1
|
Kremer KN, Khammash HA, Miranda AM, Rutt LN, Twardy SM, Anton PE, Campbell ML, Garza-Ortiz C, Orlicky DJ, Pelanda R, McCullough RL, Torres RM. Liver sinusoidal endothelial cells regulate the balance between hepatic immunosuppression and immunosurveillance. Front Immunol 2025; 15:1497788. [PMID: 39896805 PMCID: PMC11782242 DOI: 10.3389/fimmu.2024.1497788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025] Open
Abstract
As a metabolic center, the liver prevents inappropriate immune responses to abundant dietary antigens within the liver that could result in liver injury. This self-preservation mechanism can however decrease the efficiency of immunosurveillance of malignant cells by CD8 T cells. Hepatocellular carcinoma (HCC) is initiated by chronic viral infections, chronic alcohol consumption, and/or a fatty diet that leads to liver injury, fibrosis, and cirrhosis. HCC patients have high levels of dysfunctional and exhausted T cells, however, it is unclear which stage of HCC development contributes to T cell dysfunction. Repair of liver injury is initiated by interactions between injured hepatocytes and liver sinusoidal endothelial cells (LSEC), however, chronic injury can lead to fibrosis. Here, using a diethylnitrosamine/carbon tetrachloride (DEN/CCl4) mouse model of early HCC development, we demonstrate that chronic liver injury and fibrosis are sufficient to induce a CD8 T cell exhaustion signature with a corresponding increase in expression of immunosuppressive molecules on LSEC. We show that LSEC alter T cell function at various stages of T cell differentiation/activation. LSEC compete with dendritic cells presenting the same antigen to naïve CD8 T cells resulting in a unique T cell phenotype. Furthermore, LSEC abrogate killing of target cells, in an antigen-dependent manner, by previously activated effector CD8 T cells, and LSEC change the effector cell cytokine profile. Moreover, LSEC induce functional T cell exhaustion under low dose chronic stimulation conditions. Thus, LSEC critically regulate the balance between preventing/limiting liver injury and permitting sufficient tumor immunosurveillance with normal hepatic functions likely contributing to HCC development under conditions of chronic liver insult.
Collapse
Affiliation(s)
- Kimberly N. Kremer
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Hadeel A. Khammash
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Anjelica M. Miranda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lauren N. Rutt
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States
| | - Shannon M. Twardy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States
| | - Paige E. Anton
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States
| | - Margaret L. Campbell
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Christian Garza-Ortiz
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Rebecca L. McCullough
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States
| | - Raul M. Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
2
|
Del Bello A, Vionnet J, Congy-Jolivet N, Kamar N. Simultaneous combined transplantation: Intricacies in immunosuppression management. Transplant Rev (Orlando) 2024; 38:100871. [PMID: 39096886 DOI: 10.1016/j.trre.2024.100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/05/2024]
Abstract
Simultaneous combined transplantation (SCT), i.e. the transplantation of two solid organs within the same procedure, can be required when the patients develop more than one end-stage organ failure. The development of SCT over the last 20 years could only be possible thanks to progress in the surgical techniques and in the perioperative management of patients in an ageing population. Performing such major transplant surgeries from the same donor, in a short amount of time, and in critical pathophysiological conditions, is often considered to be counterbalanced by the immune benefits expected from these interventions. However, SCT includes a wide array of different transplant combinations, with each time a different immunological constellation. Recent research offers new insights into the immune mechanisms involved in these different settings. Progress in the understanding of these immunological intricacies help to address the optimal induction and maintenance immunosuppressive treatment strategies. In this review, we summarize the different immunological benefits according to the type of SCT performed. We also incorporate the main outcomes according to the immunological risk at transplantation, and the deleterious impact of preformed or de novo donor-specific antibodies (DSA) in the different types of SCT. Finally, we propose comprehensive and evidence-based induction and maintenance immunosuppression strategies guided by the type of SCT.
Collapse
Affiliation(s)
- Arnaud Del Bello
- Department of Nephrology and Organ Transplantation, CHU de Toulouse, Toulouse, France; Centre Hospitalier et Universitaire, Université Paul Sabatier Toulouse III, Toulouse, France; Department of Vascular Biology, Institute of Metabolic and Cardiovascular Diseases (I2MC), France.
| | - Julien Vionnet
- Transplantation Center and Service of Gastroenterology and Hepatology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Congy-Jolivet
- Centre Hospitalier et Universitaire, Université Paul Sabatier Toulouse III, Toulouse, France; Laboratory of Immunology, Biology Department, Centre Hospitalier et Universitaire (CHU) de Toulouse, Toulouse, France; INSERM UMR 1037, DynAct team, CRCT, Université Paul Sabatier, Toulouse, France
| | - Nassim Kamar
- Department of Nephrology and Organ Transplantation, CHU de Toulouse, Toulouse, France; Centre Hospitalier et Universitaire, Université Paul Sabatier Toulouse III, Toulouse, France; INSERM UMR 1037, DynAct team, CRCT, Université Paul Sabatier, Toulouse, France; Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1043-CNRS 5282, Toulouse, France
| |
Collapse
|
3
|
He Q, He W, Dong H, Guo Y, Yuan G, Shi X, Wang D, Lu F. Role of liver sinusoidal endothelial cell in metabolic dysfunction-associated fatty liver disease. Cell Commun Signal 2024; 22:346. [PMID: 38943171 PMCID: PMC11214243 DOI: 10.1186/s12964-024-01720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells that represent the interface between blood cells on one side and hepatocytes on the other side. LSECs not only form a barrier within the hepatic sinus, but also play important physiological functions such as regulating hepatic vascular pressure, anti-inflammatory and anti-fibrotic. Pathologically, pathogenic factors can induce LSECs capillarization, that is, loss of fenestra and dysfunction, which are conducive to early steatosis, lay the foundation for the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), and accelerate metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. The unique localization, phenotype, and function of LSECs make them potential candidates for reducing liver injury, inflammation, and preventing or reversing fibrosis in the future.
Collapse
Affiliation(s)
- Qiongyao He
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wu He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Hui Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Yuan
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoli Shi
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Wu K, Zhang G, Shen C, Zhu L, Yu C, Sartorius K, Ding W, Jiang Y, Lu Y. Role of T cells in liver metastasis. Cell Death Dis 2024; 15:341. [PMID: 38755133 PMCID: PMC11099083 DOI: 10.1038/s41419-024-06726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
The liver is a major metastatic site (organ) for gastrointestinal cancers (such as colorectal, gastric, and pancreatic cancers) as well as non-gastrointestinal cancers (such as lung, breast, and melanoma cancers). Due to the innate anatomical position of the liver, the apoptosis of T cells in the liver, the unique metabolic regulation of hepatocytes and other potential mechanisms, the liver tends to form an immunosuppressive microenvironment and subsequently form a pre-metastatic niche (PMN), which can promote metastasis and colonization by various tumor cells(TCs). As a result, the critical role of immunoresponse in liver based metastasis has become increasingly appreciated. T cells, a centrally important member of adaptive immune response, play a significant role in liver based metastases and clarifying the different roles of the various T cells subsets is important to guide future clinical treatment. In this review, we first introduce the predisposing factors and related mechanisms of liver metastasis (LM) before introducing the PMN and its transition to LM. Finally, we detail the role of different subsets of T cells in LM and advances in the management of LM in order to identify potential therapeutic targets for patients with LM.
Collapse
Affiliation(s)
- Kejia Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guozhu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Emergency Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Changbing Shen
- Department of Hepatobiliary and Pancreatic Surgery, Taizhou Second People's Hospital Affiliated with Yangzhou University, Taizhou, China
| | - Li Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Emergency Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Chongyuan Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Kurt Sartorius
- School of Laboratory Medicine and Molecular Sciences, University of Kwazulu-Natal, Durban, South Africa
- Africa Hepatopancreatobiliary Cancer Consortium, Mayo Clinic, Jacksonville, FL, USA
| | - Wei Ding
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China.
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China.
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China.
| | - Yong Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| | - Yunjie Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Africa Hepatopancreatobiliary Cancer Consortium, Mayo Clinic, Jacksonville, FL, USA.
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China.
| |
Collapse
|
5
|
Yang R, Zheng T, Xiang H, Liu M, Hu K. Lung single-cell RNA profiling reveals response of pulmonary capillary to sepsis-induced acute lung injury. Front Immunol 2024; 15:1308915. [PMID: 38348045 PMCID: PMC10859485 DOI: 10.3389/fimmu.2024.1308915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Background Sepsis-induced acute lung injury (ALI) poses a significant threat to human health. Endothelial cells, especially pulmonary capillaries, are the primary barriers against sepsis in the lungs. Therefore, investigating endothelial cell function is essential to understand the pathophysiological processes of sepsis-induced ALI. Methods We downloaded single-cell RNA-seq expression data from GEO with accession number GSE207651. The mice underwent cecal ligation and puncture (CLP) surgery, and lung tissue samples were collected at 0, 24, and 48 h. The cells were annotated using the CellMarker database and FindAllMarkers functions. GO enrichment analyses were performed using the Metascape software. Gene set enrichment Analysis (GSEA) and variation Analysis (GSVA) were performed to identify differential signaling pathways. Differential expression genes were collected with the "FindMarkers" function. The R package AUCell was used to score individual cells for pathway activities. The Cellchat package was used to explore intracellular communication. Results Granulocytes increased significantly as the duration of endotoxemia increased. However, the number of T cells, NK cells, and B cells declined. Pulmonary capillary cells were grouped into three sub-clusters. Capillary-3 cells were enriched in the sham group, but declined sharply in the CLP.24 group. Capillary-1 cells peaked in the CLP.24 group, while Capillary-2 cells were enriched in the CLP.48 group. Furthermore, we found that Cd74+ Capillary-3 cells mainly participated in immune interactions. Plat+ Capillary-1 and Clec1a+ Capillary-2 are involved in various physiological processes. Regarding cell-cell interactions, Plat+ Capillary-1 plays the most critical role in granulocyte adherence to capillaries during ALI. Cd74+ Capillary cells expressing high levels of major histocompatibility complex (MHC) and mainly interacted with Cd8a+ T cells in the sham group. Conclusion Plat+ capillaries are involved in the innate immune response through their interaction with neutrophils via ICAM-1 adhesion during endotoxemia, while Cd74+ capillaries epxressed high level of MHC proteins play a role in adaptive immune response through their interaction with T cells. However, it remains unclear whether the function of Cd74+ capillaries leans towards immunity or tolerance, and further studies are needed to confirm this.
Collapse
Affiliation(s)
- Ruhao Yang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ting Zheng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongyu Xiang
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Menglin Liu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Groten SA, Smit ER, Janssen EFJ, van den Eshof BL, van Alphen FPJ, van der Zwaan C, Meijer AB, Hoogendijk AJ, Biggelaar MVD. Multi-omics delineation of cytokine-induced endothelial inflammatory states. Commun Biol 2023; 6:525. [PMID: 37188730 PMCID: PMC10184633 DOI: 10.1038/s42003-023-04897-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/02/2023] [Indexed: 05/17/2023] Open
Abstract
Vascular endothelial cells (ECs) form a dynamic interface between blood and tissue and play a crucial role in the progression of vascular inflammation. Here, we aim to dissect the system-wide molecular mechanisms of inflammatory endothelial-cytokine responses. Applying an unbiased cytokine library, we determined that TNFα and IFNγ induced the largest EC response resulting in distinct proteomic inflammatory signatures. Notably, combined TNFα + IFNγ stimulation induced an additional synergetic inflammatory signature. We employed a multi-omics approach to dissect these inflammatory states, combining (phospho-) proteome, transcriptome and secretome and found, depending on the stimulus, a wide-array of altered immune-modulating processes, including complement proteins, MHC complexes and distinct secretory cytokines. Synergy resulted in cooperative activation of transcript induction. This resource describes the intricate molecular mechanisms that are at the basis of endothelial inflammation and supports the adaptive immunomodulatory role of the endothelium in host defense and vascular inflammation.
Collapse
Affiliation(s)
- Stijn A Groten
- Department of Molecular Hematology, Sanquin Research, Amsterdam, 1066 CX, The Netherlands
| | - Eva R Smit
- Department of Molecular Hematology, Sanquin Research, Amsterdam, 1066 CX, The Netherlands
| | - Esmée F J Janssen
- Department of Molecular Hematology, Sanquin Research, Amsterdam, 1066 CX, The Netherlands
| | - Bart L van den Eshof
- Department of Molecular Hematology, Sanquin Research, Amsterdam, 1066 CX, The Netherlands
| | - Floris P J van Alphen
- Department of Molecular Hematology, Sanquin Research, Amsterdam, 1066 CX, The Netherlands
| | - Carmen van der Zwaan
- Department of Molecular Hematology, Sanquin Research, Amsterdam, 1066 CX, The Netherlands
| | - Alexander B Meijer
- Department of Molecular Hematology, Sanquin Research, Amsterdam, 1066 CX, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, 3584 CS, The Netherlands
| | - Arie J Hoogendijk
- Department of Molecular Hematology, Sanquin Research, Amsterdam, 1066 CX, The Netherlands
| | | |
Collapse
|
7
|
Abstract
The critical role of conventional dendritic cells in physiological cross-priming of immune responses to tumors and pathogens is widely documented and beyond doubt. However, there is ample evidence that a wide range of other cell types can also acquire the capacity to cross-present. These include not only other myeloid cells such as plasmacytoid dendritic cells, macrophages and neutrophils, but also lymphoid populations, endothelial and epithelial cells and stromal cells including fibroblasts. The aim of this review is to provide an overview of the relevant literature that analyzes each report cited for the antigens and readouts used, mechanistic insight and in vivo experimentation addressing physiological relevance. As this analysis shows, many reports rely on the exceptionally sensitive recognition of an ovalbumin peptide by a transgenic T cell receptor, with results that therefore cannot always be extrapolated to physiological settings. Mechanistic studies remain basic in most cases but reveal that the cytosolic pathway is dominant across many cell types, while vacuolar processing is most encountered in macrophages. Studies addressing physiological relevance rigorously remain exceptional but suggest that cross-presentation by non-dendritic cells may have significant impact in anti-tumor immunity and autoimmunity.
Collapse
Affiliation(s)
- François-Xavier Mauvais
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France; Service de Physiologie - Explorations Fonctionnelles Pédiatriques, AP-HP, Hôpital Universitaire Robert Debré, F-75019 Paris, France.
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France; Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France.
| |
Collapse
|
8
|
Deng H, Zhang J, Wu F, Wei F, Han W, Xu X, Zhang Y. Current Status of Lymphangiogenesis: Molecular Mechanism, Immune Tolerance, and Application Prospect. Cancers (Basel) 2023; 15:cancers15041169. [PMID: 36831512 PMCID: PMC9954532 DOI: 10.3390/cancers15041169] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The lymphatic system is a channel for fluid transport and cell migration, but it has always been controversial in promoting and suppressing cancer. VEGFC/VEGFR3 signaling has long been recognized as a major molecular driver of lymphangiogenesis. However, many studies have shown that the neural network of lymphatic signaling is complex. Lymphatic vessels have been found to play an essential role in the immune regulation of tumor metastasis and cardiac repair. This review describes the effects of lipid metabolism, extracellular vesicles, and flow shear forces on lymphangiogenesis. Moreover, the pro-tumor immune tolerance function of lymphatic vessels is discussed, and the tasks of meningeal lymphatic vessels and cardiac lymphatic vessels in diseases are further discussed. Finally, the value of conversion therapy targeting the lymphatic system is introduced from the perspective of immunotherapy and pro-lymphatic biomaterials for lymphangiogenesis.
Collapse
Affiliation(s)
- Hongyang Deng
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Jiaxing Zhang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Fahong Wu
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Fengxian Wei
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Wei Han
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xiaodong Xu
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Youcheng Zhang
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|
9
|
Lu Y, Ma S, Ding W, Sun P, Zhou Q, Duan Y, Sartorius K. Resident Immune Cells of the Liver in the Tumor Microenvironment. Front Oncol 2022; 12:931995. [PMID: 35965506 PMCID: PMC9365660 DOI: 10.3389/fonc.2022.931995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022] Open
Abstract
The liver is a central immunomodulator that ensures a homeostatic balance between protection and immunotolerance. A hallmark of hepatocellular carcinoma (HCC) is the deregulation of this tightly controlled immunological network. Immune response in the liver involves a complex interplay between resident innate, innate, and adaptive immune cells. The immune response in the liver is modulated by its continuous exposure to toxic molecules and microorganisms that requires a degree of immune tolerance to protect normal tissue from damage. In HCC pathogenesis, immune cells must balance a dual role that includes the elimination of malignant cells, as well as the repair of damaged liver tissue to maintain homeostasis. Immune response in the innate and adaptive immune systems extends to the cross-talk and interaction involving immune-regulating non-hematopoietic cells, myeloid immune cells, and lymphoid immune cells. In this review, we discuss the different immune responses of resident immune cells in the tumor microenvironment. Current FDA-approved targeted therapies, including immunotherapy options, have produced modest results to date for the treatment of advanced HCC. Although immunotherapy therapy to date has demonstrated its potential efficacy, immune cell pathways need to be better understood. In this review article, we summarize the roles of specific resident immune cell subsets and their cross-talk subversion in HCC pathogenesis, with a view to identifying potential new biomarkers and therapy options.
Collapse
Affiliation(s)
- Yunjie Lu
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
| | - Shiying Ma
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
| | - Wei Ding
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Pengcheng Sun
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
| | - Qi Zhou
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
- *Correspondence: Qi Zhou, ; Yunfei Duan, ; Kurt Sartorius,
| | - Yunfei Duan
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
- *Correspondence: Qi Zhou, ; Yunfei Duan, ; Kurt Sartorius,
| | - Kurt Sartorius
- Hepatitis Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
- Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States
- University of Kwazulu-Natal Gastrointestinal Cancer Research Unit (UKZN/GICRC), Durban, South Africa
- *Correspondence: Qi Zhou, ; Yunfei Duan, ; Kurt Sartorius,
| |
Collapse
|
10
|
Garnier L, Pick R, Montorfani J, Sun M, Brighouse D, Liaudet N, Kammertoens T, Blankenstein T, Page N, Bernier-Latamani J, Tran NL, Petrova TV, Merkler D, Scheiermann C, Hugues S. IFN-γ-dependent tumor-antigen cross-presentation by lymphatic endothelial cells promotes their killing by T cells and inhibits metastasis. SCIENCE ADVANCES 2022; 8:eabl5162. [PMID: 35675399 PMCID: PMC9176743 DOI: 10.1126/sciadv.abl5162] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tumor-associated lymphatic vessels promote metastasis and regulate antitumor immune responses. Here, we assessed the impact of cytotoxic T cells on the local lymphatic vasculature and concomitant tumor dissemination during an antitumor response. Interferon-γ (IFN-γ) released by effector T cells enhanced the expression of immunosuppressive markers by tumor-associated lymphatic endothelial cells (LECs). However, at higher effector T cell densities within the tumor, T cell-based immunotherapies induced LEC apoptosis and decreased tumor lymphatic vessel density. As a consequence, lymphatic flow was impaired, and lymph node metastasis was reduced. Mechanistically, T cell-mediated tumor cell death induced the release of tumor antigens and cross-presentation by tumor LECs, resulting in antigen-specific LEC killing by T cells. When LECs lacked the IFN-γ receptor expression, LEC killing was abrogated, indicating that IFN-γ is indispensable for reducing tumor-associated lymphatic vessel density and drainage. This study provides insight into how cytotoxic T cells modulate tumor lymphatic vessels and may help to improve immunotherapeutic protocols.
Collapse
Affiliation(s)
- Laure Garnier
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
- Corresponding author. (S.H.); (L.G.)
| | - Robert Pick
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Julien Montorfani
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Mengzhu Sun
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Dale Brighouse
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Nicolas Liaudet
- Bioimaging Core Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thomas Kammertoens
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Thomas Blankenstein
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health, 10117 Berlin, Germany
| | - Nicolas Page
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
- Department of Pathology and Immunology, Division of Clinical Pathology, University of Geneva and University Hospital of Geneva, Geneva, Switzerland
| | - Jeremiah Bernier-Latamani
- Department of Fundamental Oncology, Ludwig Institute for Cancer Research and Division of Experimental Pathology, University of Lausanne and University of Lausanne Hospital, 1066 Lausanne, Switzerland
| | - Ngoc Lan Tran
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Tatiana V. Petrova
- Department of Fundamental Oncology, Ludwig Institute for Cancer Research and Division of Experimental Pathology, University of Lausanne and University of Lausanne Hospital, 1066 Lausanne, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
- Department of Pathology and Immunology, Division of Clinical Pathology, University of Geneva and University Hospital of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Christoph Scheiermann
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
- Walter-Brendel-Centre of Experimental Medicine, BioMedical Centre, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Stéphanie Hugues
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
- Corresponding author. (S.H.); (L.G.)
| |
Collapse
|
11
|
Targeted inhibition of the immunoproteasome blocks endothelial MHC class II antigen presentation to CD4 + T cells in chronic liver injury. Int Immunopharmacol 2022; 107:108639. [PMID: 35219165 DOI: 10.1016/j.intimp.2022.108639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
Abstract
Chronic or overwhelming liver injury is frequently associated with fibrosis, which is the main histological characteristic of non-alcoholic steatohepatitis (NASH). Currently, there is no effective treatment for liver fibrosis. Adaptive immunity is one of the perpetrators of liver inflammation and involves the antigen-specific activation of lymphocytes. Targeting adaptive immunity has been proposed as a novel therapeutic approach for NASH. In this study, we demonstrated that liver endothelial cells contribute to MHC class II (MHC-II) antigen presentation to CD4+ T cells after chronic liver injury. In human cirrhotic liver samples, we observed an increased expression of endothelial MHC-II and of the antigen presentation-associated protein LMP7, which is one of the proteolytically active subunits of the immunoproteasome. In a CCl4-induced chronic injury model or a diet- and chemical-induced NASH model, endothelial MHC-II and LMP7 expression was induced to increase. PR-957, a selective inhibitor of the immunoproteasome, inhibited MHC-II expression in endothelial cells and CD4+ T cell response after chronic liver injury. In vitro experiment demonstrated PR-957 also reversed IFN-γ-induced upregulation of MHC-II in endothelial cells. Furthermore, PR-957 treatment or CD4+ T cell depletion in chronic liver injury alleviated liver fibrosis and reduced inflammation, as indicated by the downregulation of inflammatory response markers (F4/80, IL-1, IL-6 and IL-18). In conclusion, targeted inhibition of the immunoproteasome blocks endothelial MHC-II antigen presentation to CD4+ T cells in chronic liver injury. In this regard, the PR-957 inhibitor is a promising candidate for the development of future therapies against NASH.
Collapse
|
12
|
Ilyinskii PO, Roy CJ, LePrevost J, Rizzo GL, Kishimoto TK. Enhancement of the Tolerogenic Phenotype in the Liver by ImmTOR Nanoparticles. Front Immunol 2021; 12:637469. [PMID: 34113339 PMCID: PMC8186318 DOI: 10.3389/fimmu.2021.637469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
ImmTOR biodegradable nanoparticles encapsulating rapamycin have been shown to induce a durable tolerogenic immune response to co-administered biologics and gene therapy vectors. Prior mechanism of action studies have demonstrated selective biodistribution of ImmTOR to the spleen and liver following intravenous (IV) administration. In the spleen, ImmTOR has been shown to induce tolerogenic dendritic cells and antigen-specific regulatory T cells and inhibit antigen-specific B cell activation. Splenectomy of mice resulted in partial but incomplete abrogation of the tolerogenic immune response induced by ImmTOR. Here we investigated the ability of ImmTOR to enhance the tolerogenic environment in the liver. All the major resident populations of liver cells, including liver sinusoidal endothelial cells (LSECs), Kupffer cells (KC), stellate cells (SC), and hepatocytes, actively took up fluorescent-labeled ImmTOR particles, which resulted in downregulation of MHC class II and co-stimulatory molecules and upregulation of the PD-L1 checkpoint molecule. The LSEC, known to play an important role in hepatic tolerance induction, emerged as a key target cell for ImmTOR. LSEC isolated from ImmTOR treated mice inhibited antigen-specific activation of ovalbumin-specific OT-II T cells. The tolerogenic environment led to a multi-pronged modulation of hepatic T cell populations, resulting in an increase in T cells with a regulatory phenotype, upregulation of PD-1 on CD4+ and CD8+ T cells, and the emergence of a large population of CD4–CD8– (double negative) T cells. ImmTOR treatment protected mice in a concanavalin A-induced model of acute hepatitis, as evidenced by reduced production of inflammatory cytokines, infiltrate of activated leukocytes, and tissue necrosis. Modulation of T cell phenotype was seen to a lesser extent after administration by empty nanoparticles, but not free rapamycin. The upregulation of PD-1, but not the appearance of double negative T cells, was inhibited by antibodies against PD-L1 or CTLA-4. These results suggest that the liver may contribute to the tolerogenic properties of ImmTOR treatment.
Collapse
Affiliation(s)
| | | | | | - Gina L Rizzo
- Selecta Biosciences, Watertown, MA, United States
| | | |
Collapse
|
13
|
Kabashima A, Shimada S, Shimokawa M, Akiyama Y, Tanabe M, Tanaka S. Molecular and immunological paradigms of hepatocellular carcinoma: Special reference to therapeutic approaches. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2021; 28:62-75. [PMID: 33259135 DOI: 10.1002/jhbp.874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022]
Abstract
The development of hepatocellular carcinoma (HCC) is a multistep process with a complex interaction of various genetic backgrounds and the tumor microenvironment. In addition to the development of rational approaches to epidemiologic research, early detection, and diagnosis, considerable progress has been made in systemic treatment with molecular-targeted agents for patients with advanced HCC. Moreover, encouraging reports of recent clinical trials of combination therapy with immune-checkpoint inhibitors (ICIs) has raised high hopes. Each HCC is the result of a unique combination of somatic alterations, including genetic, epigenetic, transcriptomic, and metabolic events, leading to conclusive tumoral heterogeneity. Recent advances in comprehensive genetic analysis have accelerated molecular classification and defined subtypes with specific characteristics, including immune-associated molecular profiles reflecting the immune reactivity in the tumor. In considering the development of therapeutic strategies in combination with immunotherapy, proper interpretation of molecular pathological characterization could lead to effective therapeutic deployment and enable individualization of the management of HCC. Here, we review distinctive molecular alterations in the subtype classification of HCC, current therapies, and representative clinical trials with alternative immune-combination approaches from a molecular pathological point.
Collapse
Affiliation(s)
- Ayano Kabashima
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Shimokawa
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
14
|
Liver Sinusoidal Endothelial Cells Contribute to Hepatic Antigen-Presenting Cell Function and Th17 Expansion in Cirrhosis. Cells 2020; 9:cells9051227. [PMID: 32429209 PMCID: PMC7290576 DOI: 10.3390/cells9051227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatic immune function is compromised during cirrhosis. This study investigated the immune features of liver sinusoidal endothelial cells (LSECs) in two experimental models of cirrhosis. Dendritic cells, hepatic macrophages, and LSECs were isolated from carbon tetrachloride and bile duct-ligated rats. Gene expression of innate receptors, bacterial internalization, co-stimulatory molecules induction, and CD4+ T cell activation and differentiation were evaluated. Induced bacterial peritonitis and norfloxacin protocols on cirrhotic rats were also carried out. LSECs demonstrated an active immunosurveillance profile, as shown by transcriptional modulation of different scavenger and cell-adhesion genes, and their contribution to bacterial internalization. LSECs significantly increased their expression of CD40 and CD80 and stimulated CD4+ T cell activation marker CD71 in both models. The pro-inflammatory Th17 subset was expanded in CCl4-derived LSECs co-cultures. In the bile duct ligation (BDL) model, CD4+ T cell differentiation only occurred under induced bacterial peritonitis conditions. Differentiated pro-inflammatory Th cells by LSECs in both experimental models were significantly reduced with norfloxacin treatment, whereas Foxp3 tolerogenic Th CD4+ cells were expanded. Conclusion: LSECs’ participation in the innate-adaptive immune progression, their ability to stimulate pro-inflammatory CD4+ T cells expansion during liver damage, and their target role in norfloxacin-induced immunomodulation granted a specific competence to this cell population in cirrhosis.
Collapse
|
15
|
Sällberg M, Pasetto A. Liver, Tumor and Viral Hepatitis: Key Players in the Complex Balance Between Tolerance and Immune Activation. Front Immunol 2020; 11:552. [PMID: 32292409 PMCID: PMC7119224 DOI: 10.3389/fimmu.2020.00552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is the third most common cause of cancer related death in the World. From an epidemiological point of view the risk factors associated to primary liver cancer are mainly viral hepatitis infection and alcohol consumption. Even though there is a clear correlation between liver inflammation, cirrhosis and cancer, other emerging liver diseases (like fatty liver) could also lead to liver cancer. Moreover, the liver is the major site of metastasis from colon, breast, ovarian and other cancers. In this review we will address the peculiar status of the liver as organ that has to balance between tolerance and immune activation. We will focus on macrophages and other key cellular components of the liver microenvironment that play a central role during tumor progression. We will also discuss how current and future therapies may affect the balance toward immune activation.
Collapse
Affiliation(s)
- Matti Sällberg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Pasetto
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Recent Advances in Immunotherapy for Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12040775. [PMID: 32218257 PMCID: PMC7226090 DOI: 10.3390/cancers12040775] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death since most patients are diagnosed at advanced stage and the current systemic treatment options using molecular-targeted drugs remain unsatisfactory. However, the recent success of cancer immunotherapies has revolutionized the landscape of cancer therapy. Since HCC is characterized by metachronous multicentric occurrence, immunotherapies that induce systemic and durable responses could be an appealing treatment option. Despite the suppressive milieu of the liver and tumor immunosurveillance escape mechanisms, clinical studies of checkpoint inhibitors in patients with advanced HCC have yielded promising results. Here, we provide an update on recent advances in HCC immunotherapies. First, we describe the unique tolerogenic properties of hepatic immunity and its interaction with HCC and then review the status of already or nearly available immune checkpoint blockade-based therapies as well as other immunotherapy strategies at the preclinical or clinical trial stage.
Collapse
|
17
|
Ali SE, Waddington JC, Park BK, Meng X. Definition of the Chemical and Immunological Signals Involved in Drug-Induced Liver Injury. Chem Res Toxicol 2019; 33:61-76. [PMID: 31682113 DOI: 10.1021/acs.chemrestox.9b00275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Idiosyncratic drug-induced liver injury (iDILI), which is rare and often recognized only late in drug development, poses a major public health concern and impediment to drug development due to its high rate of morbidity and mortality. The mechanisms of DILI are not completely understood; both non-immune- and immune-mediated mechanisms have been proposed. Non-immune-mediated mechanisms including direct damage to hepatocytes, mitochondrial toxicity, interference with transporters, and alteration of bile ducts are well-known to be associated with drugs such as acetaminophen and diclofenac; whereas immune-mediated mechanisms involving activation of both adaptive and innate immune cells and the interactions of these cells with parenchymal cells have been proposed. The chemical signals involved in activation of both innate and adaptive immune responses are discussed with respect to recent scientific advances. In addition, the immunological signals including cytokine and chemokines that are involved in promoting liver injury are also reviewed. Finally, we discuss how liver tolerance and regeneration can have profound impact on the pathogenesis of iDILI. Continuous research in developing in vitro systems incorporating immune cells with liver cells and animal models with impaired liver tolerance will provide an opportunity for improved prediction and prevention of immune-mediated iDILI.
Collapse
Affiliation(s)
- Serat-E Ali
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , United Kingdom
| | - James C Waddington
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , United Kingdom
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , United Kingdom
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , United Kingdom
| |
Collapse
|
18
|
Deslyper G, Doherty DG, Carolan JC, Holland CV. The role of the liver in the migration of parasites of global significance. Parasit Vectors 2019; 12:531. [PMID: 31703729 PMCID: PMC6842148 DOI: 10.1186/s13071-019-3791-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023] Open
Abstract
Many parasites migrate through different tissues during their life-cycle, possibly with the aim to enhance their fitness. This is true for species of three parasite genera of global importance, Ascaris, Schistosoma and Plasmodium, which cause significant global morbidity and mortality. Interestingly, these parasites all incorporate the liver in their life-cycle. The liver has a special immune status being able to preferentially induce tolerance over immunity. This function may be exploited by parasites to evade host immunity, with Plasmodium spp. in particular using this organ for its multiplication. However, hepatic larval attrition occurs in both ascariasis and schistosomiasis. A better understanding of the molecular mechanisms involved in hepatic infection could be useful in developing novel vaccines and therapies for these parasites.
Collapse
Affiliation(s)
- Gwendoline Deslyper
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland.
| | - Derek G Doherty
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Celia V Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
19
|
Rattanamahaphoom J, Leaungwutiwong P, Limkittikul K, Kosoltanapiwat N, Srikaitkhachorn A. Activation of dengue virus-specific T cells modulates vascular endothelial growth factor receptor 2 expression. Asian Pac J Allergy Immunol 2019; 35:171-178. [PMID: 27996292 DOI: 10.12932/ap0810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The pathogenic mechanisms underlying the increased vascular permeability in dengue hemorrhagic fever (DHF) are not well understood. Enhanced cellular immune activation, especially activation of serotype-cross reactive T cells, has been implicated in plasma leakage in DHF. Changes in several biological markers and mediators including cytokines, chemokines, angiogenic factors and their receptors have been shown to correlate with disease severity. A decline in plasma levels of a soluble form of vascular endothelial growth factor receptor 2 (VEGFR2), a receptor of vascular endothelial growth factor (VEGF), has been associated with plasma leakage in dengue patients. OBJECTIVE We aimed to investigate the effect of dengue virus (DV)-specific CD8⁺ T cells on the expression of VEGFR2 on endothelial cells. METHODS An in vitro model was developed in which dengue virus-specific CD8⁺ T cells generated from peripheral blood mononuclear cells (PBMCs) of DHF patients were co-cultured with antigen-presenting cells, human umbilical vein endothelial cells (HUVECs) and activated with DV non-structural protein 3 (NS3) peptides. The expression of VEGFR2 by endothelial cells was measured. RESULTS DV-specific CD8⁺ T cells were serotype cross-reactive. Activation of DV-specific CD8⁺ T cells resulted in down-regulation of soluble VEGFR2 production and an up-regulation of cell-associated VEGFR2. CONCLUSIONS Our findings indicate that activation of DV-specific T cell is associated with modulation of VEGFR2 expression that may contribute to increased VEGF responsiveness and vascular permeability.
Collapse
Affiliation(s)
- Jittraporn Rattanamahaphoom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kriengsak Limkittikul
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Anon Srikaitkhachorn
- Institute for Immunology and Informatics, University of Rhode Island, Providence, Rhode Island, U.S.A
| |
Collapse
|
20
|
Perforin inhibition protects from lethal endothelial damage during fulminant viral hepatitis. Nat Commun 2018; 9:4805. [PMID: 30442932 PMCID: PMC6237769 DOI: 10.1038/s41467-018-07213-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/18/2018] [Indexed: 12/18/2022] Open
Abstract
CD8 T cells protect the liver against viral infection, but can also cause severe liver damage that may even lead to organ failure. Given the lack of mechanistic insights and specific treatment options in patients with acute fulminant hepatitis, we develop a mouse model reflecting a severe acute virus-induced CD8 T cell-mediated hepatitis. Here we show that antigen-specific CD8 T cells induce liver damage in a perforin-dependent manner, yet liver failure is not caused by effector responses targeting virus-infected hepatocytes alone. Additionally, CD8 T cell mediated elimination of cross-presenting liver sinusoidal endothelial cells causes endothelial damage that leads to a dramatically impaired sinusoidal perfusion and indirectly to hepatocyte death. With the identification of perforin-mediated killing as a critical pathophysiologic mechanism of liver failure and the protective function of a new class of perforin inhibitor, our study opens new potential therapeutic angles for fulminant viral hepatitis. CD8 T cells can protect the liver from viral infection, but can also result in severe liver damage and organ failure. Here, the authors develop a mouse model reflecting fulminant CD8 T cell mediated viral hepatitis, which occurs in a perforin-dependent manner that is protected by the use of perforin inhibitors.
Collapse
|
21
|
Cell Therapy as a Tool for Induction of Immunological Tolerance after Liver Transplantation. Bull Exp Biol Med 2018; 165:554-563. [PMID: 30121913 DOI: 10.1007/s10517-018-4213-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Indexed: 12/13/2022]
Abstract
Transplantation of solid organs, including liver, induces a number of serious complications related to immune incompatibility and requiring long-term use of immunosuppressive drugs. Finding the ways to inducing recipient immunological tolerance to the grafts is a top priority in organ transplantation and immunology. Along with the search for immunosupressive therapy, the development of alternative approaches to induction of immunological tolerance based on cell technologies is now in progress. In this regard, studies of the so-called spontaneous operational tolerance observed in ~20% patients after orthotopic liver transplantation is a promising trend. Understanding of this phenomenon can shed light on the mechanisms of immunological tolerance to allografts and will help to identify specific tolerance biomarkers and cell types with the aptitude for the induction of tolerance to liver allografts.
Collapse
|
22
|
Tedesco D, Grakoui A. Environmental peer pressure: CD4 + T cell help in tolerance and transplantation. Liver Transpl 2018; 24:89-97. [PMID: 28926189 PMCID: PMC5739992 DOI: 10.1002/lt.24873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/30/2017] [Accepted: 09/12/2017] [Indexed: 12/20/2022]
Abstract
The liver participates in a multitude of metabolic functions that are critical for sustaining human life. Despite constant encounters with antigenic-rich intestinal blood, oxidative stress, and metabolic intermediates, there is no appreciable immune response. Interestingly, patients undergoing orthotopic liver transplantation benefit from a high rate of graft acceptance in comparison to other solid organ transplant recipients. In fact, cotransplantation of a donor liver in tandem with a rejection-prone graft increases the likelihood of graft acceptance. A variety of players may account for this phenomenon including the interaction of intrahepatic antigen-presenting cells with CD4+ T cells and the preferential induction of forkhead box P3 (Foxp3) expression on CD4+ T cells following injurious stimuli. Ineffective insult management can cause chronic liver disease, which manifests systemically as the following: antibody-mediated disorders, ineffective antiviral and antibacterial immunity, and gastrointestinal disorders. These sequelae sharing the requirement of CD4+ T cell help to coordinate aberrant immune responses. In this review, we will focus on CD4+ T cell help due to the shared requirements in hepatic tolerance and coordination of extrahepatic immune responses. Overall, intrahepatic deviations from steady state can have deleterious systemic immune outcomes and highlight the liver's remarkable capacity to maintain a balance between tolerance and inflammatory response while simultaneously being inundated with a panoply of antigenic stimuli. Liver Transplantation 24 89-97 2018 AASLD.
Collapse
Affiliation(s)
- Dana Tedesco
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory University
| | - Arash Grakoui
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory University,Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA,Corresponding Author: Arash Grakoui, Division of Infectious diseases, Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, Telephone: (404) 727-9368;
| |
Collapse
|
23
|
Wittlich M, Dudek M, Böttcher JP, Schanz O, Hegenbarth S, Bopp T, Schmitt E, Kurts C, Garbers C, Rose John S, Knolle PA, Wohlleber D. Liver sinusoidal endothelial cell cross-priming is supported by CD4 T cell-derived IL-2. J Hepatol 2017; 66:978-986. [PMID: 28025060 DOI: 10.1016/j.jhep.2016.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 11/18/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Liver sinusoidal endothelial cells (LSECs) are prominent liver-resident antigen (cross-)presenting cells. LSEC cross-priming of naïve CD8 T cells does not require CD4 T cell help in contrast to priming by dendritic cells (DC) but leads to the formation of memory T cells that is preceded by transient Granzyme B (GzmB) expression. Here we provide evidence for a so far unrecognized CD4 T helper cell function in LSEC-induced CD8 T cell activation. METHODS Naïve CD8 T cells and differentiated T helper 1 (Th1) cells were stimulated by antigen-presenting LSEC, and GzmB expression in CD8 T cells was determined by flow cytometry. To identify molecular pathways mediating this GzmB expression, mechanistic proof-of-concept experiments were conducted using stimulatory anti-CD3 antibody together with Hyper-IL-6. RESULTS We demonstrate that LSECs simultaneously function in antigen co-presentation to CD8 and CD4 T cells. Such co-presentation revealed a function of Th1 cells to increase GzmB expression in CD8 T cells after LSEC but not DC cross-priming. IL-2 released from Th1 cells was required but not sufficient for rapid GzmB induction in CD8 T cells. T cell receptor together with IL-6 trans-signaling was necessary for IL-2 to mediate rapid GzmB induction. CONCLUSIONS Our findings indicate that LSECs can serve as a platform to facilitate CD4-CD8 T cell crosstalk enhancing the immune function of LSECs to cross-prime CD8 T cells. IL-6 trans-signaling-mediated responsiveness for IL-2 inducing sustained GzmB expression in CD8 T cells reveals unique mechanisms of CD4 T cell help and CD8 T cell differentiation through liver-resident antigen-presenting cells. LAY SUMMARY Our findings demonstrate that LSEC co-present antigen to CD8 and CD4 T cells and thereby enable CD4 T cell help for LSEC-priming of CD8 T cells. This CD4 T cell help selectively enhances the rapid upregulation of GzmB and effector function of LSEC-primed CD8 T cells thereby enhancing functional differentiation towards CD8 effector T cells.
Collapse
Affiliation(s)
- Michaela Wittlich
- Institute of Experimental Immunology, University Hospital Bonn, Germany
| | - Michael Dudek
- Institute of Molecular Immunology and Experimental Oncology, Klinikum München rechts der Isar, Technische Universität München, Germany
| | - Jan P Böttcher
- Institute of Experimental Immunology, University Hospital Bonn, Germany
| | - Oliver Schanz
- Institute of Experimental Immunology, University Hospital Bonn, Germany
| | - Silke Hegenbarth
- Institute of Molecular Immunology and Experimental Oncology, Klinikum München rechts der Isar, Technische Universität München, Germany
| | - Tobias Bopp
- Institute of Immunology, University Hospital Mainz, Germany
| | - Edgar Schmitt
- Institute of Immunology, University Hospital Mainz, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University Hospital Bonn, Germany
| | | | | | - Percy A Knolle
- Institute of Experimental Immunology, University Hospital Bonn, Germany; Institute of Molecular Immunology and Experimental Oncology, Klinikum München rechts der Isar, Technische Universität München, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, Klinikum München rechts der Isar, Technische Universität München, Germany.
| |
Collapse
|
24
|
Strauss O, Phillips A, Ruggiero K, Bartlett A, Dunbar PR. Immunofluorescence identifies distinct subsets of endothelial cells in the human liver. Sci Rep 2017; 7:44356. [PMID: 28287163 PMCID: PMC5347010 DOI: 10.1038/srep44356] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
As well as systemic vascular endothelial cells, the liver has specialised sinusoidal endothelial cells (LSEC). LSEC dysfunction has been documented in many diseased states yet their phenotype in normal human liver has not been comprehensively assessed. Our aim was to improve characterisation of subsets of endothelial cells and associated pericytes in the human liver. Immunofluorescence microscopy was performed on normal human liver tissue samples to assess endothelial and structural proteins in a minimum of three donors. LSEC are distributed in an acinar pattern and universally express CD36, but two distinctive subsets of LSEC can be identified in different acinar zones. Type 1 LSEC are CD36hiCD32−CD14−LYVE-1− and are located in acinar zone 1 of the lobule, while Type 2 LSEC are LYVE-1+CD32hiCD14+CD54+CD36mid-lo and are located in acinar zones 2 and 3 of the lobule. Portal tracts and central veins can be identified using markers for systemic vascular endothelia and pericytes, none of which are expressed by LSEC. In areas of low hydrostatic pressure LSEC are lined by stellate cells that express the pericyte marker CD146. Our findings identify distinctive populations of LSEC and distinguish these cells from adjacent stellate cells, systemic vasculature and pericytes in different zones of the liver acinus.
Collapse
Affiliation(s)
- Otto Strauss
- Department of Surgery, Faculty of Medical Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Anthony Phillips
- Department of Surgery, Faculty of Medical Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Katya Ruggiero
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Adam Bartlett
- Department of Surgery, Faculty of Medical Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - P Rod Dunbar
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
25
|
Liver immunology: How to reconcile tolerance with autoimmunity. Clin Res Hepatol Gastroenterol 2017; 41:6-16. [PMID: 27526967 DOI: 10.1016/j.clinre.2016.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/01/2016] [Indexed: 02/04/2023]
Abstract
There are several examples of liver tolerance: the relative ease by which liver allografts are accepted and the exploitation of the hepatic microenvironment by the malarial parasite and hepatotrophic viruses are notable examples. The vasculature of the liver supports a unique population of antigen presenting cells specialised to maintain immunological tolerance despite continuous exposure to gut-derived antigens. Liver sinusoidal endothelial cells and Kupffer cells appear to be key to the maintenance of immune tolerance, by promoting T cell anergy or deletion and the generation of regulatory cell subsets. Despite this, there are three liver diseases with likely autoimmune involvement: primary biliary cirrhosis, primary sclerosing cholangitis and autoimmune hepatitis. How can we reconcile this with the inherent tolerogenicity of the liver? Genetic studies have uncovered several associations with genes involved in the activation of the innate and adaptive immune systems. There is also evidence pointing to pathogenic and xenobiotic triggers of autoimmune liver disease. Coupled to this, impaired immunoregulatory mechanisms potentially play a permissive role, allowing the autoimmune response to proceed.
Collapse
|
26
|
Wohlleber D, Knolle PA. The role of liver sinusoidal cells in local hepatic immune surveillance. Clin Transl Immunology 2016; 5:e117. [PMID: 28090319 PMCID: PMC5192065 DOI: 10.1038/cti.2016.74] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 02/06/2023] Open
Abstract
Although the liver's function as unique immune organ regulating immunity has received a lot of attention over the last years, the mechanisms determining hepatic immune surveillance against infected hepatocytes remain less well defined. Liver sinusoidal cells, in particular, liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs), serve as physical platform for recruitment and anchoring of blood-borne immune cells in the liver. Liver sinusoidal cells also function as portal of entry for infectious microorganisms targeting the liver such as hepatotropic viruses, bacteria or parasites. At the same time, liver sinusoidal cells actively contribute to achieve immune surveillance against bacterial and viral infections. KCs function as adhesion hubs for CD8 T cells from the circulation, which initiates the interaction of virus-specific CD8 T cells with infected hepatocytes. Through their phagocytic function, KCs contribute to removal of bacteria from the circulation and engage in cross talk with sinusoidal lymphocyte populations to achieve elimination of phagocytosed bacteria. LSECs contribute to local immune surveillance through cross-presentation of viral antigens that causes antigen-specific retention of CD8 T cells from the circulation. Such cross-presentation of viral antigens activates CD8 T cells to release TNF that in turn triggers selective killing of virus-infected hepatocytes. Beyond major histocompatibility complex (MHC)-restricted T-cell immunity, CD1- and MR1-restricted innate-like lymphocytes are found in liver sinusoids whose roles in local immune surveillance against infection need to be defined. Thus, liver sinusoidal cell populations bear key functions for hepatic recruitment and for local activation of immune cells, which are both required for efficient immune surveillance against infection in the liver.
Collapse
Affiliation(s)
- Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, Technische Universität München , München, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, München, Germany; Institute of Experimental Immunology, Universität Bonn, Bonn, Germany; German Center for Infection Research (DZIF), Braunschweig, Germany
| |
Collapse
|
27
|
Moreno-Cubero E, Larrubia JR. Specific CD8 + T cell response immunotherapy for hepatocellular carcinoma and viral hepatitis. World J Gastroenterol 2016; 22:6469-6483. [PMID: 27605882 PMCID: PMC4968127 DOI: 10.3748/wjg.v22.i28.6469] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/21/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), chronic hepatitis B (CHB) and chronic hepatitis C (CHC) are characterized by exhaustion of the specific CD8+ T cell response. This process involves enhancement of negative co-stimulatory molecules, such as programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte antigen-4 (CTLA-4), 2B4, Tim-3, CD160 and LAG-3, which is linked to intrahepatic overexpression of some of the cognate ligands, such as PD-L1, on antigen presenting cells and thereby favouring a tolerogenic environment. Therapies that disrupt these negative signalling mechanisms represent promising therapeutic tools with the potential to restore reactivity of the specific CD8+ T cell response. In this review we discuss the impressive in vitro and in vivo results that have been recently achieved in HCC, CHB and CHC by blocking these negative receptors with monoclonal antibodies against these immune checkpoint modulators. The article mainly focuses on the role of CTLA-4 and PD-1 blocking monoclonal antibodies, the first ones to have reached clinical practice. The humanized monoclonal antibodies against CTLA-4 (tremelimumab and ipilimumab) and PD-1 (nivolumab and pembrolizumab) have yielded good results in testing of HCC and chronic viral hepatitis patients. Trelimumab, in particular, has shown a significant increase in the time to progression in HCC, while nivolumab has shown a remarkable effect on hepatitis C viral load reduction. The research on the role of ipilimumab, nivolumab and pembrolizumab on HCC is currently underway.
Collapse
|
28
|
Chang J, Eggenhuizen P, O'Sullivan KM, Alikhan MA, Holdsworth SR, Ooi JD, Kitching AR. CD8+ T Cells Effect Glomerular Injury in Experimental Anti-Myeloperoxidase GN. J Am Soc Nephrol 2016; 28:47-55. [PMID: 27288012 DOI: 10.1681/asn.2015121356] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/05/2016] [Indexed: 11/03/2022] Open
Abstract
Observations in patients with ANCA-associated vasculitis suggest that CD8+ T cells participate in disease, but there is no experimental functional evidence of pathologic involvement for these cells. Myeloperoxidase (MPO) is a well defined autoantigen in ANCA-associated vasculitis. Studies in experimental models of anti-MPO GN suggest that, after ANCA-induced neutrophil localization, deposited MPO within glomeruli is recognized by autoreactive T cells that contribute to injury. We tested the hypothesis that CD8+ T cells mediate disease in experimental ANCA-associated vasculitis. CD8+ T cell depletion in the effector phase of disease attenuated injury in murine anti-MPO GN. This protection associated with decreased levels of intrarenal IFN-γ, TNF, and inflammatory chemokines and fewer glomerular macrophages. Moreover, we identified a pathogenic CD8+ T cell MPO epitope (MPO431-439) and found that cotransfer of MPO431-439-specific CD8+ T cell clones exacerbated disease mediated by MPO-specific CD4+ cells in Rag1-/- mice. Transfer of MPO431-439-specific CD8+ cells without CD4+ cells mediated glomerular injury when MPO was planted in glomeruli. These results show a pathogenic role for MPO-specific CD8+ T cells, provide evidence that CD8+ cells are a therapeutic target in ANCA-associated vasculitis, and suggest that a molecular hotspot within the MPO molecule contains important CD8+, CD4+, and B cell epitopes.
Collapse
Affiliation(s)
- Janet Chang
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia; and
| | - Peter Eggenhuizen
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia; and
| | - Kim M O'Sullivan
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia; and
| | - Maliha A Alikhan
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia; and
| | - Stephen R Holdsworth
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia; and.,Departments of Nephrology and
| | - Joshua D Ooi
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia; and
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Monash Medical Centre, Clayton, Victoria, Australia; and.,Departments of Nephrology and.,Pediatric Nephrology, Monash Health, Clayton, Victoria, Australia
| |
Collapse
|
29
|
Zeng Z, Li L, Chen Y, Wei H, Sun R, Tian Z. Interferon-γ facilitates hepatic antiviral T cell retention for the maintenance of liver-induced systemic tolerance. J Exp Med 2016; 213:1079-93. [PMID: 27139489 PMCID: PMC4886358 DOI: 10.1084/jem.20151218] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 04/11/2016] [Indexed: 12/29/2022] Open
Abstract
IFN-γ mediates hepatic T cell retention and the maintenance of systemic tolerance during hepatitis B virus persistence in the liver. Persistent exposure to liver pathogens leads to systemic antigen-specific tolerance, a major cause of chronicity during hepatotropic infection. The mechanism regarding how this systemic tolerance is maintained remains poorly elucidated. In a well established mouse model of hepatitis B virus (HBV) persistence–induced systemic tolerance, we observed that interferon-γ (IFN-γ) deficiency led to complete loss of tolerance, resulting in robust anti-HBV responses upon peripheral vaccination. The recovery of vaccine-induced anti-HBV responses was mainly caused by the retained antigen-specific CD4+ T cells rather than decreased functional inhibitory cells in the periphery. Mechanistically, HBV persistence induced sustained hepatic CD4+ T cell–derived IFN-γ production. IFN-γ was found to promote CXCL9 secretion from liver-resident macrophages. This T cell chemokine facilitated the retention of antiviral CD4+ T cells in the liver in a CXCR3-dependent manner. Hepatic sequestrated antiviral CD4+ T cells subsequently underwent local apoptotic elimination partially via cytotoxic T lymphocyte–associated protein 4 ligation. These findings reveal an unexpected tolerogenic role for IFN-γ during viral persistence in the liver, providing new mechanistic insights regarding the maintenance of systemic antigen-specific tolerance during HBV persistence.
Collapse
Affiliation(s)
- Zhutian Zeng
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Lu Li
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230027, China
| | - Yongyan Chen
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Haiming Wei
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Rui Sun
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Zhigang Tian
- Institute of Immunology and the Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230027, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
30
|
Knolle PA, Wohlleber D. Immunological functions of liver sinusoidal endothelial cells. Cell Mol Immunol 2016; 13:347-53. [PMID: 27041636 PMCID: PMC4856811 DOI: 10.1038/cmi.2016.5] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 12/13/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) line the liver sinusoids and separate passenger leukocytes in the sinusoidal lumen from hepatocytes. LSECs further act as a platform for adhesion of various liver-resident immune cell populations such as Kupffer cells, innate lymphoid cells or liver dendritic cells. In addition to having an extraordinary scavenger function, LSECs possess potent immune functions, serving as sentinel cells to detect microbial infection through pattern recognition receptor activation and as antigen (cross)-presenting cells. LSECs cross-prime naive CD8 T cells, causing their rapid differentiation into memory T cells that relocate to secondary lymphoid tissues and provide protection when they re-encounter the antigen during microbial infection. Cross-presentation of viral antigens by LSECs derived from infected hepatocytes triggers local activation of effector CD8 T cells and thereby assures hepatic immune surveillance. The immune function of LSECs complements conventional immune-activating mechanisms to accommodate optimal immune surveillance against infectious microorganisms while preserving the integrity of the liver as a metabolic organ.
Collapse
Affiliation(s)
- Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, Klinikum München rechts der Isar, Technische Universität München, München 81675, Germany.,Institute of Experimental Immunology, Universitätsklinikum Bonn, Universität Bonn, Bonn, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, Klinikum München rechts der Isar, Technische Universität München, München 81675, Germany
| |
Collapse
|
31
|
Grakoui A, Crispe IN. Presentation of hepatocellular antigens. Cell Mol Immunol 2016; 13:293-300. [PMID: 26924525 PMCID: PMC4856799 DOI: 10.1038/cmi.2015.109] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/31/2022] Open
Abstract
The liver is an organ in which antigen-specific T-cell responses manifest a bias toward immune tolerance. This is clearly seen in the rejection of allogeneic liver transplants, and multiple other phenomena suggest that this effect is more general. These include tolerance toward antigens introduced via the portal vein, immune failure to several hepatotropic viruses, the lack of natural liver-stage immunity to malaria parasites, and the frequent metastasis of cancers to the liver. Here we review the mechanisms by which T cells engage with hepatocellular antigens, the context in which such encounters occur, and the mechanisms that act to suppress a full T-cell response. While many mechanisms play a role, we will argue that two important processes are the constraints on the cross-presentation of hepatocellular antigens, and the induction of negative feedback inhibition driven by interferons. The constant exposure of the liver to microbial products from the intestine may drive innate immunity, rendering the local environment unfavorable for specific T-cell responses through this mechanism. Nevertheless, tolerance toward hepatocellular antigens is not monolithic and under specific circumstances allows both effective immunity and immunopathology.
Collapse
Affiliation(s)
- Arash Grakoui
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine and Yerkes National Primate Research Center, Atlanta, GA, USA
| | | |
Collapse
|
32
|
Abstract
The liver is a central immunological organ with a high exposure to circulating antigens and endotoxins from the gut microbiota, particularly enriched for innate immune cells (macrophages, innate lymphoid cells, mucosal-associated invariant T (MAIT) cells). In homeostasis, many mechanisms ensure suppression of immune responses, resulting in tolerance. Tolerance is also relevant for chronic persistence of hepatotropic viruses or allograft acceptance after liver transplantation. The liver can rapidly activate immunity in response to infections or tissue damage. Depending on the underlying liver disease, such as viral hepatitis, cholestasis or NASH, different triggers mediate immune-cell activation. Conserved mechanisms such as molecular danger patterns (alarmins), Toll-like receptor signalling or inflammasome activation initiate inflammatory responses in the liver. The inflammatory activation of hepatic stellate and Kupffer cells results in the chemokine-mediated infiltration of neutrophils, monocytes, natural killer (NK) and natural killer T (NKT) cells. The ultimate outcome of the intrahepatic immune response (for example, fibrosis or resolution) depends on the functional diversity of macrophages and dendritic cells, but also on the balance between pro-inflammatory and anti-inflammatory T-cell populations. As reviewed here, tremendous progress has helped to understand the fine-tuning of immune responses in the liver from homeostasis to disease, indicating promising targets for future therapies in acute and chronic liver diseases.
Collapse
Affiliation(s)
- Felix Heymann
- Department of Medicine III, RWTH University-Hospital Aachen, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Frank Tacke
- Department of Medicine III, RWTH University-Hospital Aachen, Pauwelsstrasse 30, Aachen 52074, Germany
| |
Collapse
|
33
|
Carman CV, Martinelli R. T Lymphocyte-Endothelial Interactions: Emerging Understanding of Trafficking and Antigen-Specific Immunity. Front Immunol 2015; 6:603. [PMID: 26635815 PMCID: PMC4657048 DOI: 10.3389/fimmu.2015.00603] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/10/2015] [Indexed: 12/26/2022] Open
Abstract
Antigen-specific immunity requires regulated trafficking of T cells in and out of diverse tissues in order to orchestrate lymphocyte development, immune surveillance, responses, and memory. The endothelium serves as a unique barrier, as well as a sentinel, between the blood and the tissues, and as such it plays an essential locally tuned role in regulating T cell migration and information exchange. While it is well established that chemoattractants and adhesion molecules are major determinants of T cell trafficking, emerging studies have now enumerated a large number of molecular players as well as a range of discrete cellular remodeling activities (e.g., transmigratory cups and invadosome-like protrusions) that participate in directed migration and pathfinding by T cells. In addition to providing trafficking cues, intimate cell-cell interaction between lymphocytes and endothelial cells provide instruction to T cells that influence their activation and differentiation states. Perhaps the most intriguing and underappreciated of these "sentinel" roles is the ability of the endothelium to act as a non-hematopoietic "semiprofessional" antigen-presenting cell. Close contacts between circulating T cells and antigen-presenting endothelium may play unique non-redundant roles in shaping adaptive immune responses within the periphery. A better understanding of the mechanisms directing T cell trafficking and the antigen-presenting role of the endothelium may not only increase our knowledge of the adaptive immune response but also empower the utility of emerging immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Christopher V Carman
- Center for Vascular Biology Research, Department of Medicine and Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Roberta Martinelli
- Center for Vascular Biology Research, Department of Medicine and Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW When it comes to tolerance induction, kidney allografts behave differently from heart allografts that behave differently from lung allografts. Here, we examine how and why different organ allografts respond differently to the same tolerance induction protocol. RECENT FINDINGS Allograft tolerance has been achieved in experimental and clinical kidney transplantation. Inducing tolerance in experimental recipients of heart and lung allografts has, however, proven to be more challenging. New protocols being developed in nonhuman primates based on mixed chimerism and cotransplantation of tolerogenic organs may provide mechanistic insights to help overcome these challenges. SUMMARY Tolerance induction protocols that are successful in patients transplanted with 'tolerance-prone' organs such as kidneys and livers will most likely not succeed in recipients of 'tolerance-resistant' organs such as hearts and lungs. Separate clinical trials using more robust tolerance protocols will be required to achieve tolerance in heart and lung recipients.
Collapse
|
35
|
Hirosue S, Dubrot J. Modes of Antigen Presentation by Lymph Node Stromal Cells and Their Immunological Implications. Front Immunol 2015; 6:446. [PMID: 26441957 PMCID: PMC4561840 DOI: 10.3389/fimmu.2015.00446] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/17/2015] [Indexed: 12/15/2022] Open
Abstract
Antigen presentation is no longer the exclusive domain of cells of hematopoietic origin. Recent works have demonstrated that lymph node stromal cell (LNSC) populations, such as fibroblastic reticular cells, lymphatic and blood endothelial cells, not only provide a scaffold for lymphocyte interactions but also exhibit active immunomodulatory roles that are critical to mounting and resolving effective immune responses. Importantly, LNSCs possess the ability to present antigens and establish antigen-specific interactions with T cells. One example is the expression of peripheral tissue antigens, which are presented on major histocompatibility complex (MHC)-I molecules with tolerogenic consequences on T cells. Additionally, exogenous antigens, including self and tumor antigens, can be processed and presented on MHC-I complexes, which result in dysfunctional activation of antigen-specific CD8+ T cells. While MHC-I is widely expressed on cells of both hematopoietic and non-hematopoietic origins, antigen presentation via MHC-II is more precisely regulated. Nevertheless, LNSCs are capable of endogenously expressing, or alternatively, acquiring MHC-II molecules. Transfer of antigen between LNSC and dendritic cells in both directions has been recently suggested to promote tolerogenic roles of LNSCs on the CD4+ T cell compartment. Thus, antigen presentation by LNSCs is thought to be a mechanism that promotes the maintenance of peripheral tolerance as well as generates a pool of diverse antigen-experienced T cells for protective immunity. This review aims to integrate the current and emerging literature to highlight the importance of LNSCs in immune responses, and emphasize their role in antigen trafficking, retention, and presentation.
Collapse
Affiliation(s)
- Sachiko Hirosue
- Institute of Bioengineering, École Polytechnique Fédéral de Lausanne , Lausanne , Switzerland
| | - Juan Dubrot
- Department of Pathology and Immunology, Université de Genève , Geneva , Switzerland
| |
Collapse
|
36
|
Doherty DG. Immunity, tolerance and autoimmunity in the liver: A comprehensive review. J Autoimmun 2015; 66:60-75. [PMID: 26358406 DOI: 10.1016/j.jaut.2015.08.020] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 12/14/2022]
Abstract
The hepatic immune system is constantly exposed to a massive load of harmless dietary and commensal antigens, to which it must remain tolerant. Immune tolerance in the liver is mediated by a number of specialized antigen-presenting cells, including dendritic cells, Kupffer cells, liver sinusoidal endothelial cells and hepatic stellate cells. These cells are capable of presenting antigens to T cells leading to T cell apoptosis, anergy, or differentiation into regulatory T cells. However, the hepatic immune system must also be able to respond to pathogens and tumours and therefore must be equipped with mechanisms to override immune tolerance. The liver is a site of accumulation of a number of innate lymphocyte populations, including natural killer cells, CD56(+) T cells, natural killer T cells, γδ T cells, and mucosal-associated invariant T cells. Innate lymphocytes recognize conserved metabolites derived from microorganisms and host cells and respond by killing target cells or promoting the differentiation and/or activation of other cells of the immune system. Innate lymphocytes can promote the maturation of antigen-presenting cells from their precursors and thereby contribute to the generation of immunogenic T cell responses. These cells may be responsible for overriding hepatic immune tolerance to autoantigens, resulting in the induction and maintenance of autoreactive T cells that mediate liver injury causing autoimmune liver disease. Some innate lymphocyte populations can also directly mediate liver injury by killing hepatocytes or bile duct cells in murine models of hepatitis, whilst other populations may protect against liver disease. It is likely that innate lymphocyte populations can promote or protect against autoimmune liver disease in humans and that these cells can be targeted therapeutically. Here I review the cellular mechanisms by which hepatic antigen-presenting cells and innate lymphocytes control the balance between immunity, tolerance and autoimmunity in the liver.
Collapse
Affiliation(s)
- Derek G Doherty
- Division of Immunology, School of Medicine, Trinity College Dublin, Ireland.
| |
Collapse
|
37
|
Morita M, Joyce D, Miller C, Fung JJ, Lu L, Qian S. Rejection triggers liver transplant tolerance: Involvement of mesenchyme-mediated immune control mechanisms in mice. Hepatology 2015; 62:915-31. [PMID: 25998530 PMCID: PMC4549241 DOI: 10.1002/hep.27909] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 05/19/2015] [Indexed: 12/31/2022]
Abstract
UNLABELLED Liver tolerance was initially recognized by the spontaneous acceptance of liver allografts in many species. The underlying mechanisms are not completely understood. However, liver transplant (LT) tolerance absolutely requires interferon (IFN)-γ, a rejection-associated inflammatory cytokine. In this study, we investigated the rejection of liver allografts deficient in the IFN-γ receptor and reveal that the liver graft is equipped with machineries capable of counterattacking the host immune response through a mesenchyme-mediated immune control (MMIC) mechanism. MMIC is triggered by T effector (Tef) cell-derived IFN-γ that drives expression of B7-H1 on graft mesenchymal cells leading to Tef cell apoptosis. We describe the negative feedback loop between graft mesenchymal and Tef cells that ultimately results in LT tolerance. Comparable elevations of T-regulatory cells and myeloid-derived suppressor cells were observed in both rejection and tolerance groups and were not dependent on IFN-γ stimulation, suggesting a critical role of Tef cell elimination in tolerance induction. We identify potent MMIC activity in hepatic stellate cells and liver sinusoidal endothelial cells. MMIC is unlikely exclusive to the liver, given that spontaneous acceptance of kidney allografts has been reported, although less commonly, probably reflecting variance in MMIC activity. CONCLUSION MMIC may represent an important homeostatic mechanism that supports peripheral tolerance and could be a target for the prevention and treatment of transplant rejection. This study highlights that the graft is an active participant in the equipoise between tolerance and rejection and warrants more attention in the search for tolerance biomarkers.
Collapse
Affiliation(s)
- Miwa Morita
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
| | - Daniel Joyce
- Department of General, Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
| | - Charles Miller
- Department of General, Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
| | - John J. Fung
- Department of General, Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
| | - Lina Lu
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
- Department of General, Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
| | - Shiguang Qian
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
- Department of General, Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
| |
Collapse
|
38
|
Böttcher J, Knolle PA. Global transcriptional characterization of CD8+ T cell memory. Semin Immunol 2015; 27:4-9. [PMID: 25841628 DOI: 10.1016/j.smim.2015.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 12/24/2022]
Abstract
The differentiation of memory CD8T cells after acute infections comprises generation of functionally distinct populations that either have proliferative potential or display cytotoxic effector functions and that either recirculate into lymphoid tissues or remain tissue-resident. The development of these functionally distinct cell populations is dictated by defined signals from the microenvironment that result in a coordinated expression of a network of transcription factors, which determine the functionality of memory T cells. Distinct transcriptional regulation observed during chronic viral infection that results in generation of T cells that control viral replication in the absence of immunopathology suggests the existence of so far unappreciated functional adaptation of T cell function to the particular need during chronic infections to control infection and avoid immunopathology. Furthermore, the non-canonical generation of CD8T cell memory outside of lymphoid tissues in the liver in the absence of inflammation is correlated with a distinct transcriptional profile and indicates further complexity in the commensurate immune response to infectious pathogens that escape innate immunity. Taken together, distinct profiles of transcriptional regulation are linked to CD8T cells with different functions and provide important mechanistic insight into the continuous functional adaptation of CD8T cells to generate a commensurate immune response to infectious challenges.
Collapse
Affiliation(s)
- Jan Böttcher
- Immunobiology Laboratory, Cancer Research UK, United Kingdom
| | - Percy A Knolle
- Institute of Molecular Immunology, München Rechts der Isar, Technische Universität München, Germany; Institute of Experimental Immunology, Universität Bonn, Germany.
| |
Collapse
|
39
|
Cellular and molecular targeting for nanotherapeutics in transplantation tolerance. Clin Immunol 2015; 160:14-23. [PMID: 25805659 DOI: 10.1016/j.clim.2015.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 11/21/2022]
Abstract
The induction of donor-specific tolerance to transplanted cells and organs, while preserving immune function as a whole, remains a highly sought after and elusive strategy for overcoming transplant rejection. Tolerance necessitates modulating a diverse array of cell types that recognize and respond to alloantigens, including antigen presenting cells and T lymphocytes. Nanotherapeutic strategies that employ cellular and biomaterial engineering represent an emerging technology geared towards the goal of inducing transplant tolerance. Nanocarriers offer a platform for delivering antigens of interest to specific cell types in order to achieve tolerogenic antigen presentation. Furthermore, the technologies also provide an opportunity for local immunomodulation at the graft site. Nanocarriers delivering a combination of antigens and immunomodulating agents, such as rapamycin, provide a unique technology platform with the potential to enhance outcomes for the induction of transplant tolerance.
Collapse
|
40
|
Schildberg FA, Sharpe AH, Turley SJ. Hepatic immune regulation by stromal cells. Curr Opin Immunol 2015; 32:1-6. [DOI: 10.1016/j.coi.2014.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 02/07/2023]
|
41
|
IL-6 trans-signaling-dependent rapid development of cytotoxic CD8+ T cell function. Cell Rep 2014; 8:1318-27. [PMID: 25199826 DOI: 10.1016/j.celrep.2014.07.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/28/2014] [Accepted: 07/10/2014] [Indexed: 11/21/2022] Open
Abstract
Immune control of infections with viruses or intracellular bacteria relies on cytotoxic CD8(+) T cells that use granzyme B (GzmB) for elimination of infected cells. During inflammation, mature antigen-presenting dendritic cells instruct naive T cells within lymphoid organs to develop into effector T cells. Here, we report a mechanistically distinct and more rapid process of effector T cell development occurring within 18 hr. Such rapid acquisition of effector T cell function occurred through cross-presenting liver sinusoidal endothelial cells (LSECs) in the absence of innate immune stimulation and known costimulatory signaling. Rather, interleukin-6 (IL-6) trans-signaling was required and sufficient for rapid induction of GzmB expression in CD8(+) T cells. Such LSEC-stimulated GzmB-expressing CD8(+) T cells further responded to inflammatory cytokines, eliciting increased and protracted effector functions. Our findings identify a role for IL-6 trans-signaling in rapid generation of effector function in CD8(+) T cells that may be beneficial for vaccination strategies.
Collapse
|
42
|
Kaczmarek J, Homsi Y, van Üüm J, Metzger C, Knolle PA, Kolanus W, Lang T, Diehl L. Liver sinusoidal endothelial cell-mediated CD8 T cell priming depends on co-inhibitory signal integration over time. PLoS One 2014; 9:e99574. [PMID: 24924593 PMCID: PMC4055751 DOI: 10.1371/journal.pone.0099574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/16/2014] [Indexed: 02/06/2023] Open
Abstract
The initiation of adaptive immunity requires cell-to-cell contact between T cells and antigen-presenting cells. Together with immediate TCR signal transduction, the formation of an immune synapse (IS) is one of the earliest events detected during T cell activation. Here, we show that interaction of liver sinusoidal endothelial cells (LSEC) with naive CD8 T cells, which induces CD8 T cells without immediate effector function, is characterized by a multi-focal type IS. The co-inhibitory molecule B7H1, which is pivotal for the development of non-responsive LSEC-primed T cells, did not alter IS structure or TCRβ/CD11a cluster size or density, indicating that IS form does not determine the outcome of LSEC-mediated T cell activation. Instead, PD-1 signaling during CD8 T cell priming by LSEC repressed IL-2 production as well as sustained CD25 expression. When acting during the first 24 h of LSEC/CD8 T cell interaction, CD28 co-stimulation inhibited the induction of non-responsive LSEC-primed T cells. However, after more than 36 h of PD-1 signaling, CD28 co-stimulation failed to rescue effector function in LSEC-primed T cells. Together, these data show that during LSEC-mediated T cell priming, integration of co-inhibitory PD-1 signaling over time turns on a program for CD8 T cell development, that cannot be overturned by co-stimulatory signals.
Collapse
Affiliation(s)
- Julita Kaczmarek
- Institute of Molecular Medicine at the LIMES Institute, University of Bonn, Bonn, Germany
| | - Yahya Homsi
- Department of Membrane Biochemistry at the LIMES Institute, University of Bonn, Bonn, Germany
| | - Jan van Üüm
- Department of Membrane Biochemistry at the LIMES Institute, University of Bonn, Bonn, Germany
| | - Christina Metzger
- Institute of Molecular Medicine at the LIMES Institute, University of Bonn, Bonn, Germany
| | - Percy A. Knolle
- Institute of Molecular Immunology, Technical University Munich, Munich, Germany
| | - Waldemar Kolanus
- Department of Molecular Immunology at the LIMES Institute, University of Bonn, Bonn, Germany
| | - Thorsten Lang
- Department of Membrane Biochemistry at the LIMES Institute, University of Bonn, Bonn, Germany
| | - Linda Diehl
- Institute of Molecular Medicine at the LIMES Institute, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
43
|
Cary LH, Noutai D, Salber RE, Williams MS, Ngudiankama BF, Whitnall MH. Interactions between Endothelial Cells and T Cells Modulate Responses to Mixed Neutron/Gamma Radiation. Radiat Res 2014; 181:592-604. [DOI: 10.1667/rr13550.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
44
|
Hirosue S, Vokali E, Raghavan VR, Rincon-Restrepo M, Lund AW, Corthésy-Henrioud P, Capotosti F, Halin Winter C, Hugues S, Swartz MA. Steady-state antigen scavenging, cross-presentation, and CD8+ T cell priming: a new role for lymphatic endothelial cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:5002-11. [PMID: 24795456 DOI: 10.4049/jimmunol.1302492] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Until recently, the known roles of lymphatic endothelial cells (LECs) in immune modulation were limited to directing immune cell trafficking and passively transporting peripheral Ags to lymph nodes. Recent studies demonstrated that LECs can directly suppress dendritic cell maturation and present peripheral tissue and tumor Ags for autoreactive T cell deletion. We asked whether LECs play a constitutive role in T cell deletion under homeostatic conditions. In this study, we demonstrate that murine LECs under noninflamed conditions actively scavenge and cross-present foreign exogenous Ags to cognate CD8(+) T cells. This cross-presentation was sensitive to inhibitors of lysosomal acidification and endoplasmic reticulum-golgi transport and was TAP1 dependent. Furthermore, LECs upregulated MHC class I and the PD-1 ligand PD-L1, but not the costimulatory molecules CD40, CD80, or CD86, upon Ag-specific interactions with CD8(+) T cells. Finally, Ag-specific CD8(+) T cells that were activated by LECs underwent proliferation, with early-generation apoptosis and dysfunctionally activated phenotypes that could not be reversed by exogenous IL-2. These findings help to establish LECs as APCs that are capable of scavenging and cross-presenting exogenous Ags, in turn causing dysfunctional activation of CD8(+) T cells under homeostatic conditions. Thus, we suggest that steady-state lymphatic drainage may contribute to peripheral tolerance by delivering self-Ags to lymph node-resident leukocytes, as well as by providing constant exposure of draining peripheral Ags to LECs, which maintain tolerogenic cross-presentation of such Ags.
Collapse
Affiliation(s)
- Sachiko Hirosue
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Efthymia Vokali
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Vidya R Raghavan
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Marcela Rincon-Restrepo
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Amanda W Lund
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Francesca Capotosti
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Cornelia Halin Winter
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zürich (ETHZ), Zürich, Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire, Université de Genève, Geneva, Switzerland; and
| | - Melody A Swartz
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
45
|
Tonsho M, Michel S, Ahmed Z, Alessandrini A, Madsen JC. Heart transplantation: challenges facing the field. Cold Spring Harb Perspect Med 2014; 4:4/5/a015636. [PMID: 24789875 DOI: 10.1101/cshperspect.a015636] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There has been significant progress in the field of heart transplantation over the last 45 years. The 1-yr survival rates following heart transplantation have improved from 30% in the 1970s to almost 90% in the 2000s. However, there has been little change in long-term outcomes. This is mainly due to chronic rejection, malignancy, and the detrimental side effects of chronic immunosuppression. In addition, over the last decade, new challenges have arisen such as increasingly complicated recipients and antibody-mediated rejection. Most, if not all, of these obstacles to long-term survival could be prevented or ameliorated by the induction of transplant tolerance wherein the recipient's immune system is persuaded not to mount a damaging immune response against donor antigens, thus eliminating the need for chronic immunosuppression. However, the heart, as opposed to other allografts like kidneys, appears to be a tolerance-resistant organ. Understanding why organs like kidneys and livers are prone to tolerance induction, whereas others like hearts and lungs are tolerance-resistant, could aid in our attempts to achieve long-term, immunosuppression-free survival in human heart transplant recipients. It could also advance the field of pig-to-human xenotransplantation, which, if successful, would eliminate the organ shortage problem. Of course, there are alternative futures to the field of heart transplantation that may include the application of total mechanical support, stem cells, or bioengineered whole organs. Which modality will be the first to reach the ultimate goal of achieving unlimited, long-term, circulatory support with minimal risk to longevity or lifestyle is unknown, but significant progress in being made in each of these areas.
Collapse
Affiliation(s)
- Makoto Tonsho
- MGH Transplantation Center, Massachusetts General Hospital, Boston, Massachusetts 02114
| | | | | | | | | |
Collapse
|
46
|
Knolle PA, Thimme R. Hepatic immune regulation and its involvement in viral hepatitis infection. Gastroenterology 2014; 146:1193-207. [PMID: 24412289 DOI: 10.1053/j.gastro.2013.12.036] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/22/2013] [Accepted: 12/27/2013] [Indexed: 02/08/2023]
Abstract
The liver has unique immune regulatory functions that promote the induction of tolerance rather than responses to antigens encountered locally. These functions are mediated by local expression of coinhibitory receptors and immunosuppressive mediators that help prevent overwhelming tissue damage. Over the years, we have gained more insight into the local regulatory cues that determine the functional complexity of immune responses regulated locally in the liver. Both the unique hepatic microenvironment and the particular liver sinusoidal cell populations, in addition to hepatocytes, actively modulate immune responses locally in the liver and thereby determine the outcome of hepatic immune responses. This is of high biological and clinical relevance in hepatitis B virus and hepatitis C virus infections, which can cause acute and persistent infections associated with chronic inflammation in humans that eventually progress to cirrhosis and hepatocellular carcinoma. Here, we review current knowledge about the balance between immunity and tolerance in the liver and how this may affect our understanding of the determinants of hepatitis B virus and hepatitis C virus clearance, persistence, and virus-induced liver disease.
Collapse
Affiliation(s)
- Percy A Knolle
- Institute of Molecular Immunology, Technische Universität München and Institutes of Molecular Medicine and Experimental Immunology, Universität Bonn, Bonn.
| | - Robert Thimme
- Department of Medicine, Clinic for Gastroenterology, Hepatology, Endocrinology, Infectious Diseases, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
47
|
Card CM, Yu SS, Swartz MA. Emerging roles of lymphatic endothelium in regulating adaptive immunity. J Clin Invest 2014; 124:943-52. [PMID: 24590280 DOI: 10.1172/jci73316] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Emerging research on the roles of stromal cells in modulating adaptive immune responses has included a new focus on lymphatic endothelial cells (LECs). LECs are presumably the first cells that come into direct contact with peripheral antigens, cytokines, danger signals, and immune cells travelling from peripheral tissues to lymph nodes. LECs can modulate dendritic cell function, present antigens to T cells on MHC class I and MHC class II molecules, and express immunomodulatory cytokines and receptors, which suggests that their roles in adaptive immunity are far more extensive than previously realized. This Review summarizes the emergent evidence that LECs are important in maintaining peripheral tolerance, limiting and resolving effector T cell responses, and modulating leukocyte function.
Collapse
|
48
|
Abstract
Because of its unique function and anatomical location, the liver is exposed to a multitude of toxins and xenobiotics, including medications and alcohol, as well as to infection by hepatotropic viruses, and therefore, is highly susceptible to tissue injury. Cell death in the liver occurs mainly by apoptosis or necrosis, with apoptosis also being the physiologic route to eliminate damaged or infected cells and to maintain tissue homeostasis. Liver cells, especially hepatocytes and cholangiocytes, are particularly susceptible to death receptor-mediated apoptosis, given the ubiquitous expression of the death receptors in the organ. In a quite unique way, death receptor-induced apoptosis in these cells is mediated by both mitochondrial and lysosomal permeabilization. Signaling between the endoplasmic reticulum and the mitochondria promotes hepatocyte apoptosis in response to excessive free fatty acid generation during the metabolic syndrome. These cell death pathways are partially regulated by microRNAs. Necrosis in the liver is generally associated with acute injury (i.e., ischemia/reperfusion injury) and has been long considered an unregulated process. Recently, a new form of "programmed" necrosis (named necroptosis) has been described: the role of necroptosis in the liver has yet to be explored. However, the minimal expression of a key player in this process in the liver suggests this form of cell death may be uncommon in liver diseases. Because apoptosis is a key feature of so many diseases of the liver, therapeutic modulation of liver cell death holds promise. An updated overview of these concepts is given in this article.
Collapse
Affiliation(s)
- Maria Eugenia Guicciardi
- 1Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
49
|
Fomin ME, Zhou Y, Beyer AI, Publicover J, Baron JL, Muench MO. Production of factor VIII by human liver sinusoidal endothelial cells transplanted in immunodeficient uPA mice. PLoS One 2013; 8:e77255. [PMID: 24167566 PMCID: PMC3805584 DOI: 10.1371/journal.pone.0077255] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 09/02/2013] [Indexed: 12/23/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) form a semi-permeable barrier between parenchymal hepatocytes and the blood. LSECs participate in liver metabolism, clearance of pathological agents, immunological responses, architectural maintenance of the liver and synthesis of growth factors and cytokines. LSECs also play an important role in coagulation through the synthesis of Factor VIII (FVIII). Herein, we phenotypically define human LSECs isolated from fetal liver using flow cytometry and immunofluorescence microscopy. Isolated LSECs were cultured and shown to express endothelial markers and markers specific for the LSEC lineage. LSECs were also shown to engraft the liver when human fetal liver cells were transplanted into immunodeficient mice with liver specific expression of the urokinase-type plasminogen activator (uPA) transgene (uPA-NOG mice). Engrafted cells expressed human Factor VIII at levels approaching those found in human plasma. We also demonstrate engraftment of adult LSECs, as well as hepatocytes, transplanted into uPA-NOG mice. We propose that overexpression of uPA provides beneficial conditions for LSEC engraftment due to elevated expression of the angiogenic cytokine, vascular endothelial growth factor. This work provides a detailed characterization of human midgestation LSECs, thereby providing the means for their purification and culture based on their expression of CD14 and CD32 as well as a lack of CD45 expression. The uPA-NOG mouse is shown to be a permissive host for human LSECs and adult hepatocytes, but not fetal hepatoblasts. Thus, these mice provide a useful model system to study these cell types in vivo. Demonstration of human FVIII production by transplanted LSECs encourages further pursuit of LSEC transplantation as a cellular therapy for the treatment of hemophilia A.
Collapse
Affiliation(s)
- Marina E. Fomin
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Yanchen Zhou
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Ashley I. Beyer
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Jean Publicover
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Liver Center, University of California San Francisco, San Francisco, California, United States of America
| | - Jody L. Baron
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Liver Center, University of California San Francisco, San Francisco, California, United States of America
| | - Marcus O. Muench
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
- Liver Center, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Mai J, Virtue A, Shen J, Wang H, Yang XF. An evolving new paradigm: endothelial cells--conditional innate immune cells. J Hematol Oncol 2013; 6:61. [PMID: 23965413 PMCID: PMC3765446 DOI: 10.1186/1756-8722-6-61] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/19/2013] [Indexed: 12/23/2022] Open
Abstract
Endothelial cells (ECs) are a heterogeneous population that fulfills many physiological processes. ECs also actively participate in both innate and adaptive immune responses. ECs are one of the first cell types to detect foreign pathogens and endogenous metabolite-related danger signals in the bloodstream, in which ECs function as danger signal sensors. Treatment with lipopolysaccharide activates ECs, causing the production of pro-inflammatory cytokines and chemokines, which amplify the immune response by recruiting immune cells. Thus, ECs function as immune/inflammation effectors and immune cell mobilizers. ECs also induce cytokine production by immune cells, in which ECs function as immune regulators either by activating or suppressing immune cell function. In addition, under certain conditions, ECs can serve as antigen presenting cells (antigen presenters) by expressing both MHC I and II molecules and presenting endothelial antigens to T cells. These facts along with the new concept of endothelial plasticity suggest that ECs are dynamic cells that respond to extracellular environmental changes and play a meaningful role in immune system function. Based on these novel EC functions, we propose a new paradigm that ECs are conditional innate immune cells. This paradigm provides a novel insight into the functions of ECs in inflammatory/immune pathologies.
Collapse
Affiliation(s)
- Jietang Mai
- Centers of Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Anthony Virtue
- Centers of Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jerry Shen
- Department of Family Medicine, College of Community Health Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Hong Wang
- Centers of Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Xiao-Feng Yang
- Centers of Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|