1
|
Wang X, Yang T, Shi X. NK cell-based immunotherapy in hepatocellular carcinoma: An attractive therapeutic option for the next decade. Cell Signal 2024; 124:111405. [PMID: 39260532 DOI: 10.1016/j.cellsig.2024.111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Hepatocellular carcinoma (HCC), a major subtype of liver cancer, poses significant therapeutic challenges due to its late diagnosis and rapid progression. The evolving landscape of immunotherapy offers a beacon of hope, with natural killer (NK) cells emerging as pivotal players in combating HCC. NK cells are unique cytotoxic lymphocytes that are essential in the fight against infections and malignancies. Phenotypic and functional NK cell abnormalities have been shown in HCC patients, indicating their significance as a component of the innate immune system against cancer. This review elucidates the critical role of NK cells in combating HCC, focusing on their interaction with the tumor microenvironment, the development of NK cell-based therapies, and the innovative strategies to enhance their efficacy in the immunosuppressive milieu of HCC. The review delves into the various therapeutic strategies, including autologous and allogeneic NK cell therapies, genetic engineering to improve NK cell resilience and targeting, and the integration of NK cells with other immunotherapeutic approaches like checkpoint inhibitors and oncolytic virotherapy. By highlighting recent advancements and the ongoing challenges in the field, this review sets the stage for future research directions that could unlock the full potential of NK cell-based immunotherapy for HCC, offering a beacon of hope for patients battling this formidable cancer.
Collapse
Affiliation(s)
- Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu Province 210009, China
| | - Tianye Yang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu Province 210009, China
| | - Xiaoli Shi
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu Province 210029, China; Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
2
|
Luo Y, Liang H. Developmental-status-aware transcriptional decomposition establishes a cell state panorama of human cancers. Genome Med 2024; 16:124. [PMID: 39468667 PMCID: PMC11514945 DOI: 10.1186/s13073-024-01393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/03/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Cancer cells evolve under unique functional adaptations that unlock transcriptional programs embedded in adult stem and progenitor-like cells for progression, metastasis, and therapeutic resistance. However, it remains challenging to quantify the stemness-aware cell state of a tumor based on its gene expression profile. METHODS We develop a developmental-status-aware transcriptional decomposition strategy using single-cell RNA-sequencing-derived tissue-specific fetal and adult cell signatures as anchors. We apply our method to various biological contexts, including developing human organs, adult human tissues, experimentally induced differentiation cultures, and bulk human tumors, to benchmark its performance and to reveal novel biology of entangled developmental signaling in oncogenic processes. RESULTS Our strategy successfully captures complex dynamics in developmental tissue bulks, reveals remarkable cellular heterogeneity in adult tissues, and resolves the ambiguity of cell identities in in vitro transformations. Applying it to large patient cohorts of bulk RNA-seq, we identify clinically relevant cell-of-origin patterns and observe that decomposed fetal cell signals significantly increase in tumors versus normal tissues and metastases versus primary tumors. Across cancer types, the inferred fetal-state strength outperforms published stemness indices in predicting patient survival and confers substantially improved predictive power for therapeutic responses. CONCLUSIONS Our study not only provides a general approach to quantifying developmental-status-aware cell states of bulk samples but also constructs an information-rich, biologically interpretable, cell-state panorama of human cancers, enabling diverse translational applications.
Collapse
Affiliation(s)
- Yikai Luo
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Han Liang
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Chi KY, Kim G, Kim H, Kim H, Jo S, Lee J, Lee Y, Yoon H, Cho S, Kim J, Lee JS, Yeon GB, Kim DS, Park HJ, Kim JH. Optimization of culture conditions to generate vascularized multi-lineage liver organoids with structural complexity and functionality. Biomaterials 2024; 314:122898. [PMID: 39447308 DOI: 10.1016/j.biomaterials.2024.122898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Hepatic organoids (HOs), primarily composed of hepatobiliary cells, do not represent the pathogenesis of liver diseases due to the lack of non-parenchymal cells. Multi-lineage liver organoids (mLOs) containing various cell types found in the liver offer a promising in vitro disease model. However, their structural complexity remains challenging to achieve due to the difficulty in optimizing culture conditions that meet the growth need of all component cell types. Here, we demonstrate that cystic HOs generated from hPSCs can be expanded long-term and serve as a continuous source for generating complex mLOs. Assembling cystic HOs with hPSC-derived endothelial and hepatic stellate cell-like cells under conventional HO culture conditions failed to support the development of multiple cell types within mLOs, resulting in biased differentiation towards specific cell types. In contrast, modulating the cAMP/Wnt/Hippo signaling pathways with small molecules during assembly and differentiation phases efficiently generate mLOs containing both hepatic parenchymal and non-parenchymal cells. These mLOs exhibited structural complexity and functional maturity, including vascular network formation between parenchymal lobular structures, cell polarity for bile secretion, and the capacity to respond to fibrotic stimuli. Our study underscores the importance of modulating signaling pathways to enhance mLO structural complexity for applications in modeling liver pathologies.
Collapse
Affiliation(s)
- Kyun Yoo Chi
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Gyeongmin Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Hyojin Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Hyemin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea
| | - Seongyea Jo
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea
| | - Jihun Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Youngseok Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea; Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Heeseok Yoon
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Seunghyun Cho
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jeongjun Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jin-Seok Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Gyu-Bum Yeon
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, South Korea; Laboratory of Reprogramming and Differentiation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Dae-Sung Kim
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, South Korea; Laboratory of Reprogramming and Differentiation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Han-Jin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
4
|
Li Y, Ye Y, Zhu X, Liu X, Li X, Zhao Y, Che X. Transcriptomic analysis reveals nanoplastics-induced apoptosis, autophagy and immune response in Litopenaeus vannamei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174360. [PMID: 38960190 DOI: 10.1016/j.scitotenv.2024.174360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Increasing attention is being paid to the toxic physiological effects of nanoplastics (NPs) on aquatic organisms. However, few studies have systematically evaluated the regulatory mechanisms of NPs on immune response in crustaceans. In this study, a 28-day chronic exposure experiment was conducted in which shrimps were exposed to various 80-nm polystyrene NPs concentrations (0, 0.1, 1, 5 and 10 mg/L). Transcriptomic analysis was used to investigate the regulatory mechanisms of NPs in immune response of Litopenaeus vannamei. With increasing NPs concentration, the total hemocyte count (THC) content decreased, while phagocytosis rate (PR) and respiratory burst (RB) showed trends of first rising and then falling. High concentration (10 mg/L) of NPs caused the destruction of hepatopancreas tissue structure, the shedding of microvilli, the increase number of hepatocyte apoptosis and autophagy structure. With increasing NPs concentration, the lysozyme (Lys), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities first increased and then decrease, while contents of lipid peroxidation and malondialdehyde increased; the expression levels of Toll, MyD88, GPx, SOD, proPO, Lys, and ALF generally increased at first and then decreased. Transcriptional sequencing analysis showed that the pathway of differentially expressed genes in KEGG enrichment mainly included lysosome (ko04142), apoptosis (ko04210) pathways, indicating that the NPs mainly affected the immune regulatory mechanism. Further analysis by Gene Set Enrichment Analysis (GSEA) showed that the up-regulation pathways of NPs activation mainly included immune response-related pathways such as mitochondrial autophagy, DNA repair, autophagosomes signaling pathway. Our results indicated that NPs exposure induced oxidative stress, apoptosis and autophagy in shrimps. This study provides a basis for further understanding of the mechanisms of antioxidant immune regulation by NPs in shrimp and may serve as a reference for healthy ecological culture of shrimp.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xiaoyi Zhu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Xinfeng Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| |
Collapse
|
5
|
Sánchez-López CM, González-Arce A, Ramírez-Toledo V, Bernal D, Marcilla A. Unraveling new players in helminth pathology: extracellular vesicles from Fasciola hepatica and Dicrocoelium dendriticum exert different effects on hepatic stellate cells and hepatocytes. Int J Parasitol 2024; 54:617-634. [PMID: 38925265 DOI: 10.1016/j.ijpara.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/02/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Fasciola hepatica and Dicrocoelium dendriticum are parasitic trematodes residing in the bile ducts of mammalian hosts, causing, in some cases, impairment of liver function and hepatic fibrosis. Previous studies have shown that extracellular vesicles released by F. hepatica (FhEVs) and D. dendriticum (DdEVs) induce a distinct phenotype in human macrophages, but there is limited information on the effect of parasitic EVs on liver cells, which interact directly with the worms in natural infections. In this study, we isolated FhEVs and DdEVs by size exclusion chromatography and labeled them with a lipophilic fluorescent dye to analyze their uptake by human hepatic stellate cells (HSC) and hepatocytes, important cell types in liver pathology, using synthetic liposomes as internal labeling and uptake control. We analyzed EV uptake and the proteome profiles after the treatment with EVs for both cell types. Our results reveal that EVs establish unique and specific interactions with stellate cells and hepatocytes, suggesting a different role of EVs derived from each parasite, depending on the migration route to reach their final niche. FhEVs have a cytostatic effect on HSCs, but induce the extracellular matrix secretion and elicit anti-inflammatory responses in hepatocytes. DdEVs have a more potent anti-proliferative effect than FhEVs and trigger a global inflammatory response, increasing the levels of NF-κB and other inflammatory mediators in both cell types. These interactions may have a major influence on the progression of the disease, serving to generate conditions that may favor the establishment of the helminths in the host.
Collapse
Affiliation(s)
- Christian M Sánchez-López
- Área de Parasitología, Departament de Farmacia i Tecnologia Farmacèutica i Parasitologia. Universitat de València, Burjassot, Valencia, Spain; Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research IIS La Fe-Universitat de València, Valencia, Spain
| | - Aránzazu González-Arce
- Área de Parasitología, Departament de Farmacia i Tecnologia Farmacèutica i Parasitologia. Universitat de València, Burjassot, Valencia, Spain
| | | | - Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, Burjassot, Valencia, Spain.
| | - Antonio Marcilla
- Área de Parasitología, Departament de Farmacia i Tecnologia Farmacèutica i Parasitologia. Universitat de València, Burjassot, Valencia, Spain; Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research IIS La Fe-Universitat de València, Valencia, Spain.
| |
Collapse
|
6
|
Hofer BS, Simbrunner B, Königshofer P, Brusilovskaya K, Petrenko O, Taru V, Sorz T, Zinober K, Semmler G, Kauschke SG, Pfisterer L, Trauner M, Mandorfer M, Schwabl P, Reiberger T. Aetiology-specific inflammation patterns in patients and rat models of compensated cirrhosis. Dig Liver Dis 2024:S1590-8658(24)01005-3. [PMID: 39343656 DOI: 10.1016/j.dld.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Cirrhosis is associated with a proinflammatory environment. AIMS To analyse aetiology-specific inflammation patterns in compensated cirrhosis in animal models and patients. METHODS Portal pressure (PP), fibrosis (collagen proportionate area [CPA]) and hepatic inflammation were measured in cirrhotic rat models (thioacetamide [TAA;n = 12]; choline-deficient high-fat diet [CDHFD;n = 12]; bile duct ligation [BDL;n = 16]). Compensated cirrhotic patients (alcohol-related liver disease [ALD;n = 67]; metabolic dysfunction-associated steatohepatitis [MASH;n = 50]; cholestatic liver disease [primary biliary cholangitis [PBC]/primary sclerosing cholangitis [PSC];n = 22]) undergoing hepatic venous pressure gradient (HVPG) measurement were included. RESULTS In rats, hepatic proinflammatory gene expression was highest in CDHFD and lowest in TAA, despite comparable PP levels. Across all animal models, Tnfa/Il6 correlated positively with CPA, and Mcp1 with elevated PP. Mcp1 was also associated with increased CPA in TAA/CDHFD. Mcp1/Cxcl1 showed a model-independent positive correlation to transaminases. Il1b correlated positively with CPA/PP in BDL and with transaminases in CDHFD. In patients, CRP/IL-6 were lower in MASH compared to ALD or PBC/PSC, regardless of hepatic function. IgA/IgG were highest and complement factors lowest in ALD. More pronounced systemic inflammation was linked to higher HVPG primarily in ALD/MASH. CONCLUSION Proinflammatory pathways are upregulated across all liver disease aetiologies, yet their association with fibrosis and portal hypertension can vary.
Collapse
Affiliation(s)
- Benedikt Silvester Hofer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Philipp Königshofer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Ksenia Brusilovskaya
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Oleksandr Petrenko
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Vlad Taru
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Thomas Sorz
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Kerstin Zinober
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Stefan G Kauschke
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach an der Riss, Germany
| | - Larissa Pfisterer
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach an der Riss, Germany
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
7
|
Gomaa B, Abdelhamed H, Banes M, Zinnurine S, Pinchuk L, Lawrence ML. Innate and adaptive immunity gene expression profiles induced by virulent Aeromonas hydrophila infection in the immune-related organs of channel catfish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 162:105276. [PMID: 39341476 DOI: 10.1016/j.dci.2024.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Aeromonas hydrophila causes motile Aeromonas septicemia (MAS) in freshwater fish. In recent years, MAS outbreaks due to virulent Aeromonas hydrophila (vAh) have been responsible for large-scale losses within commercial catfish farms in Mississippi and Alabama. The aim of this study was to evaluate immune gene expression in catfish immune-competent tissues during infection with vAh strain ML09-119. Specific pathogen-free catfish fingerlings were intraperitoneally infected with vAh strain ML09-119, and relative expression of thirteen immune-related genes was evaluated from head kidney, spleen, and liver. Our results revealed that vAh was detected 2 h post-infection (hpi) in the head kidney, liver, and spleen. The highest concentration of vAh was detected at 12 hpi, from which point concentrations decreased until clearance at 5 days post-infection (dpi). Gene expression analysis revealed upregulation of pro-inflammatory cytokines and innate immune response (TLR 4 and 5) in the first 24 hpi. Adaptive immune-related genes were upregulated at 7 dpi in the spleen and 14 dpi in the head kidney. Furthermore, immunoglobulin M showed significant upregulation at 14 dpi in the head kidney and 21 dpi in the spleen. In summary, vAh ML09-119 infection induced a strong inflammatory response involving multiple innate immunity genes, proinflammatory cytokines, and chemokines. Surviving catfish were able to clear the infection and produce antibodies and memory cells. Assessment of the immunological response to vAh infection is critical for understanding the pathogen's mechanisms of pathogenesis and developing means for MAS control, including vaccine development and improved treatments.
Collapse
Affiliation(s)
- Basant Gomaa
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, USA
| | - Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, USA
| | - Michelle Banes
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, USA
| | - Saida Zinnurine
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, USA
| | - Lesya Pinchuk
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, USA
| | - Mark L Lawrence
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, USA.
| |
Collapse
|
8
|
Rodríguez-Negrete EV, Gálvez-Martínez M, Sánchez-Reyes K, Fajardo-Felix CF, Pérez-Reséndiz KE, Madrigal-Santillán EO, Morales-González Á, Morales-González JA. Liver Cirrhosis: The Immunocompromised State. J Clin Med 2024; 13:5582. [PMID: 39337069 PMCID: PMC11432654 DOI: 10.3390/jcm13185582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Systemic inflammation and immunodeficiency are important components of cirrhosis-associated immune dysfunction (CAID), the severity of which is dynamic, progressive, and associated with the greater deterioration of liver function. Two inflammation phenotypes have been described: low-grade and high-grade systemic inflammation. Both of these phenotypes are related to liver cirrhosis function; thus, high-grade inflammation is correlated with the severity of hepatic insufficiency, bacterial translocation, and organic insufficiency, with which the risk of infections increases and the prognosis worsens. Bacterial translocation (BT) plays a relevant role in persistent systemic inflammation in patients with cirrhosis, and the prophylactic employment of antibiotics is useful for reducing events of infection and mortality.
Collapse
Affiliation(s)
- Elda Victoria Rodríguez-Negrete
- Servicio de Gastroenterología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Ciudad de México 06720, Mexico
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Marisol Gálvez-Martínez
- Servicio de Gastroenterología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Ciudad de México 06720, Mexico
| | - Karina Sánchez-Reyes
- Servicio de Cirugía General, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Ciudad de México 06720, Mexico
| | - Carlos Fernando Fajardo-Felix
- Servicio de Gastroenterología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Ciudad de México 06720, Mexico
| | - Karla Erika Pérez-Reséndiz
- Servicio de Gastroenterología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Ciudad de México 06720, Mexico
| | | | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Unidad Profesional "A. López Mateos", Ciudad de México 07738, Mexico
| | - José Antonio Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| |
Collapse
|
9
|
Rodrigues A, Alexandre-Pires G, Valério-Bolas A, Nunes T, Pereira da Fonseca I, Santos-Gomes G. Kupffer Cells and Hepatocytes: A Key Relation in the Context of Canine Leishmaniasis. Microorganisms 2024; 12:1887. [PMID: 39338560 PMCID: PMC11433711 DOI: 10.3390/microorganisms12091887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Human zoonotic visceral leishmaniasis (ZVL) and canine leishmaniasis (CanL) constitute a major public and veterinary health concern and are both caused by the infection with the protozoan parasite Leishmania infantum. One of the main target organs in CanL is the liver. This complex organ, composed of various highly specialized cell types, has garnered significant attention from the scientific community as a crucial player in innate immune functions. In the context of CanL, liver infection by parasites and the host immune response generated strongly influence the disease outcome. Thus, taking advantage of a co-culture system involving canine hepatocytes and L. infantum-infected autologous Kupffer cells (KCs), allowing cell-to-cell interaction, the current report aims to shed light on the hepatocyte-KCs immune interaction. The co-culture of infected KCs with hepatocytes revealed a vital role of these cells in the activation of a local immune response against L. infantum parasites. Although KCs alone can be immunologically silenced by L. infantum infection, the cell-to-cell interaction with hepatocytes in co-culture can lead to local immune activation. In co-culture it was observed gene expression increased the number of innate immune receptors, specifically cell membrane TLR2 and cytoplasmatic NOD1 along with high TNF-α generation. Altogether, these results suggest that the immune response generated in co-culture could induce the recruitment of other circulating cells to contain and contribute to the resolution of the infection in the liver. This work also enhances our understanding of the liver as a vital organ in innate immunity within the context of CanL.
Collapse
Affiliation(s)
- Armanda Rodrigues
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal
| | - Graça Alexandre-Pires
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1200-771 Lisbon, Portugal
| | - Ana Valério-Bolas
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal
| | - Telmo Nunes
- Microscopy Center, Faculty of Sciences, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Isabel Pereira da Fonseca
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1200-771 Lisbon, Portugal
| | - Gabriela Santos-Gomes
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), 1349-008 Lisbon, Portugal
| |
Collapse
|
10
|
Burra P, Zanetto A, Schnabl B, Reiberger T, Montano-Loza AJ, Asselta R, Karlsen TH, Tacke F. Hepatic immune regulation and sex disparities. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00974-5. [PMID: 39237606 DOI: 10.1038/s41575-024-00974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/07/2024]
Abstract
Chronic liver disease is a major cause of morbidity and mortality worldwide. Epidemiology, clinical phenotype and response to therapies for gastrointestinal and liver diseases are commonly different between women and men due to sex-specific hormonal, genetic and immune-related factors. The hepatic immune system has unique regulatory functions that promote the induction of intrahepatic tolerance, which is key for maintaining liver health and homeostasis. In liver diseases, hepatic immune alterations are increasingly recognized as a main cofactor responsible for the development and progression of chronic liver injury and fibrosis. In this Review, we discuss the basic mechanisms of sex disparity in hepatic immune regulation and how these mechanisms influence and modify the development of autoimmune liver diseases, genetic liver diseases, portal hypertension and inflammation in chronic liver disease. Alterations in gut microbiota and their crosstalk with the hepatic immune system might affect the progression of liver disease in a sex-specific manner, creating potential opportunities for novel diagnostic and therapeutic approaches to be evaluated in clinical trials. Finally, we identify and propose areas for future basic, translational and clinical research that will advance our understanding of sex disparities in hepatic immunity and liver disease.
Collapse
Affiliation(s)
- Patrizia Burra
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy.
| | - Alberto Zanetto
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, Department of Medicine, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Tom Hemming Karlsen
- Department of Transplantation Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
11
|
Zhong J, Johansen SH, Bæk O, Nguyen DN. Citrulline supplementation exacerbates sepsis severity in infected preterm piglets via early induced immunosuppression. J Nutr Biochem 2024; 131:109674. [PMID: 38825026 DOI: 10.1016/j.jnutbio.2024.109674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Arginine (ARG)/Citrulline (CIT) deficiency is associated with increased sepsis severity after infection. Supplementation of CIT to susceptible patients with ARG/CIT deficiency such as preterm newborns with suspected infection might prevent sepsis, via maintaining immune and vascular function. Caesarean-delivered, parenterally nourished preterm pigs were treated with CIT (1g/kg bodyweight) via oral or continuous intravenous supplementation, then inoculated with live Staphylococcus epidermidis and clinically monitored for 14 h. Blood, liver, and spleen samples were collected for analysis. In vitro cord blood stimulation was performed to explore how CIT and ARG affect premature blood cell responses. After infection, oral CIT supplementation led to higher mortality, increased blood bacterial load, and systemic and hepatic inflammation. Intravenous CIT administration showed increased inflammation and bacterial burdens without significantly affecting mortality. Liver transcriptomics and data from in vitro blood stimulation indicated that CIT induces systemic immunosuppression in preterm newborns, which may impair resistance response to bacteria at the early stage of infection, subsequently causing later uncontrollable inflammation and tissue damage. The early stage of CIT supplementation exacerbates sepsis severity in infected preterm pigs, likely via inducing systemic immunosuppression.
Collapse
Affiliation(s)
- Jingren Zhong
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Sebastian Høj Johansen
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Ole Bæk
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark; Department of Neonatology, Rigshospitalet, Denmark.
| | - Duc Ninh Nguyen
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
12
|
Laddach A, Pachnis V, Shapiro M. TrajectoryGeometry suggests cell fate decisions can involve branches rather than bifurcations. NAR Genom Bioinform 2024; 6:lqae139. [PMID: 39380945 PMCID: PMC11459380 DOI: 10.1093/nargab/lqae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Differentiation of multipotential progenitor cells is a key process in the development of any multi-cellular organism and often continues throughout its life. It is often assumed that a bi-potential progenitor develops along a (relatively) straight trajectory until it reaches a decision point where the trajectory bifurcates. At this point one of two directions is chosen, each direction representing the unfolding of a new transcriptional programme. However, we have lacked quantitative means for testing this model. Accordingly, we have developed the R package TrajectoryGeometry. Applying this to published data we find several examples where, rather than bifurcate, developmental pathways branch. That is, the bipotential progenitor develops along a relatively straight trajectory leading to one of its potential fates. A second relatively straight trajectory branches off from this towards the other potential fate. In this sense only cells that branch off to follow the second trajectory make a 'decision'. Our methods give precise descriptions of the genes and cellular pathways involved in these trajectories. We speculate that branching may be the more common behaviour and may have advantages from a control-theoretic viewpoint.
Collapse
Affiliation(s)
- Anna Laddach
- Nervous System Development and Homeostasis Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Vassilis Pachnis
- Nervous System Development and Homeostasis Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Michael Shapiro
- Nervous System Development and Homeostasis Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| |
Collapse
|
13
|
Aryal RP, Noel M, Zeng J, Matsumoto Y, Sinard R, Waki H, Erger F, Reusch B, Beck BB, Cummings RD. Cosmc regulates O-glycan extension in murine hepatocytes. Glycobiology 2024; 34:cwae069. [PMID: 39216105 PMCID: PMC11398974 DOI: 10.1093/glycob/cwae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocytes synthesize a vast number of glycoproteins found in their membranes and secretions, many of which contain O-glycans linked to Ser/Thr residues. As the functions and distribution of O-glycans on hepatocyte-derived membrane glycoproteins and blood glycoproteins are not well understood, we generated mice with a targeted deletion of Cosmc (C1Galt1c1) in hepatocytes. Liver glycoproteins in WT mice express typical sialylated core 1 O-glycans (T antigen/CD176) (Galβ1-3GalNAcα1-O-Ser/Thr), whereas the Cosmc knockout hepatocytes (HEP-Cosmc-KO) lack extended O-glycans and express the Tn antigen (CD175) (GalNAcα1-O-Ser/Thr). Tn-containing glycoproteins occur in the sera of HEP-Cosmc-KO mice but not in WT mice. The LDL-receptor (LDLR), a well-studied O-glycosylated glycoprotein in hepatocytes, behaves as a ∼145kD glycoprotein in WT liver lysates, whereas it is reduced to ∼120 kDa in lysates from HEP-Cosmc-KO mice. Interestingly, the expression of the LDLR, as well as HMG-CoA reductase, which is typically altered in response to dysregulated cholesterol metabolism, are similar between WT and HEP-Cosmc-KO mice, indicating no significant effect by Cosmc deletion on either LDLR stability or cholesterol metabolism. Consistent with this, we observed no detectable phenotype in the HEP-Cosmc-KO mice regarding development, appearance or aging compared to WT. These results provide surprising, novel information about the pathway of O-glycosylation in the liver.
Collapse
Affiliation(s)
- Rajindra P Aryal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Maxence Noel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Junwei Zeng
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Rachael Sinard
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Hannah Waki
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Florian Erger
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Björn Reusch
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Bodo B Beck
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| |
Collapse
|
14
|
Bakrania A, Mo Y, Zheng G, Bhat M. RNA nanomedicine in liver diseases. Hepatology 2024:01515467-990000000-00569. [PMID: 37725757 DOI: 10.1097/hep.0000000000000606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
The remarkable impact of RNA nanomedicine during the COVID-19 pandemic has demonstrated the expansive therapeutic potential of this field in diverse disease contexts. In recent years, RNA nanomedicine targeting the liver has been paradigm-shifting in the management of metabolic diseases such as hyperoxaluria and amyloidosis. RNA nanomedicine has significant potential in the management of liver diseases, where optimal management would benefit from targeted delivery, doses titrated to liver metabolism, and personalized therapy based on the specific site of interest. In this review, we discuss in-depth the different types of RNA and nanocarriers used for liver targeting along with their specific applications in metabolic dysfunction-associated steatotic liver disease, liver fibrosis, and liver cancers. We further highlight the strategies for cell-specific delivery and future perspectives in this field of research with the emergence of small activating RNA, circular RNA, and RNA base editing approaches.
Collapse
Affiliation(s)
- Anita Bakrania
- Department of Medicine, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Department of Medicine, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yulin Mo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mamatha Bhat
- Department of Medicine, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Department of Medicine, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Division of Gastroenterology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Melini S, Trinchese G, Lama A, Cimmino F, Del Piano F, Comella F, Opallo N, Leo A, Citraro R, Trabace L, Mattace Raso G, Pirozzi C, Mollica MP, Meli R. Sex Differences in Hepatic Inflammation, Lipid Metabolism, and Mitochondrial Function Following Early Lipopolysaccharide Exposure in Epileptic WAG/Rij Rats. Antioxidants (Basel) 2024; 13:957. [PMID: 39199203 PMCID: PMC11351225 DOI: 10.3390/antiox13080957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Among the non-communicable neurological diseases, epilepsy is characterized by abnormal brain activity with several peripheral implications. The role of peripheral inflammation in the relationship between seizure development and nonalcoholic fatty liver disease based on sex difference remains still overlooked. Severe early-life infections lead to increased inflammation that can aggravate epilepsy and hepatic damage progression, both related to increased odds of hospitalization for epileptic patients with liver diseases. Here, we induced a post-natal-day 3 (PND3) infection by LPS (1 mg/kg, i.p.) to determine the hepatic damage in a genetic model of young epileptic WAG/Rij rats (PND45). We evaluated intra- and inter-gender differences in systemic and liver inflammation, hepatic lipid dysmetabolism, and oxidative damage related to mitochondrial functional impairment. First, epileptic rats exposed to LPS, regardless of gender, displayed increased serum hepatic enzymes and altered lipid profile. Endotoxin challenge triggered a more severe inflammatory and immune response in male epileptic rats, compared to females in both serum and liver, increasing pro-inflammatory cytokines and hepatic immune cell recruitment. Conversely, LPS-treated female rats showed significant alterations in systemic and hepatic lipid profiles and reduced mitochondrial fatty acid oxidation. The two different sex-dependent mechanisms of LPS-induced liver injury converge in increased ROS production and related mitochondrial oxidative damage in both sexes. Notably, a compensatory increase in antioxidant defense was evidenced only in female rats. Our study with a translational potential demonstrates, for the first time, that early post-natal infections in epileptic rats induced or worsened hepatic disorders in a sex-dependent manner, amplifying inflammation, lipid dysmetabolism, and mitochondrial impairment.
Collapse
Affiliation(s)
- Stefania Melini
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (S.M.); (A.L.); (F.C.); (N.O.); (G.M.R.); (R.M.)
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (M.P.M.)
| | - Adriano Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (S.M.); (A.L.); (F.C.); (N.O.); (G.M.R.); (R.M.)
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (M.P.M.)
| | - Filomena Del Piano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy;
| | - Federica Comella
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (S.M.); (A.L.); (F.C.); (N.O.); (G.M.R.); (R.M.)
| | - Nicola Opallo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (S.M.); (A.L.); (F.C.); (N.O.); (G.M.R.); (R.M.)
| | - Antonio Leo
- Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (A.L.); (R.C.)
| | - Rita Citraro
- Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (A.L.); (R.C.)
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Giuseppina Mattace Raso
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (S.M.); (A.L.); (F.C.); (N.O.); (G.M.R.); (R.M.)
| | - Claudio Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (S.M.); (A.L.); (F.C.); (N.O.); (G.M.R.); (R.M.)
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (M.P.M.)
| | - Rosaria Meli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (S.M.); (A.L.); (F.C.); (N.O.); (G.M.R.); (R.M.)
| |
Collapse
|
16
|
Zhuang L, Jia N, Zhang L, Zhang Q, Antwi SO, Sartorius K, Wu K, Sun D, Xi D, Lu Y. Gpbar-1/cAMP/PKA signaling mitigates macrophage-mediated acute cholestatic liver injury via antagonizing NLRP3-ASC inflammasome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167266. [PMID: 38806072 DOI: 10.1016/j.bbadis.2024.167266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Acute cholestatic liver injury (ACLI) is a disease associated with bile duct obstruction that causes liver inflammation and apoptosis. Although G protein-coupled bile acid receptor1 (Gpbar-1) has diverse metabolic roles, its involvement in ACLI-associated immune activation remains unclear. Liver tissues and blood samples from 20 patients with ACLI and 20 healthy individuals were analyzed using biochemical tests, H&E staining, western blotting, and immunohistochemistry to verify liver damage and expression of Gpbar-1. The expression of Gpbar-1, cAMP/PKA signaling, and the NLRP3 inflammasome was tested in wild-type (WT) and Gpbar-1 knockdown (si-Gpbar-1) mice with ACLI induced by bile duct ligation (BDL) and in primary Kupffer cells (KCs) with or without Gpbar-1-siRNA. The results showed that total bile acids and Gpbar-1 expressions were elevated in patients with ACLI. Gpbar-1 knockdown significantly worsened BDL-induced acute hepatic damage, inflammation, and liver apoptosis in vivo. Knockdown of Gpbar-1 heightened KC sensitivity to lipopolysaccharide (LPS) stimulation. Gpbar-1 activation inhibited LPS-induced pro-inflammatory responses in normal KCs but not in Gpbar-1-knockdown KCs. Notably, NLRP3-ASC inflammasome expression was effectively enhanced by Gpbar-1 deficiency. Additionally, Gpbar-1 directly increased intracellular cAMP levels and PKA phosphorylation, thus disrupting the NLRP3-ASC inflammasome. The pro-inflammatory characteristic of Gpbar-1 deficiency was almost neutralized by the NLRP3 inhibitor CY-09. In vitro, M1 polarization was accelerated in LPS-stimulated Gpbar-1-knockdown KCs. Therapeutically, Gpbar-1 deficiency exacerbated BDL-induced ACLI, which could be rescued by inhibition of the NLRP3-ASC inflammasome. Our study reveal that Gpbar-1 may act as a novel immune-mediated regulator of ACLI by inhibiting the NLRP3-ASC inflammasome.
Collapse
Affiliation(s)
- Lin Zhuang
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China; Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University and The Wujin clinical college of Xuzhou medical university, Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, Jiangsu 213000, China
| | - Naixin Jia
- Department of Hepatobiliary Surgery, Kunshan First People's Hospital affiliated to Jiangsu University, Kunshan, Jiangsu 215300, China
| | - Li Zhang
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Qi Zhang
- Department of Oncology, Wujin Affiliated Hospital of Jiangsu University and The Wujin clinical college of Xuzhou Medical University, Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, Jiangsu 213000, China
| | - Samuel O Antwi
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA; The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kurt Sartorius
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL 32224, USA; School of Laboratory Medicine and Molecular Sciences, College of Health Sciences, University of Kwazulu-Natal, Durban 4041, South Africa; UKZN Gastrointestinal Cancer Research Unit, University of Kwazulu-Natal, Durban 4041, South Africa
| | - Kejia Wu
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Donglin Sun
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China.
| | - Dong Xi
- Department of Oncology, Wujin Affiliated Hospital of Jiangsu University and The Wujin clinical college of Xuzhou Medical University, Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, Jiangsu 213000, China.
| | - Yunjie Lu
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University and The Wujin clinical college of Xuzhou medical university, Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, Jiangsu 213000, China; The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL 32224, USA; Department of Hepatopancreatobiliary surgery, The First Affiliated Hospital of Soochow University, Suzhou 215100, China.
| |
Collapse
|
17
|
Choi YJ, Kim Y, Hwang S. Role of Neutrophils in the Development of Steatotic Liver Disease. Semin Liver Dis 2024; 44:300-318. [PMID: 39117322 DOI: 10.1055/s-0044-1789207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This review explores the biological aspects of neutrophils, their contributions to the development of steatotic liver disease, and their potential as therapeutic targets for the disease. Although alcohol-associated and metabolic dysfunction-associated liver diseases originate from distinct etiological factors, the two diseases frequently share excessive lipid accumulation as a common contributor to their pathogenesis, thereby classifying them as types of steatotic liver disease. Dysregulated lipid deposition in the liver induces hepatic injury, triggering the activation of the innate immunity, partially through neutrophil recruitment. Traditionally recognized for their role in microbial clearance, neutrophils have recently garnered attention for their involvement in sterile inflammation, a pivotal component of steatotic liver disease pathogenesis. In conclusion, technological innovations, including single-cell RNA sequencing, have gradually disclosed the existence of various neutrophil subsets; however, how the distinct subsets of neutrophil population contribute differentially to the development of steatotic liver disease remains unclear.
Collapse
Affiliation(s)
- You-Jin Choi
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Yeonsoo Kim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
18
|
Namba Y, Kobayashi T, Tadokoro T, Fukuhara S, Oshita K, Matsubara K, Honmyo N, Kuroda S, Ohira M, Ohdan H. Effect of genetic polymorphisms of interleukin-1 beta on the microscopic portal vein invasion and prognosis of hepatocellular carcinoma. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2024; 31:528-536. [PMID: 38798075 PMCID: PMC11503458 DOI: 10.1002/jhbp.12009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
BACKGROUND Several studies have demonstrated a relationship between genetic polymorphisms of interleukin-1 beta (IL-1β) and cancer development; however, their influence on cancer prognosis is unknown. In the present study, we aimed to evaluate the impact of IL-1β single nucleotide polymorphisms on the hematogenous dissemination and prognosis of hepatocellular carcinoma. METHODS We conducted a retrospective cohort study including patients with hepatocellular carcinoma who underwent primary liver resection at our hospital between April 2015 and December 2018. The primary endpoints were overall and recurrence-free survival. Secondary endpoints were microscopic portal vein invasion and number of circulating tumor cells. RESULTS A total of 148 patients were included, 32 with rs16944 A/A genotype. A/A genotype was associated with microscopic portal vein invasion and number of circulating tumor cells (p = .03 and .04). In multivariate analysis, A/A genotype, alpha-fetoprotein level, and number of circulating tumor cells were associated with microscopic portal vein invasion (p = .01, .01, and <.01). A/A genotype, Child-Pugh B, and intraoperative blood loss were independent predictive factors for overall survival (p = .02, <.01, and <.01). CONCLUSIONS Our results indicate that the IL-1β rs16944 A/A genotype is involved in number of circulating tumor cells, microscopic portal vein invasion, and prognosis in HCC.
Collapse
Affiliation(s)
- Yosuke Namba
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Tsuyoshi Kobayashi
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Takeshi Tadokoro
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Sotaro Fukuhara
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Ko Oshita
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Keiso Matsubara
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Naruhiko Honmyo
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Shintaro Kuroda
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery Applied Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| |
Collapse
|
19
|
An R, Wang JL. Acute liver failure: A clinically severe syndrome characterized by intricate mechanisms. World J Hepatol 2024; 16:1067-1069. [PMID: 39086537 PMCID: PMC11287616 DOI: 10.4254/wjh.v16.i7.1067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/26/2024] [Accepted: 06/14/2024] [Indexed: 07/26/2024] Open
Abstract
Acute liver failure presents as a clinical syndrome characterized by swift deterioration and significant mortality rates. Its underlying mechanisms are intricate, involving intricate interplays between various cells. Given the current scarcity of treatment options, there's a pressing need to diligently uncover the disease's core mechanisms and administer targeted therapies accordingly.
Collapse
Affiliation(s)
- Ran An
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing 210008, Jiangsu Province, China
| | - Jing-Lin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing 210008, Jiangsu Province, China.
| |
Collapse
|
20
|
Rupar MJ, Hanson H, Rogers S, Botlick B, Trimmer S, Hickman JJ. Modelling the innate immune system in microphysiological systems. LAB ON A CHIP 2024; 24:3604-3625. [PMID: 38957150 PMCID: PMC11264333 DOI: 10.1039/d3lc00812f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/09/2024] [Indexed: 07/04/2024]
Abstract
This critical review aims to highlight how modeling of the immune response has adapted over time to utilize microphysiological systems. Topics covered here will discuss the integral components of the immune system in various human body systems, and how these interactions are modeled using these systems. Through the use of microphysiological systems, we have not only expanded on foundations of basic immune cell information, but have also gleaned insight on how immune cells work both independently and collaboratively within an entire human body system.
Collapse
Affiliation(s)
- Michael J Rupar
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Hannah Hanson
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Stephanie Rogers
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Brianna Botlick
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - Steven Trimmer
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| | - James J Hickman
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826, USA.
| |
Collapse
|
21
|
Tian R, Guan M, Chen L, Wan Y, He L, Zhao Z, Gao T, Zong L, Chang J, Zhang J. Mechanism insights into the histopathological changes of polypropylene microplastics induced gut and liver in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116537. [PMID: 38852469 DOI: 10.1016/j.ecoenv.2024.116537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Microplastics (MPs), emerging as significant pollutants, have been consistently detected in aquatic environments, with the Yangtze River experiencing a particularly severe level of microplastic pollution, exceeding all other watersheds in China. Polypropylene (PP), the plastic most abundantly found in the middle and lower reaches of the Yangtze River Basin, has less comprehensive research results into its toxic effects. Consequently, the present investigation employed zebrafish as a model organism to delve into the toxicological impacts of polypropylene microplastics (PP-MPs) with a diameter of 5 μm across varying concentrations (300 mg/L and 600 mg/L). Using histopathological, microbiota profiling, and transcriptomic approaches, we systematically evaluated the impact of PP-MPs exposure on the intestine and liver of zebrafish. Histopathological analysis revealed that exposure to PP-MPs resulted in thinner intestinal walls, damaged intestinal mucosa, and hepatic cellular damage. Intestinal microbiota profiling demonstrated that, the richness, uniformity, diversity, and homogeneity of gut microbes significantly increased after the PP-MPs exposure at high concentration. These alterations were accompanied by shifts in the relative abundance of microbiota associated with intestinal pathologies, suggesting a profound impact on the intestinal microbial community structure. Concurrently, hepatic transcriptome analysis and RT-qPCR indicated that the downregulation of pathways and genes associated with cell proliferation regulation and DNA damage repair mechanisms contributed to hepatic cellular damage, ultimately exerting adverse effects on the liver. Correlation analysis between the intestinal microbiota and liver transcriptome profiles further highlighted significant associations between intestinal microbiota and the downregulated hepatic pathways. Collectively, these results provide novel insights into the subacute toxicological mechanisms of PP-MPs in aquatic organisms and highlight the need for further research on the ecological and health risks associated with PP-MPs pollution.
Collapse
Affiliation(s)
- Ran Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Miao Guan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Lei Chen
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yaming Wan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Le He
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ziwen Zhao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ting Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Linhao Zong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jiang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Junfeng Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China.
| |
Collapse
|
22
|
Abi Sleiman M, Younes M, Hajj R, Salameh T, Abi Rached S, Abi Younes R, Daoud L, Doumiati JL, Frem F, Ishak R, Medawar C, Naim HY, Rizk S. Urtica dioica: Anticancer Properties and Other Systemic Health Benefits from In Vitro to Clinical Trials. Int J Mol Sci 2024; 25:7501. [PMID: 39000608 PMCID: PMC11242153 DOI: 10.3390/ijms25137501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
While conventional medicine has advanced in recent years, there are still concerns about its potential adverse reactions. The ethnopharmacological knowledge established over many centuries and the existence of a variety of metabolites have made medicinal plants, such as the stinging nettle plant, an invaluable resource for treating a wide range of health conditions, considering its minimal adverse effects on human health. The aim of this review is to highlight the therapeutic benefits and biological activities of the edible Urtica dioica (UD) plant with an emphasis on its selective chemo-preventive properties against various types of cancer, whereby we decipher the mechanism of action of UD on various cancers including prostate, breast, leukemia, and colon in addition to evaluating its antidiabetic, microbial, and inflammatory properties. We further highlight the systemic protective effects of UD on the liver, reproductive, excretory, cardiovascular, nervous, and digestive systems. We present a critical assessment of the results obtained from in vitro and in vivo studies as well as clinical trials to highlight the gaps that require further exploration for future prospective studies.
Collapse
Affiliation(s)
- Marc Abi Sleiman
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Maria Younes
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Roy Hajj
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Tommy Salameh
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Samir Abi Rached
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Rimane Abi Younes
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Lynn Daoud
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Jean Louis Doumiati
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Francesca Frem
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Ramza Ishak
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Christopher Medawar
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Hassan Y Naim
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| |
Collapse
|
23
|
Engelskircher SA, Chen PC, Strunz B, Oltmanns C, Ristic T, Owusu Sekyere S, Kraft AR, Cornberg M, Wirth T, Heinrich B, Björkström NK, Wedemeyer H, Woller N. Impending HCC diagnosis in patients with cirrhosis after HCV cure features a natural killer cell signature. Hepatology 2024; 80:202-222. [PMID: 38381525 PMCID: PMC11191062 DOI: 10.1097/hep.0000000000000804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/25/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND AND AIMS The risk of developing HCC in chronically infected patients with AQ2 HCV with liver cirrhosis is significantly elevated. This risk remains high even after a sustained virological response with direct-acting antivirals. To date, disease-associated signatures of NK cells indicating HCC development are unclear. APPROACH AND RESULTS This study investigated NK cell signatures and functions in 8 cohorts covering the time span of HCC development, diagnosis, and onset. In-depth analysis of NK cell profiles from patients with cirrhosis who developed HCC (HCV-HCC) after sustained virological response compared with those who remained tumor-free (HCV-noHCC) revealed increasingly dissimilar NK cell signatures over time. We identified expression patterns with persistently high frequencies of TIM-3 and CD38 on NK cells that were largely absent in healthy controls and were associated with a high probability of HCC development. Functional assays revealed that the NK cells had potent cytotoxic features. In contrast to HCV-HCC, the signature of HCV-noHCC converged with the signature found in healthy controls over time. Regarding tissue distribution, single-cell sequencing showed high frequencies of these cells in liver tissue and the invasive margin but markedly lower frequencies in tumors. CONCLUSIONS We show that HCV-related HCC development has profound effects on the imprint of NK cells. Persistent co-expression of TIM-3hi and CD38 + on NK cells is an early indicator for HCV-related HCC development. We propose that the profiling of NK cells may be a rapid and valuable tool to assess the risk of HCC development in a timely manner in patients with cirrhosis after HCV cure.
Collapse
Affiliation(s)
- Sophie Anna Engelskircher
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Po-Chun Chen
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
- ZIB program, Hannover Medical School, Carl-Neuberg Str., Hannover, Germany
| | - Benedikt Strunz
- Department of Medicine Huddinge, Center of Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Carlos Oltmanns
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tijana Ristic
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Solomon Owusu Sekyere
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Anke R.M. Kraft
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
- Cluster of Excellence RESIST, Hannover Medical School, Carl-Neuberg, Hannover, Germany
- Centre for Individualized Infection Medicine (CIIM), Hannover, Germany
| | - Thomas Wirth
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Bernd Heinrich
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Niklas K. Björkström
- Department of Medicine Huddinge, Center of Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
- Cluster of Excellence RESIST, Hannover Medical School, Carl-Neuberg, Hannover, Germany
| | - Norman Woller
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| |
Collapse
|
24
|
Pourbagheri-Sigaroodi A, Momeny M, Rezaei N, Fallah F, Bashash D. Immune landscape of hepatocellular carcinoma: From dysregulation of the immune responses to the potential immunotherapies. Cell Biochem Funct 2024; 42:e4098. [PMID: 39034646 DOI: 10.1002/cbf.4098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Hepatocellular carcinoma (HCC) presents a considerable global health burden due to its late diagnosis and high morbidity. The liver's specific anatomical and physiological features expose it to various antigens, requiring precise immune regulation. To the best of our knowledge, this is the first time that a comprehensive overview of the interactions between the immune system and gut microbiota in the development of HCC, as well as the relevant therapeutic approaches are discussed. Dysregulation of immune compartments within the liver microenvironment drives HCC pathogenesis, characterized by elevated regulatory cells such as regulatory T cells (Tregs), myeloid-derived suppressor cells, and M2 macrophages as well as suppressive molecules, alongside reduced number of effector cells like T cells, natural killer cells, and M1 macrophages. Dysbiosis of gut microbiota also contributes to HCC by disrupting intestinal barrier integrity and triggering overactivated immune responses. Immunotherapy approaches, particularly immune checkpoint inhibitors, have exhibited promise in HCC management, yet adoptive cell therapy and cancer vaccination research are in the early steps with relatively less favorable outcomes. Further understanding of immune dysregulation, gut microbiota involvement, and therapeutic combination strategies are essential for advancing precision immunotherapy in HCC.
Collapse
Affiliation(s)
- Atieh Pourbagheri-Sigaroodi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Jeong M, Cortopassi F, See JX, De La Torre C, Cerwenka A, Stojanovic A. Vitamin A-treated natural killer cells reduce interferon-gamma production and support regulatory T-cell differentiation. Eur J Immunol 2024; 54:e2250342. [PMID: 38593338 DOI: 10.1002/eji.202250342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes that contribute to immune responses against stressed, transformed, or infected cells. NK cell effector functions are regulated by microenvironmental factors, including cytokines, metabolites, and nutrients. Vitamin A is an essential micronutrient that plays an indispensable role in embryogenesis and development, but was also reported to regulate immune responses. However, the role of vitamin A in regulating NK cell functions remains poorly understood. Here, we show that the most prevalent vitamin A metabolite, all-trans retinoic acid (atRA), induces transcriptional and functional changes in NK cells leading to altered metabolism and reduced IFN-γ production in response to a wide range of stimuli. atRA-exposed NK cells display a reduced ability to support dendritic cell (DC) maturation and to eliminate immature DCs. Moreover, they support the polarization and proliferation of regulatory T cells. These results imply that in vitamin A-enriched environments, NK cells can acquire functions that might promote tolerogenic immunity and/or immunosuppression.
Collapse
Affiliation(s)
- Mingeum Jeong
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Francesco Cortopassi
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jia-Xiang See
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ana Stojanovic
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
26
|
He Q, He W, Dong H, Guo Y, Yuan G, Shi X, Wang D, Lu F. Role of liver sinusoidal endothelial cell in metabolic dysfunction-associated fatty liver disease. Cell Commun Signal 2024; 22:346. [PMID: 38943171 PMCID: PMC11214243 DOI: 10.1186/s12964-024-01720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells that represent the interface between blood cells on one side and hepatocytes on the other side. LSECs not only form a barrier within the hepatic sinus, but also play important physiological functions such as regulating hepatic vascular pressure, anti-inflammatory and anti-fibrotic. Pathologically, pathogenic factors can induce LSECs capillarization, that is, loss of fenestra and dysfunction, which are conducive to early steatosis, lay the foundation for the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), and accelerate metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. The unique localization, phenotype, and function of LSECs make them potential candidates for reducing liver injury, inflammation, and preventing or reversing fibrosis in the future.
Collapse
Affiliation(s)
- Qiongyao He
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wu He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Hui Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Yuan
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoli Shi
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
27
|
Milentijević M, Katanić N, Joksimović B, Pavlović A, Filimonović J, Anđelković M, Bojović K, Elek Z, Ristić S, Vasiljević M, Stevanović J, Radomirović D, Elez-Burnjaković N, Lalović N, Kulić M, Kulić J, Milić M. The Impact of Cytokines on Coagulation Profile in COVID-19 Patients: Controlled for Socio-Demographic, Clinical, and Laboratory Parameters. Biomedicines 2024; 12:1281. [PMID: 38927488 PMCID: PMC11201770 DOI: 10.3390/biomedicines12061281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Severe coagulation abnormalities are common in patients with COVID-19 infection. We aimed to investigate the relationship between pro-inflammatory cytokines and coagulation parameters concerning socio-demographic, clinical, and laboratory characteristics. Methods: Our study included patients hospitalized during the second wave of COVID-19 in the Republic of Serbia. We collected socio-demographic, clinical, and blood-sample data for all patients. Cytokine levels were measured using flow cytometry. Results: We analyzed data from 113 COVID-19 patients with an average age of 58.15 years, of whom 79 (69.9%) were male. Longer duration of COVID-19 symptoms before hospitalization (B = 69.672; p = 0.002) and use of meropenem (B = 1237.220; p = 0.014) were predictive of higher D-dimer values. Among cytokines, higher IL-5 values significantly predicted higher INR values (B = 0.152; p = 0.040) and longer prothrombin times (B = 0.412; p = 0.043), and higher IL-6 (B = 0.137; p = 0.003) predicted longer prothrombin times. Lower IL-17F concentrations at admission (B = 0.024; p = 0.050) were predictive of higher INR values, and lower IFN-γ values (B = -0.306; p = 0.017) were predictive of higher aPTT values. Conclusions: Our findings indicate a significant correlation between pro-inflammatory cytokines and coagulation-related parameters. Factors such as the patient's level of education, gender, oxygen-therapy use, symptom duration before hospitalization, meropenem use, and serum concentrations of IL-5, IL-6, IL-17F, and IFN-γ were associated with worse coagulation-related parameters.
Collapse
Affiliation(s)
- Milica Milentijević
- Department of Infective Diseases, Faculty of Medicine, University of Pristina Temporarily Settled in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia; (M.M.); (N.K.)
- Clinical Hospital Center Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia; (M.A.); (Z.E.); (D.R.)
| | - Nataša Katanić
- Department of Infective Diseases, Faculty of Medicine, University of Pristina Temporarily Settled in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia; (M.M.); (N.K.)
| | - Bojan Joksimović
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Republic of Srpska, Bosnia and Herzegovina; (K.B.); (S.R.); (M.V.); (N.E.-B.); (N.L.); (M.K.); (J.K.)
| | - Aleksandar Pavlović
- Department of Surgery, Faculty of Medicine, University of Pristina Temporarily Settled in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia;
| | - Jelena Filimonović
- Department of Epidemiology, Faculty of Medicine, University of Pristina Temporarily Settled in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia; (J.F.); (J.S.)
| | - Milena Anđelković
- Clinical Hospital Center Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia; (M.A.); (Z.E.); (D.R.)
| | - Ksenija Bojović
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Republic of Srpska, Bosnia and Herzegovina; (K.B.); (S.R.); (M.V.); (N.E.-B.); (N.L.); (M.K.); (J.K.)
| | - Zlatan Elek
- Clinical Hospital Center Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia; (M.A.); (Z.E.); (D.R.)
- Department of Surgery, Faculty of Medicine, University of Pristina Temporarily Settled in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia;
| | - Siniša Ristić
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Republic of Srpska, Bosnia and Herzegovina; (K.B.); (S.R.); (M.V.); (N.E.-B.); (N.L.); (M.K.); (J.K.)
| | - Miloš Vasiljević
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Republic of Srpska, Bosnia and Herzegovina; (K.B.); (S.R.); (M.V.); (N.E.-B.); (N.L.); (M.K.); (J.K.)
| | - Jasmina Stevanović
- Department of Epidemiology, Faculty of Medicine, University of Pristina Temporarily Settled in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia; (J.F.); (J.S.)
| | - Danica Radomirović
- Clinical Hospital Center Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia; (M.A.); (Z.E.); (D.R.)
| | - Nikolina Elez-Burnjaković
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Republic of Srpska, Bosnia and Herzegovina; (K.B.); (S.R.); (M.V.); (N.E.-B.); (N.L.); (M.K.); (J.K.)
| | - Nenad Lalović
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Republic of Srpska, Bosnia and Herzegovina; (K.B.); (S.R.); (M.V.); (N.E.-B.); (N.L.); (M.K.); (J.K.)
| | - Milan Kulić
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Republic of Srpska, Bosnia and Herzegovina; (K.B.); (S.R.); (M.V.); (N.E.-B.); (N.L.); (M.K.); (J.K.)
| | - Jovan Kulić
- Faculty of Medicine Foča, University of East Sarajevo, 73300 Foča, Republic of Srpska, Bosnia and Herzegovina; (K.B.); (S.R.); (M.V.); (N.E.-B.); (N.L.); (M.K.); (J.K.)
| | - Marija Milić
- Department of Epidemiology, Faculty of Medicine, University of Pristina Temporarily Settled in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia; (J.F.); (J.S.)
| |
Collapse
|
28
|
Grayck MR, McCarthy WC, Solar M, Balasubramaniyan N, Zheng L, Orlicky DJ, Wright CJ. Implications of neonatal absence of innate immune mediated NFκB/AP1 signaling in the murine liver. Pediatr Res 2024; 95:1791-1802. [PMID: 38396130 DOI: 10.1038/s41390-024-03071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND The developmental immaturity of the innate immune system helps explains the increased risk of infection in the neonatal period. Importantly, innate immune signaling pathways such as p65/NFκB and c-Jun/AP1 are responsible for the prevention of hepatocyte apoptosis in adult animals, yet whether developmental immaturity of these pathways increases the risk of hepatic injury in the neonatal period is unknown. METHODS Using a murine model of endotoxemia (LPS 5 mg/kg IP x 1) in neonatal (P3) and adult mice, we evaluated histologic evidence of hepatic injury and apoptosis, presence of p65/NFκB and c-Jun/AP1 activation and associated transcriptional regulation of apoptotic genes. RESULTS We demonstrate that in contrast to adults, endotoxemic neonatal (P3) mice exhibit a significant increase in hepatic apoptosis. This is associated with absent hepatic p65/NFκB signaling and impaired expression of anti-apoptotic target genes. Hepatic c-Jun/AP1 activity was attenuated in endotoxemic P3 mice, with resulting upregulation of pro-apoptotic factors. CONCLUSIONS These results demonstrate that developmental absence of innate immune p65/NFκB and c-Jun/AP1 signaling, and target gene expression is associated with apoptotic injury in neonatal mice. More work is needed to determine if this contributes to long-term hepatic dysfunction, and whether immunomodulatory approaches can prevent this injury. IMPACT Various aspects of developmental immaturity of the innate immune system may help explain the increased risk of infection in the neonatal period. In adult models of inflammation and infection, innate immune signaling pathways such as p65/NFκB and c-Jun/AP1 are responsible for a protective, pro-inflammatory transcriptome and regulation of apoptosis. We demonstrate that in contrast to adults, endotoxemic neonatal (P3) mice exhibit a significant increase in hepatic apoptosis associated with absent hepatic p65/NFκB signaling and c-Jun/AP1 activity. We believe that these results may explain in part hepatic dysfunction with neonatal sepsis, and that there may be unrecognized developmental and long-term hepatic implications of early life exposure to systemic inflammatory stress.
Collapse
Affiliation(s)
- Maya R Grayck
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - William C McCarthy
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mack Solar
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Natarajan Balasubramaniyan
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - David J Orlicky
- Dept of Pathology, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
29
|
Abdul-Azeez ZM, Mutlag SH. Possible protective anticancer effect of chloroform fraction of Iraqi Hibiscus tiliaceus L. leaves extract on diethylnitrosamine-induced hepatocarcinogenesis in male rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 21:167-174. [PMID: 38236421 DOI: 10.1515/jcim-2023-0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
OBJECTIVES We aimed to examine the potential protective effects of Iraqi H. tiliaceus L. chloroform leaves extract on DEN-induced HCC in male Wistar Albino rats. METHODS Rats were assigned to four groups, six in each group. Group I: rats were administered a daily oral dose of 1 mL/kg/day of distilled water. Group II: rats were intraperitoneally injected with 70 mg/kg DEN once per week for 10 consecutive weeks. Group III: rats received 250 mg/kg of chloroform leaves extract. Groups IV: the rats were administered 500 mg/kg of chloroform leaves extract, along with their food, for five days per week over 20 weeks, with a subsequent dose of DEN once per week for 10 consecutive weeks. RESULTS The results indicate that the extract demonstrated a significant reduction (p<0.05) in oxidative stress, pro-inflammatory mediators, and HCC parameters, the extract also had a beneficial effect on liver function tests, and there was a significant elevation (p<0.05) of antioxidant parameters in a dose-dependent manner. CONCLUSIONS This study supports the protective properties of the chloroform extract of Iraqi H. tiliaceus L. leaves in HCC.
Collapse
Affiliation(s)
| | - Shihab Hattab Mutlag
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
30
|
Bakry KA, Emeish WFA, Embark HM, Elkamel AA, Mohammed HH. Expression profiles of four Nile Tilapia innate immune genes during early stages of Aeromonas veronii infection. JOURNAL OF AQUATIC ANIMAL HEALTH 2024; 36:164-180. [PMID: 38425180 DOI: 10.1002/aah.10214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 03/02/2024]
Abstract
OBJECTIVE During Egypt's hot summer season, Aeromonas veronii infection causes catastrophic mortality on Nile Tilapia Oreochromis niloticus farms. Egypt is ranked first in aquaculture production in Africa, sixth in aquaculture production worldwide, and third in global tilapia production. This study aimed to investigate, at the molecular level, the early innate immune responses of Nile Tilapia to experimental A. veronii infection. METHODS The relative gene expression, co-expression clustering, and correlation of four selected immune genes were studied by quantitative real-time polymerase chain reaction in four organs (spleen, liver, gills, and intestine) for up to 72 h after a waterborne A. veronii challenge. The four genes studied were nucleotide-binding oligomerization domain 1 (NOD1), lipopolysaccharide-binding protein (LBP), natural killer-lysin (NKL), and interleukin-1 beta (IL-1β). RESULT The four genes showed significant transcriptional upregulation in response to infection. At 72 h postchallenge, the highest NOD1 and IL-1β expression levels were recorded in the spleen, whereas the highest LBP and NKL expression levels were found in the gills. Pairwise distances of the data points and the hierarchical relationship showed that NOD1 clustered with IL-1β, whereas LBP clustered with NKL; both genes within each cluster showed a significant positive expression correlation. Tissue clustering indicated that the responses of only the gill and intestine exhibited a significant positive correlation. CONCLUSION The results suggest that NOD1, LBP, NKL, and IL-1β genes play pivotal roles in the early innate immune response of Nile Tilapia to A. veronii infection, and the postinfection expression profile trends of these genes imply tissue-/organ-specific responses and synchronized co-regulation.
Collapse
Affiliation(s)
- Karima A Bakry
- Department of Fish Diseases, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Walaa F A Emeish
- Department of Fish Diseases, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Hamdy M Embark
- Department of Animal Physiology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Ahmad A Elkamel
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Haitham H Mohammed
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- Department of Rangeland, Wildlife and Fisheries Management, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
31
|
Sureshan M, Brintha S, Jothi A. Identification of Mulberrofuran as a potent inhibitor of hepatitis A virus 3C pro and RdRP enzymes through structure-based virtual screening, dynamics simulation, and DFT studies. Mol Divers 2024; 28:1609-1628. [PMID: 37386350 DOI: 10.1007/s11030-023-10679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023]
Abstract
Hepatitis is a medical condition characterized by inflammation of the liver. It is commonly caused by the hepatitis viruses A, B, C, D, and E. Hepatitis A virus (HAV) is highly contagious and can spread from infected individuals, through contaminated food, blood, or can also be water-borne. As per the statistics of World Health Organization (WHO), HAV infects about 1.4 million individuals each year globally. In this research work, we have focused on identifying natural product-based potential inhibitors for the two major enzymes of HAV namely 3C proteinase (3Cpro) and RNA-directed RNA polymerase (RdRP). The enzyme 3Cpro plays an important role in proteolytic activity that promotes viral maturation and infectivity. RNA-directed RNA polymerase facilitate viral replication and transcription. Structure-based virtual screening was carried out using NPACT database that contains a collection of 1574 curated plant-derived natural compounds that are validated by experiments. The screening procedure identified the phytochemical Mulberrofuran W, which could bind to both the targets 3Cpro and RdRP. The phytochemical Mulberrofuran W also had better binding affinity compared to the control compounds atropine and pyridinyl ester, which are previously identified inhibitors of HAV 3Cpro and RdRP, respectively. The Mulberrofuran W bound 3Cpro and RdRP complexes were subjected to 200 ns molecular dynamics simulations and were found to be stable and interacting with the active site of the enzymes throughout the course of complex MD simulations. In addition to DFT, MMGBSA studies were also performed to validate the identified potential inhibitor further. The identified phytochemical Mulberrofuran W can be considered as a new potential drug candidate and could be taken up for experimental evaluation against HAV infection.
Collapse
Affiliation(s)
- Muthusamy Sureshan
- Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613401, India
| | - Sathishkumar Brintha
- Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613401, India
| | - Arunachalam Jothi
- Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613401, India.
| |
Collapse
|
32
|
Zhang Q, Yu T, Tan H, Shi H. Hepatic recruitment of myeloid-derived suppressor cells upon liver injury promotes both liver regeneration and fibrosis. BMC Gastroenterol 2024; 24:163. [PMID: 38745150 PMCID: PMC11092103 DOI: 10.1186/s12876-024-03245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The liver regeneration is a highly complicated process depending on the close cooperations between the hepatocytes and non-parenchymal cells involving various inflammatory cells. Here, we explored the role of myeloid-derived suppressor cells (MDSCs) in the processes of liver regeneration and liver fibrosis after liver injury. METHODS We established four liver injury models of mice including CCl4-induced liver injury model, bile duct ligation (BDL) model, concanavalin A (Con A)-induced hepatitis model, and lipopolysaccharide (LPS)-induced hepatitis model. The intrahepatic levels of MDSCs (CD11b+Gr-1+) after the liver injury were detected by flow cytometry. The effects of MDSCs on liver tissues were analyzed in the transwell co-culture system, in which the MDSCs cytokines including IL-10, VEGF, and TGF-β were measured by ELISA assay and followed by being blocked with specific antibodies. RESULTS The intrahepatic infiltrations of MDSCs with surface marker of CD11b+Gr-1+ remarkably increased after the establishment of four liver injury models. The blood served as the primary reservoir for hepatic recruitment of MDSCs during the liver injury, while the bone marrow appeared play a compensated role in increasing the number of MDSCs at the late stage of the inflammation. The recruited MDSCs in injured liver were mainly the M-MDSCs (CD11b+Ly6G-Ly6Chigh) featured by high expression levels of cytokines including IL-10, VEGF, and TGF-β. Co-culture of the liver tissues with MDSCs significantly promoted the proliferation of both hepatocytes and hepatic stellate cells (HSCs). CONCLUSIONS The dramatically and quickly infiltrated CD11b+Gr-1+ MDSCs in injured liver not only exerted pro-proliferative effects on hepatocytes, but also accounted for the activation of profibrotic HSCs.
Collapse
Affiliation(s)
- Qiongwen Zhang
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ting Yu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Huaicheng Tan
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Huashan Shi
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.
| |
Collapse
|
33
|
Chen Y, Zhang W, Cheng M, Hao X, Wei H, Sun R, Tian Z. Galectin-3-ITGB1 Signaling Mediates Interleukin 10 Production of Hepatic Conventional Natural Killer Cells in Hepatitis B Virus Transgenic Mice and Correlates with Hepatocellular Carcinoma Progression in Patients. Viruses 2024; 16:737. [PMID: 38793619 PMCID: PMC11125742 DOI: 10.3390/v16050737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND AND AIMS The outcomes of HBV infections are related to complex immune imbalances; however, the precise mechanisms by which HBV induces immune dysfunction are not well understood. METHODS HBV transgenic (HBs-Tg) mice were used to investigate intrahepatic NK cells in two distinct subsets: conventional NK (cNK) and liver-resident NK (LrNK) cells during a chronic HBV infection. RESULTS The cNK cells, but not the LrNK cells, were primarily responsible for the increase in the number of bulk NK cells in the livers of ageing HBs-Tg mice. The hepatic cNK cells showed a stronger ability to produce IL-10, coupled with a higher expression of CD69, TIGIT and PD-L1, and lower NKG2D expression in ageing HBs-Tg mice. A lower mitochondrial mass and membrane potential, and less polarized localization were observed in the hepatic cNK cells compared with the splenic cNK cells in the HBs-Tg mice. The enhanced galectin-3 (Gal-3) secreted from HBsAg+ hepatocytes accounted for the IL-10 production of hepatic cNK cells via ITGB1 signaling. For humans, LGALS3 and ITGB1 expression is positively correlated with IL-10 expression, and negatively correlated with the poor clinical progression of HCC. CONCLUSIONS Gal-3-ITGB1 signaling shapes hepatic cNK cells but not LrNK cells during a chronic HBV infection, which may correlate with HCC progression.
Collapse
Affiliation(s)
- Yongyan Chen
- Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei 230027, China
| | - Wendi Zhang
- Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Min Cheng
- Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xiaolei Hao
- Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Haiming Wei
- Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei 230027, China
| | - Rui Sun
- Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei 230027, China
| | - Zhigang Tian
- Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei 230027, China
| |
Collapse
|
34
|
Wang XW, Zhang R, Liu LL, Li HJ, Zhu H. Expression analysis and antiviral activity of koi carp (Cyprinus carpio) viperin against carp edema virus (CEV). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109519. [PMID: 38508540 DOI: 10.1016/j.fsi.2024.109519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/25/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
Viperin, also known as radical S-Adenosyl methionine domain containing 2 (RSAD2), is an IFN stimulated protein that plays crucial roles in innate immunity. Here, we identified a viperin gene from the koi carp (Cyprinus carpio) (kVip). The ORF of kVip is 1047 bp in length, encoding a polypeptide of 348 amino acids with neither signal peptide nor transmembrane protein. The predicted molecular weight is 40.37 kDa and the isoelectric point is 7.7. Multiple sequence alignment indicated that putative kVip contains a radical SAM superfamily domain and a conserved C-terminal region. kVip was highly expressed in the skin and spleen of healthy koi carps, and significantly stimulated in both natural and artificial CEV-infected koi carps. In vitro immune stimulation analysis showed that both extracellular and intracellular poly (I: C) or poly (dA: dT) caused a significant increase in kVip expression of spleen cells. Furthermore, intraperitoneal injection of recombinant kVip (rkVip) not only reduced the CEV load in the gills, but also improved the survival of koi carps following CEV challenge. Additionally, rkVip administration effectively regulated inflammatory and anti-inflammatory cytokines (IL-6, IL-1β, TNF-α, IL-10) and interferon-related molecules (cGAS, STING, MyD88, IFN-γ, IFN-α, IRF3 and IRF9). Collectively, kVip effectively responded to CEV infection and exerted antiviral function against CEV partially by regulation of inflammatory and interferon responses.
Collapse
Affiliation(s)
- Xiao-Wen Wang
- Beijing Key Laboratory of Fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China
| | - Rong Zhang
- Beijing Key Laboratory of Fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China
| | - Li-Li Liu
- Beijing Key Laboratory of Fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China
| | - Hui-Juan Li
- Beijing Key Laboratory of Fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China
| | - Hua Zhu
- Beijing Key Laboratory of Fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China.
| |
Collapse
|
35
|
Kashimura M. Blood defense system - Proposal for a new concept of an immune system against blood borne pathogens comprising the liver, spleen and bone marrow. Scand J Immunol 2024; 99:e13363. [PMID: 38605529 DOI: 10.1111/sji.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 04/13/2024]
Abstract
Blood-borne pathogen (BBP) infections can rapidly progress to life-threatening sepsis and must therefore be promptly eliminated by the host's immune system. Intravascular macrophages of the liver sinusoid, splenic marginal zone and red pulp and perisinusoidal macrophage protrusions in the bone marrow (BM) directly phagocytose BBPs in the blood as an innate immune response. The liver, spleen and BM thereby work together as the blood defence system (BDS) in response to BBPs by exerting their different immunological roles. The liver removes the vast majority of these invading organisms via innate immunity, but their complete elimination is not possible without the actions of antibodies. Splenic marginal zone B cells promptly produce IgM and IgG antibodies against BBPs. The splenic marginal zone transports antigenic information from the innate to the adaptive immune systems. The white pulp of the spleen functions as adaptive immune tissue and produces specific and high-affinity antibodies with an immune memory against BBPs. The BM works to maintain immune memory by supporting the survival of memory B cells, memory T cells and long-lived plasma cells (LLPCs), all of which have dedicated niches. Furthermore, BM perisinusoidal naïve follicular B cells promptly produce IgM antibodies against BBPs in the BM sinusoid and the IgG memory B cells residing in the BM rapidly transform to plasma cells which produce high-affinity IgG antibodies upon reinfection. This review describes the complete immune defence characteristics of the BDS against BBPs through the collaboration of the liver, spleen and BM with combined different immunological roles.
Collapse
Affiliation(s)
- Makoto Kashimura
- Department of Hematology, Shinmatsudo Central General Hospital, Matsudo, Japan
| |
Collapse
|
36
|
Gabr NM, Mina SA, El Awdan SA, Asaad GF, Abdelgayed SS, Mounir RF. Profiling of two Lampranthus species using LC-ESI/MS with evidence of their hepatoprotective activity. Nat Prod Res 2024:1-7. [PMID: 38662428 DOI: 10.1080/14786419.2024.2325591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/25/2024] [Indexed: 04/26/2024]
Abstract
Lampranthus glaucus and Lampranthus glaucoides are only reported to have significant cytotoxic activity against certain cancer cell lines with phytochemical investigation of their petroleum ether and the ethyl acetate extracts. Further investigation was suggested concerning their hepatoprotective activity and relating it to the metabolic profile of their defatted methanol extracts using LC-ESI/MS analysis. Hepatoprotective activity was evaluated through assessment of three liver parameters as well as liver histopathological examination in thioacetamide-induced hepatotoxicity model. Sixty-eight and 26 phytochemicals were tentatively identified in L. glaucoides and L. glaucus, respectively, with phenolic compounds as the major class. Both plants showed significant inhibition of serum GPT and GOT levels, inhibition of tissue IL-1β and TNF-α levels and inhibition of tissue NF-κβ and caspase-3 gene expression proving hepatoprotective action. Liver treated with L. glaucoides showed lesion scoring range between negative to mild, whereas L. glaucus showed a range between mild to moderate.
Collapse
Affiliation(s)
- Nagwan M Gabr
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Suzan Adib Mina
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | | | - Gihan F Asaad
- Pharmacology Department, National Research Centre, Giza, Egypt
| | - Sherein S Abdelgayed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Rafik F Mounir
- Pharmacognosy Department, Faculty of Pharmacy, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
37
|
Cui Z, Li G, Shi Y, Zhao X, Wang J, Hu S, Chen C, Li G. A prognostic signature established based on genes related to tumor microenvironment for patients with hepatocellular carcinoma. Aging (Albany NY) 2024; 16:6537-6549. [PMID: 38579170 PMCID: PMC11042935 DOI: 10.18632/aging.205722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Complex cellular signaling network in the tumor microenvironment (TME) could serve as an indicator for the prognostic classification of hepatocellular carcinoma (HCC) patients. METHODS Univariate Cox regression analysis was performed to screen prognosis-related TME-related genes (TRGs), based on which HCC samples were clustered by running non-negative matrix factorization (NMF) algorithm. Furthermore, the correlation between different molecular HCC subtypes and immune cell infiltration level was analyzed. Finally, a risk score (RS) model was established by LASSO and Cox regression analyses (CRA) using these TRGs. Functional enrichment analysis was performed using gene set enrichment analysis (GSEA). RESULTS HCC patients were divided into three molecular subtypes (C1, C2, and C3) based on 704 prognosis-related TRGs. HCC subtype C1 had significantly better OS than C2 and C3. We selected 13 TRGs to construct the RS model. Univariate and multivariate CRA showed that the RS could independently predict patients' prognosis. A nomogram integrating the RS and clinicopathologic features of the patients was further created. We also validated the reliability of the model according to the area under the receiver operating characteristic (ROC) curve value, concordance index (C-index), and decision curve analysis. The current findings demonstrated that the RS was significantly correlated with CD8+ T cells, monocytic lineage, and myeloid dendritic cells. CONCLUSION This study provided TRGs to help classify patients with HCC and predict their prognoses, contributing to personalized treatments for patients with HCC.
Collapse
Affiliation(s)
- Zhongfeng Cui
- Department of Clinical Laboratory, Henan Provincial Infectious Disease Hospital, Zhengzhou 450000, China
| | - Ge Li
- Department of Clinical Laboratory, Henan Provincial Infectious Disease Hospital, Zhengzhou 450000, China
| | - Yanbin Shi
- Department of Radiology, Henan Provincial Infectious Disease Hospital, Zhengzhou 450000, China
| | - Xiaoli Zhao
- Department of Infectious Diseases and Hepatology, Henan Provincial Infectious Disease Hospital, Zhengzhou 450000, China
| | - Juan Wang
- Department of Infectious Diseases and Hepatology, Henan Provincial Infectious Disease Hospital, Zhengzhou 450000, China
| | - Shanlei Hu
- Department of Infectious Diseases and Hepatology, Henan Provincial Infectious Disease Hospital, Zhengzhou 450000, China
| | - Chunguang Chen
- Department of Clinical Laboratory, Henan Provincial Infectious Disease Hospital, Zhengzhou 450000, China
| | - Guangming Li
- Department of Infectious Diseases and Hepatology, Henan Provincial Infectious Disease Hospital, Zhengzhou 450000, China
| |
Collapse
|
38
|
Mao S, Wang X, Li M, Liu H, Liang H. The role and mechanism of hydrogen sulfide in liver fibrosis. Nitric Oxide 2024; 145:41-48. [PMID: 38360133 DOI: 10.1016/j.niox.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/20/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Hydrogen sulfide (H2S) is the third new gas signaling molecule in the human body after the discovery of NO and CO. Similar to NO, it has the functions of vasodilation, anti-inflammatory, antioxidant, and regulation of cell formation. Enzymes that can produce endogenous H2S, such as CSE, CSB, and 3-MST, are common in liver tissues and are important regulatory molecules in the liver. In the development of liver fibrosis, H2S concentration and expression of related enzymes change significantly, which makes it possible to use exogenous gases to treat liver diseases. This review summarizes the role of H2S in liver fibrosis and its complications induced by NAFLD and CCl4, and elaborates on the anti-liver fibrosis effect of H2S through the mechanism of reducing oxidative stress, inhibiting inflammation, regulating autophagy, regulating glucose and lipid metabolism, providing theoretical reference for further research on the treatment of liver fibrosis with H2S.
Collapse
Affiliation(s)
- Shaoyu Mao
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xuemei Wang
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Miaoqing Li
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hanshu Liu
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongxia Liang
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
39
|
Gupta T, Jarpula NS. Hepatocellular carcinoma immune microenvironment and check point inhibitors-current status. World J Hepatol 2024; 16:353-365. [PMID: 38577535 PMCID: PMC10989304 DOI: 10.4254/wjh.v16.i3.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/24/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary tumor of the liver and has a high mortality rate. The Barcelona Clinic Liver Cancer staging system in addition to tumor staging also links the modality of treatment available to a particular stage. The recent description of the tumor microenvironment (TME) in HCC has provided a new concept of immunogenicity within the HCC. Virus-related HCC has been shown to be more immunogenic with higher expression of cytotoxic T lymphocytes and decreased elements for immunosuppression such as regulatory T cells. This immunogenic milieu provides a better response to immunotherapy especially immune checkpoint inhibitors (ICIs). In addition, the recent data on combining locoregional therapies and other strategies may convert the less immunogenic state of the TME towards higher immunogenicity. Therefore, data are emerging on the use of combinations of locoregional therapy and ICIs in unresectable or advanced HCC and has shown better survival outcomes in this difficult population.
Collapse
Affiliation(s)
- Tarana Gupta
- Division of Hepatology, Department of Medicine, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak 124001, Haryana, India.
| | - Nikhil Sai Jarpula
- Division of Hepatology, Department of Medicine, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak 124001, Haryana, India
| |
Collapse
|
40
|
Pessino G, Scotti C, Maggi M, Immuno-Hub Consortium. Hepatocellular Carcinoma: Old and Emerging Therapeutic Targets. Cancers (Basel) 2024; 16:901. [PMID: 38473265 DOI: 10.3390/cancers16050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Liver cancer, predominantly hepatocellular carcinoma (HCC), globally ranks sixth in incidence and third in cancer-related deaths. HCC risk factors include non-viral hepatitis, alcohol abuse, environmental exposures, and genetic factors. No specific genetic alterations are unequivocally linked to HCC tumorigenesis. Current standard therapies include surgical options, systemic chemotherapy, and kinase inhibitors, like sorafenib and regorafenib. Immunotherapy, targeting immune checkpoints, represents a promising avenue. FDA-approved checkpoint inhibitors, such as atezolizumab and pembrolizumab, show efficacy, and combination therapies enhance clinical responses. Despite this, the treatment of hepatocellular carcinoma (HCC) remains a challenge, as the complex tumor ecosystem and the immunosuppressive microenvironment associated with it hamper the efficacy of the available therapeutic approaches. This review explores current and advanced approaches to treat HCC, considering both known and new potential targets, especially derived from proteomic analysis, which is today considered as the most promising approach. Exploring novel strategies, this review discusses antibody drug conjugates (ADCs), chimeric antigen receptor T-cell therapy (CAR-T), and engineered antibodies. It then reports a systematic analysis of the main ligand/receptor pairs and molecular pathways reported to be overexpressed in tumor cells, highlighting their potential and limitations. Finally, it discusses TGFβ, one of the most promising targets of the HCC microenvironment.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Immuno-Hub Consortium
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
41
|
Legaz I, Navarro-Noguera E, Collados-Ros A, Bolarín JM, Muro M. Biomarkers of Innate Immunity and Immunological Susceptibility to Viral Infection in Patients with Alcoholic Cirrhosis. Biomedicines 2024; 12:336. [PMID: 38397937 PMCID: PMC10887413 DOI: 10.3390/biomedicines12020336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The harmful effect of alcohol on the immune system may be due to both a direct action of the alcohol or its metabolites on immune cells as an indirect action modifying the different mechanisms of intercellular interaction. The interplay between stimulatory (aKIR) and inhibitory (iKIR) natural killer (NK) cell receptors and their corresponding human leukocyte antigen (HLA) ligands influences the outcome of virus infection. The aim was to analyze the influence of the KIR/HLA pair genetic profile in male alcoholic cirrhosis (AC) patients with and without viral infections to find susceptibility biomarkers that can help establish the risks and prevent viral infections. METHODS A total of 281 male AC patients were analyzed. The sociodemographic characteristics, viral hepatitis C (HCV), hepatitis B (HBV), and cytomegalovirus (CMV) infections were analyzed. Genomic DNA was extracted, and genetic the KIR/HLA profiles were investigated. A total of 6 KIR genes and their corresponding ligands (HLA-C) were analyzed. Patients were grouped into two groups: with and without associated viral infection. RESULTS A statistically significant increase in the combination of KIR2DL2+/C1C1 was observed in male AC patients with viral infection compared to those without viral infection (45.9% vs. 24.5%, p = 0.021). The analysis of KIR2DL3+/C1+ showed a high frequency comparing healthy controls and male AC patients without virus infection (85% vs. 76.4%; p = 0.026). The analysis of KIR2DL3+/C2C2 frequency showed a statistically significant increase comparing male AC patients without viral infection and healthy controls (23.6% vs. 15%; p = 0.026). CONCLUSIONS The genetic KIR2DL2+/C2C2 profiles may play a significant role in determining the vulnerability of male AC patients to viral infections, providing valuable insights for future research and potential therapeutic interventions.
Collapse
Affiliation(s)
- Isabel Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute of Murcia (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia (UMU), 30100 Murcia, Spain
| | - Elena Navarro-Noguera
- Digestive Medicine Service, Hospital Clinico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| | - Aurelia Collados-Ros
- Department of Legal and Forensic Medicine, Biomedical Research Institute of Murcia (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia (UMU), 30100 Murcia, Spain
| | - Jose Miguel Bolarín
- Department of Legal and Forensic Medicine, Biomedical Research Institute of Murcia (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia (UMU), 30100 Murcia, Spain
| | - Manuel Muro
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| |
Collapse
|
42
|
Qu FJ, Zhou Y, Wu S. Progress of immune checkpoint inhibitors therapy for non-small cell lung cancer with liver metastases. Br J Cancer 2024; 130:165-175. [PMID: 37945751 PMCID: PMC10803805 DOI: 10.1038/s41416-023-02482-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Nearly one-fifth of patients with non-small cell Lung Cancer (NSCLC) will develop liver metastases (LMs), and the overall treatment strategy of LMs will directly affect the survival of patients. However, some retrospective studies have found that patients receiving chemotherapy or targeted therapy have a poorer prognosis once LMs develop. In recent years, multiple randomised controlled trials (RCTS) have shown significant improvements in outcomes for patients with advanced lung cancer following the introduction of immune checkpoint inhibitors (ICIs) compared to conventional chemotherapy. ICIs is safe and effective in patients with LMs, although patients with LMs are mostly underrepresented in randomised clinical trials. However, NSCLC patients with LMs have a significantly worse prognosis than those without LMs when treated with ICIs, and the mechanism by which LMs induce systemic anti-tumour immunity reduction is unknown, so the management of LMs in patients with NSCLC is a clinical challenge that requires more optimised therapies to achieve effective disease control. In this review, we summarised the mechanism of ICIs in the treatment of LMs, the clinical research and treatment progress of ICIs and their combination with other therapies in patients with LMs from NSCLC.
Collapse
Affiliation(s)
- Fan-Jie Qu
- Department of Oncology, Affiliated Dalian Third People's Hospital of Dalian Medical University, 116033, Dalian, China.
| | - Yi Zhou
- Department of Oncology, Affiliated Dalian Third People's Hospital of Dalian Medical University, 116033, Dalian, China
| | - Shuang Wu
- Department of Oncology, Affiliated Dalian Third People's Hospital of Dalian Medical University, 116033, Dalian, China
| |
Collapse
|
43
|
López CAM, Freiberger RN, Sviercz FA, Quarleri J, Delpino MV. HIV-Infected Hepatic Stellate Cells or HCV-Infected Hepatocytes Are Unable to Promote Latency Reversal among HIV-Infected Mononuclear Cells. Pathogens 2024; 13:134. [PMID: 38392872 PMCID: PMC10893349 DOI: 10.3390/pathogens13020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Due to a common mode of transmission through infected human blood, hepatitis C virus (HCV) and human immunodeficiency virus (HIV) co-infection is relatively prevalent. In alignment with this, HCV co-infection is associated with an increased size of the HIV reservoir in highly active antiretroviral therapy (HAART)-treated individuals. Hence, it is crucial to comprehend the physiological mechanisms governing the latency and reactivation of HIV in reservoirs. Consequently, our study delves into the interplay between HCV/HIV co-infection in liver cells and its impact on the modulation of HIV latency. We utilized the latently infected monocytic cell line (U1) and the latently infected T-cell line (J-Lat) and found that mediators produced by the infection of hepatic stellate cells and hepatocytes with HIV and HCV, respectively, were incapable of inducing latency reversal under the studied conditions. This may favor the maintenance of the HIV reservoir size among latently infected mononuclear cells in the liver. Further investigations are essential to elucidate the role of the interaction between liver cells in regulating HIV latency and/or reactivation, providing a physiologically relevant model for comprehending reservoir microenvironments in vivo.
Collapse
Affiliation(s)
| | | | | | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Consejo de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (C.A.M.L.); (R.N.F.)
| | - María Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Consejo de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (C.A.M.L.); (R.N.F.)
| |
Collapse
|
44
|
Wu X, Quan M, Hadisurya M, Hu J, Liu YK, Zhuang Y, Li L, Iliuk AB, Yang JJ, Kuang S, Tao WA. Monitoring drug metabolic pathways through extracellular vesicles in mouse plasma. PNAS NEXUS 2024; 3:pgae023. [PMID: 38312223 PMCID: PMC10833468 DOI: 10.1093/pnasnexus/pgae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024]
Abstract
The ability to monitor the response of metabolic enzymes to drug exposure in individuals is highly appealing and critical to personalized medicine. Although pharmacogenomics assesses genotypic differences, it does not report changes in metabolic enzyme activities due to environmental factors such as drug interactions. Here, we report a quantitative proteomics strategy to monitor drug metabolic pathways by profiling metabolic enzymes in circulating extracellular vesicles (EVs) upon drug exposure. Mass spectrometry (MS)-based measurement revealed that changes in metabolic enzyme abundance in EVs paralleled those in hepatic cells isolated from liver tissue. Coupling with multiplexed isotopic labeling, we temporally quantified 34 proteins involved in drug absorption, distribution, metabolism, and excretion (ADME) pathways. Out of 44 known ADME proteins in plasma EVs, previously annotated mouse cytochrome P450 3A11 (Cyp3a11), homolog to human CYP3A4, and uridine 5'-diphospho (UDP) glucuronosyltransferase 2A3 (Ugt2a3), increased upon daily rifampicin dosage. Dasatinib, a tyrosine kinase inhibitor to treat leukemia, also elevated Cyp3a11 levels in plasma EVs, but to a lesser extent. Altogether, this study demonstrates that measuring drug enzymes in circulating EVs as an effective surrogate is highly feasible and may transform today's drug discovery and development for personalized medicine.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Menchus Quan
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Marco Hadisurya
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Jianzhong Hu
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yi-Kai Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Yuxin Zhuang
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Li Li
- Tymora Analytical Operations, West Lafayette, IN 47906, USA
| | - Anton B Iliuk
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
- Tymora Analytical Operations, West Lafayette, IN 47906, USA
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shihuan Kuang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - W Andy Tao
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
- Tymora Analytical Operations, West Lafayette, IN 47906, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
45
|
Kuraji R, Ye C, Zhao C, Gao L, Martinez A, Miyashita Y, Radaic A, Kamarajan P, Le C, Zhan L, Range H, Sunohara M, Numabe Y, Kapila YL. Nisin lantibiotic prevents NAFLD liver steatosis and mitochondrial oxidative stress following periodontal disease by abrogating oral, gut and liver dysbiosis. NPJ Biofilms Microbiomes 2024; 10:3. [PMID: 38233485 PMCID: PMC10794237 DOI: 10.1038/s41522-024-00476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Oral microbiome dysbiosis mediates chronic periodontal disease, gut microbial dysbiosis, and mucosal barrier disfunction that leads to steatohepatitis via the enterohepatic circulation. Improving this dysbiosis towards health may improve liver disease. Treatment with antibiotics and probiotics have been used to modulate the microbial, immunological, and clinical landscape of periodontal disease with some success. The aim of the present investigation was to evaluate the potential for nisin, an antimicrobial peptide produced by Lactococcus lactis, to counteract the periodontitis-associated gut dysbiosis and to modulate the glycolipid-metabolism and inflammation in the liver. Periodontal pathogens, namely Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia and Fusobacterium nucleatum, were administrated topically onto the oral cavity to establish polymicrobial periodontal disease in mice. In the context of disease, nisin treatment significantly shifted the microbiome towards a new composition, commensurate with health while preventing the harmful inflammation in the small intestine concomitant with decreased villi structural integrity, and heightened hepatic exposure to bacteria and lipid and malondialdehyde accumulation in the liver. Validation with RNA Seq analyses, confirmed the significant infection-related alteration of several genes involved in mitochondrial dysregulation, oxidative phosphorylation, and metal/iron binding and their restitution following nisin treatment. In support of these in vivo findings indicating that periodontopathogens induce gastrointestinal and liver distant organ lesions, human autopsy specimens demonstrated a correlation between tooth loss and severity of liver disease. Nisin's ability to shift the gut and liver microbiome towards a new state commensurate with health while mitigating enteritis, represents a novel approach to treating NAFLD-steatohepatitis-associated periodontal disease.
Collapse
Affiliation(s)
- Ryutaro Kuraji
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Changchang Ye
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chuanjiang Zhao
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Li Gao
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - April Martinez
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
| | - Yukihiro Miyashita
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Allan Radaic
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Pachiyappan Kamarajan
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Charles Le
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
| | - Ling Zhan
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
| | - Helene Range
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, University of Rennes, UFR of Odontology; Service d'Odontologie, CHU de Rennes, Rennes, France
- INSERM CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer); CIC 1414, Rennes, France
| | - Masataka Sunohara
- Department of Anatomy, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Yukihiro Numabe
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Yvonne L Kapila
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA.
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
46
|
Zhang S, Luo X, Mai B. Multi-task machine learning models for simultaneous prediction of tissue-to-blood partition coefficients of chemicals in mammals. ENVIRONMENTAL RESEARCH 2024; 241:117603. [PMID: 37939805 DOI: 10.1016/j.envres.2023.117603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/25/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Tissue-to-blood partition coefficients (Ptb) are crucial for assessing the distribution of chemicals in organisms. Given the lack of experimental data and laborious nature of experimental methods, there is an urgent need to develop efficient predictive models. With the help of machine learning algorithms, i,e., random forest (RF), and artificial neural network (ANN), this study developed multi-task (MT) models that can simultaneously predict Ptb values for various mammalian tissues, including liver, muscle, brain, lung, and adipose. Single-task (ST) models using partial least squares regression, RF, and ANN algorithms for each endpoint were established for comparison. Overall, the performances of MT models were superior to those of ST models. The MT model using ANN algorithms showed the highest prediction accuracy with determination coefficients ranging from 0.704 to 0.886, root mean square errors between 0.223 and 0.410, and mean absolute errors ranging from 0.178 to 0.285 log units. Results showed that lipophilicity and polarizability of molecules significantly influence their partition behavior in organisms. Applicability domains (ADs) of the models were characterized by weighted molecular similarity density, and weighted inconsistency in molecular activities of structure-activity landscapes. When constrained by ADs, the models displayed enhanced predictive accuracy, making them valuable tools for the risk assessment and management of chemicals.
Collapse
Affiliation(s)
- Shuying Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
47
|
Ma F, Lau CY, Zheng C. Young duplicate genes show developmental stage- and cell type-specific expression and function in Caenorhabditis elegans. CELL GENOMICS 2024; 4:100467. [PMID: 38190105 PMCID: PMC10794840 DOI: 10.1016/j.xgen.2023.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024]
Abstract
Gene duplication produces the material that fuels evolutionary innovation. The "out-of-testis" hypothesis suggests that sperm competition creates selective pressure encouraging the emergence of new genes in male germline, but the somatic expression and function of the newly evolved genes are not well understood. We systematically mapped the expression of young duplicate genes throughout development in Caenorhabditis elegans using both whole-organism and single-cell transcriptomic data. Based on the expression dynamics across developmental stages, young duplicate genes fall into three clusters that are preferentially expressed in early embryos, mid-stage embryos, and late-stage larvae. Early embryonic genes are involved in protein degradation and develop essentiality comparable to the genomic average. In mid-to-late embryos and L4-stage larvae, young genes are enriched in intestine, epidermal cells, coelomocytes, and amphid chemosensory neurons. Their molecular functions and inducible expression indicate potential roles in innate immune response and chemosensory perceptions, which may contribute to adaptation outside of the sperm.
Collapse
Affiliation(s)
- Fuqiang Ma
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Chun Yin Lau
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
48
|
Zhao J, Zhang X, Li Y, Yu J, Chen Z, Niu Y, Ran S, Wang S, Ye W, Luo Z, Li X, Hao Y, Zong J, Xia C, Xia J, Wu J. Interorgan communication with the liver: novel mechanisms and therapeutic targets. Front Immunol 2023; 14:1314123. [PMID: 38155961 PMCID: PMC10754533 DOI: 10.3389/fimmu.2023.1314123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
The liver is a multifunctional organ that plays crucial roles in numerous physiological processes, such as production of bile and proteins for blood plasma, regulation of blood levels of amino acids, processing of hemoglobin, clearance of metabolic waste, maintenance of glucose, etc. Therefore, the liver is essential for the homeostasis of organisms. With the development of research on the liver, there is growing concern about its effect on immune cells of innate and adaptive immunity. For example, the liver regulates the proliferation, differentiation, and effector functions of immune cells through various secreted proteins (also known as "hepatokines"). As a result, the liver is identified as an important regulator of the immune system. Furthermore, many diseases resulting from immune disorders are thought to be related to the dysfunction of the liver, including systemic lupus erythematosus, multiple sclerosis, and heart failure. Thus, the liver plays a role in remote immune regulation and is intricately linked with systemic immunity. This review provides a comprehensive overview of the liver remote regulation of the body's innate and adaptive immunity regarding to main areas: immune-related molecules secreted by the liver and the liver-resident cells. Additionally, we assessed the influence of the liver on various facets of systemic immune-related diseases, offering insights into the clinical application of target therapies for liver immune regulation, as well as future developmental trends.
Collapse
Affiliation(s)
- Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
49
|
Tognarelli EI, Gutiérrez-Vera C, Palacios PA, Pasten-Ferrada IA, Aguirre-Muñoz F, Cornejo DA, González PA, Carreño LJ. Natural Killer T Cell Diversity and Immunotherapy. Cancers (Basel) 2023; 15:5737. [PMID: 38136283 PMCID: PMC10742272 DOI: 10.3390/cancers15245737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Invariant natural killer T cells (iNKTs), a type of unconventional T cells, share features with NK cells and have an invariant T cell receptor (TCR), which recognizes lipid antigens loaded on CD1d molecules, a major histocompatibility complex class I (MHC-I)-like protein. This interaction produces the secretion of a wide array of cytokines by these cells, including interferon gamma (IFN-γ) and interleukin 4 (IL-4), allowing iNKTs to link innate with adaptive responses. Interestingly, molecules that bind CD1d have been identified that enable the modulation of these cells, highlighting their potential pro-inflammatory and immunosuppressive capacities, as required in different clinical settings. In this review, we summarize key features of iNKTs and current understandings of modulatory α-galactosylceramide (α-GalCer) variants, a model iNKT cell activator that can shift the outcome of adaptive immune responses. Furthermore, we discuss advances in the development of strategies that modulate these cells to target pathologies that are considerable healthcare burdens. Finally, we recapitulate findings supporting a role for iNKTs in infectious diseases and tumor immunotherapy.
Collapse
Affiliation(s)
- Eduardo I. Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Ignacio A. Pasten-Ferrada
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Fernanda Aguirre-Muñoz
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Daniel A. Cornejo
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (C.G.-V.); (P.A.P.); (I.A.P.-F.); (F.A.-M.); (D.A.C.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
50
|
Eom JA, Jeong JJ, Han SH, Kwon GH, Lee KJ, Gupta H, Sharma SP, Won SM, Oh KK, Yoon SJ, Joung HC, Kim KH, Kim DJ, Suk KT. Gut-microbiota prompt activation of natural killer cell on alcoholic liver disease. Gut Microbes 2023; 15:2281014. [PMID: 37988132 PMCID: PMC10730232 DOI: 10.1080/19490976.2023.2281014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
The liver is rich in innate immune cells, such as natural killer (NK) cells, natural killer T cells, and Kupffer cells associated with the gut microbiome. These immune cells are dysfunctional owing to alcohol consumption. However, there is insufficient data on the association between immune cells and gut microbiome in alcoholic liver disease (ALD). Therefore, the purpose of this study was to evaluate the effects of probiotic strains on NK cells in ALD patients. In total, 125 human blood samples [control (n = 22), alcoholic hepatitis (n = 43), and alcoholic cirrhosis (n = 60]) were collected for flow cytometric analysis. C57BL/6J mice were divided into four groups (normal, EtOH-fed, and 2 EtOH+strain groups [Phocaeicola dorei and Lactobacillus helveticus]). Lymphocytes isolated from mouse livers were analyzed using flow cytometry. The frequency of NK cells increased in patients with alcoholic hepatitis and decreased in patients with alcoholic cirrhosis. The expression of NKp46, an NK cell-activating receptor, was decreased in patients with alcoholic hepatitis and increased in patients with alcoholic cirrhosis compared to that in the control group. The number of cytotoxic CD56dimCD16+ NK cells was significantly reduced in patients with alcoholic cirrhosis. We tested the effect of oral administration P. dorei and L. helveticus in EtOH-fed mice. P. dorei and L. helveticus improved liver inflammation and intestinal barrier damage caused by EtOH supply and increased NK cell activity. Therefore, these observations suggest that the gut microbiome may ameliorate ALD by regulating immune cells.
Collapse
Affiliation(s)
- Jung A Eom
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Ju Jeong
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Sang Hak Han
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Goo Hyun Kwon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Kyeong Jin Lee
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Satya Priya Sharma
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Sung-Min Won
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ki-Kwang Oh
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Hyun Chae Joung
- Chong Kun Dang Bio Research Institute, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Kyung Hwan Kim
- Chong Kun Dang Bio Research Institute, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|