1
|
Li J, Zhong G, Hu F, Zhang Y, Ren X, Wang Z, Ma S, Zhu Q, Li J, Zeng S, Zhang Y, Wang T, Lin Q, Dong X, Zhai B. ASPH dysregulates cell death and induces chemoresistance in hepatocellular carcinoma. Cancer Lett 2024; 611:217396. [PMID: 39706251 DOI: 10.1016/j.canlet.2024.217396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/28/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Hepatocellular carcinoma (HCC) is resistant to multiple conventional drugs including sorafenib, leading to poor prognosis. Inducing cell death has been inextricably pursued in therapeutics, although targeted therapy and immunotherapy have made very limited progress. ASPH (Aspartate β-hydroxylase) can be breakthrough in meeting this unmet clinical need. In HCC, high expression of ASPH enhanced proliferation, migration and invasion. High levels of ASPH predicted worse clinical outcomes of sorafenib-treated HCC patients. Mechanistically, ASPH upregulated SQSTM1/P62 and SLC7A11-GPX4 axis, thereby promoting tumor cell autophagy but blocking ferroptosis. Sorafenib-induced enhancement of autophagy was attenuated by knockout (KO) of ASPH, resulting in sensitization of tumor cells to sorafenib. By silencing ASPH combined with sorafenib, senescence, apoptosis and ferroptosis were mediated, whereas proliferation, migration, invasion, tube formation and stemness were inhibited. As validated by in vivo murine models of HCC, ASPH promoted tumor growth, distant metastasis, and resistance to sorafenib. By contrast, KO ASPH combined with sorafenib effectively inhibited tumor development and progression, including intrahepatic, pulmonary, and splenic metastases. Targeting ASPH generated antitumor efficacy will pave the way for HCC therapy.
Collapse
Affiliation(s)
- Jingtao Li
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, PR China
| | - Guocai Zhong
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, PR China
| | - Fengli Hu
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, PR China
| | - Yingnan Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, PR China
| | - Xiaohang Ren
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, PR China
| | - Zongwen Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, PR China
| | - Shuoheng Ma
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, PR China
| | - Qiankun Zhu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, PR China
| | - Junwei Li
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, PR China
| | - Shicong Zeng
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, PR China
| | - Yao Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, PR China
| | - Ting Wang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, Henan Province, PR China
| | - Qiushi Lin
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, USA
| | - Xiaoqun Dong
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, USA.
| | - Bo Zhai
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, PR China.
| |
Collapse
|
2
|
Geng N, Fan M, Kuang B, Zhang F, Xian M, Deng L, Chen C, Pan Y, Chen J, Feng N, Liang L, Ye Y, Liu K, Li X, Du Y, Guo F. 10-hydroxy-2-decenoic acid prevents osteoarthritis by targeting aspartyl β hydroxylase and inhibiting chondrocyte senescence in male mice preclinically. Nat Commun 2024; 15:7712. [PMID: 39231947 PMCID: PMC11375154 DOI: 10.1038/s41467-024-51746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
Osteoarthritis is a degenerative joint disease with joint pain as the main symptom, caused by fibrosis and loss of articular cartilage. Due to the complexity and heterogeneity of osteoarthritis, there is a lack of effective individualized disease-modifying osteoarthritis drugs in clinical practice. Chondrocyte senescence is reported to participate in occurrence and progression of osteoarthritis. Here we show that small molecule 10-hydroxy-2-decenoic acid suppresses cartilage degeneration and relieves pain in the chondrocytes, cartilage explants from osteoarthritis patients, surgery-induced medial meniscus destabilization or naturally aged male mice. We further confirm that 10-hydroxy-2-decenoic acid exerts a protective effect by targeting the glycosylation site in the Asp_Arg_Hydrox domain of aspartyl β-hydroxylase. Mechanistically, 10-hydroxy-2-decenoic acid alleviate cellular senescence through the ERK/p53/p21 and GSK3β/p16 pathways in the chondrocytes. Our study uncovers that 10-hydroxy-2-decenoic acid modulate cartilage metabolism by targeting aspartyl β-hydroxylase to inhibit chondrocyte senescence in osteoarthritis. 10-hydroxy-2-decenoic acid may be a promising therapeutic drug against osteoarthritis.
Collapse
Affiliation(s)
- Nana Geng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Mengtian Fan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Biao Kuang
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengmei Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Menglin Xian
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lin Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Cheng Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiming Pan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Jianqiang Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Naibo Feng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Li Liang
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yuanlan Ye
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Kaiwen Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Xiaoli Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yu Du
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengjin Guo
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Ito Y, Yamada D, Kobayashi S, Sasaki K, Iwagami Y, Tomimaru Y, Asaoka T, Noda T, Takahashi H, Shimizu J, Doki Y, Eguchi H. The combination of gemcitabine plus an anti-FGFR inhibitor can have a synergistic antitumor effect on FGF-activating cholangiocarcinoma. Cancer Lett 2024; 595:216997. [PMID: 38801887 DOI: 10.1016/j.canlet.2024.216997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Anti-FGFR treatment for cholangiocarcinoma (CCA) with fibroblast growth factor receptor (FGFR) alteration is a promising treatment option. Since the antitumor mechanisms of anti-FGFR inhibitors and conventional cytotoxic drugs differ, synergistic effects can be possible. This study aimed to evaluate the efficacy of the combined administration of gemcitabine (GEM) and pemigatinib in CCA cells with FGFR2 alterations. To simulate the treatment for patients with 3 kinds of CCA, chemonaïve CCA with activation of the FGF pathway, chemo-resistant CCA with activation of the FGF pathway, and CCA without FGF pathway activation (as controls), we evaluated 3 different CCA cell lines, CCLP-1 (with a FGFR2 fusion mutation), CCLP-GR (GEM-resistant cells established from CCLP-1), and HuCCT1 (without FGFR mutations). There was no significant difference between CCLP-1 and HuCCT1 in GEM suspensibility (IC50 = 19.3, 22.6 mg/dl, p = 0.1187), and the drug sensitivity to pemigatinib did not differ between CCLP-1 and CCLP-GR (IC50 = 7.18,7.60 nM, p = 0.3089). Interestingly, only CCLP-1 showed a synergistic effect with combination therapy consisting of GEM plus pemigatinib in vitro and in vivo. In a comparison of the reaction to GEM exposure, only CCLP-1 cells showed an increase in the activation of downstream proteins in the FGF pathway, especially FRS2 and ERK. In association with this reaction, cell cycle and mitosis were increased with GEM exposure in CCLP-1, but HuCCT1/CCLP-GR did not show this reaction. Our results suggested that combination therapy with GEM plus pemigatinib is a promising treatment for chemonaïve patients with CCA with activation of the FGF pathway.
Collapse
MESH Headings
- Gemcitabine
- Humans
- Cholangiocarcinoma/drug therapy
- Cholangiocarcinoma/pathology
- Cholangiocarcinoma/genetics
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Deoxycytidine/administration & dosage
- Drug Synergism
- Animals
- Bile Duct Neoplasms/drug therapy
- Bile Duct Neoplasms/pathology
- Bile Duct Neoplasms/genetics
- Cell Line, Tumor
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Xenograft Model Antitumor Assays
- Pyrimidines/pharmacology
- Pyrimidines/administration & dosage
- Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Mice
- Cell Proliferation/drug effects
- Mice, Nude
- Signal Transduction/drug effects
- Fibroblast Growth Factors/metabolism
- Fibroblast Growth Factors/genetics
- Receptors, Fibroblast Growth Factor/antagonists & inhibitors
- Receptors, Fibroblast Growth Factor/metabolism
- Drug Resistance, Neoplasm/drug effects
- Protein Kinase Inhibitors/pharmacology
- Mutation
- Apoptosis/drug effects
- Morpholines
- Pyrroles
Collapse
Affiliation(s)
- Yoshiro Ito
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan.
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan.
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| | - Tadafumi Asaoka
- Department of Surgery, Osaka Police Hospital, 10-31 Kitayama-cho Tennoji-Ku, Osaka, 543-0035, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| | - Junzo Shimizu
- Department of Surgery, Toyonaka Municipal Hospital, 4-14-1 Shibahara-cho, Toyonaka, Osaka, 560-8565, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| |
Collapse
|
4
|
He N, Zhao W, Tian W, Wu Y, Xu J, Lu Y, Chen X, Zhao H. A cellular senescence-related signature for predicting prognosis, immunotherapy response, and candidate drugs in patients treated with transarterial chemoembolization (TACE). Discov Oncol 2024; 15:271. [PMID: 38976093 PMCID: PMC11231123 DOI: 10.1007/s12672-024-01116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/20/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Cellular senescence is essential to TME development, progression, and remodeling. Few studies have examined cellular senescence in HCC after TACE. Investigating the relationship between cellular senescence, post-TACE prognosis, the TME, and immune treatment responses is crucial. METHODS We analyzed the GSE104580 dataset to identify DEGs. A cellular senescence-related signature was developed using LASSO Cox regression in the GSE14520 dataset and validated in the ICGC dataset. High- and low-risk subgroups were compared using GSVA and GSEA. Correlation studies were conducted to explore the relationship between the prognostic model, immune infiltration, immunotherapy response, and drug sensitivity. RESULTS A cellular senescence-related signature comprising FOXM1, CDK1, CHEK1, and SERPINE1 was created and validated. High-risk patients showed significantly lower OS than low-risk patients. High-risk patients had carcinogenetic pathways activated, immunosuppressive cells infiltrated, and immunomodulatory genes overexpressed. They also showed higher sensitivity to EPZ004777_1237 and MK-2206_1053 and potential benefits from GSK-3 inhibitor IX, nortriptyline, lestaurtinib, and JNK-9L. CONCLUSIONS This study constructed a cellular senescence-related signature that could be used to predict HCC patients' responses to and prognosis after TACE treatment, aiding in the development of personalized treatment plans.
Collapse
Affiliation(s)
- Ning He
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenjing Zhao
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Wenlong Tian
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Ying Wu
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jian Xu
- Department of Oncology, The Second People's Hospital of Nantong, Nantong, China
| | - Yunyan Lu
- Department of Gynecology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Xudong Chen
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, China.
| | - Hui Zhao
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
5
|
Palaz F, Ozsoz M, Zarrinpar A, Sahin I. CRISPR in Targeted Therapy and Adoptive T Cell Immunotherapy for Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:975-995. [PMID: 38832119 PMCID: PMC11146628 DOI: 10.2147/jhc.s456683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Despite recent therapeutic advancements, outcomes for advanced hepatocellular carcinoma (HCC) remain unsatisfactory, highlighting the need for novel treatments. The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) gene-editing technology offers innovative treatment approaches, involving genetic manipulation of either cancer cells or adoptive T cells to combat HCC. This review comprehensively assesses the applications of CRISPR systems in HCC treatment, focusing on in vivo targeting of cancer cells and the development of chimeric antigen receptor (CAR) T cells and T cell receptor (TCR)-engineered T cells. We explore potential synergies between CRISPR-based cancer therapeutics and existing treatment options, discussing ongoing clinical trials and the role of CRISPR technology in improving HCC treatment outcomes with advanced safety measures. In summary, this review provides insights into the promising prospects and current challenges of using CRISPR technology in HCC treatment, with the ultimate goal of improving patient outcomes and revolutionizing the landscape of HCC therapeutics.
Collapse
Affiliation(s)
- Fahreddin Palaz
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Mehmet Ozsoz
- Department of Biomedical Engineering, Near East University, Nicosia, Turkey
| | - Ali Zarrinpar
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Ilyas Sahin
- University of Florida Health Cancer Center, Gainesville, FL, USA
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Kanwal M, Polakova I, Olsen M, Kasi MK, Tachezy R, Smahel M. Heterogeneous Response of Tumor Cell Lines to Inhibition of Aspartate β-hydroxylase. J Cancer 2024; 15:3466-3480. [PMID: 38817852 PMCID: PMC11134442 DOI: 10.7150/jca.94452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/14/2024] [Indexed: 06/01/2024] Open
Abstract
Background: Cancer development involves alterations in key cellular pathways, with aspartate β-hydroxylase (ASPH) emerging as an important player in tumorigenesis. ASPH is upregulated in various cancer types, where it promotes cancer progression mainly by regulating the Notch1 and SRC pathways. Methods: This study explored the responses of various human cervical, pharyngeal, and breast tumor cell lines to second- and third-generation ASPH inhibitors (MO-I-1151 and MO-I-1182) using proliferation, migration, and invasion assays; western blotting; and cell cycle analysis. Results: ASPH inhibition significantly reduced cell proliferation, migration, and invasion and disrupted both the canonical and noncanonical Notch1 pathways. The noncanonical pathway was particularly mediated by AKT signaling. Cell cycle analysis revealed a marked reduction in cyclin D1 expression, further confirming the inhibitory effect of ASPH inhibitors on cell proliferation. Additional analysis revealed G0/G1 arrest and restricted progression into S phase, highlighting the regulatory impact of ASPH inhibitors on the cell cycle. Furthermore, ASPH inhibition induced distinctive alterations in nuclear morphology. The high heterogeneity in the responses of individual tumor cell lines to ASPH inhibitors, both quantitatively and qualitatively, underscores the complex network of mechanisms that are regulated by ASPH and influence the efficacy of ASPH inhibition. The effects of ASPH inhibitors on Notch1 pathway activity, cyclin D1 expression, and nuclear morphology contribute to the understanding of the multifaceted effects of these inhibitors on cancer cell behavior. Conclusion: This study not only suggests that ASPH inhibitors are effective against tumor cell progression, in part through the induction of cell cycle arrest, but also highlights the diverse and heterogeneous effects of these inhibitors on the behavior of tumor cells of different origins.
Collapse
Affiliation(s)
- Madiha Kanwal
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ingrid Polakova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Mark Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy - Glendale, Midwestern University, Glendale, AZ, USA
| | - Murtaza Khan Kasi
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ruth Tachezy
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Michal Smahel
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
7
|
Damba T, Zhang M, Serna Salas SA, Wu Z, van Goor H, Arenas AF, Muñoz-Ortega MH, Ventura-Juárez J, Buist-Homan M, Moshage H. Inhibition of endogenous hydrogen sulfide production reduces activation of hepatic stellate cells via the induction of cellular senescence. Cell Cycle 2024; 23:629-644. [PMID: 38836592 PMCID: PMC11229775 DOI: 10.1080/15384101.2024.2345477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/04/2024] [Indexed: 06/06/2024] Open
Abstract
In chronic liver injury, quiescent hepatic stellate cells (HSCs) transdifferentiate into activated myofibroblast-like cells and produce large amounts of extracellular matrix components, e.g. collagen type 1. Cellular senescence is characterized by irreversible cell-cycle arrest, arrested cell proliferation and the acquisition of the senescence-associated secretory phenotype (SASP) and reversal of HSCs activation. Previous studies reported that H2S prevents induction of senescence via its antioxidant activity. We hypothesized that inhibition of endogenous H2S production induces cellular senescence and reduces activation of HSCs. Rat HSCs were isolated and culture-activated for 7 days. After activation, HSCs treated with H2S slow-releasing donor GYY4137 and/or DL-propargylglycine (DL-PAG), an inhibitor of the H2S-producing enzyme cystathionine γ-lyase (CTH), as well as the PI3K inhibitor LY294002. In our result, CTH expression was significantly increased in fully activated HSCs compared to quiescent HSCs and was also observed in activated stellate cells in a in vivo model of cirrhosis. Inhibition of CTH reduced proliferation and expression of fibrotic markers Col1a1 and Acta2 in HSCs. Concomitantly, DL-PAG increased the cell-cycle arrest markers Cdkn1a (p21), p53 and the SASP marker Il6. Additionally, the number of β-galactosidase positive senescent HSCs was increased. GYY4137 partially restored the proliferation of senescent HSCs and attenuated the DL-PAG-induced senescent phenotype. Inhibition of PI3K partially reversed the senescence phenotype of HSCs induced by DL-PAG. Inhibition of endogenous H2S production reduces HSCs activation via induction of cellular senescence in a PI3K-Akt dependent manner. Our results show that cell-specific inhibition of H2S could be a novel target for anti-fibrotic therapy via induced cell senescence.
Collapse
Affiliation(s)
- Turtushikh Damba
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Mengfan Zhang
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Sandra A Serna Salas
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Zongmei Wu
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Aaron Fierro Arenas
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Javier Ventura-Juárez
- Chemistry Department, Basic Sciences Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Oyama K, Iwagami Y, Kobayashi S, Sasaki K, Yamada D, Tomimaru Y, Noda T, Asaoka T, Takahashi H, Tanemura M, Doki Y, Eguchi H. Removal of gemcitabine-induced senescent cancer cells by targeting glutaminase1 improves the therapeutic effect in pancreatic ductal adenocarcinoma. Int J Cancer 2024; 154:912-925. [PMID: 37699232 DOI: 10.1002/ijc.34725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
Insufficient cancer treatment can induce senescent cancer cell formation and treatment resistance. The characteristics of induced senescent cancer (iSnCa) cells remain unclear. Pancreatic ductal adenocarcinoma (PDAC) has a low and nondurable response rate to current treatments. Our study aimed to analyze the properties of iSnCa cells and the relationship between cellular senescence and prognosis in PDAC. We evaluated the characteristics of gemcitabine-induced senescent cancer cells and the effect of senescence-associated secretory phenotype (SASP) factors released by iSnCa cells on surrounding PDAC cells. The relationship between cellular senescence and the prognosis was investigated in 50 patients with PDAC treated with gemcitabine-based neoadjuvant chemotherapy. Exposure to 5 ng/mL gemcitabine-induced senescence, decreased proliferation and increased senescence-associated β-galactosidase-cell staining without cell death in PDAC cells; the expression of glutaminase1 (GLS1) and SASP factors also increased and caused epithelial-mesenchymal transition in surrounding PDAC cells. iSnCa cells were selectively removed by the GLS1 inhibitor bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) through apoptosis induction. Cellular senescence was induced in PDAC cells via insufficient gemcitabine in subcutaneous tumor model mice. GLS1 expression was an independent prognostic factor in patients with PDAC who received gemcitabine-based neoadjuvant chemotherapy. This is the first study to identify the relationship between senescence and GLS1 in PDAC. Low-dose gemcitabine-induced senescence and increased GLS1 expression were observed in PDAC cells. Cellular senescence may contribute to treatment resistance of PDAC, hence targeting GLS1 in iSnCa cells may improve the therapeutic effect.
Collapse
Affiliation(s)
- Keisuke Oyama
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Surgery, Osaka Police Hospital, Osaka, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Surgery, Rinku General Medical Center, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Nagaoka K, Bai X, Liu D, Cao K, Mulla J, Ji C, Chen H, Nisar MA, Bay A, Mueller W, Hildebrand G, Gao JS, Lu S, Setoyama H, Tanaka Y, Wands JR, Huang CK. Elevated 2-oxoglutarate antagonizes DNA damage responses in cholangiocarcinoma chemotherapy through regulating aspartate beta-hydroxylase. Cancer Lett 2024; 580:216493. [PMID: 37977350 DOI: 10.1016/j.canlet.2023.216493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/22/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Cholangiocarcinoma (CCA) is resistant to systemic chemotherapies that kill malignant cells mainly through DNA damage responses (DDRs). Recent studies suggest that the involvement of 2-oxoglutarate (2-OG) dependent dioxygenases in DDRs may be associated with chemoresistance in malignancy, but how 2-OG impacts DDRs in CCA chemotherapy remains elusive. We examined serum 2-OG levels in CCA patients before receiving chemotherapy. CCA patients are classified as progressive disease (PD), partial response (PR), and stable disease (SD) after receiving chemotherapy. CCA patients classified as PD showed significantly higher serum 2-OG levels than those defined as SD and PR. Treating CCA cells with 2-OG reduced DDRs. Overexpression of full-length aspartate beta-hydroxylase (ASPH) could mimic the effects of 2-OG on DDRs, suggesting the important role of ASPH in chemoresistance. Indeed, the knockdown of ASPH improved chemotherapy in CCA cells. Targeting ASPH with a specific small molecule inhibitor also enhanced the effects of chemotherapy. Mechanistically, ASPH modulates DDRs by affecting ATM and ATR, two of the major regulators finely controlling DDRs. More importantly, targeting ASPH improved the therapeutic potential of chemotherapy in two preclinical CCA models. Our data suggested the impacts of elevated 2-OG and ASPH on chemoresistance through antagonizing DDRs. Targeting ASPH may enhance DDRs, improving chemotherapy in CCA patients.
Collapse
Affiliation(s)
- Katsuya Nagaoka
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA; Department of Gastroenterology & Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Xuewei Bai
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Dan Liu
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Kevin Cao
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Joud Mulla
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Chengcheng Ji
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Hongze Chen
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, LA, USA
| | - Muhammad Azhar Nisar
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, LA, USA
| | - Amalia Bay
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - William Mueller
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Grace Hildebrand
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Jin-Song Gao
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Shaolei Lu
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Hiroko Setoyama
- Department of Gastroenterology & Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology & Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jack R Wands
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Chiung-Kuei Huang
- Liver Research Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA; Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
10
|
Kanwal M, Smahelova J, Ciharova B, Johari SD, Nunvar J, Olsen M, Smahel M. Aspartate β-hydroxylase Regulates Expression of Ly6 Genes. J Cancer 2024; 15:1138-1152. [PMID: 38356711 PMCID: PMC10861829 DOI: 10.7150/jca.90422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/13/2023] [Indexed: 02/16/2024] Open
Abstract
Background: Overexpression of aspartate β-hydroxylase (ASPH) in human tumors contributes to their progression by stimulating cell proliferation, migration, and invasion. Several signaling pathways affected by ASPH have been identified, but the high number of potential targets of ASPH hydroxylation suggests that additional mechanisms may be involved. This study was performed to reveal new targets of ASPH signaling. Methods: The effect of ASPH on the oncogenicity of three mouse tumor cell lines was tested using proliferation assays, transwell assays, and spheroid invasion assays after inhibition of ASPH with the small molecule inhibitor MO-I-1151. ASPH was also deactivated with the CRISPR/Cas9 system. A transcriptomic analysis was then performed with bulk RNA sequencing and differential gene expression was evaluated. Expression data were verified by quantitative PCR and immunoblotting. Results: Inhibition or abrogation of ASPH reduced proliferation of the cell lines and their migration and invasiveness. Among the genes with differential expression in more than one cell line, two members of the lymphocyte antigen 6 (Ly6) family, Ly6a and Ly6c1, were found. Their downregulation was confirmed at the protein level by immunoblotting, which also showed their reduction after ASPH inhibition in other mouse cell lines. Reduced production of the Ly6D and Ly6K proteins was shown after ASPH inhibition in human tumor cell lines. Conclusions: Since increased expression of Ly6 genes is associated with the development and progression of both mouse and human tumors, these results suggest a novel mechanism of ASPH oncogenicity and support the utility of ASPH as a target for cancer therapy.
Collapse
Affiliation(s)
- Madiha Kanwal
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jana Smahelova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Barbora Ciharova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Shweta Dilip Johari
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jaroslav Nunvar
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Mark Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy - Glendale, Midwestern University, Glendale, AZ, USA
| | - Michal Smahel
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
11
|
Bartosh UI, Dome AS, Zhukova NV, Karitskaya PE, Stepanov GA. CRISPR/Cas9 as a New Antiviral Strategy for Treating Hepatitis Viral Infections. Int J Mol Sci 2023; 25:334. [PMID: 38203503 PMCID: PMC10779197 DOI: 10.3390/ijms25010334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatitis is an inflammatory liver disease primarily caused by hepatitis A (HAV), B (HBV), C (HCV), D (HDV), and E (HEV) viruses. The chronic forms of hepatitis resulting from HBV and HCV infections can progress to cirrhosis or hepatocellular carcinoma (HCC), while acute hepatitis can lead to acute liver failure, sometimes resulting in fatality. Viral hepatitis was responsible for over 1 million reported deaths annually. The treatment of hepatitis caused by viral infections currently involves the use of interferon-α (IFN-α), nucleoside inhibitors, and reverse transcriptase inhibitors (for HBV). However, these methods do not always lead to a complete cure for viral infections, and chronic forms of the disease pose significant treatment challenges. These facts underscore the urgent need to explore novel drug developments for the treatment of viral hepatitis. The discovery of the CRISPR/Cas9 system and the subsequent development of various modifications of this system have represented a groundbreaking advance in the quest for innovative strategies in the treatment of viral infections. This technology enables the targeted disruption of specific regions of the genome of infectious agents or the direct manipulation of cellular factors involved in viral replication by introducing a double-strand DNA break, which is targeted by guide RNA (spacer). This review provides a comprehensive summary of our current knowledge regarding the application of the CRISPR/Cas system in the regulation of viral infections caused by HAV, HBV, and HCV. It also highlights new strategies for drug development aimed at addressing both acute and chronic forms of viral hepatitis.
Collapse
Affiliation(s)
| | | | | | | | - Grigory A. Stepanov
- The Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; (U.I.B.); (A.S.D.); (N.V.Z.); (P.E.K.)
| |
Collapse
|
12
|
Fan WJ, Zhou MX, Wang DD, Jiang XX, Ding H. TMEM147 is a novel biomarker for diagnosis and prognosis of hepatocellular carcinoma. Genet Mol Biol 2023; 46:e20220323. [PMID: 37335919 DOI: 10.1590/1678-4685-gmb-2022-0323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/14/2023] [Indexed: 06/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver malignancy with high incidence and poor prognosis. Transmembrane protein 147 (TMEM147) has been implicated in the development of colon cancer. However, the role of TMEM147 in HCC remains unclear. In this study, data of 371 HCC tissues, 50 adjacent nontumor tissues, and 110 normal liver tissues were retrieved from the TCGA and GTEx databases. TMEM147 expression was found to be increased in HCC tissues. High expression of TMEM147 was related to poor prognosis, and TMEM147 was confirmed to be an independent prognostic factor for HCC patients. A receiver operating characteristics (ROC) analysis was performed and showed that the diagnostic efficacy of TMEM147 was significantly higher than that of AFP (0.908 versus 0.746, p < 0.001). Furthermore, TMEM147 promoted tumor immune infiltration, and macrophages were the immune cells that predominantly expressed TMEM147 in HCC. Further analysis revealed that TMEM147 mainly impacted the ribosome pathway, and CTCF, MLLT1, TGIF2, ZNF146, and ZNF580 were predicted to be the upstream transcription factors for TMEM147 in HCC. These results suggest that TMEM147 serves as a promising biomarker for diagnosis and prognosis and may potentially become a therapeutic target for HCC.
Collapse
Affiliation(s)
- Wen-Jie Fan
- The First Affiliated Hospital of Anhui Medical University, Department of Radiology, Hefei, Anhui Province, China
| | - Meng-Xi Zhou
- The First Affiliated Hospital of Anhui Medical University, Department of Radiology, Hefei, Anhui Province, China
| | - Di-Di Wang
- The First Affiliated Hospital of Anhui Medical University, Department of Gastroenterology, Hefei, Anhui Province, China
| | - Xin-Xin Jiang
- The First Clinical Medical College of Anhui Medical University, Hefei, Anhui Province, China
| | - Hao Ding
- The First Affiliated Hospital of Anhui Medical University, Department of Gastroenterology, Hefei, Anhui Province, China
| |
Collapse
|
13
|
Gan X, Li S, Wang Y, Du H, Hu Y, Xing X, Cheng X, Yan Y, Li Z. Aspartate β-Hydroxylase Serves as a Prognostic Biomarker for Neoadjuvant Chemotherapy in Gastric Cancer. Int J Mol Sci 2023; 24:ijms24065482. [PMID: 36982561 PMCID: PMC10053938 DOI: 10.3390/ijms24065482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Neoadjuvant chemotherapy (NACT) has been established as being an effective treatment for advanced gastric cancer (GC), while the predictive biomarker of NACT efficacy remains under investigation. Aspartate β-hydroxylase (ASPH) represents an attractive target which is a highly conserved transmembrane enzyme overexpressed in human GC, and participates in the malignant transformation by promoting tumor cell motility. Here, we evaluated the expression of ASPH by immunohistochemistry in 350 GC tissues (including samples for NACT) and found that ASPH expression was higher in patients undergoing NACT compared with patients without NACT pre-operation. The OS and PFS time of ASPH-intensely positive patients was significantly shorter than that of the negative patients in the NACT group, while the difference was not significant in patients without NACT. We showed that ASPH knockout enhanced the inhibitory effects of chemotherapeutic drugs on the cell proliferation, migration, and invasion in vitro and suppressed tumor progression in vivo. Co-immunoprecipitation revealed that ASPH might interact with LAPTM4B to perform chemotherapeutic drug resistance. Our results suggested that ASPH might serve as a candidate biomarker to predict prognosis and a novel therapeutic target for gastric cancer patients treated with neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Xuejun Gan
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
| | - Shen Li
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
| | - Yiding Wang
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
| | - Ying Hu
- Department of Biobank, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
| | - Xiaojing Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
- Department of Biobank, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
| | - Yan Yan
- Department of Endoscopy, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
- Correspondence: (Y.Y.); (Z.L.)
| | - Ziyu Li
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, China
- Correspondence: (Y.Y.); (Z.L.)
| |
Collapse
|
14
|
Chiu CH. CRISPR/Cas9 genetic screens in hepatocellular carcinoma gene discovery. CURRENT RESEARCH IN BIOTECHNOLOGY 2023; 5:100127. [DOI: 10.1016/j.crbiot.2023.100127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
15
|
Bioactive coumarin-derivative esculetin decreases hepatic stellate cell activation via induction of cellular senescence via the PI3K-Akt-GSK3β pathway. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Li R, Wang Q, She K, Lu F, Yang Y. CRISPR/Cas systems usher in a new era of disease treatment and diagnosis. MOLECULAR BIOMEDICINE 2022; 3:31. [PMID: 36239875 PMCID: PMC9560888 DOI: 10.1186/s43556-022-00095-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
The discovery and development of the CRISPR/Cas system is a milestone in precise medicine. CRISPR/Cas nucleases, base-editing (BE) and prime-editing (PE) are three genome editing technologies derived from CRISPR/Cas. In recent years, CRISPR-based genome editing technologies have created immense therapeutic potential with safe and efficient viral or non-viral delivery systems. Significant progress has been made in applying genome editing strategies to modify T cells and hematopoietic stem cells (HSCs) ex vivo and to treat a wide variety of diseases and disorders in vivo. Nevertheless, the clinical translation of this unique technology still faces many challenges, especially targeting, safety and delivery issues, which require further improvement and optimization. In addition, with the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), CRISPR-based molecular diagnosis has attracted extensive attention. Growing from the specific set of molecular biological discoveries to several active clinical trials, CRISPR/Cas systems offer the opportunity to create a cost-effective, portable and point-of-care diagnosis through nucleic acid screening of diseases. In this review, we describe the development, mechanisms and delivery systems of CRISPR-based genome editing and focus on clinical and preclinical studies of therapeutic CRISPR genome editing in disease treatment as well as its application prospects in therapeutics and molecular detection.
Collapse
Affiliation(s)
- Ruiting Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, China
| | - Qin Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, 610225, Sichuan, China
| | - Kaiqin She
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, China
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, China.
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Alkhaleefah FK, Rahmani AH, Khan AA. Current updates of CRISPR/Cas9-mediated genome editing and targeting within tumor cells: an innovative strategy of cancer management. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1257-1287. [PMID: 36209487 PMCID: PMC9759771 DOI: 10.1002/cac2.12366] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/19/2022] [Accepted: 09/21/2022] [Indexed: 01/25/2023]
Abstract
Clustered regularly interspaced short palindromic repeats-associated protein (CRISPR/Cas9), an adaptive microbial immune system, has been exploited as a robust, accurate, efficient and programmable method for genome targeting and editing. This innovative and revolutionary technique can play a significant role in animal modeling, in vivo genome therapy, engineered cell therapy, cancer diagnosis and treatment. The CRISPR/Cas9 endonuclease system targets a specific genomic locus by single guide RNA (sgRNA), forming a heteroduplex with target DNA. The Streptococcus pyogenes Cas9/sgRNA:DNA complex reveals a bilobed architecture with target recognition and nuclease lobes. CRISPR/Cas9 assembly can be hijacked, and its nanoformulation can be engineered as a delivery system for different clinical utilizations. However, the efficient and safe delivery of the CRISPR/Cas9 system to target tissues and cancer cells is very challenging, limiting its clinical utilization. Viral delivery strategies of this system may have many advantages, but disadvantages such as immune system stimulation, tumor promotion risk and small insertion size outweigh these advantages. Thus, there is a desperate need to develop an efficient non-viral physical delivery system based on simple nanoformulations. The delivery strategies of CRISPR/Cas9 by a nanoparticle-based system have shown tremendous potential, such as easy and large-scale production, combination therapy, large insertion size and efficient in vivo applications. This review aims to provide in-depth updates on Streptococcus pyogenic CRISPR/Cas9 structure and its mechanistic understanding. In addition, the advances in its nanoformulation-based delivery systems, including lipid-based, polymeric structures and rigid NPs coupled to special ligands such as aptamers, TAT peptides and cell-penetrating peptides, are discussed. Furthermore, the clinical applications in different cancers, clinical trials and future prospects of CRISPR/Cas9 delivery and genome targeting are also discussed.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | | | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health SciencesCollege of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| |
Collapse
|
18
|
Han F, Liu J, Chu H, Cao D, Wu J, Fu H, Guo A, Chen W, Xu Y, Cheng X, Zhang Y. Knockdown of NDUFC1 inhibits cell proliferation, migration, and invasion of hepatocellular carcinoma. Front Oncol 2022; 12:860084. [PMID: 36119539 PMCID: PMC9479186 DOI: 10.3389/fonc.2022.860084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 08/10/2022] [Indexed: 01/10/2023] Open
Abstract
Background NADH: ubiquinone oxidoreductase subunit C1(NDUFC1) encodes a subunit of the Complex I, which may support the structural stability of Complex I and assist in its biogenesis. The expression and functional roles of NDUFC1 in hepatocellular carcinoma (HCC) remain unknown. Result We knocked down the expression of NDUFC1 in HCC cell lines to explore the effects of NDUFC1 downregulation on HCC in vitro. MTT assay determined that downregulation of NDUFC1 significantly inhibited cell proliferation. Flow cytometry with (propidium iodide) PI staining indicated silencing of NDUFC1 arrested cell cycle of BEL-7404 cells at G2 phase and SK-HEP-1 cells at S/G2 phase. Annexin V-PI double staining and flow cytometric analysis showed that the downregulation of NDUFC1 significantly increased the population of apoptotic cells. Wound-healing assay and transwell assay indicated that the downregulation of NDUFC1 suppressed the migration and invasion of HCC cells. According to the detection of complex1 activity, we found that the activity of NDUFC1 silenced group decreased, whereas the content of ROS increased. Furthermore, combined with bioinformatics analysis of senescence-related genes, we found that the silence of NDUFC1 in HCC could induce senescence and inhibit autophagy. In addition, NDUFC1 could correlate positively with cancer-related pathways, among which the p53 pathways and the PI3K/Akt/mTOR pathways. Finally, NDUFC1 is high expression in HCC specimens. High NDUFC1 expression was associated with poor prognosis and was an independent risk factor for reduced overall survival (OS). Conclusions Our study indicated, for the first time, that NDUFC1 is an independent risk factor for the poor prognosis of HCC patients. NDUFC1 may promote tumor progression by inhibiting mitochondrial Complex I and up-regulating ROS through multiple cancer-related and senescence-related pathways of HCC, including p53 pathways and PI3K/Akt/mTOR pathways. We suppose that NDUFC1 might be a potential target for the mitochondrial metabolism therapy of HCC.
Collapse
Affiliation(s)
- Fang Han
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Junwei Liu
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hongwu Chu
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Medicine, Qingdao University, Qingdao, China
| | - Dan Cao
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Jia Wu
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Hong Fu
- Hepatobiliary and Pancreatic Surgery Dept., Shaoxing Peoples’s Hospital, Shaoxing, China
| | - Anyang Guo
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Weiqin Chen
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yingping Xu
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiangdong Cheng
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yuhua Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- *Correspondence: Yuhua Zhang,
| |
Collapse
|
19
|
Mitsufuji S, Iwagami Y, Kobayashi S, Sasaki K, Yamada D, Tomimaru Y, Akita H, Asaoka T, Noda T, Gotoh K, Takahashi H, Tanemura M, Doki Y, Eguchi H. Inhibition of Clusterin Represses Proliferation by Inducing Cellular Senescence in Pancreatic Cancer. Ann Surg Oncol 2022; 29:4937-4946. [PMID: 35397747 DOI: 10.1245/s10434-022-11668-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/11/2022] [Indexed: 12/17/2023]
Abstract
BACKGROUND The outcome of pancreatic ductal adenocarcinoma (PDAC) is unsatisfactory, and the identification of novel therapeutic targets is urgently needed. Clinical studies on the antisense oligonucleotide that targets clusterin (CLU) expression have been conducted and have shown efficacy in other cancers. We aimed to investigate the effects of CLU in PDAC and the underlying mechanisms with a view to the clinical application of existing drugs. METHODS We knocked down CLU in PDAC cells and evaluated changes in cell proliferation. To elucidate the mechanism responsible for these changes, we performed western blot analysis, cell cycle assay, and senescence-associated β-galactosidase (SA-β-gal) staining. To evaluate the clinical significance of CLU, immunohistochemistry was performed, and CLU expression was analyzed in specimens resected from PDAC patients not treated with preoperative chemotherapy. RESULTS Knockdown of CLU significantly decreased cell proliferation and did not induce apoptosis, but did induce cellular senescence by increasing the percentage of G1-phase and SA-β-gal staining-positive cells. A marker of DNA damage such as γH2AX and factors related to cellular senescence, such as p21 and the senescence-associated secretory phenotype, were upregulated by knockdown of CLU. CLU expression in resected PDAC specimens was located in the cytoplasm of tumor cells and revealed significantly better recurrence-free survival and overall survival in the CLU-low group than in the CLU-high group. CONCLUSIONS We identified that CLU inhibition leads to cellular senescence in PDAC. Our findings suggest that CLU is a novel therapeutic target that contributes to the prognosis of PDAC by inducing cellular senescence.
Collapse
Affiliation(s)
- Suguru Mitsufuji
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
20
|
Wang Q, Fang Q, Huang Y, Zhou J, Liu M. Identification of a novel prognostic signature for HCC and analysis of costimulatory molecule-related lncRNA AC099850.3. Sci Rep 2022; 12:9954. [PMID: 35705628 PMCID: PMC9200812 DOI: 10.1038/s41598-022-13792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
Costimulatory molecules are involved in initiation of anti-tumor immune responses while long non‐coding RNAs (lncRNAs) regulate the development of various cancers. However, the roles of lncRNA in hepatocellular carcinoma (HCC) have not been fully established. In this study, we aimed at identifying lncRNAs-related costimulatory molecules in HCC and to construct a prognostic signature for predicting the clinical outcomes for HCC patients. Data were downloaded from The Cancer Genome Atlas database for bioinformatics analyses. Costimulatory molecules were obtained from published literature. The R software, SPSS, and GraphPad Prism were used for statistical analyses. A risk model that is based on five costimulatory molecule-related lncRNAs was constructed using lasso and Cox regression analyses. Multivariate regression analysis revealed that the risk score could predict the prognostic outcomes for HCC. Samples in high- and low-risk groups exhibited significant differences in gene set enrichment and immune infiltration levels. Through colony formation and CCK8 assays, we found that AC099850.3 was strongly associated with HCC cell proliferation. We identified and validated a novel costimulatory molecule-related survival model. In addition, AC099850.3 was found to be closely associated with clinical stages and proliferation of HCC cells, making it a potential target for HCC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Histology and Embryology, Anhui Medical College, Hefei, 230601, Anhui, China
| | - Qiong Fang
- Department of Histology and Embryology, Anhui Medical College, Hefei, 230601, Anhui, China
| | - Yanping Huang
- Department of Histology and Embryology, Anhui Medical College, Hefei, 230601, Anhui, China
| | - Jin Zhou
- Department of Histology and Embryology, Anhui Medical College, Hefei, 230601, Anhui, China
| | - Meimei Liu
- Department of Histology and Embryology, Anhui Medical College, Hefei, 230601, Anhui, China.
| |
Collapse
|
21
|
Bai X, Zhou Y, Yokota Y, Matsumoto Y, Zhai B, Maarouf N, Hayashi H, Carlson R, Zhang S, Sousa A, Sun B, Ghanbari H, Dong X, Wands JR. Adaptive antitumor immune response stimulated by bio-nanoparticle based vaccine and checkpoint blockade. J Exp Clin Cancer Res 2022; 41:132. [PMID: 35392977 PMCID: PMC8991500 DOI: 10.1186/s13046-022-02307-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/01/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Interactions between tumor and microenvironment determine individual response to immunotherapy. Triple negative breast cancer (TNBC) and hepatocellular carcinoma (HCC) have exhibited suboptimal responses to immune checkpoint inhibitors (ICIs). Aspartate β-hydroxylase (ASPH), an oncofetal protein and tumor associated antigen (TAA), is a potential target for immunotherapy. METHODS Subcutaneous HCC and orthotopic TNBC murine models were established in immunocompetent BALB/c mice with injection of BNL-T3 and 4 T1 cells, respectively. Immunohistochemistry, immunofluorescence, H&E, flow cytometry, ELISA and in vitro cytotoxicity assays were performed. RESULTS The ASPH-MYC signaling cascade upregulates PD-L1 expression on breast and liver tumor cells. A bio-nanoparticle based λ phage vaccine targeting ASPH was administrated to mice harboring syngeneic HCC or TNBC tumors, either alone or in combination with PD-1 blockade. In control, autocrine chemokine ligand 13 (CXCL13)-C-X-C chemokine receptor type 5 (CXCR5) axis promoted tumor development and progression in HCC and TNBC. Interactions between PD-L1+ cancer cells and PD-1+ T cells resulted in T cell exhaustion and apoptosis, causing immune evasion of cancer cells. In contrast, combination therapy (Vaccine+PD-1 inhibitor) significantly suppressed primary hepatic or mammary tumor growth (with distant pulmonary metastases in TNBC). Adaptive immune responses were attributed to expansion of activated CD4+ T helper type 1 (Th1)/CD8+ cytotoxic T cells (CTLs) that displayed enhanced effector functions, and maturation of plasma cells that secreted high titers of ASPH-specific antibody. Combination therapy significantly reduced tumor infiltration of immunosuppressive CD4+/CD25+/FOXP3+ Tregs. When the PD-1/PD-L1 signal was inhibited, CXCL13 produced by ASPH+ cancer cells recruited CXCR5+/CD8+ T lymphocytes to tertiary lymphoid structures (TLSs), comprising effector and memory CTLs, T follicular helper cells, B cell germinal center, and follicular dendritic cells. TLSs facilitate activation and maturation of DCs and actively recruit immune subsets to tumor microenvironment. These CTLs secreted CXCL13 to recruit more CXCR5+ immune cells and to lyse CXCR5+ cancer cells. Upon combination treatment, formation of TLSs predicts sensitivity to ICI blockade. Combination therapy substantially prolonged overall survival of mice with HCC or TNBC. CONCLUSIONS Synergistic antitumor efficacy attributable to a λ phage vaccine specifically targeting ASPH, an ideal TAA, combined with ICIs, inhibits tumor growth and progression of TNBC and HCC.
Collapse
Affiliation(s)
- Xuewei Bai
- Liver Research Center, Rhode Island Hospital, Department of Medicine, The Warren Alpert Medical School of Brown University, RI, 02903, Providence, USA
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yanmei Zhou
- Liver Research Center, Rhode Island Hospital, Department of Medicine, The Warren Alpert Medical School of Brown University, RI, 02903, Providence, USA
- Department of Anesthesiology, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yuki Yokota
- Liver Research Center, Rhode Island Hospital, Department of Medicine, The Warren Alpert Medical School of Brown University, RI, 02903, Providence, USA
| | - Yoshihiro Matsumoto
- Liver Research Center, Rhode Island Hospital, Department of Medicine, The Warren Alpert Medical School of Brown University, RI, 02903, Providence, USA
| | - Bo Zhai
- Liver Research Center, Rhode Island Hospital, Department of Medicine, The Warren Alpert Medical School of Brown University, RI, 02903, Providence, USA
- Department of Surgical Oncology and Hepatobiliary Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Nader Maarouf
- Liver Research Center, Rhode Island Hospital, Department of Medicine, The Warren Alpert Medical School of Brown University, RI, 02903, Providence, USA
| | - Hikaru Hayashi
- Liver Research Center, Rhode Island Hospital, Department of Medicine, The Warren Alpert Medical School of Brown University, RI, 02903, Providence, USA
| | - Rolf Carlson
- Liver Research Center, Rhode Island Hospital, Department of Medicine, The Warren Alpert Medical School of Brown University, RI, 02903, Providence, USA
| | - Songhua Zhang
- Liver Research Center, Rhode Island Hospital, Department of Medicine, The Warren Alpert Medical School of Brown University, RI, 02903, Providence, USA
| | - Aryanna Sousa
- Liver Research Center, Rhode Island Hospital, Department of Medicine, The Warren Alpert Medical School of Brown University, RI, 02903, Providence, USA
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Hossein Ghanbari
- Currently at Athanor Biosciences Inc., Halethorpe, MD, 21227, USA
| | - Xiaoqun Dong
- Liver Research Center, Rhode Island Hospital, Department of Medicine, The Warren Alpert Medical School of Brown University, RI, 02903, Providence, USA.
| | - Jack R Wands
- Liver Research Center, Rhode Island Hospital, Department of Medicine, The Warren Alpert Medical School of Brown University, RI, 02903, Providence, USA.
| |
Collapse
|
22
|
Prp19 Facilitated p21-Dependent Senescence of Hepatocellular Carcinoma Cells. JOURNAL OF ONCOLOGY 2022; 2022:5705896. [PMID: 35356253 PMCID: PMC8959953 DOI: 10.1155/2022/5705896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/19/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022]
Abstract
Introduction Evidence suggests that the role of senescence in the development of cancer is context-dependent. An orthologue of human pre-mRNA processing factor 19 (Prp19) attenuates the senescence of human endothelial cells. Prp19 has been reported to be involved in the progression of hepatocellular carcinoma (HCC). This work aims to investigate the effect of Prp19 on the senescence of HCC. Materials and Methods Senescence of L02 cells and HCC cells under different stimuli was detected through cell cycle analysis, SA-β-gal staining, and senescence associated secretory phenotype analysis. The relationship between Prp19 and senescence-related proteins was evaluated using real-time RT-PCR, western blot assay, and immunohistochemistry. Subcutaneous xenograft tumors in nude mice were used to evaluate the role of Prp19 on senescence in vivo. Data analysis was carried out using GraphPad Prism 6. Results Prp19 facilitated the senescence of L02 cells and HCC cells under different stresses. Prp19 positively modulated p21 expression in the mRNA level. Downregulation of Prp19 promoted the growth of subcutaneous xenograft tumors generated by HCC cell lines. Conclusions Prp19 may promote senescence of HCC cells via regulating p21 expression.
Collapse
|
23
|
Holtzman NG, Lebowitz MS, Koka R, Baer MR, Malhotra K, Shahlaee A, Ghanbari HA, Bentzen SM, Emadi A. Aspartate β-Hydroxylase (ASPH) Expression in Acute Myeloid Leukemia: A Potential Novel Therapeutic Target. Front Oncol 2022; 11:783744. [PMID: 35004304 PMCID: PMC8727599 DOI: 10.3389/fonc.2021.783744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
Background Aspartate β-hydroxylase (ASPH) is an embryonic transmembrane protein aberrantly upregulated in cancer cells, associated with malignant transformation and, in some reports, with poor clinical prognosis. Objective To report the expression patterns of ASPH in acute myeloid leukemia (AML). Methods Cell surface expression of ASPH was measured via 8-color multiparameter flow cytometry in 41 AML patient samples (31 bone marrow, 10 blood) using fluorescein isothiocyanate (FITC)-conjugated anti-ASPH antibody, SNS-622. A mean fluorescent intensity (MFI) of 10 was used as a cutoff for ASPH surface expression positivity. Data regarding patient and disease characteristics were collected. Results ASPH surface expression was found on AML blasts in 16 samples (39%). Higher ASPH expression was seen in myeloblasts of African American patients (p=0.02), but no correlation was found between ASPH expression and other patient or disease characteristics. No association was found between ASPH status and CR rate (p=0.53), EFS (p=0.87), or OS (p=0.17). Conclusions ASPH is expressed on blasts in approximately 40% of AML cases, and may serve as a new therapeutically targetable leukemia-associated antigen.
Collapse
Affiliation(s)
- Noa G Holtzman
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Rima Koka
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Maria R Baer
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kanam Malhotra
- Sensei Biotherapeutics Inc., Gaithersburg, MD, United States
| | - Amir Shahlaee
- Sensei Biotherapeutics Inc., Gaithersburg, MD, United States
| | | | - Søren M Bentzen
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Epidemiology and Biostatistics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ashkan Emadi
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
24
|
Zhou Q, Lin J, Yan Y, Meng S, Liao H, Chen R, He G, Zhu Y, He C, Mao K, Wang J, Zhang J, Zhou Z, Xiao Z. INPP5F translocates into cytoplasm and interacts with ASPH to promote tumor growth in hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:13. [PMID: 34996491 PMCID: PMC8740451 DOI: 10.1186/s13046-021-02216-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Increasing evidence has suggested inositol polyphosphate 5-phosphatase family contributes to tumorigenesis and tumor progression. However, the role of INPP5F in hepatocellular carcinoma (HCC) and its underlying mechanisms is unclear. Methods The expression of INPP5F in HCC was analyzed in public databases and our clinical specimens. The biological functions of INPP5F were investigated in vitro and vivo. The molecular mechanism of INPP5F in regulating tumor growth were studied by transcriptome-sequencing analysis, mass spectrometry analysis, immunoprecipitation assay and immunofluorescence assay. Results High expression of INPP5F was found in HCC tissues and was associated with poor prognosis in HCC patients. Overexpression of INPP5F promoted HCC cell proliferation, and vice versa. Knockdown of INPP5F suppressed tumor growth in vivo. Results from transcriptome-sequencing analysis showed INPP5F not only regulated a series of cell cycle related genes expression (c-MYC and cyclin E1), but also promoted many aerobic glycolysis related genes expression. Further studies confirmed that INPP5F could enhance lactate production and glucose consumption in HCC cell. Mechanistically, INPP5F activated Notch signaling pathway and upregulated c-MYC and cyclin E1 in HCC via interacting with ASPH. Interestingly, INPP5F was commonly nuclear-located in cells of adjacent non-tumor tissues, while in HCC, cytoplasm-located was more common. LMB (nuclear export inhibitor) treatment restricted INPP5F in nucleus and was associated with inhibition of Notch signaling and cell proliferation. Sequence of nuclear localization signals (NLSs) and nuclear export signals (NESs) in INPP5F aminoacidic sequence were then identified. Alteration of the NLSs or NESs influenced the localization of INPP5F and the expression of its downstream molecules. Furthermore, we found INPP5F interacted with both exportin and importin through NESs and NLSs, respectively, but the interaction with exportin was stronger, leading to cytoplasmic localization of INPP5F in HCC. Conclusion These findings indicate that INPP5F functions as an oncogene in HCC via a translocation mechanism and activating ASPH-mediated Notch signaling pathway. INPP5F may serve as a potential therapeutic target for HCC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02216-x.
Collapse
Affiliation(s)
- Qianlei Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jianhong Lin
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shiyu Meng
- Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hao Liao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ruibin Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Gui He
- Cellular & Molecular Diagnostics Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yue Zhu
- Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Chuanchao He
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kai Mao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jianlong Zhang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Guangdong Province Key laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
25
|
Jefremow A, Neurath MF, Waldner MJ. CRISPR/Cas9 in Gastrointestinal Malignancies. Front Cell Dev Biol 2021; 9:727217. [PMID: 34912798 PMCID: PMC8667614 DOI: 10.3389/fcell.2021.727217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/28/2021] [Indexed: 12/27/2022] Open
Abstract
Gastrointestinal (GI) cancers such as colorectal cancer (CRC), gastric cancer (GC), esophageal cancer (EG), pancreatic duct adenocarcinoma (PDAC) or hepatocellular cancer (HCC) belong to the most commonly diagnosed types of cancer and are among the most frequent causes of cancer related death worldwide. Most types of GI cancer develop in a stepwise fashion with the occurrence of various driver mutations during tumor progression. Understanding the precise function of mutations driving GI cancer development has been regarded as a prerequisite for an improved clinical management of GI malignancies. During recent years, CRISPR/Cas9 has developed into a powerful tool for genome editing in cancer research by knocking in and knocking out even multiple genes at the same time. Within this review, we discuss recent applications for CRISPR/Cas9-based genome editing in GI cancer research including CRC, GC, EG, PDAC and HCC. These applications include functional studies of candidate genes in cancer cell lines or organoids in vitro as well as in murine cancer models in vivo, library screening for the identification of previously unknown driver mutations and even gene therapy of GI cancers.
Collapse
Affiliation(s)
- André Jefremow
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian J Waldner
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
26
|
Kong H, Ju E, Yi K, Xu W, Lao Y, Cheng D, Zhang Q, Tao Y, Li M, Ding J. Advanced Nanotheranostics of CRISPR/Cas for Viral Hepatitis and Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102051. [PMID: 34665528 PMCID: PMC8693080 DOI: 10.1002/advs.202102051] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/25/2021] [Indexed: 05/08/2023]
Abstract
Liver disease, particularly viral hepatitis and hepatocellular carcinoma (HCC), is a global healthcare burden and leads to more than 2 million deaths per year worldwide. Despite some success in diagnosis and vaccine development, there are still unmet needs to improve diagnostics and therapeutics for viral hepatitis and HCC. The emerging clustered regularly interspaced short palindromic repeat/associated proteins (CRISPR/Cas) technology may open up a unique avenue to tackle these two diseases at the genetic level in a precise manner. Especially, liver is a more accessible organ over others from the delivery point of view, and many advanced strategies applied for nanotheranostics can be adapted in CRISPR-mediated diagnostics or liver gene editing. In this review, the focus is on these two aspects of viral hepatitis and HCC applications. An overview on CRISPR editor development and current progress in clinical trials is first given, followed by highlighting the recent advances integrating the merits of gene editing and nanotheranostics. The promising systems that are used in other applications but may hold potentials in liver gene editing are also discussed. This review concludes with the perspectives on rationally designing the next-generation CRISPR approaches and improving the editing performance.
Collapse
Affiliation(s)
- Huimin Kong
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Ke Yi
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Yeh‐Hsing Lao
- Department of Biomedical EngineeringColumbia University3960 Broadway Lasker Room 450New YorkNY10032USA
| | - Du Cheng
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen University135 Xingangxi RoadGuangzhou510275P. R. China
| | - Qi Zhang
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease Research600 Tianhe RoadGuangzhou510630P. R. China
| | - Yu Tao
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease Research600 Tianhe RoadGuangzhou510630P. R. China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
27
|
Glycolysis-related gene expression profiling serves as a novel prognosis risk predictor for human hepatocellular carcinoma. Sci Rep 2021; 11:18875. [PMID: 34556750 PMCID: PMC8460833 DOI: 10.1038/s41598-021-98381-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic pattern reconstruction is an important factor in tumor progression. Metabolism of tumor cells is characterized by abnormal increase in anaerobic glycolysis, regardless of high oxygen concentration, resulting in a significant accumulation of energy from glucose sources. These changes promotes rapid cell proliferation and tumor growth, which is further referenced a process known as the Warburg effect. The current study reconstructed the metabolic pattern in progression of cancer to identify genetic changes specific in cancer cells. A total of 12 common types of solid tumors were included in the current study. Gene set enrichment analysis (GSEA) was performed to analyze 9 glycolysis-related gene sets, which are implicated in the glycolysis process. Univariate and multivariate analyses were used to identify independent prognostic variables for construction of a nomogram based on clinicopathological characteristics and a glycolysis-related gene prognostic index (GRGPI). The prognostic model based on glycolysis genes showed high area under the curve (AUC) in LIHC (Liver hepatocellular carcinoma). The findings of the current study showed that 8 genes (AURKA, CDK1, CENPA, DEPDC1, HMMR, KIF20A, PFKFB4, STMN1) were correlated with overall survival (OS) and recurrence-free survival (RFS). Further analysis showed that the prediction model accurately distinguished between high- and low-risk cancer patients among patients in different clusters in LIHC. A nomogram with a well-fitted calibration curve based on gene expression profiles and clinical characteristics showed good discrimination based on internal and external cohorts. These findings indicate that changes in expression level of metabolic genes implicated in glycolysis can contribute to reconstruction of tumor-related microenvironment.
Collapse
|
28
|
Wang MJ, Chen JJ, Song SH, Su J, Zhao LH, Liu QG, Yang T, Chen Z, Liu C, Fu ZR, Hu YP, Chen F. Inhibition of SIRT1 Limits Self-Renewal and Oncogenesis by Inducing Senescence of Liver Cancer Stem Cells. J Hepatocell Carcinoma 2021; 8:685-699. [PMID: 34235106 PMCID: PMC8254544 DOI: 10.2147/jhc.s296234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/02/2021] [Indexed: 01/07/2023] Open
Abstract
Purpose Cancer stem cells (CSCs) have been considered involving in tumorigenesis, local recurrence, and therapeutic drug resistance of hepatocellular carcinoma (HCC). To investigate novel and effective methods for targeting hepatic CSCs is crucial for a permanent cure of liver cancer. Methods The expression level of SIRT1 was detected in CSCs of HCC tissues and cancer cell lines. Expression of CSC markers, the self-renewal and tumorigenic ability of liver CSCs were analyzed with SIRT1 inhibition. Cellular senescence-related markers were used to detect CSCs senescence after inhibition of SIRT1. Results SIRT1 was highly expressed in CSCs of HCC cell lines and human HCC tissues. In vitro study revealed that decreasing of SIRT1 level significantly downregulated the stemness-associated genes of liver CSCs and reduced the CSC stemness properties. Also, downregulated SIRT1 suppressed liver CSCs proliferation by decreasing their self-renewal abilities. Furthermore, CSCs with decreased SIRT1 expression showed limited tumorigenicity and formed smaller HCC tumor in vivo. And SIRT1 decreased CSCs became more susceptible to chemotherapeutic drugs. Mechanistically, SIRT1 decreased CSCs became senescence through the activation of p53-p21 and p16 pathway. The data further indicated that the tumor formed from SIRT1-knockdown CSCs exhibited higher senescence-associated β-galactosidase (SA-β-Gal) activity but lower proliferative capacity. Conclusion Taken together, these findings pointed that induction of senescence in liver CSCs is an effective tumor suppression method for HCC, and SIRT1 may be served as a promising target for HCC treatment.
Collapse
Affiliation(s)
- Min-Jun Wang
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University (Navy Medical University), Shanghai, People's Republic of China
| | - Jia-Jia Chen
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University (Navy Medical University), Shanghai, People's Republic of China
| | - Shao-Hua Song
- Department of General Surgery, Liver Transplantation Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Jing Su
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University (Navy Medical University), Shanghai, People's Republic of China
| | - Ling-Hao Zhao
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Qing-Gui Liu
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University (Navy Medical University), Shanghai, People's Republic of China
| | - Tao Yang
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University (Navy Medical University), Shanghai, People's Republic of China
| | - Zhiwen Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Chang Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Zhi-Ren Fu
- Department of General Surgery, Liver Transplantation Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yi-Ping Hu
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University (Navy Medical University), Shanghai, People's Republic of China
| | - Fei Chen
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University (Navy Medical University), Shanghai, People's Republic of China
| |
Collapse
|
29
|
Lin Q, Chen X, Meng F, Ogawa K, Li M, Song R, Zhang S, Zhang Z, Kong X, Xu Q, He F, Liu D, Bai X, Sun B, Hung MC, Liu L, Wands JR, Dong X. Multi-organ metastasis as destination for breast cancer cells guided by biomechanical architecture. Am J Cancer Res 2021; 11:2537-2567. [PMID: 34249415 PMCID: PMC8263653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/25/2021] [Indexed: 06/13/2023] Open
Abstract
A majority of breast cancer patients die of widespread aggressive multidrug-resistant tumors. Aspartate β-hydroxylase (ASPH) is an α-ketoglutarate-dependent dioxygenase and oncofetal antigen involved in embryogenesis. To illustrate if ASPH could be targeted for metastatic breast cancer, embedded and on-top three-dimensional (3-D) cultures, 3-D invasion, mammosphere formation, immunofluorescence, immunohistochemistry, Western blot, co-IP and microarray were conducted. In vitro metastasis was developed to imitate how cancer cells invade basement membrane at the primary site, transendothelially migrate, consequently colonize and outgrow at distant sites. Orthotopic and experimental pulmonary metastatic (tail vein injection) murine models were established using stable breast cancer cell lines. Cox proportional hazards regression models and Kaplan-Meier plots were applied to assess clinical outcome of breast cancer patients. In adult non-cancerous breast tissue, ASPH is undetectable. Pathologically, ASPH expression re-emerged at ductal carcinoma in situ (DCIS), and enhanced with disease progression, from early-stage invasive ductal carcinoma (IDC) to late-stage carcinoma. ASPH at moderate to high levels contribute to aggressive molecular subtypes, early relapse or more frequent progression and metastases, whereas substantially shortened overall survival and disease-free survival of breast cancer patients. Through direct physical interactions with A disintegrin and metalloproteinase domain-containing protein (ADAM)-12/ADAM-15, ASPH could activate SRC cascade, thus upregulating downstream components attributed to multifaceted metastasis. ASPH-SRC axis initiated pro-invasive invadopodium formation causing breakdown/disorganization of extracellular matrix (ECM), simultaneously potentiated epithelial-mesenchymal transition (EMT), induced cancer stem cell markers (CD44 and EpCAM), enhanced mammosphere formation and intensified 3-dimentional invasion. Oncogenic SRC upregulated matrix metallopeptidases (MMPs) were assembled by invadopodia, acting as executive effectors for multi-step metastasis. ASPH-SRC signal guided multi-organ metastases (to lungs, liver, bone, spleen, lymph nodes, mesentery or colon) in immunocompromised mice. Malignant phenotypes induced by ASPH-SRC axis were reversed by the third-generation small molecule inhibitor (SMI) specifically against β-hydroxylase activity of ASPH in pre-clinical models of metastatic breast cancer. Collectively, ASPH could activate ADAMs-SRC-MMPs cascades to promote breast cancer tumor progression and metastasis. ASPH could direct invadopodium construction as a biomechanical sensor and pro-metastatic outlet. ASPH-mediated cancer progression could be specifically/efficiently subverted by SMIs of β-hydroxylase activity. Therefore, ASPH emerges as a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Qiushi Lin
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences CenterOK 731014, USA
| | - Xuesong Chen
- Department of Internal Medical Oncology, Harbin Medical University Cancer HospitalHeilongjiang Province, P. R. China
| | - Fanzheng Meng
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of EducationHarbin, P. R. China
| | - Kosuke Ogawa
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| | - Min Li
- Immunobiology & Transplant Science Center, Houston Methodist Research InstituteHouston, Texas 77030, USA
| | - Ruipeng Song
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of EducationHarbin, P. R. China
| | - Shugeng Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of EducationHarbin, P. R. China
| | - Ziran Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of EducationHarbin, P. R. China
| | - Xianglu Kong
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of EducationHarbin, P. R. China
| | - Qinggang Xu
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences CenterOK 731014, USA
- School of Life Sciences, Jiangsu UniversityJiangsu Province, P. R. China
| | - Fuliang He
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences CenterOK 731014, USA
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, The 9 Affiliated Hospital of Peking UniversityP. R. China
| | - Dan Liu
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou UniversityHenan Province, P. R. China
| | - Xuewei Bai
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Department of Pancreatic and Biliary Surgery; Key Laboratory of Hepatosplenic Surgery, Ministry of Education; The First Affiliated Hospital of Harbin Medical UniversityHeilongjiang Province, P. R. China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery; Key Laboratory of Hepatosplenic Surgery, Ministry of Education; The First Affiliated Hospital of Harbin Medical UniversityHeilongjiang Province, P. R. China
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical UniversityTaichung 404, Taiwan
| | - Lianxin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of EducationHarbin, P. R. China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, The University of Sciences and Technology of ChinaAnhui Province, P. R. China
| | - Jack R Wands
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| | - Xiaoqun Dong
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences CenterOK 731014, USA
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| |
Collapse
|
30
|
Barboro P, Benelli R, Tosetti F, Costa D, Capaia M, Astigiano S, Venè R, Poggi A, Ferrari N. Aspartate β-hydroxylase targeting in castration-resistant prostate cancer modulates the NOTCH/HIF1α/GSK3β crosstalk. Carcinogenesis 2021; 41:1246-1252. [PMID: 32525968 DOI: 10.1093/carcin/bgaa053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/17/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is an incurable stage of the disease. A multivariate principal component analysis on CRPC in vitro models identified aspartyl (asparaginyl) β hydrolase (ASPH) as the most relevant molecule associated with the CRPC phenotype. ASPH is overexpressed in various malignant neoplasms and catalyzes the hydroxylation of aspartyl and asparaginyl residues in the epidermal growth factor (EGF)-like domains of proteins like NOTCH receptors and ligands, enhancing cell motility, invasion and metastatic spread. Bioinformatics analyses of ASPH in prostate cancer (PCa) and CRPC datasets indicate that ASPH gene alterations have prognostic value both in PCa and CRPC patients. In CRPC cells, inhibition of ASPH expression obtained through specific small interfering RNA or culturing cells in hypoxic conditions, reduced cell proliferation, invasion and cyclin D1 expression through modulation of the NOTCH signaling. ASPH and HIF1α crosstalk, within a hydroxylation-regulated signaling pathway, might be transiently driven by the oxidative stress evidenced inside CRPC cells. In addition, increased phosphorylation of GSK3β by ASPH silencing demonstrates that ASPH regulates GSK3β activity inhibiting its interactions with upstream kinases. These findings demonstrate the critical involvement of ASPH in CRPC development and may represent an attractive molecular target for therapy.
Collapse
Affiliation(s)
- Paola Barboro
- Department of Oncology and Hematology, Academic Unit of Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberto Benelli
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Tosetti
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Delfina Costa
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Capaia
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, Genova, Italy
| | - Simonetta Astigiano
- Department of Scientific Direction, Immunology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberta Venè
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Alessandro Poggi
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Nicoletta Ferrari
- Department of Scientific Direction, Molecular Oncology & Angiogenesis, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
31
|
Nagaoka K, Ogawa K, Ji C, Cao KY, Bai X, Mulla J, Cheng Z, Wands JR, Huang CK. Targeting Aspartate Beta-Hydroxylase with the Small Molecule Inhibitor MO-I-1182 Suppresses Cholangiocarcinoma Metastasis. Dig Dis Sci 2021; 66:1080-1089. [PMID: 32445050 DOI: 10.1007/s10620-020-06330-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cholangiocarcinoma is a devastating disease with a 2% 5-year survival if the disease has spread outside the liver. The enzyme aspartate beta-hydroxylase (ASPH) has been demonstrated to be highly expressed in cholangiocarcinoma but not in normal bile ducts and found to stimulate tumor cell migration. In addition, it was found that targeting ASPH inhibits cholangiocarcinoma malignant progression. However, it is not clear whether targeting ASPH with the small molecule inhibitor MO-I-1182 suppresses cholangiocarcinoma metastasis. The current study aims to study the efficacy of MO-I-1182 in suppressing cholangiocarcinoma metastasis. METHODS The analysis was performed in vitro and in vivo with a preclinical animal model by using molecular and biochemical strategies to regulate ASPH expression and function. RESULTS Knockdown of ASPH substantially inhibited cell migration and invasion in two human cholangiocarcinoma cell lines. Targeting ASPH with a small molecule inhibitor suppressed cholangiocarcinoma progression. Molecular mechanism studies demonstrated that knockdown of ASPH subsequently suppressed protein levels of the matrix metalloproteinases. The ASPH knockdown experiments suggest that this enzyme may modulate cholangiocarcinoma metastasis by regulating matrix metalloproteinases expression. Furthermore, using an ASPH inhibitor in a rat cholangiocarcinoma intrahepatic model established with BED-Neu-CL#24 cholangiocarcinoma cells, it was found that targeting ASPH inhibited intrahepatic cholangiocarcinoma metastasis and downstream expression of the matrix metalloproteinases. CONCLUSION ASPH may modulate cholangiocarcinoma metastasis via matrix metalloproteinases expression. Taken together, targeting ASPH function may inhibit intrahepatic cholangiocarcinoma metastasis and improve survival.
Collapse
Affiliation(s)
- Katsuya Nagaoka
- Liver Research Center, Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Kousuke Ogawa
- Liver Research Center, Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Chengcheng Ji
- Liver Research Center, Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Kevin Y Cao
- Liver Research Center, Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Xuewei Bai
- Liver Research Center, Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Joud Mulla
- Liver Research Center, Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Zhixiang Cheng
- Liver Research Center, Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Jack R Wands
- Liver Research Center, Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Chiung-Kuei Huang
- Liver Research Center, Division of Gastroenterology and Liver Research Center, Warren Alpert Medical School of Brown University and Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA.
| |
Collapse
|
32
|
Zheng W, Wang X, Hu J, Bai B, Zhu H. Diverse molecular functions of aspartate β‑hydroxylase in cancer (Review). Oncol Rep 2020; 44:2364-2372. [PMID: 33125119 PMCID: PMC7610305 DOI: 10.3892/or.2020.7792] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Aspartate/asparagine β-hydroxylase (AspH) is a type II transmembrane protein that catalyzes the post-translational hydroxylation of definite aspartyl and asparaginyl residues in epidermal growth factor-like domains of substrates. In the last few decades, accumulating evidence has indicated that AspH expression is upregulated in numerous types of human malignant cancer and is associated with poor survival and prognosis. The AspH protein aggregates on the surface of tumor cells, which contributes to inducing tumor cell migration, infiltration and metastasis. However, small-molecule inhibitors targeting hydroxylase activity can markedly block these processes, both in vitro and in vivo. Immunization of tumor-bearing mice with a phage vaccine fused with the AspH protein can substantially delay tumor growth and progression. Additionally, AspH antigen-specific CD4+ and CD8+ T cells were identified in the spleen of tumor-bearing mice. Therefore, these agents may be used as novel strategies for cancer treatment. The present review summarizes the current progress on the underlying mechanisms of AspH expression in cancer development.
Collapse
Affiliation(s)
- Wenqian Zheng
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiaowei Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Jinhui Hu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Bingjun Bai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Hongbo Zhu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
33
|
Peng H, Guo Q, Xiao Y, Su T, Jiang TJ, Guo LJ, Wang M. ASPH Regulates Osteogenic Differentiation and Cellular Senescence of BMSCs. Front Cell Dev Biol 2020; 8:872. [PMID: 33015050 PMCID: PMC7494742 DOI: 10.3389/fcell.2020.00872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Osteogenesis and senescence of BMSCs play great roles in age-related bone loss. However, the causes of these dysfunctions remain unclear. In this study, we identified a differentially expressed ASPH gene in middle-aged and elderly aged groups which were obtained from GSE35955. Subsequent analysis in various databases, such as TCGA, GTEx, and CCLE, revealed that ASPH had positive correlations with several osteogenic markers. The depletion of mouse Asph suppressed the capacity of osteogenic differentiation in bone marrow mesenchymal stem cells (BMSCs). Notably, the expression of ASPH in vitro decreased during aging and senescence. The deficiency of Asph accelerated cellular senescence in BMSCs. Conversely, the overexpression of Asph enhanced the capacity of osteogenic differentiation and inhibited cellular senescence. Mechanistically, ASPH regulated Wnt signaling mediated by Gsk3β. Taken together, our data established that ASPH was potentially involved in the pathogenesis of age-related bone loss through regulating cellular senescence and osteogenic differentiation, which provides some new insights to treat age-related bone loss.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Wang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
34
|
Kanwal M, Smahel M, Olsen M, Smahelova J, Tachezy R. Aspartate β-hydroxylase as a target for cancer therapy. J Exp Clin Cancer Res 2020; 39:163. [PMID: 32811566 PMCID: PMC7433162 DOI: 10.1186/s13046-020-01669-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/06/2020] [Indexed: 12/24/2022] Open
Abstract
As metastasis is a major cause of death in cancer patients, new anti-metastatic strategies are needed to improve cancer therapy outcomes. Numerous pathways have been shown to contribute to migration and invasion of malignant tumors. Aspartate β-hydroxylase (ASPH) is a key player in the malignant transformation of solid tumors by enhancing cell proliferation, migration, and invasion. ASPH also promotes tumor growth by stimulation of angiogenesis and immunosuppression. These effects are mainly achieved via the activation of Notch and SRC signaling pathways. ASPH expression is upregulated by growth factors and hypoxia in different human tumors and its inactivation may have broad clinical impact. Therefore, small molecule inhibitors of ASPH enzymatic activity have been developed and their anti-metastatic effect confirmed in preclinical mouse models. ASPH can also be targeted by monoclonal antibodies and has also been used as a tumor-associated antigen to induce both cluster of differentiation (CD) 8+ and CD4+ T cells in mice. The PAN-301-1 vaccine against ASPH has already been tested in a phase 1 clinical trial in patients with prostate cancer. In summary, ASPH is a promising target for anti-tumor and anti-metastatic therapy based on inactivation of catalytic activity and/or immunotherapy.
Collapse
Affiliation(s)
- Madiha Kanwal
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Michal Smahel
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| | - Mark Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy - Glendale, Midwestern University, Glendale, AZ, USA
- Crenae Therapeutics, Phoenix, AZ, USA
| | - Jana Smahelova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ruth Tachezy
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
35
|
Ogawa K, Lin Q, Li L, Bai X, Chen X, Chen H, Kong R, Wang Y, Zhu H, He F, Xu Q, Liu L, Li M, Zhang S, Nagaoka K, Carlson R, Safran H, Charpentier K, Sun B, Wands J, Dong X. Prometastatic secretome trafficking via exosomes initiates pancreatic cancer pulmonary metastasis. Cancer Lett 2020; 481:63-75. [PMID: 32145343 PMCID: PMC7309190 DOI: 10.1016/j.canlet.2020.02.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
To demonstrate multifaceted contribution of aspartate β-hydroxylase (ASPH) to pancreatic ductal adenocarcinoma (PDAC) pathogenesis, in vitro metastasis assay and patient derived xenograft (PDX) murine models were established. ASPH propagates aggressive phenotypes characterized by enhanced epithelial-mesenchymal transition (EMT), 2-D/3-D invasion, extracellular matrix (ECM) degradation/remodeling, angiogenesis, stemness, transendothelial migration and metastatic colonization/outgrowth at distant sites. Mechanistically, ASPH activates Notch cascade through direct physical interactions with Notch1/JAGs and ADAMs. The ASPH-Notch axis enables prometastatic secretome trafficking via exosomes, subsequently initiates MMPs mediated ECM degradation/remodeling as an effector for invasiveness. Consequently, ASPH fosters primary tumor development and pulmonary metastasis in PDX models, which was blocked by a newly developed small molecule inhibitor (SMI) specifically against ASPH's β-hydroxylase activity. Clinically, ASPH is silenced in normal pancreas, progressively upregulated from pre-malignant lesions to invasive/advanced stage PDAC. Relatively high levels of ASPH-Notch network components independently/jointly predict curtailed overall survival (OS) in PDAC patients (log-rank test, Ps < 0.001; Cox proportional hazards regression, P < 0.001). Therefore, ASPH-Notch axis is essential for propagating multiple-steps of metastasis and predicts prognosis of PDAC patients. A specific SMI targeting ASPH offers a novel therapeutic approach to substantially retard PDAC development/progression.
Collapse
Affiliation(s)
- Kosuke Ogawa
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Qiushi Lin
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Le Li
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, PR China
| | - Xuewei Bai
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA; Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, PR China
| | - Xuesong Chen
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, Heilongjiang Province, PR China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, PR China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, PR China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, PR China
| | - Hong Zhu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, PR China
| | - Fuliang He
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, The 9th Affiliated Hospital of Peking University, Beijing, PR China
| | - Qinggang Xu
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China
| | - Lianxin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China; Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, The University of Sciences and Technology of China, No. 17 Lujiang Road, Hefei City 230001, An Hui Province, PR China
| | - Min Li
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Songhua Zhang
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Katsuya Nagaoka
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Rolf Carlson
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Howard Safran
- Division of Hematology/Oncology, Rhode Island Hospital/The Miriam Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Kevin Charpentier
- Department of Surgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, USA
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, PR China.
| | - Jack Wands
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA.
| | - Xiaoqun Dong
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA; Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
36
|
The metabolite, alpha-ketoglutarate inhibits non-alcoholic fatty liver disease progression by targeting lipid metabolism. LIVER RESEARCH 2020. [DOI: 10.1016/j.livres.2020.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Xu T, Li L, Liu YC, Cao W, Chen JS, Hu S, Liu Y, Li LY, Zhou H, Meng XM, Huang C, Zhang L, Li J, Zhou H. CRISPR/Cas9-related technologies in liver diseases: from feasibility to future diversity. Int J Biol Sci 2020; 16:2283-2295. [PMID: 32760197 PMCID: PMC7378651 DOI: 10.7150/ijbs.33481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
Liver diseases are one of the leading causes of mortality in the world, mainly caused by different etiological agents, alcohol consumption, viruses, drug intoxication, and malnutrition. The maturation of gene therapy has heralded new avenues for developing effective interventions for these diseases. Derived from a remarkable microbial defense system, clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins 9 system (CRISPR/Cas9 system) is driving innovative applications from basic biology to biotechnology and medicine. Recently, the mutagenic function of CRISPR/Cas9 system has been widely adopted for genome and disease research. In this review, we describe the development and applications of CRISPR/Cas9 system on liver diseases for research or translational applications, while highlighting challenges as well as future avenues for innovation.
Collapse
Affiliation(s)
- Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Li Li
- Department of Pathology and Pathophysiology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yu-chen Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| | - Wei Cao
- Shenzhen Qianhai Icecold IT Co., Ltd. China
| | - Jia-si Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Shuang Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Ying Liu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui, PR China
| | - Liang-yun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Hong Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
- Anhui Provincial Cancer Hospital, West Branch of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, P.R. China
| | - Xiao-ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Lei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Huan Zhou
- National Drug Clinical Trial Institution, the First Affiliated Hospital of Bengbu Medical College
| |
Collapse
|
38
|
Brewitz L, Tumber A, Pfeffer I, McDonough MA, Schofield CJ. Aspartate/asparagine-β-hydroxylase: a high-throughput mass spectrometric assay for discovery of small molecule inhibitors. Sci Rep 2020; 10:8650. [PMID: 32457455 PMCID: PMC7251097 DOI: 10.1038/s41598-020-65123-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
The human 2-oxoglutarate dependent oxygenase aspartate/asparagine-β-hydroxylase (AspH) catalyses the hydroxylation of Asp/Asn-residues in epidermal growth factor-like domains (EGFDs). AspH is upregulated on the surface of malign cancer cells; increased AspH levels correlate with tumour invasiveness. Due to a lack of efficient assays to monitor the activity of isolated AspH, there are few reports of studies aimed at identifying small-molecule AspH inhibitors. Recently, it was reported that AspH substrates have a non-canonical EGFD disulfide pattern. Here we report that a stable synthetic thioether mimic of AspH substrates can be employed in solid phase extraction mass spectrometry based high-throughput AspH inhibition assays which are of excellent robustness, as indicated by high Z'-factors and good signal-to-noise/background ratios. The AspH inhibition assay was applied to screen approximately 1500 bioactive small-molecules, including natural products and active pharmaceutical ingredients of approved human therapeutics. Potent AspH inhibitors were identified from both compound classes. Our AspH inhibition assay should enable the development of potent and selective small-molecule AspH inhibitors and contribute towards the development of safer inhibitors for other 2OG oxygenases, e.g. screens of the hypoxia-inducible factor prolyl-hydroxylase inhibitors revealed that vadadustat inhibits AspH with moderate potency.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, United Kingdom
| | - Inga Pfeffer
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, United Kingdom
| | - Michael A McDonough
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, United Kingdom.
| |
Collapse
|
39
|
Jia Y, Jin H, Gao L, Yang X, Wang F, Ding H, Chen A, Tan S, Zhang F, Shao J, Wang S, Zheng S. A novel lncRNA PLK4 up-regulated by talazoparib represses hepatocellular carcinoma progression by promoting YAP-mediated cell senescence. J Cell Mol Med 2020; 24:5304-5316. [PMID: 32243714 PMCID: PMC7205816 DOI: 10.1111/jcmm.15186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023] Open
Abstract
A growing number of studies recognize that long non‐coding RNAs (lncRNAs) are essential to mediate multiple tumorigenic processes, including hepatic tumorigenesis. However, the pathological mechanism of lncRNA‐regulated liver cancer cell growth remains poorly understood. In this study, we identified a novel function lncRNA, named polo‐like kinase 4 associated lncRNA (lncRNA PLK4, GenBank Accession No. RP11‐50D9.3), whose expression was dramatically down‐regulated in hepatocellular carcinoma (HCC) tissues and cells. Interestingly, talazoparib, a novel and highly potent poly‐ADP‐ribose polymerase 1/2 (PARP1/2) inhibitor, could increase lncRNA PLK4 expression in HepG2 cells. Importantly, we showed that talazoparib‐induced lncRNA PLK4 could function as a tumour suppressor gene by Yes‐associated protein (YAP) inactivation and induction of cellular senescence to inhibit liver cancer cell viability and growth. In summary, our findings reveal the molecular mechanism of talazoparib‐induced anti‐tumor effect, and suggest a potential clinical use of talazoparib‐targeted lncRNA PLK4/YAP‐dependent cellular senescence for the treatment of HCC.
Collapse
Affiliation(s)
- Yan Jia
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Liyuan Gao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Yang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feixia Wang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hai Ding
- Department of Surgery, Nanjing Second Hospital, Nanjing, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, MO, USA
| | - Shanzhong Tan
- Department of Hepatology, Integrated Traditional Chinese and Western Medicine, Nanjing Second Hospital, Nanjing, China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shijun Wang
- Shandong co-innovation Center of TCM Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
40
|
Zhang S, Gao W, Tang J, Zhang H, Zhou Y, Liu J, Chen K, Liu F, Li W, To SKY, Wong AST, Zhang XK, Zhou H, Zeng JZ. The Roles of GSK-3β in Regulation of Retinoid Signaling and Sorafenib Treatment Response in Hepatocellular Carcinoma. Theranostics 2020; 10:1230-1244. [PMID: 31938062 PMCID: PMC6956800 DOI: 10.7150/thno.38711] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/05/2019] [Indexed: 01/10/2023] Open
Abstract
Rationale: Glycogen synthase kinase-3β (GSK-3β) plays key roles in metabolism and many cellular processes. It was recently demonstrated that overexpression of GSK-3β can confer tumor growth. However, the expression and function of GSK-3β in hepatocellular carcinoma (HCC) remain largely unexplored. This study is aimed at investigating the role and therapeutic target value of GSK-3β in HCC. Methods: We firstly clarified the expression of GSK-3β in human HCC samples. Given that deviated retinoid signalling is critical for HCC development, we studied whether GSK-3β could be involved in the regulation. Since sorafenib is currently used to treat HCC, the involvement of GSK-3β in sorafenib treatment response was determined. Co-immunoprecipitation, GST pull down, in vitro kinase assay, luciferase reporter and chromatin immunoprecipitation were used to explore the molecular mechanism. The biological readouts were examined with MTT, flow cytometry and animal experiments. Results: We demonstrated that GSK-3β is highly expressed in HCC and associated with shorter overall survival (OS). Overexpression of GSK-3β confers HCC cell colony formation and xenograft tumor growth. Tumor-associated GSK-3β is correlated with reduced expression of retinoic acid receptor-β (RARβ), which is caused by GSK-3β-mediated phosphorylation and heterodimerization abrogation of retinoid X receptor (RXRα) with RARα on RARβ promoter. Overexpression of functional GSK-3β impairs retinoid response and represses sorafenib anti-HCC effect. Inactivation of GSK-3β by tideglusib can potentiate 9-cis-RA enhancement of sorafenib sensitivity (tumor inhibition from 48.3% to 93.4%). Efficient induction of RARβ by tideglusib/9-cis-RA is required for enhanced therapeutic outcome of sorafenib, which effect is greatly inhibited by knocking down RARβ. Conclusions: Our findings demonstrate that GSK-3β is a disruptor of retinoid signalling and a new resistant factor of sorafenib in HCC. Targeting GSK-3β may be a promising strategy for HCC treatment in clinic.
Collapse
|
41
|
Ogawa K, Lin Q, Li L, Bai X, Chen X, Chen H, Kong R, Wang Y, Zhu H, He F, Xu Q, Liu L, Li M, Zhang S, Nagaoka K, Carlson R, Safran H, Charpentier K, Sun B, Wands J, Dong X. Aspartate β-hydroxylase promotes pancreatic ductal adenocarcinoma metastasis through activation of SRC signaling pathway. J Hematol Oncol 2019; 12:144. [PMID: 31888763 PMCID: PMC6937817 DOI: 10.1186/s13045-019-0837-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/11/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Signaling pathways critical for embryonic development re-emerge in adult pancreas during tumorigenesis. Aspartate β-hydroxylase (ASPH) drives embryonic cell motility/invasion in pancreatic development/differentiation. We explored if dysregulated ASPH is critically involved in pancreatic cancer pathogenesis. METHODS To demonstrate if/how ASPH mediates malignant phenotypes, proliferation, migration, 2-D/3-D invasion, pancreatosphere formation, immunofluorescence, Western blot, co-immunoprecipitation, invadopodia formation/maturation/function, qRT-PCR, immunohistochemistry (IHC), and self-developed in vitro metastasis assays were performed. Patient-derived xenograft (PDX) models of human pancreatic ductal adenocarcinoma (PDAC) were established to illustrate in vivo antitumor effects of the third-generation small molecule inhibitor specifically against ASPH's β-hydroxylase activity. Prognostic values of ASPH network components were evaluated with Kaplan-Meier plots, log-rank tests, and Cox proportional hazards regression models. RESULTS ASPH renders pancreatic cancer cells more aggressive phenotypes characterized by epithelial-mesenchymal transition (EMT), 2-D/3-D invasion, invadopodia formation/function as demonstrated by extracellular matrix (ECM) degradation, stemness (cancer stem cell marker upregulation and pancreatosphere formation), transendothelial migration (mimicking intravasation/extravasation), and sphere formation (mimicking metastatic colonization/outgrowth at distant sites). Mechanistically, ASPH activates SRC cascade through direct physical interaction with ADAM12/ADAM15 independent of FAK. The ASPH-SRC axis enables invadopodia construction and initiates MMP-mediated ECM degradation/remodeling as executors for invasiveness. Pharmacologic inhibition of invadopodia attenuates in vitro metastasis. ASPH fosters primary tumor development and pulmonary metastasis in PDX models of PDAC, which is blocked by a leading compound specifically against ASPH enzymatic activity. ASPH is silenced in normal pancreas, progressively upregulated from pre-malignant lesions to invasive/advanced stages of PDAC. Expression profiling of ASPH-SRC network components independently/jointly predicts clinical outcome of PDAC patients. Compared to a negative-low level, a moderate-very high level of ASPH, ADAM12, activated SRC, and MMPs correlated with curtailed overall survival (OS) of pancreatic cancer patients (log-rank test, ps < 0.001). The more unfavorable molecules patients carry, the more deleterious prognosis is destinated. Patients with 0-2 (n = 4), 3-5 (n = 8), 6-8 (n = 24), and 9-12 (n = 73) unfavorable expression scores of the 5 molecules had median survival time of 55.4, 15.9, 9.7, and 5.0 months, respectively (p < 0.001). CONCLUSION Targeting the ASPH-SRC axis, which is essential for propagating multi-step PDAC metastasis, may specifically/substantially retard development/progression and thus improve prognosis of PDAC.
Collapse
Affiliation(s)
- Kosuke Ogawa
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, 55 Claverick Street, 4th Fl., Providence, RI, 02903, USA
| | - Qiushi Lin
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731014, USA
| | - Le Li
- Department of Pancreatic and Biliary Surgery; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Xuewei Bai
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, 55 Claverick Street, 4th Fl., Providence, RI, 02903, USA.,Department of Pancreatic and Biliary Surgery; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Xuesong Chen
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, Heilongjiang Province, People's Republic of China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Hong Zhu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Fuliang He
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731014, USA.,Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, The 9th Affiliated Hospital of Peking University, Beijing, People's Republic of China
| | - Qinggang Xu
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731014, USA.,Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Lianxin Liu
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, The University of Sciences and Technology of China, No. 17 Lujiang Road, Hefei City, 230001, An Hui Province, People's Republic of China
| | - Min Li
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Songhua Zhang
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, 55 Claverick Street, 4th Fl., Providence, RI, 02903, USA
| | - Katsuya Nagaoka
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, 55 Claverick Street, 4th Fl., Providence, RI, 02903, USA
| | - Rolf Carlson
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, 55 Claverick Street, 4th Fl., Providence, RI, 02903, USA
| | - Howard Safran
- Division of Hematology/Oncology, Rhode Island Hospital/The Miriam Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Kevin Charpentier
- Department of Surgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, People's Republic of China
| | - Jack Wands
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, 55 Claverick Street, 4th Fl., Providence, RI, 02903, USA.
| | - Xiaoqun Dong
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, 55 Claverick Street, 4th Fl., Providence, RI, 02903, USA. .,Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731014, USA. .,Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
42
|
Lin Q, Chen X, Meng F, Ogawa K, Li M, Song R, Zhang S, Zhang Z, Kong X, Xu Q, He F, Bai X, Sun B, Hung MC, Liu L, Wands J, Dong X. ASPH-notch Axis guided Exosomal delivery of Prometastatic Secretome renders breast Cancer multi-organ metastasis. Mol Cancer 2019; 18:156. [PMID: 31694640 PMCID: PMC6836474 DOI: 10.1186/s12943-019-1077-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Aspartate β-hydroxylase (ASPH) is silent in normal adult tissues only to re-emerge during oncogenesis where its function is required for generation and maintenance of malignant phenotypes. Exosomes enable prooncogenic secretome delivering and trafficking for long-distance cell-to-cell communication. This study aims to explore molecular mechanisms underlying how ASPH network regulates designated exosomes to program development and progression of breast cancer. METHODS Stable cell lines overexpressing or knocking-out of ASPH were established using lentivirus transfection or CRISPR-CAS9 systems. Western blot, MTT, immunofluorescence, luciferase reporter, co-immunoprecipitation, 2D/3-D invasion, tube formation, mammosphere formation, immunohistochemistry and newly developed in vitro metastasis were applied. RESULTS Through physical interactions with Notch receptors, ligands (JAGs) and regulators (ADAM10/17), ASPH activates Notch cascade to provide raw materials (especially MMPs/ADAMs) for synthesis/release of pro-metastatic exosomes. Exosomes orchestrate EMT, 2-D/3-D invasion, stemness, angiogenesis, and premetastatic niche formation. Small molecule inhibitors (SMIs) of ASPH's β-hydroxylase specifically/efficiently abrogated in vitro metastasis, which mimics basement membrane invasion at primary site, intravasation/extravasation (transendothelial migration), and colonization/outgrowth at distant sites. Multiple organ-metastases in orthotopic and tail vein injection murine models were substantially blocked by a specific SMI. ASPH is silenced in normal adult breast, upregulated from in situ malignancies to highly expressed in invasive/advanced ductal carcinoma. Moderate-high expression of ASPH confers more aggressive molecular subtypes (TNBC or Her2 amplified), early recurrence/progression and devastating outcome (reduced overall/disease-free survival) of breast cancer. Expression profiling of Notch signaling components positively correlates with ASPH expression in breast cancer patients, confirming that ASPH-Notch axis acts functionally in breast tumorigenesis. CONCLUSIONS ASPH-Notch axis guides particularly selective exosomes to potentiate multifaceted metastasis. ASPH's pro-oncogenic/pro-metastatic properties are essential for breast cancer development/progression, revealing a potential target for therapy.
Collapse
Affiliation(s)
- Qiushi Lin
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731014, USA
| | - Xuesong Chen
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, Heilongjiang Province, People's Republic of China
| | - Fanzheng Meng
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kosuke Ogawa
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, 55 Claverick Street, 4th Fl., Providence, RI, 02903, USA
| | - Min Li
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Ruipeng Song
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shugeng Zhang
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziran Zhang
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xianglu Kong
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qinggang Xu
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731014, USA
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Fuliang He
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731014, USA
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, The 9th affiliated hospital of Peking University, Beijing, People's Republic of China
| | - Xuewei Bai
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Mien-Chie Hung
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center; Graduate School of Biomedical Science, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Lianxin Liu
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, The University of Sciences and Technology of China, No. 17 Lujiang Road, Hefei City, 230001, An Hui Province, People's Republic of China.
| | - Jack Wands
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, 55 Claverick Street, 4th Fl., Providence, RI, 02903, USA.
| | - Xiaoqun Dong
- Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731014, USA.
- Division of Gastroenterology, Department of Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
43
|
Chen X, Jin P, Tang H, Zhang L. miR-135a acts as a tumor suppressor by targeting ASPH in endometrial cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3384-3389. [PMID: 31934181 PMCID: PMC6949859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/22/2019] [Indexed: 06/10/2023]
Abstract
Endometrial cancer (EC) ranks as the fourth most commonly diagnosed cancer type in women worldwide. MicroRNAs (miRNAs) are important regulators with crucial roles in regulating diverse biologic processes, including tumor initiation and progression. Previous studies have demonstrated that miR-135a was correlated with tumorigenesis in various cancers. However, its expression and biologic role in EC remained to be determined. This study aimed to clarify whether miR-135a acts as a tumor suppressor in EC by regulating the expression of aspartate-β-hydroxylase (ASPH). Expression of miR-135a was measured by qRT-PCR and the results demonstrated that miR-135a was downregulated in EC cell lines compared to a normal cell line. Cell counting kit-8 (CCK-8) and wound-healing assays demonstrated that overexpression of miR-135a significantly inhibited cell proliferation and migration. Online prediction algorithm and dual luciferase activity reporter assay revealed that ASPH acts as a direct target of miR-135a. ASPH expression was downregulated in EC cell lines when miR-135a was overexpressed. Collectively, our results indicate that miR-135a targets ASPH to inhibit EC cell proliferation and migration, suggesting a tumor suppressive role of miR-135a in EC.
Collapse
Affiliation(s)
- Xiaolin Chen
- Department of Gynaecology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical UniversityShenzhen, P. R. China
| | - Ping Jin
- Department of Gynaecology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical UniversityShenzhen, P. R. China
| | - Huiru Tang
- Department of Obstetrics and Gynaecology, Peking University Shenzhen HospitalShenzhen, P. R. China
| | - Lei Zhang
- Department of Gynaecology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical UniversityShenzhen, P. R. China
| |
Collapse
|
44
|
Jiang C, Meng L, Yang B, Luo X. Application of CRISPR/Cas9 gene editing technique in the study of cancer treatment. Clin Genet 2019; 97:73-88. [PMID: 31231788 DOI: 10.1111/cge.13589] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
In recent years, gene editing, especially that using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9, has made great progress in the field of gene function. Rapid development of gene editing techniques has contributed to their significance in the field of medicine. Because the CRISPR/Cas9 gene editing tool is not only powerful but also has features such as strong specificity and high efficiency, it can accurately and rapidly screen the whole genome, facilitating the administration of gene therapy for specific diseases. In the field of tumor research, CRISPR/Cas9 can be used to edit genomes to explore the mechanisms of tumor occurrence, development, and metastasis. In these years, this system has been increasingly applied in tumor treatment research. CRISPR/Cas9 can be used to treat tumors by repairing mutations or knocking out specific genes. To date, numerous preliminary studies have been conducted on tumor treatment in related fields. CRISPR/Cas9 holds great promise for gene-level tumor treatment. Personalized and targeted therapy based on CRISPR/Cas9 will possibly shape the development of tumor therapy in the future. In this study, we review the findings of CRISPR/Cas9 for tumor treatment research to provide references for related future studies on the pathogenesis and clinical treatment of tumors.
Collapse
Affiliation(s)
- Chunyang Jiang
- Department of Thoracic Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Lingxiang Meng
- Department of Anorectal Surgery, Anorectal Surgery Center, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Bingjun Yang
- Department of Thoracic Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Xin Luo
- Department of Radiotherapy, The Second Hospital of PingLiang City, Second Affiliated Hospital of Gansu Medical College, PingLiang, People's Republic of China
| |
Collapse
|
45
|
Nagaoka K, Bai X, Ogawa K, Dong X, Zhang S, Zhou Y, Carlson RI, Jiang ZG, Fuller S, Lebowitz MS, Ghanbari H, Wands JR. Anti-tumor activity of antibody drug conjugate targeting aspartate-β-hydroxylase in pancreatic ductal adenocarcinoma. Cancer Lett 2019; 449:87-98. [PMID: 30768955 DOI: 10.1016/j.canlet.2019.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/31/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive malignancy with very limited treatment options. Antibody drug conjugates (ADCs) are promising cytotoxic agents capable of highly selective delivery. Aspartate-β-hydroxylase (ASPH) is a type II transmembrane protein highly expressed in PDACs (97.1%) but not normal pancreas. We investigated anti-tumor effects of an ADC guided by a human monoclonal antibody (SNS-622) against ASPH in human PDAC cell lines and derived subcutaneous (s.c.) xenograft as well as a patient-derived xenograft (PDX) murine model with spontaneous pulmonary metastasis. The cytotoxic effects exhibited by several candidate payloads linked to SNS-622 antibody targeting ASPH+ PDACs were analyzed. After i.v. administration of SNS-622-emtansine (DM1) ADC, the primary PDAC tumor growth and progression (number and size of pulmonary metastases) were determined. The PDAC cell lines, s.c. and PDX tumors treated with ADC were tested for cell proliferation, cytotoxicity and apoptosis by MTS and immunohistochemistry (IHC) assays. SNS-622-DM1 construct has demonstrated optimal anti-tumor effects in vitro. In the PDX model of human PDAC, SNS-622-DM1 ADC exerted substantially inhibitory effects on tumor growth and pulmonary metastasis through attenuating proliferation and promoting apoptosis.
Collapse
Affiliation(s)
- Katsuya Nagaoka
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Xuewei Bai
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA; Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, PR China
| | - Kosuke Ogawa
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Xiaoqun Dong
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA; Department of Internal Medicine, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Songhua Zhang
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Yanmei Zhou
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA; Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, PR China
| | - Rolf I Carlson
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | | | | | | | | | - Jack R Wands
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
46
|
Zou Q, Hou Y, Wang H, Wang K, Xing X, Xia Y, Wan X, Li J, Jiao B, Liu J, Huang A, Wu D, Xiang H, Pawlik TM, Wang H, Lau WY, Wang Y, Shen F. Hydroxylase Activity of ASPH Promotes Hepatocellular Carcinoma Metastasis Through Epithelial-to-Mesenchymal Transition Pathway. EBioMedicine 2018; 31:287-298. [PMID: 29764768 PMCID: PMC6013968 DOI: 10.1016/j.ebiom.2018.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 01/18/2023] Open
Abstract
Over-expression of aspartyl (asparagynal)-β-hydroxylase (ASPH) contributes to hepatocellular carcinoma (HCC) invasiveness, but the role of ASPH hydroxylase activity in this process remains to be defined. As such, the current study investigated the role of ASPH hydroxylase activity in downstream signalling of HCC tumorgenesis and, specifically, metastasis development. Over-expression of wild-type ASPH, but not a hydroxylase mutant, promoted HCC cell migration in vitro, as well as intrahepatic and distant metastases in vivo. The enhanced migration and epithelial to mesenchymal transition (EMT) activation was notably absent in response to hydroxylase activity blockade. Vimentin, a regulator of EMT, interacted with ASPH and likely mediated the effect of ASPH hydroxylase activity with cell migration. The enhanced hydroxylase activity in tumor tissues predicted worse prognoses of HCC patients. Collectively, the hydroxylase activity of ASPH affected HCC metastasis through interacting with vimentin and regulating EMT. As such, ASPH might be a promising therapeutic target of HCC. Over-expression of ASPH promoted HCC intrahepatic and distant metastases in vivo. ASPH interacts with vimentin to promote HCC cell migration. Enhanced hydroxylase activity in tumor predicted worse prognoses of HCC patients.
Hepatocellular carcinoma has aggressive invasiveness and high metastatic rate. The reason for metastasis is largely unknown and the effective treatment is still lacking. Although over-expression of ASPH has been demonstrated to enhance hepatocellular carcinoma invasiveness, whether its hydroxylase activity is necessary remains uncharacterized. Here, we found the hydroxylase activity was critical to promote hepatocellular carcinoma invasiveness in vitro and metastasis in vivo, and associated with post-surgery survival. ASPH hydroxylase activity play an important role in epithelial-to-mesenchymal transition through interacting with vimentin. Our findings imply that ASPH antagonists might be promising in developing novel therapy.
Collapse
Affiliation(s)
- Qifei Zou
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ying Hou
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; Laboratory of Neural Signal Transduction, Institute of Neuroscience, Chinese Academy of Science, Shanghai, China
| | - Haibo Wang
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Kui Wang
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xianglei Xing
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yong Xia
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xuying Wan
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jun Li
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Jingfeng Liu
- Department of Hepatobiliary Surgery, The Mengchao Hepatobiliary Surgery Hospital, Fujian Medical University, Fuzhou, China
| | - Aimin Huang
- Department of Hepatobiliary Surgery, The Mengchao Hepatobiliary Surgery Hospital, Fujian Medical University, Fuzhou, China
| | - Dong Wu
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hongjun Xiang
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Hongyang Wang
- National Scientific Center for Liver Cancer, Shanghai, China
| | - Wan Yee Lau
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yizheng Wang
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Chinese Academy of Science, Shanghai, China.
| | - Feng Shen
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
47
|
Huang CK, Iwagami Y, Zou J, Casulli S, Lu S, Nagaoka K, Ji C, Ogawa K, Cao KY, Gao JS, Carlson RI, Wands JR. Aspartate beta-hydroxylase promotes cholangiocarcinoma progression by modulating RB1 phosphorylation. Cancer Lett 2018; 429:1-10. [PMID: 29733964 DOI: 10.1016/j.canlet.2018.04.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 01/19/2023]
Abstract
Cholangiocarcinoma (CCA) is a highly lethal and aggressive disease. Recently, IDH1/2 mutations have been identified in approximately 20% of CCAs which suggests an involvement of 2-oxoglutarate (2-OG) -dependent dioxygenases in oncogenesis. We investigated if the 2-OG dependent dioxygenase, aspartate beta-hydroxylase (ASPH) was important in tumor development and growth. Immunoassays were used to clarify how ASPH modulates CCA progression by promoting phosphorylation of the retinoblastoma protein (RB1). A xenograft model was employed to determine the role of ASPH on CCA growth. Knockdown of ASPH expression inhibited CCA development and growth by reducing RB1 phosphorylation. Expression of ASPH promoted direct protein interaction between RB1, cyclin-dependent kinases, and cyclins. Treatment with 2-OG-dependent dioxygenase and ASPH inhibitors suppressed the interaction between RB1 and CDK4 as well as RB1 phosphorylation. Knockdown of ASPH expression inhibited CCA progression and RB1 phosphorylation in vivo and they were found to be highly expressed in human CCAs. Knockdown of ASPH expression altered CCA development by modulating RB1 phosphorylation, as one of the major factors regulating the growth of these tumors.
Collapse
Affiliation(s)
- Chiung-Kuei Huang
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Yoshifumi Iwagami
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Jing Zou
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Sarah Casulli
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Shaolei Lu
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy St, Providence, RI, 02903, USA
| | - Katsuya Nagaoka
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Chengcheng Ji
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Kousuke Ogawa
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Kevin Y Cao
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Jin-Song Gao
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Rolf I Carlson
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA
| | - Jack R Wands
- Liver Research Center and the Division of Gastroenterology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, 55 Claverick St, Providence, RI, 02903, USA.
| |
Collapse
|
48
|
Yao WF, Liu JW, Huang DS. MiR-200a inhibits cell proliferation and EMT by down-regulating the ASPH expression levels and affecting ERK and PI3K/Akt pathways in human hepatoma cells. Am J Transl Res 2018; 10:1117-1130. [PMID: 29736205 PMCID: PMC5934571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/06/2017] [Indexed: 06/08/2023]
Abstract
The primary objective of this study was to investigate the role of miR-200a in cell proliferation and epithelial-mesenchymal transition (EMT) through regulating targeting aspartate-β-hydroxylase (ASPH), which may further affect the activation of ERK/PI3K/Akt pathway. Liver cancer and adjacent tissues were collected from 72 cases of liver cancer patients with surgery in our hospital. In this study, the mRNA expression level of miR-200a was significantly decreased by real-time PCR (RT-PCR) detection. ASPH expressions, however, had an opposite tendency compared to that of miR-200a. We found a significantly negative correlation between miR-200a expressions and ASPH expressions. The survival rate of liver cancer patients with the low expressed ASPH was significantly higher than those with the high expressed ASPH. RT-PCR and Western blot results showed that low expressed miR-200a and highexpressed ASPH were found in liver cancer cell lines. Further research discovered that miR-200a transfection could significantly decrease the relative luciferase activity when it was integrated with ASPH 3'-untranslated region (3'-UTR) in HepG2 cells. Cell Counting Kit (CCK-8) detection showed that treatment with miR-200a mimics reduced cell viability, while the over-expressed ASPH increased cell viability by regulating the c-mycmrna (c-Myc) and Cyclin-D1 expressions. The EMT-related genes including E-Cadherin, N-Cadherin and Vimentin expressions were significantly increased, whereas the over-expressed ASPH exerted the opposite effects. In addition, extracellular signal regulated kinase (ERK), phosphoinositide-3-kinase (PI3K) and serine threonine kinase (AKT) were suppressed by miR-200a mimics. In conclusion, miR-200a inhibits cell proliferation and EMT in human hepatoma cells by targeting ASPH and affecting ERK and PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Wei-Feng Yao
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Hangzhou Medical College Hangzhou 310014, P.R. China
| | - Jun-Wei Liu
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Hangzhou Medical College Hangzhou 310014, P.R. China
| | - Dong-Sheng Huang
- Department of Hepato-Biliary-Pancreatic Surgery, People's Hospital of Hangzhou Medical College Hangzhou 310014, P.R. China
| |
Collapse
|
49
|
Integrin-linked kinase: A new actor in the ageing process? Exp Gerontol 2017; 100:87-90. [PMID: 29101014 DOI: 10.1016/j.exger.2017.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 02/05/2023]
Abstract
Integrin-linked kinase (ILK) is a protein located in focal adhesion complexes that is linked to the cytoplasmic domain of integrin receptors. Together with PINCH and parvin, ILK forms the IPP complex, which is associated with conserved intracellular signalling pathways and integrin regulation of the actin cytoskeleton. ILK plays an essential role in a wide variety of cellular functions, including cell migration, differentiation, survival, and division. The present review summarizes recent evidence, suggesting a new role for ILK in organismal ageing and cellular senescence, indicating that ILK is a key regulator of longevity and premature cellular senescence induced by extracellular stressors.
Collapse
|
50
|
Mucaji P, Atanasov AG, Bak A, Kozik V, Sieron K, Olsen M, Pan W, Liu Y, Hu S, Lan J, Haider N, Musiol R, Vanco J, Diederich M, Ji S, Zitko J, Wang D, Agbaba D, Nikolic K, Oljacic S, Vucicevic J, Jezova D, Tsantili-Kakoulidou A, Tsopelas F, Giaginis C, Kowalska T, Sajewicz M, Silberring J, Mielczarek P, Smoluch M, Jendrzejewska I, Polanski J, Jampilek J. The Forty-Sixth Euro Congress on Drug Synthesis and Analysis: Snapshot †. Molecules 2017; 22:molecules22111848. [PMID: 29143778 PMCID: PMC6150335 DOI: 10.3390/molecules22111848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 01/08/2023] Open
Abstract
The 46th EuroCongress on Drug Synthesis and Analysis (ECDSA-2017) was arranged within the celebration of the 65th Anniversary of the Faculty of Pharmacy at Comenius University in Bratislava, Slovakia from 5-8 September 2017 to get together specialists in medicinal chemistry, organic synthesis, pharmaceutical analysis, screening of bioactive compounds, pharmacology and drug formulations; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topic of the conference, "Drug Synthesis and Analysis," meant that the symposium welcomed all pharmacists and/or researchers (chemists, analysts, biologists) and students interested in scientific work dealing with investigations of biologically active compounds as potential drugs. The authors of this manuscript were plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.
Collapse
Affiliation(s)
- Pavel Mucaji
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia.
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland.
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Andrzej Bak
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Violetta Kozik
- Department of Synthesis Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Karolina Sieron
- Department of Physical Medicine, Medical University of Silesia, Medykow 18, 40752 Katowice, Poland.
| | - Mark Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy Glendale, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China.
| | - Yazhou Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China.
| | - Shengchao Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China.
| | - Junjie Lan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China.
| | - Norbert Haider
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria.
| | - Robert Musiol
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Jan Vanco
- Department of Inorganic Chemistry & Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, 17. listopadu 12, 77146 Olomouc, Czech Republic.
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Seoul 08826, Korea.
| | - Seungwon Ji
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Seoul 08826, Korea.
| | - Jan Zitko
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic.
| | - Dongdong Wang
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland.
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Danica Agbaba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Slavica Oljacic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Jelica Vucicevic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Daniela Jezova
- Laboratory of Pharmacological Neuroendocrinology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia.
| | - Anna Tsantili-Kakoulidou
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece.
| | - Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780 Athens, Greece.
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece.
| | - Teresa Kowalska
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Mieczyslaw Sajewicz
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Jerzy Silberring
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30059 Krakow, Poland.
| | - Przemyslaw Mielczarek
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30059 Krakow, Poland.
| | - Marek Smoluch
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30059 Krakow, Poland.
| | - Izabela Jendrzejewska
- Department of Crystallography, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Bankowa 12, 40006 Katowice, Poland.
| | - Jaroslaw Polanski
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Josef Jampilek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia.
| |
Collapse
|