidence interval, -0.38 to -0.02) and anti- (adiponectin, β = -0.31; 95% confidence interval, -2.13 to -0.12) inflammatory biomarkers. Our results also showed that waist circumference mediated the association between sleep duration and high-sensitive C-reactive protein (2.7%), and adiponectin (2.8%). CONCLUSION Sleep duration was inversely associated with pro- and anti-inflammatory biomarkers, and these relations were mediated by abdominal obesity. Therefore, adolescents having healthy sleep can have implications for reducing waist circumference and inflammatory indicators.
Collapse
Affiliation(s)
- Augusto César Ferreira De Moraes
- The University of Texas Health Science Center at Houston School of Public Health Austin Campus, Department of Epidemiology, Human Genetics, and Environmental Science, Michael & Susan Dell Center for Healthy Living, Austin, TX,USA
- Department of Epidemiology, Graduate Program in Public Health and Graduate Program in Epidemiology, School of Public Health, University of Sao Paulo, Sao Paulo, SP,Brazil
- YCARE (Youth/Child and cArdiovascular Risk and Environmental) Research Group, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP,Brazil
| | - Vanessa Cassia Medeiros-Oliveira
- Department of Epidemiology, Graduate Program in Public Health and Graduate Program in Epidemiology, School of Public Health, University of Sao Paulo, Sao Paulo, SP,Brazil
- YCARE (Youth/Child and cArdiovascular Risk and Environmental) Research Group, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP,Brazil
| | - Katie Burford
- The University of Texas Health Science Center at Houston School of Public Health Austin Campus, Department of Epidemiology, Human Genetics, and Environmental Science, Michael & Susan Dell Center for Healthy Living, Austin, TX,USA
| | - Beatriz D Schaan
- Faculty of Medicine, Graduate Program in Cardiology and Cardiovascular Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS,Brazil
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS,Brazil
- Faculty of Medicine, Graduate Program in Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS,Brazil
| | - Katia Bloch
- Instituto de Estudos em Saúde Coletiva, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ,Brazil
| | | | - Felipe Vogt Cureau
- Graduate Program in Cardiology and Cardiovascular Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS,Brazil
| | - Marcus Vinicius Nascimento-Ferreira
- YCARE (Youth/Child and cArdiovascular Risk and Environmental) Research Group, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP,Brazil
- HEALth, pHYsical activity and Behavior ReseArch (HEALTHY-BRA) group, Federal University of Tocantins, Campus Miracema, Miracema, TO,Brazil
| |
Collapse
|
5
|
Yamanaka Y, Tajima T, Tsujimura Y, Naito T, Mano Y, Tsukamoto M, Zenke Y, Sakai A. Adiponectin inhibits fibrosis of the palmar aponeurosis in Dupuytren's contracture in male patients. Bone Joint Res 2023; 12:486-493. [PMID: 37536684 PMCID: PMC10400293 DOI: 10.1302/2046-3758.128.bjr-2022-0449.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Aims Dupuytren's contracture is characterized by increased fibrosis of the palmar aponeurosis, with eventual replacement of the surrounding fatty tissue with palmar fascial fibromatosis. We hypothesized that adipocytokines produced by adipose tissue in contact with the palmar aponeurosis might promote fibrosis of the palmar aponeurosis. Methods We compared the expression of the adipocytokines adiponectin and leptin in the adipose tissue surrounding the palmar aponeurosis of male patients with Dupuytren's contracture, and of male patients with carpal tunnel syndrome (CTS) as the control group. We also examined the effects of adiponectin on fibrosis-related genes and proteins expressed by fibroblasts in the palmar aponeurosis of patients with Dupuytren's contracture. Results Adiponectin expression in the adipose tissue surrounding the palmar aponeurosis was significantly lower in patients with Dupuytren's contracture than in those with CTS. The expression of fibrosis-related genes and proteins, such as types 1 and 3 collagen and α-smooth muscle actin, was suppressed in a concentration-dependent manner by adding AdipoRon, an adiponectin receptor agonist. The expression of fibrosis-related genes and proteins was also suppressed by AdipoRon in the in vitro model of Dupuytren's contracture created by adding TGF-β to normal fibroblasts collected from patients with CTS. Conclusion Fibrosis of the palmar aponeurosis in Dupuytren's contracture in males may be associated with adiponectin expression in the adipose tissue surrounding the palmar aponeurosis. Although fibroblasts within the palmar aponeurosis are often the focus of attention when elucidating the pathogenesis of Dupuytren's contracture, adiponectin expression in adipose tissues warrants closer attention in future research.
Collapse
Affiliation(s)
- Yoshiaki Yamanaka
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Takafumi Tajima
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Yoshitaka Tsujimura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Toichiro Naito
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Yosuke Mano
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Manabu Tsukamoto
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Yukichi Zenke
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| |
Collapse
|
6
|
Ramatchandirin B, Pearah A, He L. Regulation of Liver Glucose and Lipid Metabolism by Transcriptional Factors and Coactivators. Life (Basel) 2023; 13:life13020515. [PMID: 36836874 PMCID: PMC9962321 DOI: 10.3390/life13020515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) worldwide is on the rise and NAFLD is becoming the most common cause of chronic liver disease. In the USA, NAFLD affects over 30% of the population, with similar occurrence rates reported from Europe and Asia. This is due to the global increase in obesity and type 2 diabetes mellitus (T2DM) because patients with obesity and T2DM commonly have NAFLD, and patients with NAFLD are often obese and have T2DM with insulin resistance and dyslipidemia as well as hypertriglyceridemia. Excessive accumulation of triglycerides is a hallmark of NAFLD and NAFLD is now recognized as the liver disease component of metabolic syndrome. Liver glucose and lipid metabolisms are intertwined and carbon flux can be used to generate glucose or lipids; therefore, in this review we discuss the important transcription factors and coactivators that regulate glucose and lipid metabolism.
Collapse
Affiliation(s)
| | - Alexia Pearah
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ling He
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD 21287, USA
- Correspondence: ; Tel.: +1-410-502-5765; Fax: +1-410-502-5779
| |
Collapse
|
7
|
Guo R, Chen L, Zhu J, Li J, Ding Q, Chang K, Han Q, Li S. Monounsaturated fatty acid-enriched olive oil exacerbates chronic alcohol-induced hepatic steatosis and liver injury in C57BL/6J mice. Food Funct 2023; 14:1573-1583. [PMID: 36655918 DOI: 10.1039/d2fo03323b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dietary oil composition determines the pathological processes of alcoholic fatty liver disease (AFLD). Oil rich in saturated fatty acids protects, whereas oil rich in polyunsaturated fatty acids aggravates the alcohol-induced liver injury. However, limited studies have been conducted to address how monounsaturated fatty acids (MUFAs) enriched oil controls the pathological development of AFLD. Therefore, this study was designed to evaluate the effect of MUFA-enriched extra virgin olive oil (OO) on AFLD. Twenty C57BL/6J mice were randomly allocated into four groups and fed modified Lieber-DeCarli liquid diets containing isocaloric maltose dextrin a non-alcohol or alcohol with corn oil and OO for four weeks. Dietary OO significantly exacerbated alcohol-induced liver dysfunction, evidenced by histological examinations and disturbed biochemical parameters. Dietary OO with alcohol decreased hormone-sensitive lipase (HSL), phosphorylated 5'-AMP-activated protein kinase (p-AMPK), and carnitine palmitoyltransferase-Iα (CPT1α) expression, and increased sterol regulatory element-binding protein-1c (SREBP-1c), diacylglycerol acyltransferase-2 (DGAT2), and very low-density lipoprotein receptor (VLDLR) expression in the liver. It also promoted the expression of hepatic interleukin-6 (IL-6) and hepatic tumour necrosis factor-alpha (TNF-α) at the transcriptional level. Additionally, adipose tissue lipolysis partially had an etiologic effect on alcohol-induced hepatic steatosis under OO pretreatment. In conclusion, MUFA-enriched OO exacerbated liver dysfunction in vivo. OO should be cautiously considered as a unique dietary oil source for individuals with AFLD.
Collapse
Affiliation(s)
- Rui Guo
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China. .,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Lin Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Jinyan Zhu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Jiaomei Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China. .,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Qingchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Kaixin Chang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Qiang Han
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China. .,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China. .,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| |
Collapse
|
8
|
Kharbanda KK, Farokhnia M, Deschaine SL, Bhargava R, Rodriguez-Flores M, Casey CA, Goldstone AP, Jerlhag E, Leggio L, Rasineni K. Role of the ghrelin system in alcohol use disorder and alcohol-associated liver disease: A narrative review. Alcohol Clin Exp Res 2022; 46:2149-2159. [PMID: 36316764 PMCID: PMC9772086 DOI: 10.1111/acer.14967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Unhealthy alcohol consumption is a global health problem. Adverse individual, public health, and socioeconomic consequences are attributable to harmful alcohol use. Epidemiological studies have shown that alcohol use disorder (AUD) and alcohol-associated liver disease (ALD) are the top two pathologies among alcohol-related diseases. Consistent with the major role that the liver plays in alcohol metabolism, uncontrolled drinking may cause significant damage to the liver. This damage is initiated by excessive fat accumulation in the liver, which can further progress to advanced liver disease. The only effective therapeutic strategies currently available for ALD are alcohol abstinence or liver transplantation. Any molecule with dual-pronged effects at the central and peripheral organs controlling addictive behaviors and associated metabolic pathways are a potentially important therapeutic target for treating AUD and ALD. Ghrelin, a hormone primarily derived from the stomach, has such properties, and regulates both behavioral and metabolic functions. In this review, we highlight recent advances in understanding the peripheral and central functions of the ghrelin system and its role in AUD and ALD pathogenesis. We first discuss the correlation between blood ghrelin concentrations and alcohol use or abstinence. Next, we discuss the role of ghrelin in alcohol-seeking behaviors and finally its role in the development of fatty liver by metabolic regulations and organ crosstalk. We propose that a better understanding of the ghrelin system could open an innovative avenue for improved treatments for AUD and associated medical consequences, including ALD.
Collapse
Affiliation(s)
- Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sara L. Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Raghav Bhargava
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Marcela Rodriguez-Flores
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Carol A. Casey
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anthony P. Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, Rhode Island, USA
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, Georgetown University Medical Center, Washington DC, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
9
|
Diet containing dehulled adlay ameliorates hepatic steatosis, inflammation and insulin resistance in rats with non-alcoholic fatty liver disease. Br J Nutr 2022; 128:369-376. [PMID: 34470675 DOI: 10.1017/s0007114521003366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dietary modification plays a vital role in the treatment of non-alcoholic liver diseases. We investigated the effects of the consumption of a different amount of dehulled adlay, which has hypolipidaemic and anti-inflammatory properties, on non-alcoholic fatty liver disease (NAFLD). We fed rats a high-fat-high-fructose liquid diet for 16 weeks to induce NAFLD. The rats were divided into three groups fed the NAFLD diet only (NN) or a diet containing 44·9 or 89·8 g/l of dehulled adlay (NA and NB groups, respectively). After 8 weeks, the NA and NB groups had lower C-reactive protein levels and improvement in insulin resistance. In addition, the NB group had lower liver weight and hepatic TAG and cholesterol concentrations than did the NN group. Compared with the NN group, the high-dose NB group had improved steatosis, lower hepatic TNF-α, IL-1β and IL-6 levels and lower adipose leptin levels. Our results suggest that a diet containing dehulled adlay can ameliorate NAFLD progression by decreasing of insulin resistance, steatosis and inflammation.
Collapse
|
10
|
Abstract
The liver is the major target organ of continued alcohol consumption at risk and resulting alcoholic liver disease (ALD) is the most common liver disease worldwide. The underlying molecular mechanisms are still poorly understood despite decades of scientific effort limiting our abilities to identify those individuals who are at risk to develop the disease, to develop appropriate screening strategies and, in addition, to develop targeted therapeutic approaches. ALD is predestined for the newly evolving translational medicine, as conventional clinical and health care structures seem to be constrained to fully appreciate this disease. This concept paper aims at summarizing the 15 years translational experience at the Center of Alcohol Research in Heidelberg, namely based on the long-term prospective and detailed characterization of heavy drinkers with mortality data. In addition, novel experimental findings will be presented. A special focus will be the long-known hepatic iron accumulation, the somewhat overlooked role of the hematopoietic system and novel insights into iron sensing and the role of hepcidin. Our preliminary work indicates that enhanced red blood cell (RBC) turnover is critical for survival in ALD patients. RBC turnover is not primarily due to vitamin deficiency but rather to ethanol toxicity directly targeted to erythrocytes but also to the bone marrow stem cell compartment. These novel insights also help to explain long-known aspects of ALD such as mean corpuscular volume of erythrocytes (MCV) and elevated aspartate transaminase (GOT/AST) levels. This work also aims at identifying future projects, naming unresolved observations, and presenting novel hypothetical concepts still requiring future validation.
Collapse
|
11
|
Shafqat M, Jo JH, Moon HH, Choi YI, Shin DH. Alcohol-related liver disease and liver transplantation. KOSIN MEDICAL JOURNAL 2022. [DOI: 10.7180/kmj.22.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Alcohol-related liver disease (ALD) has become the major cause of liver transplantation (LT) in Korea, and is currently the most common cause of LT in Europe and the United States. Although, ALD is one of the most common indications for LT, it is traditionally not considered as an option for patients with ALD due to organ shortages and concerns about relapse. To select patients with terminal liver disease due to ALD for transplants, most LT centers in the United States and European countries require a 6-month sober period before transplantation. However, Korea has a different social and cultural background than Western countries, and most organ transplants are made from living donors, who account for approximately twice as many procedures as deceased donors. Most LT centers in Korea do not require a specific period of sobriety before transplantation in patients with ALD. As per the literature, 8%–20% of patients resume alcohol consumption 1 year after LT, and this proportion increases to 30%–40% at 5 years post-LT, among which 10%–15% of patients resume heavy drinking. According to previous studies, the risk factors for alcohol relapse after LT are as follows: young age, poor familial and social support, family history of alcohol use disorder, previous history of alcohol-related treatment, shorter abstinence before LT, smoking, psychiatric disorders, irregular follow-up, and unemployment. Recognition of the risk factors, early detection of alcohol consumption after LT, and regular follow-up by a multidisciplinary team are important for improving the short- and long-term outcomes of LT patients with ALD.
Collapse
|
12
|
Ismaeel A, Laudato JA, Fletcher E, Papoutsi E, Tice A, Hwa LS, Miserlis D, Jamurtas AZ, Steiner J, Koutakis P. High-Fat Diet Augments the Effect of Alcohol on Skeletal Muscle Mitochondrial Dysfunction in Mice. Nutrients 2022; 14:1016. [PMID: 35267991 PMCID: PMC8912391 DOI: 10.3390/nu14051016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Previous studies have shown that chronic heavy alcohol consumption and consumption of a high-fat (HF) diet can independently contribute to skeletal muscle oxidative stress and mitochondrial dysfunction, yet the concurrent effect of these risk factors remains unclear. We aimed to assess the effect of alcohol and different dietary compositions on mitochondrial activity and oxidative stress markers. Male and female mice were randomized to an alcohol (EtOH)-free HF diet, a HF + EtOH diet, or a low-Fat (LF) + EtOH diet for 6 weeks. At the end of the study, electron transport chain complex activity and expression as well as antioxidant activity and expression, were measured in skeletal muscles. Complex I and III activity were diminished in muscles of mice fed a HF + EtOH diet relative to the EtOH-free HF diet. Lipid peroxidation was elevated, and antioxidant activity was diminished, in muscles of mice fed a HF + EtOH diet as well. Consumption of a HF diet may exacerbate the negative effects of alcohol on skeletal muscle mitochondrial health and oxidative stress.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (E.F.); (E.P.)
| | - Joseph A. Laudato
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32304, USA; (J.A.L.); (A.T.); (J.S.)
| | - Emma Fletcher
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (E.F.); (E.P.)
| | - Evlampia Papoutsi
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (E.F.); (E.P.)
| | - Abigail Tice
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32304, USA; (J.A.L.); (A.T.); (J.S.)
| | - Lara S. Hwa
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA;
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA;
| | - Athanasios Z. Jamurtas
- Department of Physical Education and Sport Sciences, University of Thessaly, 42100 Trikala, Greece;
- Department of Nutrition and Dietetics, University of Thessaly, 42100 Trikala, Greece
| | - Jennifer Steiner
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32304, USA; (J.A.L.); (A.T.); (J.S.)
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (E.F.); (E.P.)
| |
Collapse
|
13
|
Zhao L, Mehmood A, Soliman MM, Iftikhar A, Iftikhar M, Aboelenin SM, Wang C. Protective Effects of Ellagic Acid Against Alcoholic Liver Disease in Mice. Front Nutr 2021; 8:744520. [PMID: 34595202 PMCID: PMC8478122 DOI: 10.3389/fnut.2021.744520] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Ellagic acid, a natural polyphenolic compound commonly present in vegetables, fruits, nuts, and other edible plants, exerts many pharmacological activities. The present project was designed to explore the hepatoprotective effect of ellagic acid against alcohol-induced liver disease (ALD) and the correlation among alcohol, oxidative stress, inflammation, and gut microbiota. Fifty percent (v/v) alcohol (10 mL/kg bw daily) was orally administrated for 4 weeks in mice along with ellagic acid (50 and 100 mg/kg bw). Alcohol administration significantly (p < 0.05) increased the activities of alanine aminotransferase and serum aspartate aminotransferase, levels of triglyceride, low density lipoprotein, free fatty acid, and total cholesterol, and decreased contents of the high-density lipoprotein in model group compared with the control group, which were further improved by ellagic acid (50 or 100 mg/kg bw). Furthermore, daily supplementation of ellagic acid alleviated hepatic antioxidant activities (glutathione peroxidase, catalase, malondialdehyde, superoxide dismutase, and glutathione), proinflammatory cytokines levels (IL-6, IL-1β, and TNF-α), genes expressions (Tlr4, Myd88, Cd14, Cox2, Nos2, and Nfκb1), and histopathological features in alcohol-induced liver injured mice. Additionally, results also revealed that ellagic acid supplementation improved alcohol-induced gut microbiota dysbiosis. In conclusion, ellagic acid mitigated oxidative stress, inflammatory response, steatosis, and gut microbiota dysbiosis in ALD mice. Our results suggested that ellagic acid could be applied as an ideal dietary therapy against ALD.
Collapse
Affiliation(s)
- Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Asra Iftikhar
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, The University of Faisalabad, Faisalabad, Pakistan
| | - Maryam Iftikhar
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | | | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
14
|
Gopal T, Ai W, Casey CA, Donohue TM, Saraswathi V. A review of the role of ethanol-induced adipose tissue dysfunction in alcohol-associated liver disease. Alcohol Clin Exp Res 2021; 45:1927-1939. [PMID: 34558087 PMCID: PMC9153937 DOI: 10.1111/acer.14698] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
Alcohol-associated liver disease (AALD) encompasses a spectrum of liver diseases that includes simple steatosis, steatohepatitis, fibrosis, and cirrhosis. The adverse effects of alcohol in liver and the mechanisms by which ethanol (EtOH) promotes liver injury are well studied. Although liver is known to be the primary organ affected by EtOH exposure, alcohol's effects on other organs are also known to contribute significantly to the development of liver injury. It is becoming increasingly evident that adipose tissue (AT) is an important site of EtOH action. Both AT storage and secretory functions are altered by EtOH. For example, AT lipolysis, stimulated by EtOH, contributes to chronic alcohol-induced hepatic steatosis. Adipocytes secrete a wide variety of biologically active molecules known as adipokines. EtOH alters the secretion of these adipokines from AT, which include cytokines and chemokines that exert paracrine effects in liver. In addition, the level of EtOH-metabolizing enzymes, in particular, CYP2E1, rises in the AT of EtOH-fed mice, which promotes oxidative stress and/or inflammation in AT. Thus, AT dysfunction characterized by increased AT lipolysis and free fatty acid mobilization and altered secretion of adipokines can contribute to the severity of AALD. Of note, moderate EtOH exposure results in AT browning and activation of brown adipose tissue which, in turn, can promote thermogenesis. In this review article, we discuss the direct effects of EtOH consumption in AT and the mechanisms by which EtOH impacts the functions of AT, which, in turn, increases the severity of AALD in animal models and humans.
Collapse
Affiliation(s)
- Thiyagarajan Gopal
- Department of Internal Medicine, Divisions of Diabetes, Endocrinology, and Metabolism
- VA Nebraska-Western Iowa Health Care System, Omaha, NE
| | - Weilun Ai
- Department of Internal Medicine, Divisions of Diabetes, Endocrinology, and Metabolism
- VA Nebraska-Western Iowa Health Care System, Omaha, NE
| | - Carol A. Casey
- Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE
- VA Nebraska-Western Iowa Health Care System, Omaha, NE
| | - Terrence M. Donohue
- Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE
- VA Nebraska-Western Iowa Health Care System, Omaha, NE
| | - Viswanathan Saraswathi
- Department of Internal Medicine, Divisions of Diabetes, Endocrinology, and Metabolism
- VA Nebraska-Western Iowa Health Care System, Omaha, NE
| |
Collapse
|
15
|
Arumugam MK, Chava S, Rasineni K, Paal MC, Donohue TM, Osna NA, Kharbanda KK. Elevated S-adenosylhomocysteine induces adipocyte dysfunction to promote alcohol-associated liver steatosis. Sci Rep 2021; 11:14693. [PMID: 34282217 PMCID: PMC8289835 DOI: 10.1038/s41598-021-94180-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
It has been previously shown that chronic ethanol administration-induced increase in adipose tissue lipolysis and reduction in the secretion of protective adipokines collectively contribute to alcohol-associated liver disease (ALD) pathogenesis. Further studies have revealed that increased adipose S-adenosylhomocysteine (SAH) levels generate methylation defects that promote lipolysis. Here, we hypothesized that increased intracellular SAH alone causes additional related pathological changes in adipose tissue as seen with alcohol administration. To test this, we used 3-deazaadenosine (DZA), which selectively elevates intracellular SAH levels by blocking its hydrolysis. Fully differentiated 3T3-L1 adipocytes were treated in vitro for 48 h with DZA and analysed for lipolysis, adipokine release and differentiation status. DZA treatment enhanced adipocyte lipolysis, as judged by lower levels of intracellular triglycerides, reduced lipid droplet sizes and higher levels of glycerol and free fatty acids released into the culture medium. These findings coincided with activation of both adipose triglyceride lipase and hormone sensitive lipase. DZA treatment also significantly reduced adipocyte differentiation factors, impaired adiponectin and leptin secretion but increased release of pro-inflammatory cytokines, IL-6, TNF and MCP-1. Together, our results demonstrate that elevation of intracellular SAH alone by DZA treatment of 3T3-L1 adipocytes induces lipolysis and dysregulates adipokine secretion. Selective elevation of intracellular SAH by DZA treatment mimics ethanol's effects and induces adipose dysfunction. We conclude that alcohol-induced elevations in adipose SAH levels contribute to the pathogenesis and progression of ALD.
Collapse
Affiliation(s)
- Madan Kumar Arumugam
- Research Service (151), Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Avenue, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Srinivas Chava
- Research Service (151), Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Avenue, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Karuna Rasineni
- Research Service (151), Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Avenue, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Matthew C Paal
- Research Service (151), Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Avenue, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Terrence M Donohue
- Research Service (151), Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Avenue, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Natalia A Osna
- Research Service (151), Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Avenue, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kusum K Kharbanda
- Research Service (151), Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Avenue, Omaha, NE, 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
16
|
Gao Y, Tian R, Liu H, Xue H, Zhang R, Han S, Ji L, Huang W, Zhan J, You Y. Research progress on intervention effect and mechanism of protocatechuic acid on nonalcoholic fatty liver disease. Crit Rev Food Sci Nutr 2021; 62:9053-9075. [PMID: 34142875 DOI: 10.1080/10408398.2021.1939265] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a surge burden worldwide due to its high prevalence, with complicated deterioration symptoms such as liver fibrosis and cancer. No effective drugs are available for NALFD so far. The rapid growth of clinical demand has prompted the treatment of NAFLD to become a research hotspot. Protocatechuic acid (PCA) is a natural secondary metabolite commonly found in fruits, vegetables, grains, and herbal medicine. It is also the major internal metabolites of anthocyanins and other polyphenols. In the present manuscript, food sources, metabolic absorption, and efficacy of PCA were summarized while analyzing its role in improving NAFLD, as well as the mechanism involved. The results indicated that PCA could ameliorate NAFLD by regulating glucose and lipid metabolism, oxidative stress and inflammation, gut microbiota and metabolites. It was proposed for the first time that PCA might reduce NAFLD by enhancing the energy consumption of brown adipose tissue (BAT). However, the PCA administration mode and dose for NAFLD remain inconclusive. Fresh insights into the specific molecular mechanisms are required, while clinical trials are essential in the future. This review provides new targets and reasoning for the clinical application of PCA in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Yunxiao Gao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Rongrong Tian
- Department of Biomedicine, Beijing City University, Beijing, China
| | - Haiyue Liu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Huimin Xue
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Ruizhe Zhang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Suping Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Lin Ji
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Protopapas AA, Cholongitas E, Chrysavgis L, Tziomalos K. Alcohol consumption in patients with nonalcoholic fatty liver disease: yes, or no? Ann Gastroenterol 2021; 34:476-486. [PMID: 34276185 PMCID: PMC8276351 DOI: 10.20524/aog.2021.0641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Excessive alcohol intake is an established risk factor for chronic liver disease. At the same time, moderate alcohol intake appears to reduce cardiovascular morbidity. Accordingly, recommendations for alcohol intake in patients with nonalcoholic fatty liver disease (NAFLD), who are at increased risk for liver-related and cardiovascular events, are a point of debate. Some studies have shown beneficial effects of alcohol on cardiovascular and overall mortality in this specific subset of patients. Nonetheless, even light alcohol intake appears to aggravate liver disease and increase the risk of hepatocellular cancer. Therefore, patients with nonalcoholic steatohepatitis or advanced fibrosis should be advised against consuming alcohol. On the other hand, only light alcohol consumption (<10 g/day) might be permitted in patients without significant hepatic fibrosis, provided that they are carefully followed-up. As the research field focusing on NAFLD keeps widening, more prospective studies regarding this specific subject are expected, and may provide a basis for less ambiguous recommendations.
Collapse
Affiliation(s)
- Adonis A Protopapas
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki (Adonis A. Protopapas, Konstantinos Tziomalos)
| | - Evangelos Cholongitas
- First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens (Evangelos Cholongitas, Lampros Chrysavgis), Greece
| | - Lampros Chrysavgis
- First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens (Evangelos Cholongitas, Lampros Chrysavgis), Greece
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki (Adonis A. Protopapas, Konstantinos Tziomalos)
| |
Collapse
|
18
|
Kim H, Lee DS, An TH, Park HJ, Kim WK, Bae KH, Oh KJ. Metabolic Spectrum of Liver Failure in Type 2 Diabetes and Obesity: From NAFLD to NASH to HCC. Int J Mol Sci 2021; 22:ijms22094495. [PMID: 33925827 PMCID: PMC8123490 DOI: 10.3390/ijms22094495] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Liver disease is the spectrum of liver damage ranging from simple steatosis called as nonalcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC). Clinically, NAFLD and type 2 diabetes coexist. Type 2 diabetes contributes to biological processes driving the severity of NAFLD, the primary cause for development of chronic liver diseases. In the last 20 years, the rate of non-viral NAFLD/NASH-derived HCC has been increasing rapidly. As there are currently no suitable drugs for treatment of NAFLD and NASH, a class of thiazolidinediones (TZDs) drugs for the treatment of type 2 diabetes is sometimes used to improve liver failure despite the risk of side effects. Therefore, diagnosis, prevention, and treatment of the development and progression of NAFLD and NASH are important issues. In this review, we will discuss the pathogenesis of NAFLD/NASH and NAFLD/NASH-derived HCC and the current promising pharmacological therapies of NAFLD/NASH. Further, we will provide insights into "adipose-derived adipokines" and "liver-derived hepatokines" as diagnostic and therapeutic targets from NAFLD to HCC.
Collapse
Affiliation(s)
- Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Da Som Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (K.-H.B.); (K.-J.O.); Tel.: +82-42-860-4268 (K.-H.B.); +82-42-879-8265 (K.-J.O.)
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (K.-H.B.); (K.-J.O.); Tel.: +82-42-860-4268 (K.-H.B.); +82-42-879-8265 (K.-J.O.)
| |
Collapse
|
19
|
Hattori H, Mori T, Shibata T, Kita M, Mitsunaga T. 6-Paradol Acts as a Potential Anti-obesity Vanilloid from Grains of Paradise. Mol Nutr Food Res 2021; 65:e2100185. [PMID: 33793045 DOI: 10.1002/mnfr.202100185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/22/2022]
Abstract
SCOPE Grains of Paradise (GOP), the seeds of Aframomum melegueta, has anti-obesity effects. However, the mechanisms underlying the effects remain unclear. METHODS AND RESULTS This study sets up to study the anti-obesity impact and homeostatic effects of 6-paradol, a major vanilloid found in GOP, and investigates the physiological outputs and the lipometabolism-related gene in fat and liver in high-fat-induced obese mice with a comparison with structurally similar vanilloids (6-gingerol and 6-shogaol). The vanilloids are synthesized in adequate quantities for performing animal experiments and orally administered to 6-week-old male mice over 2 weeks. This study found that 6-paradol decreased body weight gain and visceral and subcutaneous fats in 2 weeks, whereas 6-gingerol and 6-shogaol have no effect. Additionally, 6-paradol suppresses the hepatic cholesterol and triglyceride and significantly decreases the gene expression related to fatty acid synthesis, lipid transportation, and adipocyte differentiation in both liver and adipose tissue. Moreover, phosphorylation of AMP-activated protein kinase (AMPK) that greatly contributes to lipometabolism is promoted by 6-gingerol but not 6-paradol. CONCLUSION These results suggest that 6-paradol regulates several obesity-related genes in an AMPK-independent manner. Therefore, it could be the principal active vanilloid in GOP giving it anti-obesity properties with a different mechanism.
Collapse
Affiliation(s)
- Hiroyuki Hattori
- Asian Satellite Campuses Institute, Nagoya University, Nagoya, 464-8601, Japan.,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Takashi Mori
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Masaki Kita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Tohru Mitsunaga
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| |
Collapse
|
20
|
Bianco C, Casirati E, Malvestiti F, Valenti L. Genetic predisposition similarities between NASH and ASH: Identification of new therapeutic targets. JHEP Rep 2021; 3:100284. [PMID: 34027340 PMCID: PMC8122117 DOI: 10.1016/j.jhepr.2021.100284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty liver disease can be triggered by a combination of excess alcohol, dysmetabolism and other environmental cues, which can lead to steatohepatitis and can evolve to acute/chronic liver failure and hepatocellular carcinoma, especially in the presence of shared inherited determinants. The recent identification of the genetic causes of steatohepatitis is revealing new avenues for more effective risk stratification. Discovery of the mechanisms underpinning the detrimental effect of causal mutations has led to some breakthroughs in the comprehension of the pathophysiology of steatohepatitis. Thanks to this approach, hepatocellular fat accumulation, altered lipid droplet remodelling and lipotoxicity have now taken centre stage, while the role of adiposity and gut-liver axis alterations have been independently validated. This process could ignite a virtuous research cycle that, starting from human genomics, through omics approaches, molecular genetics and disease models, may lead to the development of new therapeutics targeted to patients at higher risk. Herein, we also review how this knowledge has been applied to: a) the study of the main PNPLA3 I148M risk variant, up to the stage of the first in-human therapeutic trials; b) highlight a role of MBOAT7 downregulation and lysophosphatidyl-inositol in steatohepatitis; c) identify IL-32 as a candidate mediator linking lipotoxicity to inflammation and liver disease. Although this precision medicine drug discovery pipeline is mainly being applied to non-alcoholic steatohepatitis, there is hope that successful products could be repurposed to treat alcohol-related liver disease as well.
Collapse
Key Words
- AA, arachidonic acid
- ASH, alcoholic steatohepatitis
- DAG, diacylglycerol
- DNL, de novo lipogenesis
- ER, endoplasmic reticulum
- FFAs, free fatty acids
- FGF19, fibroblast growth factor 19
- FLD, fatty liver disease
- FXR, farnesoid X receptor
- GCKR, glucokinase regulator
- GPR55, G protein-coupled receptor 55
- HCC, hepatocellular carcinoma
- HFE, homeostatic iron regulator
- HSC, hepatic stellate cells
- HSD17B13, hydroxysteroid 17-beta dehydrogenase 13
- IL-, interleukin-
- IL32
- LDs, lipid droplets
- LPI, lysophosphatidyl-inositol
- MARC1, mitochondrial amidoxime reducing component 1
- MBOAT7
- MBOAT7, membrane bound O-acyltransferase domain-containing 7
- NASH, non-alcoholic steatohepatitis
- PNPLA3
- PNPLA3, patatin like phospholipase domain containing 3
- PPAR, peroxisome proliferator-activated receptor
- PRS, polygenic risk score
- PUFAs, polyunsaturated fatty acids
- SREBP, sterol response element binding protein
- TAG, triacylglycerol
- TNF-α, tumour necrosis factor-α
- alcoholic liver disease
- cirrhosis
- fatty liver disease
- genetics
- interleukin-32
- non-alcoholic fatty liver disease
- precision medicine
- steatohepatitis
- therapy
Collapse
Affiliation(s)
- Cristiana Bianco
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elia Casirati
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Francesco Malvestiti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Luca Valenti
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
21
|
González-Bernardo E, Russo LF, Valderrábano E, Fernández Á, Penteriani V. Denning in brown bears. Ecol Evol 2020; 10:6844-6862. [PMID: 32724555 PMCID: PMC7381752 DOI: 10.1002/ece3.6372] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Hibernation represents an adaptation for coping with unfavorable environmental conditions. For brown bears Ursus arctos, hibernation is a critical period as pronounced temporal reductions in several physiological functions occur.Here, we review the three main aspects of brown bear denning: (1) den chronology, (2) den characteristics, and (3) hibernation physiology in order to identify (a) proximate and ultimate factors of hibernation as well as (b) research gaps and conservation priorities.Den chronology, which varies by sex and reproductive status, depends on environmental factors, such as snow, temperature, food availability, and den altitude. Significant variation in hibernation across latitudes occurs for both den entry and exit.The choice of a den and its surroundings may affect individual fitness, for example, loss of offspring and excessive energy consumption. Den selection is the result of broad- and fine-scale habitat selection, mainly linked to den insulation, remoteness, and availability of food in the surroundings of the den location.Hibernation is a metabolic challenge for the brown bears, in which a series of physiological adaptations in tissues and organs enable survival under nutritional deprivation, maintain high levels of lipids, preserve muscle, and bone and prevent cardiovascular pathologies such as atherosclerosis. It is important to understand: (a) proximate and ultimate factors in denning behavior and the difference between actual drivers of hibernation (i.e., factors to which bears directly respond) and their correlates; (b) how changes in climatic factors might affect the ability of bears to face global climate change and the human-mediated changes in food availability; (c) hyperphagia (period in which brown bears accumulate fat reserves), predenning and denning periods, including for those populations in which bears do not hibernate every year; and (d) how to approach the study of bear denning merging insights from different perspectives, that is, physiology, ecology, and behavior.
Collapse
Affiliation(s)
- Enrique González-Bernardo
- Research Unit of Biodiversity (UMIB, CSIC-UO-PA) Mieres Spain
- Pyrenean Institute of Ecology (IPE-CSIC) Zaragoza Spain
| | - Luca Francesco Russo
- Research Unit of Biodiversity (UMIB, CSIC-UO-PA) Mieres Spain
- Department of Biosciences and the Territory Università degli Studi del Molise Pesche Italy
| | - Esther Valderrábano
- COPAR Research Group Faculty of Veterinary University of Santiago de Compostela Lugo Spain
| | | | | |
Collapse
|
22
|
Roles of peroxisome proliferator-activated receptor α in the pathogenesis of ethanol-induced liver disease. Chem Biol Interact 2020; 327:109176. [PMID: 32534989 DOI: 10.1016/j.cbi.2020.109176] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
Abstract
Alcoholic liver disease (ALD) is a progressively aggravated liver disease with high incidence in alcoholics. Ethanol-induced fat accumulation and the subsequent lipopolysaccharide (LPS)-driven inflammation bring liver from reversible steatosis, to irreversible hepatitis, fibrosis, cirrhosis, and even hepatocellular carcinoma. Peroxisome proliferator-activated receptor α (PPARα) is a member of the nuclear receptor superfamily of ligand-activated transcription factors and plays pivotal roles in the regulation of fatty acid homeostasis as well as the inflammation control in the liver. It has been well documented that PPARα activity and/or expression are downregulated in liver of mice exposed to ethanol, which is thought to be one of the prime contributors to ethanol-induced steatosis, hepatitis and fibrosis. This article summarizes the current evidences from in vitro and animal models for the critical roles of PPARα in the onset and progression of ALD. Importantly, it should be noted that the expression of PPARα in human liver is reported to be similar to that in mice, and PPARα expression is downregulated in the liver of patients with nonalcoholic fatty liver disease (NAFLD), a disease sharing many similarities with ALD. Therefore, clinical trials investigating the expression of PPARα in the liver of ALD patients and the efficacy of strong PPARα agonists for the prevention and treatment of ALD are warranted.
Collapse
|
23
|
Rasineni K, Kubik JL, Knight KL, Hall L, Casey CA, Kharbanda KK. Ghrelin regulates adipose tissue metabolism: Role in hepatic steatosis. Chem Biol Interact 2020; 322:109059. [PMID: 32171850 DOI: 10.1016/j.cbi.2020.109059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 03/10/2020] [Indexed: 02/09/2023]
Abstract
Fatty liver is the earliest and most common response of the liver to consumption of excessive alcohol. Steatosis can predispose the fatty liver to develop progressive liver damage. Chief among the many mechanisms involved in development of hepatic steatosis is dysregulation of insulin-mediated adipose tissue metabolism. Particularly, it is the enhanced adipose lipolysis-derived free fatty acids and their delivery to the liver that ultimately results in hepatic steatosis. The adipose-liver axis is modulated by hormones, particularly insulin and adiponectin. In recent studies, we demonstrated that an alcohol-induced increase in serum ghrelin levels impairs insulin secretion from pancreatic β-cells. The consequent reduction in circulating insulin levels promotes adipose lipolysis and mobilization of fatty acids to the liver to ultimately contribute to hepatic steatosis. Because many tissues, including adipose tissue, express ghrelin receptor we hypothesized that ghrelin may directly affect energy metabolism in adipocytes. We have exciting new preliminary data which shows that treatment of premature 3T3-L1 adipocytes with ghrelin impairs adipocyte differentiation and inhibits lipid accumulation in the tissue designed to store energy in the form of fat. We further observed that ghrelin treatment of differentiated adipocytes significantly inhibited secretion of adiponectin, a hepatoprotective hormone that reduces lipid synthesis and promotes lipid oxidation. These results were corroborated by our observations of a significant increase in serum adiponectin levels in ethanol-fed rats treated with a ghrelin receptor antagonist verses the un-treated ethanol-fed rats. Interestingly, in adipocytes, ghrelin also increases secretion of interleukin-6 (IL-6) and CCL2 (chemokine [C-C motif] ligand 2), cytokines which promote hepatic inflammation and progression of liver disease. To summarize, the alcohol-induced increase in serum ghrelin levels dysregulates adipose-liver interaction and promotes hepatic steatosis by increasing the free fatty acid released from adipose for hepatic uptake, and by altering adiponectin and cytokine secretion. Taken together, our data indicates that targeting the activity of ghrelin may be a powerful treatment strategy.
Collapse
Affiliation(s)
- Karuna Rasineni
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Research Service, Veterans' Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA.
| | - Jacy L Kubik
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Research Service, Veterans' Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Kurt L Knight
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Research Service, Veterans' Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Lukas Hall
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Carol A Casey
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Research Service, Veterans' Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kusum K Kharbanda
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Research Service, Veterans' Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
24
|
Hepatoprotective Effects of Steamed and Freeze-Dried Mature Silkworm Larval Powder against Ethanol-Induced Fatty Liver Disease in Rats. Foods 2020; 9:foods9030285. [PMID: 32143357 PMCID: PMC7142575 DOI: 10.3390/foods9030285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/16/2022] Open
Abstract
Silkworm, Bombyx mori, contains high amounts of beneficial nutrients, including amino acids, proteins, essential minerals, and omega-3 fatty acids. We have previously reported a technique for producing steamed and freeze-dried mature silkworm larval powder (SMSP), which makes it easier to digest mature silkworm. In this study, we investigated the preventive effects of SMSP on alcoholic fatty liver disease and elucidated its mechanism of action. Male Sprague-Dawley rats treated with SMSP (50 mg/kg) or normal diet (AIN-76A) were administered 25% ethanol (3 g/kg body weight) by oral gavage for 4 weeks. SMSP administration for 4 weeks significantly decreased hepatic fat accumulation in ethanol-treated rats by modulating lipogenesis and fatty acid oxidation-related molecules such as sirtuin 1, AMP-activated protein kinase, and acetyl-CoA carboxylase 1. Moreover, SMSP administration significantly diminished the levels of triglyceride in liver tissues by as much as 35%, as well as lowering the serum levels of triglyceride, gamma glutamyl transpeptidase, alanine transaminase, and aspartate aminotransferase in ethanol-treated rats. SMSP supplementation also decreased the pro-inflammatory tumor necrosis factor-alpha and interleukin 1 beta levels and cytochrome P450 2E1 generating oxidative stress. These results suggest that SMSP administration may be possible for the prevention of alcoholic liver disease.
Collapse
|
25
|
Jeon S, Carr R. Alcohol effects on hepatic lipid metabolism. J Lipid Res 2020; 61:470-479. [PMID: 32029510 DOI: 10.1194/jlr.r119000547] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Alcoholic liver disease (ALD) is the most prevalent type of chronic liver disease with significant morbidity and mortality worldwide. ALD begins with simple hepatic steatosis and progresses to alcoholic steatohepatitis, fibrosis, and cirrhosis. The severity of hepatic steatosis is highly associated with the development of later stages of ALD. This review explores the disturbances of alcohol-induced hepatic lipid metabolism through altered hepatic lipid uptake, de novo lipid synthesis, fatty acid oxidation, hepatic lipid export, and lipid droplet formation and catabolism. In addition, we review emerging data on the contributions of genetics and bioactive lipid metabolism in alcohol-induced hepatic lipid accumulation.
Collapse
Affiliation(s)
- Sookyoung Jeon
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| | - Rotonya Carr
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
26
|
Zirnheld KH, Warner DR, Warner JB, Hardesty JE, McClain CJ, Kirpich IA. Dietary fatty acids and bioactive fatty acid metabolites in alcoholic liver disease. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Hara T, Seko Y, Iwai N, Inada Y, Tsuji T, Okuda T, Komaki T, Itoh Y, Kagawa K. Comparison of the effect of light alcohol consumption on Japanese men with and without fatty liver. Biomed Rep 2019; 11:191-198. [PMID: 31632666 PMCID: PMC6792334 DOI: 10.3892/br.2019.1242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022] Open
Abstract
Light and moderate drinking is associated with lower risk of metabolic syndrome (Mets)-related diseases in the general population. Non-alcoholic fatty liver disease (NAFLD) is considered to be a phenotype of Mets in the liver. Although there have been some reports of the association between NAFLD and light alcohol consumption (LAC), the association between Mets-related diseases and LAC in the subjects with and without fatty liver is unclear. Therefore, this study aimed to determine the influence of LAC on Mets-related diseases in individuals with and those without fatty liver. This study included 1,190 men who underwent regular health check-ups and consumed <20 g/day of alcohol. The subjects were divided into two groups, the non-fatty liver group and fatty liver group, and investigated the association between Mets-related diseases and LAC. Fatty liver was diagnosed by abdominal ultrasound. The effect of LAC was different between the non-fatty liver and fatty liver groups. In the non-fatty liver group, the odds ratio (OR) for hypertension was 1.73 (1.04-2.88;2 P=0.035). In the fatty liver group, the OR for each Mets-related diseases were as follows: Dyslipidemia, 0.64 (0.44-0.95, P=0.028); impaired glucose tolerance 0.57 (0.37-0.88; P=0.012); chronic kidney disease, 0.58 (0.36-0.94; P=0.029); and Mets by Japanese criteria, 0.63 (0.44-0.92; P=0.016). The influence of LAC on Mets-related diseases differs based on the presence of fatty liver. In individuals without fatty liver, light drinking is an independent risk factor for hypertension.
Collapse
Affiliation(s)
- Tasuku Hara
- Department of Gastroenterology and Hepatology, Fukuchiyama City Hospital, Fukuchiyama-city, Kyoto 620‑8505, Japan
| | - Yuya Seko
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyou‑ku, Kyoto 602‑8566, Japan
| | - Naoto Iwai
- Department of Gastroenterology and Hepatology, Fukuchiyama City Hospital, Fukuchiyama-city, Kyoto 620‑8505, Japan
| | - Yutaka Inada
- Department of Gastroenterology and Hepatology, Fukuchiyama City Hospital, Fukuchiyama-city, Kyoto 620‑8505, Japan
| | - Toshifumi Tsuji
- Department of Gastroenterology and Hepatology, Fukuchiyama City Hospital, Fukuchiyama-city, Kyoto 620‑8505, Japan
| | - Takashi Okuda
- Department of Gastroenterology and Hepatology, Fukuchiyama City Hospital, Fukuchiyama-city, Kyoto 620‑8505, Japan
| | - Toshiyuki Komaki
- Department of Gastroenterology and Hepatology, Fukuchiyama City Hospital, Fukuchiyama-city, Kyoto 620‑8505, Japan
| | - Yoshito Itoh
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyou‑ku, Kyoto 602‑8566, Japan
| | - Keizo Kagawa
- Department of Gastroenterology and Hepatology, Fukuchiyama City Hospital, Fukuchiyama-city, Kyoto 620‑8505, Japan
| |
Collapse
|
28
|
Choi WM, Kim MH, Jeong WI. Functions of hepatic non-parenchymal cells in alcoholic liver disease. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Akheruzzaman M, Hegde V, Dhurandhar NV. Twenty-five years of research about adipogenic adenoviruses: A systematic review. Obes Rev 2019; 20:499-509. [PMID: 30562840 DOI: 10.1111/obr.12808] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/09/2018] [Accepted: 10/13/2018] [Indexed: 12/12/2022]
Abstract
Infectious etiology is implicated in chronic diseases such as gastric ulcer or atherosclerosis. However, "infection" is a recent term in the field of obesity. Since the first report in 1982 of obesity due to infection, several microbes have been linked to obesity. Among the adipogenic microbes, avian adenovirus SMAM-1 and human adenovirus Ad36 have been studied most extensively for the past 25 years. Here, we present a systematic review of literature about SMAM-1 and Ad36. Reports from North America, Europe, and Asia reveal strong evidence that Ad36 causes obesity in animals and paradoxically improves glycemic control, and in vitro data provides mechanistic explanation. Considering that experimental Ad36 infection of humans is unlikely, its causative role in human obesity or glycemic control has not been demonstrated unequivocally. Nonetheless, most, but not all, observational studies in children and adults link Ad36 infection to obesity and improvement in glycemic control. The E4orf1 gene of Ad36 was identified as responsible for better glycemic control. Overall, 25 years have considerably advanced knowledge about the role of infection in obesity. Potential translational benefits include the development of vaccines to prevent Ad36-induced obesity and drug development based on the E4orf1 protein to improve glycemic control.
Collapse
Affiliation(s)
- Md Akheruzzaman
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Vijay Hegde
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | | |
Collapse
|
30
|
You M, Jogasuria A, Lee K, Wu J, Zhang Y, Lee YK, Sadana P. Signal Transduction Mechanisms of Alcoholic Fatty Liver Disease: Emer ging Role of Lipin-1. Curr Mol Pharmacol 2019; 10:226-236. [PMID: 26278388 DOI: 10.2174/1874467208666150817112109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 02/06/2023]
Abstract
Lipin-1, a mammalian phosphatidic acid phosphatase (PAP), is a bi-functional molecule involved in various signaling pathways via its function as a PAP enzyme in the triglyceride synthesis pathway and in the nucleus as a transcriptional co-regulator. In the liver, lipin-1 is known to play a vital role in controlling the lipid metabolism and inflammation process at multiple regulatory levels. Alcoholic fatty liver disease (AFLD) is one of the earliest forms of liver injury and approximately 8-20% of patients with simple steatosis can develop into more severe forms of liver injury, including steatohepatitis, fibrosis/ cirrhosis, and eventually hepatocellular carcinoma (HCC). The signal transduction mechanisms for alcohol-induced detrimental effects in liver involves alteration of complex and multiple signaling pathways largely governed by a central and upstream signaling system, namely, sirtuin 1 (SIRT1)-AMP activated kinase (AMPK) axis. Emerging evidence suggests a pivotal role of lipin-1 as a crucial downstream regulator of SIRT1-AMPK signaling system that is likely to be ultimately responsible for development and progression of AFLD. Several lines of evidence demonstrate that ethanol exposure significantly induces lipin-1 gene and protein expression levels in cultured hepatocytes and in the livers of rodents, induces lipin-1-PAP activity, impairs the functional activity of nuclear lipin-1, disrupts lipin-1 mRNA alternative splicing and induces lipin-1 nucleocytoplasmic shuttling. Such impairment in response to ethanol leads to derangement of hepatic lipid metabolism, and excessive production of inflammatory cytokines in the livers of the rodents and human alcoholics. This review summarizes current knowledge about the role of lipin-1 in the pathogenesis of AFLD and its potential signal transduction mechanisms.
Collapse
Affiliation(s)
- Min You
- 4209 State Route 44, Rootstown OH 44272. United States
| | | | | | - Jiashin Wu
- Department of Pharmaceutical Sciences. 0
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, College of Pharmacy and College of Medicine, Rootstown OH 44272. United States
| | - Yoon Kwang Lee
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, College of Pharmacy and College of Medicine, Rootstown OH 44272. United States
| | | |
Collapse
|
31
|
DeGroat AR, Fleming CK, Dunlay SM, Hagood KL, Moorman JP, Peterson JM. The sex specific effect of alcohol consumption on circulating levels of CTRP3. PLoS One 2018; 13:e0207011. [PMID: 30403751 PMCID: PMC6221322 DOI: 10.1371/journal.pone.0207011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023] Open
Abstract
The goal of this project was to establish the effect of alcohol consumption on the circulating levels of the adipose tissue derived protein C1q TNF Related Protein 3 (CTRP3). Adipose tissue secretes several adipokines, such as adiponectin and leptin, which exert a multitude of biological effects important for human health. However, adipose tissue is extremely sensitive to alcohol consumption, leading not only to disrupted fat storage, but also to disruptions in adipokine production. Changes to adipokine secretion could have widespread biological effects and potentially contribute to alcohol-induced ailments, such as alcoholic fatty liver disease (ALD). CTRP3 has been previously demonstrated to attenuate fatty liver disease, and suppression of CTRP3 with alcohol consumption could contribute to development of and progression to alcoholic fatty liver disease. To examine the effect of ethanol consumption on circulating adipokine levels, male and female mice were fed an ethanol containing diet (Lieber-DeCarli 5% (v/v) ethanol diet) for 10-days followed by a single gavage of 5 g/kg ethanol (the NIAAA model), or for 6-weeks with no binge added (chronic model). In female mice, adiponectin levels increased ~2-fold in both models of ethanol feeding, but in male mice increased adiponectin levels were only observed after chronic ethanol feeding. On the other hand, in female mice, circulating CTRP3 levels decreased by ~75% and ~50% in the NIAAA and chronic model, respectively, with no changes observed in the male mice in either feeding model. Leptin levels were unchanged with ethanol feeding regardless of model or sex of mice. Lastly, chronic ethanol feeding led to a significant increase in mortality (~50%) in female mice, with no difference in relative ethanol consumption. These findings indicate that ethanol consumption can dysregulate adipokine secretion, but that the effects vary by sex of animal, method of ethanol consumption, and adipokine examined. These findings also indicate that female mice are more sensitive to the chronic effects of ethanol than male mice. Notably, this is the first study to document the effects of ethanol consumption on the circulating levels of CTRP3. Understanding the impact of excessive alcohol consumption on adipokine production and secretion could identify novel mechanisms of alcohol-induced human disease. However, the mechanism responsible for the increased sensitivity remains elusive.
Collapse
Affiliation(s)
- Ashley R. DeGroat
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Christina K. Fleming
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Samantha M. Dunlay
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Kendra L. Hagood
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- Department of Veterans Affairs, Hepatitis (HCV/HIV) Program, James H Quillen VA Medical Center, Johnson City, Tennessee, United States of America
| | - Jonathan M. Peterson
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, United States of America
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, Tennessee, United States of America
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| |
Collapse
|
32
|
Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr Rev 2018; 39:760-802. [PMID: 30020428 DOI: 10.1210/er.2018-00064] [Citation(s) in RCA: 442] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor of clinical interest as a drug target in various metabolic disorders. PPARα also exhibits marked anti-inflammatory capacities. The first-generation PPARα agonists, the fibrates, have however been hampered by drug-drug interaction issues, statin drop-in, and ill-designed cardiovascular intervention trials. Notwithstanding, understanding the molecular mechanisms by which PPARα works will enable control of its activities as a drug target for metabolic diseases with an underlying inflammatory component. Given its role in reshaping the immune system, the full potential of this nuclear receptor subtype as a versatile drug target with high plasticity becomes increasingly clear, and a novel generation of agonists may pave the way for novel fields of applications.
Collapse
Affiliation(s)
- Nadia Bougarne
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Basiel Weyers
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Sofie J Desmet
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Julie Deckers
- Department of Internal Medicine, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent (Zwijnaarde), Belgium
| | - David W Ray
- Division of Metabolism and Endocrinology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Bart Staels
- Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
- INSERM, U1011, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Karolien De Bosscher
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
33
|
Lin XX, Lian GH, Peng SF, Zhao Q, Xu Y, Ou-Yang DS, Zhang W, Chen Y. Reversing Epigenetic Alterations Caused by Alcohol: A Promising Therapeutic Direction for Alcoholic Liver Disease. Alcohol Clin Exp Res 2018; 42:1863-1873. [PMID: 30080257 DOI: 10.1111/acer.13863] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/28/2018] [Indexed: 12/19/2022]
Abstract
Alcoholic liver disease (ALD), a liver function disorder caused by excessive alcohol intake, is a serious threat to global public health and social development. Toxic metabolites and reactive oxygen species produced during the metabolism of alcohol can alter the epigenetic state including DNA methylation, histone modifications, and expression of microRNAs. Epigenetic alterations can conversely involve various signaling pathways, which could contribute to the initiation and progression of ALD. To elucidate the relationship between epigenetic alterations and alcohol damage not only reinforces our understanding on pathogenesis of ALD, but also provides novel targets for clinical diagnosis, treatment, and drug research of ALD. In this review, we have summarized the research progress of epigenetic alterations and related mechanisms caused by alcohol in the pathogenesis of ALD. Considering the invertibility of epigenetic alterations, treatment of ALD through epigenetic modification with common less harmful compounds is also related.
Collapse
Affiliation(s)
- Xiu-Xian Lin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Guang-Hui Lian
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shi-Fang Peng
- Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Ying Xu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Dong-Sheng Ou-Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| |
Collapse
|
34
|
Ethanol and C2 ceramide activate fatty acid oxidation in human hepatoma cells. Sci Rep 2018; 8:12923. [PMID: 30150688 PMCID: PMC6110824 DOI: 10.1038/s41598-018-31025-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/04/2018] [Indexed: 02/07/2023] Open
Abstract
Obesogenic lipids and the sphingolipid ceramide have been implicated as potential cofactors in alcoholic liver disease (ALD) patients. However, the mechanisms by which these lipids modulate lipid trafficking in ethanol-treated human liver cells to promote steatosis, an early stage of ALD, are poorly understood. We measured fatty acid (FA) uptake, triglyceride export, FA synthesis and FA oxidation in human hepatoma (VL-17A) cells in response to ethanol and the exogenous lipids oleate, palmitate and C2 ceramide. We found that in combination with ethanol, both oleate and palmitate promote lipid droplet accumulation while C2 ceramide inhibits lipid droplet accumulation by enhancing FA oxidation. Further, using both a pharmacologic and siRNA approach to reduce peroxisome proliferator-activated receptors α (PPARα) gene expression, we demonstrate that C2 ceramide abrogates ethanol-mediated suppression of FA oxidation through an indirect PPARα mechanism. Together, these data suggest that lipids interact differentially with ethanol to modulate hepatocellular lipid droplet accumulation and may provide novel targets for preventing the earliest stage of alcoholic liver disease, alcoholic steatosis.
Collapse
|
35
|
Guo J, Wang C, Guo Z, Zuo Z. Exposure to environmental level phenanthrene induces a NASH-like phenotype in new born rat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:261-271. [PMID: 29656250 DOI: 10.1016/j.envpol.2018.04.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/25/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
More and more evidence indicates that persistent organic pollutants (POPs) are a risk factor for non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Phenanthrene (Phe) is a kind of POP which existed extensively in the environment, but whose toxicity on mammals has so far received less focus. Subcutaneously injection of Phe (0.5, 5, 50 μg/kg) for 21 days induced significant NAFLD/NASH symptoms in new born rats. Exposure to environmental levels of Phe decreased body weight and liver-somatic index; impaired histology of liver; influenced the peroxisome proliferator-activated receptor gamma (PPARγ) signaling and lipid metabolism in liver; stimulated oxidative stress in the rats' liver; induced the variation of NFκB pathway and liver inflammatory response; and caused liver fibrosis via transforming growth factor β1 (tgfβ1). We speculated that the subcutaneously injected Phe was transferred to the liver through blood circulation, which may have induced the elevation of PPARγ directly or indirectly, leading to liver steatosis. Excess lipid, acting as the first hit, stimulated the second hit factors - oxidative stress, inflammatory response and lipid peroxidation, and finally resulted in steatohepatitis and liver fibrosis.
Collapse
Affiliation(s)
- Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Zhizhun Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
36
|
You M, Zhou Z, Daniels M, Jogasuria A. Endocrine Adiponectin-FGF15/19 Axis in Ethanol-Induced Inflammation and Alcoholic Liver Injury. Gene Expr 2018; 18:103-113. [PMID: 29096734 PMCID: PMC5953845 DOI: 10.3727/105221617x15093738210295] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alcoholic liver disease (ALD) is the most prevalent form of liver disease, encompassing a spectrum of progressive pathological changes from steatosis to steatohepatitis to fibrosis/cirrhosis and hepatocellular carcinoma. Alcoholic steatosis/steatohepatitis is the initial stage of ALD and a major risk factor for advanced liver injuries. Adiponectin is a hormone secreted from adipocytes. Fibroblast growth factor (FGF) 15 (human homolog, FGF19) is an ileum-derived hormone. Adipocyte-derived adiponectin and gut-derived FGF15/19 regulate each other, share common signaling cascades, and exert similar beneficial functions. Emerging evidence has revealed that dysregulated adiponectin-FGF15/19 axis and impaired hepatic adiponectin-FGF15/19 signaling are associated with alcoholic liver damage in rodents and humans. More importantly, endocrine adiponectin-FGF15/19 signaling confers protection against ethanol-induced liver damage via fine tuning the adipose-intestine-liver crosstalk, leading to limited hepatic inflammatory responses, and ameliorated alcoholic liver injury. This review is focused on the recently discovered endocrine adiponectin-FGF15/19 axis that is emerging as an essential adipose-gut-liver coordinator involved in the development and progression of alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Min You
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Zhou Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Michael Daniels
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Alvin Jogasuria
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
37
|
Okamoto M, Miyake T, Kitai K, Furukawa S, Yamamoto S, Senba H, Kanzaki S, Deguchi A, Koizumi M, Ishihara T, Miyaoka H, Yoshida O, Hirooka M, Kumagi T, Abe M, Matsuura B, Hiasa Y. Cigarette smoking is a risk factor for the onset of fatty liver disease in nondrinkers: A longitudinal cohort study. PLoS One 2018; 13:e0195147. [PMID: 29664906 PMCID: PMC5903610 DOI: 10.1371/journal.pone.0195147] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/16/2018] [Indexed: 12/15/2022] Open
Abstract
Background The effect of cigarette smoking on the onset of nonalcoholic fatty liver disease (NAFLD) is unclear, especially that associated with drinking small amounts of alcohol. We conducted a longitudinal study to investigate the relationship between cigarette smoking and NAFLD onset, which was stratified according to the amount of alcohol consumed. Methods We enrolled 7,905 Japanese subjects who had received annual health checkups more than twice between April 2003 and August 2013, 4,045 of whom met at least one of the following exclusion criteria and were excluded: (a) fatty liver at baseline; (b) hepatitis B or hepatitis C; (c) alcohol consumption (men: ≥210 g/wk; women: ≥140 g/wk); (d) change in alcohol drinking status between baseline and the study’s endpoint; (e) change in cigarette smoking habits between baseline and the study’s endpoint; or (f) current treatment with antidiabetic agents, antihypertensive agents, and/or lipid-lowering agents. The remaining 3,860 subjects (1,512 men, 2,348 women) were divided into two groups based on average alcohol consumption. Results After adjusting for the variables associated with metabolic disease, smoking was associated with fatty liver disease onset compared with nonsmokers in nondrinkers (adjusted hazard ratio = 1.988, 95% confidence interval 1.057–3.595; p = 0.034). No association was found between smoking and fatty liver disease onset in the low alcohol consumption group (men: <210 g alcohol/week; women: <140 g alcohol/week). The fatty liver disease incidence increased significantly among the nondrinkers as the number of cigarettes smoked increased (p = 0.001). Conclusions Cigarette smoking may be a significant risk factor associated with NAFLD onset in nondrinkers. These results may help clinicians to identify patients who are at a high risk of developing NAFLD and to prevent the progression of NAFLD by promoting earlier interventions that help people discontinue unhealthy lifestyle habits.
Collapse
Affiliation(s)
- Masashi Okamoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Teruki Miyake
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
- * E-mail:
| | - Kohichiro Kitai
- Ehime General Health Care Association, Misake, Matsuyama, Ehime, Japan
| | - Shinya Furukawa
- Department of Epidemiology and Preventive Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
- Epidemiology and Medical Statistics Unit, Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime, Japan
| | - Shin Yamamoto
- Department of Lifestyle-related Medicine and Endocrinology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Hidenori Senba
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Sayaka Kanzaki
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Akiko Deguchi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Mitsuhito Koizumi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
- Ehime General Health Care Association, Misake, Matsuyama, Ehime, Japan
| | - Toru Ishihara
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
- Ehime General Health Care Association, Misake, Matsuyama, Ehime, Japan
| | - Hiroaki Miyaoka
- Department of Internal Medicine, Saiseikai Matsuyama Hospital, Yamanishi, Matsuyama, Ehime, Japan
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Teru Kumagi
- Department of Community Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Bunzo Matsuura
- Department of Lifestyle-related Medicine and Endocrinology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| |
Collapse
|
38
|
Stine JG, Wang J, Cornella SL, Behm BW, Henry Z, Shah NL, Caldwell SH, Northup PG. Treatment of Type-1 Hepatorenal Syndrome with Pentoxifylline: A Randomized Placebo Controlled Clinical Trial. Ann Hepatol 2018; 17:300-306. [PMID: 29469046 PMCID: PMC7485043 DOI: 10.5604/01.3001.0010.8660] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Type-1 hepatorenal syndrome (HRS-1) portends a poor prognosis in patients with cirrhosis. Currently available medical therapies are largely ineffective, save for liver transplantation. We aimed to determine if pentoxifylline (PTX) therapy in addition to the standard of care of volume expansion with albumin and vasoconstriction with midodrine and octreotide (AMO) is safe and efficacious compared to AMO in HRS-1 treatment. MATERIAL AND METHODS Hospitalized subjects with decompensated cirrhosis and HRS-1 were enrolled. PTX or placebo was administered with AMO therapy for up to 14 days. The primary endpoint was HRS-1 resolution (serum creatinine ≤ 1.5 g/dL for > 24 h). Secondary endpoints were change in creatinine and MELD score, partial treatment response, 30-and 180-day overall and transplant free survival. RESULTS Twelve subjects with mean age 58.9 ± 6.2 years were enrolled and randomized. Mean MELD score was 26.5 ± 7.4 and 58.3% were male. Overall cohort 30- and 180-day survival was 58.3% and 33.3% respectively. Two subjects underwent liver transplantation. HRS-1 resolution (16.7% vs. 16.7%, p = 1.000), partial treatment response (33.3% vs. 16.7%, p = 0.505), change in creatinine (+0.48 g/dL, 95% CI -0.49-1.46 vs. +0.03 g/dL, 95% CI -0.64- 0.70, p = 0.427), 30-day survival (66.6% vs. 50.0%, p = 0.558) and 180-day survival (50.0% vs. 16.7%, p = 0.221) were similar between the two groups. Serious adverse events necessitating treatment discontinuation were rare (n = 1, PTX). DISCUSSION The addition of PTX to AMO in the treatment of HRS-1 is safe when compared to the current standard of care. Future large-scale prospective study to validate the efficacy of this treatment seems warranted.
Collapse
Affiliation(s)
- Jonathan G. Stine
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Jennifer Wang
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Scott L. Cornella
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Brian W. Behm
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Zachary Henry
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Neeral L. Shah
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Stephen H. Caldwell
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Patrick G. Northup
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
39
|
Rivet D, Nelson O, Vella C, Jansen H, Robbins C. Systemic effects of a high saturated fat diet in grizzly bears (Ursus arctos horribilis). CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Food sources for North America’s grizzly bear (Ursus arctos horribilis Ord, 1815) population have changed as habitats have fragmented, altering available resources and putting bears in contact with unnatural foods. Bears have evolved mechanisms to tolerate obesity, and do not develop adverse health consequences despite storing massive amounts of body fat. Captive adult grizzly bears were used to determine the effects of dietary fat on health. Group 1 was fed a diet high in polyunsaturated fatty acids (PUFA) wherein 9.5% of available calories came from saturated fatty acids (SFA). Group 2 was fed a diet wherein 28.8% of calories came from SFA. Plasma fatty acids, serum lipid profiles, insulin, inflammatory markers, systolic and diastolic blood pressure, and cardiac function parameters were measured. Serum lipids, SFA, and insulin did not differ between the two groups, although omega-3 fatty acids differed. Bears eating the SFA diet had significantly higher circulating adiponectin, interleukin-7 and interleukin-15, and tumor necrosis factor-alpha. Mild, asymptomatic systolic and diastolic dysfunctions were detected by strain echocardiography in the SFA group. The SFA diet group exhibited higher diastolic arterial pressures. Even though mild metabolic derangements were observed, grizzly bears were remarkably resistant to metabolic effects of diets high in SFA.
Collapse
Affiliation(s)
- D.R. Rivet
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - O.L. Nelson
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA 99164, USA
| | - C.A. Vella
- Department of Movement Sciences, University of Idaho, Moscow, ID 83844, USA
| | - H.T. Jansen
- Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - C.T. Robbins
- School of the Environment and School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
40
|
Gao B, Xu MJ, Bertola A, Wang H, Zhou Z, Liangpunsakul S. Animal Models of Alcoholic Liver Disease: Pathogenesis and Clinical Relevance. Gene Expr 2017; 17:173-186. [PMID: 28411363 PMCID: PMC5500917 DOI: 10.3727/105221617x695519] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alcoholic liver disease (ALD), a leading cause of chronic liver injury worldwide, comprises a range of disorders including simple steatosis, steatohepatitis, cirrhosis, and hepatocellular carcinoma. Over the last five decades, many animal models for the study of ALD pathogenesis have been developed. Recently, a chronic-plus-binge ethanol feeding model was reported. This model induces significant steatosis, hepatic neutrophil infiltration, and liver injury. A clinically relevant model of high-fat diet feeding plus binge ethanol was also developed, which highlights the risk of excessive binge drinking in obese/overweight individuals. All of these models recapitulate some features of the different stages of ALD and have been widely used by many investigators to study the pathogenesis of ALD and to test for therapeutic drugs/components. However, these models are somewhat variable, depending on mouse genetic background, ethanol dose, and animal facility environment. This review focuses on these models and discusses these variations and some methods to improve the feeding protocol. The pathogenesis, clinical relevance, and translational studies of these models are also discussed.
Collapse
Affiliation(s)
- Bin Gao
- *Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Ming-Jiang Xu
- *Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Adeline Bertola
- *Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- †Université Côte d’Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Hua Wang
- *Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- ‡Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, P.R. China
| | - Zhou Zhou
- *Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Suthat Liangpunsakul
- §Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- ¶Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|
41
|
Silveira LAMD, Torquato BGS, Oliveira MS, Juliano GR, Oliveira LF, Cavellani CL, Ramalho LS, Espindula AP, Teixeira VDPA, Ferraz MLF. Implications of alcoholic cirrhosis in atherosclerosis of autopsied patients. Rev Assoc Med Bras (1992) 2017; 63:336-340. [PMID: 28614536 DOI: 10.1590/1806-9282.63.04.336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/19/2016] [Indexed: 11/21/2022] Open
Abstract
Introduction: Alcoholism is a major public health problem, which has a high social cost and affects many aspects of human activity. Liver disease is one of the first consequences of alcohol abuse, and steatosis, liver cirrhosis and hepatitis may occur. Other organs are also affected with pathological changes, such as pancreatitis, cardiomyopathies, dyslipidemias and atherosclerosis. Objective: To identify the occurrence and degree of atherosclerosis in alcohol-dependent individuals with liver cirrhosis, observing macroscopic and microscopic changes in lipid and collagen deposits and in the liver. We also aimed to verify the association of lipid and collagen fiber deposits with gender, age and body mass index, and to relate alcoholism, liver cirrhosis and atherosclerosis. Method: We performed a study based on autopsy reports of patients with alcoholic liver cirrhosis, with analysis of aorta and liver fragments to verify the occurrence and degree of atherosclerosis, as well as collagen contents. Results: Microscopic atherosclerosis was higher in young subjects (early injury) and in patients with alcoholic liver cirrhosis. The macroscopic analysis of atherosclerosis in aortas showed that patients in more advanced age groups presented more severe classifications. Atherosclerosis, both micro and macroscopically, and the percentage of fibrosis in the liver and aorta were more expressive in females. Conclusion: Cirrhotic patients presented a higher percentage of fibrosis and lipidosis, and may represent a group susceptible to the accelerated progression of cardiovascular diseases. Investigative studies contribute to targeting health-promoting interventions, reducing the mortality and costs of treating cardiovascular disease.
Collapse
Affiliation(s)
- Luciano Alves Matias da Silveira
- General Pathology Sector, Biological and Natural Sciences Institute (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Bianca Gonçalves Silva Torquato
- General Pathology Sector, Biological and Natural Sciences Institute (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Mariana Silva Oliveira
- General Pathology Sector, Biological and Natural Sciences Institute (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Guilherme Ribeiro Juliano
- General Pathology Sector, Biological and Natural Sciences Institute (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Lívia Ferreira Oliveira
- General Pathology Sector, Biological and Natural Sciences Institute (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Camila Lourencini Cavellani
- General Pathology Sector, Biological and Natural Sciences Institute (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Luciana Santos Ramalho
- General Pathology Sector, Biological and Natural Sciences Institute (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Ana Paula Espindula
- General Pathology Sector, Biological and Natural Sciences Institute (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Vicente de Paula Antunes Teixeira
- General Pathology Sector, Biological and Natural Sciences Institute (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Mara Lúcia Fonseca Ferraz
- General Pathology Sector, Biological and Natural Sciences Institute (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| |
Collapse
|
42
|
Avila DV, Barker DF, Zhang J, McClain CJ, Barve S, Gobejishvili L. Dysregulation of hepatic cAMP levels via altered Pde4b expression plays a critical role in alcohol-induced steatosis. J Pathol 2017; 240:96-107. [PMID: 27287961 DOI: 10.1002/path.4760] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/06/2016] [Accepted: 05/31/2016] [Indexed: 12/15/2022]
Abstract
Alcohol-induced hepatic steatosis is a significant risk factor for progressive liver disease. Cyclic adenosine monophosphate (cAMP) signalling has been shown to significantly regulate lipid metabolism; however, the role of altered cAMP homeostasis in alcohol-mediated hepatic steatosis has never been studied. Our previous work demonstrated that increased expression of hepatic phosphodiesterase 4 (Pde4), which specifically hydrolyses and decreases cAMP levels, plays a pathogenic role in the development of liver inflammation/injury. The aim of this study was to examine the role of PDE4 in alcohol-induced hepatic steatosis. C57BL/6 wild-type and Pde4b knockout (Pde4b(-/-) ) mice were pair-fed control or ethanol liquid diets. One group of wild-type mice received rolipram, a PDE4-specific inhibitor, during alcohol feeding. We demonstrate for the first time that an early increase in PDE4 enzyme expression and a resultant decrease in hepatic cAMP levels are associated with the significant reduction in carnitine palmitoyltransferase 1A (Cpt1a) expression. Notably, alcohol-fed (AF) Pde4b(-/-) mice and AF wild-type mice treated with rolipram had significantly lower hepatic free fatty acid content compared with AF wild-type mice. Importantly, PDE4 inhibition in alcohol-fed mice prevented the decrease in hepatic Cpt1a expression via the Pparα/Sirt1/Pgc1α pathway. These results demonstrate that the alcohol- induced increase in hepatic Pde4, specifically Pde4b expression, and compromised cAMP signalling predispose the liver to impaired fatty acid oxidation and the development of steatosis. Moreover, these data also suggest that hepatic PDE4 may be a clinically relevant therapeutic target for the treatment of alcohol-induced hepatic steatosis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Diana V Avila
- Department of Pharmacology and Toxicology, University of Louisville Medical Center, Louisville, Kentucky, USA
| | - David F Barker
- Department of Internal Medicine, University of Louisville Medical Center, Louisville, Kentucky, USA
| | - JingWen Zhang
- Department of Internal Medicine, University of Louisville Medical Center, Louisville, Kentucky, USA
| | - Craig J McClain
- Department of Pharmacology and Toxicology, University of Louisville Medical Center, Louisville, Kentucky, USA.,Department of Internal Medicine, University of Louisville Medical Center, Louisville, Kentucky, USA.,Robley Rex VA Medical Center, Louisville, Kentucky, USA
| | - Shirish Barve
- Department of Pharmacology and Toxicology, University of Louisville Medical Center, Louisville, Kentucky, USA.,Department of Internal Medicine, University of Louisville Medical Center, Louisville, Kentucky, USA
| | - Leila Gobejishvili
- Department of Pharmacology and Toxicology, University of Louisville Medical Center, Louisville, Kentucky, USA.,Department of Internal Medicine, University of Louisville Medical Center, Louisville, Kentucky, USA
| |
Collapse
|
43
|
Anti-steatotic and anti-inflammatory effects of Hovenia dulcis Thunb. extracts in chronic alcohol-fed rats. Biomed Pharmacother 2017; 90:393-401. [PMID: 28380415 DOI: 10.1016/j.biopha.2017.03.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 12/20/2022] Open
Abstract
The anti-steatotic and anti-inflammatory effects of fruit water extract (FW) and seed ethanol extract (SE) of Hovenia dulcis Thunb. in chronic alcohol-fed rats were investigated. Rats were fed a liquid diet containing 36% calories from alcohol and orally administered FW or SE (300 and 500mg/kg/day). Both FW and SE reduced hepatic lipid contents and droplets, serum lipid concentration and inflammatory markers (hs-CRP, TNF-α and IL-6) levels compared with the alcohol control group. Alcohol led to significant decreases in the hepatic fatty acid oxidative gene (Ppargc1a, Cpt1a and Acsl1) levels, while it significantly increased the Myd88 and Tnfa gene levels. However, FW or SE supplementation significantly up-regulated gene expression of Ppargc1a, Ppara, Cpt1a and Acsl1, and down-regulated gene expression of Myd88, Tnfa and Crp compared with the alcohol control group. FW or SE supplementation also significantly decreased hepatic activities of fatty acid synthase and phosphatidate phosphohydrolase in chronic alcohol-fed rats. Plasma alcohol and acetaldehyde levels, hepatic enzyme activity and protein expression of CYP2E1 were lowered by FW or SE supplementation. These results indicate that both FW and SE play an important role in improvement of alcoholic hepatic steatosis and inflammation via regulation of lipid and inflammation metabolism.
Collapse
|
44
|
Shen Z, Liu XD, Zhao XF. Silencing FoxO1 expression promotes expression of high molecular weight adiponectin in 3T3-L1 cells. Shijie Huaren Xiaohua Zazhi 2017; 25:56-63. [DOI: 10.11569/wcjd.v25.i1.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To observe the effect of fork head box transcription factor O1 (FoxO1) gene silencing on the expression of disulfide-bond A oxidoreductase-like protein (DsbA-L) and high molecular weight (HMW) adiponectin.
METHODS Lentiviral vector carrying short hairpin RNAs (shRNAs) targeting the FoxO1 gene was constructed, and the shRNA with the highest inhibition of FoxO1 expression (shRNA-FoxO1) in 3T3-L1 fat cells was selected by real-time quantitative PCR and Western blot and used for subsequent experiments. The expression of DsbA-L and HMW adiponectin in 3T3-L1 fat cells was determined by Western blot after infection with lentiviral vector carrying shRNA-FoxO1.
RESULTS The lentiviral vector carrying the shRNA-FoxO1 had the most significant effect on the expression of FoxO1 in 3T3-L1 cells. The inhibition rate reached over 60%, and the relative expression levels of FoxO1 gene between the shRNA-FoxO1 and control groups were 0.37 ± 0.05 and 1.04 ± 0.04, respectively (P < 0.001). Western blot analysis showed that compared with the control group, the expression of FoxO1 was significantly inhibited (1.02 ± 0.08 vs 0.38 ± 0.08, P < 0.001), but the expression of DsbA-L and HMW adiponectin was significantly increased (0.28 ± 0.06 vs 0.53 ± 0.07, P = 0.009; 0.05 ± 0.02 vs 0.11 ± 0.03, P = 0.043) in the shRNA-FoxO1 group.
CONCLUSION In 3T3-L1 cells, silencing FoxO1 gene promotes the expression of DsbA-L and HMW adiponectin.
Collapse
|
45
|
Sugimoto K, Takei Y. Pathogenesis of alcoholic liver disease. Hepatol Res 2017; 47:70-79. [PMID: 27138729 DOI: 10.1111/hepr.12736] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 04/26/2016] [Accepted: 04/29/2016] [Indexed: 02/06/2023]
Abstract
Alcoholic liver disease (ALD) has become one of the most critical health problems in many countries, including Japan. Liver injury in ALD ranges from steatosis and steatohepatitis to fibrosis, cirrhosis, and hepatocellular carcinoma. Many factors are thought to contribute to the development and progression of ALD, particularly insulin resistance, generation of reactive oxygen species during alcohol metabolism, adipokines from visceral adipose tissue, and endotoxin derived from the gut. Although the pathogenesis of ALD has been widely investigated, the precise mechanisms are yet to be elucidated and many questions remain. This article reviews the possible mechanisms for the development of ALD identified to date.
Collapse
Affiliation(s)
- Kazushi Sugimoto
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Mie, Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
46
|
Miyake T, Kumagi T, Hirooka M, Furukawa S, Yoshida O, Koizumi M, Yamamoto S, Watanabe T, Yamamoto Y, Tokumoto Y, Takeshita E, Abe M, Kitai K, Matsuura B, Hiasa Y. Low alcohol consumption increases the risk of impaired glucose tolerance in patients with non-alcoholic fatty liver disease. J Gastroenterol 2016; 51:1090-1100. [PMID: 26971094 DOI: 10.1007/s00535-016-1194-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/01/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Fatty liver disease is associated with glucose intolerance and hepatic insulin resistance. However, there are distinct etiologies for alcoholic versus non-alcoholic fatty liver disease (NAFLD), and it is unknown whether alcohol consumption influences the onset of glucose intolerance in fatty liver disease patients. Therefore, we investigated the relationship between fatty liver disease and the onset of impaired fasting glucose (IFG) with respect to alcohol consumption. METHODS The records of 6804 Japanese subjects were reviewed to identify those meeting the criteria for IFG. Male and female subjects were classified into five and four groups, respectively, based on average alcohol consumption (g/week). IFG onset was defined as fasting plasma glucose levels ≥110 mg/dl. RESULTS In the non-drinker, >0-70 g/week, >70-140 g/week, >140-210 g/week (men only), and >210 g/week (men only) or >140 g/week (women only) groups, 7.3, 6.7, 6.4, 9, and 6.4 % of men and 2, 1.7, 3.1, and 3.2 % of women, respectively, developed IFG. Fatty liver was positively associated with the onset of IFG in men of the >0-70 g/week group (adjusted hazard ratio [aHR], 2.808; 95 % confidence interval [CI] 1.605-5.049, p < 0.001) and women of the >70-140 g/week group (aHR, 4.193; 95 % CI, 1.036-14.584, p = 0.045) after adjusting for previously reported IFG risk factors. No associations were observed in the other groups. CONCLUSIONS A small amount of alcohol consumption is a significant risk factor for the onset of IFG in NAFLD patients; onset risk differs according to the amount of alcohol consumption.
Collapse
Affiliation(s)
- Teruki Miyake
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Teru Kumagi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.,Department of Community Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Shinya Furukawa
- Department of Public Health, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Mitsuhito Koizumi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.,Ehime General Health Care Association, Misake, Matsuyama, Ehime, Japan
| | - Shin Yamamoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Takao Watanabe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yasunori Yamamoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Eiji Takeshita
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Kohichiro Kitai
- Ehime General Health Care Association, Misake, Matsuyama, Ehime, Japan
| | - Bunzo Matsuura
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| |
Collapse
|
47
|
Boutari C, Tziomalos K, Athyros VG. The adipokines in the pathogenesis and treatment of nonalcoholic fatty liver disease. Hippokratia 2016; 20:259-263. [PMID: 29416297 PMCID: PMC5788238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Insulin resistance, abdominal obesity, and inflammation play important roles in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Several adipokines, particularly adiponectin but also leptin, resistin, irisin, ghrelin, and visfatin modulate these pathogenetic mechanisms and appear to play a role in the development of hepatic steatosis and the progression to steatohepatitis and cirrhosis. Accordingly, these adipokines might represent attractive targets in patients with NAFLD. Notably, both lifestyle changes and many pharmacological agents that are used in the management of NAFLD, particularly pioglitazone and statins, exert favorable effects on adipokine levels. However, it is unclear whether these effects play a role in the improvement in liver histology. Therefore, mechanistic studies are needed to clarify the contribution of changes in adipokine levels to the effects of these interventions on hepatic steatosis, inflammation, and fibrosis. In parallel, the development of novel agents that specifically target adipokine levels might offer additional insights into the potential role of adipokines as therapeutic targets in NAFLD. Hippokratia 2016, 20(4): 259-263.
Collapse
Affiliation(s)
- C Boutari
- Second Propedeutic Department of Internal Medicine, Hippokration Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - K Tziomalos
- First Propedeutic Department of Internal Medicine, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - V G Athyros
- Second Propedeutic Department of Internal Medicine, Hippokration Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
48
|
Panyod S, Wu WK, Ho CT, Lu KH, Liu CT, Chu YL, Lai YS, Chen WC, Lin YE, Lin SH, Sheen LY. Diet Supplementation with Allicin Protects against Alcoholic Fatty Liver Disease in Mice by Improving Anti-inflammation and Antioxidative Functions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7104-7113. [PMID: 27584700 DOI: 10.1021/acs.jafc.6b02763] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study investigated the liver-protective effects of allicin, an active compound in fresh garlic, against alcoholic fatty liver disease (AFLD) and liver inflammation. Its effects were investigated in an AFLD model in male C57BL/6 mice, which were fed Lieber-DeCarli liquid diet containing ethanol. Allicin (5 and 20 mg/kg bw/day) was orally administered daily in the AFLD mice for 4 weeks. The results indicate that allicin promotes hepatoprotection by significantly reducing aspartate transaminase (AST) and alanine transaminase (ALT) levels (p < 0.05) in the plasma, which are key indicators of liver damage. Allicin reduced fat accumulation, increased glutathione and catalase levels, and decreased microsomal protein cytochrome P450 2E1 (CYP2E1) expression (p < 0.05) in the livers of the AFLD mice. Furthermore, allicin supplementation significantly decreased the levels of proinflammatory tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 and suppressed the expression of sterol regulatory element-binding protein-1 (SREBP-1) (p < 0.05). Additionally, it improved the hepatic alcohol dehydrogenase (ADH) activity (p < 0.05). Collectively, these findings demonstrate that allicin attenuates liver oxidative stress and inflammation.
Collapse
Affiliation(s)
- Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University , Taipei, Taiwan
| | - Wei-Kai Wu
- Institute of Food Science and Technology, National Taiwan University , Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital , Taipei, Taiwan
| | - Chi-Tang Ho
- Institute of Food Science and Technology, National Taiwan University , Taipei, Taiwan
- Department of Food Science, Rutgers University , New Brunswick, New Jersey, United States
| | - Kuan-Hung Lu
- Institute of Food Science and Technology, National Taiwan University , Taipei, Taiwan
| | - Chun-Ting Liu
- Product and Process Research Center, Food Industry Research and Development Institute , Hsinchu, Taiwan
| | - Yung-Lin Chu
- International Master's Degree Program in Food Science, International College, National Pingtung University of Science and Technology , Pingtung, Taiwan
| | - Yi-Syuan Lai
- Institute of Food Science and Technology, National Taiwan University , Taipei, Taiwan
- Department of Hospitality Management, Yu Da University of Science and Technology , Miaoli, Taiwan
| | - Wei-Cheng Chen
- Institute of Food Science and Technology, National Taiwan University , Taipei, Taiwan
| | - Yu-En Lin
- Institute of Food Science and Technology, National Taiwan University , Taipei, Taiwan
| | - Shih-Hang Lin
- Institute of Food Science and Technology, National Taiwan University , Taipei, Taiwan
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University , Taipei, Taiwan
- Center for Food and Biomolecules, National Taiwan University , Taipei, Taiwan
- National Center for Food Safety Education and Research, National Taiwan University , Taipei, Taiwan
| |
Collapse
|
49
|
Myeloid Cell-Specific Lipin-1 Deficiency Stimulates Endocrine Adiponectin-FGF15 Axis and Ameliorates Ethanol-Induced Liver Injury in Mice. Sci Rep 2016; 6:34117. [PMID: 27666676 PMCID: PMC5036185 DOI: 10.1038/srep34117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/07/2016] [Indexed: 02/08/2023] Open
Abstract
Lipin-1 is a phosphatidate phosphohydrolase (PAP) required for the generation of diacylglycerol during glycerolipid synthesis, and exhibits dual functions in the regulation of lipid metabolism. Lipin-1 has been implicated in the pathogenesis of alcoholic liver disease (ALD). In the present study, we assessed lipin-1 function in myeloid cells in ALD using a myeloid cell-specific lipin-1 knockout (mLipin-1KO) mouse model. Utilizing the Gao-binge ethanol feeding protocol, matched mLipin-1KO mice and littermate loxP control (WT) mice were pair-fed with either an ethanol-containing diet or an ethanol-free diet (control). Surprisingly, deletion of lipin-1 in myeloid cells dramatically attenuated liver inflammatory responses and ameliorated liver injury that would normally occur following the ethanol feeding protocol, but slightly exacerbated the ethanol-induced steatosis in mice. Mechanistically, myeloid cell-specific lipin-1 deficiency concomitantly increased the fat-derived adiponectin and ileum-derived fibroblast growth factor (FGF) 15. In concordance with concerted elevation of circulating adiponectin and FGF15, myeloid cell-specific lipin-1 deficiency diminished hepatic nuclear factor kappa B (NF-κB) activity, limited liver inflammatory responses, normalized serum levels of bile acids, and protected mice from liver damage after ethanol challenge. Our novel data demonstrate that myeloid cell-specific deletion of lipin-1 ameliorated inflammation and alcoholic hepatitis in mice via activation of endocrine adiponectin-FGF15 signaling.
Collapse
|
50
|
Hu X, Jogasuria A, Wang J, Kim C, Han Y, Shen H, Wu J, You M. MitoNEET Deficiency Alleviates Experimental Alcoholic Steatohepatitis in Mice by Stimulating Endocrine Adiponectin-Fgf15 Axis. J Biol Chem 2016; 291:22482-22495. [PMID: 27573244 DOI: 10.1074/jbc.m116.737015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/25/2016] [Indexed: 12/13/2022] Open
Abstract
MitoNEET (mNT) (CDGSH iron-sulfur domain-containing protein 1 or CISD1) is an outer mitochondrial membrane protein that donates 2Fe-2S clusters to apo-acceptor proteins. In the present study, using a global mNT knock-out (mNTKO) mouse model, we investigated the in vivo functional role of mNT in the development of alcoholic steatohepatitis. Experimental alcoholic steatohepatitis was achieved by pair feeding wild-type (WT) and mNTKO mice with Lieber-DeCarli ethanol-containing diets for 4 weeks. Strikingly, chronically ethanol-fed mNTKO mice were completely resistant to ethanol-induced steatohepatitis as revealed by dramatically reduced hepatic triglycerides, decreased hepatic cholesterol level, diminished liver inflammatory response, and normalized serum ALT levels. Mechanistic studies demonstrated that ethanol administration to mNTKO mice induced two pivotal endocrine hormones, namely, adipose-derived adiponectin and gut-derived fibroblast growth factor 15 (Fgf15). The elevation in circulating levels of adiponectin and Fgf15 led to normalized hepatic and serum levels of bile acids, limited hepatic accumulation of toxic bile, attenuated inflammation, and amelioration of liver injury in the ethanol-fed mNTKO mice. Other potential mechanisms such as reduced oxidative stress, activated Sirt1 signaling, and diminished NF-κB activity also contribute to hepatic improvement in the ethanol-fed mNTKO mice. In conclusion, the present study identified adiponectin and Fgf15 as pivotal adipose-gut-liver metabolic coordinators in mediating the protective action of mNT deficiency against development of alcoholic steatohepatitis in mice. Our findings may help to establish mNT as a novel therapeutic target and pharmacological inhibition of mNT may be beneficial for the prevention and treatment of human alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Xudong Hu
- From the College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio 44272.,the Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China, and
| | - Alvin Jogasuria
- From the College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Jiayou Wang
- From the College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Chunki Kim
- From the College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Yoonhee Han
- From the College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Hong Shen
- From the College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio 44272.,the Department of Liver Diseases, Guangdong Hospital of Traditional Chinese Medicine in Zhuhai, Zhuhai 519015, China
| | - Jiashin Wu
- From the College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Min You
- From the College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio 44272,
| |
Collapse
|