1
|
Schlidt K, Asgardoon M, Febre-Alemañy DA, El-Mallah JC, Waldron O, Dawes J, Agrawal S, Landmesser ME, Ravnic DJ. Surgical Bioengineering of the Microvasculature and Challenges in Clinical Translation. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 40171780 DOI: 10.1089/ten.teb.2024.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Tissue and organ dysfunction are major causes of worldwide morbidity and mortality with all medical specialties being impacted. Tissue engineering is an interdisciplinary field relying on the combination of scaffolds, cells, and biologically active molecules to restore form and function. However, clinical translation is still largely hampered by limitations in vascularization. Consequently, a thorough understanding of the microvasculature is warranted. This review provides an overview of (1) angiogenesis, including sprouting angiogenesis, intussusceptive angiogenesis, vascular remodeling, vascular co-option, and inosculation; (2) strategies for vascularized engineered tissue fabrication such as scaffold modulation, prevascularization, growth factor utilization, and cell-based approaches; (3) guided microvascular development via scaffold modulation with electromechanical cues, 3D bioprinting, and electrospinning; (4) surgical approaches to bridge the micro- and macrovasculatures in order to hasten perfusion; and (5) building specific vasculature in the context of tissue repair and organ transplantation, including skin, adipose, bone, liver, kidney, and lung. Our goal is to provide the reader with a translational overview that spans developmental biology, tissue engineering, and clinical surgery.
Collapse
Affiliation(s)
- Kevin Schlidt
- Zubar Plastic Surgery Research Laboratory, Department of Surgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Mohamadhossein Asgardoon
- Zubar Plastic Surgery Research Laboratory, Department of Surgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - David A Febre-Alemañy
- Zubar Plastic Surgery Research Laboratory, Department of Surgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Jessica C El-Mallah
- Zubar Plastic Surgery Research Laboratory, Department of Surgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Olivia Waldron
- Zubar Plastic Surgery Research Laboratory, Department of Surgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Jazzmyn Dawes
- Zubar Plastic Surgery Research Laboratory, Department of Surgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Shailaja Agrawal
- Zubar Plastic Surgery Research Laboratory, Department of Surgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Mary E Landmesser
- Zubar Plastic Surgery Research Laboratory, Department of Surgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Dino J Ravnic
- Zubar Plastic Surgery Research Laboratory, Department of Surgery, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Steklikova K, Dalecka L, Kubovciak J, Corneloup C, Pantalacci S, Hovorakova M. Factors Involved in Enamel Knot Establishment and Cap Formation. J Dent Res 2025:220345251316834. [PMID: 40102700 DOI: 10.1177/00220345251316834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Development of dentition is a commonly studied process as a representative of the development of ectodermal derivates. A key step is the formation of a signaling center called the enamel knot (EK), which organizes tooth crown formation. In the mouse lower jaw, the anterior part of the tooth-forming region undergoes a series of complex events before the first molar primary EK can form more posteriorly and the tooth can progress through the cap stage. Although much is known about the molecular factors involved in tooth development, disentangling their specific roles is difficult. In this study, we circumvented this problem by isolating the posterior part of the tooth-forming region at embryonic day 13.5 and cultivating it in vitro. By treating them with molecules activating or inhibiting Sonic hedgehog (Shh) and fibroblast growth factor (Fgf) pathways, we demonstrate that Shh plays the role of an inhibitor of EK formation, and we suggest that the FGF pathways may have both positive and negative roles, as seen in hair. By RNA-sequencing of the cultivated isolates after 0, 16, or 24 h in vitro, respectively, we screened for genes whose expression varies with EK and cap formation and pointed to Cdkn2b and Sema3b as 2 promising candidates in this process.
Collapse
Affiliation(s)
- K Steklikova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - L Dalecka
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - J Kubovciak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - C Corneloup
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, Lyon, France
| | - S Pantalacci
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, Lyon, France
| | - M Hovorakova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Gomez-Salinero JM, Redmond D, Rafii S. Microenvironmental determinants of endothelial cell heterogeneity. Nat Rev Mol Cell Biol 2025:10.1038/s41580-024-00825-w. [PMID: 39875728 DOI: 10.1038/s41580-024-00825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/30/2025]
Abstract
During development, endothelial cells (ECs) undergo an extraordinary specialization by which generic capillary microcirculatory networks spanning from arteries to veins transform into patterned organotypic zonated blood vessels. These capillary ECs become specialized to support the cellular and metabolic demands of each specific organ, including supplying tissue-specific angiocrine factors that orchestrate organ development, maintenance of organ-specific functions and regeneration of injured adult organs. Here, we illustrate the mechanisms by which microenvironmental signals emanating from non-vascular niche cells induce generic ECs to acquire specific inter-organ and intra-organ functional attributes. We describe how perivascular, parenchymal and immune cells dictate vascular heterogeneity and capillary zonation, and how this system is maintained through tissue-specific signalling activated by vasculogenic and angiogenic factors and deposition of matrix components. We also discuss how perturbation of organotypic vascular niche cues lead to erasure of EC signatures, contributing to the pathogenesis of disease processes. We also describe approaches that use reconstitution of tissue-specific signatures of ECs to promote regeneration of damaged organs.
Collapse
Affiliation(s)
- Jesus M Gomez-Salinero
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration and Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David Redmond
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration and Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration and Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Benderski K, Schneider P, Kordeves P, Fichter M, Schunke J, De Lorenzi F, Durak F, Schrörs B, Akilli Ö, Kiessling F, Bros M, Diken M, Grabbe S, Schattenberg JM, Lammers T, Sofias AM, Kaps L. A hepatocellular carcinoma model with and without parenchymal liver damage that integrates technical and pathophysiological advantages for therapy testing. Pharmacol Res 2025; 211:107560. [PMID: 39730106 DOI: 10.1016/j.phrs.2024.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Hepatocellular Carcinoma (HCC) is the most common form of primary liver cancer, with cirrhosis being its strongest risk factor. Interestingly, an increasing number of HCC cases is also observed without cirrhosis. We developed an HCC model via intrasplenic injection of highly tumorigenic HCC cells, which, due to cellular tropism, invade the liver and allow for a controllable disease progression. Specifically, C57BL/6JRj mice were intrasplenically inoculated with Dt81Hepa1-6 HCC cells, with a subgroup pre-treated with CCl4 to induce cirrhosis (C-HCC). At four weeks post-inoculation, mice were sacrificed, and diseased livers were analyzed via histology, flow cytometry, and RT-qPCR to profile the extracellular matrix (ECM), angiogenesis, and immune cells. In addition, tumor-bearing mice were treated with the first-line therapy, AtezoBev, to assess therapeutic responsiveness of the model. Dt81Hepa1-6 cells displayed similar gene expression as human HCC. After intrasplenic injection, all mice developed multifocal disease. C-HCC mice had a significantly higher tumor load than non-cirrhotic HCC mice. Both HCC and C-HCC models displayed extensive ECM formation, increased levels of vascularization, and immune cell infiltration compared to healthy and non-cancerous cirrhotic livers. AtezoBev treatment produced robust antitumor efficacy, validating the model's suitability for therapy testing. In conclusion, we established a rapidly developing and high-yield HCC model through a simple intrasplenic injection, with or without cirrhotic damage. The model overexpressed key human HCC genes and showed high responsiveness to first-line treatment. Our model uniquely combines all the above-mentioned features, promoting its use towards HCC therapy testing.
Collapse
Affiliation(s)
- Karina Benderski
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany
| | - Paul Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany
| | - Panayiotis Kordeves
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany
| | - Michael Fichter
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany; Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Jenny Schunke
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany; TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Feyza Durak
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Barbara Schrörs
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Özlem Akilli
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, Mainz 55131, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany
| | - Jörn M Schattenberg
- Department of Medicine II, Saarland University Medical Center, Saarland University, Kirrberger Strasse 100, Saarbrücken 66123, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, Aachen 52074, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen 52074, Germany.
| | - Leonard Kaps
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz 55131, Germany; Department of Medicine II, Saarland University Medical Center, Saarland University, Kirrberger Strasse 100, Saarbrücken 66123, Germany.
| |
Collapse
|
5
|
Bhandari S, Kyrrestad I, Simón-Santamaría J, Li R, Szafranska KJ, Dumitriu G, Sánchez Romano J, Smedsrød B, Sørensen KK. Mouse liver sinusoidal endothelial cell responses to the glucocorticoid receptor agonist dexamethasone. Front Pharmacol 2024; 15:1377136. [PMID: 39439887 PMCID: PMC11494038 DOI: 10.3389/fphar.2024.1377136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) which make up the fenestrated wall of the hepatic sinusoids, are active scavenger cells involved in blood waste clearance and liver immune functions. Dexamethasone is a synthetic glucocorticoid commonly used in the clinic and as cell culture supplement. However, the response is dependent on tissue, cell type, and cell state. The aim of this study was to investigate the effect of dexamethasone on primary mouse LSECs (C57BL/6J); their viability (live-dead, LDH release, caspase 3/7 assays), morphology (scanning electron microscopy), release of inflammatory markers (ELISA), and scavenging functions (endocytosis assays), and associated biological processes and pathways. We have characterized and catalogued the proteome of LSECs cultured for 1, 10, or 48 h to elucidate time-dependent and dexamethasone-specific cell responses. More than 6,000 protein IDs were quantified using tandem mass tag technology and advanced mass spectrometry (synchronous precursor selection multi-notch MS3). Enrichment analysis showed a culture-induced upregulation of stress and inflammatory markers, and a significant shift in cell metabolism already at 10 h, with enhancement of glycolysis and concomitant repression of oxidative phosphorylation. At 48 h, changes in metabolic pathways were more pronounced with dexamethasone compared to time-matched controls. Dexamethasone repressed the activation of inflammatory pathways (IFN-gamma response, TNF-alpha signaling via NF-kB, Cell adhesion molecules), and culture-induced release of interleukin-6, VCAM-1, and ICAM-1, and improved cell viability partly through inhibition of apoptosis. The mouse LSECs did not proliferate in culture. Dexamethasone treated cells showed upregulation of xanthine dehydrogenase/oxidase (Xdh), and the transcription regulator Foxo1. The drug further delayed but did not block the culture-induced loss of LSEC fenestration. The LSEC capacity for endocytosis was significantly reduced at 48 h, independent of dexamethasone, which correlated with diminished expression of several scavenger receptors and C-type lectins and altered expression of proteins in the endocytic machinery. The glucocorticoid receptor (NR3C1) was suppressed by dexamethasone at 48 h, suggesting limited effect of the drug in prolonged LSEC culture. Conclusion: The study presents a detailed overview of biological processes and pathways affected by dexamethasone in mouse LSECs in vitro.
Collapse
|
6
|
Krzistetzko J, Géraud C, Dormann C, Riedel A, Leibing T. Phenotypical and biochemical characterization of murine psoriasiform and fibrotic skin disease models in Stabilin-deficient mice. FEBS Open Bio 2024; 14:1455-1470. [PMID: 38946049 PMCID: PMC11492309 DOI: 10.1002/2211-5463.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024] Open
Abstract
Stabilin-1 (Stab1) and Stabilin-2 (Stab2) are scavenger receptors expressed by liver sinusoidal endothelial cells (LSECs). The Stabilin-mediated scavenging function is responsible for regulating the molecular composition of circulating blood in mammals. Stab1 and Stab2 have been shown to influence fibrosis in liver and kidneys and to modulate inflammation in atherosclerosis. In this context, circulating and localized TGFBi and POSTN are differentially controlled by the Stabilins as their receptors. To assess Stab1 and Stab2 functions in inflammatory and fibrotic skin disease, topical Imiquimod (IMQ) was used to induce psoriasis-like skin lesions in mice and Bleomycin (BLM) was applied subcutaneously to induce scleroderma-like effects in the skin. The topical treatment with IMQ, as expected, led to psoriasis-like changes in the skin of mice, including increased epidermal thickness and significant weight loss. Clinical severity was reduced in Stab2-deficient compared to Stab1-deficient mice. We did not observe differential effects in the skin of Stabilin-deficient mice after bleomycin injection. Interestingly, treatment with IMQ led to a significant increase of Stabilin ligand TGFBi plasma levels in Stab2-/- mice, treatment with BLM resulted in a significant decrease in TGFBi levels in Stab1-/- mice. Overall, Stab1 and Stab2 deficiency resulted in minor alterations of the disease phenotypes accompanied by alterations of circulating ligands in the blood in response to the disease models. Stabilin-mediated clearance of TGFBi was altered in these disease processes. Taken together our results suggest that Stabilin deficiency-associated plasma alterations may interfere with preclinical disease severity and treatment responses in patients.
Collapse
Affiliation(s)
- Jessica Krzistetzko
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Section of Clinical and Molecular Dermatology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Cyrill Géraud
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Section of Clinical and Molecular Dermatology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- European Center for Angioscience (ECAS), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Christof Dormann
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Section of Clinical and Molecular Dermatology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Anna Riedel
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Section of Clinical and Molecular Dermatology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Thomas Leibing
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Section of Clinical and Molecular Dermatology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| |
Collapse
|
7
|
Groten SA, Smit ER, van den Biggelaar M, Hoogendijk AJ. The proteomic landscape of in vitro cultured endothelial cells across vascular beds. Commun Biol 2024; 7:989. [PMID: 39143368 PMCID: PMC11324761 DOI: 10.1038/s42003-024-06649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Blood vessel endothelial cells (EC) display heterogeneity across vascular beds, which is anticipated to drive site-specific vascular pathology. This heterogeneity is assessed using transcriptomics in vivo, and functional assays in vitro, but how proteomes compare across human in vitro cultured ECs remains incompletely characterized. We generated an in-depth human EC proteomic landscape (>8000 proteins) across six organs and two in vitro models in steady-state and upon IFNγ-induced inflammation. EC proteomes displayed a high similarity and organ-specific proteins were limited. Variation between ECs was mainly based on proliferation and differentiation processes in which Blood outgrowth endothelial cells (BOEC) and Human umbilical vein cells (HUVEC) represented the extremes of proteomic phenotypes. The IFNγ response was highly conserved across all samples. Harnessing dynamics in protein abundances we delineated VWF and VE-Cadherin correlation networks. This EC landscape provides an extensive proteomic addition in studying EC biology and heterogeneity from an in vitro perspective.
Collapse
Affiliation(s)
- Stijn A Groten
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Eva R Smit
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | | | - Arie J Hoogendijk
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
9
|
Tian SP, Ge JY, Song YM, Yu XQ, Chen WH, Chen YY, Ye D, Zheng YW. A novel efficient strategy to generate liver sinusoidal endothelial cells from human pluripotent stem cells. Sci Rep 2024; 14:13831. [PMID: 38879647 PMCID: PMC11180100 DOI: 10.1038/s41598-024-64195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/06/2024] [Indexed: 06/19/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells (ECs) that play an important role in liver development and regeneration. Additionally, it is involved in various pathological processes, including steatosis, inflammation, fibrosis and hepatocellular carcinoma. However, the rapid dedifferentiation of LSECs after culture greatly limits their use in vitro modeling for biomedical applications. In this study, we developed a highly efficient protocol to induce LSEC-like cells from human induced pluripotent stem cells (hiPSCs) in only 8 days. Using single-cell transcriptomic analysis, we identified several novel LSEC-specific markers, such as EPAS1, LIFR, and NID1, as well as several previously revealed markers, such as CLEC4M, CLEC1B, CRHBP and FCN3. These LSEC markers are specifically expressed in our LSEC-like cells. Furthermore, hiPSC-derived cells expressed LSEC-specific proteins and exhibited LSEC-related functions, such as the uptake of acetylated low density lipoprotein (ac-LDL) and immune complex endocytosis. Overall, this study confirmed that our novel protocol allowed hiPSCs to rapidly acquire an LSEC-like phenotype and function in vitro. The ability to generate LSECs efficiently and rapidly may help to more precisely mimic liver development and disease progression in a liver-specific multicellular microenvironment, offering new insights into the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Shang-Ping Tian
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Jian-Yun Ge
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Yu-Mu Song
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Xiao-Qing Yu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Wen-Hao Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Yu-Ying Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Di Ye
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Yun-Wen Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China.
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China.
- Department of Medical and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan.
- Institute of Medical Science, Center for Stem Cell Biology and Regenerative Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
10
|
Fisher AL, Phillips S, Wang CY, Paulo JA, Xiao X, Moschetta GA, Sridhar A, Mancias JD, Babitt JL. Endothelial ZIP8 plays a minor role in BMP6 regulation by iron in mice. Blood 2024; 143:2433-2437. [PMID: 38518102 PMCID: PMC11443574 DOI: 10.1182/blood.2023023385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024] Open
Abstract
ABSTRACT Iron-mediated induction of bone morphogenetic protein (BMP)6 expression by liver endothelial cells is essential for iron homeostasis regulation. We used multiple dietary and genetic mouse cohorts to demonstrate a minor functional role for the metal-ion transporter ZIP8 in regulating BMP6 expression under high-iron conditions.
Collapse
Affiliation(s)
- Allison L. Fisher
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sydney Phillips
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Chia-Yu Wang
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Xia Xiao
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Gillian A. Moschetta
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Adhvaith Sridhar
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Joseph D. Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jodie L. Babitt
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Yap KK, Schröder J, Gerrand YW, Dobric A, Kong AM, Fox AM, Knowles B, Banting SW, Elefanty AG, Stanley EG, Yeoh GC, Lockwood GP, Cogger VC, Morrison WA, Polo JM, Mitchell GM. Liver specification of human iPSC-derived endothelial cells transplanted into mouse liver. JHEP Rep 2024; 6:101023. [PMID: 38681862 PMCID: PMC11046210 DOI: 10.1016/j.jhepr.2024.101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 05/01/2024] Open
Abstract
Background & Aims Liver sinusoidal endothelial cells (LSECs) are important in liver development, regeneration, and pathophysiology, but the differentiation process underlying their tissue-specific phenotype is poorly understood and difficult to study because primary human cells are scarce. The aim of this study was to use human induced pluripotent stem cell (hiPSC)-derived LSEC-like cells to investigate the differentiation process of LSECs. Methods hiPSC-derived endothelial cells (iECs) were transplanted into the livers of Fah-/-/Rag2-/-/Il2rg-/- mice and assessed over a 12-week period. Lineage tracing, immunofluorescence, flow cytometry, plasma human factor VIII measurement, and bulk and single cell transcriptomic analysis were used to assess the molecular and functional changes that occurred following transplantation. Results Progressive and long-term repopulation of the liver vasculature occurred as iECs expanded along the sinusoids between hepatocytes and increasingly produced human factor VIII, indicating differentiation into LSEC-like cells. To chart the developmental profile associated with LSEC specification, the bulk transcriptomes of transplanted cells between 1 and 12 weeks after transplantation were compared against primary human adult LSECs. This demonstrated a chronological increase in LSEC markers, LSEC differentiation pathways, and zonation. Bulk transcriptome analysis suggested that the transcription factors NOTCH1, GATA4, and FOS have a central role in LSEC specification, interacting with a network of 27 transcription factors. Novel markers associated with this process included EMCN and CLEC14A. Additionally, single cell transcriptomic analysis demonstrated that transplanted iECs at 4 weeks contained zonal subpopulations with a region-specific phenotype. Conclusions Collectively, this study confirms that hiPSCs can adopt LSEC-like features and provides insight into LSEC specification. This humanised xenograft system can be applied to further interrogate LSEC developmental biology and pathophysiology, bypassing current logistical obstacles associated with primary human LSECs. Impact and implications Liver sinusoidal endothelial cells (LSECs) are important cells for liver biology, but better model systems are required to study them. We present a pluripotent stem cell xenografting model that produces human LSEC-like cells. A detailed and longitudinal transcriptomic analysis of the development of LSEC-like cells is included, which will guide future studies to interrogate LSEC biology and produce LSEC-like cells that could be used for regenerative medicine.
Collapse
Affiliation(s)
- Kiryu K. Yap
- O’Brien Department of St Vincent’s Institute, Fitzroy, VIC, Australia
- University of Melbourne Department of Surgery, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Jan Schröder
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Clayton, VIC, Australia
- Doherty Institute & University of Melbourne Department of Microbiology and Immunology, Parkville, VIC, Australia
| | - Yi-Wen Gerrand
- O’Brien Department of St Vincent’s Institute, Fitzroy, VIC, Australia
| | - Aleksandar Dobric
- O’Brien Department of St Vincent’s Institute, Fitzroy, VIC, Australia
| | - Anne M. Kong
- O’Brien Department of St Vincent’s Institute, Fitzroy, VIC, Australia
| | - Adrian M. Fox
- University of Melbourne Department of Surgery, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
- Hepatobiliary Surgery Unit, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Brett Knowles
- University of Melbourne Department of Surgery, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
- Hepatobiliary Surgery Unit, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Simon W. Banting
- University of Melbourne Department of Surgery, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
- Hepatobiliary Surgery Unit, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Andrew G. Elefanty
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Eduoard G. Stanley
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - George C. Yeoh
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Glen P. Lockwood
- ANZAC Research Institute and University of Sydney, Concord, NSW, Australia
| | - Victoria C. Cogger
- ANZAC Research Institute and University of Sydney, Concord, NSW, Australia
| | - Wayne A. Morrison
- O’Brien Department of St Vincent’s Institute, Fitzroy, VIC, Australia
- University of Melbourne Department of Surgery, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
- Australian Catholic University, Fitzroy, VIC, Australia
| | - Jose M. Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Clayton, VIC, Australia
- Adelaide Centre for Epigenetics, South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
| | - Geraldine M. Mitchell
- O’Brien Department of St Vincent’s Institute, Fitzroy, VIC, Australia
- University of Melbourne Department of Surgery, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
- Australian Catholic University, Fitzroy, VIC, Australia
| |
Collapse
|
12
|
Mitani S, Onodera Y, Hosoda C, Takabayashi Y, Sakata A, Shima M, Tatsumi K. Generation of functional liver sinusoidal endothelial-like cells from human bone marrow-derived mesenchymal stem cells. Regen Ther 2023; 24:274-281. [PMID: 37575681 PMCID: PMC10412721 DOI: 10.1016/j.reth.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Liver sinusoidal endothelial cells (LSECs) are specialized vascular endothelial cells that play an important role in the maintenance of biological homeostasis. However, the lack of versatile human LSECs has hindered research on LSECs and development of medical technologies for liver diseases including hemophilia A. In this study, we developed a technique to induce LSEC differentiation from human bone marrow-derived mesenchymal stem cells (BM-MSCs). Methods To induce LSECs from human BM-MSCs, cytokines and chemical compounds associated with signaling implicated in LSEC differentiation and liver development were screened. Then LSEC-related genes and proteins expression in the differentiated cells were analyzed by qPCR and flow cytometry analysis, respectively. LSEC-related functions of the differentiated cells were also examined. Results We found that the gene expression of LSEC markers, such as LYVE1, was considerably increased by culturing human BM-MSCs with bone morphogenetic protein 4, fibroblast growth factor 8b, transforming growth factor-β signal inhibitor, and cyclic AMP. Furthermore, the differentiated cells expressed LSEC marker proteins and clearly demonstrated LSEC-specific functions, such as the uptake of hyaluronic acid. Conclusions Our result indicate that the functional LSEC-like cells were successfully generated from human BM-MSCs using our established protocol.
Collapse
Affiliation(s)
- Seiji Mitani
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yu Onodera
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Chihiro Hosoda
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yoko Takabayashi
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Asuka Sakata
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Midori Shima
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kohei Tatsumi
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
13
|
Kyrrestad I, Larsen AK, Sánchez Romano J, Simón-Santamaría J, Li R, Sørensen KK. Infection of liver sinusoidal endothelial cells with Muromegalovirus muridbeta1 involves binding to neuropilin-1 and is dynamin-dependent. Front Cell Infect Microbiol 2023; 13:1249894. [PMID: 38029264 PMCID: PMC10665495 DOI: 10.3389/fcimb.2023.1249894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSEC) are scavenger cells with a remarkably high capacity for clearance of several blood-borne macromolecules and nanoparticles, including some viruses. Endocytosis in LSEC is mainly via the clathrin-coated pit mediated route, which is dynamin-dependent. LSEC can also be a site of infection and latency of betaherpesvirus, but mode of virus entry into these cells has not yet been described. In this study we have investigated the role of dynamin in the early stage of muromegalovirus muridbeta1 (MuHV-1, murid betaherpesvirus 1, murine cytomegalovirus) infection in mouse LSECs. LSEC cultures were freshly prepared from C57Bl/6JRj mouse liver. We first examined dose- and time-dependent effects of two dynamin-inhibitors, dynasore and MitMAB, on cell viability, morphology, and endocytosis of model ligands via different LSEC scavenger receptors to establish a protocol for dynamin-inhibition studies in these primary cells. LSECs were challenged with MuHV-1 (MOI 0.2) ± dynamin inhibitors for 1h, then without inhibitors and virus for 11h, and nuclear expression of MuHV-1 immediate early antigen (IE1) measured by immune fluorescence. MuHV-1 efficiently infected LSECs in vitro. Infection was significantly and independently inhibited by dynasore and MitMAB, which block dynamin function via different mechanisms, suggesting that initial steps of MuHV-1 infection is dynamin-dependent in LSECs. Infection was also reduced in the presence of monensin which inhibits acidification of endosomes. Furthermore, competitive binding studies with a neuropilin-1 antibody blocked LSEC infection. This suggests that MuHV-1 infection in mouse LSECs involves virus binding to neuropilin-1 and occurs via endocytosis.
Collapse
Affiliation(s)
- Ingelin Kyrrestad
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
14
|
Gil M, Azkargorta M, Fuster C, Martínez-Gómez M, Raurell I, Barberá A, Pericàs JM, Hide D, Elortza F, Genescà J, Martell M. Proteomic Analysis of Dysfunctional Liver Sinusoidal Endothelial Cells Reveals Substantial Differences in Most Common Experimental Models of Chronic Liver Diseases. Int J Mol Sci 2023; 24:11904. [PMID: 37569282 PMCID: PMC10418749 DOI: 10.3390/ijms241511904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Molecular markers of dedifferentiation of dysfunctional liver sinusoidal endothelial cells (LSEC) have not been fully elucidated. We aimed at deciphering the molecular profile of dysfunctional LSEC in different pathological scenarios. Flow cytometry was used to sort CD11b-/CD32b+ and CD11b-/CD32b- LSEC from three rat models of liver disease (bile duct ligation-BDL; inhaled carbon tetrachloride-CCl4; and high fat glucose/fructose diet-HFGFD). A full proteomic profile was performed applying nano-scale liquid chromatography tandem mass spectrometry (nLC-MS) and analyzed with PEAKS software. The percentage of CD32b- LSEC varied across groups, suggesting different capillarization processes. Both CD32+ and CD32b- LSEC from models are different from control LSEC, but differently expressed proteins in CD32b- LSEC are significantly higher. Heatmaps evidenced specific protein expression patterns for each model. Analysis of biological significance comparing dysfunctional CD32b- LSEC with specialized CD32b+ LSEC from controls showed central similarities represented by 45 common down-regulated proteins involved in the suppression of the endocytic machinery and 63 common up-regulated proteins associated with the actin-dependent cytoskeleton reorganization. In summary; substantial differences but also similarities in dysfunctional LSEC from the three most common models of liver disease were found, supporting the idea that LSEC may harbor different protein expression profiles according to the etiology or disease stage.
Collapse
Affiliation(s)
- Mar Gil
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, BRTA (Basque Research & Technology Alliance), Bizkaia Science and Technology Park, 48160 Derio, Spain; (M.A.); (F.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Carla Fuster
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
| | - María Martínez-Gómez
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
| | - Imma Raurell
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Aurora Barberá
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
| | - Juan Manuel Pericàs
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Diana Hide
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, BRTA (Basque Research & Technology Alliance), Bizkaia Science and Technology Park, 48160 Derio, Spain; (M.A.); (F.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Joan Genescà
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - María Martell
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
15
|
Non-transferrin-bound iron takes the driver's seat. Blood 2023; 141:214-216. [PMID: 36656611 DOI: 10.1182/blood.2022019049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
16
|
Kaden T, Noerenberg A, Boldt J, Sagawe C, Johannssen T, Rennert K, Raasch M, Evenburg T. Generation & characterization of expandable human liver sinusoidal endothelial cells and their application to assess hepatotoxicity in an advanced in vitro liver model. Toxicology 2023; 483:153374. [PMID: 36396002 DOI: 10.1016/j.tox.2022.153374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells forming the hepatic sinusoidal wall. Besides their high endocytic potential, LSECs have been demonstrated to markedly contribute to liver homeostasis and immunity, and may partially explain unexpected hepatotoxicity of drug candidates. However, their use for in vitro investigations is compromised by poor cell yields and a limited proliferation capacity. Here, we report the transient expansion of primary human LSECs from three donors by lentiviral transduction. Transduced ("upcyte®") LSECs were able to undergo at least 25 additional population doublings (PDs) before growth arrest due to senescence. Expanded upcyte® LSECs maintained several characteristics of primary LSECs, including expression of surface markers such as MMR and LYVE-1 as well as rapid uptake of acetylated LDL and ovalbumin. We further investigated the suitability of expanded upcyte® LSECs and proliferating upcyte® hepatocytes for detecting acetaminophen toxicity at millimolar concentrations (0, 0.5, 1, 2, 5, 10 mM) in static 2D cultures and a microphysiological 3D model. upcyte® LSECs exhibited a higher sensitivity to acetaminophen-induced toxicity compared to upcyte® hepatocytes in 2D culture, however, culturing upcyte® LSECs together with upcyte® hepatocytes in a co-culture reduced APAP-induced toxicity compared to 2D monocultures. A perfused Dynamic42 3D model was more sensitive to acetaminophen than the 2D co-culture model. Cytotoxicity in the 3D model was evident by decreased cellular viability, elevated LDH release, reduced nuclei counts and impaired cell morphology. Taken together, our data demonstrate that transient expansion of LSECs represents a suitable method for generation of large quantities of cells while maintaining many characteristics of primary cells and responsiveness to acetaminophen.
Collapse
|
17
|
Chen T, Shi Z, Zhao Y, Meng X, Zhao S, Zheng L, Han X, Hu Z, Yao Q, Lin H, Du X, Zhang K, Han T, Hong W. LncRNA Airn maintains LSEC differentiation to alleviate liver fibrosis via the KLF2-eNOS-sGC pathway. BMC Med 2022; 20:335. [PMID: 36171606 PMCID: PMC9520944 DOI: 10.1186/s12916-022-02523-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have emerged as important regulators in a variety of human diseases. The dysregulation of liver sinusoidal endothelial cell (LSEC) phenotype is a critical early event in the fibrotic process. However, the biological function of lncRNAs in LSEC still remains unclear. METHODS The expression level of lncRNA Airn was evaluated in both human fibrotic livers and serums, as well as mouse fibrotic livers. Gain- and loss-of-function experiments were performed to detect the effect of Airn on LSEC differentiation and hepatic stellate cell (HSC) activation in liver fibrosis. Furthermore, RIP, RNA pull-down-immunoblotting, and ChIP experiments were performed to explore the underlying mechanisms of Airn. RESULTS We have identified Airn was significantly upregulated in liver tissues and LSEC of carbon tetrachloride (CCl4)-induced liver fibrosis mouse model. Moreover, the expression of AIRN in fibrotic human liver tissues and serums was remarkably increased compared with healthy controls. In vivo studies showed that Airn deficiency aggravated CCl4- and bile duct ligation (BDL)-induced liver fibrosis, while Airn over-expression by AAV8 alleviated CCl4-induced liver fibrosis. Furthermore, we revealed that Airn maintained LSEC differentiation in vivo and in vitro. Additionally, Airn inhibited HSC activation indirectly by regulating LSEC differentiation and promoted hepatocyte (HC) proliferation by increasing paracrine secretion of Wnt2a and HGF from LSEC. Mechanistically, Airn interacted with EZH2 to maintain LSEC differentiation through KLF2-eNOS-sGC pathway, thereby maintaining HSC quiescence and promoting HC proliferation. CONCLUSIONS Our work identified that Airn is beneficial to liver fibrosis by maintaining LSEC differentiation and might be a serum biomarker for liver fibrogenesis.
Collapse
Affiliation(s)
- Ting Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhemin Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanmian Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoxiang Meng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Sicong Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lina Zheng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohui Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhimei Hu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qingbin Yao
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huajiang Lin
- Department of Hepatology and Gastroenterology, Tianjin Union Medical Center, Tianjin Medical University, Tianjin Union Medical Center affiliated to Nankai University, Tianjin, China
| | - Xiaoxiao Du
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Tao Han
- Department of Hepatology and Gastroenterology, Tianjin Union Medical Center, Tianjin Medical University, Tianjin Union Medical Center affiliated to Nankai University, Tianjin, China.
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
18
|
Li R, Bhandari S, Martinez-Zubiaurre I, Bruun JA, Urbarova I, Smedsrød B, Simón-Santamaría J, Sørensen KK. Changes in the proteome and secretome of rat liver sinusoidal endothelial cells during early primary culture and effects of dexamethasone. PLoS One 2022; 17:e0273843. [PMID: 36054185 PMCID: PMC9439253 DOI: 10.1371/journal.pone.0273843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction Liver sinusoidal endothelial cells (LSECs) are specialized fenestrated scavenger endothelial cells involved in the elimination of modified plasma proteins and tissue turnover waste macromolecules from blood. LSECs also participate in liver immune responses. A challenge when studying LSEC biology is the rapid loss of the in vivo phenotype in culture. In this study, we have examined biological processes and pathways affected during early-stage primary culture of rat LSECs and checked for cell responses to the pro-inflammatory cytokine interleukin (IL)-1β and the anti-inflammatory drug dexamethasone. Methods LSECs from male Sprague Dawley rats were cultured on type I collagen in 5% oxygen atmosphere in DMEM with serum-free supplements for 2 and 24 h. Quantitative proteomics using tandem mass tag technology was used to examine proteins in cells and supernatants. Validation was done with qPCR, ELISA, multiplex immunoassay, and caspase 3/7 assay. Cell ultrastructure was examined by scanning electron microscopy, and scavenger function by quantitative endocytosis assays. Results LSECs cultured for 24 h showed a characteristic pro-inflammatory phenotype both in the presence and absence of IL-1β, with upregulation of cellular responses to cytokines and interferon-γ, cell-cell adhesion, and glycolysis, increased expression of fatty acid binding proteins (FABP4, FABP5), and downregulation of several membrane receptors (STAB1, STAB2, LYVE1, CLEC4G) and proteins in pyruvate metabolism, citric acid cycle, fatty acid elongation, amino acid metabolism, and oxidation-reduction processes. Dexamethasone inhibited apoptosis and improved LSEC viability in culture, repressed inflammatory and immune regulatory pathways and secretion of IL-1β and IL-6, and further upregulated FABP4 and FABP5 compared to time-matched controls. The LSEC porosity and endocytic activity were reduced at 24 h both with and without dexamethasone but the dexamethasone-treated cells showed a less stressed phenotype. Conclusion Rat LSECs become activated towards a pro-inflammatory phenotype during early culture. Dexamethasone represses LSEC activation, inhibits apoptosis, and improves cell viability.
Collapse
Affiliation(s)
- Ruomei Li
- Department of Medical Biology, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Sabin Bhandari
- Department of Medical Biology, UiT–The Arctic University of Norway, Tromsø, Norway
| | | | - Jack-Ansgar Bruun
- Department of Medical Biology, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Ilona Urbarova
- Department of Community Medicine, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Bård Smedsrød
- Department of Medical Biology, UiT–The Arctic University of Norway, Tromsø, Norway
| | | | | |
Collapse
|
19
|
Urbanczyk M, Zbinden A, Schenke-Layland K. Organ-specific endothelial cell heterogenicity and its impact on regenerative medicine and biomedical engineering applications. Adv Drug Deliv Rev 2022; 186:114323. [PMID: 35568103 DOI: 10.1016/j.addr.2022.114323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 02/08/2023]
Abstract
Endothelial cells (ECs) are a key cellular component of the vascular system as they form the inner lining of the blood vessels. Recent findings highlight that ECs express extensive phenotypic heterogenicity when following the vascular tree from the major vasculature down to the organ capillaries. However, in vitro models, used for drug development and testing, or to study the role of ECs in health and disease, rarely acknowledge this EC heterogenicity. In this review, we highlight the main differences between different EC types, briefly summarize their different characteristics and focus on the use of ECs in in vitro models. We introduce different approaches on how ECs can be utilized in co-culture test systems in the field of brain, pancreas, and liver research to study the role of the endothelium in health and disease. Finally, we discuss potential improvements to current state-of-the-art in vitro models and future directions.
Collapse
|
20
|
Gómez-Salinero JM, Izzo F, Lin Y, Houghton S, Itkin T, Geng F, Bram Y, Adelson RP, Lu TM, Inghirami G, Xiang JZ, Lis R, Redmond D, Schreiner R, Rabbany SY, Landau DA, Schwartz RE, Rafii S. Specification of fetal liver endothelial progenitors to functional zonated adult sinusoids requires c-Maf induction. Cell Stem Cell 2022; 29:593-609.e7. [PMID: 35364013 PMCID: PMC9290393 DOI: 10.1016/j.stem.2022.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/29/2021] [Accepted: 03/08/2022] [Indexed: 12/13/2022]
Abstract
The liver vascular network is patterned by sinusoidal and hepatocyte co-zonation. How intra-liver vessels acquire their hierarchical specialized functions is unknown. We study heterogeneity of hepatic vascular cells during mouse development through functional and single-cell RNA-sequencing. The acquisition of sinusoidal endothelial cell identity is initiated during early development and completed postnatally, originating from a pool of undifferentiated vascular progenitors at E12. The peri-natal induction of the transcription factor c-Maf is a critical switch for the sinusoidal identity determination. Endothelium-restricted deletion of c-Maf disrupts liver sinusoidal development, aberrantly expands postnatal liver hematopoiesis, promotes excessive postnatal sinusoidal proliferation, and aggravates liver pro-fibrotic sensitivity to chemical insult. Enforced c-Maf overexpression in generic human endothelial cells switches on a liver sinusoidal transcriptional program that maintains hepatocyte function. c-Maf represents an inducible intra-organotypic and niche-responsive molecular determinant of hepatic sinusoidal cell identity and lays the foundation for the strategies for vasculature-driven liver repair.
Collapse
Affiliation(s)
- Jesus Maria Gómez-Salinero
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Franco Izzo
- Division of Hematology and Medical Oncology, Department of Medicine, and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; New York Genome Center, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Yang Lin
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sean Houghton
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tomer Itkin
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Fuqiang Geng
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Robert P Adelson
- Bioengineering Program, Fred DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY, USA
| | - Tyler M Lu
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Raphael Lis
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - David Redmond
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ryan Schreiner
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sina Y Rabbany
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Bioengineering Program, Fred DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY, USA
| | - Dan A Landau
- Division of Hematology and Medical Oncology, Department of Medicine, and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; New York Genome Center, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Shahin Rafii
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
21
|
Liang Y, Kaneko K, Xin B, Lee J, Sun X, Zhang K, Feng GS. Temporal analyses of postnatal liver development and maturation by single-cell transcriptomics. Dev Cell 2022; 57:398-414.e5. [PMID: 35134346 PMCID: PMC8842999 DOI: 10.1016/j.devcel.2022.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 02/09/2023]
Abstract
The postnatal development and maturation of the liver, the major metabolic organ, are inadequately understood. We have analyzed 52,834 single-cell transcriptomes and identified 31 cell types or states in mouse livers at postnatal days 1, 3, 7, 21, and 56. We observe unexpectedly high levels of hepatocyte heterogeneity in the developing liver and the progressive construction of the zonated metabolic functions from pericentral to periportal hepatocytes, which is orchestrated with the development of sinusoid endothelial, stellate, and Kupffer cells. Trajectory and gene regulatory analyses capture 36 transcription factors, including a circadian regulator, Bhlhe40, in programming liver development. Remarkably, we identified a special group of macrophages enriched at day 7 with a hybrid phenotype of macrophages and endothelial cells, which may regulate sinusoidal construction and Treg-cell function. This study provides a comprehensive atlas that covers all hepatic cell types and is instrumental for further dissection of liver development, metabolism, and disease.
Collapse
Affiliation(s)
- Yan Liang
- Department of Pathology, Division of Biological Sciences, and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kota Kaneko
- Department of Pathology, Division of Biological Sciences, and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bing Xin
- Department of Pathology, Division of Biological Sciences, and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jin Lee
- Department of Pathology, Division of Biological Sciences, and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun Zhang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gen-Sheng Feng
- Department of Pathology, Division of Biological Sciences, and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
22
|
Gifre-Renom L, Daems M, Luttun A, Jones EAV. Organ-Specific Endothelial Cell Differentiation and Impact of Microenvironmental Cues on Endothelial Heterogeneity. Int J Mol Sci 2022; 23:ijms23031477. [PMID: 35163400 PMCID: PMC8836165 DOI: 10.3390/ijms23031477] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Endothelial cells throughout the body are heterogeneous, and this is tightly linked to the specific functions of organs and tissues. Heterogeneity is already determined from development onwards and ranges from arterial/venous specification to microvascular fate determination in organ-specific differentiation. Acknowledging the different phenotypes of endothelial cells and the implications of this diversity is key for the development of more specialized tissue engineering and vascular repair approaches. However, although novel technologies in transcriptomics and proteomics are facilitating the unraveling of vascular bed-specific endothelial cell signatures, still much research is based on the use of insufficiently specialized endothelial cells. Endothelial cells are not only heterogeneous, but their specialized phenotypes are also dynamic and adapt to changes in their microenvironment. During the last decades, strong collaborations between molecular biology, mechanobiology, and computational disciplines have led to a better understanding of how endothelial cells are modulated by their mechanical and biochemical contexts. Yet, because of the use of insufficiently specialized endothelial cells, there is still a huge lack of knowledge in how tissue-specific biomechanical factors determine organ-specific phenotypes. With this review, we want to put the focus on how organ-specific endothelial cell signatures are determined from development onwards and conditioned by their microenvironments during adulthood. We discuss the latest research performed on endothelial cells, pointing out the important implications of mimicking tissue-specific biomechanical cues in culture.
Collapse
Affiliation(s)
- Laia Gifre-Renom
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Margo Daems
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Aernout Luttun
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Elizabeth A. V. Jones
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence:
| |
Collapse
|
23
|
Tricot T, Verfaillie CM, Kumar M. Current Status and Challenges of Human Induced Pluripotent Stem Cell-Derived Liver Models in Drug Discovery. Cells 2022; 11:442. [PMID: 35159250 PMCID: PMC8834601 DOI: 10.3390/cells11030442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
The pharmaceutical industry is in high need of efficient and relevant in vitro liver models, which can be incorporated in their drug discovery pipelines to identify potential drugs and their toxicity profiles. Current liver models often rely on cancer cell lines or primary cells, which both have major limitations. However, the development of human induced pluripotent stem cells (hiPSCs) has created a new opportunity for liver disease modeling, drug discovery and liver toxicity research. hiPSCs can be differentiated to any cell of interest, which makes them good candidates for disease modeling and drug discovery. Moreover, hiPSCs, unlike primary cells, can be easily genome-edited, allowing the creation of reporter lines or isogenic controls for patient-derived hiPSCs. Unfortunately, even though liver progeny from hiPSCs has characteristics similar to their in vivo counterparts, the differentiation of iPSCs to fully mature progeny remains highly challenging and is a major obstacle for the full exploitation of these models by pharmaceutical industries. In this review, we discuss current liver-cell differentiation protocols and in vitro iPSC-based liver models that could be used for disease modeling and drug discovery. Furthermore, we will discuss the challenges that still need to be overcome to allow for the successful implementation of these models into pharmaceutical drug discovery platforms.
Collapse
Affiliation(s)
| | | | - Manoj Kumar
- Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium; (T.T.); (C.M.V.)
| |
Collapse
|
24
|
Bhandari S, Larsen AK, McCourt P, Smedsrød B, Sørensen KK. The Scavenger Function of Liver Sinusoidal Endothelial Cells in Health and Disease. Front Physiol 2021; 12:757469. [PMID: 34707514 PMCID: PMC8542980 DOI: 10.3389/fphys.2021.757469] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to give an outline of the blood clearance function of the liver sinusoidal endothelial cells (LSECs) in health and disease. Lining the hundreds of millions of hepatic sinusoids in the human liver the LSECs are perfectly located to survey the constituents of the blood. These cells are equipped with high-affinity receptors and an intracellular vesicle transport apparatus, enabling a remarkably efficient machinery for removal of large molecules and nanoparticles from the blood, thus contributing importantly to maintain blood and tissue homeostasis. We describe here central aspects of LSEC signature receptors that enable the cells to recognize and internalize blood-borne waste macromolecules at great speed and high capacity. Notably, this blood clearance system is a silent process, in the sense that it usually neither requires or elicits cell activation or immune responses. Most of our knowledge about LSECs arises from studies in animals, of which mouse and rat make up the great majority, and some species differences relevant for extrapolating from animal models to human are discussed. In the last part of the review, we discuss comparative aspects of the LSEC scavenger functions and specialized scavenger endothelial cells (SECs) in other vascular beds and in different vertebrate classes. In conclusion, the activity of LSECs and other SECs prevent exposure of a great number of waste products to the immune system, and molecules with noxious biological activities are effectively “silenced” by the rapid clearance in LSECs. An undesired consequence of this avid scavenging system is unwanted uptake of nanomedicines and biologics in the cells. As the development of this new generation of therapeutics evolves, there will be a sharp increase in the need to understand the clearance function of LSECs in health and disease. There is still a significant knowledge gap in how the LSEC clearance function is affected in liver disease.
Collapse
Affiliation(s)
- Sabin Bhandari
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| | - Anett Kristin Larsen
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| | - Peter McCourt
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| | - Bård Smedsrød
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| | - Karen Kristine Sørensen
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
25
|
Koch PS, Sandorski K, Heil J, Schmid CD, Kürschner SW, Hoffmann J, Winkler M, Staniczek T, de la Torre C, Sticht C, Schledzewski K, Taketo MM, Trogisch FA, Heineke J, Géraud C, Goerdt S, Olsavszky V. Imbalanced Activation of Wnt-/β-Catenin-Signaling in Liver Endothelium Alters Normal Sinusoidal Differentiation. Front Physiol 2021; 12:722394. [PMID: 34658910 PMCID: PMC8511684 DOI: 10.3389/fphys.2021.722394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/19/2021] [Indexed: 01/20/2023] Open
Abstract
Endothelial wingless-related integration site (Wnt)-/β-catenin signaling is a key regulator of the tightly sealed blood–brain barrier. In the hepatic vascular niche angiokine-mediated Wnt signaling was recently identified as an important regulator of hepatocyte function, including the determination of final adult liver size, liver regeneration, and metabolic liver zonation. Within the hepatic vasculature, the liver sinusoidal endothelial cells (LSECs) are morphologically unique and functionally specialized microvascular endothelial cells (ECs). Pathological changes of LSECs are involved in chronic liver diseases, hepatocarcinogenesis, and liver metastasis. To comprehensively analyze the effects of endothelial Wnt-/β-catenin signaling in the liver, we used endothelial subtype-specific Clec4g-iCre mice to generate hepatic ECs with overexpression of Ctnnb1. In the resultant Clec4g-iCretg/wt;Ctnnb1(Ex3)fl/wt (Ctnnb1OE−EC) mice, activation of endothelial Wnt-/β-catenin signaling resulted in sinusoidal transdifferentiation with disturbed endothelial zonation, that is, loss of midzonal LSEC marker lymphatic vessel endothelial hyaluronic acid receptor 1 (Lyve1) and enrichment of continuous EC genes, such as cluster of differentiation (CD)34 and Apln. Notably, gene set enrichment analysis revealed overrepresentation of brain endothelial transcripts. Activation of endothelial Wnt-/β-catenin signaling did not induce liver fibrosis or alter metabolic liver zonation, but Ctnnb1OE−EC mice exhibited significantly increased plasma triglyceride concentrations, while liver lipid content was slightly reduced. Ctnnb1 overexpression in arterial ECs of the heart has been reported previously to cause cardiomyopathy. As Clec4g-iCre is active in a subset of cardiac ECs, it was not unexpected that Ctnnb1OE−EC mice showed reduced overall survival and cardiac dysfunction. Altogether, balanced endothelial Wnt-/β-catenin signaling in the liver is required for normal LSEC differentiation and for maintenance of normal plasma triglyceride levels.
Collapse
Affiliation(s)
- Philipp-Sebastian Koch
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University and Center of Excellence in Dermatology, Mannheim, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kajetan Sandorski
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University and Center of Excellence in Dermatology, Mannheim, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Joschka Heil
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University and Center of Excellence in Dermatology, Mannheim, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian D Schmid
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University and Center of Excellence in Dermatology, Mannheim, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sina W Kürschner
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University and Center of Excellence in Dermatology, Mannheim, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johannes Hoffmann
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University and Center of Excellence in Dermatology, Mannheim, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Manuel Winkler
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University and Center of Excellence in Dermatology, Mannheim, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Theresa Staniczek
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University and Center of Excellence in Dermatology, Mannheim, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolina de la Torre
- Next Generation Sequencing Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Sticht
- Next Generation Sequencing Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kai Schledzewski
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University and Center of Excellence in Dermatology, Mannheim, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Felix A Trogisch
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Joerg Heineke
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University and Center of Excellence in Dermatology, Mannheim, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Section of Clinical and Molecular Dermatology, Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sergij Goerdt
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University and Center of Excellence in Dermatology, Mannheim, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Victor Olsavszky
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University and Center of Excellence in Dermatology, Mannheim, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
26
|
Colucci S, Altamura S, Marques O, Dropmann A, Horvat NK, Müdder K, Hammad S, Dooley S, Muckenthaler MU. Liver Sinusoidal Endothelial Cells Suppress Bone Morphogenetic Protein 2 Production in Response to TGFβ Pathway Activation. Hepatology 2021; 74:2186-2200. [PMID: 33982327 DOI: 10.1002/hep.31900] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS TGFβ/bone morphogenetic protein (BMP) signaling in the liver plays a critical role in liver disease. Growth factors, such as BMP2, BMP6, and TGFβ1, are released from LSECs and signal in a paracrine manner to hepatocytes and hepatic stellate cells to control systemic iron homeostasis and fibrotic processes, respectively. The misregulation of the TGFβ/BMP pathway affects expression of the iron-regulated hormone hepcidin, causing frequent iron overload and deficiency diseases. However, whether LSEC-secreted factors can act in an autocrine manner to maintain liver homeostasis has not been addressed so far. APPROACH AND RESULTS We analyzed publicly available RNA-sequencing data of mouse LSECs for ligand-receptor interactions and identified members of the TGFβ family (BMP2, BMP6, and TGFβ1) as ligands with the highest expression levels in LSECs that may signal in an autocrine manner. We next tested the soluble factors identified through in silico analysis in optimized murine LSEC primary cultures and mice. Exposure of murine LSEC primary cultures to these ligands shows that autocrine responses to BMP2 and BMP6 are blocked despite high expression levels of the required receptor complexes partially involving the inhibitor FK-506-binding protein 12. By contrast, LSECs respond efficiently to TGFβ1 treatment, which causes reduced expression of BMP2 through activation of activin receptor-like kinase 5. CONCLUSIONS These findings reveal that TGFβ1 signaling is functionally interlinked with BMP signaling in LSECs, suggesting druggable targets for the treatment of iron overload diseases associated with deficiency of the BMP2-regulated hormone hepcidin, such as hereditary hemochromatosis, β-thalassemia, and chronic liver diseases.
Collapse
Affiliation(s)
- Silvia Colucci
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Oriana Marques
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Anne Dropmann
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Natalie K Horvat
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Katja Müdder
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Seddik Hammad
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Forensic and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Steven Dooley
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| |
Collapse
|
27
|
In Silico Analysis to Explore Lineage-Independent and -Dependent Transcriptional Programs Associated with the Process of Endothelial and Neural Differentiation of Human Induced Pluripotent Stem Cells. J Clin Med 2021; 10:jcm10184161. [PMID: 34575270 PMCID: PMC8471316 DOI: 10.3390/jcm10184161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Despite a major interest in understanding how the endothelial cell phenotype is established, the underlying molecular basis of this process is not yet fully understood. We have previously reported the generation of induced pluripotent stem cells (iPS) from human umbilical vein endothelial cells and differentiation of the resulting HiPS back to endothelial cells (Ec-Diff), as well as neural (Nn-Diff) cell lineage that contained both neurons and astrocytes. Furthermore, the identities of these cell lineages were established by gene array analysis. Here, we explored the same arrays to gain insight into the gene alteration processes that accompany the establishment of endothelial vs. non-endothelial neural cell phenotypes. We compared the expression of genes that code for transcription factors and epigenetic regulators when HiPS is differentiated into these endothelial and non-endothelial lineages. Our in silico analyses have identified cohorts of genes that are similarly up- or downregulated in both lineages, as well as those that exhibit lineage-specific alterations. Based on these results, we propose that genes that are similarly altered in both lineages participate in priming the stem cell for differentiation in a lineage-independent manner, whereas those that are differentially altered in endothelial compared to neural cells participate in a lineage-specific differentiation process. Specific GATA family members and their cofactors and epigenetic regulators (DNMT3B, PRDM14, HELLS) with a major role in regulating DNA methylation were among participants in priming HiPS for lineage-independent differentiation. In addition, we identified distinct cohorts of transcription factors and epigenetic regulators whose alterations correlated specifically with the establishment of endothelial vs. non-endothelial neural lineages.
Collapse
|
28
|
Kumar S, Duan Q, Wu R, Harris EN, Su Q. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv Drug Deliv Rev 2021; 176:113869. [PMID: 34280515 PMCID: PMC11792083 DOI: 10.1016/j.addr.2021.113869] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease that encompasses a spectrum of pathological conditions, ranging from simple steatosis (NAFL), nonalcoholic steatohepatitis (NASH), fibrosis/cirrhosis which can further progress to hepatocellular carcinoma and liver failure. The progression of NAFL to NASH and liver fibrosis is closely associated with a series of liver injury resulting from lipotoxicity, oxidative stress, redox imbalance (excessive nitric oxide), ER stress, inflammation and apoptosis that occur sequentially in different liver cells which ultimately leads to the activation of liver regeneration and fibrogenesis, augmenting collagen and extracellular matrix deposition and promoting liver fibrosis and cirrhosis. Type 2 diabetes is a significant risk factor in NAFLD development by accelerating liver damage. Here, we overview recent findings from human study and animal models on the pathophysiological communication among hepatocytes (HCs), Kupffer cells (KCs), hepatic stellate cells (HSCs) and liver sinusoidal endothelial cells (LSECs) during the disease development. The mechanisms of crucial signaling pathways, including Toll-like receptor, TGFβ and hedgehog mediated hepatic injury are also discussed. We further highlight the potentials of precisely targeting hepatic individual cell-type using nanotechnology as therapeutic strategy for the treatment of NASH and liver fibrosis.
Collapse
Affiliation(s)
- Santosh Kumar
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Qihua Duan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Rongxue Wu
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, USA
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Qiaozhu Su
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom.
| |
Collapse
|
29
|
Petrillo S, Manco M, Altruda F, Fagoonee S, Tolosano E. Liver Sinusoidal Endothelial Cells at the Crossroad of Iron Overload and Liver Fibrosis. Antioxid Redox Signal 2021; 35:474-486. [PMID: 32689808 DOI: 10.1089/ars.2020.8168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: Liver fibrosis results from different etiologies and represents one of the most serious health issues worldwide. Fibrosis is the outcome of chronic insults on the liver and is associated with several factors, including abnormal iron metabolism. Recent Advances: Multiple mechanisms underlying the profibrogenic role of iron have been proposed. The pivotal role of liver sinusoidal endothelial cells (LSECs) in iron-level regulation, as well as their morphological and molecular dedifferentiation occurring in liver fibrosis, has encouraged research on LSECs as prime regulators of very early fibrotic events. Importantly, normal differentiated LSECs may act as gatekeepers of fibrogenesis by maintaining the quiescence of hepatic stellate cells, while LSECs capillarization precedes the onset of liver fibrosis. Critical Issues: In the present review, the morphological and molecular alterations occurring in LSECs after liver injury are addressed in an attempt to highlight how vascular dysfunction promotes fibrogenesis. In particular, we discuss in depth how a vicious loop can be established in which iron dysregulation and LSEC dedifferentiation synergize to exacerbate and promote the progression of liver fibrosis. Future Directions: LSECs, due to their pivotal role in early liver fibrosis and iron homeostasis, show great promises as a therapeutic target. In particular, new strategies can be devised for restoring LSECs differentiation and thus their role as regulators of iron homeostasis, hence preventing the progression of liver fibrosis or, even better, promoting its regression. Antioxid. Redox Signal. 35, 474-486.
Collapse
Affiliation(s)
- Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Marta Manco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, CNR c/o Molecular Biotechnology Center, Torino, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
30
|
Abstract
Liver sinusoidal endothelial cells (LSECs) form the wall of the hepatic sinusoids. Unlike other capillaries, they lack an organized basement membrane and have cytoplasm that is penetrated by open fenestrae, making the hepatic microvascular endothelium discontinuous. LSECs have essential roles in the maintenance of hepatic homeostasis, including regulation of the vascular tone, inflammation and thrombosis, and they are essential for control of the hepatic immune response. On a background of acute or chronic liver injury, LSECs modify their phenotype and negatively affect neighbouring cells and liver disease pathophysiology. This Review describes the main functions and phenotypic dysregulations of LSECs in liver diseases, specifically in the context of acute injury (ischaemia-reperfusion injury, drug-induced liver injury and bacterial and viral infection), chronic liver disease (metabolism-associated liver disease, alcoholic steatohepatitis and chronic hepatotoxic injury) and hepatocellular carcinoma, and provides a comprehensive update of the role of LSECs as therapeutic targets for liver disease. Finally, we discuss the open questions in the field of LSEC pathobiology and future avenues of research.
Collapse
|
31
|
Angiodiversity and organotypic functions of sinusoidal endothelial cells. Angiogenesis 2021; 24:289-310. [PMID: 33745018 PMCID: PMC7982081 DOI: 10.1007/s10456-021-09780-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/04/2021] [Indexed: 02/08/2023]
Abstract
‘Angiodiversity’ refers to the structural and functional heterogeneity of endothelial cells (EC) along the segments of the vascular tree and especially within the microvascular beds of different organs. Organotypically differentiated EC ranging from continuous, barrier-forming endothelium to discontinuous, fenestrated endothelium perform organ-specific functions such as the maintenance of the tightly sealed blood–brain barrier or the clearance of macromolecular waste products from the peripheral blood by liver EC-expressed scavenger receptors. The microvascular bed of the liver, composed of discontinuous, fenestrated liver sinusoidal endothelial cells (LSEC), is a prime example of organ-specific angiodiversity. Anatomy and development of LSEC have been extensively studied by electron microscopy as well as linage-tracing experiments. Recent advances in cell isolation and bulk transcriptomics or single-cell RNA sequencing techniques allowed the identification of distinct LSEC molecular programs and have led to the identification of LSEC subpopulations. LSEC execute homeostatic functions such as fine tuning the vascular tone, clearing noxious substances from the circulation, and modulating immunoregulatory mechanisms. In recent years, the identification and functional analysis of LSEC-derived angiocrine signals, which control liver homeostasis and disease pathogenesis in an instructive manner, marks a major change of paradigm in the understanding of liver function in health and disease. This review summarizes recent advances in the understanding of liver vascular angiodiversity and the functional consequences resulting thereof.
Collapse
|
32
|
Lu J, Zhao YL, Zhang XQ, Li LJ. The vascular endothelial growth factor signaling pathway regulates liver sinusoidal endothelial cells during liver regeneration after partial hepatectomy. Expert Rev Gastroenterol Hepatol 2021; 15:139-147. [PMID: 32902336 DOI: 10.1080/17474124.2020.1815532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Liver regeneration after partial hepatectomy is a very complex and well-regulated procedure. It utilizes all liver cell types, which are associated with signaling pathways involving growth factors, cytokines, and stimulatory and inhibitory feedback of several growth-related signals. Liver sinusoidal endothelial cells (LSECs) contribute to liver regeneration after partial hepatectomy. Vascular endothelial growth factor (VEGF) has various functions in LSECs. In this review, we summarize the relationship between VEGF and LSECs involving VEGF regulatory activity in the vascular endothelium. AREAS COVERED Maintenance of the fenestrated LSEC phenotype requires two VEGF pathways: VEGF stimulated-NO acting through the cGMP pathway and VEGF independent of nitric oxide (NO). The results suggest that VEGF is a key regenerating mediator of LSECs in the partial hepatectomy model. NO-independent pathway was also essential to the maintenance of the LSEC in liver regeneration. EXPERT OPINION Liver regeneration remains a fascinating and significative research field in recent years. The liver involved of molecular pathways except for LSEC-VEGF pathways that make the field of liver further depth studies should be put into effect to elaborate the undetermined confusions, which will be better to understand liver regeneration.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University , Hangzhou, China
| | - Ya-Lei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University , Hangzhou, China
| | - Xiao-Qian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University , Hangzhou, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University , Hangzhou, China
| |
Collapse
|
33
|
Endothelial GATA4 controls liver fibrosis and regeneration by preventing a pathogenic switch in angiocrine signaling. J Hepatol 2021; 74:380-393. [PMID: 32916216 DOI: 10.1016/j.jhep.2020.08.033] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Angiocrine signaling by liver sinusoidal endothelial cells (LSECs) regulates hepatic functions such as growth, metabolic maturation, and regeneration. Recently, we identified GATA4 as the master regulator of LSEC specification during development. Herein, we studied the role of endothelial GATA4 in the adult liver and in hepatic pathogenesis. METHODS We generated adult Clec4g-icretg/0xGata4fl/fl (Gata4LSEC-KO) mice with LSEC-specific depletion of Gata4. Livers were analyzed by histology, electron microscopy, immunohistochemistry/immunofluorescence, in situ hybridization, and LSECs were isolated for gene expression profiling, ChIP- and ATAC-sequencing. Partial hepatectomy was performed to assess regeneration. We used choline-deficient, l-amino acid-defined (CDAA) diet and chronic carbon tetrachloride exposure to model liver fibrosis. Human single cell RNA-seq data sets were analyzed for endothelial alterations in healthy and cirrhotic livers. RESULTS Genetic Gata4 deficiency in LSECs of adult mice caused perisinusoidal liver fibrosis, hepatopathy and impaired liver regeneration. Sinusoidal capillarization and LSEC-to-continuous endothelial transdifferentiation were accompanied by a profibrotic angiocrine switch involving de novo endothelial expression of hepatic stellate cell-activating cytokine PDGFB. Increased chromatin accessibility and amplification by activated MYC mediated angiocrine Pdgfb expression. As observed in Gata4LSEC-KO livers, CDAA diet-induced perisinusoidal liver fibrosis was associated with GATA4 repression, MYC activation and a profibrotic angiocrine switch in LSECs. Comparison of CDAA-fed Gata4LSEC-KO and control mice demonstrated that endothelial GATA4 indeed protects against dietary-induced perisinusoidal liver fibrosis. In human cirrhotic livers, GATA4-positive LSECs and endothelial GATA4 target genes were reduced, while non-LSEC endothelial cells and MYC target genes including PDGFB were enriched. CONCLUSIONS Endothelial GATA4 protects against perisinusoidal liver fibrosis by repressing MYC activation and profibrotic angiocrine signaling at the chromatin level. Therapies targeting the GATA4/MYC/PDGFB/PDGFRβ axis offer a promising strategy for prevention and treatment of liver fibrosis. LAY SUMMARY The liver vasculature is supposed to play a major role in the development of liver fibrosis and cirrhosis, which can lead to liver failure and liver cancer. Herein, we discovered that structural and transcriptional changes induced by genetic deletion of the transcription factor GATA4 in the hepatic endothelium were sufficient to cause liver fibrosis. Activation of the transcription factor MYC and de novo expression of the "angiocrine" growth factor PDGFB were identified as downstream drivers of fibrosis and as potential therapeutic targets for this potentially fatal disease.
Collapse
|
34
|
Bhandari S, Li R, Simón-Santamaría J, McCourt P, Johansen SD, Smedsrød B, Martinez-Zubiaurre I, Sørensen KK. Transcriptome and proteome profiling reveal complementary scavenger and immune features of rat liver sinusoidal endothelial cells and liver macrophages. BMC Mol Cell Biol 2020; 21:85. [PMID: 33246411 PMCID: PMC7694354 DOI: 10.1186/s12860-020-00331-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs; liver resident macrophages) form the body's most effective scavenger cell system for the removal of harmful blood-borne substances, ranging from modified self-proteins to pathogens and xenobiotics. Controversies in the literature regarding the LSEC phenotype pose a challenge when determining distinct functionalities of KCs and LSECs. This may be due to overlapping functions of the two cells, insufficient purification and/or identification of the cells, rapid dedifferentiation of LSECs in vitro, or species differences. We therefore characterized and quantitatively compared expressed gene products of freshly isolated, highly pure LSECs (fenestrated SE-1/FcγRIIb2+) and KCs (CD11b/c+) from Sprague Dawley, Crl:CD (SD), male rats using high throughput mRNA-sequencing and label-free proteomics. RESULTS We observed a robust correlation between the proteomes and transcriptomes of the two cell types. Integrative analysis of the global molecular profile demonstrated the immunological aspects of LSECs. The constitutive expression of several immune genes and corresponding proteins of LSECs bore some resemblance with the expression in macrophages. LSECs and KCs both expressed high levels of scavenger receptors (SR) and C-type lectins. Equivalent expression of SR-A1 (Msr1), mannose receptor (Mrc1), SR-B1 (Scarb1), and SR-B3 (Scarb2) suggested functional similarity between the two cell types, while functional distinction between the cells was evidenced by LSEC-specific expression of the SRs stabilin-1 (Stab1) and stabilin-2 (Stab2), and the C-type lectins LSECtin (Clec4g) and DC-SIGNR (Clec4m). Many immune regulatory factors were differentially expressed in LSECs and KCs, with one cell predominantly expressing a specific cytokine/chemokine and the other cell the cognate receptor, illustrating the complex cytokine milieu of the sinusoids. Both cells expressed genes and proteins involved in antigen processing and presentation, and lymphocyte co-stimulation. CONCLUSIONS Our findings support complementary and partly overlapping scavenging and immune functions of LSECs and KCs. This highlights the importance of including LSECs in studies of liver immunity, and liver clearance and toxicity of large molecule drugs and nano-formulations.
Collapse
Affiliation(s)
- Sabin Bhandari
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø (UiT) -The Arctic University of Norway, Hansine Hansens veg 18, N-9037, Tromsø, Norway
| | - Ruomei Li
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø (UiT) -The Arctic University of Norway, Hansine Hansens veg 18, N-9037, Tromsø, Norway
| | - Jaione Simón-Santamaría
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø (UiT) -The Arctic University of Norway, Hansine Hansens veg 18, N-9037, Tromsø, Norway
| | - Peter McCourt
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø (UiT) -The Arctic University of Norway, Hansine Hansens veg 18, N-9037, Tromsø, Norway
| | - Steinar Daae Johansen
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø (UiT) -The Arctic University of Norway, Hansine Hansens veg 18, N-9037, Tromsø, Norway.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Bård Smedsrød
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø (UiT) -The Arctic University of Norway, Hansine Hansens veg 18, N-9037, Tromsø, Norway.
| | | | - Karen Kristine Sørensen
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø (UiT) -The Arctic University of Norway, Hansine Hansens veg 18, N-9037, Tromsø, Norway
| |
Collapse
|
35
|
Olsavszky V, Sticht C, Schmid CD, Winkler M, Wohlfeil SA, Olsavszky A, Schledzewski K, Géraud C, Goerdt S, Leibing T, Koch PS. Exploring the transcriptomic network of multi-ligand scavenger receptor Stabilin-1- and Stabilin-2-deficient liver sinusoidal endothelial cells. Gene 2020; 768:145284. [PMID: 33130055 DOI: 10.1016/j.gene.2020.145284] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
The Class H scavenger receptors Stabilin-1 (Stab1) and Stabilin-2 (Stab2) are two of the most highly expressed genes in liver sinusoidal endothelial cells (LSECs). While Stab1-deficient (Stab1KO) and Stab2-deficient (Stab2KO) mice are phenotypically unremarkable, Stab1/2-double-deficient (StabDKO) mice exhibit perisinusoidal liver fibrosis, glomerulofibrotic nephropathy and a reduced life expectancy. These conditions are caused by insufficiently scavenged circulating noxious blood factors. The effects of either Stab-single- or double-deficiency on LSEC differentiation and function, however, have not yet been thoroughly investigated. Therefore, we performed comprehensive transcriptomic analyses of primary LSECs from Stab1KO, Stab2KO and StabDKO mice. Microarray analysis revealed dysregulation of pathways and genes involved in established LSEC functions while sinusoidal endothelial marker gene expression was grossly unchanged. 82 genes were significantly altered in Stab1KO, 96 genes in Stab2KO and 238 genes in StabDKO compared with controls; 42 genes were found to be commonly dysregulated in all three groups and all of these genes were downregulated. These commonly downregulated genes (CDGs) were categorized as "potential scavengers," "cell adhesion molecules," "TGF-β/BMP-signaling" or "collagen and extracellular matrix (ECM) components". Among CDGs, Colec10, Lumican and Decorin, were the most strongly down-regulated genes and the corresponding proteins impact on the interaction of LSECs with chemokines, ECM components and carbohydrate structures. Similarly, "chemokine signaling," "cytokine-cytokine receptor interaction" and "ECM-receptor interaction," were the GSEA categories which represented most of the downregulated genes in Stab1KO and Stab2KO LSECs. In summary, our data show that loss of a single Stabilin scavenger receptor - and to a greater extent of both receptors - profoundly alters the transcriptomic repertoire of LSECs. These alterations may affect LSEC-specific functions, especially interactions of LSECs with the ECM and during inflammation as well as clearance of the peripheral blood.
Collapse
Affiliation(s)
- Victor Olsavszky
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany.
| | - Carsten Sticht
- Center for Medical Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68167, Germany
| | - Christian D Schmid
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany
| | - Manuel Winkler
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany
| | - Sebastian A Wohlfeil
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany; Section of Clinical and Molecular Dermatology, Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ana Olsavszky
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany; Section of Clinical and Molecular Dermatology, Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kai Schledzewski
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany; Section of Clinical and Molecular Dermatology, Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Sergij Goerdt
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany; European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Thomas Leibing
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany; Section of Clinical and Molecular Dermatology, Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp-Sebastian Koch
- Department of Dermatology, Venereology and Allergy, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim 68167, Germany; European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| |
Collapse
|
36
|
Lotto J, Drissler S, Cullum R, Wei W, Setty M, Bell EM, Boutet SC, Nowotschin S, Kuo YY, Garg V, Pe'er D, Church DM, Hadjantonakis AK, Hoodless PA. Single-Cell Transcriptomics Reveals Early Emergence of Liver Parenchymal and Non-parenchymal Cell Lineages. Cell 2020; 183:702-716.e14. [PMID: 33125890 PMCID: PMC7643810 DOI: 10.1016/j.cell.2020.09.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 07/06/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023]
Abstract
The cellular complexity and scale of the early liver have constrained analyses examining its emergence during organogenesis. To circumvent these issues, we analyzed 45,334 single-cell transcriptomes from embryonic day (E)7.5, when endoderm progenitors are specified, to E10.5 liver, when liver parenchymal and non-parenchymal cell lineages emerge. Our data detail divergence of vascular and sinusoidal endothelia, including a distinct transcriptional profile for sinusoidal endothelial specification by E8.75. We characterize two distinct mesothelial cell types as well as early hepatic stellate cells and reveal distinct spatiotemporal distributions for these populations. We capture transcriptional profiles for hepatoblast specification and migration, including the emergence of a hepatomesenchymal cell type and evidence for hepatoblast collective cell migration. Further, we identify cell-cell interactions during the organization of the primitive sinusoid. This study provides a comprehensive atlas of liver lineage establishment from the endoderm and mesoderm through to the organization of the primitive sinusoid at single-cell resolution.
Collapse
Affiliation(s)
- Jeremy Lotto
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada; Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sibyl Drissler
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada; Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Rebecca Cullum
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Wei Wei
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Manu Setty
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erin M Bell
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ying-Yi Kuo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe'er
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada; Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
37
|
Thomann S, Weiler SME, Marquard S, Rose F, Ball CR, Tóth M, Wei T, Sticht C, Fritzsche S, Roessler S, De La Torre C, Ryschich E, Ermakova O, Mogler C, Kazdal D, Gretz N, Glimm H, Rempel E, Schirmacher P, Breuhahn K. YAP Orchestrates Heterotypic Endothelial Cell Communication via HGF/c-MET Signaling in Liver Tumorigenesis. Cancer Res 2020; 80:5502-5514. [PMID: 33087321 DOI: 10.1158/0008-5472.can-20-0242] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/04/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
The oncogene yes-associated protein (YAP) controls liver tumor initiation and progression via cell extrinsic functions by creating a tumor-supporting environment in conjunction with cell autonomous mechanisms. However, how YAP controls organization of the microenvironment and in particular the vascular niche, which contributes to liver disease and hepatocarcinogenesis, is poorly understood. To investigate heterotypic cell communication, we dissected murine and human liver endothelial cell (EC) populations into liver sinusoidal endothelial cells (LSEC) and continuous endothelial cells (CEC) through histomorphological and molecular characterization. In YAPS127A-induced tumorigenesis, a gradual replacement of LSECs by CECs was associated with dynamic changes in the expression of genes involved in paracrine communication. The formation of new communication hubs connecting CECs and LSECs included the hepatocyte growth factor (Hgf)/c-Met signaling pathway. In hepatocytes and tumor cells, YAP/TEA domain transcription factor 4 (TEAD4)-dependent transcriptional induction of osteopontin (Opn) stimulated c-Met expression in EC with CEC phenotype, which sensitized these cells to the promigratory effects of LSEC-derived Hgf. In human hepatocellular carcinoma, the presence of a migration-associated tip-cell signature correlated with poor clinical outcome and the loss of LSEC marker gene expression. The occurrence of c-MET-expressing CECs in human liver cancer samples was confirmed at the single-cell level. In summary, YAP-dependent changes of the liver vascular niche comprise the formation of heterologous communication hubs in which tumor cell-derived factors modify the cross-talk between LSECs and CECs via the HGF/c-MET axis. SIGNIFICANCE: YAP-dependent changes of the liver vascular niche comprise the formation of heterologous communication hubs in which tumor cell-derived factors modify the cross-talk between EC subpopulations. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/24/5502/F1.large.jpg.
Collapse
Affiliation(s)
- Stefan Thomann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Sofia M E Weiler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Simone Marquard
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Fabian Rose
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Claudia R Ball
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcell Tóth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Teng Wei
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Carsten Sticht
- Medical Research Center, University of Heidelberg, Heidelberg, Germany
| | - Sarah Fritzsche
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Eduard Ryschich
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Olga Ermakova
- Center for Organismal Studies, University Heidelberg, Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Daniel Kazdal
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Norbert Gretz
- Medical Research Center, University of Heidelberg, Heidelberg, Germany
| | - Hanno Glimm
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Personalized Oncology, University Hospital Carl Gustav Carus TU Dresden, Germany.,German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Eugen Rempel
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
38
|
Rada M, Lazaris A, Kapelanski-Lamoureux A, Mayer TZ, Metrakos P. Tumor microenvironment conditions that favor vessel co-option in colorectal cancer liver metastases: A theoretical model. Semin Cancer Biol 2020; 71:52-64. [PMID: 32920126 DOI: 10.1016/j.semcancer.2020.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Vessel co-option is an alternative strategy by which tumour cells vascularize and gain access to nutrients to support tumour growth, survival and metastasis. In vessel co-option, the cancer cells move towards the pre-existing vasculature and hijack them. Vessel co-option is adopted by a wide range of human tumours including colorectal cancer liver metastases (CRCLM) and is responsible for the effectiveness of treatment in CRCLM. Furthermore, vessel co-option is an intrinsic feature and an acquired mechanism of resistance to anti-angiogenic treatment. In this review, we describe the microenvironment, the molecular players, discovered thus far of co-opting CRCLM lesions and propose a theoretical model. We also highlight key unanswered questions that are critical to improving our understanding of CRCLM vessel co-option and for the development of effective approaches for the treatment of co-opting tumours.
Collapse
Affiliation(s)
- Miran Rada
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, Quebec, H4A3J1, Canada
| | - Anthoula Lazaris
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, Quebec, H4A3J1, Canada
| | - Audrey Kapelanski-Lamoureux
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, Quebec, H4A3J1, Canada
| | - Thomas Z Mayer
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, Quebec, H4A3J1, Canada
| | - Peter Metrakos
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, Quebec, H4A3J1, Canada.
| |
Collapse
|
39
|
Yap KK, Gerrand YW, Dingle AM, Yeoh GC, Morrison WA, Mitchell GM. Liver sinusoidal endothelial cells promote the differentiation and survival of mouse vascularised hepatobiliary organoids. Biomaterials 2020; 251:120091. [PMID: 32408048 DOI: 10.1016/j.biomaterials.2020.120091] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/15/2020] [Accepted: 05/02/2020] [Indexed: 02/08/2023]
Abstract
The structural and physiological complexity of currently available liver organoids is limited, thereby reducing their relevance for drug studies, disease modelling, and regenerative therapy. In this study we combined mouse liver progenitor cells (LPCs) with mouse liver sinusoidal endothelial cells (LSECs) to generate hepatobiliary organoids with liver-specific vasculature. Organoids consisting of 5x103 cells were created from either LPCs, or a 1:1 combination of LPC/LSECs. LPC organoids demonstrated mild hepatobiliary differentiation in vitro with minimal morphological change; in contrast LPC/LSEC organoids developed clusters of polygonal hepatocyte-like cells and biliary ducts over a 7 day period. Hepatic (albumin, CPS1, CYP3A11) and biliary (GGT1) genes were significantly upregulated in LPC/LSEC organoids compared to LPC organoids over 7 days, as was albumin secretion. LPC/LSEC organoids also had significantly higher in vitro viability compared to LPC organoids. LPC and LPC/LSEC organoids were transplanted into vascularised chambers created in Fah-/-/Rag2-/-/Il2rg-/- mice (50 LPC organoids, containing 2.5x105 LPCs, and 100 LPC/LSEC organoids, containing 2.5x105 LPCs). At 2 weeks, minimal LPCs survived in chambers with LPC organoids, but robust hepatobiliary ductular tissue was present in LPC/LSEC organoids. Morphometric analysis demonstrated a 115-fold increase in HNF4α+ cells in LPC/LSEC organoid chambers (17.26 ± 4.34 cells/mm2 vs 0.15 ± 0.15 cells/mm2, p = 0.018), and 42-fold increase in Sox9+ cells in LPC/LSEC organoid chambers (28.29 ± 6.05 cells/mm2 vs 0.67 ± 0.67 cells/mm2, p = 0.011). This study presents a novel method to develop vascularised hepatobiliary organoids, with both in vitro and in vivo results confirming that incorporating LSECs with LPCs into organoids significantly increases the differentiation of hepatobiliary tissue within organoids and their survival post-transplantation.
Collapse
Affiliation(s)
- Kiryu K Yap
- O'Brien Institute, Department of St Vincent's Institute, Victoria, Australia; University of Melbourne Department of Surgery, St Vincent's Hospital Melbourne, Victoria, Australia.
| | - Yi-Wen Gerrand
- O'Brien Institute, Department of St Vincent's Institute, Victoria, Australia
| | - Aaron M Dingle
- O'Brien Institute, Department of St Vincent's Institute, Victoria, Australia
| | - George C Yeoh
- Harry Perkins Institute of Medical Research & Centre for Medical Research, University of Western Australia, Western Australia, Australia
| | - Wayne A Morrison
- O'Brien Institute, Department of St Vincent's Institute, Victoria, Australia; University of Melbourne Department of Surgery, St Vincent's Hospital Melbourne, Victoria, Australia; Australian Catholic University, Victoria, Australia
| | - Geraldine M Mitchell
- O'Brien Institute, Department of St Vincent's Institute, Victoria, Australia; University of Melbourne Department of Surgery, St Vincent's Hospital Melbourne, Victoria, Australia; Australian Catholic University, Victoria, Australia
| |
Collapse
|
40
|
Wahlicht T, Vièyres G, Bruns SA, Meumann N, Büning H, Hauser H, Schmitz I, Pietschmann T, Wirth D. Controlled Functional Zonation of Hepatocytes In Vitro by Engineering of Wnt Signaling. ACS Synth Biol 2020; 9:1638-1649. [PMID: 32551516 DOI: 10.1021/acssynbio.9b00435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Key liver functions, including protein synthesis, carbohydrate metabolism, and detoxification, are performed by specific populations of hepatocytes that are defined by their relative positions within the liver lobules. On a molecular level, the functional heterogeneity with periportal and pericentral phenotypes, so-called metabolic liver zonation, is mainly established by a gradient of canonical Wnt signaling activity. Since the relevant physiological cues are missing in in vitro liver models, they fail to reflect the functional heterogeneity and thus lack many liver functions. We synthetically re-engineered Wnt signaling in murine and human hepatocytes using a doxycycline-dependent cassette for externally controlled digital expression of stabilized β-catenin. Thereby, we achieved adjustable mosaic-like activation of Wnt signaling in in vitro-cultured hepatocytes that was resistant to negative-feedback loops. This allowed the establishment of long-term-stable periportal-like and pericentral-like phenotypes that mimic the heterogeneity observed in vivo. The in vitro-zonated hepatocytes show differential expression of drug-metabolizing enzymes and associated differential toxicity and higher levels of autophagy. Furthermore, recombinant adeno-associated virus and hepatitis C virus preferentially transduce the pericentral-like zonation phenotype, suggesting a bias of these viruses that has been unappreciated to date. These tightly controlled in vivo-like systems will be important for studies evaluating aspects of liver zonation and for the assessment of drug toxicity for mouse and man.
Collapse
Affiliation(s)
- Tom Wahlicht
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Gabrielle Vièyres
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Svenja A. Bruns
- Systems-Oriented Immunology and Inflammation Research, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Nadja Meumann
- German Center for Infection Research (DZIF), Hannover−Braunschweig Partner Site, 38124 Braunschweig, Germany
| | - Hildegard Büning
- German Center for Infection Research (DZIF), Hannover−Braunschweig Partner Site, 38124 Braunschweig, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Hansjörg Hauser
- Department of Scientific Strategy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Ingo Schmitz
- Systems-Oriented Immunology and Inflammation Research, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute of Experimental Hematology, Medical University Hannover, 30625 Hannover, Germany
| |
Collapse
|
41
|
Liver Sinusoidal Endothelial Cells Contribute to Hepatic Antigen-Presenting Cell Function and Th17 Expansion in Cirrhosis. Cells 2020; 9:cells9051227. [PMID: 32429209 PMCID: PMC7290576 DOI: 10.3390/cells9051227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatic immune function is compromised during cirrhosis. This study investigated the immune features of liver sinusoidal endothelial cells (LSECs) in two experimental models of cirrhosis. Dendritic cells, hepatic macrophages, and LSECs were isolated from carbon tetrachloride and bile duct-ligated rats. Gene expression of innate receptors, bacterial internalization, co-stimulatory molecules induction, and CD4+ T cell activation and differentiation were evaluated. Induced bacterial peritonitis and norfloxacin protocols on cirrhotic rats were also carried out. LSECs demonstrated an active immunosurveillance profile, as shown by transcriptional modulation of different scavenger and cell-adhesion genes, and their contribution to bacterial internalization. LSECs significantly increased their expression of CD40 and CD80 and stimulated CD4+ T cell activation marker CD71 in both models. The pro-inflammatory Th17 subset was expanded in CCl4-derived LSECs co-cultures. In the bile duct ligation (BDL) model, CD4+ T cell differentiation only occurred under induced bacterial peritonitis conditions. Differentiated pro-inflammatory Th cells by LSECs in both experimental models were significantly reduced with norfloxacin treatment, whereas Foxp3 tolerogenic Th CD4+ cells were expanded. Conclusion: LSECs’ participation in the innate-adaptive immune progression, their ability to stimulate pro-inflammatory CD4+ T cells expansion during liver damage, and their target role in norfloxacin-induced immunomodulation granted a specific competence to this cell population in cirrhosis.
Collapse
|
42
|
de Haan W, Øie C, Benkheil M, Dheedene W, Vinckier S, Coppiello G, Aranguren XL, Beerens M, Jaekers J, Topal B, Verfaillie C, Smedsrød B, Luttun A. Unraveling the transcriptional determinants of liver sinusoidal endothelial cell specialization. Am J Physiol Gastrointest Liver Physiol 2020; 318:G803-G815. [PMID: 32116021 PMCID: PMC7191457 DOI: 10.1152/ajpgi.00215.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Liver sinusoidal endothelial cells (LSECs) are the first liver cells to encounter waste macromolecules, pathogens, and toxins in blood. LSECs are highly specialized to mediate the clearance of these substances via endocytic scavenger receptors and are equipped with fenestrae that mediate the passage of macromolecules toward hepatocytes. Although some transcription factors (TFs) are known to play a role in LSEC specialization, information about the specialized LSEC signature and its transcriptional determinants remains incomplete.Based on a comparison of liver, heart, and brain endothelial cells (ECs), we established a 30-gene LSEC signature comprising both established and newly identified markers, including 7 genes encoding TFs. To evaluate the LSEC TF regulatory network, we artificially increased the expression of the 7 LSEC-specific TFs in human umbilical vein ECs. Although Zinc finger E-box-binding protein 2, homeobox B5, Cut-like homolog 2, and transcription factor EC (TCFEC) had limited contributions, musculoaponeurotic fibrosarcoma (C-MAF), GATA binding protein 4 (GATA4), and MEIS homeobox 2 (MEIS2) emerged as stronger inducers of LSEC marker expression. Furthermore, a combination of C-MAF, GATA4, and MEIS2 showed a synergistic effect on the increase of LSEC signature genes, including liver/lymph node-specific ICAM-3 grabbing non-integrin (L-SIGN) (or C-type lectin domain family member M (CLEC4M)), mannose receptor C-Type 1 (MRC1), legumain (LGMN), G protein-coupled receptor 182 (GPR182), Plexin C1 (PLXNC1), and solute carrier organic anion transporter family member 2A1 (SLCO2A1). Accordingly, L-SIGN, MRC1, pro-LGMN, GPR182, PLXNC1, and SLCO2A1 protein levels were elevated by this combined overexpression. Although receptor-mediated endocytosis was not significantly induced by the triple TF combination, it enhanced binding to E2, the hepatitis C virus host-binding protein. We conclude that C-MAF, GATA4, and MEIS2 are important transcriptional regulators of the unique LSEC fingerprint and LSEC interaction with viruses. Additional factors are however required to fully recapitulate the molecular, morphological, and functional LSEC fingerprint.NEW & NOTEWORTHY Liver sinusoidal endothelial cells (LSECs) are the first liver cells to encounter waste macromolecules, pathogens, and toxins in the blood and are highly specialized. Although some transcription factors are known to play a role in LSEC specialization, information about the specialized LSEC signature and its transcriptional determinants remains incomplete. Here, we show that Musculoaponeurotic Fibrosarcoma (C-MAF), GATA binding protein 4 (GATA4), and Meis homeobox 2 (MEIS2) are important transcriptional regulators of the unique LSEC signature and that they affect the interaction of LSECs with viruses.
Collapse
Affiliation(s)
- Willeke de Haan
- 1Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Cristina Øie
- 2Vascular Biology Research Group, Department of Medical Biology, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| | | | - Wouter Dheedene
- 1Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Stefan Vinckier
- 4Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium,5Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Giulia Coppiello
- 1Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Xabier López Aranguren
- 1Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Manu Beerens
- 1Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Joris Jaekers
- 6Abdominal Surgery, Universitair Ziekenhuis Leuven, Leuven, Belgiuincreased the expression of the 7 LSEC-specificm
| | - Baki Topal
- 6Abdominal Surgery, Universitair Ziekenhuis Leuven, Leuven, Belgiuincreased the expression of the 7 LSEC-specificm
| | - Catherine Verfaillie
- 7Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Bård Smedsrød
- 2Vascular Biology Research Group, Department of Medical Biology, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| | - Aernout Luttun
- 1Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
43
|
Danoy M, Poulain S, Koui Y, Tauran Y, Scheidecker B, Kido T, Miyajima A, Sakai Y, Plessy C, Leclerc E. Transcriptome profiling of hiPSC-derived LSECs with nanoCAGE. Mol Omics 2020; 16:138-146. [PMID: 31989141 DOI: 10.1039/c9mo00135b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liver Sinusoidal Endothelial Cells (LSECs) are an important component of the liver as they compose the microvasculature which allows the supply of oxygen, blood, and nutrients. However, maintenance of these cells in vitro remains challenging as they tend to rapidly lose some of their characteristics such as fenestration or as their immortalized counterparts present poor characteristics. In this work, human induced pluripotent stem cells (hiPSCs) have been differentiated toward an LSEC phenotype. After differentiation, the RNA quantification allowed demonstration of high expression of specific vascular markers (CD31, CD144, and STAB2). Immunostaining performed on the cells was found to be positive for both Stabilin-1 and Stabilin-2. Whole transcriptome analysis performed with the nanoCAGE method further confirmed the overall vascular commitment of the cells. The gene expression profile revealed the upregulation of the APLN, LYVE1, VWF, ESAM and ANGPT2 genes while VEGFA appeared to be downregulated. Analysis of promoter motif activities highlighted several transcription factors (TFs) of interest in LSECs (IRF2, ERG, MEIS2, SPI1, IRF7, WRNIP1, HIC2, NFIX_NFIB, BATF, and PATZ1). Based on this investigation, we compiled the regulatory network involving the relevant TFs, their target genes as well as their related signaling pathways. The proposed hiPSC-derived LSEC model and its regulatory network were then confirmed by comparing the experimental data to primary human LSEC reference datasets. Thus, the presented model appears as a promising tool to generate more complex in vitro liver multi-cellular tissues.
Collapse
Affiliation(s)
- Mathieu Danoy
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sabbagh MF, Nathans J. A genome-wide view of the de-differentiation of central nervous system endothelial cells in culture. eLife 2020; 9:e51276. [PMID: 31913116 PMCID: PMC6948952 DOI: 10.7554/elife.51276] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial cells (ECs) derived from the central nervous system (CNS) variably lose their unique barrier properties during in vitro culture, hindering the development of robust assays for blood-brain barrier (BBB) function, including drug permeability and extrusion assays. In previous work (Sabbagh et al., 2018) we characterized transcriptional and accessible chromatin landscapes of acutely isolated mouse CNS ECs. In this report, we compare transcriptional and accessible chromatin landscapes of acutely isolated mouse CNS ECs versus mouse CNS ECs in short-term in vitro culture. We observe that standard culture conditions are associated with a rapid and selective loss of BBB transcripts and chromatin features, as well as a greatly reduced level of beta-catenin signaling. Interestingly, forced expression of a stabilized derivative of beta-catenin, which in vivo leads to a partial conversion of non-BBB CNS ECs to a BBB-like state, has little or no effect on gene expression or chromatin accessibility in vitro.
Collapse
Affiliation(s)
- Mark F Sabbagh
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreUnited States
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreUnited States
| | - Jeremy Nathans
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreUnited States
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreUnited States
- Department of OphthalmologyJohns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
45
|
Pianp deficiency links GABA B receptor signaling and hippocampal and cerebellar neuronal cell composition to autism-like behavior. Mol Psychiatry 2020; 25:2979-2993. [PMID: 31511635 PMCID: PMC7577901 DOI: 10.1038/s41380-019-0519-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/31/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022]
Abstract
Pianp (also known as Leda-1) is a type I transmembrane protein with preferential expression in the mammalian CNS. Its processing is characterized by proteolytic cleavage by a range of proteases including Adam10, Adam17, MMPs, and the γ-secretase complex. Pianp can interact with Pilrα and the GB1a subunit of the GABAB receptor (GBR) complex. A recent case description of a boy with global developmental delay and homozygous nonsense variant in PIANP supports the hypothesis that PIANP is involved in the control of behavioral traits in mammals. To investigate the physiological functions of Pianp, constitutive, global knockout mice were generated and comprehensively analyzed. Broad assessment did not indicate malformation or malfunction of internal organs. In the brain, however, decreased sizes and altered cellular compositions of the dentate gyrus as well as the cerebellum, including a lower number of cerebellar Purkinje cells, were identified. Functionally, loss of Pianp led to impaired presynaptic GBR-mediated inhibition of glutamate release and altered gene expression in the cortex, hippocampus, amygdala, and hypothalamus including downregulation of Erdr1, a gene linked to autism-like behavior. Behavioral phenotyping revealed that Pianp deficiency leads to context-dependent enhanced anxiety and spatial learning deficits, an altered stress response, severely impaired social interaction, and enhanced repetitive behavior, which all represent characteristic features of an autism spectrum disorder-like phenotype. Altogether, Pianp represents a novel candidate gene involved in autism-like behavior, cerebellar and hippocampal pathology, and GBR signaling.
Collapse
|
46
|
Bravo M, Raurell I, Hide D, Fernández-Iglesias A, Gil M, Barberá A, Salcedo MT, Augustin S, Genescà J, Martell M. Restoration of liver sinusoidal cell phenotypes by statins improves portal hypertension and histology in rats with NASH. Sci Rep 2019; 9:20183. [PMID: 31882668 PMCID: PMC6934751 DOI: 10.1038/s41598-019-56366-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a common chronic liver disorder in developed countries, with the associated clinical complications driven by portal hypertension (PH). PH may precede fibrosis development, probably due to endothelial dysfunction at early stages of the disease. Our aim was to characterize liver sinusoidal endothelial cell (LSEC) dedifferentiation/capillarization and its contribution to PH in NASH, together with assessing statins capability to revert endothelial function improving early NASH stages. Sprague-Dawley rats were fed with high fat glucose-fructose diet (HFGFD), or control diet (CD) for 8 weeks and then treated with simvastatin (sim) (10 mg·kg−1·day−1), atorvastatin (ato) (10 mg·kg−1·day−1) or vehicle during 2 weeks. Biochemical, histological and hemodynamic determinations were carried out. Sinusoidal endothelial dysfunction was assessed in individualized sorted LSEC and hepatic stellate cells (HSC) from animal groups and in whole liver samples. HFGFD rats showed full NASH features without fibrosis but with significantly increased portal pressure compared with CD rats (10.47 ± 0.37 mmHg vs 8.30 ± 0.22 mmHg; p < 0.001). Moreover, HFGFD rats showed a higher percentage of capillarized (CD32b−/CD11b−) LSEC (8% vs 1%, p = 0.005) showing a contractile phenotype associated to HSC activation. Statin treatments caused a significant portal pressure reduction (sim: 9.29 ± 0.25 mmHg, p < 0.01; ato: 8.85 ± 0.30 mmHg, p < 0.001), NASH histology reversion, along with significant recovery of LSEC differentiation and a regression of HSC activation to a more quiescent phenotype. In an early NASH model without fibrosis with PH, LSEC transition to capillarization and HSC activation are reverted by statin treatment inducing portal pressure decrease and NASH features improvement.
Collapse
Affiliation(s)
- Miren Bravo
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Imma Raurell
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Diana Hide
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Anabel Fernández-Iglesias
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Liver Vascular Biology Research Group, Hepatic Hemodynamic Lab. IDIBAPS-Hospital Clínic, Barcelona, Spain
| | - Mar Gil
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Aurora Barberá
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Salvador Augustin
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
| | - Joan Genescà
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.
| | - María Martell
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
47
|
Desroches-Castan A, Tillet E, Ricard N, Ouarné M, Mallet C, Belmudes L, Couté Y, Boillot O, Scoazec JY, Bailly S, Feige JJ. Bone Morphogenetic Protein 9 Is a Paracrine Factor Controlling Liver Sinusoidal Endothelial Cell Fenestration and Protecting Against Hepatic Fibrosis. Hepatology 2019; 70:1392-1408. [PMID: 30964206 DOI: 10.1002/hep.30655] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/04/2019] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic protein 9 (BMP9) is a circulating factor produced by hepatic stellate cells that plays a critical role in vascular quiescence through its endothelial receptor activin receptor-like kinase 1 (ALK1). Mutations in the gene encoding ALK1 cause hereditary hemorrhagic telangiectasia type 2, a rare genetic disease presenting hepatic vessel malformations. Variations of both the circulating levels and the hepatic mRNA levels of BMP9 have been recently associated with various forms of hepatic fibrosis. However, the molecular mechanism that links BMP9 with liver diseases is still unknown. Here, we report that Bmp9 gene deletion in 129/Ola mice triggers hepatic perisinusoidal fibrosis that was detectable from 15 weeks of age. An inflammatory response appeared within the same time frame as fibrosis, whereas sinusoidal vessel dilation developed later on. Proteomic and mRNA analyses of primary liver sinusoidal endothelial cells (LSECs) both revealed that the expression of the LSEC-specifying transcription factor GATA-binding protein 4 was strongly reduced in Bmp9 gene knockout (Bmp9-KO) mice as compared with wild-type mice. LSECs from Bmp9-KO mice also lost the expression of several terminal differentiation markers (Lyve1, Stab1, Stab2, Ehd3, Cd209b, eNos, Maf, Plvap). They gained CD34 expression and deposited a basal lamina, indicating that they were capillarized. Another main characteristic of differentiated LSECs is the presence of permeable fenestrae. LSECs from Bmp9-KO mice had a significantly reduced number of fenestrae. This was already observable in 2-week-old pups. Moreover, we could show that addition of BMP9 to primary cultures of LSECs prevented the loss of their fenestrae and maintained the expression levels of Gata4 and Plvap. Conclusion: Taken together, our observations show that BMP9 is a key paracrine regulator of liver homeostasis, controlling LSEC fenestration and protecting against perivascular hepatic fibrosis.
Collapse
Affiliation(s)
| | - Emmanuelle Tillet
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Nicolas Ricard
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Marie Ouarné
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Christine Mallet
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Lucid Belmudes
- BGE Laboratory, Université Grenoble Alpes, CEA, Inserm, Grenoble, France
| | - Yohann Couté
- BGE Laboratory, Université Grenoble Alpes, CEA, Inserm, Grenoble, France
| | - Olivier Boillot
- Liver Transplant Unit, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Jean-Yves Scoazec
- Department of Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sabine Bailly
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| | - Jean-Jacques Feige
- BCI Laboratory, Université Grenoble Alpes, Inserm, CEA, Grenoble, France
| |
Collapse
|
48
|
Differential Consequences of Bmp9 Deletion on Sinusoidal Endothelial Cell Differentiation and Liver Fibrosis in 129/Ola and C57BL/6 Mice. Cells 2019; 8:cells8091079. [PMID: 31540222 PMCID: PMC6770219 DOI: 10.3390/cells8091079] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
The aim of the present work was to address the role of BMP9 in different genetic backgrounds (C57BL/6, BALB/c, and 129/Ola) of mice deleted for Bmp9. We found that Bmp9 deletion led to premature mortality only in the 129/Ola strain. We have previously shown that Bmp9 deletion led to liver sinusoidal endothelial cells (LSEC) capillarization and liver fibrosis in the 129/Ola background. Here, we showed that this is not the case in the C57BL/6 background. Analysis of LSEC from Wild-type (WT) versus Bmp9-KO mice in the C57BL/6 background showed no difference in LSEC fenestration and in the expression of differentiation markers. Comparison of the mRNA expression of LSEC differentiation markers between WT C57BL/6 and 129/Ola mice showed a significant decrease in Stabilin2, Plvap, and CD209b, suggesting a more capillary-like phenotype in WT C57BL/6 LSECs. C57BL/6 mice also had lower BMP9 circulating concentrations and hepatic Vegfr2 mRNA levels, compared to the 129/Ola mice. Taken together, our observations support a role for BMP9 in liver endothelial cell fenestration and prevention of fibrosis that is dependent on genetic background. It also suggests that 129/Ola mice are a more suitable model than C57BL/6 for the study of liver fibrosis subsequent to LSEC capillarization.
Collapse
|
49
|
Mahony CB, Bertrand JY. How HSCs Colonize and Expand in the Fetal Niche of the Vertebrate Embryo: An Evolutionary Perspective. Front Cell Dev Biol 2019; 7:34. [PMID: 30915333 PMCID: PMC6422921 DOI: 10.3389/fcell.2019.00034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
Rare hematopoietic stem cells (HSCs) can self-renew, establish the entire blood system and represent the basis of regenerative medicine applied to hematological disorders. Clinical use of HSCs is however limited by their inefficient expansion ex vivo, creating a need to further understand HSC expansion in vivo. After embryonic HSCs are born from the hemogenic endothelium, they migrate to the embryonic/fetal niche, where the future adult HSC pool is established by considerable expansion. This takes place at different anatomical sites and is controlled by numerous signals. HSCs then migrate to their adult niche, where they are maintained throughout adulthood. Exactly how HSC expansion is controlled during embryogenesis remains to be characterized and is an important step to improve the therapeutic use of HSCs. We will review the current knowledge of HSC expansion in the different fetal niches across several model organisms and highlight possible clinical applications.
Collapse
Affiliation(s)
- Christopher B Mahony
- Department of Pathology and Immunology, Faculty of Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Julien Y Bertrand
- Department of Pathology and Immunology, Faculty of Medicine, CMU, University of Geneva, Geneva, Switzerland
| |
Collapse
|
50
|
Ruart M, Chavarria L, Campreciós G, Suárez-Herrera N, Montironi C, Guixé-Muntet S, Bosch J, Friedman SL, Garcia-Pagán JC, Hernández-Gea V. Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury. J Hepatol 2019; 70:458-469. [PMID: 30367898 PMCID: PMC6704477 DOI: 10.1016/j.jhep.2018.10.015] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Endothelial dysfunction plays an essential role in liver injury, yet the phenotypic regulation of liver sinusoidal endothelial cells (LSECs) remains unknown. Autophagy is an endogenous protective system whose loss could undermine LSEC integrity and phenotype. The aim of our study was to investigate the role of autophagy in the regulation of endothelial dysfunction and the impact of its manipulation during liver injury. METHODS We analyzed primary isolated LSECs from Atg7control and Atg7endo mice as well as rats after CCl4 induced liver injury. Liver tissue and primary isolated stellate cells were used to analyze liver fibrosis. Autophagy flux, microvascular function, nitric oxide bioavailability, cellular superoxide content and the antioxidant response were evaluated in endothelial cells. RESULTS Autophagy maintains LSEC homeostasis and is rapidly upregulated during capillarization in vitro and in vivo. Pharmacological and genetic downregulation of endothelial autophagy increases oxidative stress in vitro. During liver injury in vivo, the selective loss of endothelial autophagy leads to cellular dysfunction and reduced intrahepatic nitric oxide. The loss of autophagy also impairs LSECs ability to handle oxidative stress and aggravates fibrosis. CONCLUSIONS Autophagy contributes to maintaining endothelial phenotype and protecting LSECs from oxidative stress during early phases of liver disease. Selectively potentiating autophagy in LSECs during early stages of liver disease may be an attractive approach to modify the disease course and prevent fibrosis progression. LAY SUMMARY Liver endothelial cells are the first liver cell type affected after any kind of liver injury. The loss of their unique phenotype during injury amplifies liver damage by orchestrating the response of the liver microenvironment. Autophagy is a mechanism involved in the regulation of this initial response and its manipulation can modify the progression of liver damage.
Collapse
Affiliation(s)
- Maria Ruart
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Spain
| | - Laia Chavarria
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Spain
| | - Genís Campreciós
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Spain; Centro de Investigación Biomédica Red de enfermedades hepáticas y digestivas, Spain
| | - Nuria Suárez-Herrera
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Spain
| | - Carla Montironi
- Pathology Department, Liver Cancer Translational Research Laboratory, BCLC Group, IDIBAPS, Liver Unit, Hospital Clinic, Spain
| | | | - Jaume Bosch
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Spain; Centro de Investigación Biomédica Red de enfermedades hepáticas y digestivas, Spain; Swiss Liver Centre, Inselspital, Bern University, CH, Switzerland
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Juan Carlos Garcia-Pagán
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Spain; Centro de Investigación Biomédica Red de enfermedades hepáticas y digestivas, Spain
| | - Virginia Hernández-Gea
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Spain; Centro de Investigación Biomédica Red de enfermedades hepáticas y digestivas, Spain.
| |
Collapse
|