1
|
Torices S, Moreno T, Ramaswamy S, Naranjo O, Teglas T, Osborne OM, Park M, Sun E, Toborek M. MITOCHONDRIAL ANTIVIRAL PATHWAYS CONTROL ANTI-HIV RESPONSES AND ISCHEMIC STROKE OUTCOMES VIA THE RIG-1 SIGNALING AND INNATE IMMUNITY MECHANISMS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.598027. [PMID: 38895303 PMCID: PMC11185786 DOI: 10.1101/2024.06.07.598027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Occludin (ocln) is one of the main regulatory cells of the blood-brain barrier (BBB). Ocln silencing resulted in alterations of the gene expression signatures of a variety of genes of the innate immunity system, including IFN-stimulated genes (ISGs) and the antiviral retinoic acid-inducible gene-1 (RIG-1) signaling pathway, which functions as a regulator of the cytoplasmic sensors upstream of the mitochondrial antiviral signaling protein (MAVS). Indeed, we observed dysfunctional mitochondrial bioenergetics, dynamics, and autophagy in our system. Alterations of mitochondrial bioenergetics and innate immune protection translated into worsened ischemic stroke outcomes in EcoHIV-infected ocln deficient mice. Overall, these results allow for a better understanding of the molecular mechanisms of viral infection in the brain and describe a previously unrecognized role of ocln as a key factor in the control of innate immune responses and mitochondrial dynamics, which affect cerebral vascular diseases such as ischemic stroke.
Collapse
Affiliation(s)
- Silvia Torices
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Thaidy Moreno
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Sita Ramaswamy
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Oandy Naranjo
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Timea Teglas
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Olivia M. Osborne
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Minseon Park
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Enze Sun
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Michal Toborek
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| |
Collapse
|
2
|
Sinha P, Thio CL, Balagopal A. Intracellular Host Restriction of Hepatitis B Virus Replication. Viruses 2024; 16:764. [PMID: 38793645 PMCID: PMC11125714 DOI: 10.3390/v16050764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The hepatitis B virus (HBV) infects hepatocytes and hijacks host cellular mechanisms for its replication. Host proteins can be frontline effectors of the cell's defense and restrict viral replication by impeding multiple steps during its intracellular lifecycle. This review summarizes many of the well-described restriction factors, their mechanisms of restriction, and counteractive measures of HBV, with a special focus on viral transcription. We discuss some of the limitations and knowledge gaps about the restriction factors, highlighting how these factors may be harnessed to facilitate therapeutic strategies against HBV.
Collapse
Affiliation(s)
| | | | - Ashwin Balagopal
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (P.S.); (C.L.T.)
| |
Collapse
|
3
|
Twentyman J, Emerman M, Ohainle M. Capsid-dependent lentiviral restrictions. J Virol 2024; 98:e0030824. [PMID: 38497663 PMCID: PMC11019884 DOI: 10.1128/jvi.00308-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Host antiviral proteins inhibit primate lentiviruses and other retroviruses by targeting many features of the viral life cycle. The lentiviral capsid protein and the assembled viral core are known to be inhibited through multiple, directly acting antiviral proteins. Several phenotypes, including those known as Lv1 through Lv5, have been described as cell type-specific blocks to infection against some but not all primate lentiviruses. Here we review important features of known capsid-targeting blocks to infection together with several blocks to infection for which the genes responsible for the inhibition still remain to be identified. We outline the features of these blocks as well as how current methodologies are now well suited to find these antiviral genes and solve these long-standing mysteries in the HIV and retrovirology fields.
Collapse
Affiliation(s)
- Joy Twentyman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Molly Ohainle
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
4
|
Chang M, Min YQ, Xu Z, Deng F, Wang H, Ning YJ. Host factor MxA restricts Dabie bandavirus infection by targeting the viral NP protein to inhibit NP-RdRp interaction and ribonucleoprotein activity. J Virol 2024; 98:e0156823. [PMID: 38054738 PMCID: PMC10805036 DOI: 10.1128/jvi.01568-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with high case mortality rates, which is caused by Dabie bandavirus (DBV), a novel pathogen also termed as SFTS virus (SFTSV). Currently, no specific therapeutic drugs or vaccines are available for SFTS. Myxovirus resistance protein A (MxA) has been shown to inhibit multiple viral pathogens; however, the role of MxA in DBV infection is unknown. Here, we demonstrated that DBV stimulates MxA expression which, in turn, restricts DBV infection. Mechanistic target analysis revealed that MxA specifically interacts with the viral nucleocapsid protein (NP) in a manner independent of RNA. Minigenome reporter assay showed that in agreement with its targeting of NP, MxA inhibits DBV ribonucleoprotein (RNP) activity. In detail, MxA interacts with the NP N-terminal and disrupts the interaction of NP with the viral RNA-dependent RNA polymerase (RdRp) but not NP multimerization, the critical activities of NP for RNP formation and function. Furthermore, MxA N-terminal domain was identified as the functional domain inhibiting DBV infection, and, consistently, then was shown to interact with NP and obstruct the NP-RdRp interaction. Additionally, threonine 103 within the N-terminal domain is important for MxA inhibition to DBV, and its mutation (T103A) attenuates MxA binding to NP and obstruction of the NP-RdRp interaction. This study uncovers MxA inhibition of DBV with a series of functional and mechanistical analyses, providing insights into the virus-host interactions and probably helping inform the development of antiviral agents in the future.IMPORTANCEDBV/SFTSV is an emerging high-pathogenic virus. Since its first identification in China in 2009, cases of DBV infection have been reported in many other countries, posing a significant threat to public health. Uncovering the mechanisms of DBV-host interactions is necessary to understand the viral pathogenesis and host response and may advance the development of antiviral therapeutics. Here, we found that host factor MxA whose expression is induced by DBV restricts the virus infection. Mechanistically, MxA specifically interacts with the viral NP and blocks the NP-RdRp interaction, inhibiting the viral RNP activity. Further studies identified the key domain and amino acid residue required for MxA inhibition to DBV. Consistently, they were then shown to be important for MxA targeting of NP and obstruction of the NP-RdRp association. These findings unravel the restrictive role of MxA in DBV infection and the underlying mechanism, expanding our knowledge of the virus-host interactions.
Collapse
Affiliation(s)
- Meng Chang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Qin Min
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Zhao Xu
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Deng
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hualin Wang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yun-Jia Ning
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
5
|
Wu HH, Li YJ, Weng CH, Hsu HH, Chang MY, Yang HY, Yang CW, Tian YC. Interferon-alpha and MxA inhibit BK polyomavirus replication by interaction with polyomavirus large T antigen. Biomed J 2023; 47:100682. [PMID: 38065365 PMCID: PMC11399625 DOI: 10.1016/j.bj.2023.100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/11/2023] [Accepted: 12/02/2023] [Indexed: 08/30/2024] Open
Abstract
INTRODUCTION BK Polyomavirus (BKPyV) infection is a common complication in kidney transplant recipients and can result in poor outcomes and graft failure. Currently, there is no known effective antiviral agent. This study investigated the possible antiviral effects of Interferon alpha (IFNα) and its induced protein, MxA, against BKPyV. METHODS In vitro cell culture experiments were conducted using human primary renal proximal tubular epithelial cells (HRPTECs). We also did animal studies using Balb/c mice with unilateral kidney ischemic reperfusion injury. RESULTS Our results demonstrated that IFNα effectively inhibited BKPyV in vitro and murine polyomavirus in animal models. Additionally, IFNα and MxA were found to suppress BKPyV TAg and VP1 production. Silencing MxA attenuated the antiviral efficacy of IFNα. We observed that MxA interacted with BKPyV TAg, causing it to remain in the cytosol and preventing its nuclear translocation. To determine MxA's essential domain for its antiviral activities, different mutant MxA constructs were generated. The MxA mutant K83A retained its interaction with BKPyV TAg, and its antiviral effects were intact. The MxA T103A mutant, on the other hand, abolished GTPase activity, lost its protein-protein interaction with BKPyV TAg, and lost its antiviral effect. CONCLUSION IFNα and its downstream protein, MxA, have potent antiviral properties against BKPyV. Furthermore, our findings indicate that the interaction between MxA and BKVPyV TAg plays a crucial role in determining the anti-BKPyV effects of MxA.
Collapse
Affiliation(s)
- Hsin-Hsu Wu
- Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taiwan
| | - Yi-Jung Li
- Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hao Weng
- Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiang-Hao Hsu
- Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yang Chang
- Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Huang-Yu Yang
- Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Chung Tian
- Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Kumar S, Ansari S, Narayanan S, Ranjith-Kumar CT, Surjit M. Antiviral activity of zinc against hepatitis viruses: current status and future prospects. Front Microbiol 2023; 14:1218654. [PMID: 37908540 PMCID: PMC10613677 DOI: 10.3389/fmicb.2023.1218654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Viral hepatitis is a major public health concern globally. World health organization aims at eliminating viral hepatitis as a public health threat by 2030. Among the hepatitis causing viruses, hepatitis B and C are primarily transmitted via contaminated blood. Hepatitis A and E, which gets transmitted primarily via the feco-oral route, are the leading cause of acute viral hepatitis. Although vaccines are available against some of these viruses, new cases continue to be reported. There is an urgent need to devise a potent yet economical antiviral strategy against the hepatitis-causing viruses (denoted as hepatitis viruses) for achieving global elimination of viral hepatitis. Although zinc was known to mankind for a long time (since before Christ era), it was identified as an element in 1746 and its importance for human health was discovered in 1963 by the pioneering work of Dr. Ananda S. Prasad. A series of follow up studies involving zinc supplementation as a therapy demonstrated zinc as an essential element for humans, leading to establishment of a recommended dietary allowance (RDA) of 15 milligram zinc [United States RDA for zinc]. Being an essential component of many cellular enzymes and transcription factors, zinc is vital for growth and homeostasis of most living organisms, including human. Importantly, several studies indicate potent antiviral activity of zinc. Multiple studies have demonstrated antiviral activity of zinc against viruses that cause hepatitis. This article provides a comprehensive overview of the findings on antiviral activity of zinc against hepatitis viruses, discusses the mechanisms underlying the antiviral properties of zinc and summarizes the prospects of harnessing the therapeutic benefit of zinc supplementation therapy in reducing the disease burden due to viral hepatitis.
Collapse
Affiliation(s)
- Shiv Kumar
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shabnam Ansari
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sriram Narayanan
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - C. T. Ranjith-Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Milan Surjit
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
7
|
Thiyagarajah K, Basic M, Hildt E. Cellular Factors Involved in the Hepatitis D Virus Life Cycle. Viruses 2023; 15:1687. [PMID: 37632029 PMCID: PMC10459925 DOI: 10.3390/v15081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatitis D virus (HDV) is a defective RNA virus with a negative-strand RNA genome encompassing less than 1700 nucleotides. The HDV genome encodes only for one protein, the hepatitis delta antigen (HDAg), which exists in two forms acting as nucleoproteins. HDV depends on the envelope proteins of the hepatitis B virus as a helper virus for packaging its ribonucleoprotein complex (RNP). HDV is considered the causative agent for the most severe form of viral hepatitis leading to liver fibrosis/cirrhosis and hepatocellular carcinoma. Many steps of the life cycle of HDV are still enigmatic. This review gives an overview of the complete life cycle of HDV and identifies gaps in knowledge. The focus is on the description of cellular factors being involved in the life cycle of HDV and the deregulation of cellular pathways by HDV with respect to their relevance for viral replication, morphogenesis and HDV-associated pathogenesis. Moreover, recent progress in antiviral strategies targeting cellular structures is summarized in this article.
Collapse
Affiliation(s)
| | | | - Eberhard Hildt
- Paul-Ehrlich-Institute, Department of Virology, D-63225 Langen, Germany; (K.T.); (M.B.)
| |
Collapse
|
8
|
Hu P, Li Y, Zhang W, Liu R, Peng L, Xu R, Cai J, Yuan H, Feng T, Tian A, Yue M, Li J, Li W, Zhu C. The Spliceosome Factor EFTUD2 Promotes IFN Anti-HBV Effect through mRNA Splicing. Mediators Inflamm 2023; 2023:2546278. [PMID: 37396299 PMCID: PMC10313468 DOI: 10.1155/2023/2546278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/19/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Methods Using a CRISPR/Cas9 gene-editing system, EFTUD2 single allele knockout HepG2.2.15 cells were constructed. Subsequently, the HBV biomarkers in EFTUD2+/- HepG2.2.15 cells and wild-type (WT) cells with or without IFN-α treatment were detected. And the EFTUD2-regulated genes were then identified using mRNA sequence. Selected gene mRNA variants and their proteins were examined by qRT-PCR and Western blotting. To confirm the effects of EFTUD2 on HBV replication and IFN-stimulated gene (ISG) expression, a rescue experiment in EFTUD2+/- HepG2.2.15 cells was performed by EFTUD2 overexpression. Results IFN-induced anti-HBV activity was found to be restricted in EFTUD2+/- HepG2.2.15 cells. The mRNA sequence showed that EFTUD2 could regulate classical IFN and virus response genes. Mechanistically, EFTUD2 single allele knockout decreased the expression of ISG-encoded proteins, comprising Mx1, OAS1, and PKR (EIF2AK2), through mediated gene splicing. However, EFTUD2 did not affect the expression of Jak-STAT pathway genes. Furthermore, EFTUD2 overexpression could restore the attenuation of IFN anti-HBV activity and the reduction of ISG resulting from EFTUD2 single allele knockout. Conclusion EFTUD2, the spliceosome factor, is not IFN-inducible but is an IFN effector gene. EFTUD2 mediates IFN anti-HBV effect through regulation of gene splicing for certain ISGs, including Mx1, OAS1, and PKR. EFTUD2 does not affect IFN receptors or canonical signal transduction components. Therefore, it can be concluded that EFTUD2 regulates ISGs using a novel, nonclassical mechanism.
Collapse
Affiliation(s)
- Pingping Hu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuwen Li
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Linya Peng
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruirui Xu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinyuan Cai
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Yuan
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tiantong Feng
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Anran Tian
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Yue
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Chuanlong Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| |
Collapse
|
9
|
Dong X, Li Z, Zhao S, Liu J, Luo S, Zhang Y, Xu Q, Chen G, Zhang Y. Molecular cloning and expression analysis of Myxovirus resistance gene in Yangzhou goose ( Anser cygnoides domesticus). Br Poult Sci 2023:1-9. [PMID: 36637331 DOI: 10.1080/00071668.2022.2163617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
1. Myxovirus resistance (Mx) is a protein produced by the interferon-induced natural immune response with broad spectrum antiviral function. However, the role and expression characteristics of the Mx gene in immune defence against viral infection in goose have not yet been reported.2. This study found a 2576 bp genomic sequence and a 2112 bp mRNA sequence for Mx, encoding 703 amino acids. Multiple sequence alignments of the amino acid sequences showed that the Yangzhou goose Mx (goMx) had 86.99% similarity to the mallard duck (Anas platyrhynchos).3. Tissue-specific expression profiling revealed that the expression of goMx was highest in the lung and spleen. Both poly (I:C) and GPV were found to elevate the expression of goMx. The upregulated expression of goMx was associated with interferon pathway-related genes IRF7, JAK1, STAT1, and STAT2. Furthermore, overexpression of goMx significantly activated the transcription of poly (I:C) induced TNF-α, IL-1β, IL-6, and IL-18.4. The findings of this study suggest that the goMx modulation of the antiviral response is mediated by the interferon pathway.
Collapse
Affiliation(s)
- X Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Z Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - S Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - J Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - S Luo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Y Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Q Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - G Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Y Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
10
|
Yuan SY, Yu HB, Yang Z, Qin YP, Ren JH, Cheng ST, Ren F, Law BYK, Wong VKW, Ng JPL, Zhou YJ, He X, Tan M, Zhang ZZ, Chen J. Pimobendan Inhibits HBV Transcription and Replication by Suppressing HBV Promoters Activity. Front Pharmacol 2022; 13:837115. [PMID: 35721154 PMCID: PMC9204083 DOI: 10.3389/fphar.2022.837115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
Current anti-HBV therapeutic strategy relies on interferon and nucleos(t)ide-type drugs with the limitation of functional cure, inducing hepatitis B surface antigen (HBsAg) loss in very few patients. Notably, the level of HBsAg has been established as an accurate indicator to evaluate the drug efficacy and predict the disease prognosis, thus exploring a novel drug targeting HBsAg will be of great significance. Herein, by screening 978 compounds from an FDA-approved drug library and determining the inhibitory function of each drug on HBsAg level in HepG2.2.15 cells supernatant, we identified that pimobendan (Pim) has a powerful antiviral activity with relatively low cytotoxicity. The inhibitory effect of Pim on HBsAg as well as other HBV markers was validated in HBV-infected cell models and HBV-transgenic mice. Mechanistically, real-time PCR and dual-luciferase reporter assay were applied to identify the partial correlation of transcription factor CAAT enhancer-binding protein α (C/EBPα) with the cccDNA transcription regulated by Pim. This indicates Pim is an inhibitor of HBV transcription through suppressing HBV promoters to reduce HBV RNAs levels and HBsAg production. In conclusion, Pim was identified to be a transcription inhibitor of cccDNA, thereby inhibiting HBsAg and other HBV replicative intermediates both in vitro and in vivo. This report may provide a promising lead for the development of new anti-HBV agent.
Collapse
Affiliation(s)
- Si-Yu Yuan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hai-Bo Yu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Zhen Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yi-Ping Qin
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ji-Hua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Sheng-Tao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Fang Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Jerome P. L. Ng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Yu-Jiao Zhou
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xin He
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Zhen-Zhen Zhang
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Department of Infectious Diseases, The Children’s Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Zhen-Zhen Zhang, ; Juan Chen,
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- *Correspondence: Zhen-Zhen Zhang, ; Juan Chen,
| |
Collapse
|
11
|
Jiang S, Wang X, Chen K, Yang P. Establishment of an inducible cell line for Hepatitis B virus genotype C2 and its pharmacological responses to interferons. Pharmacol Res 2022; 178:106142. [PMID: 35218895 DOI: 10.1016/j.phrs.2022.106142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
Hepatitis B virus (HBV) genotype C is closely associated with poor prognosis, contributing greatly to heavy chronic hepatitis B (CHB)-related liver disease burden in China and worldwide. However, the mechanistic studies on genotype C of HBV remain largely limited, partially because of a long-term lack of genotype C HBV-based stable cell tools. According to a bioinformatic analysis on the sub-genotype C2 HBV that is predominantly endemic in China, we selected 17.3 strain as a representative isolate. With a Tet-off gene expression system, an inducible viral replication and virion production of genotype C2 HBV were achieved in a cell line carrying persistent rcDNA-cccDNA recycling, termed HepG2-17.3, can be useful for virological studies on genotype C2 HBV. Additionally, this cell line has been formatted into cell-based assay that permits particular pharmacological screening of drug candidates, such as interferon regimens, for evaluations of the inhibitory effects on genotype C2 HBV replication.
Collapse
Affiliation(s)
- Shaodong Jiang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaili Chen
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyuan Yang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Interaction between the Hepatitis B Virus and Cellular FLIP Variants in Viral Replication and the Innate Immune System. Viruses 2022; 14:v14020373. [PMID: 35215970 PMCID: PMC8874586 DOI: 10.3390/v14020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
During viral evolution and adaptation, many viruses have utilized host cellular factors and machinery as their partners. HBx, as a multifunctional viral protein encoded by the hepatitis B virus (HBV), promotes HBV replication and greatly contributes to the development of HBV-associated hepatocellular carcinoma (HCC). HBx interacts with several host factors in order to regulate HBV replication and evolve carcinogenesis. The cellular FADD-like IL-1β-converting enzyme (FLICE)-like inhibitory protein (c-FLIP) is a major factor that functions in a variety of cellular pathways and specifically in apoptosis. It has been shown that the interaction between HBx and c-FLIP determines HBV fate. In this review, we provide a comprehensive and detailed overview of the interplay between c-FLIP and HBV in various environmental circumstances. We describe strategies adapted by HBV to establish its chronic infection. We also summarize the conventional roles of c-FLIP and highlight the functional outcome of the interaction between c-FLIP and HBV or other viruses in viral replication and the innate immune system.
Collapse
|
13
|
Zhang J, Liu K, Zhang G, Ling N, Chen M. Interleukin-17A pretreatment attenuates the anti-hepatitis B virus efficacy of interferon-alpha by reducing activation of the interferon-stimulated gene factor 3 transcriptional complex in hepatitis B virus-expressing HepG2 cells. Virol J 2022; 19:28. [PMID: 35144643 PMCID: PMC8830041 DOI: 10.1186/s12985-022-01753-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background Some cytokine signaling pathways can interact with interferon (IFN)-α pathway and thus regulate cell responses to IFN-α. Levels of the pro-inflammatory cytokine interleukin-17A (IL-17A) were found to be elevated in both the peripheral blood and liver in chronic hepatitis B (CHB) patients. However, how IL-17A affects the anti-HBV activity of IFN-α remains unclear. Methods The effects of IL-17A on anti-HBV activity of IFN-α were evaluated in HBV-expressing HepG2 cells (HepG2-HBV1.3) with IL-17A pretreatment and IFN-α stimulation. Culture supernatant levels of HBsAg, HBeAg, and HBV DNA, or intracellular expression of HBsAg and HBcAg were detected by ELISA, real-time quantitative PCR (RT-qPCR), or western blotting (WB). The expression of canonical IFN-α signaling pathway components, including the interferon-α/β receptor (IFNAR), Janus Kinase 1 (JAK1), Tyrosine Kinase 2 (TYK2), the Interferon Stimulated Gene Factor 3 complex (ISGF3) and IFN-stimulated genes (ISGs), was also examined by RT-qPCR, Immunofluorescence or WB. The effects of IL-17A were further investigated by the suppression of the IL-17A pathway with a TRAF6 inhibitor. Results Compared to IFN-α stimulation alone, IL-17A pretreatment followed by IFN-α stimulation increased the levels of HBsAg, HBeAg, and HBV DNA, and decreased the levels of ISGF3 complex (phosphorylated (p)-signal transducer and activator of transcription (STAT1)/p-STAT2/IRF9) and antiviral-related ISGs (ISG15, ISG20 and Mx1). Interestingly, IL-17A pretreatment increased the expression of suppressor of cytokine signaling (SOCS) 1, SOCS3 and USP18, which were also the ISGs negatively regulating activity of ISGF3. Moreover, IFNAR1 protein expression declined more sharply in the group with IL-17A pretreatment than in the group with IFN-α stimulation alone. Blocking the IL-17A pathway reversed the effects of IL-17A on the IFN-α-induced activation of ISGF3 and anti-HBV efficacy. Conclusions Our results demonstrate that IL-17A pretreatment could attenuate IFN-α-induced anti-HBV activity by upregulating negative regulators of the critical transcriptional ISGF3 complex. Thus, this might be a potential target for improving response to IFN-α therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01753-x.
Collapse
Affiliation(s)
- Jiaxuan Zhang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Liu
- Department of Clinical Laboratory, The People's Hospital of Leshan, Chongqing, China
| | - Gaoli Zhang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Ling
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Chen
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
14
|
Fukutomi K, Hikita H, Murai K, Nakabori T, Shimoda A, Fukuoka M, Yamai T, Higuchi Y, Miyakawa K, Suemizu H, Ryo A, Yamada R, Kodama T, Sakamori R, Tatsumi T, Takehara T. Capsid Allosteric Modulators Enhance the Innate Immune Response in Hepatitis B Virus-Infected Hepatocytes During Interferon Administration. Hepatol Commun 2022; 6:281-296. [PMID: 34558845 PMCID: PMC8793994 DOI: 10.1002/hep4.1804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 12/18/2022] Open
Abstract
Capsid allosteric modulators (CAMs) inhibit the encapsidation of hepatitis B virus (HBV) pregenomic RNA (pgRNA), which contains a pathogen-associated molecular pattern motif. However, the effect of CAMs on the innate immune response of HBV-infected hepatocytes remains unclear, and we examined this effect in this study. Administration of a CAM compound, BAY41-4109 (BAY41), to HBV-infected primary human hepatocytes (PHHs) did not change the total cytoplasmic pgRNA levels but significantly reduced intracapsid pgRNA levels, suggesting that BAY41 increased extracapsid pgRNA levels in the cytoplasm. BAY41 alone did not change the intracellular interferon (IFN)-stimulated gene (ISG) expression levels. However, BAY41 enhanced antiviral ISG induction by IFN-α in HBV-infected PHHs but did not change ISG induction by IFN-α in uninfected PHHs. Compared with BAY41 or IFN-α alone, coadministration of BAY41 and IFN-α significantly suppressed extracellular HBV-DNA levels. HBV-infected human liver-chimeric mice were treated with vehicle, BAY41, pegylated IFN-α (pegIFN-α), or BAY41 and pegIFN-α together. Compared with the vehicle control, pegIFN-α highly up-regulated intrahepatic ISG expression levels, but BAY41 alone did not change these levels. The combination of BAY41 and pegIFN-α further enhanced intrahepatic antiviral ISG expression, which was up-regulated by pegIFNα. The serum HBV-DNA levels in mice treated with the combination of BAY41 and pegIFN-α were the lowest observed in all the groups. Conclusion: CAMs enhance the host IFN response when combined with exogenous IFN-α, likely due to increased cytoplasmic extracapsid pgRNA.
Collapse
Affiliation(s)
- Keisuke Fukutomi
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Hayato Hikita
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Kazuhiro Murai
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Tasuku Nakabori
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Akiyoshi Shimoda
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Makoto Fukuoka
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Takuo Yamai
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Yuichiro Higuchi
- Laboratory Animal Research DepartmentCentral Institute for Experimental AnimalsKawasakiJapan
| | - Kei Miyakawa
- Department of MicrobiologyYokohama City University School of MedicineYokohamaJapan
| | - Hiroshi Suemizu
- Laboratory Animal Research DepartmentCentral Institute for Experimental AnimalsKawasakiJapan
| | - Akihide Ryo
- Department of MicrobiologyYokohama City University School of MedicineYokohamaJapan
| | - Ryoko Yamada
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Takahiro Kodama
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Ryotaro Sakamori
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Tomohide Tatsumi
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Tetsuo Takehara
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
15
|
Miyakawa K, Nishi M, Ogawa M, Matsunaga S, Sugiyama M, Nishitsuji H, Kimura H, Ohnishi M, Watashi K, Shimotohno K, Wakita T, Ryo A. Galectin-9 restricts hepatitis B virus replication via p62/SQSTM1-mediated selective autophagy of viral core proteins. Nat Commun 2022; 13:531. [PMID: 35087074 PMCID: PMC8795376 DOI: 10.1038/s41467-022-28171-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
Autophagy has been linked to a wide range of functions, including a degradative process that defends host cells against pathogens. Although the involvement of autophagy in HBV infection has become apparent, it remains unknown whether selective autophagy plays a critical role in HBV restriction. Here, we report that a member of the galectin family, GAL9, directs the autophagic degradation of HBV HBc. BRET screening revealed that GAL9 interacts with HBc in living cells. Ectopic expression of GAL9 induces the formation of HBc-containing cytoplasmic puncta through interaction with another antiviral factor viperin, which co-localized with the autophagosome marker LC3. Mechanistically, GAL9 associates with HBc via viperin at the cytoplasmic puncta and enhanced the auto-ubiquitination of RNF13, resulting in p62 recruitment to form LC3-positive autophagosomes. Notably, both GAL9 and viperin are type I IFN-stimulated genes that act synergistically for the IFN-dependent proteolysis of HBc in HBV-infected hepatocytes. Collectively, these results reveal a previously undescribed antiviral mechanism against HBV in infected cells and a form of crosstalk between the innate immune system and selective autophagy in viral infection. In human cells, invading pathogens trigger an innate immune response that helps prevent viral replication and spread. Here, the authors reveal a mechanism of innate immunity that selectively leads to the autophagic degradation of hepatitis B virus core protein.
Collapse
Affiliation(s)
- Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan
| | - Mayuko Nishi
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan
| | - Michinaga Ogawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Satoko Matsunaga
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Chiba, 272-8516, Japan
| | - Hironori Nishitsuji
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, 272-8516, Japan
| | - Hirokazu Kimura
- School of Medical Technology, Faculty of Health Sciences, Gunma Paz University, Gunma, 370-0006, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.,Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Kunitada Shimotohno
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, 272-8516, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan.
| |
Collapse
|
16
|
Novel function of SART1 in HNF4α transcriptional regulation contributes to its antiviral role during HBV infection. J Hepatol 2021; 75:1072-1082. [PMID: 34242702 DOI: 10.1016/j.jhep.2021.06.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Our understanding of the interactions between HBV and its host cells is still quite limited. Spliceosome associated factor 1 (SART1) has recently been found to restrict HCV. Thus, we aimed to dissect its role in HBV infection. METHODS SART1 was knocked down by RNA interference and over-expressed by lentiviral or adeno-associated virus (AAV) vectors in HBV-infected cell cultures and in vivo in HBV-infected mice. Luciferase reporter assays were used to determine viral or host factor promoter activities, and chromatin immunoprecipitation (ChIP) was used to investigate protein-DNA interactions. RESULTS In HBV-infected cell cultures, downregulation of SART1 did not affect covalently closed circular HBV DNA but resulted in markedly enhanced HBV RNA, antigen expression and progeny virus production. On the other hand, HBV transcription and replication were significantly inhibited by overexpression of SART1. Similar results were observed in AAV-HBV-infected mice persistently replicating HBV. Inhibition of Janus kinases had no effect on SART1-mediated inhibition of HBV replication. HBV promoter assays revealed that SART1 reduced HBV core promoter activity. By screening known HBV transcription factors, we found that SART1 specifically suppressed the expression of hepatocyte nuclear factor 4α (HNF4α). Luciferase reporter and ChIP assays demonstrated a direct downregulation of HNF4α expression by association of SART1 with the HNF4α proximal P1 promoter element. CONCLUSIONS We identify SART1 as a novel host factor suppressing HBV cccDNA transcription. Besides its effect on interferon-stimulated genes, SART1 exerts an anti-HBV activity by suppressing HNF4α expression, which is essential for transcription of HBV cccDNA. LAY SUMMARY Hepatitis B virus (HBV) infects hepatocytes and persists in the form of covalently closed circular DNA (cccDNA), which remains a major obstacle to successful antiviral treatment. In this study, using various HBV models, we demonstrate that the protein SART1 restricts HBV cccDNA transcription by suppressing a key transcription factor, HNF4α.
Collapse
|
17
|
Van Damme E, Vanhove J, Severyn B, Verschueren L, Pauwels F. The Hepatitis B Virus Interactome: A Comprehensive Overview. Front Microbiol 2021; 12:724877. [PMID: 34603251 PMCID: PMC8482013 DOI: 10.3389/fmicb.2021.724877] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the availability of a prophylactic vaccine, chronic hepatitis B (CHB) caused by the hepatitis B virus (HBV) is a major health problem affecting an estimated 292 million people globally. Current therapeutic goals are to achieve functional cure characterized by HBsAg seroclearance and the absence of HBV-DNA after treatment cessation. However, at present, functional cure is thought to be complicated due to the presence of covalently closed circular DNA (cccDNA) and integrated HBV-DNA. Even if the episomal cccDNA is silenced or eliminated, it remains unclear how important the high level of HBsAg that is expressed from integrated HBV DNA is for the pathology. To identify therapies that could bring about high rates of functional cure, in-depth knowledge of the virus' biology is imperative to pinpoint mechanisms for novel therapeutic targets. The viral proteins and the episomal cccDNA are considered integral for the control and maintenance of the HBV life cycle and through direct interaction with the host proteome they help create the most optimal environment for the virus whilst avoiding immune detection. New HBV-host protein interactions are continuously being identified. Unfortunately, a compendium of the most recent information is lacking and an interactome is unavailable. This article provides a comprehensive review of the virus-host relationship from viral entry to release, as well as an interactome of cccDNA, HBc, and HBx.
Collapse
Affiliation(s)
- Ellen Van Damme
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Jolien Vanhove
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium.,Early Discovery Biology, Charles River Laboratories, Beerse, Belgium
| | - Bryan Severyn
- Janssen Research & Development, Janssen Pharmaceutical Companies, Springhouse, PA, United States
| | - Lore Verschueren
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Frederik Pauwels
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| |
Collapse
|
18
|
Hadpech S, Moonmuang S, Chupradit K, Yasamut U, Tayapiwatana C. Updating on Roles of HIV Intrinsic Factors: A Review of Their Antiviral Mechanisms and Emerging Functions. Intervirology 2021; 65:67-79. [PMID: 34464956 DOI: 10.1159/000519241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Host restriction factors are cellular proteins that inhibit specific steps of the viral life cycle. Since the 1970s, several new factors have been identified, including human immunodeficiency virus-1 (HIV-1) replication restriction. Evidence accumulated in the last decade has substantially broadened our understanding of the molecular mechanisms utilized to abrogate the HIV-1 life cycle. SUMMARY In this review, we focus on the interaction between host restriction factors participating in the early phase of HIV-1 infection, particularly CA-targeting proteins. Host factors involved in the late phase of the replication cycle, such as viral assembly and egress factors, are also described. Additionally, current reports on well-known antiviral intrinsic factors, as well as other viral restriction factors with their emerging roles, are included. CONCLUSION A comprehensive understanding of the interactions between viruses and hosts is expected to provide insight into the design of novel HIV-1 therapeutic interventions.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Division of Pharmacology and Biopharmacy, Faculty of Pharmaceutical Sciences, Burapha University, Chon Buri, Thailand
| | - Sutpirat Moonmuang
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Koollawat Chupradit
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Siriraj Center for Regenerative Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Umpa Yasamut
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Innovative Immunodiagnostic Development, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Innovative Immunodiagnostic Development, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
19
|
Qu B, Brown RJP. Strategies to Inhibit Hepatitis B Virus at the Transcript Level. Viruses 2021; 13:v13071327. [PMID: 34372533 PMCID: PMC8310268 DOI: 10.3390/v13071327] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Approximately 240 million people are chronically infected with hepatitis B virus (HBV), despite four decades of effective HBV vaccination. During chronic infection, HBV forms two distinct templates responsible for viral transcription: (1) episomal covalently closed circular (ccc)DNA and (2) host genome-integrated viral templates. Multiple ubiquitous and liver-specific transcription factors are recruited onto these templates and modulate viral gene transcription. This review details the latest developments in antivirals that inhibit HBV gene transcription or destabilize viral transcripts. Notably, nuclear receptor agonists exhibit potent inhibition of viral gene transcription from cccDNA. Small molecule inhibitors repress HBV X protein-mediated transcription from cccDNA, while small interfering RNAs and single-stranded oligonucleotides result in transcript degradation from both cccDNA and integrated templates. These antivirals mediate their effects by reducing viral transcripts abundance, some leading to a loss of surface antigen expression, and they can potentially be added to the arsenal of drugs with demonstrable anti-HBV activity. Thus, these candidates deserve special attention for future repurposing or further development as anti-HBV therapeutics.
Collapse
Affiliation(s)
- Bingqian Qu
- Division of Veterinary Medicine, Paul Ehrlich Institute, 63225 Langen, Germany
- European Virus Bioinformatics Center, 07743 Jena, Germany
- Correspondence: (B.Q.); (R.J.P.B.)
| | - Richard J. P. Brown
- Division of Veterinary Medicine, Paul Ehrlich Institute, 63225 Langen, Germany
- Correspondence: (B.Q.); (R.J.P.B.)
| |
Collapse
|
20
|
Chai K, Wang Z, Pan Q, Tan J, Qiao W, Liang C. Effect of Different Nuclear Localization Signals on the Subcellular Localization and Anti-HIV-1 Function of the MxB Protein. Front Microbiol 2021; 12:675201. [PMID: 34093497 PMCID: PMC8173038 DOI: 10.3389/fmicb.2021.675201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
Interferon exerts its antiviral activity by stimulating the expression of antiviral proteins. These interferon stimulate genes (ISGs) often target a group of viruses with unique molecular mechanisms. One such ISG is myxovirus resistance B (MxB) that has been reported to inhibit human immunodeficiency virus type 1 (HIV-1) by targeting viral capsid and impairing nuclear import of viral DNA. The antiviral specificity of MxB is determined by its N-terminal 25 amino acids sequence which has the nuclear localization activity, therefore functions as a nuclear localization signal (NLS). In this study, we report that the bipartite NLS, but not the classic NLS, the PY-NLS, nor the arginine-rich NLS, when used to replace the N-terminal sequence of MxB, drastically suppress HIV-1 gene expression and virus production, thus creates a new anti-HIV-1 mechanism. MxB preserves its anti-HIV-1 activity when its N-terminal sequence is replaced by the arginine-rich NLS. Interestingly, the arginine-rich NLS allows MxB to inhibit HIV-1 CA mutants that are otherwise resistant to wild type MxB, which suggests sequence specific targeting of viral capsid. Together, these data implicate that it is not the nuclear import function itself, but rather the sequence and the mechanism of action of the NLS which define the antiviral property of MxB.
Collapse
Affiliation(s)
- Keli Chai
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.,Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Zhen Wang
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Qinghua Pan
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Lin M, Guo R, Ma C, Zeng D, Su Z. Manganese Breaks the Immune Tolerance of HBs-Ag. Open Forum Infect Dis 2021; 8:ofab028. [PMID: 33614817 PMCID: PMC7885859 DOI: 10.1093/ofid/ofab028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/21/2021] [Indexed: 12/31/2022] Open
Abstract
Background Manganese (Mn2+) has been shown to promote type I interferon (IFN) production and activate the cyclic GMP-AMP synthase (cGAS)/Stimulator of Interferon Genes (STING) signaling pathway, suggesting that Mn2+ could be used as an adjuvant for vaccination. Methods In present study, the effects of Mn2+ on vaccination against hepatitis B virus (HBV) were evaluated. We treated mouse hepatocytes and kuppfer cells with Mn2+ with or without adeno-associated virus (AAV)–HBV infection. Expression of IFN-α and IFN-β and activation of TBK1 and IRF3 were monitored. Wild-type and STING-/- mice were treated with Mn2+ and then infected with AAV-HBV. Serum levels of HBV surface antigen (HBsAg), alanine aminotransferase (ALT) activity, IFN-α, and IFN-β were detected. Lymphocyte infiltration in the liver was evaluated. HBsAg-Tg mice were vaccinated with Mn2+ and HBsAg. The serum levels of HBsAg antibody, alanine transaminase activity, and IFN-β were monitored after vaccination. Results Mn2+ promoted IFN-α and IFN-β production in mouse hepatocytes and kuppfer cells. Mn2+ failed to promote IFN-α and IFN-β production in kuppfer cells deficient in STING. Mn2+ promoted activation/phosphorylation of TBK1 and IRF3 during AAV-HBV infection. Mn2+ decreased serum levels of HBsAG, increased serum levels of alanine aminotransferase (ALT), IFN-α and IFN-β, and enhanced lymphocyte infiltration and the percentage of IFN-γ-producing CD8+ T cells in the liver of AAV-HBV-infected mice. In contrast, Mn2+ treatment did not affect serum levels of HBsAG, ALT, IFN-α, or IFN-β in STING-deficient mice. Conclusions Mn2+ promoted HBsAG antibody, ALT, and IFN-β production after HBsAG immunization. Mn2+ promoted type I IFN production in AAV-HBV infection and HBsAG immunization and could be used as an adjuvant for vaccination.
Collapse
Affiliation(s)
- Mengxin Lin
- Department of Infectious Disease, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Ruyi Guo
- Department of Infectious Disease, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Cuiping Ma
- Department of Infectious Disease, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Dawu Zeng
- Liver Research Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Zhijun Su
- Department of Infectious Disease, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
22
|
Zhang BY, Chai DP, Wu YH, Qiu LP, Zhang YY, Ye ZH, Yu XP. Potential Drug Targets Against Hepatitis B Virus Based on Both Virus and Host Factors. Curr Drug Targets 2020; 20:1636-1651. [PMID: 31362671 DOI: 10.2174/1389450120666190729115646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hepatitis B is a very harmful and epidemic disease caused by hepatitis B virus (HBV). Although an effective anti-HBV vaccine is available, chronic infection poses still a huge health burden in the whole world. The present anti-HBV drugs including nucleoside analogues and interferonalpha have their limitations without exception. There is no effective drug and therapeutic method that can really and truly cure hepatitis B so far. The variability of HBV genome results in that a significant number of patients develop drug resistance during the long-term use of anti-HBV drugs. Hence, it is urgently needed to discover novel targets and develop new drugs against hepatitis B. OBJECTIVE The review aims to provide the theory support for designing of the anti-HBV innovative drugs by offering a summary of the current situation of antiviral potential targets. RESULTS AND CONCLUSION Since HBV is obligate intracellular parasite, and as such it depends on host cellular components and functions to replicate itself. The targeting both virus and host might be a novel therapeutic option for hepatitis B. Accordingly, we analyse the advances in the study of the potential drug targets for anti-HBV infection, focusing on targeting virus genome, on targeting host cellular functions and on targeting virus-host proteins interactions, respectively. Meanwhile, the immune targets against chronic hepatitis B are also emphasized. In short, the review provides a summary of antiviral therapeutic strategies to target virus factors, host factors and immune factors for future designing of the innovative drug against HBV infection.
Collapse
Affiliation(s)
- Bing-Yi Zhang
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Dan-Ping Chai
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yi-Hang Wu
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Li-Peng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yong-Yong Zhang
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zi-Hong Ye
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiao-Ping Yu
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
23
|
Interferon Alpha Induces Multiple Cellular Proteins That Coordinately Suppress Hepadnaviral Covalently Closed Circular DNA Transcription. J Virol 2020; 94:JVI.00442-20. [PMID: 32581092 DOI: 10.1128/jvi.00442-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Covalently closed circular DNA (cccDNA) of hepadnaviruses exists as an episomal minichromosome in the nucleus of an infected hepatocyte and serves as the template for the transcription of viral mRNAs. It had been demonstrated by others and us that interferon alpha (IFN-α) treatment of hepatocytes induced a prolonged suppression of human and duck hepatitis B virus cccDNA transcription, which is associated with the reduction of cccDNA-associated histone modifications specifying active transcription (H3K9ac or H3K27ac), but not the histone modifications marking constitutive (H3K9me3) or facultative (H3K27me3) heterochromatin formation. In our efforts to identify IFN-induced cellular proteins that mediate the suppression of cccDNA transcription by the cytokine, we found that downregulating the expression of signal transducer and activator of transcription 1 (STAT1), structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1), or promyelocytic leukemia (PML) protein increased basal level of cccDNA transcription activity and partially attenuated IFN-α suppression of cccDNA transcription. In contrast, ectopic expression of STAT1, SMCHD1, or PML significantly reduced cccDNA transcription activity. SMCHD1 is a noncanonical SMC family protein and implicated in epigenetic silencing of gene expression. PML is a component of nuclear domain 10 (ND10) and is involved in suppressing the replication of many DNA viruses. Mechanistic analyses demonstrated that STAT1, SMCHD1, and PML were recruited to cccDNA minichromosomes and phenocopied the IFN-α-induced posttranslational modifications of cccDNA-associated histones. We thus conclude that STAT1, SMCHD1, and PML may partly mediate the suppressive effect of IFN-α on hepadnaviral cccDNA transcription.IMPORTANCE Pegylated IFN-α is the only therapeutic regimen that can induce a functional cure of chronic hepatitis B in a small, but significant, fraction of treated patients. Understanding the mechanisms underlying the antiviral functions of IFN-α in hepadnaviral infection may reveal molecular targets for development of novel antiviral agents to improve the therapeutic efficacy of IFN-α. By a loss-of-function genetic screening of individual IFN-stimulated genes (ISGs) on hepadnaviral mRNAs transcribed from cccDNA, we found that downregulating the expression of STAT1, SMCHD1, or PML significantly increased the level of viral RNAs without altering the level of cccDNA. Mechanistic analyses indicated that those cellular proteins are recruited to cccDNA minichromosomes and induce the posttranslational modifications of cccDNA-associated histones similar to those induced by IFN-α treatment. We have thus identified three IFN-α-induced cellular proteins that suppress cccDNA transcription and may partly mediate IFN-α silencing of hepadnaviral cccDNA transcription.
Collapse
|
24
|
Wang YX, Niklasch M, Liu T, Wang Y, Shi B, Yuan W, Baumert TF, Yuan Z, Tong S, Nassal M, Wen YM. Interferon-inducible MX2 is a host restriction factor of hepatitis B virus replication. J Hepatol 2020; 72:865-876. [PMID: 31863794 DOI: 10.1016/j.jhep.2019.12.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Non-cytolytic cure of HBV-infected hepatocytes by cytokines, including type I interferons (IFNs), is of importance for resolving acute and chronic infection. However, as IFNs stimulate hundreds of genes, those most relevant for HBV suppression remain largely unknown. Amongst them are the large myxovirus resistance (Mx) GTPases. Human MX1 (or MxA) is active against many RNA viruses, while MX2 (or MxB) was recently found to restrict HIV-1, HCV, and herpesviruses. Herein, we investigated the anti-HBV activity of MX2. METHODS The potential anti-HBV activity of MX2 and functional variants were assessed in transfected and HBV-infected hepatoma cells and primary human hepatocytes, employing multiple assays to analyze the synthesis and decay of HBV nucleic acids. The specific roles of MX2 in IFN-α-driven inhibition of HBV transcription and replication were assessed by MX2-specific shRNA interference (RNAi). RESULTS Both MX2 alone and IFN-α substantially inhibited HBV replication, due to significant deceleration of the synthesis and slight acceleration of the turnover of viral RNA. RNAi knockdown of MX2 significantly reduced the inhibitory effects of IFN-α. Strikingly, MX2 inhibited HBV infection by reducing covalently closed circular DNA (cccDNA), most likely by indirectly impairing the conversion of relaxed circular DNA to cccDNA rather than by destabilizing existing cccDNA. Various mutations affecting the GTPase activity and oligomerization status reduced MX2's anti-HBV activity. CONCLUSION MX2 is an important IFN-α inducible effector that decreases HBV RNA levels but can also potently inhibit HBV infection by indirectly impairing cccDNA formation. MX2 likely has the potential for therapeutic applications aimed at curing HBV infection by eliminating cccDNA. LAY SUMMARY This study shows that the protein MX2, which is induced by interferon-α, has important anti-hepatitis B virus (HBV) effector functions. MX2 can reduce the amount of covalently closed circular DNA, which is the form of DNA that HBV uses to maintain viral persistence within hepatocytes. MX2 also reduces HBV RNA levels by downregulating synthesis of viral RNA. MX2 likely represents a novel intrinsic HBV inhibitor that could have therapeutic potential, as well as being useful for improving our understanding of the complex biology of HBV and the antiviral mechanisms of interferon-α.
Collapse
Affiliation(s)
- Yong-Xiang Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032 Shanghai, China.
| | - Matthias Niklasch
- University Hospital Freiburg, Department of Internal Medicine II/Molecular Biology, 79106 Freiburg, Germany
| | - Tiantian Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| | - Yang Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| | - Bisheng Shi
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, 201508 Shanghai, China
| | - Wenjie Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| | - Thomas F Baumert
- Pôle Hépato-Digestif, Unité d'Hépatologie, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 67091 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France; Unité Inserm 1110, 67000 Strasbourg, France
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| | - Shuping Tong
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| | - Michael Nassal
- University Hospital Freiburg, Department of Internal Medicine II/Molecular Biology, 79106 Freiburg, Germany
| | - Yu-Mei Wen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| |
Collapse
|
25
|
Menne S, Wildum S, Steiner G, Suresh M, Korolowicz K, Balarezo M, Yon C, Murreddu M, Hong X, Kallakury BV, Tucker R, Yang S, Young JAT, Javanbakht H. Efficacy of an Inhibitor of Hepatitis B Virus Expression in Combination With Entecavir and Interferon-α in Woodchucks Chronically Infected With Woodchuck Hepatitis Virus. Hepatol Commun 2020; 4:916-931. [PMID: 32490326 PMCID: PMC7262289 DOI: 10.1002/hep4.1502] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
RG7834 is a small‐molecule inhibitor of hepatitis B virus (HBV) gene expression that significantly reduces the levels of hepatitis B surface antigen (HBsAg) and HBV DNA in a humanized liver HBV mouse model. In the current study, we evaluated the potency of RG7834 in the woodchuck model of chronic HBV infection, alone and in combination with entecavir (ETV) and/or woodchuck interferon‐α (wIFN‐α). RG7834 reduced woodchuck hepatitis virus (WHV) surface antigen (WHsAg) by a mean of 2.57 log10 from baseline and WHV DNA by a mean of 1.71 log10. ETV + wIFN‐α reduced WHsAg and WHV DNA by means of 2.40 log10 and 6.70 log10, respectively. The combination of RG7834, ETV, and wIFN‐α profoundly reduced WHsAg and WHV DNA levels by 5.00 log10 and 7.46 log10, respectively. However, both viral parameters rebounded to baseline after treatment was stopped and no antibody response against WHsAg was observed. Effects on viral RNAs were mainly seen with the triple combination treatment, reducing both pregenomic RNA (pgRNA) and WHsAg RNA, whereas RG7834 mainly reduced WHsAg RNA and ETV mainly affected pgRNA. When WHsAg was reduced by the triple combination, peripheral blood mononuclear cells (PBMCs) proliferated significantly in response to viral antigens, but the cellular response was diminished after WHsAg returned to baseline levels during the off‐treatment period. Consistent with this, Pearson correlation revealed a strong negative correlation between WHsAg levels and PBMC proliferation in response to peptides covering the entire WHsAg and WHV nucleocapsid antigen. Conclusion: A fast and robust reduction of WHsAg by combination therapy reduced WHV‐specific immune dysfunction in the periphery. However, the magnitude and/or duration of the induced cellular response were not sufficient to achieve a sustained antiviral response.
Collapse
Affiliation(s)
- Stephan Menne
- Department of Microbiology and Immunology Georgetown University Medical Center Washington DC
| | - Steffen Wildum
- Roche Pharma Research and Early Development Roche Innovation Center Basel Basel Switzerland
| | - Guido Steiner
- Roche Pharma Research and Early Development Roche Innovation Center Basel Basel Switzerland
| | - Manasa Suresh
- Department of Microbiology and Immunology Georgetown University Medical Center Washington DC
| | - Kyle Korolowicz
- Department of Microbiology and Immunology Georgetown University Medical Center Washington DC
| | - Maria Balarezo
- Department of Microbiology and Immunology Georgetown University Medical Center Washington DC
| | - Changsuek Yon
- Department of Microbiology and Immunology Georgetown University Medical Center Washington DC
| | - Marta Murreddu
- Department of Microbiology and Immunology Georgetown University Medical Center Washington DC
| | - Xupeng Hong
- Department of Microbiology and Immunology Georgetown University Medical Center Washington DC
| | | | - Robin Tucker
- Department of Pharmacology Georgetown University Medical Center Washington DC
| | - Song Yang
- Roche Pharma Research and Early Development Roche Innovation Center Shanghai Shanghai China
| | - John A T Young
- Roche Pharma Research and Early Development Roche Innovation Center Basel Basel Switzerland
| | - Hassan Javanbakht
- Roche Pharma Research and Early Development Roche Innovation Center Basel Basel Switzerland
| |
Collapse
|
26
|
A MicroRNA Network Controls Legionella pneumophila Replication in Human Macrophages via LGALS8 and MX1. mBio 2020; 11:mBio.03155-19. [PMID: 32209695 PMCID: PMC7157531 DOI: 10.1128/mbio.03155-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cases of Legionella pneumophila pneumonia occur worldwide, with potentially fatal outcome. When causing human disease, Legionella injects a plethora of virulence factors to reprogram macrophages to circumvent immune defense and create a replication niche. By analyzing Legionella-induced changes in miRNA expression and genomewide chromatin modifications in primary human macrophages, we identified a cell-autonomous immune network restricting Legionella growth. This network comprises three miRNAs governing expression of the cytosolic RNA receptor DDX58/RIG-I, the tumor suppressor TP53, the antibacterial effector LGALS8, and MX1, which has been described as an antiviral factor. Our findings for the first time link TP53, LGALS8, DDX58, and MX1 in one miRNA-regulated network and integrate them into a functional node in the defense against L. pneumophila. Legionella pneumophila is an important cause of pneumonia. It invades alveolar macrophages and manipulates the immune response by interfering with signaling pathways and gene transcription to support its own replication. MicroRNAs (miRNAs) are critical posttranscriptional regulators of gene expression and are involved in defense against bacterial infections. Several pathogens have been shown to exploit the host miRNA machinery to their advantage. We therefore hypothesize that macrophage miRNAs exert positive or negative control over Legionella intracellular replication. We found significant regulation of 85 miRNAs in human macrophages upon L. pneumophila infection. Chromatin immunoprecipitation and sequencing revealed concordant changes of histone acetylation at the putative promoters. Interestingly, a trio of miRNAs (miR-125b, miR-221, and miR-579) was found to significantly affect intracellular L. pneumophila replication in a cooperative manner. Using proteome-analysis, we pinpointed this effect to a concerted downregulation of galectin-8 (LGALS8), DExD/H-box helicase 58 (DDX58), tumor protein P53 (TP53), and then MX dynamin-like GTPase 1 (MX1) by the three miRNAs. In summary, our results demonstrate a new miRNA-controlled immune network restricting Legionella replication in human macrophages.
Collapse
|
27
|
Chen J, Wu Y, Wu XD, Zhou J, Liang XD, Baloch AS, Qiu YF, Gao S, Zhou B. The R614E mutation of mouse Mx1 protein contributes to the novel antiviral activity against classical swine fever virus. Vet Microbiol 2020; 243:108621. [PMID: 32273007 DOI: 10.1016/j.vetmic.2020.108621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 01/07/2023]
Abstract
Mx proteins are interferon-induced GTPases that have broad antiviral activity against a wide range of RNA and DNA viruses. We previously demonstrated that porcine Mx1 protein (poMx1) inhibited the replication of classical swine fever virus (CSFV), an economically important Pestivirus, and that mouse Mx1 did so as well. It is unknown why the nucleus-localizing mouse Mx1 inhibits CSFV replication which occurs in the cytoplasm. To the end, we assessed the anti-CSFV actions of wild type mouse Mx1 and seven previously reported mutants (K49A, G83R, A222V, A516V, G540E, R614E and ΔL4) and identified the molecular mechanism of R614E action against CSFV replication. A series of experiments revealed that mmMx1 (R614E) mutant reposted to the cytoplasm and interacted with the CSFV nucleocapsid protein (Core), thereby inhibiting viral replication. These findings broaden our understanding of the function of Mx protein family members against CSFV and suggest that the relative conservation of Mx1 among species is the basis of broad-spectrum antiviral properties.
Collapse
Affiliation(s)
- Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xu-Dan Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Dong Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Abdul Sattar Baloch
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ya-Feng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Song Gao
- the Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
28
|
Cao H, Krueger EW, Chen J, Drizyte-Miller K, Schulz ME, McNiven MA. The anti-viral dynamin family member MxB participates in mitochondrial integrity. Nat Commun 2020; 11:1048. [PMID: 32102993 PMCID: PMC7044337 DOI: 10.1038/s41467-020-14727-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/23/2020] [Indexed: 12/19/2022] Open
Abstract
The membrane deforming dynamin family members MxA and MxB are large GTPases that convey resistance to a variety of infectious viruses. During viral infection, Mx proteins are known to show markedly increased expression via an interferon-responsive promoter to associate with nuclear pores. In this study we report that MxB is an inner mitochondrial membrane GTPase that plays an important role in the morphology and function of this organelle. Expression of mutant MxB or siRNA knockdown of MxB leads to fragmented mitochondria with disrupted inner membranes that are unable to maintain a proton gradient, while expelling their nucleoid-based genome into the cytoplasm. These findings implicate a dynamin family member in mitochondrial-based changes frequently observed during an interferon-based, anti-viral response. Mx proteins belong to the dynamin family of large GTPases and are highly induced by interferon in virally infected cells. The authors show that uninfected immune cells and hepatocytes also express MxB protein that associates with mitochondria to alter the morphology and genome of this organelle.
Collapse
Affiliation(s)
- Hong Cao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.,Center for Basic Research in Digestive Diseases, Division of Gastroenterology & Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - E W Krueger
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology & Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Jing Chen
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology & Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Kristina Drizyte-Miller
- Biochemistry and Molecular Biology Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Mary E Schulz
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology & Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Mark A McNiven
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA. .,Center for Basic Research in Digestive Diseases, Division of Gastroenterology & Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
29
|
Puray-Chavez MN, Farghali MH, Yapo V, Huber AD, Liu D, Ndongwe TP, Casey MC, Laughlin TG, Hannink M, Tedbury PR, Sarafianos SG. Effects of Moloney Leukemia Virus 10 Protein on Hepatitis B Virus Infection and Viral Replication. Viruses 2019; 11:v11070651. [PMID: 31319455 PMCID: PMC6669478 DOI: 10.3390/v11070651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022] Open
Abstract
Moloney leukemia virus 10 (MOV10) is an RNA helicase that has been shown to affect the replication of several viruses. The effect of MOV10 on Hepatitis B virus (HBV) infection is not known and its role on the replication of this virus is poorly understood. We investigated the effect of MOV10 down-regulation and MOV10 over-expression on HBV in a variety of cell lines, as well as in an infection system using a replication competent virus. We report that MOV10 down-regulation, using siRNA, shRNA, and CRISPR/Cas9 gene editing technology, resulted in increased levels of HBV DNA, HBV pre-genomic RNA, and HBV core protein. In contrast, MOV10 over-expression reduced HBV DNA, HBV pre-genomic RNA, and HBV core protein. These effects were consistent in all tested cell lines, providing strong evidence for the involvement of MOV10 in the HBV life cycle. We demonstrated that MOV10 does not interact with HBV-core. However, MOV10 binds HBV pgRNA and this interaction does not affect HBV pgRNA decay rate. We conclude that the restriction of HBV by MOV10 is mediated through effects at the level of viral RNA.
Collapse
Affiliation(s)
- Maritza N Puray-Chavez
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Mahmoud H Farghali
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta QXXV+C5, Egypt
| | - Vincent Yapo
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Andrew D Huber
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Dandan Liu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Tanyaradzwa P Ndongwe
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Mary C Casey
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Thomas G Laughlin
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Mark Hannink
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Philip R Tedbury
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| | - Stefan G Sarafianos
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
30
|
Human Hepatitis B Virus Core Protein Inhibits IFNα-Induced IFITM1 Expression by Interacting with BAF200. Viruses 2019; 11:v11050427. [PMID: 31075894 PMCID: PMC6563218 DOI: 10.3390/v11050427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
Human hepatitis B virus core protein (HBc) is a structural protein of the hepatitis B virus (HBV) and contributes to HBV regulation of host-cell transcription. However, the mechanisms of transcriptional regulation remain poorly characterized. To dissect the function of HBc, a yeast two-hybrid was performed to identify HBc-binding proteins, and the C-terminal of BRG1/hBRM-associated factors 200 (BAF200C) was identified. Then, the existence of HBc interactions with BAF200C and full-length BAF200 was confirmed via co-immunoprecipitation assays in 293T, HepG2 and HepG2-NTCP cells. Furthermore, we show that the binding between HBc and BAF200 was of vital importance to HBc mediated downregulation of interferon-induced transmembrane protein 1 (IFITM1) expression, and the mechanisms for the downregulation were disclosed as follows. Basal level of IFITM1 expression depends on BAF200, rather than the JAK–STAT1 pathway. The interaction of HBc with BAF200 disturbs the stability of the polybromo-associated BAF (PBAF) complex and results in the suppression of IFTM1 transcription. Finally, the antiviral effects of IFITM1 on cell proliferation and HBV replication were found to be partially restored when HBc was co-transfected with BAF200. Collectively, our findings indicate that HBc plays a role in HBV resistance against the antiviral activities of IFNα, providing details about HBV evasion of host innate immunity.
Collapse
|
31
|
Dam Van P, Desmecht D, Garigliany MM, Bui Tran Anh D, Van Laere AS. Anti-Influenza A Virus Activities of Type I/III Interferons-Induced Mx1 GTPases from Different Mammalian Species. J Interferon Cytokine Res 2019; 39:274-282. [PMID: 30939061 DOI: 10.1089/jir.2018.0157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Type I/III interferons provide powerful and universal innate intracellular defense mechanisms against viruses. Among the antiviral effectors induced, Mx proteins of some species appear as key components of defense against influenza A viruses. It is expected that such an antiviral protein must display a platform dedicated to the recognition of said viruses. In an attempt to identify such platform in human MxA, an evolution-guided approach capitalizing on the antagonistic arms race between MxA and its viral targets and the genomic signature it left on primate genomes revealed that the surface-exposed so-called "loop L4", which protrudes from the compact structure of the MxA stalk, is a hotspot of recurrent positive selection. Since MxA is archetypic of Mx1 proteins in general, we reasoned that the L4 loop also functions as a recognition platform for influenza viruses in the Mx1 proteins of other species that had been exposed to the virus for ever. In this study, the anti-influenza activity of 5 distinct mammalian Mx1 proteins was measured by comparing the number of viral nucleoprotein-positive cells 7 h after infection in a sample of 100,000 cells expected to contain both Mx1-positive and Mx1-negative cell subpopulations. The systematic depletion (P < 0.001) of virus nucleoprotein-positive cells among equine, bubaline, porcine, and bovine Mx1-expressing cell populations compared with Mx-negative cells suggests a strong anti-influenza A activity. Looking for common anti-influenza signature elements in the sequence of these Mx proteins, we found that an aromatic residue at positions 561 or 562 in the L4 loop seems critical for the anti-influenza function and/or specificity of mammalian Mx1.
Collapse
Affiliation(s)
- Phai Dam Van
- 1 Department of Pharmacology, Toxicology, Internal Medicine and Diagnostics, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam.,2 Department of Pathology, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Daniel Desmecht
- 2 Department of Pathology, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | | | - Dao Bui Tran Anh
- 3 Department of Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Anne-Sophie Van Laere
- 2 Department of Pathology, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| |
Collapse
|
32
|
Human MX2/MxB: a Potent Interferon-Induced Postentry Inhibitor of Herpesviruses and HIV-1. J Virol 2018; 92:JVI.00709-18. [PMID: 30258007 DOI: 10.1128/jvi.00709-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Interferons limit viral replication by inducing intracellular restriction factors, such as the GTPase MxB (also designated MX2), which inhibits HIV-1 and, as recently shown, herpesviruses. Inhibition of these viruses occurs at ill-defined steps after viral entry and requires formation of MxB dimers or oligomers, but GTP hydrolysis is needed only for blocking herpesviruses. Together with previous findings on related MxA, the new research on MxB highlights the mechanistic diversity by which MX proteins interfere with viral replication.
Collapse
|
33
|
Kim DH, Park ES, Lee AR, Park S, Park YK, Ahn SH, Kang HS, Won JH, Ha YN, Jae B, Kim DS, Chung WC, Song MJ, Kim KH, Park SH, Kim SH, Kim KH. Intracellular interleukin-32γ mediates antiviral activity of cytokines against hepatitis B virus. Nat Commun 2018; 9:3284. [PMID: 30115930 PMCID: PMC6095909 DOI: 10.1038/s41467-018-05782-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
Cytokines are involved in early host defense against pathogen infections. In particular, tumor necrosis factor (TNF) and interferon-gamma (IFN-γ) have critical functions in non-cytopathic elimination of hepatitis B virus (HBV) in hepatocytes. However, the molecular mechanisms and mediator molecules are largely unknown. Here we show that interleukin-32 (IL-32) is induced by TNF and IFN-γ in hepatocytes, and inhibits the replication of HBV by acting intracellularly to suppress HBV transcription and replication. The gamma isoform of IL-32 (IL-32γ) inhibits viral enhancer activities by downregulating liver-enriched transcription factors. Our data are validated in both an in vivo HBV mouse model and primary human hepatocytes. This study thus suggests that IL-32γ functions as intracellular effector in hepatocytes for suppressing HBV replication to implicate a possible mechanism of non-cytopathic viral clearance. Cytokines such as TNF and IFN-γ are important for immunity against hepatitis B virus (HBV). Here the authors show that interleukin-32 gamma (IL-32γ) acts downstream of TNF and IFN-γ as an intracellular effector, and that IL-32γ negatively regulates host factors contributing to HBV transcription to promote HBV clearance.
Collapse
Affiliation(s)
- Doo Hyun Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Eun-Sook Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ah Ram Lee
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Soree Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Yong Kwang Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Hyun Ahn
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hong Seok Kang
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ju Hee Won
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Yea Na Ha
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - ByeongJune Jae
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong-Sik Kim
- Division of HBP Surgery and Liver Transplantation, Department of Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Woo-Chang Chung
- Virus-Host Interactions Laboratory, Division of Biotechnology, Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Moon Jung Song
- Virus-Host Interactions Laboratory, Division of Biotechnology, Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kee-Hwan Kim
- Department of Surgery, Uijeongbu St. Mary's Hospital, Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 11765, Republic of Korea
| | - Seung Hwa Park
- Department of Anatomy, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo-Hyun Kim
- Laboratory of Cytokine Immunology, Veterinary School, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyun-Hwan Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea. .,KU Open Innovation Center, Research Institute of Medical Sciences, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
34
|
Tan G, Song H, Xu F, Cheng G. When Hepatitis B Virus Meets Interferons. Front Microbiol 2018; 9:1611. [PMID: 30072974 PMCID: PMC6058040 DOI: 10.3389/fmicb.2018.01611] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection imposes a severe burden on global public health. Currently, there are no curative therapies for millions of chronic HBV-infected patients (Lok et al., 2017). Interferon (IFN; including pegylated IFN) is an approved anti-HBV drug that not only exerts direct antiviral activity, but also augments immunity against HBV infection. Through a systematic review of the literature, here we summarize and present recent progress in research regarding the interactions between IFN and HBV as well as dissect the antiviral mechanisms of IFN. We focus on inhibition of HBV replication by IFN-stimulated genes (ISGs) as well as inhibition of IFN signaling by HBV and viral proteins. Finally, we briefly discuss current IFN-based HBV treatment strategies. This review may help to better understand the mechanisms involved in the therapeutic action of IFN as well as the crosstalk between IFN and HBV, and facilitate the development of both direct-acting and immunology-based new HBV drugs.
Collapse
Affiliation(s)
- Guangyun Tan
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Hongxiao Song
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fengchao Xu
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Genhong Cheng
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States.,Center of System Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| |
Collapse
|
35
|
Miyakawa K, Matsunaga S, Yamaoka Y, Dairaku M, Fukano K, Kimura H, Chimuro T, Nishitsuji H, Watashi K, Shimotohno K, Wakita T, Ryo A. Development of a cell-based assay to identify hepatitis B virus entry inhibitors targeting the sodium taurocholate cotransporting polypeptide. Oncotarget 2018; 9:23681-23694. [PMID: 29805766 PMCID: PMC5955094 DOI: 10.18632/oncotarget.25348] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
Sodium taurocholate cotransporting polypeptide (NTCP) is a major entry receptor of hepatitis B virus (HBV) and one of the most attractive targets for anti-HBV drugs. We developed a cell-mediated drug screening method to monitor NTCP expression on the cell surface by generating a HepG2 cell line with tetracycline-inducible expression of NTCP and a monoclonal antibody that specifically detects cell-surface NTCP. Using this system, we screened a small molecule library for compounds that protected against HBV infection by targeting NTCP. We found that glabridin, a licorice-derived isoflavane, could suppress viral infection by inducing caveolar endocytosis of cell-surface NTCP with an IC50 of ~40 μM. We also found that glabridin could attenuate the inhibitory effect of taurocholate on type I interferon signaling by depleting the level of cell-surface NTCP. These results demonstrate that our screening system could be a powerful tool for discovering drugs targeting HBV entry.
Collapse
Affiliation(s)
- Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan
| | - Satoko Matsunaga
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan
| | - Yutaro Yamaoka
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan.,Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Kanagawa 259-1146, Japan
| | - Mina Dairaku
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan
| | - Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hirokazu Kimura
- School of Medical Technology, Faculty of Health Sciences, Gunma Paz University, Gunma 370-0006, Japan
| | - Tomoyuki Chimuro
- Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Kanagawa 259-1146, Japan
| | - Hironori Nishitsuji
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba 272-8516, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kunitada Shimotohno
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba 272-8516, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan
| |
Collapse
|
36
|
Niu C, Li L, Daffis S, Lucifora J, Bonnin M, Maadadi S, Salas E, Chu R, Ramos H, Livingston CM, Beran RK, Garg AV, Balsitis S, Durantel D, Zoulim F, Delaney WE, Fletcher SP. Toll-like receptor 7 agonist GS-9620 induces prolonged inhibition of HBV via a type I interferon-dependent mechanism. J Hepatol 2018; 68:922-931. [PMID: 29247725 DOI: 10.1016/j.jhep.2017.12.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/17/2017] [Accepted: 12/06/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS GS-9620, an oral agonist of toll-like receptor 7 (TLR7), is in clinical development for the treatment of chronic hepatitis B (CHB). GS-9620 was previously shown to induce prolonged suppression of serum viral DNA and antigens in the woodchuck and chimpanzee models of CHB. Herein, we investigated the molecular mechanisms that contribute to the antiviral response to GS-9620 using in vitro models of hepatitis B virus (HBV) infection. METHODS Cryopreserved primary human hepatocytes (PHH) and differentiated HepaRG (dHepaRG) cells were infected with HBV and treated with GS-9620, conditioned media from human peripheral blood mononuclear cells treated with GS-9620 (GS-9620 conditioned media [GS-9620-CM]), or other innate immune stimuli. The antiviral and transcriptional response to these agents was determined. RESULTS GS-9620 had no antiviral activity in HBV-infected PHH, consistent with low level TLR7 mRNA expression in human hepatocytes. In contrast, GS-9620-CM induced prolonged reduction of HBV DNA, RNA, and antigen levels in PHH and dHepaRG cells via a type I interferon (IFN)-dependent mechanism. GS-9620-CM did not reduce covalently closed circular DNA (cccDNA) levels in either cell type. Transcriptional profiling demonstrated that GS-9620-CM strongly induced various HBV restriction factors - although not APOBEC3A or the Smc5/6 complex - and indicated that established HBV infection does not modulate innate immune sensing or signaling in cryopreserved PHH. GS-9620-CM also induced expression of immunoproteasome subunits and enhanced presentation of an immunodominant viral peptide in HBV-infected PHH. CONCLUSIONS Type I IFN induced by GS-9620 durably suppressed HBV in human hepatocytes without reducing cccDNA levels. Moreover, HBV antigen presentation was enhanced, suggesting additional components of the TLR7-induced immune response played a role in the antiviral response to GS-9620 in animal models of CHB. LAY SUMMARY GS-9620 is a drug currently being tested in clinical trials for the treatment of chronic hepatitis B virus (HBV) infection. GS-9620 has previously been shown to suppress HBV in various animal models, but the underlying antiviral mechanisms were not completely understood. In this study, we determined that GS-9620 does not directly activate antiviral pathways in human liver cells, but can induce prolonged suppression of HBV via induction of an antiviral cytokine called interferon. However, interferon did not destroy the HBV genome, suggesting that other parts of the immune response (e.g. activation of immune cells that kill infected cells) also play an important role in the antiviral response to GS-9620.
Collapse
Affiliation(s)
| | - Li Li
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | - Julie Lucifora
- INSERM 1052, Université Claude Bernard Lyon 1, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69003, France
| | - Marc Bonnin
- INSERM 1052, Université Claude Bernard Lyon 1, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69003, France
| | - Sarah Maadadi
- INSERM 1052, Université Claude Bernard Lyon 1, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69003, France
| | | | - Ruth Chu
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | | | | | | | | | - David Durantel
- INSERM 1052, Université Claude Bernard Lyon 1, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69003, France
| | - Fabien Zoulim
- INSERM 1052, Université Claude Bernard Lyon 1, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69003, France; Hospices Civils de Lyon (HCl), 69002 Lyon, France; Institut Universitaire de France (IUF), 75005 Paris, France
| | | | | |
Collapse
|
37
|
Mutz P, Metz P, Lempp FA, Bender S, Qu B, Schöneweis K, Seitz S, Tu T, Restuccia A, Frankish J, Dächert C, Schusser B, Koschny R, Polychronidis G, Schemmer P, Hoffmann K, Baumert TF, Binder M, Urban S, Bartenschlager R. HBV Bypasses the Innate Immune Response and Does Not Protect HCV From Antiviral Activity of Interferon. Gastroenterology 2018; 154:1791-1804.e22. [PMID: 29410097 DOI: 10.1053/j.gastro.2018.01.044] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) infection is sensitive to interferon (IFN)-based therapy, whereas hepatitis B virus (HBV) infection is not. It is unclear whether HBV escapes detection by the IFN-mediated immune response or actively suppresses it. Moreover, little is known on how HBV and HCV influence each other in coinfected cells. We investigated interactions between HBV and the IFN-mediated immune response using HepaRG cells and primary human hepatocytes (PHHs). We analyzed the effects of HBV on HCV replication, and vice versa, at the single-cell level. METHODS PHHs were isolated from liver resection tissues from HBV-, HCV-, and human immunodeficiency virus-negative patients. Differentiated HepaRG cells overexpressing the HBV receptor sodium taurocholate cotransporting polypeptide (dHepaRGNTCP) and PHHs were infected with HBV. Huh7.5 cells were transfected with circular HBV DNA genomes resembling viral covalently closed circular DNA (cccDNA), and subsequently infected with HCV; this served as a model of HBV and HCV coinfection. Cells were incubated with IFN inducers, or IFNs, and antiviral response and viral replication were analyzed by immune fluorescence, reverse-transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assays, and flow cytometry. RESULTS HBV infection of dHepaRGNTCP cells and PHHs neither activated nor inhibited signaling via pattern recognition receptors. Incubation of dHepaRGNTCP cells and PHHs with IFN had little effect on HBV replication or levels of cccDNA. HBV infection of these cells did not inhibit JAK-STAT signaling or up-regulation of IFN-stimulated genes. In coinfected cells, HBV did not prevent IFN-induced suppression of HCV replication. CONCLUSIONS In dHepaRGNTCP cells and PHHs, HBV evades the induction of IFN and IFN-induced antiviral effects. HBV infection does not rescue HCV from the IFN-mediated response.
Collapse
Affiliation(s)
- Pascal Mutz
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany; HBIGS graduate school, Heidelberg, Germany
| | - Philippe Metz
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Florian A Lempp
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Silke Bender
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bingqian Qu
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Katrin Schöneweis
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Stefan Seitz
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Thomas Tu
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Agnese Restuccia
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jamie Frankish
- Research Group "Dynamics of early viral infection and the innate antiviral response", Division Virus-associated carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher Dächert
- Research Group "Dynamics of early viral infection and the innate antiviral response", Division Virus-associated carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benjamin Schusser
- Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Ronald Koschny
- Department of Gastroenterology, Infection and Intoxication, University Hospital Heidelberg, Heidelberg, Germany
| | - Georgios Polychronidis
- Department of General-, Visceral- and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schemmer
- Department of General-, Visceral- and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany; Division of Transplant Surgery, Medical University of Graz, Graz, Austria
| | - Katrin Hoffmann
- Department of General-, Visceral- and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Marco Binder
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; Research Group "Dynamics of early viral infection and the innate antiviral response", Division Virus-associated carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany; HBIGS graduate school, Heidelberg, Germany; German Centre for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
38
|
Liu H, Li F, Zhang X, Yu J, Wang J, Jia J, Yu X, Shen Z, Yuan Z, Zhang X, Zhang Z, Zhang X, Lu L, Li H, Lu M, Zhang J. Differentially Expressed Intrahepatic Genes Contribute to Control of Hepatitis B Virus Replication in the Inactive Carrier Phase. J Infect Dis 2018; 217:1044-1054. [PMID: 29300924 DOI: 10.1093/infdis/jix683] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/29/2017] [Indexed: 01/04/2023] Open
Affiliation(s)
- Hongyan Liu
- Departmentof Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Germany
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Fahong Li
- Departmentof Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyong Zhang
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Germany
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Jie Yu
- Departmentof Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinyu Wang
- Departmentof Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia Jia
- Shanghai Center of Bioinformatics and Biotechnology
| | - Xueping Yu
- Departmentof Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongliang Shen
- Departmentof Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College
| | - Xiaonan Zhang
- Department of Viral Hepatitis, Shanghai Public Health Clinical Center, Fudan University
| | - Zhanqing Zhang
- Department of Viral Hepatitis, Shanghai Public Health Clinical Center, Fudan University
| | - Xinxin Zhang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine
| | - Lungen Lu
- Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine
| | - Hai Li
- Department of Gastroenterology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Germany
| | - Jiming Zhang
- Departmentof Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College
| |
Collapse
|
39
|
Lim KH, Park ES, Kim DH, Cho KC, Kim KP, Park YK, Ahn SH, Park SH, Kim KH, Kim CW, Kang HS, Lee AR, Park S, Sim H, Won J, Seok K, You JS, Lee JH, Yi NJ, Lee KW, Suh KS, Seong BL, Kim KH. Suppression of interferon-mediated anti-HBV response by single CpG methylation in the 5'-UTR of TRIM22. Gut 2018; 67:166-178. [PMID: 28341749 DOI: 10.1136/gutjnl-2016-312742] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Interferons (IFNs) mediate direct antiviral activity. They play a crucial role in the early host immune response against viral infections. However, IFN therapy for HBV infection is less effective than for other viral infections. DESIGN We explored the cellular targets of HBV in response to IFNs using proteome-wide screening. RESULTS Using LC-MS/MS, we identified proteins downregulated and upregulated by IFN treatment in HBV X protein (HBx)-stable and control cells. We found several IFN-stimulated genes downregulated by HBx, including TRIM22, which is known as an antiretroviral protein. We demonstrated that HBx suppresses the transcription of TRIM22 through a single CpG methylation in its 5'-UTR, which further reduces the IFN regulatory factor-1 binding affinity, thereby suppressing the IFN-stimulated induction of TRIM22. CONCLUSIONS We verified our findings using a mouse model, primary human hepatocytes and human liver tissues. Our data elucidate a mechanism by which HBV evades the host innate immune system.
Collapse
Affiliation(s)
- Keo-Heun Lim
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Eun-Sook Park
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Doo Hyun Kim
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Kyung Cho Cho
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, Korea
| | - Yong Kwang Park
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Sung Hyun Ahn
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Seung Hwa Park
- Department of Anatomy, School of Medicine, Konkuk University, Seoul, Korea
| | - Kee-Hwan Kim
- Department of Surgery, Uijeongbu St Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Chang Wook Kim
- Department of Internal Medicine, Uijeongbu St Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Hong Seok Kang
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Ah Ram Lee
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Soree Park
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Heewoo Sim
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Juhee Won
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Kieun Seok
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Jueng Soo You
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, Korea
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Nam-Joon Yi
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Kwang-Woong Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung-Suk Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Kyun-Hwan Kim
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea.,KU Open Innovation Center, Konkuk University, Seoul, Korea.,Research Institute of Medical Sciences, Konkuk University, Seoul, Korea
| |
Collapse
|
40
|
Diab A, Foca A, Zoulim F, Durantel D, Andrisani O. The diverse functions of the hepatitis B core/capsid protein (HBc) in the viral life cycle: Implications for the development of HBc-targeting antivirals. Antiviral Res 2017; 149:211-220. [PMID: 29183719 DOI: 10.1016/j.antiviral.2017.11.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/08/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022]
Abstract
Virally encoded proteins have evolved to perform multiple functions, and the core protein (HBc) of the hepatitis B virus (HBV) is a perfect example. While HBc is the structural component of the viral nucleocapsid, additional novel functions for the nucleus-localized HBc have recently been described. These results extend for HBc, beyond its structural role, a regulatory function in the viral life cycle and potentially a role in pathogenesis. In this article, we review the diverse roles of HBc in HBV replication and pathogenesis, emphasizing how the unique structure of this protein is key to its various functions. We focus in particular on recent advances in understanding the significance of HBc phosphorylations, its interaction with host proteins and the role of HBc in regulating the transcription of host genes. We also briefly allude to the emerging niche for new direct-acting antivirals targeting HBc, known as Core (protein) Allosteric Modulators (CAMs).
Collapse
Affiliation(s)
- Ahmed Diab
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA; INSERM U1052, Cancer Research Center of Lyon (CRCL), Lyon, 69008, France; University of Lyon, Université Claude-Bernard (UCBL), UMR_S1052, UCBL, 69008, Lyon, France
| | - Adrien Foca
- INSERM U1052, Cancer Research Center of Lyon (CRCL), Lyon, 69008, France; University of Lyon, Université Claude-Bernard (UCBL), UMR_S1052, UCBL, 69008, Lyon, France
| | - Fabien Zoulim
- INSERM U1052, Cancer Research Center of Lyon (CRCL), Lyon, 69008, France; University of Lyon, Université Claude-Bernard (UCBL), UMR_S1052, UCBL, 69008, Lyon, France; Hepato-Gastroenterology Unit, Croix-Rousse Hospital, Hospices Civils de Lyon (HCL), 69002, Lyon, France; Labex DEVweCAN, 69008, Lyon, France
| | - David Durantel
- INSERM U1052, Cancer Research Center of Lyon (CRCL), Lyon, 69008, France; University of Lyon, Université Claude-Bernard (UCBL), UMR_S1052, UCBL, 69008, Lyon, France; Hepato-Gastroenterology Unit, Croix-Rousse Hospital, Hospices Civils de Lyon (HCL), 69002, Lyon, France.
| | - Ourania Andrisani
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
41
|
Altered expression of interferon-stimulated genes is strongly associated with therapeutic outcomes in hepatitis B virus infection. Antiviral Res 2017; 147:75-85. [DOI: 10.1016/j.antiviral.2017.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/28/2017] [Accepted: 10/05/2017] [Indexed: 12/11/2022]
|
42
|
Sengupta I, Das D, Singh SP, Chakravarty R, Das C. Host transcription factor Speckled 110 kDa (Sp110), a nuclear body protein, is hijacked by hepatitis B virus protein X for viral persistence. J Biol Chem 2017; 292:20379-20393. [PMID: 29046350 DOI: 10.1074/jbc.m117.796839] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/13/2017] [Indexed: 12/20/2022] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML-NB) are sub-nuclear organelles that are the hub of numerous proteins. DNA/RNA viruses often hijack the cellular factors resident in PML-NBs to promote their proliferation in host cells. Hepatitis B virus (HBV), belonging to Hepadnaviridae family, remains undetected in early infection as it does not induce the innate immune response and is known to be the cause of several hepatic diseases leading to cirrhosis and hepatocellular carcinoma. The association of PML-NB proteins and HBV is being addressed in a number of recent studies. Here, we report that the PML-NB protein Speckled 110 kDa (Sp110) is SUMO1-modified and undergoes a deSUMOylation-driven release from the PML-NB in the presence of HBV. Intriguingly, Sp110 knockdown significantly reduced viral DNA load in the culture supernatant by activation of the type I interferon-response pathway. Furthermore, we found that Sp110 differentially regulates several direct target genes of hepatitis B virus protein X (HBx), a viral co-factor. Subsequently, we identified Sp110 as a novel interactor of HBx and found this association to be essential for the exit of Sp110 from the PML-NB during HBV infection and HBx recruitment on the promoter of these genes. HBx, in turn, modulates the recruitment of its associated transcription cofactors p300/HDAC1 to these co-regulated genes, thereby altering the host gene expression program in favor of viral persistence. Thus, we report a mechanism by which HBV can evade host immune response by hijacking the PML-NB protein Sp110, and therefore, we propose it to be a novel target for antiviral therapy.
Collapse
Affiliation(s)
- Isha Sengupta
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata-700064
| | - Dipanwita Das
- the Indian Council of Medical Research (ICMR) Virus Unit, Kolkata, Infectious Diseases and Beliaghata General Hospital Campus, Kolkata 700010, and
| | - Shivaram Prasad Singh
- the Kalinga Gastroenterology Foundation, Beam Diagnostics Premises, Cuttack-753001, India
| | - Runu Chakravarty
- the Indian Council of Medical Research (ICMR) Virus Unit, Kolkata, Infectious Diseases and Beliaghata General Hospital Campus, Kolkata 700010, and
| | - Chandrima Das
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata-700064,
| |
Collapse
|
43
|
Ortega-Prieto AM, Dorner M. Immune Evasion Strategies during Chronic Hepatitis B and C Virus Infection. Vaccines (Basel) 2017; 5:E24. [PMID: 28862649 PMCID: PMC5620555 DOI: 10.3390/vaccines5030024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
Both hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are a major global healthcare problem with more than 240 million and 70 million infected, respectively. Both viruses persist within the liver and result in progressive liver disease, resulting in liver fibrosis, cirrhosis and hepatocellular carcinoma. Strikingly, this pathogenesis is largely driven by immune responses, unable to clear an established infection, rather than by the viral pathogens themselves. Even though disease progression is very similar in both infections, HBV and HCV have evolved distinct mechanisms, by which they ensure persistence within the host. Whereas HCV utilizes a cloak-and-dagger approach, disguising itself as a lipid-like particle and immediately crippling essential pattern-recognition pathways, HBV has long been considered a "stealth" virus, due to the complete absence of innate immune responses during infection. Recent developments and access to improved model systems, however, revealed that even though it is among the smallest human-tropic viruses, HBV may, in addition to evading host responses, employ subtle immune evasion mechanisms directed at ensuring viral persistence in the absence of host responses. In this review, we compare the different strategies of both viruses to ensure viral persistence by actively interfering with viral recognition and innate immune responses.
Collapse
Affiliation(s)
| | - Marcus Dorner
- Section of Virology, Department of Medicine, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
44
|
Secreted Interferon-Inducible Factors Restrict Hepatitis B and C Virus Entry In Vitro. J Immunol Res 2017; 2017:4828936. [PMID: 28367455 PMCID: PMC5358466 DOI: 10.1155/2017/4828936] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/24/2017] [Accepted: 02/06/2017] [Indexed: 02/06/2023] Open
Abstract
Interferon-α (IFN-α) has been used for more than 20 years as the first-line therapy for hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, because it has a number of antiviral effects. In this study, we describe a novel mode of its antiviral action. We demonstrate that the supernatant from IFN-α-treated cultured cells restricted HBV and HCV infection by inhibiting viral entry into hepatoma cells. The factors contained in the supernatant competed with the virus for binding to heparan glycosaminoglycans—the nonspecific attachment step shared by HBV and HCV. Secreted factors of high molecular mass that bind to heparin columns elicited the antiviral effect. In conclusion, IFN-α is able to induce soluble factors that can bind to heparan glycosaminoglycans thus leading to the inhibition of viral binding.
Collapse
|
45
|
Hamano Y, Kida H, Ihara S, Murakami A, Yanagawa M, Ueda K, Honda O, Tripathi LP, Arai T, Hirose M, Hamasaki T, Yano Y, Kimura T, Kato Y, Takamatsu H, Otsuka T, Minami T, Hirata H, Inoue K, Nagatomo I, Takeda Y, Mori M, Nishikawa H, Mizuguchi K, Kijima T, Kitaichi M, Tomiyama N, Inoue Y, Kumanogoh A. Classification of idiopathic interstitial pneumonias using anti-myxovirus resistance-protein 1 autoantibody. Sci Rep 2017; 7:43201. [PMID: 28230086 PMCID: PMC5322336 DOI: 10.1038/srep43201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/23/2017] [Indexed: 01/19/2023] Open
Abstract
Chronic fibrosing idiopathic interstitial pneumonia (IIP) can be divided into two main types: idiopathic pulmonary fibrosis (IPF), a steroid-resistant and progressive disease with a median survival of 2-3 years, and idiopathic non-specific interstitial pneumonia (INSIP), a steroid-sensitive and non-progressive autoimmune disease. Although the clinical courses of these two diseases differ, they may be difficult to distinguish at diagnosis. We performed a comprehensive analysis of serum autoantibodies from patients definitively diagnosed with IPF, INSIP, autoimmune pulmonary alveolar proteinosis, and sarcoidosis. We identified disease-specific autoantibodies and enriched KEGG pathways unique to each disease, and demonstrated that IPF and INSIP are serologically distinct. Furthermore, we discovered a new INSIP-specific autoantibody, anti-myxovirus resistance-1 (MX1) autoantibody. Patients positive for anti-MX1 autoantibody constituted 17.5% of all cases of chronic fibrosing IIPs. Notably, patients rarely simultaneously carried the anti-MX1 autoantibody and the anti-aminoacyl-transfer RNA synthetase autoantibody, which is common in chronic fibrosing IIPs. Because MX1 is one of the most important interferon-inducible anti-viral genes, we have not only identified a new diagnostic autoantibody of INSIP but also obtained new insight into the pathology of INSIP, which may be associated with viral infection and autoimmunity.
Collapse
Affiliation(s)
- Yoshimasa Hamano
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Hiroshi Kida
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
- AMED, CREST, Suita City, Osaka 565-0871, Japan
| | - Shoichi Ihara
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Akihiro Murakami
- Medical & Biological Laboratories Co., Ltd., Ina Laboratory, 1063-103 Terasawaoka, Ina City, Nagano 396-0002, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Ken Ueda
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Osamu Honda
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Lokesh P. Tripathi
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saitoasagi, Ibaraki City, Osaka 567-0085, Japan
| | - Toru Arai
- National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka 591-8555, Japan
| | - Masaki Hirose
- National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka 591-8555, Japan
| | - Toshimitsu Hamasaki
- Office of Biostatistics and Data Management, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita City, Osaka 565-8565, Japan
| | - Yukihiro Yano
- National Hospital Organization Toneyama National Hospital, 5-1-1 Toneyama, Toyonaka City, Osaka 560-8552, Japan
| | - Tetsuya Kimura
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka 3-1, Suita City, Osaka 565-0871, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
- AMED, CREST, Suita City, Osaka 565-0871, Japan
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka 3-1, Suita City, Osaka 565-0871, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
- AMED, CREST, Suita City, Osaka 565-0871, Japan
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka 3-1, Suita City, Osaka 565-0871, Japan
| | - Tomoyuki Otsuka
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
- AMED, CREST, Suita City, Osaka 565-0871, Japan
| | - Toshiyuki Minami
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
- AMED, CREST, Suita City, Osaka 565-0871, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
- AMED, CREST, Suita City, Osaka 565-0871, Japan
| | - Koji Inoue
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
- AMED, CREST, Suita City, Osaka 565-0871, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
- AMED, CREST, Suita City, Osaka 565-0871, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
- AMED, CREST, Suita City, Osaka 565-0871, Japan
| | - Masahide Mori
- National Hospital Organization Toneyama National Hospital, 5-1-1 Toneyama, Toyonaka City, Osaka 560-8552, Japan
| | - Hiroyoshi Nishikawa
- Department of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka 3-1, Suita City, Osaka 565-0871, Japan
| | - Kenji Mizuguchi
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saitoasagi, Ibaraki City, Osaka 567-0085, Japan
| | - Takashi Kijima
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
- AMED, CREST, Suita City, Osaka 565-0871, Japan
| | - Masanori Kitaichi
- National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka 591-8555, Japan
| | - Noriyuki Tomiyama
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Yoshikazu Inoue
- National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka 591-8555, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka 565-0871, Japan
- AMED, CREST, Suita City, Osaka 565-0871, Japan
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka 3-1, Suita City, Osaka 565-0871, Japan
| |
Collapse
|
46
|
Control of Hepatitis B Virus by Cytokines. Viruses 2017; 9:v9010018. [PMID: 28117695 PMCID: PMC5294987 DOI: 10.3390/v9010018] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection remains a major public health problem worldwide with more than 240 million individuals chronically infected. Current treatments can control HBV replication to a large extent, but cannot eliminate HBV infection. Cytokines have been shown to control HBV replication and contribute to HBV cure in different models. Cytokines play an important role in limiting acute HBV infection in patients and mediate a non-cytolytic clearance of the virus. In this review, we summarize the effects of cytokines and cytokine-induced cellular signaling pathways on different steps of the HBV life cycle, and discuss possible strategies that may contribute to the eradication of HBV through innate immune activation.
Collapse
|
47
|
Expression of Interferon Effector Gene SART1 Correlates with Interferon Treatment Response against Hepatitis B Infection. Mediators Inflamm 2016; 2016:3894816. [PMID: 28077916 PMCID: PMC5203921 DOI: 10.1155/2016/3894816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022] Open
Abstract
Interferon-α (IFN-α) has limited response rate in the treatment of chronic hepatitis B (CHB). The underlying mechanism of differential responsiveness to IFN remains elusive. It has been recently reported that SART1 mediates antiviral effects of IFN-α in the hepatitis C virus (HCV) cell culture model. In this study, we investigated the role of SART1 in antiviral activity of IFN-α against hepatitis B virus (HBV) using blood and liver biopsy samples from chronic hepatitis B patients treated with pegylated IFN-α and HepG2 cells transfected with cloned HBV DNA. We observed that the basal SART1 expression in liver and PBMCs before IFN treatment was significantly higher in responders than in nonresponders. Furthermore, baseline SART1 expression level positively correlated with the degree of HBV DNA and HBeAg decline after IFN treatment. Mechanistically, silencing SART1 abrogated the antiviral activity of IFN-α, reduced the expression of IFN-stimulated genes (ISGs) Mx, OAS, and PKR, and attenuated JAK-STAT signaling in HepG2 cells, suggesting that SART1 regulates IFN-mediated antiviral activity through JAK-STAT signaling and ISG expression. Our study elucidates the important role of SART1 in IFN-mediated anti-HBV response and provides new insights into understanding variation of IFN treatment response in CHB patients.
Collapse
|
48
|
Alfaiate D, Lucifora J, Abeywickrama-Samarakoon N, Michelet M, Testoni B, Cortay JC, Sureau C, Zoulim F, Dény P, Durantel D. HDV RNA replication is associated with HBV repression and interferon-stimulated genes induction in super-infected hepatocytes. Antiviral Res 2016; 136:19-31. [PMID: 27771387 DOI: 10.1016/j.antiviral.2016.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/18/2016] [Indexed: 12/14/2022]
Abstract
Hepatitis D virus (HDV) super-infection of Hepatitis B virus (HBV)-infected patients is the most aggressive form of viral hepatitis. HDV infection is not susceptible to direct anti-HBV drugs, and only suboptimal antiviral responses are obtained with interferon (IFN)-alpha-based therapy. To get insights on HDV replication and interplay with HBV in physiologically relevant hepatocytes, differentiated HepaRG (dHepaRG) cells, previously infected or not with HBV, were infected with HDV, and viral markers were extensively analyzed. Innate and IFN responses to HDV were monitored by measuring pro-inflammatory and interferon-stimulated gene (ISG) expression. Both mono- and super-infected dHepaRG cells supported a strong HDV intracellular replication, which was accompanied by a strong secretion of infectious HDV virions only in the super-infection setting and despite the low number of co-infected cells. Upon HDV super-infection, HBV replication markers including HBeAg, total HBV-DNA and pregenomic RNA were significantly decreased, confirming the interference of HDV on HBV. Yet, no decrease of circular covalently closed HBV DNA (cccDNA) and HBsAg levels was evidenced. At the peak of HDV-RNA accumulation and onset of interference on HBV replication, a strong type-I IFN response was observed, with interferon stimulated genes, RSAD2 (Viperin) and IFI78 (MxA) being highly induced. We established a cellular model to characterize in more detail the direct interference of HBV and HDV, and the indirect interplay between the two viruses via innate immune responses. This model will be instrumental to assess molecular and immunological mechanisms of this viral interference.
Collapse
Affiliation(s)
- Dulce Alfaiate
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France
| | - Julie Lucifora
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France.
| | - Natali Abeywickrama-Samarakoon
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France
| | - Maud Michelet
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France
| | - Jean-Claude Cortay
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France
| | - Camille Sureau
- Institut National de Transfusion Sanguine, Laboratoire de Virologie Moléculaire, 75015 Paris, France
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France; Laboratoire d'excellence (LabEx), DEVweCAN, 69008 Lyon, France; Hospices Civils de Lyon (HCL), 69002 Lyon, France
| | - Paul Dény
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; Université Paris 13/SPC, UFR SMBH, Laboratoire de Bactériologie, Virologie - Hygiène, GHU Paris Seine Saint Denis, Assistance Publique - Hôpitaux de Paris, Bobigny, France.
| | - David Durantel
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France; Laboratoire d'excellence (LabEx), DEVweCAN, 69008 Lyon, France.
| |
Collapse
|
49
|
Pumpens P, Grens E. The true story and advantages of the famous Hepatitis B virus core particles: Outlook 2016. Mol Biol 2016. [DOI: 10.1134/s0026893316040099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Abstract
Myxovirus resistance proteins represent a family of interferon-induced restriction factors of the innate and adaptive immune system. Human MxB acts as a novel restriction factor with antiviral activity against a range of HIV-1 and other retroviruses mainly by inhibiting the uncoating process after reverse transcription but prior to integration. Based on published data and conservation analysis, we propose a novel hypothesis, in which MxB dimers form higher order oligomers that restrict retroviral replication by binding to the viral capsid. Insights into the mechanistic basis of structural and functional characteristics of MxB will greatly advance our understanding of MxB.
Collapse
Affiliation(s)
- Jia Kong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,School of Life Sciences, Tianjin University, Tianjin 300072, China.,State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin 300071, China
| | - Min Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,School of Life Sciences, Tianjin University, Tianjin 300072, China.,State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin 300071, China
| | - Shuangyi He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,School of Life Sciences, Tianjin University, Tianjin 300072, China.,State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin 300071, China
| | - Xiaohong Qin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,School of Life Sciences, Tianjin University, Tianjin 300072, China.,State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin 300071, China
| |
Collapse
|