1
|
Tang S, Wu S, Zhang W, Ma L, Zuo L, Wang H. Immunology and treatments of fatty liver disease. Arch Toxicol 2025; 99:127-152. [PMID: 39692857 DOI: 10.1007/s00204-024-03920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are two major chronic liver diseases worldwide. The triggers for fatty liver can be derived from external sources such as adipose tissue, the gut, personal diet, and genetics, or internal sources, including immune cell responses, lipotoxicity, hepatocyte death, mitochondrial dysfunction, and extracellular vesicles. However, their pathogenesis varies to some extent. This review summarizes various immune mechanisms and therapeutic targets associated with these two types of fatty liver disease. It describes the gut-liver axis and adipose tissue-liver crosstalk, as well as the roles of different immune cells (both innate and adaptive immune cells) in fatty liver disease. Additionally, mitochondrial dysfunction, extracellular vesicles, microRNAs (miRNAs), and gastrointestinal hormones are also related to the pathogenesis of fatty liver. Understanding the pathogenesis of fatty liver and corresponding therapeutic strategies provides a new perspective for developing novel treatments for fatty liver disease.
Collapse
Affiliation(s)
- Sainan Tang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, 230022, Anhui, China
| | - Shanshan Wu
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Wenzhe Zhang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Lili Ma
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Li Zuo
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China.
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
2
|
Shin SK, Oh S, Chun SK, Ahn MJ, Lee SM, Kim K, Kang H, Lee J, Shin SP, Lee J, Jung YK. Immune signature and therapeutic approach of natural killer cell in chronic liver disease and hepatocellular carcinoma. J Gastroenterol Hepatol 2024; 39:1717-1727. [PMID: 38800890 DOI: 10.1111/jgh.16584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/14/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024]
Abstract
Natural killer (NK) cells are one of the key members of innate immunity that predominantly reside in the liver, potentiating immune responses against viral infections or malignant tumors. It has been reported that changes in cell numbers and function of NK cells are associated with the development and progression of chronic liver diseases (CLDs) including non-alcoholic fatty liver disease, alcoholic liver disease, and chronic viral hepatitis. Also, it is known that the crosstalk between NK cells and hepatic stellate cells plays an important role in liver fibrosis and cirrhosis. In particular, the impaired functions of NK cells observed in CLDs consequently contribute to occurrence and progression of hepatocellular carcinoma (HCC). Chronic infections by hepatitis B or C viruses counteract the anti-tumor immunity of the host by producing the sheddases. Soluble major histocompatibility complex class I polypeptide-related sequence A (sMICA), released from the cell surfaces by sheddases, disrupts the interaction and affects the function of NK cells. Recently, the MICA/B-NK stimulatory receptor NK group 2 member D (NKG2D) axis has been extensively studied in HCC. HCC patients with low membrane-bound MICA or high sMICA concentration have been associated with poor prognosis. Therefore, reversing the sMICA-mediated downregulation of NKG2D has been proposed as an attractive strategy to enhance both innate and adaptive immune responses against HCC. This review aims to summarize recent studies on NK cell immune signatures and its roles in CLD and hepatocellular carcinogenesis and discusses the therapeutic approaches of MICA/B-NKG2D-based or NK cell-based immunotherapy for HCC.
Collapse
Affiliation(s)
- Seung Kak Shin
- Division of Gastroenterology and Hepatology, Department of Internal medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, South Korea
| | - Sooyeon Oh
- Chaum Life Center, School of Medicine, CHA University, Seoul, South Korea
| | - Su-Kyung Chun
- Chaum Life Center, School of Medicine, CHA University, Seoul, South Korea
| | - Min-Ji Ahn
- Center for Research and Development, CHA Advanced Research Institute, Seoul, South Korea
| | - Seung-Min Lee
- Center for Research and Development, CHA Advanced Research Institute, Seoul, South Korea
| | - Kayun Kim
- School of Medicine, CHA University, Seoul, South Korea
| | - Hogyeong Kang
- School of Medicine, CHA University, Seoul, South Korea
| | - Jeongwoo Lee
- School of Medicine, CHA University, Seoul, South Korea
| | - Suk Pyo Shin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Jooho Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Young Kul Jung
- Department of Internal Medicine, Korea University Ansan Hospital, Ansan, South Korea
| |
Collapse
|
3
|
Yao Y, Zuo X, Shao F, Yu K, Liang Q. Jaceosidin attenuates the progression of hepatic fibrosis by inhibiting the VGLL3/HMGB1/TLR4 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155502. [PMID: 38489889 DOI: 10.1016/j.phymed.2024.155502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Jaceosidin (JA) is a natural flavone extracted from Artemisia that is used as a food and traditional medicinal herb. It has been reported to possess numerous biological activities. However, the regulatory mechanisms underlying amelioration of hepatic fibrosis remain unclear. HYPOTHESIS/PURPOSE We hypothesized that jaceosidin acid (JA) modulates hepatic fibrosis and inflammation. METHODS Thioacetamide (TAA) was used to establish an HF mouse model. In vitro, mouse primary hepatocytes and HSC-T6 cells were induced by TGF-β, whereas mouse peritoneal macrophages received a treatment lipopolysaccharide (LPS)/ATP. RESULTS JA decreased serum transaminase levels and improved hepatic histological pathology in TAA-treated mice stimulated by TAA. Moreover, the expression of pro-fibrogenic biomarkers associated with the activation of liver stellate cells was downregulated by JA. Likewise, JA down-regulated the expression of vestigial-like family member 3 (VGLL3), high mobility group protein B1 (HMGB1), toll-like receptors 4 (TLR4), and nucleotide-binding domain-(NOD-) like receptor protein 3 (NLRP3), thereby inhibiting the inflammatory response and inhibiting the release of mature-IL-1β in TAA-stimulated mice. Additionally, JA suppressed HMGB1 release and NLRP3/ASC inflammasome activation in LPS/ATP-stimulated murine peritoneal macrophages. JA decreases the expression of pro-fibrogenic biomarkers related to liver stellate cell activation and inhibits inflammasome activation in mouse primary hepatocytes. It also down-regulated α-SMA and VGLL3 expressions and also suppressed inflammasome activation in HSC-T6 cells. VGLL3 and α-SMA expression levels were decreased in TGF-β-stimulated HSC-T6 cells following Vgll3 knockdown. In addition, the expression levels of NLRP3 and cleaved-caspase-1 were decreased in Vgll3-silenced HSC-T6 cells. JA enhanced the inhibitory effects on Vgll3-silenced HSC-T6 cells. Finally, Vgll3 overexpression in HSC-T6 cells affected the expression levels of α-SMA, NLRP3, and cleaved-caspase-1. CONCLUSION JA effectively modulates hepatic fibrosis by suppressing fibrogenesis and inflammation via the VGLL3/HMGB1/TLR4 axis. Therefore, JA may be a candidate therapeutic agent for the management of hepatic fibrosis. Understanding the mechanism of action of JA is a novel approach to hepatic fibrosis therapy.
Collapse
Affiliation(s)
- Youli Yao
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province 266000, China
| | - Xiaoling Zuo
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province 266000, China
| | - Feng Shao
- Qingdao Jinmotang Biotechnology Co., Ltd, Qingdao, Shandong Province 266000, China
| | - Kexin Yu
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province 266000, China
| | - Quanquan Liang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province 266000, China.
| |
Collapse
|
4
|
Reis-Barbosa PH, Marinho TS, Matsuura C, Aguila MB, de Carvalho JJ, Mandarim-de-Lacerda CA. The obesity and nonalcoholic fatty liver disease mouse model revisited: Liver oxidative stress, hepatocyte apoptosis, and proliferation. Acta Histochem 2022; 124:151937. [PMID: 35952484 DOI: 10.1016/j.acthis.2022.151937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 11/18/2022]
Abstract
The study revisited the diet-induced obesity (DIO) mice and the nonalcoholic fatty liver disease (NAFLD) pathogenesis to serve as a translational model. Hepatic beta-oxidation pathways, lipogenesis, oxidative stress, hepatocyte apoptosis, and proliferation were investigated in obese mice. Three-month-old male mice were divided according to their diet for fifteen weeks, the control diet (C group, containing 10% energy from fat) and the high-fat diet (HF group, containing 50% energy from fat). Body weight (BW), liver mass, and steatosis were higher in the HF group than in the C group. Also, gene expression related to beta-oxidation and lipogenesis showed an adverse profile, and insulin and glucose signaling pathways were impaired in the HF group compared to the C group. As a result, steatosis was prevalent in the HF group but not in the C group. Furthermore, the pathways that generate NAFLD were negatively modulated by oxidative stress in the HF animals than in the C ones. The caspase 3 immunolabeled HF hepatocytes with increased gene and protein expressions related to apoptosis while proliferating cell nuclear antigen labeled C hepatocytes. In conclusion, the findings in the DIO mouse model reproduce the NAFLD profile relative to the human NAFLD's apoptosis, insulin signaling, lipogenesis, beta-oxidation, and oxidative stress. Therefore, the model is adequate for a translational perspective's morphological, biochemical, and molecular research on NAFLD.
Collapse
Affiliation(s)
- Pedro H Reis-Barbosa
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, The University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratory of Ultrastructure and Tissue Biology, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Thatiany Souza Marinho
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, The University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Cristiane Matsuura
- Department of Pharmacology, The University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, The University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Jorge J de Carvalho
- Laboratory of Ultrastructure and Tissue Biology, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, The University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
5
|
Abstract
Liver regeneration is a well-orchestrated process that is typically studied in animal models. Although previous animal studies have offered many insights into liver regeneration, human biology is less well understood. To this end, we developed a three-dimensional (3D) platform called structurally vascularized hepatic ensembles for analyzing regeneration (SHEAR) to model multiple aspects of human liver regeneration. SHEAR enables control over hemodynamic alterations to mimic those that occur during liver injury and regeneration and supports the administration of biochemical inputs such as cytokines and paracrine interactions with endothelial cells. We found that exposing the endothelium-lined channel to fluid flow led to increased secretion of regeneration-associated factors. Stimulation with relevant cytokines not only amplified the secretory response, but also induced cell-cycle entry of primary human hepatocytes (PHHs) embedded within the device. Further, we identified endothelial-derived mediators that are sufficient to initiate proliferation of PHHs in this context. Collectively, the data presented here underscore the importance of multicellular models that can recapitulate high-level tissue functions and demonstrate that the SHEAR device can be used to discover and validate conditions that promote human liver regeneration.
Collapse
|
6
|
Qian Y, Shang Z, Gao Y, Wu H, Kong X. Liver Regeneration in Chronic Liver Injuries: Basic and Clinical Applications Focusing on Macrophages and Natural Killer Cells. Cell Mol Gastroenterol Hepatol 2022; 14:971-981. [PMID: 35738473 PMCID: PMC9489753 DOI: 10.1016/j.jcmgh.2022.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/28/2022] [Accepted: 07/27/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Liver regeneration is a necessary but complex process involving multiple cell types besides hepatocytes. Mechanisms underlying liver regeneration after partial hepatectomy and acute liver injury have been well-described. However, in patients with chronic and severe liver injury, the remnant liver cannot completely restore the liver mass and function, thereby involving liver progenitor-like cells (LPLCs) and various immune cells. RESULTS Macrophages are beneficial to LPLCs proliferation and the differentiation of LPLCs to hepatocytes. Also, cells expressing natural killer (NK) cell markers have been studied in promoting both liver injury and liver regeneration. NK cells can promote LPLC-induced liver regeneration, but the excessive activation of hepatic NK cells may lead to high serum levels of interferon-γ, thus inhibiting liver regeneration. CONCLUSIONS This review summarizes the recent research on 2 important innate immune cells, macrophages and NK cells, in LPLC-induced liver regeneration and the mechanisms of liver regeneration during chronic liver injury, as well as the latest macrophage- and NK cell-based therapies for chronic liver injury. These novel findings can further help identify new treatments for chronic liver injury, saving patients from the pain of liver transplantations.
Collapse
Affiliation(s)
- Yihan Qian
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi Shang
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailong Wu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
7
|
Timperi E, Barnaba V. Viral Hepatitides, Inflammation and Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:25-43. [PMID: 32588321 DOI: 10.1007/978-3-030-44518-8_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this chapter, we discuss the role of hepatitis B virus (HBV) and hepatitis C virus (HCV) infections in the establishment of hepatocellular carcinoma (HCC), highlighting the key role of the multiple, non-mutually exclusive, pathways involved in the modulation of immune responses and in the orchestration of a chronic low-level inflammation state favouring HCC development. In particular, we discuss (i) HCC as a classical paradigm of inflammation-linked cancer; (ii) the role of the most relevant inflammatory cytokines involved (i.e. IL-6, TNF-α, IL-18, IL-1β, TGF-β IL-10); (iii) the role of T cell exhaustion by immune checkpoints; (iv) the role of the Wnt3a/β-catenin signalling pathway and (v) the role of different subsets of suppressor cells.
Collapse
Affiliation(s)
- Eleonora Timperi
- INSERM U932, Institut Curie, PSL Research University, Paris, France.,Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Barnaba
- INSERM U932, Institut Curie, PSL Research University, Paris, France. .,Istituto Pasteur, Fondazione Cenci Bolognetti, Rome, Italy. .,Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
8
|
Harrell CR, Markovic BS, Fellabaum C, Arsenijevic N, Djonov V, Volarevic V. The role of Interleukin 1 receptor antagonist in mesenchymal stem cell-based tissue repair and regeneration. Biofactors 2020; 46:263-275. [PMID: 31755595 DOI: 10.1002/biof.1587] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/27/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022]
Abstract
Interleukin (IL)-1 receptor antagonist (IL-1Ra), a naturally occurring antagonist of IL-1α/IL-1β signaling pathways, has been attributed to the immunosuppressive effects of mesenchymal stem cells (MSCs). MSCs, in IL-1Ra-dependent manner, suppressed production of IL-1β in dermal macrophages, induced their polarization in anti-inflammatory M2 phenotype, attenuated antigen-presenting properties of dendritic cells (DCs), and promoted expansion of immunosuppressive T regulatory cells in the skin, which resulted in enhanced repair of the nonhealing wounds. Reduced activation of inflammasome and suppressed production of IL-1β in macrophages were mainly responsible for beneficial effects of MSC-derived IL-1Ra in alleviation of acute lung injury, dry eye syndrome, and corneal injury. Through the production of IL-1Ra, MSCs reduced migration of DCs to the draining lymph nodes and attenuated generation of inflammatory Th1 and Th17 cells that resulted in alleviation of fulminant hepatitis and rheumatoid arthritis. MSCs, in IL-1Ra-dependent manner, reduced liver fibrosis by suppressing production of Type I collagen in hepatic stellate cells. IL-1Ra was, at least partially, responsible for enhanced proliferation of hepatocytes and chondrocytes in MSC-treated animals with partial hepatectomy and osteoarthritis. Despite of these beneficial effects, IL-1Ra-dependent inhibition of IL-1α/IL-1β-signaling significantly increased risk of infections. Therefore, future experimental and clinical studies should delineate potential side effects of MSC-derived IL-1Ra before IL-1Ra-overexpressing MSCs could be used as a potentially new therapeutic agent for the treatment of acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
| | - Bojana Simovic Markovic
- Faculty of Medical Sciences, Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | | | - Nebojsa Arsenijevic
- Faculty of Medical Sciences, Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | | | - Vladislav Volarevic
- Faculty of Medical Sciences, Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
9
|
Fattahi P, Haque A, Son KJ, Guild J, Revzin A. Microfluidic devices, accumulation of endogenous signals and stem cell fate selection. Differentiation 2019; 112:39-46. [PMID: 31884176 DOI: 10.1016/j.diff.2019.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/06/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Pouria Fattahi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Amranul Haque
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kyung Jin Son
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Joshua Guild
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
Rat multicellular 3D liver microtissues to explore TGF-β1 induced effects. J Pharmacol Toxicol Methods 2019; 101:106650. [PMID: 31730938 DOI: 10.1016/j.vascn.2019.106650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
Chronic liver damage can lead to fibrosis, encompassing hepatocellular injury, activation of Kupffer cells (KC), and activation of hepatic stellate cells (HSC). Inflammation and TGF-β1 are known mediators in the liver fibrosis adverse outcome pathway (AOP). The aim of this project was to develop a suitable rodent cell culture model for the investigation of key events involved in the development of liver fibrosis, specifically the responses to pathophysiological stimuli such as TGF-β1 and LPS-triggered inflammation. We optimized a single step protocol to purify rat primary hepatocytes (Hep), HSC and KC cells to generate 3D co-cultures based on the hanging drop method. This primary multicellular model responded to the profibrotic cytokine TGF-β1 (1 ng/mL) with signs of hepatocellular damage, inflammation and ultimately HSC activation (increase in αSMA expression). LPS elicited an inflammatory response characterized by increased expression of cytokines. 3D-monocultures comprising only Hep displayed different responses, underlying that parenchymal and non-parenchymal cells need to be present in the system to recapitulate fibrosis. The data also suggest that pre-activated HSC may reverse to a quiescent phenotype in 3D, probably due to the more physiological conditions.
Collapse
|
11
|
Mikulak J, Bruni E, Oriolo F, Di Vito C, Mavilio D. Hepatic Natural Killer Cells: Organ-Specific Sentinels of Liver Immune Homeostasis and Physiopathology. Front Immunol 2019; 10:946. [PMID: 31114585 PMCID: PMC6502999 DOI: 10.3389/fimmu.2019.00946] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022] Open
Abstract
The liver is considered a preferential tissue for NK cells residency. In humans, almost 50% of all intrahepatic lymphocytes are NK cells that are strongly imprinted in a liver-specific manner and show a broad spectrum of cellular heterogeneity. Hepatic NK (he-NK) cells play key roles in tuning liver immune response in both physiological and pathological conditions. Therefore, there is a pressing need to comprehensively characterize human he-NK cells to better understand the related mechanisms regulating their effector-functions within the dynamic balance between immune-tolerance and immune-surveillance. This is of particular relevance in the liver that is the only solid organ whose parenchyma is constantly challenged on daily basis by millions of foreign antigens drained from the gut. Therefore, the present review summarizes our current knowledge on he-NK cells in the light of the latest discoveries in the field of NK cell biology and clinical relevance.
Collapse
Affiliation(s)
- Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Elena Bruni
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Ferdinando Oriolo
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Mitsuyoshi H, Yasui K, Hara T, Taketani H, Ishiba H, Okajima A, Seko Y, Umemura A, Nishikawa T, Yamaguchi K, Moriguchi M, Minami M, Itoh Y. Hepatic nucleotide binding oligomerization domain-like receptors pyrin domain-containing 3 inflammasomes are associated with the histologic severity of non-alcoholic fatty liver disease. Hepatol Res 2017; 47:1459-1468. [PMID: 28245087 DOI: 10.1111/hepr.12883] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/22/2017] [Accepted: 02/25/2017] [Indexed: 12/13/2022]
Abstract
AIM To examine the role of nucleotide binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasomes in the development of non-alcoholic fatty liver disease (NAFLD). METHODS Levels of mRNAs encoding NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain, procaspase-1, interleukin (IL)-1β, and IL-18 were quantified by real-time polymerase chain reaction in 91 liver samples and 37 blood samples from biopsy-proven patients with NAFLD. Adiponutrin (also called PNPLA3) polymorphisms (rs738409, C > G) were determined in 74 samples by genotyping assays. Serum IL-1β and IL-18 levels were measured by enzyme-linked immunosorbent assay and liver tissue caspase-1 expression by immunostaining. RESULTS Hepatic NLRP3, procaspase-1, IL-1β, and IL-18 mRNA levels were significantly higher in NAFLD patients than in controls and were significantly associated with adiponutrin G alleles. Blood procaspase-1 mRNA was significantly higher in NAFLD patients than in healthy controls. Hepatic procaspase-1 and IL-1β mRNA levels correlated significantly with lobular inflammation, hepatocyte ballooning, and NAFLD activity score. Serum IL-18 levels were significantly higher in NAFLD patients than in controls, while IL-1β levels were non-significantly higher. Serum IL-1β and IL-18 concentrations correlated significantly with steatosis, NAFLD activity score, and transaminase levels. Serum IL-1β levels were significantly associated with adiponutrin G alleles. Scattered caspase-1-positive cells were present in portal tracts and inflammatory foci and around ballooning hepatocytes. Immunofluorescence staining showed that caspase-1 colocalized with the macrophage marker CD68. CONCLUSIONS The NLRP3 inflammasomes are primed in the liver, influenced by adiponutrin genotypes, and activated in Kupffer cells and/or macrophages in NAFLD, leading to histological progression through IL-1β and IL-18 production.
Collapse
Affiliation(s)
- Hironori Mitsuyoshi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kohichiroh Yasui
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tasuku Hara
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroyoshi Taketani
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Ishiba
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akira Okajima
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuya Seko
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Umemura
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taichiro Nishikawa
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanji Yamaguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihisa Moriguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahito Minami
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Ogoke O, Oluwole J, Parashurama N. Bioengineering considerations in liver regenerative medicine. J Biol Eng 2017; 11:46. [PMID: 29204185 PMCID: PMC5702480 DOI: 10.1186/s13036-017-0081-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
Background Liver disease contributes significantly to global disease burden and is associated with rising incidence and escalating costs. It is likely that innovative approaches, arising from the emerging field of liver regenerative medicine, will counter these trends. Main body Liver regenerative medicine is a rapidly expanding field based on a rich history of basic investigations into the nature of liver structure, physiology, development, regeneration, and function. With a bioengineering perspective, we discuss all major subfields within liver regenerative medicine, focusing on the history, seminal publications, recent progress within these fields, and commercialization efforts. The areas reviewed include fundamental aspects of liver transplantation, liver regeneration, primary hepatocyte cell culture, bioartificial liver, hepatocyte transplantation and liver cell therapies, mouse liver repopulation, adult liver stem cell/progenitor cells, pluripotent stem cells, hepatic microdevices, and decellularized liver grafts. Conclusion These studies highlight the creative directions of liver regenerative medicine, the collective efforts of scientists, engineers, and doctors, and the bright outlook for a wide range of approaches and applications which will impact patients with liver disease.
Collapse
Affiliation(s)
- Ogechi Ogoke
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Furnas Hall, Buffalo, NY 14260 USA.,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), 875 Ellicott St., Buffalo, NY 14203 USA
| | - Janet Oluwole
- Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), 875 Ellicott St., Buffalo, NY 14203 USA.,Department of Biomedical Engineering, University at Buffalo (State University of New York), Furnas Hall, 907 Furnas Hall, Buffalo, NY 14260 USA
| | - Natesh Parashurama
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Furnas Hall, Buffalo, NY 14260 USA.,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), 875 Ellicott St., Buffalo, NY 14203 USA.,Department of Biomedical Engineering, University at Buffalo (State University of New York), Furnas Hall, 907 Furnas Hall, Buffalo, NY 14260 USA
| |
Collapse
|
14
|
Shoda LK, Battista C, Siler SQ, Pisetsky DS, Watkins PB, Howell BA. Mechanistic Modelling of Drug-Induced Liver Injury: Investigating the Role of Innate Immune Responses. GENE REGULATION AND SYSTEMS BIOLOGY 2017; 11:1177625017696074. [PMID: 28615926 PMCID: PMC5459514 DOI: 10.1177/1177625017696074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/04/2017] [Indexed: 12/19/2022]
Abstract
Drug-induced liver injury (DILI) remains an adverse event of significant concern for drug development and marketed drugs, and the field would benefit from better tools to identify liver liabilities early in development and/or to mitigate potential DILI risk in otherwise promising drugs. DILIsym software takes a quantitative systems toxicology approach to represent DILI in pre-clinical species and in humans for the mechanistic investigation of liver toxicity. In addition to multiple intrinsic mechanisms of hepatocyte toxicity (ie, oxidative stress, bile acid accumulation, mitochondrial dysfunction), DILIsym includes the interaction between hepatocytes and cells of the innate immune response in the amplification of liver injury and in liver regeneration. The representation of innate immune responses, detailed here, consolidates much of the available data on the innate immune response in DILI within a single framework and affords the opportunity to systematically investigate the contribution of the innate response to DILI.
Collapse
Affiliation(s)
- Lisl Km Shoda
- DILIsym Services, Inc., Research Triangle Park, NC, USA
| | - Christina Battista
- DILIsym Services, Inc., Research Triangle Park, NC, USA.,UNC Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, NC, USA
| | - Scott Q Siler
- DILIsym Services, Inc., Research Triangle Park, NC, USA
| | - David S Pisetsky
- Medical Research Service, Durham VA Medical Center and Duke University Medical Center, Durham, NC, USA
| | - Paul B Watkins
- UNC Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, NC, USA
| | | |
Collapse
|
15
|
Liu M, Chen P. Proliferation‑inhibiting pathways in liver regeneration (Review). Mol Med Rep 2017; 16:23-35. [PMID: 28534998 DOI: 10.3892/mmr.2017.6613] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/13/2017] [Indexed: 12/14/2022] Open
Abstract
Liver regeneration, an orchestrated process, is the primary compensatory mechanism following liver injury caused by various factors. The process of liver regeneration consists of three stages: Initiation, proliferation and termination. Proliferation‑promoting factors, which stimulate the recovery of mitosis in quiescent hepatocytes, are essential in the initiation and proliferation steps of liver regeneration. Proliferation‑promoting factors act as the 'motor' of liver regeneration, whereas proliferation inhibitors arrest cell proliferation when the remnant liver reaches a suitable size. Certain proliferation inhibitors are also expressed and activated in the first two steps of liver regeneration. Anti‑proliferation factors, acting as a 'brake', control the speed of proliferation and determine the terminal point of liver regeneration. Furthermore, anti‑proliferation factors function as a 'steering‑wheel', ensuring that the regeneration process proceeds in the right direction by preventing proliferation in the wrong direction, as occurs in oncogenesis. Therefore, proliferation inhibitors to ensure safe and stable liver regeneration are as important as proliferation‑promoting factors. Cytokines, including transforming growth factor‑β and interleukin‑1, and tumor suppressor genes, including p53 and p21, are important members of the proliferation inhibitor family in liver regeneration. Certain anti‑proliferation factors are involved in the process of gene expression and protein modification. The suppression of liver regeneration led by metabolism, hormone activity and pathological performance have been reviewed previously. However, less is known regarding the proliferation inhibitors of liver regeneration and further investigations are required. Detailed information regarding the majority of known anti‑proliferation signaling pathways also remains fragmented. The present review aimed to understand the signalling pathways that inhbit proliferation in the process of liver regeneration.
Collapse
Affiliation(s)
- Menggang Liu
- Department of Hepatobiliary Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Ping Chen
- Department of Hepatobiliary Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
16
|
Tosello-Trampont A, Surette FA, Ewald SE, Hahn YS. Immunoregulatory Role of NK Cells in Tissue Inflammation and Regeneration. Front Immunol 2017; 8:301. [PMID: 28373874 PMCID: PMC5357635 DOI: 10.3389/fimmu.2017.00301] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/03/2017] [Indexed: 12/17/2022] Open
Abstract
NK cells represent an important first line of defense against viral infection and cancer and are also involved in tissue homeostasis. Studies of NK cell activation in the last decade have revealed that they are able to respond to the inflammatory stimuli evoked by tissue damage and contribute to both progression and resolution of diseases. Exacerbation of the inflammatory response through interactions between immune effector cells facilitates the progression of non-alcoholic fatty liver disease (NAFLD) into steatosis, cirrhosis, and hepatocellular carcinoma (HCC). When hepatic damage is incurred, macrophage activation is crucial for initiating cross talk with neighboring cells present in the liver, including hepatocytes and NK cells, and the importance of this interaction in shaping the immune response in liver disease is increasingly recognized. Inflicted structural damage can be in part regenerated via the process of self-limiting fibrosis, though persistent hepatic damage will lead to chronic fibrosis and loss of tissue organization and function. The cytotoxic activity of NK cells plays an important role in inducing hepatic stellate cell apoptosis and thus curtailing the progression of fibrosis. Alternatively, in some diseases, such as HCC, NK cells may become dysregulated, promoting an immunosuppressive state where tumors are able to escape immune surveillance. This review describes the current understanding of the contributions of NK cells to tissue inflammation and metabolic liver diseases and the ongoing effort to develop therapeutics that target the immunoregulatory function of NK cells.
Collapse
Affiliation(s)
| | - Fionna A Surette
- Beirne B. Carter Center for Immunology Research , Charlottesville, VA , USA
| | - Sarah E Ewald
- Beirne B. Carter Center for Immunology Research, Charlottesville, VA, USA; Department of Microbiology, University of Virginia, Charlottesville, VA, USA
| | - Young S Hahn
- Beirne B. Carter Center for Immunology Research, Charlottesville, VA, USA; Department of Microbiology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
17
|
Ezquer F, Bahamonde J, Huang YL, Ezquer M. Administration of multipotent mesenchymal stromal cells restores liver regeneration and improves liver function in obese mice with hepatic steatosis after partial hepatectomy. Stem Cell Res Ther 2017; 8:20. [PMID: 28129776 PMCID: PMC5273822 DOI: 10.1186/s13287-016-0469-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/11/2016] [Accepted: 12/31/2016] [Indexed: 02/06/2023] Open
Abstract
Background The liver has the remarkable capacity to regenerate in order to compensate for lost or damaged hepatic tissue. However, pre-existing pathological abnormalities, such as hepatic steatosis (HS), inhibits the endogenous regenerative process, becoming an obstacle for liver surgery and living donor transplantation. Recent evidence indicates that multipotent mesenchymal stromal cells (MSCs) administration can improve hepatic function and increase the potential for liver regeneration in patients with liver damage. Since HS is the most common form of chronic hepatic illness, in this study we evaluated the role of MSCs in liver regeneration in an animal model of severe HS with impaired liver regeneration. Methods C57BL/6 mice were fed with a regular diet (normal mice) or with a high-fat diet (obese mice) to induce HS. After 30 weeks of diet exposure, 70% hepatectomy (Hpx) was performed and normal and obese mice were divided into two groups that received 5 × 105 MSCs or vehicle via the tail vein immediately after Hpx. Results We confirmed a significant inhibition of hepatic regeneration when liver steatosis was present, while the hepatic regenerative response was promoted by infusion of MSCs. Specifically, MSC administration improved the hepatocyte proliferative response, PCNA-labeling index, DNA synthesis, liver function, and also reduced the number of apoptotic hepatocytes. These effects may be associated to the paracrine secretion of trophic factors by MSCs and the hepatic upregulation of key cytokines and growth factors relevant for cell proliferation, which ultimately improves the survival rate of the mice. Conclusions MSCs represent a promising therapeutic strategy to improve liver regeneration in patients with HS as well as for increasing the number of donor organs available for transplantation. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0469-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Av. Las Condes 12.438, Lo Barnechea, 7710162, Santiago, Chile
| | - Javiera Bahamonde
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Av. Las Condes 12.438, Lo Barnechea, 7710162, Santiago, Chile.,Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Ya-Lin Huang
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Av. Las Condes 12.438, Lo Barnechea, 7710162, Santiago, Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Av. Las Condes 12.438, Lo Barnechea, 7710162, Santiago, Chile.
| |
Collapse
|
18
|
Potentiation of hepatic stellate cell activation by extracellular ATP is dependent on P2X7R-mediated NLRP3 inflammasome activation. Pharmacol Res 2016; 117:82-93. [PMID: 27940204 DOI: 10.1016/j.phrs.2016.11.040] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/18/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022]
Abstract
Purinergic receptor P2x7 (P2x7R) is a key modulator of liver inflammation and fibrosis. The present study aimed to investigate the role of P2x7R in hepatic stellate cells activation. Lipopolysaccharide (LPS) or the conditioned medium (CM) from LPS-stimulated RAW 264.7 mouse macrophages was supplemented to human hepatic stellate cells, LX-2 for 24h and P2x7R selective antagonist A438079 (10μM) was supplemented to LX-2 cells 1h before LPS or CM stimulation. In addition LX-2 cells were primed with LPS for 4h and subsequently stimulated for 30min with 3mM of adenosine 5'-triphosphate (ATP). A438079 was supplemented to LX-2 cells 10min prior to ATP. Directly treated with LPS on LX-2 cells, mRNA expressions of interleukin (IL)-1β, IL-18 and IL-6 were increased, as well as mRNA expressions of P2x7R, caspase-1, apoptosis-associated speck-like protein containing CARD (ASC) and NOD-like receptor family, pyrin domain containing 3 (NLRP3) mRNA. LPS also increased α-smooth muscle actin (α-SMA) and type I collagen mRNA expressions, as well as collagen deposition. Interestingly treatment of LX-2 cells with LPS-activated CM exhibited the greater increase of above factors than those in LX-2 cells directly treated with LPS. Pretreatment of A438079 on LX-2 cells stimulated by LPS or LPS-activated CM both suppressed IL-1β mRNA expression. LPS combined with ATP dramatically increased protein synthesis and cleavage of IL-1β and its mRNA level than those in HSC treated with LPS or ATP alone. Additionally LX-2 cells primed with LPS and subsequently stimulated for 30min with ATP greatly increased mRNA and protein expression of caspase-1, NLRP3 and P2x7R, as well as liver fibrosis markers, α-SMA and type I collagen. These events were remarkably suppressed by A438079 pretreatment. siRNA against P2x7R reduced protein expression of NLRP3 and α-SMA, and suppressed deposition and secretion of type I collagen. The involvement of P2X7R-mediated NLRP3 inflammasome activation in IL-1β production of HSC might contribute to ECM deposition and suggests that blockade of the P2x7R-NLRP3 inflammasome axis represents a potential therapeutic target to liver fibrosis.
Collapse
|
19
|
Bagga S, Rawat S, Ajenjo M, Bouchard MJ. Hepatitis B virus (HBV) X protein-mediated regulation of hepatocyte metabolic pathways affects viral replication. Virology 2016; 498:9-22. [DOI: 10.1016/j.virol.2016.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/20/2016] [Accepted: 08/06/2016] [Indexed: 12/25/2022]
|
20
|
Haque A, Gheibi P, Gao Y, Foster E, Son KJ, You J, Stybayeva G, Patel D, Revzin A. Cell biology is different in small volumes: endogenous signals shape phenotype of primary hepatocytes cultured in microfluidic channels. Sci Rep 2016; 6:33980. [PMID: 27681582 PMCID: PMC5041105 DOI: 10.1038/srep33980] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022] Open
Abstract
The approaches for maintaining hepatocytes in vitro are aimed at recapitulating aspects of the native liver microenvironment through the use of co-cultures, surface coatings and 3D spheroids. This study highlights the effects of spatial confinement-a less studied component of the in vivo microenvironment. We demonstrate that hepatocytes cultured in low-volume microfluidic channels (microchambers) retain differentiated hepatic phenotype for 21 days whereas cells cultured in regular culture plates under identical conditions de-differentiate after 7 days. Careful consideration of nutrient delivery and oxygen tension suggested that these factors could not solely account for enhanced cell function in microchambers. Through a series of experiments involving microfluidic chambers of various heights and inhibition of key molecular pathways, we confirmed that phenotype of hepatocytes in small volumes was shaped by endogenous signals, both hepato-inductive growth factors (GFs) such as hepatocyte growth factor (HGF) and hepato-disruptive GFs such as transforming growth factor (TGF)-β1. Hepatocytes are not generally thought of as significant producers of GFs–this role is typically assigned to nonparenchymal cells of the liver. Our study demonstrates that, in an appropriate microenvironment, hepatocytes produce hepato-inductive and pro-fibrogenic signals at the levels sufficient to shape their phenotype and function.
Collapse
Affiliation(s)
- Amranul Haque
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA
| | - Pantea Gheibi
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA
| | - Yandong Gao
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA
| | - Elena Foster
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA
| | - Kyung Jin Son
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA
| | - Jungmok You
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA.,Department of Plant and Environmental New Resources, Kyung Hee University, Youngin-si, Gyeonggi-do, South Korea
| | - Gulnaz Stybayeva
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA
| | - Dipali Patel
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA
| | - Alexander Revzin
- Department of Biomedical Engineering, University of California Davis, CA 95616, USA
| |
Collapse
|
21
|
Patel D, Haque A, Gao Y, Revzin A. Using reconfigurable microfluidics to study the role of HGF in autocrine and paracrine signaling of hepatocytes. Integr Biol (Camb) 2016; 7:815-24. [PMID: 26108037 DOI: 10.1039/c5ib00105f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cancer, developmental biology and tissue injury present multiple examples where groups of cells residing in close proximity communicate via paracrine factors. It is nearly impossible to dissect such cellular interactions in vivo and is quite challenging in vitro. The goal of this study is to utilize a reconfigurable microfluidic device in order to study paracrine signal exchange between groups of primary hepatocytes in vitro. Previously, we demonstrated that hepatocytes residing on protein spots containing collagen and hepatocyte growth factor (HGF) spots expressed epithelial (hepatic) phenotypes and also rescued them in neighboring hepatocytes on collagen spots that did not receive direct HGF stimulus. Herein, we designed a microfluidic device with parallel fluidic channels separated by retractable (reconfigurable) walls and employed this device to investigate interactions between groups of HGF-stimulated and unstimulated hepatocytes. Using a novel reconfigurable microfluidic device, we demonstrate that cultivation of HGF-containing protein spots upregulates the production of endogenous HGF in hepatocytes and that these HGF molecules diffuse over, causing phenotype enhancement in the recipient cells. We also show that selective treatment of the recipient hepatocytes with a c-met inhibitor (SU11274) diminishes the rescue effect, as gauged by the down-regulation of albumin and HGF expression. Our study is one of the first to demonstrate paracrine signaling via HGF in primary hepatocytes. More broadly, tools and methods described here may be used to study paracrine signaling in other types of cells and will have relevance for various fields of biomedical research from cancer to immunology.
Collapse
Affiliation(s)
- Dipali Patel
- Department of Biomedical Engineering, University of California, Davis, 451 East Health Sciences St. #2619, Davis, CA, USA.
| | | | | | | |
Collapse
|
22
|
Tosello-Trampont AC, Krueger P, Narayanan S, Landes SG, Leitinger N, Hahn YS. NKp46(+) natural killer cells attenuate metabolism-induced hepatic fibrosis by regulating macrophage activation in mice. Hepatology 2016; 63:799-812. [PMID: 26662852 PMCID: PMC4764418 DOI: 10.1002/hep.28389] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/06/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED Nonalcoholic steatohepatitis (NASH) affects 3%-5% of the U.S. population, having severe clinical complications to the development of fibrosis and end-stage liver diseases, such as cirrhosis and hepatocellular carcinoma. A critical cause of NASH is chronic systemic inflammation promoted by innate immune cells, such as liver macrophages (Mϕ) and natural killer (NK) cells. However, little is known about how the crosstalk between Mϕ and NK cells contributes to regulate NASH progression to fibrosis. In this report, we demonstrate that NKp46(+) cells play an important role in preventing NASH progression to fibrosis by regulating M1/M2 polarization of liver Mϕ. Using a murine model of NASH, we demonstrate that DX5(+)NKp46(+) NK cells are increased during disease and play a role in polarizing Mϕ toward M1-like phenotypes. This NK's immunoregulatory function depends on the production of interferon-gamma (IFN-γ), but not by granzyme-mediated cytolytic activity. Notably, depletion of NKp46(+) cells promotes the development of fibrosis with increased expression of profibrogenic genes as well as skewed M2 Mϕ phenotypes in hepatic tissues. CONCLUSIONS NK cell-derived IFN-γ may be essential for maintaining a balanced inflammatory environment that promotes tissue integrity and limiting NASH progression to fibrosis.
Collapse
Affiliation(s)
| | - Peter Krueger
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908,Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| | - Sowmya Narayanan
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908,Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| | - Susan G. Landes
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Young S. Hahn
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908,Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
23
|
Zhao Y, Meng C, Wang Y, Huang H, Liu W, Zhang JF, Zhao H, Feng B, Leung PS, Xia Y. IL-1β inhibits β-Klotho expression and FGF19 signaling in hepatocytes. Am J Physiol Endocrinol Metab 2016; 310:E289-300. [PMID: 26670488 DOI: 10.1152/ajpendo.00356.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/09/2015] [Indexed: 11/22/2022]
Abstract
Fibroblast growth factor (FGF) 19 is a member of the FGF15/19 subfamily of FGFs that includes FGF15/19, FGF21, and FGF23. FGF19 has been shown to have profound effects on liver metabolism and regeneration. FGF19 binds to FGFR4 and its coreceptor β-Klotho to activate intracellular kinases, including Erk1/2. Studies have shown that proinflammatory cytokines such as TNFα impair FGF21 signaling in adipose cells by repressing β-Klotho expression. However, little is known about the effects of inflammation on the FGF19 pathway in the liver. In the present study, we found that lipopolysaccharide (LPS) inhibited β-Klotho and Fgfr4 expression in livers in mice, whereas LPS had no effects on the two FGF19 receptors in Huh-7 and HepG2 cells. Of the three inflammatory cytokines TNFα, IL-1β, and IL-6, IL-1β drastically inhibited β-Klotho expression, whereas TNFα and IL-6 had no or minor effects. None of the three cytokines had any effects on FGFR4 expression. IL-1β directly inhibited β-Klotho transcription, and this inhibition required both the JNK and NF-κB pathways. In addition, IL-1β inhibited FGF19-induced Erk1/2 activation and cell proliferation. These results suggest that inflammation and IL-1β play an important role in regulating FGF19 signaling and function in the liver.
Collapse
Affiliation(s)
- Yueshui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chenling Meng
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yang Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Huihui Huang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenjing Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jin-Fang Zhang
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences Core Laboratory, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China; and
| | - Bo Feng
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences Core Laboratory, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China; and
| | - Po Sing Leung
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yin Xia
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences Core Laboratory, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China; and
| |
Collapse
|
24
|
Jiang X, Li Z, Jiang S, Tong X, Zou X, Wang W, Zhang Z, Wu L, Tian D. Lipoxin A4 exerts protective effects against experimental acute liver failure by inhibiting the NF-κB pathway. Int J Mol Med 2016; 37:773-80. [PMID: 26865215 DOI: 10.3892/ijmm.2016.2483] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 01/15/2016] [Indexed: 11/05/2022] Open
Abstract
Although rare, acute liver failure (ALF) is associated with high levels of mortality, warranting the development of novel therapies. Nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) play roles in ALF. Lipoxin A4 (LXA4) has been shown to alleviate inflammation in non-hepatic tissues. In the present study, we explored whether LXA4 exerted hepatoprotective effects in a rat model of ALF. A rat model of ALF was generated by intraperitoneal injections of D-galactosamine (300 mg/kg) and lipopolysaccharide (50 µg/kg). Animals were randomly assigned to: control group (no ALF); model group (ALF); and the groups treated with a low dose (0.5 µg/kg), medium dose (1 µg/kg), and high dose (2 µg/kg) of LXA4 (all with ALF); and pyrrolidine dithiocarbamate (PDTC)-treated group (ALF and 100 mg/kg PDTC, an inhibitor of NF-κB). Liver histology was measured using H&E staining, serum levels by ELISA, and liver mRNA expression was measured by RT-PCR for the detection of the pro‑inflammatory cytokines TNF-α and IL-6. Liver cell apoptosis (as measured using the TUNEL method and examining caspase-3 activity), and Kupffer cell NF-κB activity [using an electrophoretic mobility shift assay (EMSA)] were examined. Serum levels of transaminases, TNF-α and interleukin-6 (IL-6) were substantially higher in the model group compared to controls. In the model group, significant increases in TNF-α and IL-6 mRNA expression, TUNEL‑positive cells, and caspase-3 activity in the liver tissue were noted. LXA4 improved liver pathology and significantly decreased the indicators of inflammatory response and apoptosis in a dose-dependent manner. High-dose LXA4 provided better protection than PDTC. LXA4 administration significantly decreased NF-κB expression in hepatocytes and Kupffer cells. These results indicated that LXA4 inhibited NF-κB activation, reduced the secretion of pro-inflammatory cytokines, and inhibited apoptosis of liver cells, thereby exerting protective effects against ALF.
Collapse
Affiliation(s)
- Xueqiang Jiang
- Department of Infection, Dongfeng Hospital Affiliated to Hubei Medical University, Shiyan, Hubei 442008, P.R. China
| | - Zhihao Li
- Department of Pharmacy, Dongfeng General Hospital Affiliated to Hubei Medical University, Shiyan, Hubei 442008, P.R. China
| | - Shengfang Jiang
- Center of Reproductive Medicine, People's Hospital Affiliated to Hubei Medical University, Shiyan, Hubei 442000, P.R. China
| | - Xuefei Tong
- Shennong Wudang Institute of Traditional Chinese Medicine, Shiyan Hospital of TCM Affiliated to Hubei University of Chinese Medicine, Shiyan, Hubei 442012, P.R. China
| | - Xiaojing Zou
- Department of Emergency, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wan Wang
- Department of Infection, Dongfeng Hospital Affiliated to Hubei Medical University, Shiyan, Hubei 442008, P.R. China
| | - Zhengang Zhang
- Department of Infection, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Liang Wu
- Department of Infection, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Deying Tian
- Department of Infection, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
25
|
Inhibition of sterile danger signals, uric acid and ATP, prevents inflammasome activation and protects from alcoholic steatohepatitis in mice. J Hepatol 2015; 63:1147-55. [PMID: 26100496 PMCID: PMC4615393 DOI: 10.1016/j.jhep.2015.06.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 05/06/2015] [Accepted: 06/01/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS The inflammasome is a well-characterized inducer of inflammation in alcoholic steatohepatitis (ASH). Inflammasome activation requires two signals for mature interleukin (IL)-1β production. Here we asked whether metabolic danger signals trigger inflammasome activation in ASH. METHODS Wild-type mice, ATP receptor 2x7 (P2rx7)-KO mice, or mice overexpressing uricase were fed Lieber-DeCarli ethanol or control diet. We also implemented a pharmacological approach in which mice were treated with probenecid or allopurinol. RESULTS The sterile danger signals, ATP and uric acid, were increased in the serum and liver of alcohol-fed mice. Depletion of uric acid or ATP, or lack of ATP signaling attenuated ASH and prevented inflammasome activation and its major downstream cytokine, IL-1β. Pharmacological depletion of uric acid with allopurinol provided significant protection from alcohol-induced inflammatory response, steatosis and liver damage, and additional protection was achieved in mice treated with probenecid, which depletes uric acid and blocks ATP-induced P2rx7 signaling. We found that alcohol-damaged hepatocytes released uric acid and ATP in vivo and in vitro and that these sterile danger signals activated the inflammasome in LPS-exposed liver mononuclear cells. CONCLUSIONS Our data indicate that the second signal in inflammasome activation and IL-1β production in ASH results from the endogenous danger signals, uric acid and ATP. Inhibition of signaling triggered by uric acid and ATP may have therapeutic implications in ASH.
Collapse
|
26
|
Renna MS, Figueredo CM, Rodríguez-Galán MC, Icely PA, Cejas H, Cano R, Correa SG, Sotomayor CE. Candida albicans up-regulates the Fas-L expression in liver Natural Killer and Natural Killer T cells. Immunobiology 2015; 220:1210-8. [DOI: 10.1016/j.imbio.2015.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/12/2015] [Accepted: 06/05/2015] [Indexed: 01/01/2023]
|
27
|
Abstract
Inflammation contributes to the pathogenesis of most acute and chronic liver diseases. Inflammasomes are multiprotein complexes that can sense danger signals from damaged cells and pathogens and assemble to mediate caspase-1 activation, which proteolytically activates the cytokines IL-1β and IL-18. In contrast to other inflammatory responses, inflammasome activation uniquely requires two signals to induce inflammation, therefore setting an increased threshold. IL-1β, generated upon caspase-1 activation, provides positive feed-forward stimulation for inflammatory cytokines, thereby amplifying inflammation. Inflammasome activation has been studied in different human and experimental liver diseases and has been identified as a major contributor to hepatocyte damage, immune cell activation and amplification of liver inflammation. In this Review, we discuss the different types of inflammasomes, their activation and biological functions in the context of liver injury and disease progression. Specifically, we focus on the triggers of inflammasome activation in alcoholic steatohepatitis and NASH, chronic HCV infection, ischaemia-reperfusion injury and paracetamol-induced liver injury. The application and translation of these discoveries into therapies promises novel approaches in the treatment of inflammation in liver disease.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, LRB 215, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jan Petrasek
- Department of Medicine, University of Massachusetts Medical School, LRB 215, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
28
|
Suwandecha T, Srichana T, Balekar N, Nakpheng T, Pangsomboon K. Novel antimicrobial peptide specifically active against Porphyromonas gingivalis. Arch Microbiol 2015; 197:899-909. [PMID: 26041027 DOI: 10.1007/s00203-015-1126-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/05/2015] [Accepted: 05/26/2015] [Indexed: 12/13/2022]
Abstract
Porphyromonas gingivalis, the major etiologic agent of chronic periodontitis, produces a broad spectrum of virulence factors, including outer membrane vesicles, lipopolysaccharides, hemolysins and proteinases. Antimicrobial peptides (AMPs) including bacteriocins have been found to inhibit the growth of P. gingivalis; however, these peptides are relatively large molecules. Hence, it is difficult to synthesize them by a scale-up production. Therefore, this study aimed to synthesize a shorter AMP that was still active against P. gingivalis. A peptide that contained three cationic amino acids (Arg, His and Lys), two anionic amino acids (Glu and Asp), hydrophobic amino acids residues (Leu, Ile, Val, Ala and Pro) and hydrophilic residues (Ser and Gly) was obtained and named Pep-7. Its bioactivity and stability were tested after various treatments. The mechanism of action of Pep-7 and its toxicity to human red blood cells were investigated. The Pep-7 inhibited two pathogenic P. gingivalis ATCC 33277 and P. gingivalis ATCC 53978 (wp50) strains at a minimum bactericidal concentration (MBC) of 1.7 µM, but was ineffective against other oral microorganisms (P. intermedia, Tannerella forsythensis, Streptococcus salivarius and Streptococcus sanguinis). From transmission electron microscopy studies, Pep-7 caused pore formation at the poles of the cytoplasmic membranes of P. gingivalis. A concentration of Pep-7 at four times that of its MBC induced some hemolysis but only at 0.3%. The Pep-7 was heat stable under pressure (autoclave at 110 and 121 °C) and possessed activity over a pH range of 6.8-8.5. It was not toxic to periodontal cells over a range of 70.8-4.4 μM and did not induce toxic pro-inflammatory cytokines. The Pep-7 showed selective activity against Porphyromonas sp. by altering the permeability barriers of P. gingivalis. The Pep-7 was not mutagenic in vitro. This work highlighted the potential for the use of this synthetic Pep-7 against P. gingivalis.
Collapse
Affiliation(s)
- T Suwandecha
- Faculty of Pharmaceutical Sciences, Nanotec-PSU Center of Excellence on Drug Delivery System, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | | | | | | | | |
Collapse
|
29
|
Taslidere E, Vardi N, Esrefoglu M, Ates B, Taskapan C, Yologlu S. The effects of pentoxifylline and caffeic acid phenethyl ester in the treatment of d-galactosamine-induced acute hepatitis in rats. Hum Exp Toxicol 2015; 35:353-65. [PMID: 25977259 DOI: 10.1177/0960327115586820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The aim of this study was to investigate histological changes in hepatic tissue and effects of pentoxifylline (PTX) and caffeic acid phenethyl ester (CAPE) on these changes using histochemical and biochemical methods in rats, in which hepatitis was established by D-galactosamine (D-GAL). Rats were divided into five groups as follows: control group, D-GAL (24 h) group, D-GAL group, d-GAL + PTX group, and D-GAL + CAPE group. In histological evaluations, the control group showed normal appearance of the liver cells. However in the d-GAL groups, focal areas consisting of inflammatory, necrotic, and apoptotic cells were detected in parenchyma. Glycogen loss was observed in the hepatocytes localized at the periphery of lobule. It was found that number of mast cells of portal areas were significantly higher in D-GAL groups compared with other groups (p = 0.0001). In addition, the number of cells with positive staining by Ki-67 and caspase-3 were significantly increased in GAL groups compared with the control group (p = 0.0001). In biochemical analysis, there was an increase in malondialdehyde and myeloperoxidase levels, while a decrease was observed in glutathione level and glutathione peroxidase activity in groups treated with d-GAL compared with the control group. On the other hand, it was seen that, in the groups treated with D-GAL, histological and biochemical injuries in the liver were reduced by administration of PTX and CAPE. In this study, we demonstrated the ameliorative effects of PTX and CAPE on D-GAL-induced liver injury.
Collapse
Affiliation(s)
- E Taslidere
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - N Vardi
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - M Esrefoglu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem University, Istanbul, Turkey
| | - B Ates
- Department of Chemistry, Faculty of Science and Art, Inonu University, Malatya, Turkey
| | - C Taskapan
- Department of Biochemistry, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - S Yologlu
- Department of Biostatistics, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
30
|
Xie J, Liu J, Chen TM, Lan Q, Zhang QY, Liu B, Dai D, Zhang WD, Hu LP, Zhu RZ. Dihydromyricetin alleviates carbon tetrachloride-induced acute liver injury via JNK-dependent mechanism in mice. World J Gastroenterol 2015; 21:5473-5481. [PMID: 25987769 PMCID: PMC4427668 DOI: 10.3748/wjg.v21.i18.5473] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/31/2014] [Accepted: 02/13/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the effects of dihydromyricetin (DHM) as a hepatoprotective candidate in reducing hepatic injury and accelerating hepatocyte proliferation after carbon tetrachloride (CCl4) treatment.
METHODS: C57 BL/6 mice were used in this study. Mice were orally administered with DHM (150 mg/kg) for 4 d after CCl4 treatment. Serum and liver tissue samples were collected on days 1, 2, 3, 5 and 7 after CCl4 treatment. The anti-inflammatory effect of DHM was assessed directly by hepatic histology detection and indirectly by serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin, and superoxide dismutase (SOD). Inflammatory cytokines, such as interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α), were detected using ELISA kits. Proliferating cell nuclear antigen (PCNA) staining was used to evaluate the role of DHM in promoting hepatocyte proliferation. Hepatocyte apoptosis was measured by TUNEL assay. Furthermore, apoptosis proteins Caspases-3, 6, 8, and 9 were detected by Western blot. SP600125 were used to confirm whether DHM regulated liver regeneration through JNK/TNF-α pathways.
RESULTS: DHM showed a strong anti-inflammatory effect on CCl4-induced liver injury in mice. DHM could significantly decrease serum ALT, AST, IL-1β, IL-6 and TNF-α and increase serum albumin, SOD and liver SOD compared to the control group after CCl4 treatment (P < 0.05). PCNA results indicated that DHM could significantly increase the number of PCNA positive cells compared to the control (348.9 ± 56.0 vs 107.1 ± 31.4, P < 0.01). TUNEL assay showed that DHM dramatically reduced the number of apoptotic cells after CCl4 treatment compared to the control (365.4 ± 99.4 vs 90.5±13.8, P < 0.01). Caspase activity detection showed that DHM could reduce the activities of Caspases- 8, 3, 6 and 9 compared to the control (P < 0.05). The results of Western blot showed that DHM increased the expression of JNK and decreased TNF-α expression. However, DHM could not affect TNF-α expression after SP600125 treatment. Furthermore, DHM could significantly improve the survival rate of acute liver failure (ALF) mice (73.3% vs 20.0%, P < 0.0001), and SP600125 could inhibit the effect of DHM.
CONCLUSION: These findings demonstrate that DHM alleviates CCl4-induced liver injury, suggesting that DHM is a promising candidate for reversing liver injury and ALF.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Biomarkers/blood
- Carbon Tetrachloride
- Caspase Inhibitors/pharmacology
- Cell Proliferation/drug effects
- Chemical and Drug Induced Liver Injury/blood
- Chemical and Drug Induced Liver Injury/drug therapy
- Chemical and Drug Induced Liver Injury/enzymology
- Chemical and Drug Induced Liver Injury/pathology
- Cytochromes c/metabolism
- Disease Models, Animal
- Flavonols/pharmacology
- Inflammation Mediators/blood
- JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors
- JNK Mitogen-Activated Protein Kinases/metabolism
- Liver/drug effects
- Liver/enzymology
- Liver/pathology
- Liver Failure, Acute/blood
- Liver Failure, Acute/chemically induced
- Liver Failure, Acute/drug therapy
- Liver Failure, Acute/enzymology
- Liver Failure, Acute/pathology
- Liver Regeneration/drug effects
- Male
- Mice, Inbred C57BL
- Mitochondria, Liver/drug effects
- Mitochondria, Liver/enzymology
- Mitochondria, Liver/pathology
- Protein Kinase Inhibitors/pharmacology
- Signal Transduction/drug effects
- Time Factors
- Tumor Necrosis Factor-alpha/blood
Collapse
|
31
|
Petrasek J, Iracheta-Vellve A, Saha B, Satishchandran A, Kodys K, Fitzgerald KA, Kurt-Jones EA, Szabo G. Metabolic danger signals, uric acid and ATP, mediate inflammatory cross-talk between hepatocytes and immune cells in alcoholic liver disease. J Leukoc Biol 2015; 98:249-56. [PMID: 25934928 DOI: 10.1189/jlb.3ab1214-590r] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/14/2015] [Indexed: 12/12/2022] Open
Abstract
Inflammation defines the progression of ALD from reversible to advanced stages. Translocation of bacterial LPS to the liver from the gut is necessary for alcohol-induced liver inflammation. However, it is not known whether endogenous, metabolic danger signals are required for inflammation in ALD. Uric acid and ATP, 2 major proinflammatory danger signals, were evaluated in the serum of human volunteers exposed to a single dose of ethanol or in supernatants of primary human hepatocytes exposed to ethanol. In vitro studies were used to evaluate the role of uric acid and ATP in inflammatory cross-talk between hepatocytes and immune cells. The significance of signaling downstream of uric acid and ATP in the liver was evaluated in NLRP3-deficient mice fed a Lieber-DeCarli ethanol diet. Exposure of healthy human volunteers to a single dose of ethanol resulted in increased serum levels of uric acid and ATP. In vitro, we identified hepatocytes as a significant source of these endogenous inflammatory signals. Uric acid and ATP mediated a paracrine inflammatory cross-talk between damaged hepatocytes and immune cells and significantly increased the expression of LPS-inducible cytokines, IL-1β and TNF-α, by immune cells. Deficiency of NLRP3, a ligand-sensing component of the inflammasome recognizing uric acid and ATP, prevented the development of alcohol-induced liver inflammation in mice and significantly ameliorated liver damage and steatosis. Endogenous metabolic danger signals, uric acid, and ATP are involved in inflammatory cross-talk between hepatocytes and immune cells and play a crucial role in alcohol-induced liver inflammation.
Collapse
Affiliation(s)
- Jan Petrasek
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Arvin Iracheta-Vellve
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Banishree Saha
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Abhishek Satishchandran
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Karen Kodys
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Katherine A Fitzgerald
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Evelyn A Kurt-Jones
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
32
|
Abstract
Alcoholic liver disease (ALD) is a complex process that includes a wide spectrum of hepatic lesions, from steatosis to cirrhosis. Cell injury, inflammation, oxidative stress, regeneration and bacterial translocation are key drivers of alcohol-induced liver injury. Alcoholic hepatitis is the most severe form of all the alcohol-induced liver lesions. Animal models of ALD mainly involve mild liver damage (that is, steatosis and moderate inflammation), whereas severe alcoholic hepatitis in humans occurs in the setting of cirrhosis and is associated with severe liver failure. For this reason, translational studies using humans and human samples are crucial for the development of new therapeutic strategies. Although multiple attempts have been made to improve patient outcome, the treatment of alcoholic hepatitis is still based on abstinence from alcohol and brief exposure to corticosteroids. However, nearly 40% of patients with the most severe forms of alcoholic hepatitis will not benefit from treatment. We suggest that future clinical trials need to focus on end points other than mortality. This Review discusses the main pathways associated with the progression of liver disease, as well as potential therapeutic strategies targeting these pathways.
Collapse
|
33
|
Pham DD, Fattal E, Tsapis N. Pulmonary drug delivery systems for tuberculosis treatment. Int J Pharm 2014; 478:517-29. [PMID: 25499020 DOI: 10.1016/j.ijpharm.2014.12.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 01/09/2023]
Abstract
Tuberculosis (TB) remains a major global health problem as it is the second leading cause of death from an infectious disease worldwide, after the human immunodeficiency virus (HIV). Conventional treatments fail either because of poor patient compliance to the drug regimen or due to the emergence of multidrug-resistant tuberculosis. The aim of this review is to give an update on the information available on tuberculosis, its pathogenesis and current antitubercular chemotherapies. Direct lung delivery of anti-TB drugs using pulmonary delivery systems is then reviewed since it appears as an interesting strategy to improve first and second line drugs. A particular focus is place on research performed on inhalable dry powder formulations of antitubercular drugs to target alveolar macrophages where the bacteria develop. Numerous studies show that anti-TB drugs can be incorporated into liposomes, microparticles or nanoparticles which can be delivered as dry powders to the deep lungs for instantaneous, targeted and/or controlled release. Treatments of infected animals show a significant reduction of the number of viable bacteria as well as a decrease in tissue damage. These new formulations appear as interesting alternatives to deliver directly drugs to the lungs and favor efficient TB treatment.
Collapse
Affiliation(s)
- Dinh-Duy Pham
- Univ Paris-Sud Institut Galien Paris-Sud, CNRS UMR 8612, LabEx LERMIT, Châtenay-Malabry, France; University of Medicine and Pharmacy, Faculty of Pharmacy, Pharmaceutics Department, 41-43 Dinh Tien Hoang, District 1, Ho Chi Minh City, Viet Nam; Ton Duc Thang University, Faculty of Applied Science, Division of Pharmacotechnology and Biopharmacy, Ho Chi Minh City, Viet Nam.
| | - Elias Fattal
- Univ Paris-Sud Institut Galien Paris-Sud, CNRS UMR 8612, LabEx LERMIT, Châtenay-Malabry, France
| | - Nicolas Tsapis
- Univ Paris-Sud Institut Galien Paris-Sud, CNRS UMR 8612, LabEx LERMIT, Châtenay-Malabry, France.
| |
Collapse
|
34
|
Peverill W, Powell LW, Skoien R. Evolving concepts in the pathogenesis of NASH: beyond steatosis and inflammation. Int J Mol Sci 2014; 15:8591-638. [PMID: 24830559 PMCID: PMC4057750 DOI: 10.3390/ijms15058591] [Citation(s) in RCA: 277] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/20/2014] [Accepted: 04/17/2014] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterised by hepatic steatosis and inflammation and, in some patients, progressive fibrosis leading to cirrhosis. An understanding of the pathogenesis of NASH is still evolving but current evidence suggests multiple metabolic factors critically disrupt homeostasis and induce an inflammatory cascade and ensuing fibrosis. The mechanisms underlying these changes and the complex inter-cellular interactions that mediate fibrogenesis are yet to be fully elucidated. Lipotoxicity, in the setting of excess free fatty acids, obesity, and insulin resistance, appears to be the central driver of cellular injury via oxidative stress. Hepatocyte apoptosis and/or senescence contribute to activation of the inflammasome via a variety of intra- and inter-cellular signalling mechanisms leading to fibrosis. Current evidence suggests that periportal components, including the ductular reaction and expansion of the hepatic progenitor cell compartment, may be involved and that the Th17 response may mediate disease progression. This review aims to provide an overview of the pathogenesis of NASH and summarises the evidence pertaining to key mechanisms implicated in the transition from steatosis and inflammation to fibrosis. Currently there are limited treatments for NASH although an increasing understanding of its pathogenesis will likely improve the development and use of interventions in the future.
Collapse
Affiliation(s)
- William Peverill
- Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia.
| | - Lawrie W Powell
- Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia.
| | - Richard Skoien
- Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia.
| |
Collapse
|
35
|
Buck LD, Inman SW, Rusyn I, Griffith LG. Co-regulation of primary mouse hepatocyte viability and function by oxygen and matrix. Biotechnol Bioeng 2014; 111:1018-27. [PMID: 24222008 PMCID: PMC4110975 DOI: 10.1002/bit.25152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/18/2013] [Accepted: 11/06/2013] [Indexed: 01/02/2023]
Abstract
Although oxygen and extracellular matrix cues both influence differentiation state and metabolic function of primary rat and human hepatocytes, relatively little is known about how these factors together regulate behaviors of primary mouse hepatocytes in culture. To determine the effects of pericellular oxygen tension on hepatocellular function, we employed two methods of altering oxygen concentration in the local cellular microenvironment of cells cultured in the presence or absence of an extracellular matrix (Matrigel) supplement. By systematically altering medium depth and gas phase oxygen tension, we created multiple oxygen regimes (hypoxic, normoxic, and hyperoxic) and measured the local oxygen concentrations in the pericellular environment using custom-designed oxygen microprobes. From these measurements of oxygen concentrations, we derived values of oxygen consumption rates under a spectrum of environmental contexts, thus providing the first reported estimates of these values for primary mouse hepatocytes. Oxygen tension and matrix microenvironment were found to synergistically regulate hepatocellular survival and function as assessed using quantitative image analysis for cells stained with vital dyes, and assessment of secretion of albumin. Hepatocellular viability was affected only at strongly hypoxic conditions. Surprisingly, albumin secretion rates were greatest at a moderately supra-physiological oxygen concentration, and this effect was mitigated at still greater supra-physiological concentrations. Matrigel enhanced the effects of oxygen on retention of function. This study underscores the importance of carefully controlling cell density, medium depth, and gas phase oxygen, as the effects of these parameters on local pericellular oxygen tension and subsequent hepatocellular function are profound.
Collapse
Affiliation(s)
- Lorenna D. Buck
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - S. Walker Inman
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - Ivan Rusyn
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Linda G. Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| |
Collapse
|
36
|
Janes KA, Lauffenburger DA. Models of signalling networks - what cell biologists can gain from them and give to them. J Cell Sci 2013; 126:1913-21. [PMID: 23720376 DOI: 10.1242/jcs.112045] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Computational models of cell signalling are perceived by many biologists to be prohibitively complicated. Why do math when you can simply do another experiment? Here, we explain how conceptual models, which have been formulated mathematically, have provided insights that directly advance experimental cell biology. In the past several years, models have influenced the way we talk about signalling networks, how we monitor them, and what we conclude when we perturb them. These insights required wet-lab experiments but would not have arisen without explicit computational modelling and quantitative analysis. Today, the best modellers are cross-trained investigators in experimental biology who work closely with collaborators but also undertake experimental work in their own laboratories. Biologists would benefit by becoming conversant in core principles of modelling in order to identify when a computational model could be a useful complement to their experiments. Although the mathematical foundations of a model are useful to appreciate its strengths and weaknesses, they are not required to test or generate a worthwhile biological hypothesis computationally.
Collapse
Affiliation(s)
- Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
37
|
Primary hepatocytes and their cultures in liver apoptosis research. Arch Toxicol 2013; 88:199-212. [PMID: 24013573 DOI: 10.1007/s00204-013-1123-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/29/2013] [Indexed: 01/18/2023]
Abstract
Apoptosis not only plays a key role in physiological demise of defunct hepatocytes, but is also associated with a plethora of acute and chronic liver diseases as well as with hepatotoxicity. The present paper focuses on the modelling of this mode of programmed cell death in primary hepatocyte cultures. Particular attention is paid to the activation of spontaneous apoptosis during the isolation of hepatocytes from the liver, its progressive manifestation upon the subsequent establishment of cell cultures and simultaneously to strategies to counteract this deleterious process. In addition, currently applied approaches to experimentally induce controlled apoptosis in this in vitro setting for mechanistic research purposes and thereby its detection using relevant biomarkers are reviewed.
Collapse
|
38
|
Rodriguez-Fernandez M, Grosman B, Yuraszeck TM, Helwig BG, Leon LR, Doyle III FJ. Modeling the intra- and extracellular cytokine signaling pathway under heat stroke in the liver. PLoS One 2013; 8:e73393. [PMID: 24039931 PMCID: PMC3764238 DOI: 10.1371/journal.pone.0073393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 07/22/2013] [Indexed: 12/24/2022] Open
Abstract
Heat stroke (HS) is a life-threatening illness induced by prolonged exposure to a hot environment that causes central nervous system abnormalities and severe hyperthermia. Current data suggest that the pathophysiological responses to heat stroke may not only be due to the immediate effects of heat exposure per se but also the result of a systemic inflammatory response syndrome (SIRS). The observation that pro- (e.g., IL-1) and anti-inflammatory (e.g., IL-10) cytokines are elevated concomitantly during recovery suggests a complex network of interactions involved in the manifestation of heat-induced SIRS. In this study, we measured a set of circulating cytokine/soluble cytokine receptor proteins and liver cytokine and receptor mRNA accumulation in wild-type and tumor necrosis factor (TNF) receptor knockout mice to assess the effect of neutralization of TNF signaling on the SIRS following HS. Using a systems approach, we developed a computational model describing dynamic changes (intra- and extracellular events) in the cytokine signaling pathways in response to HS that was fitted to novel genomic (liver mRNA accumulation) and proteomic (circulating cytokines and receptors) data using global optimization. The model allows integration of relevant biological knowledge and formulation of new hypotheses regarding the molecular mechanisms behind the complex etiology of HS that may serve as future therapeutic targets. Moreover, using our unique modeling framework, we explored cytokine signaling pathways with three in silico experiments (e.g. by simulating different heat insult scenarios and responses in cytokine knockout strains in silico).
Collapse
Affiliation(s)
- Maria Rodriguez-Fernandez
- Institute for Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, California, United States of America
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, United States of America
| | - Benyamin Grosman
- Institute for Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, California, United States of America
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, United States of America
| | - Theresa M. Yuraszeck
- Institute for Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, California, United States of America
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, United States of America
| | - Bryan G. Helwig
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States of America
| | - Lisa R. Leon
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States of America
| | - Francis J. Doyle III
- Institute for Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, California, United States of America
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, United States of America
- * E-mail:
| |
Collapse
|
39
|
Acute toxicity of amorphous silica nanoparticles in intravenously exposed ICR mice. PLoS One 2013; 8:e61346. [PMID: 23593469 PMCID: PMC3625170 DOI: 10.1371/journal.pone.0061346] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 03/07/2013] [Indexed: 11/20/2022] Open
Abstract
This study aimed to evaluate the acute toxicity of intravenously administrated amorphous silica nanoparticles (SNPs) in mice. The lethal dose, 50 (LD50), of intravenously administrated SNPs was calculated in mice using Dixon's up-and-down method (262.45±33.78 mg/kg). The acute toxicity was evaluated at 14 d after intravenous injection of SNPs at 29.5, 103.5 and 177.5 mg/kg in mice. A silicon content analysis using ICP-OES found that SNPs mainly distributed in the resident macrophages of the liver (10.24%ID/g), spleen (34.78%ID/g) and lung (1.96%ID/g). TEM imaging showed only a small amount in the hepatocytes of the liver and in the capillary endothelial cells of the lung and kidney. The levels of serum LDH, AST and ALT were all elevated in the SNP treated groups. A histological examination showed lymphocytic infiltration, granuloma formation, and hydropic degeneration in liver hepatocytes; megakaryocyte hyperplasia in the spleen; and pneumonemia and pulmonary interstitial thickening in the lung of the SNP treated groups. A CD68 immunohistochemistry stain indicated SNPs induced macrophage proliferation in the liver and spleen. The results suggest injuries induced by the SNPs in the liver, spleen and lungs. Mononuclear phagocytic cells played an important role in the injury process.
Collapse
|
40
|
Abstract
Activation of inflammatory signaling pathways is of central importance in the pathogenesis of alcoholic liver disease (ALD) and nonalcoholic steatohepatitis (NASH). Recent studies demonstrated that Toll-like receptors, the sensors of microbial and endogenous danger signals, are expressed and activated in innate immune cells as well as in parenchymal cells in the liver and thereby contribute to ALD and NASH. In this review, we emphasize the importance of gut-derived endotoxin and its recognition by TLR4 in the liver. The significance of TLR-induced intracellular signaling pathways and cytokine production as well as the contribution of individual cell types to the inflammation is evaluated. The contribution of TLR signaling to the induction of liver fibrosis and to the progression of liver pathology mediated by viral pathogens is reviewed in the context of ALD and NASH.
Collapse
Affiliation(s)
- Jan Petrasek
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | |
Collapse
|
41
|
The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. BIOMED RESEARCH INTERNATIONAL 2012; 2013:187204. [PMID: 23533994 PMCID: PMC3591180 DOI: 10.1155/2013/187204] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/13/2012] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and aggressive human cancers worldwide. HCC is an example of inflammation-related cancer and represents a paradigm of the relation occurring between tumor microenvironment and tumor development. Tumor-associated macrophages (TAMs) are a major component of leukocyte infiltrate of tumors and play a pivotal role in tumor progression of inflammation-related cancer, including HCC. Several studies indicate that, in the tumor microenvironment, TAMs acquire an M2-polarized phenotype and promote angiogenesis, metastasis, and suppression of adaptive immunity through the expression of cytokines, chemokines, growth factors, and matrix metalloproteases. Indeed, an established M2 macrophage population has been associated with poor prognosis in HCC. The molecular links that connect cancer cells and TAMs are not completely known, but recent studies have demonstrated that NF-κB, STAT-3, and HIF-1 signaling pathways play key roles in this crosstalk. In this paper, we discuss the current knowledge about the role of TAMs in HCC development, highlighting the role of TAM-derived cytokines, chemokines, and growth factors in the initiation and progression of liver cancer and outlining the signaling pathways involved in the interplay between cancer cells and TAMs.
Collapse
|
42
|
Oelker AM, Morey SM, Griffith LG, Hammond PT. Helix versus coil polypeptide macromers: gel networks with decoupled stiffness and permeability. SOFT MATTER 2012; 42:10887-10895. [PMID: 24575148 PMCID: PMC3932710 DOI: 10.1039/c2sm26487k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
As a platform for investigating the individual effects of substrate stiffness, permeability, and ligand density on cellular behavior, we developed a set of hydrogels with stiffness tuned by polymer backbone rigidity, independent of cross-link density and concentration. Previous studies report that poly(propargyl-L-glutamate) (PPLG), synthesized by ring-opening polymerization of the N-carboxy anhydride of γ-propargyl-L-glutamate (γpLglu), adopts a rigid a-helix conformation: we hypothesized that a random copolymer (PPDLG) with equal amounts of γpLglu and γ-propargyl-D-glutamate (γpDglu) monomers would exhibit a more flexible random coil conformation. The resulting macromers exhibited narrow molecular weight distributions (PDI = 1.15) and were grafted with ethylene glycol groups using a highly efficient "click" azide/alkyne cycloaddition reaction with average grafting efficiency of 97% for PPLG and 85% for PPDLG. The polypeptide secondary structure, characterized via circular dichroism spectroscopy, FTIR spectroscopy, and dynamic light scattering, is indeed dependent upon monomer chirality: PPLG exhibits an α-helix conformation while PPDLG adopts a random coil conformation. Hydrogel networks produced by cross-linking either helical or random coil polypeptides with poly(ethylene glycol) (PEG) were analyzed for amount of swelling, gelation efficiency, and permeability to a model protein. In addition, the elastic modulus of helical and coil polypeptide gels was determined by AFM indentation in fluid. Importantly, we found that helical and coil polypeptide gels exhibited similar swelling and permeability but different stiffnesses, which correspond to predictions from the theory of semi-flexible chains.
Collapse
Affiliation(s)
- Abigail M. Oelker
- MIT Department of Chemical Engineering, 77 Massachusetts Avenue, Building 76–553, Cambridge, MA USA. Fax: 617-253-8557; Tel: 617-258-7577
| | - Shannon M. Morey
- MIT Department of Chemistry, 77 Massachusetts Avenue, Building 18-380, Cambridge, MA USA
| | - Linda G. Griffith
- MIT Department of Biological Engineering, 77 Massachusetts Avenue, Building 16-429, Cambridge, MA USA. Fax: 617-253-2400; Tel: 617-253-0013
| | - Paula T. Hammond
- MIT Department of Chemical Engineering, 77 Massachusetts Avenue, Building 76–553, Cambridge, MA USA. Fax: 617-253-8557; Tel: 617-258-7577
| |
Collapse
|
43
|
Petrasek J, Bala S, Csak T, Lippai D, Kodys K, Menashy V, Barrieau M, Min SY, Kurt-Jones EA, Szabo G. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J Clin Invest 2012; 122:3476-89. [PMID: 22945633 DOI: 10.1172/jci60777] [Citation(s) in RCA: 562] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 07/19/2012] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD) is characterized by steatosis and upregulation of proinflammatory cytokines, including IL-1β. IL-1β, type I IL-1 receptor (IL-1R1), and IL-1 receptor antagonist (IL-1Ra) are all important regulators of the IL-1 signaling complex, which plays a role in inflammation. Furthermore, IL-1β maturation is dependent on caspase-1 (Casp-1). Using IL-1Ra-treated mice as well as 3 mouse models deficient in regulators of IL-1β activation (Casp-1 and ASC) or signaling (IL-1R1), we found that IL-1β signaling is required for the development of alcohol-induced liver steatosis, inflammation, and injury. Increased IL-1β was due to upregulation of Casp-1 activity and inflammasome activation. The pathogenic role of IL-1 signaling in ALD was attributable to the activation of the inflammasome in BM-derived Kupffer cells. Importantly, in vivo intervention with a recombinant IL-1Ra blocked IL-1 signaling and markedly attenuated alcohol-induced liver inflammation, steatosis, and damage. Furthermore, physiological doses of IL-1β induced steatosis, increased the inflammatory and prosteatotic chemokine MCP-1 in hepatocytes, and augmented TLR4-dependent upregulation of inflammatory signaling in macrophages. In conclusion, we demonstrated that Casp-1-dependent upregulation of IL-1β and signaling mediated by IL-1R1 are crucial in ALD pathogenesis. Our findings suggest a potential role of IL-1R1 inhibition in the treatment of ALD.
Collapse
Affiliation(s)
- Jan Petrasek
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fouraschen SMG, Pan Q, de Ruiter PE, Farid WRR, Kazemier G, Kwekkeboom J, Ijzermans JNM, Metselaar HJ, Tilanus HW, de Jonge J, van der Laan LJW. Secreted factors of human liver-derived mesenchymal stem cells promote liver regeneration early after partial hepatectomy. Stem Cells Dev 2012; 21:2410-9. [PMID: 22455365 DOI: 10.1089/scd.2011.0560] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rapid liver regeneration is required after living-donor liver transplantation and oncologic liver resections to warrant sufficient liver function and prevent small-for-size syndrome. Recent evidence highlights the therapeutic potential of mesenchymal stem cells (MSC) for treatment of toxic liver injury, but whether MSC and their secreted factors stimulate liver regeneration after surgical injury remains unknown. Therefore, the aim of this study is to investigate the effect of human liver-derived MSC-secreted factors in an experimental liver resection model. C57BL/6 mice were subjected to a 70% partial hepatectomy and treated with either concentrated MSC-conditioned culture medium (MSC-CM) or vehicle control. Animals were analyzed for liver and body weight, hepatocyte proliferation, and hepatic gene expression. Effects of MSC-CM on gene expression in a human hepatocyte-like cell line (Huh7 cells) were analyzed using genome-wide gene expression arrays. Liver regeneration was significantly stimulated by MSC-CM as shown by an increase in liver to body weight ratio and hepatocyte proliferation. MSC-CM upregulated hepatic gene expression of cytokines and growth factors relevant for cell proliferation, angiogenesis, and anti-inflammatory responses. In vitro, treatment of Huh7 cells with MSC-CM significantly altered expression levels of ~3,000 genes. Functional analysis revealed strong effects on networks associated with protein synthesis, cell survival, and cell proliferation. This study shows that treatment with MSC-derived factors can promote hepatocyte proliferation and regenerative responses in the early phase after surgical resection. MSC-CM may represent a feasible new strategy to promote liver regeneration in patients undergoing extensive liver resection or after transplantation of small liver grafts.
Collapse
Affiliation(s)
- Suomi M G Fouraschen
- Laboratory of Experimental Transplantation and Intestinal Surgery, Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Aramwit P, Siritientong T, Srichana T. Potential applications of silk sericin, a natural protein from textile industry by-products. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2012; 30:217-224. [PMID: 21558082 DOI: 10.1177/0734242x11404733] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Silk is composed of two major proteins, fibroin (fibrous protein) and sericin (globular, gumming protein). Fibroin has been used in textile manufacturing and for several biomaterial applications, whereas sericin is considered a waste material in the textile industry. Sericin has recently been found to activate the proliferation of several cell-lines and has also shown various biological activities. Sericin can form a gel by itself; however, after mixing with other polymers and cross-linking it can form a film or a scaffold with good characteristics that can be used in the cosmetic and pharmaceutical industries. Sericin is proven to cause no immunological responses, which has resulted in a more acceptable material for biological applications.
Collapse
Affiliation(s)
- Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
| | | | | |
Collapse
|
46
|
Interleukin-1 receptor antagonist modulates the early phase of liver regeneration after partial hepatectomy in mice. PLoS One 2011; 6:e25442. [PMID: 21980458 PMCID: PMC3181321 DOI: 10.1371/journal.pone.0025442] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 09/05/2011] [Indexed: 11/25/2022] Open
Abstract
Background Cytokine administration is a potential therapy for acute liver failure by reducing inflammatory responses and favour hepatocyte regeneration. The aim of this study was to evaluate the role of interleukin-1 receptor antagonist (IL-1ra) during liver regeneration and to study the effect of a recombinant human IL-1ra on liver regeneration. Methods We performed 70%-hepatectomy in wild type (WT) mice, IL-1ra knock-out (KO) mice and in WT mice treated by anakinra. We analyzed liver regeneration at regular intervals by measuring the blood levels of cytokines, the hepatocyte proliferation by bromodeoxyuridin (BrdU) incorporation, proliferating cell nuclear antigen (PCNA) and Cyclin D1 expression. The effect of anakinra on hepatocyte proliferation was also tested in vitro using human hepatocytes. Results At 24h and at 48h after hepatectomy, IL-1ra KO mice had significantly higher levels of pro-inflammatory cytokines (IL-6, IL-1β and MCP-1) and a reduced and delayed hepatocyte proliferation measured by BrdU incorporation, PCNA and Cyclin D1 protein levels, when compared to WT mice. IGFBP-1 and C/EBPβ expression was significantly decreased in IL-1ra KO compared to WT mice. WT mice treated with anakinra showed significantly decreased levels of IL-6 and significantly higher hepatocyte proliferation at 24h compared to untreated WT mice. In vitro, primary human hepatocytes treated with anakinra showed significantly higher proliferation at 24h compared to hepatocytes without treatment. Conclusion IL1ra modulates the early phase of liver regeneration by decreasing the inflammatory stress and accelerating the entry of hepatocytes in proliferation. IL1ra might be a therapeutic target to improve hepatocyte proliferation.
Collapse
|
47
|
Guerra MT, Fonseca EA, Melo FM, Andrade VA, Aguiar CJ, Andrade LM, Pinheiro ACN, Casteluber MF, Resende RR, Pinto MCX, Fernandes SOA, Cardoso VN, Souza–Fagundes EM, Menezes GB, de Paula AM, Nathanson MH, Leite MF. Mitochondrial calcium regulates rat liver regeneration through the modulation of apoptosis. Hepatology 2011; 54:296-306. [PMID: 21503946 PMCID: PMC3125477 DOI: 10.1002/hep.24367] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Subcellular Ca(2+) signals control a variety of responses in the liver. For example, mitochondrial Ca(2+) (Ca(mit)(2+)) regulates apoptosis, whereas Ca(2+) in the nucleus regulates cell proliferation. Because apoptosis and cell growth can be related, we investigated whether Ca(mit)(2+) also affects liver regeneration. The Ca(2+)-buffering protein parvalbumin, which was targeted to the mitochondrial matrix and fused to green fluorescent protein, was expressed in the SKHep1 liver cell line; the vector was called parvalbumin-mitochondrial targeting sequence-green fluorescent protein (PV-MITO-GFP). This construct properly localized to and effectively buffered Ca(2+) signals in the mitochondrial matrix. Additionally, the expression of PV-MITO-GFP reduced apoptosis induced by both intrinsic and extrinsic pathways. The reduction in cell death correlated with the increased expression of antiapoptotic genes [B cell lymphoma 2 (bcl-2), myeloid cell leukemia 1, and B cell lymphoma extra large] and with the decreased expression of proapoptotic genes [p53, B cell lymphoma 2-associated X protein (bax), apoptotic peptidase activating factor 1, and caspase-6]. PV-MITO-GFP was also expressed in hepatocytes in vivo with an adenoviral delivery system. Ca(mit)(2+) buffering in hepatocytes accelerated liver regeneration after partial hepatectomy, and this effect was associated with the increased expression of bcl-2 and the decreased expression of bax. CONCLUSION Together, these results reveal an essential role for Ca(mit)(2+) in hepatocyte proliferation and liver regeneration, which may be mediated by the regulation of apoptosis.
Collapse
Affiliation(s)
- Mateus T. Guerra
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil, Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Emerson A. Fonseca
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flavia M. Melo
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - V. A Andrade
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carla J. Aguiar
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil, Izabela Hendrix Metodist Institute
| | - Lídia M. Andrade
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil, René Rachou Research Center, Oswaldo Cruz Foundation
| | - Ana Cristina N. Pinheiro
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marisa F. Casteluber
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R. Resende
- Nanobiotechnology Laboratory, Federal University of São João del Rei, Brazil
| | - Mauro C. X. Pinto
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Simone O. A. Fernandes
- Radioisotope Laboratory, Department of Clinical and Toxicological Analysis – Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valbert N. Cardoso
- Radioisotope Laboratory, Department of Clinical and Toxicological Analysis – Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Elaine M. Souza–Fagundes
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gustavo B. Menezes
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana M. de Paula
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Michael H. Nathanson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - M. Fatima Leite
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil, Howard Hughes Medical Institute
| |
Collapse
|
48
|
Williams CM, Mehta G, Peyton SR, Zeiger AS, Van Vliet KJ, Griffith LG. Autocrine-controlled formation and function of tissue-like aggregates by primary hepatocytes in micropatterned hydrogel arrays. Tissue Eng Part A 2011; 17:1055-68. [PMID: 21121876 DOI: 10.1089/ten.tea.2010.0398] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The liver carries out a variety of essential functions regulated in part by autocrine signaling, including hepatocyte-produced growth factors and extracellular matrix (ECM). The local concentrations of autocrine factors are governed by a balance between receptor-mediated binding at the cell surface and diffusion into the local matrix and are thus expected to be influenced by the dimensionality of the cell culture environment. To investigate the role of growth factor and ECM-modulated autocrine signaling in maintaining appropriate primary hepatocyte survival, metabolic functions, and polarity, we created three-dimensional cultures of defined geometry using micropatterned semisynthetic polyethylene glycol-fibrinogen hydrogels to provide a mechanically compliant, nonadhesive material platform that could be modified by cell-secreted factors. We found that in the absence of exogenous peptide growth factors or ECM, hepatocytes retain the epidermal growth factor (EGF) receptor ligands (EGF and transforming growth factor-α) and the proto-oncogenic mesenchymal epithelial transition factor (c-MET) ligand hepatocyte growth factor (HGF), along with fibronectin. Further, hepatocytes cultured in this three-dimensional microenvironment maintained high levels of liver-specific functions over the 10-day culture period. Function-blocking inhibitors of α5β1 or EGF receptor dramatically reduced cell viability and function, suggesting that signaling by both these receptors is needed for in vitro survival and function of hepatocytes in the absence of other exogenous signals.
Collapse
Affiliation(s)
- Courtney M Williams
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
49
|
Petrasek J, Dolganiuc A, Csak T, Kurt-Jones EA, Szabo G. Type I interferons protect from Toll-like receptor 9-associated liver injury and regulate IL-1 receptor antagonist in mice. Gastroenterology 2011; 140:697-708.e4. [PMID: 20727895 PMCID: PMC3031737 DOI: 10.1053/j.gastro.2010.08.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 07/27/2010] [Accepted: 08/12/2010] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Liver inflammation and injury are mediated by the innate immune response, which is regulated by Toll-like receptors (TLR). Activation of TLR9 induces type I interferons (IFNs) via the interferon regulatory factor (IRF)-7. We investigated the roles of type I IFNs in TLR9-associated liver injury. METHODS Wild-type (WT), IRF7-deficient, and IFN-α/β receptor 1 (IFNAR1)-deficient mice were stimulated with TLR9 or TLR2 ligands. Findings from mice were verified in cultured hepatocytes and liver mononuclear cells (LMNCs) as well as in vivo experiments using recombinant type I IFN and interleukin-1 receptor antagonist (IL-1ra). RESULTS Type I IFNs were up-regulated during TLR9-associated liver injury in WT mice. IRF7- and IFNAR1-deficient mice, which have disruptions in type I IFN production or signaling, respectively, had increased liver damage and inflammation, decreased recruitment of dendritic cells, and increased production of tumor necrosis factor α by LMNCs. These findings indicate that type I IFNs have anti-inflammatory activities in liver. IL-1ra, which is produced by LMNCs and hepatocytes, is an IFN-regulated antagonist of the proinflammatory cytokine IL-1β; IRF7- and IFNAR1-deficient mice had decreased levels of IL-1ra compared with WT mice. IL-1ra protected cultured hepatocytes from IL-1β-mediated sensitization to cytotoxicity from tumor necrosis factor α. In vivo exposure to type I IFN, which induced IL-1ra, or administration of IL-1ra reduced TLR9-associated liver injury; the protective effect of type I IFNs therefore appears to be mediated by IFN-dependent induction of IL-1ra. CONCLUSIONS Type I IFNs have anti-inflammatory effects mediated by endogenous IL-1ra, which regulates the extent of TLR9-induced liver damage. Type I IFN signaling is therefore required for protection from immune-mediated liver injury.
Collapse
|
50
|
Toll-like receptors in the pathogenesis of alcoholic liver disease. Gastroenterol Res Pract 2010; 2010. [PMID: 20827314 PMCID: PMC2933900 DOI: 10.1155/2010/710381] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 07/20/2010] [Indexed: 12/15/2022] Open
Abstract
In the multifactorial pathophysiology of alcoholic liver disease (ALD), inflammatory cascade activation plays a central role. Recent studies demonstrated that Toll-like Receptors, the sensors of microbial and endogenous danger signals, are expressed and activated in innate immune cells as well as in parenchymal cells in the liver and thereby contribute to ALD. In this paper, we discuss the importance of gut-derived endotoxin and its recognition by TLR4. The significance of TLR-induced intracellular signaling pathways and cytokine production as well as the contribution of reactive oxygen radicals is evaluated. The contribution of TLR signaling to induction of liver fibrosis and hepatocellular cancer is reviewed in the context of alcohol-induced liver disease.
Collapse
|