1
|
Mao D, Guo J, Yang K, Yang F, Peng J, Jia X, Luo Z, Liu L, Yang E, Tang R, Lan H, Zheng Q. Mechanism of epigallocatechin gallate in treating non-alcoholic fatty liver disease: Insights from network pharmacology and experimental validation. Biochem Biophys Res Commun 2024; 734:150424. [PMID: 39083974 DOI: 10.1016/j.bbrc.2024.150424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
To explore the therapeutic effects along with the molecular mechanisms of epigallocatechin gallate (EGCG) in non-alcoholic fatty liver disease (NAFLD) treatment using network pharmacology as well as animal experiments. Firstly, the Traditional Chinese Medicine (TCM) Systems Pharmacology Database was searched to identify the potential targets of EGCG. The DisGeNET Database was used to screen the potential targets of NAFLD. The GeneCards Database was searched to identify related genes involved in pyroptosis. Subsequently, the intersecting genes of EGCG targeting pyroptosis to regulate NAFLD were obtained using a Venn diagram. Simultaneously, the aforementioned intersecting genes were used to construct a drug-disease target protein-protein interaction (PPI) network. The DAVID database was adopted for Gene Ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The main pathway-target network was determined. Next, the potential mechanism of EGCG targeting pyroptosis to regulate NAFLD was investigated and validated through in vivo experiments. 626 potential targets of EGCG, 447 target genes of NAFLD, and 568 potential targets of pyroptosis were identified. The number of common targets between EGCG, NAFLD, and pyroptosis was 266. GO biological process items and 92 KEGG pathways were determined based on the analysis results. Animal experiments demonstrated that EGCG could ameliorate body weight, glucolipid metabolism, steatosis, and liver injury, enhance insulin sensitivity, and improve glucose tolerance in NAFLD mice through the classical pathway of pyroptosis. EGCG could effectively treat NAFLD through multiple targets and pathways. It was concluded that EGCG ameliorates hepatocyte steatosis, pyroptosis, dyslipidemia, and inflammation in NAFLD mice fed a high-fat diet (HFD), and the protective mechanism could be associated with the NLRP3-Caspase-1-GSDMD classical pyroptosis pathway.
Collapse
Affiliation(s)
- Danting Mao
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Jianwei Guo
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Kunli Yang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Fan Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Jiaojiao Peng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Xu Jia
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Ziren Luo
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Lu Liu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Enjie Yang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Rui Tang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Haitao Lan
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Qian Zheng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
2
|
Ge M, Zou H, Chen J, Zhang Q, Li C, Yang J, Wu J, Xie X, Liu J, Lei L, Peng S, Nie H. Cellular fibronectin-targeted fluorescent aptamer probes for early detection and staging of liver fibrosis. Acta Biomater 2024:S1742-7061(24)00614-7. [PMID: 39433198 DOI: 10.1016/j.actbio.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Liver fibrosis is a key process in the progression of chronic liver disease to cirrhosis. Currently, early diagnosis and precise staging of liver fibrosis remain great challenges. Extracellular matrix (ECM) molecules expressed specifically during liver fibrosis are ideal targets for bioimaging and detection of liver fibrosis. Here, we report that fluorescent probes based on a nucleic acid aptamer (ZY-1) targeting cellular fibronectin (cFN), a critical ECM molecule significantly accumulating during liver fibrosis, are promising bioimaging agents for the staging of liver fibrosis. In the work, the outstanding binding affinity of ZY-1 to cFN was validated through an in vitro model of human-derived hepatic stellate cells (HSCs). Subsequently, we constructed different ZY-1-based fluorescent probes and explored the real-time imaging performance of these fluorescent probes in CCl4-induced mouse models of different liver fibrosis stages. The ZY-1-based fluorescent probes, for the first time, effectively identified and distinguished early-stage liver fibrosis (stage 3 of Ishak 6) from advanced liver fibrosis (stage 5 of Ishak 6). The proof-of-concept study provides compelling evidences that ZY-1-based probes are a promising tool for the early diagnosis and staging of liver fibrosis and paves the way for further development of clinical-related diagnosis strategies for fibrotic diseases of the liver and other organs. STATEMENT OF SIGNIFICANCE: Currently, early diagnosis and accurate staging of liver fibrosis continue to present significant challenges. This study demonstrates that fluorescent probes based on the nucleic acid aptamer ZY-1, which targets cellular fibronectin (cFN)-a crucial extracellular matrix (ECM) molecule that significantly accumulates during liver fibrosis-are promising bioimaging agents for staging liver fibrosis. The ZY-1-based fluorescent probes effectively identified and differentiated early-stage liver fibrosis from advanced liver fibrosis. This proof-of-concept study not only provides compelling evidence that ZY-1-based probes show promise for the early diagnosis and staging of liver fibrosis but also paves the way for further investigations into the use of ZY-1 in detecting other diseases associated with cFN.
Collapse
Affiliation(s)
- Mengjun Ge
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Haitao Zou
- National Supercomputing Center in Changsha, College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Jiahao Chen
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Qinyao Zhang
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Chang Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaxing Yang
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Jiumei Wu
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Xing Xie
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lei Lei
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China.
| | - Shaoliang Peng
- National Supercomputing Center in Changsha, College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Hemin Nie
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China.
| |
Collapse
|
3
|
Li Y, Wang H, He X, Zhu W, Bao Y, Gao X, Huang W, Ge X, Wei W, Zhang H, Sheng L, Zhang T, Li H. Zhi-Kang-Yin formula attenuates high-fat diet-induced metabolic disorders through modulating gut microbiota-bile acids axis in mice. Chin Med 2024; 19:145. [PMID: 39425211 PMCID: PMC11490013 DOI: 10.1186/s13020-024-01021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Metabolic disorders have become one of the global medical problems. Due to the complexity of its pathogenesis, there is still no effective treatment. Bile acids (BAs) and gut microbiota (GM) have been proved to be closely related to host metabolism, which could be important targets for metabolic disorders. Zhi-Kang-Yin (ZKY) is a traditional Chinese medicine (TCM) formula developed by the research team according to theory of TCM and has been shown to improve metabolism in clinic. However, the underlying mechanisms are unclear. AIM OF THE STUDY This study aimed to investigate the potential mechanisms of the beneficial effect of ZKY on metabolism. METHODS High-fat diet (HFD)-fed mice were treated with and without ZKY. The glucose and lipid metabolism-related indexes were measured. BA profile, GM composition and hepatic transcriptome were then investigated to analyze the changes of BAs, GM, and hepatic gene expression. Moreover, the relationship between GM and BAs was identified with functional gene quantification and ex vivo fermentation experiment. RESULTS ZKY reduced weight gain and lipid levels in both liver and serum, attenuated hepatic steatosis and improved glucose tolerance in HFD-fed mice. BA profile detection showed that ZKY changed the composition of BAs and increased the proportion of unconjugated BAs and non-12-OH BAs. Hepatic transcriptomic analysis revealed fatty acid metabolism and BA biosynthesis related pathways were regulated. In addition, ZKY significantly changed the structure of GM and upregulated the gene copy number of bacterial bile salt hydrolase. Meanwhile, ZKY directly promoted the growth of Bifidobacterium, which is a well-known bile salt hydrolase-producing genus. The ex vivo co-culture experiment with gut microbiota and BAs demonstrated that the changes of BAs profile in ZKY group were mediated by ZKY-shifted GM, which led to increased expression of genes associated with fatty acid degradation in the liver. CONCLUSION Our study indicated that the effect of ZKY on improving metabolism is associated with the modulation of GM-BAs axis, especially, by upregulating the abundance of bile salt hydrolase-expression bacteria and increasing the levels of unconjugated BAs. This study indicates that GM-BAs axis might be an important pathway for improving metabolic disorders by ZKY.
Collapse
Affiliation(s)
- Yifan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hao Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaofang He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weize Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiyang Bao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinxin Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenjin Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinyu Ge
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenjing Wei
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huan Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lili Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Tao Zhang
- Department of Liver Disease, The First Hospital of Hunan University of Chinese Medicine, Hunan, 410007, China.
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Zhao J, Zhou H, Wu R, Ruan C, Wang C, Ding J, Zhang T, Fang Z, Zheng H, Zhang L, Zhou J, Hu Z. Biological aging accelerates hepatic fibrosis: Insights from the NHANES 2017-2020 and genome-wide association study analysis. Ann Hepatol 2024:101579. [PMID: 39426601 DOI: 10.1016/j.aohep.2024.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 10/21/2024]
Abstract
INTRODUCTION AND OBJECTIVES This study aimed to investigate the association between biological aging and liver fibrosis in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). MATERIALS AND METHODS We analyzed NHANES 2017-2020 data to calculate phenotypic age. Hepatic steatosis and fibrosis were identified using controlled attenuation parameters (CAP), fatty liver index (FLI) and transient elastography (TE). The odds ratios (ORs) and 95% confidence intervals (CI) for significant MASLD fibrosis were calculated using multivariate logistic regression, and subgroup analyses were performed. We explored the potential causal relationship between telomere length and liver fibrosis using Mendelian randomization (MR). Additionally, we used the expression quantitative trait loci (eQTL) method and GSE197112 data to identify genes related to liver fibrosis and senescence. Finally, the APOLD1 expression was validated using GSE89632. RESULTS Phenotypic age was associated with liver fibrosis occurrence in MASLD (OR = 1.08, 95% CI 1.05-1.12). Subgroup analyses by BMI and age revealed differences. For obese or young to middle-aged MASLD patients, phenotypic age is significantly associated with liver fibrosis. (OR = 1.14, 95% CI 1.10-1.18; OR = 1.07, 95% CI 1.01-1.14 and OR = 1.14, 95% CI 1.07-1.22). MR revealed a negative association between telomere length and liver fibrosis (IVW method: OR = 0.63288, 95% CI 0.42498-0.94249). The gene APOLD1 was identified as a potential target through the intersection of the GEO dataset and eQTL genes. CONCLUSIONS This study emphasized the link between biological aging and fibrosis in young to middle-aged obese MASLD patients. We introduced phenotypic age as a clinical indicator and identified APOLD1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Jiaxin Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China
| | - Huiying Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China
| | - Rui Wu
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China
| | - Chen Ruan
- Department of Acupuncture, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Cheng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China
| | - Jiawei Ding
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China
| | - Tao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China
| | - Zheyu Fang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Huilin Zheng
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resource Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310000, China
| | - Lei Zhang
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resource Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310000, China
| | - Jie Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310000, China.
| | - Zhenhua Hu
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China; Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310000, China.
| |
Collapse
|
5
|
Khokhlov L, Siraw B, Ali M, Hussain F, Brown A, Shemisa K. Patients with atrial fibrillation and diabetes mellitus affected by nonalcoholic fatty liver disease have a greater risk of mortality and worse clinical outcomes. Cardiovasc Endocrinol Metab 2024; 13:e0307. [PMID: 38846627 PMCID: PMC11152824 DOI: 10.1097/xce.0000000000000307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/13/2024] [Indexed: 06/09/2024]
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is associated with several adverse clinical outcomes. In this study, we assessed the association between NAFLD and several clinical outcome measures in patients with diabetes mellitus (DM) and atrial fibrillation (AF). Methods We queried the National Inpatient Sample (NIS) between 2016 and 2019 for adult patients who were hospitalized with DM and AF. NAFLD was the independent variable. The primary outcome was inpatient mortality. The secondary outcomes were cardiogenic shock, cardiac arrest, gastrointestinal bleeding (GIB), invasive mechanical ventilation, length of stay, and total hospital charges. A multivariable logistic regression model was used to estimate odds ratios with a 95% confidence interval (CI) and a P value of less than 0.05 was considered significant. Results There were 6 723 293 hospitalizations with AF and DM and 253 639 (3.7%) had NAFLD. NAFLD and non-NAFLD cohorts had a mean age of 70.4 vs. 73.8 years, respectively. Overall, 55.6% were male and 73.8% were White. NAFLD was found to be significantly associated with in-hospital mortality [adjusted odds ratio (AOR), 4.2; 95% CI, 4.08-4.32], cardiogenic shock (AOR, 4.78; 95% CI, 4.59-4.98), cardiac arrest (AOR, 3.43; 95% CI, 3.27-3.59), GIB (AOR, 1.92; 95% CI, 1.86-1.98), length of stay, and total hospital charges. Conclusion In patients with AF and DM patients, the presence of NAFLD was associated with significantly worse clinical outcomes and higher resource utilization. Adverse cardiovascular events were common as well as GIB. Screening and prevention strategies modifying the risk and disease severity of NAFLD are needed.
Collapse
Affiliation(s)
- Leonid Khokhlov
- Department of Internal Medicine, Good Samaritan Hospital, TriHealth, Cincinnati, Ohio
| | - Bekure Siraw
- Department of Internal Medicine, Ascension Saint Joseph Hospital, Chicago, Illinois
| | - Mehnaaz Ali
- Department of Internal Medicine, Good Samaritan Hospital, TriHealth, Cincinnati, Ohio
| | - Fatima Hussain
- Department of Internal Medicine, Good Samaritan Hospital, TriHealth, Cincinnati, Ohio
| | - Amanda Brown
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kamal Shemisa
- Department of Internal Medicine, Good Samaritan Hospital, TriHealth, Cincinnati, Ohio
| |
Collapse
|
6
|
Lan T, Tacke F. Diagnostics and omics technologies for the detection and prediction of metabolic dysfunction-associated steatotic liver disease-related malignancies. Metabolism 2024; 161:156015. [PMID: 39216799 DOI: 10.1016/j.metabol.2024.156015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise, making it the leading etiology of chronic liver diseases and a prime cause of liver-related mortality. MASLD can progress into steatohepatitis (termed MASH), fibrosis, cirrhosis, and ultimately cancer. MASLD is associated with increased risks of hepatocellular carcinoma (HCC) and also extrahepatic malignancies, which can develop in both cirrhotic and non-cirrhotic patients, emphasizing the importance of identifying patients with MASLD at risk of developing MASLD-associated malignancies. However, the optimal screening, diagnostic, and risk stratification strategies for patients with MASLD at risk of cancer are still under debate. Individuals with MASH-associated cirrhosis are recommended to undergo surveillance for HCC (e.g. by ultrasound and biomarkers) every six months. No specific screening approaches for MASLD-related malignancies in non-cirrhotic cases are established to date. The rapidly developing omics technologies, including genetics, metabolomics, and proteomics, show great potential for discovering non-invasive markers to fulfill this unmet need. This review provides an overview on the incidence and mortality of MASLD-associated malignancies, current strategies for HCC screening, surveillance and diagnosis in patients with MASLD, and the evolving role of omics technologies in the discovery of non-invasive markers for the prediction and risk stratification of MASLD-associated HCC.
Collapse
Affiliation(s)
- Tian Lan
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany; Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
7
|
Yang J, Félix-Soriano E, Martínez-Gayo A, Ibañez-Santos J, Sáinz N, Martínez JA, Moreno-Aliaga MJ. SIRT1 and FOXO1 role on MASLD risk: effects of DHA-rich n-3 PUFA supplementation and exercise in aged obese female mice and in post-menopausal overweight/obese women. J Physiol Biochem 2024; 80:697-712. [PMID: 39264516 PMCID: PMC11502560 DOI: 10.1007/s13105-024-01044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Sirtuins 1 (SIRT1) and Forkhead box protein O1 (FOXO1) expression have been associated with obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). Exercise and/or docosahexaenoic acid (DHA) supplementation have shown beneficial effects on MASLD. The current study aims to assess the relationships between Sirt1, Foxo1 mRNA levels and several MASLD biomarkers, as well as the effects of DHA-rich n-3 PUFA supplementation and/or exercise in the steatotic liver of aged obese female mice, and in peripheral blood mononuclear cells (PBMCs) of postmenopausal women with overweight/obesity. In the liver of 18-month-old mice, Sirt1 levels positively correlated with the expression of genes related to fatty acid oxidation, and negatively correlated with lipogenic and proinflammatory genes. Exercise (long-term treadmill training), especially when combined with DHA, upregulated hepatic Sirt1 mRNA levels. Liver Foxo1 mRNA levels positively associated with hepatic triglycerides (TG) content and the expression of lipogenic and pro-inflammatory genes, while negatively correlated with the lipolytic gene Hsl. In PBMCs of postmenopausal women with overweight/obesity, FOXO1 mRNA expression negatively correlated with the hepatic steatosis index (HSI) and the Zhejiang University index (ZJU). After 16-weeks of DHA-rich PUFA supplementation and/or progressive resistance training (RT), most groups exhibited reduced MASLD biomarkers and risk indexes accompanying with body fat mass reduction, but no significant changes were found between the intervention groups. However, in PBMCs n-3 supplementation upregulated FOXO1 expression, and the RT groups exhibited higher SIRT1 expression. In summary, SIRT1 and FOXO1 could be involved in the beneficial mechanisms of exercise and n-3 PUFA supplementation related to MASLD manifestation.
Collapse
Affiliation(s)
- Jinchunzi Yang
- Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Current Address: Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518000, China
| | - Elisa Félix-Soriano
- Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - Alejandro Martínez-Gayo
- Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - Javier Ibañez-Santos
- Studies, Research and Sports Medicine Centre (CEIMD), Government of Navarre, 31005, Pamplona, Spain
| | - Neira Sáinz
- Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - J Alfredo Martínez
- Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - María J Moreno-Aliaga
- Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
- IdISNA, Navarra Institute for Health Research, 31008, Pamplona, Spain.
| |
Collapse
|
8
|
Zha JH, Xia TY, Chen ZY, Zheng TY, Huang S, Yu Q, Zhou JY, Cao P, Wang YC, Tang TY, Song Y, Xu J, Song B, Liu YP, Ju SH. Fully automated hybrid approach on conventional MRI for triaging clinically significant liver fibrosis: A multi-center cohort study. J Med Virol 2024; 96:e29882. [PMID: 39185672 DOI: 10.1002/jmv.29882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
Establishing reliable noninvasive tools to precisely diagnose clinically significant liver fibrosis (SF, ≥F2) remains an unmet need. We aimed to build a combined radiomics-clinic (CoRC) model for triaging SF and explore the additive value of the CoRC model to transient elastography-based liver stiffness measurement (FibroScan, TE-LSM). This retrospective study recruited 595 patients with biopsy-proven liver fibrosis at two centers between January 2015 and December 2021. At Center 1, the patients before December 2018 were randomly split into training (276) and internal test (118) sets, the remaining were time-independent as a temporal test set (96). Another data set (105) from Center 2 was collected for external testing. Radiomics scores were built with selected features from Deep learning-based (ResUNet) automated whole liver segmentations on MRI (T2FS and delayed enhanced-T1WI). The CoRC model incorporated radiomics scores and relevant clinical variables with logistic regression, comparing routine approaches. Diagnostic performance was evaluated by the area under the receiver operating characteristic curve (AUC). The additive value of the CoRC model to TE-LSM was investigated, considering necroinflammation. The CoRC model achieved AUCs of 0.79 (0.70, 0.86), 0.82 (0.73, 0.89), and 0.81 (0.72-0.91), outperformed FIB-4, APRI (all p < 0.05) in the internal, temporal, and external test sets and maintained the discriminatory power in G0-1 subgroups (AUCs range, 0.85-0.86; all p < 0.05). The AUCs of joint CoRC-LSM model were 0.86 (0.79-0.94), and 0.81 (0.72-0.90) in the internal and temporal sets (p = 0.01). The CoRC model was useful for triaging SF, and may add value to TE-LSM.
Collapse
Affiliation(s)
- Jun-Hao Zha
- Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Tian-Yi Xia
- Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Zhi-Yuan Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tian-Ying Zheng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Huang
- Department of Radiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qian Yu
- Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Jia-Ying Zhou
- Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Peng Cao
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yuan-Cheng Wang
- Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Tian-Yu Tang
- Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthineers Ltd., Shanghai, China
| | - Jun Xu
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, Sanya People's Hospital, Sanya, China
| | - Yu-Pin Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sheng-Hong Ju
- Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
9
|
Lee HB, Park M, Lee SY, Ha SK, Kim Y, Lee KW, Park HY. Lactococcus lactis KF140 Ameliorates Nonalcoholic Fatty Liver Disease Induced by N ε-Carboxymethyl-Lysine and High-Fat Diet. Mol Nutr Food Res 2024; 68:e2400260. [PMID: 38962859 DOI: 10.1002/mnfr.202400260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/05/2024] [Indexed: 07/05/2024]
Abstract
SCOPE Long-term consumption of excessive dietary advanced glycation end-products such as Nε-carboxymethyl-lysine (CML), which are produced by the Maillard reaction during food thermal processing, leads to nonalcoholic fatty liver disease (NAFLD) along with high fat consumption. The study previously finds that administration of Lactococcus lactis KF140 (LL-KF140) detoxifies CML by decreasing CML absorption both in a rat model and clinical trial. METHODS AND RESULTS The present study evaluates the ameliorative effect of LL-KF140 on NAFLD and fatty liver-related biomarkers in a mouse model induced by CML and high fat. LL-KF140 is orally administered to mice at a concentration of 1 × 107 or 1 × 108 colony-forming unit (CFU) per mouse for 8 weeks. LL-KF140 administration ameliorates the NAFLD-related symptoms by reducing body weight and fat mass gain along with levels of serum aspartate transaminase, alanine transferase, and lipids as well as glucose intolerance and insulin resistance in CML-treated mice. In addition, histological analysis including staining and western blotting shows that LL-KF140 suppresses the lipogenesis pathway and CML absorption, thereby suppressing CML-induced NAFLD. CONCLUSION These findings suggest that LL-KF140 attenuates dietary CML-induced NAFLD by suppressing the de novo lipogenesis pathway, and it may be used as a probiotic strain.
Collapse
Affiliation(s)
- Hye-Bin Lee
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Miri Park
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - So-Young Lee
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Sang Keun Ha
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Yoonsook Kim
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
- Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon, 34113, Republic of Korea
| |
Collapse
|
10
|
Qu B, Li Z. Exploring non-invasive diagnostics for metabolic dysfunction-associated fatty liver disease. World J Gastroenterol 2024; 30:3447-3451. [PMID: 39091712 PMCID: PMC11290396 DOI: 10.3748/wjg.v30.i28.3447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
The population with metabolic dysfunction-associated fatty liver disease (MAFLD) is increasingly common worldwide. Identification of people at risk of progression to advanced stages is necessary to timely offer interventions and appropriate care. Liver biopsy is currently considered the gold standard for the diagnosis and staging of MAFLD, but it has associated risks and limitations. This has spurred the exploration of non-invasive diagnostics for MAFLD, especially for steatohepatitis and fibrosis. These non-invasive approaches mostly include biomarkers and algorithms derived from anthropometric measurements, serum tests, imaging or stool metagenome profiling. However, they still need rigorous and widespread clinical validation for the diagnostic performance.
Collapse
Affiliation(s)
- Biao Qu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Zheng Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, Jiangsu Province, China
| |
Collapse
|
11
|
Meng LY, Yang CT, Bao JF, Huang JS. Effectiveness and safety of tenofovir amibufenamide in chronic hepatitis B patients. World J Gastroenterol 2024; 30:3261-3263. [PMID: 39086637 PMCID: PMC11287400 DOI: 10.3748/wjg.v30.i26.3261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024] Open
Abstract
This letter to the editor relates to the study entitled "Tenofovir amibufenamide vs tenofovir alafenamide for treating chronic hepatitis B: A real-world study", which was recently published by Peng et al. Hepatitis B virus infection represents a significant health burden worldwide and can lead to cirrhosis and even liver cancer. The antiviral drugs currently used to treat patients with chronic hepatitis B infection still have many side effects, so it is crucial to identify safe and effective drugs to inhibit viral replication.
Collapse
Affiliation(s)
- Li-Yang Meng
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Chao-Ting Yang
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Jian-Feng Bao
- Department of Hepatology, Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou 310023, Zhejiang Province, China
| | - Jin-Song Huang
- Department of Hepatology, Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou 310023, Zhejiang Province, China
| |
Collapse
|
12
|
Albert SG, Wood EM. FIB-4 as a screening and disease monitoring method in pre-fibrotic stages of metabolic dysfunction-associated fatty liver disease (MASLD). J Diabetes Complications 2024; 38:108777. [PMID: 38788522 DOI: 10.1016/j.jdiacomp.2024.108777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/05/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
AIMS Guidelines emphasize screening high-risk patients for metabolic dysfunction-associated steatotic liver disease (MASLD) with a calculated FIB-4 score for therapy to reverse fibrosis. We aimed to determine whether FIB-4 can effectively screen and monitor changes in steatohepatitis (MASH). METHODS Data were retrieved from the NIDDK-CR R4R central repository, of the CRN/PIVENS (pioglitazone vs vitamin E vs placebo) trial of adult patients without diabetes mellitus and with MASLD. RESULTS 220 patients with MASLD had alanine transaminase (ALT), aspartate aminotransferase (AST) and platelet count, to calculate FIB-4, and repeat liver biopsies for histological MASLD activity scores (NAS). Compared to NAS score of 2, Fib-4 was higher at NAS 5) (p = 0.03), and NAS score of 6 (p = 0.02). FIB-4 correlated with cellular ballooning (r = 0.309, p < 0.001). Levels of ALT (ANOVA, p = 0.016) and AST (ANOVA p = 0.0008) were associated with NAS. NAS improved with pioglitazone by 39 %, p < 0.001 and with vitamin E by 36 %, p < 0.001. Pioglitazone and vitamin E both improved histological sub-scores for steatosis, and inflammation, without statistical changes in fibrosis grade. Changes in FIB-4 correlated with changes in NAS (r = 0.237, p < 0.001). CONCLUSIONS In this post hoc analysis, changes in FIB-4 were associated with changes of steatohepatitis. Medication known to treat steatohepatitis, may be considered, before the onset of advanced fibrosis.
Collapse
Affiliation(s)
- Stewart G Albert
- Department of Internal Medicine, Division of Endocrinology, Saint Louis University School of Medicine, United States of America.
| | - Emily M Wood
- Department of Internal Medicine, Division of Endocrinology, Saint Louis University School of Medicine, United States of America
| |
Collapse
|
13
|
Navarro-Masip È, Mestres Petit N, Salinas-Roca B, Herrerías F, Vilardell F, de la Fuente MC, Pallares J, Santamaría M, Zorzano-Martínez M, Sánchez E, Matías-Guiu X, López-Cano C, Soler AG, León-Mengíbar J, Bueno M, Lecube A. Metabolic Dysfunction-Associated Steatotic Liver Disease in Severe Obesity and Concordance between Invasive (Biopsy) and Noninvasive (OWLiver®) Diagnoses. Obes Facts 2024; 17:473-482. [PMID: 38934179 DOI: 10.1159/000538765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/05/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD), now termed metabolic dysfunction-associated steatotic liver disease (MASLD), is an escalating health concern linked to obesity and type 2 diabetes. Despite liver biopsy being the gold standard, its invasiveness underscores the need for noninvasive diagnostic methods. METHODS A cross-sectional study was performed to assess MASLD using the noninvasive OWLiver® serum lipidomics test in a cohort of 117 patients with severe obesity undergoing bariatric surgery, comparing outcomes with liver biopsy. Exclusions (n = 24) included insufficient data, liver disease etiology other than MASLD, corticosteroid treatment, excessive alcohol consumption, low glomerular filtration rate, and declination to participate. Comprehensive laboratory tests, demographic assessments, and liver biopsies were performed. Serum metabolites were analyzed using OWLiver®, a serum lipidomic test that discriminates between healthy liver, steatosis, metabolic dysfunction-associated steatohepatitis (MASH), and MASH with fibrosis ≥2 by means of three algorithms run sequentially. RESULTS Liver biopsy revealed a MASLD prevalence of 95.7%, with MASH present in 28.2% of cases. OWLiver® demonstrated a tendency to diagnose more severe cases. Body mass index (BMI), rather than the presence of type 2 diabetes, emerged as the sole independent factor linked to the probability of concordance. Therefore, the all-population concordance of 63.2% between OWLiver® and liver biopsy notably raised to 77.1% in patients with a BMI <40 kg/m2. These findings suggest a potential correlation between lower BMI and enhanced concordance between OWLiver® and biopsy. CONCLUSION This study yields valuable insights into the concordance between liver biopsy and the noninvasive serum lipidomic test, OWLiver®, in severe obesity. OWLiver® demonstrated a tendency to amplify MASLD severity, with BMI values influencing concordance. Patients with BMI <40 kg/m2 may derive optimal benefits from this noninvasive diagnostic approach.
Collapse
Affiliation(s)
- Èlia Navarro-Masip
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida, Lleida, Spain,
| | - Nuria Mestres Petit
- General and Digestive Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain
- Surgery Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Blanca Salinas-Roca
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
- Facultat de Ciències de la Salut-Universitat Ramón Llull Blanquerna, Carrer Padilla, Barcelona, Spain
| | - Fernando Herrerías
- General and Digestive Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain
- Surgery Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Felip Vilardell
- Department of Pathology and Molecular Genetics, Arnau de Vilanova University Hospital, Institut de Recerca Biomèdica (IRB), Lleida, Spain
- Oncological Pathology Research Group, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Mari Cruz de la Fuente
- General and Digestive Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain
- Surgery Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Judit Pallares
- Department of Pathology and Molecular Genetics, Arnau de Vilanova University Hospital, Institut de Recerca Biomèdica (IRB), Lleida, Spain
- Oncological Pathology Research Group, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Maite Santamaría
- General and Digestive Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain
- Surgery Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Marta Zorzano-Martínez
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital, Lleida, Spain
| | - Enric Sánchez
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Xavier Matías-Guiu
- Department of Pathology and Molecular Genetics, Arnau de Vilanova University Hospital, Institut de Recerca Biomèdica (IRB), Lleida, Spain
- Oncological Pathology Research Group, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Carolina López-Cano
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital, Lleida, Spain
| | - Ana Gloria Soler
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital, Lleida, Spain
| | - Josep León-Mengíbar
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital, Lleida, Spain
| | - Marta Bueno
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital, Lleida, Spain
| | - Albert Lecube
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital, Lleida, Spain
| |
Collapse
|
14
|
Ma Y, Wang J, Xiao W, Fan X. A review of MASLD-related hepatocellular carcinoma: progress in pathogenesis, early detection, and therapeutic interventions. Front Med (Lausanne) 2024; 11:1410668. [PMID: 38895182 PMCID: PMC11184143 DOI: 10.3389/fmed.2024.1410668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is continuously rising, evolving into a global health challenge. Concurrently, cases of hepatocellular carcinoma (HCC) associated with MASLD are also on the increase. Although traditional risk factors such as age, gender, and metabolic factors play significant roles in the development of HCC, it cannot be overlooked that MASLD, triggered by changes in modern lifestyle and dietary habits, may also exacerbate the risk of HCC, and this phenomenon is common even among non-obese individuals. Regrettably, MASLD often fails to receive timely diagnosis, resulting in a limited number of patients receiving HCC surveillance. Moreover, there is currently a lack of clear definition for the target population for surveillance beyond patients with cirrhosis. Consequently, MASLD-related HCC is often detected at a late stage, precluding the optimal timing for curative treatment. However, our understanding of the pathogenesis and progression of HCC remains limited. Therefore, this paper reviews relevant literature from recent years, delving into multiple dimensions such as pathogenesis, surveillance and diagnosis, prevention, and treatment, aiming to provide new ideas and directions for the prevention and treatment of MASLD-related HCC.
Collapse
Affiliation(s)
- Yang Ma
- Department of Human Anatomy, School of Basic Medicine, Guilin Medical University, Guilin, China
| | - Jinguo Wang
- School of Public Health, Guilin Medical University, Guilin, China
| | - Wenping Xiao
- Department of Human Anatomy, School of Basic Medicine, Guilin Medical University, Guilin, China
| | - Xiaoming Fan
- Department of Human Anatomy, School of Basic Medicine, Guilin Medical University, Guilin, China
| |
Collapse
|
15
|
Stine JG, Medic N, Pettersson B, Venerus M, Blau JE. The health care experience of adults with metabolic dysfunction-associated steatohepatitis and influence of PNPLA3: A qualitative study. Hepatol Commun 2024; 8:e0451. [PMID: 38780312 PMCID: PMC11124700 DOI: 10.1097/hc9.0000000000000451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/06/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive form of metabolic dysfunction-associated steatotic liver disease, for which there is limited information about patient experience, including the patient journey. METHODS In this study, we conducted interviews with patients with MASH to qualitatively evaluate the patient journey and help elucidate the experiences of this patient population. We also investigated if the patatin-like phospholipase domain-containing protein 3 (PNPLA3) I148M variant (non-Hispanic) or being of Hispanic ethnicity may influence patient experiences because these 2 subgroups develop advanced liver disease more frequently than other patient groups. RESULTS One-to-one interviews were conducted with 28 adults (with PNPLA3 I148M genetic variant, n = 10; Hispanic, n = 8) living in the United States who had been diagnosed with MASH with liver fibrosis. Patients were asked open-ended questions about their experiences before, at, and after their diagnosis. The data collected found that patients experienced a long process of misdiagnoses before their diagnosis of MASH, a lack of clear information provided by clinicians, and limited accessibility to support groups. Hispanic patients reported "impact on family/friends" (75%) and "fear of disease progression" (75%) more frequently than the other patient cohorts interviewed. This is the first report of "fear of progression" in patients with MASH. No patients who were White and had the PNPLA3 I148M variant reported nausea/vomiting, in contrast to other patient cohorts. CONCLUSIONS This qualitative study identified key aspects of the patient journey that are important for clinical providers and medical teams to recognize. We also propose a new algorithm that could be developed to help screen relatives of patients who are found to carry the PNPLA3 I148M variant.
Collapse
Affiliation(s)
- Jonathan G. Stine
- Department of Medicine, Division of Gastroenterology and Hepatology, The Pennsylvania State University Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Fatty Liver Program, Pennsylvania State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Liver Center, The Pennsylvania State University Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Cancer Institute, The Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Nenad Medic
- Patient Centered Science, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
| | - Billie Pettersson
- Patient Centered Science, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals Medical, AstraZeneca, Gothenburg, Sweden
| | | | - Jenny E. Blau
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| |
Collapse
|
16
|
Tas E, Sundararajan D, Lo JS, Morelli N, Garcia-Reyes Y, Ware MA, Rahat H, Ou X, Na X, Sundaram S, Severn C, Pyle LL, Børsheim E, Vajravelu ME, Muzumdar R, Dranoff JA, Cree MG. Diagnostic Accuracy of Transient Elastography in Hepatosteatosis in Youth With Obesity. J Endocr Soc 2024; 8:bvae110. [PMID: 38895640 PMCID: PMC11185182 DOI: 10.1210/jendso/bvae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 06/21/2024] Open
Abstract
Context Steatotic liver disease is common but overlooked in childhood obesity; diagnostic methods are invasive or expensive. Objective We sought to determine the diagnostic accuracy of vibration-controlled transient elastography (VCTE) compared with magnetic resonance imaging (MRI) in adolescents with obesity and high risk for hepatosteatosis. Methods Baseline data in 3 clinical trials enrolling adolescents with obesity were included (NCT03919929, NCT03717935, NCT04342390). Liver fat was assessed using MRI fat fraction and VCTE-based controlled attenuation parameter (CAP). Hepatosteatosis was defined as MRI fat fraction ≥5.0%. The area under the receiver-operating characteristic curves (AUROCs) for CAP against MRI was calculated, and optimal CAP using the Youden index for hepatosteatosis diagnosis was determined. Results Data from 82 adolescents (age 15.6 ± 1.4 years, body mass index 36.5 ± 5.9 kg/m2, 81% female) were included. Fifty youth had hepatosteatosis by MRI (fat fraction 9.3% ; 95% CI 6.7, 14.0), and 32 participants did not have hepatosteatosis (fat fraction 3.1%; 95% CI 2.2, 3.9; P < .001). The hepatosteatosis group had higher mean CAP compared with no hepatosteatosis (293 dB/m; 95% CI 267, 325 vs 267 dB/m; 95% CI 248, 282; P = .0120). A CAP of 281 dB/m had the highest sensitivity (60%) and specificity (74%) with AUROC of 0.649 (95% CI 0.51-0.79; P = .04) in the entire cohort. In a subset of participants with polycystic ovary syndrome (PCOS), a CAP of 306 dB/m had the highest sensitivity (78%) and specificity (52%) and AUROC of 0.678 (95% CI 0.45-0.90; P = .108). Conclusion CAP of 281 dB/m has modest diagnostic performance for hepatosteatosis compared with MRI in youth with significant obesity. A higher CAP in youth with PCOS suggests that comorbidities might affect optimal CAP in hepatosteatosis diagnosis.
Collapse
Affiliation(s)
- Emir Tas
- Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
- Center for Childhood Obesity Prevention, Arkansas Children's Research Institute, Little Rock, AR 72202, USA
| | - Divya Sundararajan
- Pediatric Endocrinology, University of Colorado Anschutz, Aurora, CO 80045, USA
| | - Jaclyn S Lo
- Pediatric Endocrinology, University of Colorado Anschutz, Aurora, CO 80045, USA
| | - Nazeen Morelli
- Pediatric Endocrinology, University of Colorado Anschutz, Aurora, CO 80045, USA
| | | | - Meredith A Ware
- Pediatric Endocrinology, University of Colorado Anschutz, Aurora, CO 80045, USA
| | - Haseeb Rahat
- Pediatric Endocrinology, University of Colorado Anschutz, Aurora, CO 80045, USA
| | - Xiawei Ou
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xiaoxu Na
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Shikha Sundaram
- Pediatric Gastroenterology, University of Colorado Anschutz, Aurora, CO 80045, USA
| | - Cameron Severn
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Laura L Pyle
- Pediatric Endocrinology, University of Colorado Anschutz, Aurora, CO 80045, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Elisabet Børsheim
- Center for Childhood Obesity Prevention, Arkansas Children's Research Institute, Little Rock, AR 72202, USA
| | - Mary Ellen Vajravelu
- Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Radhika Muzumdar
- Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jonathan A Dranoff
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06520, USA
| | - Melanie G Cree
- Pediatric Endocrinology, University of Colorado Anschutz, Aurora, CO 80045, USA
- Ludeman Center for Women's Health, Aurora, CO 80045, USA
| |
Collapse
|
17
|
Ling C, Liu SS, Wang YY, Huo GT, Yang YW, Xu N, Wang H, Wu Y, Miao YF, Fu R, Zhao YW, Fan CF. Overexpression of wild-type HRAS drives non-alcoholic steatohepatitis to hepatocellular carcinoma in mice. Zool Res 2024; 45:551-566. [PMID: 38757223 PMCID: PMC11188599 DOI: 10.24272/j.issn.2095-8137.2024.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/07/2024] [Indexed: 05/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a prevalent solid carcinoma of significant concern, is an aggressive and often fatal disease with increasing global incidence rates and poor therapeutic outcomes. The etiology and pathological progression of non-alcoholic steatohepatitis (NASH)-related HCC is multifactorial and multistage. However, no single animal model can accurately mimic the full NASH-related HCC pathological progression, posing considerable challenges to transition and mechanistic studies. Herein, a novel conditional inducible wild-type human HRAS overexpressed mouse model (HRAS-HCC) was established, demonstrating 100% morbidity and mortality within approximately one month under normal dietary and lifestyle conditions. Advanced symptoms of HCC such as ascites, thrombus, internal hemorrhage, jaundice, and lung metastasis were successfully replicated in mice. In-depth pathological features of NASH- related HCC were demonstrated by pathological staining, biochemical analyses, and typical marker gene detections. Combined murine anti-PD-1 and sorafenib treatment effectively prolonged mouse survival, further confirming the accuracy and reliability of the model. Based on protein-protein interaction (PPI) network and RNA sequencing analyses, we speculated that overexpression of HRAS may initiate the THBS1-COL4A3 axis to induce NASH with severe fibrosis, with subsequent progression to HCC. Collectively, our study successfully duplicated natural sequential progression in a single murine model over a very short period, providing an accurate and reliable preclinical tool for therapeutic evaluations targeting the NASH to HCC continuum.
Collapse
Affiliation(s)
- Chen Ling
- College of Life Sciences, Northwest University, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi'an, Shaanxi 710069, China
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Su-Su Liu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Yu-Ya Wang
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Gui-Tao Huo
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control (NIFDC), Beijing 100176, China
| | - Yan-Wei Yang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control (NIFDC), Beijing 100176, China
| | - Nan Xu
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Institute for Biological Products Control, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Hong Wang
- Division of Laboratory Animal Monitoring, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Yong Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Yu-Fa Miao
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control (NIFDC), Beijing 100176, China
| | - Rui Fu
- Division of Laboratory Animal Monitoring, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China
| | - Yu-Wei Zhao
- College of Life Sciences, Northwest University, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi'an, Shaanxi 710069, China. E-mail:
| | - Chang-Fa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China. E-mail:
| |
Collapse
|
18
|
Wang CJ, Hu YX, Bai TY, Li J, Wang H, Lv XL, Zhang MD, Chang FH. Identification of disease-specific genes related to immune infiltration in nonalcoholic steatohepatitis using machine learning algorithms. Medicine (Baltimore) 2024; 103:e38001. [PMID: 38758850 PMCID: PMC11098182 DOI: 10.1097/md.0000000000038001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/03/2024] [Indexed: 05/19/2024] Open
Abstract
To identify disease signature genes associated with immune infiltration in nonalcoholic steatohepatitis (NASH), we downloaded 2 publicly available gene expression profiles, GSE164760 and GSE37031, from the gene expression omnibus database. These profiles represent human NASH and control samples and were used for differential genes (DEGs) expression screening. Two machine learning methods, the Least Absolute Shrinkage and Selection Operator regression model and Support Vector Machine Recursive Feature Elimination, were used to identify candidate disease signature genes. The CIBERSORT deconvolution algorithm was employed to analyze the infiltration of 22 immune cell types in NASH. Additionally, we constructed a NASH cell model using HepG2 cells treated with oleic acid and free fatty acids. The construction of the cell model was verified using oil red O staining, and Western blotting was used to detect the protein expression of the disease signature genes in both control and model groups. As a result, a total of 262 DEGs were identified. These DEGs were primarily associated with metal ion transmembrane transporter activity, sodium ion transmembrane transporter protein activity, calcium ion, and neuroactive ligand-receptor interactions. FOS, IGFBP2, dual-specificity phosphatase 1 (DUSP1), and IKZF3 were identified as disease signature genes of NASH by the least absolute shrinkage and selection operator and Support Vector Machine Recursive Feature Elimination algorithms for DEGs analysis. The receiver operating characteristic curves showed that FOS, IGFBP2, DUSP1, and IKZF3 had good diagnostic value (area under receiver operating characteristic curve > 0.8). These findings were validated in the GSE89632 dataset and through cellular assays. Immunocyte infiltration analysis revealed that NASH was associated with CD8 T cells, CD4 T cells, follicular helper T cells, resting NK cells, eosinophils, regulatory T cells, and γδ T cells. The FOS, IGFBP2, DUSP1, and IKZF3 genes were specifically associated with follicular helper T cells. Lipid droplet aggregation significantly increased in HepG2 cells treated with oleic acid and free fatty acids, indicating successful construction of the cell model. In this model, the expression of FOS, IGFBP2, and DUSP1 was significantly decreased, while that of IKZF3 was significantly elevated (P < .01, P < .001) compared with the control group. Therefore, FOS, IGFBP2, DUSP1, and IKZF3 can be considered as disease signature genes associated with immune infiltration in NASH.
Collapse
Affiliation(s)
- Chao-Jie Wang
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Yu-Xia Hu
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Tu-Ya Bai
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Jun Li
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Han Wang
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Xiao-Li Lv
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Meng-Di Zhang
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Fu-Hou Chang
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| |
Collapse
|
19
|
Yin JY, Yang TY, Yang BQ, Hou CX, Li JN, Li Y, Wang Q. FibroScan-aspartate transaminase: A superior non-invasive model for diagnosing high-risk metabolic dysfunction-associated steatohepatitis. World J Gastroenterol 2024; 30:2440-2453. [PMID: 38764767 PMCID: PMC11099389 DOI: 10.3748/wjg.v30.i18.2440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 05/11/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) with hepatic histological NAFLD activity score ≥ 4 and fibrosis stage F ≥ 2 is regarded as "at risk" non-alcoholic steatohepatitis (NASH). Based on an international consensus, NAFLD and NASH were renamed as metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), respectively; hence, we introduced the term "high-risk MASH". Diagnostic values of seven non-invasive models, including FibroScan-aspartate transaminase (FAST), fibrosis-4 (FIB-4), aspartate transaminase to platelet ratio index (APRI), etc. for high-risk MASH have rarely been studied and compared in MASLD. AIM To assess the clinical value of seven non-invasive models as alternatives to liver biopsy for diagnosing high-risk MASH. METHODS A retrospective analysis was conducted on 309 patients diagnosed with NAFLD via liver biopsy at Beijing Ditan Hospital, between January 2012 and December 2020. After screening for MASLD and the exclusion criteria, 279 patients were included and categorized into high-risk and non-high-risk MASH groups. Utilizing threshold values of each model, sensitivity, specificity, positive predictive value (PPV), and negative predictive values (NPV), were calculated. Receiver operating characteristic curves were constructed to evaluate their diagnostic efficacy based on the area under the curve (AUROC). RESULTS MASLD diagnostic criteria were met by 99.4% patients with NAFLD. The MASLD population was analyzed in two cohorts: Overall population (279 patients) and the subgroup (117 patients) who underwent liver transient elastography (FibroScan). In the overall population, FIB-4 showed better diagnostic efficacy and higher PPV, with sensitivity, specificity, PPV, NPV, and AUROC of 26.9%, 95.2%, 73.5%, 72.2%, and 0.75. APRI, Forns index, and aspartate transaminase to alanine transaminase ratio (ARR) showed moderate diagnostic efficacy, whereas S index and gamma-glutamyl transpeptidase to platelet ratio (GPR) were relatively weaker. In the subgroup, FAST had the highest diagnostic efficacy, its sensitivity, specificity, PPV, NPV, and AUROC were 44.2%, 92.3%, 82.1%, 67.4%, and 0.82. The FIB-4 AUROC was 0.76. S index and GPR exhibited almost no diagnostic value for high-risk MASH. CONCLUSION FAST and FIB-4 could replace liver biopsy as more effectively diagnostic methods for high-risk MASH compared to APRI, Forns index, ARR, S index, and GPR; FAST is superior to FIB-4.
Collapse
Affiliation(s)
- Jing-Ya Yin
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Tian-Yuan Yang
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Bing-Qing Yang
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Chen-Xue Hou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Jun-Nan Li
- Beijing institute of infectious disease, Beijing 100015, China
| | - Yue Li
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Qi Wang
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
20
|
Kokkorakis M, Muzurović E, Volčanšek Š, Chakhtoura M, Hill MA, Mikhailidis DP, Mantzoros CS. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Pharmacol Rev 2024; 76:454-499. [PMID: 38697855 DOI: 10.1124/pharmrev.123.001087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 05/05/2024] Open
Abstract
Steatotic liver disease (SLD) displays a dynamic and complex disease phenotype. Consequently, the metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) therapeutic pipeline is expanding rapidly and in multiple directions. In parallel, noninvasive tools for diagnosing and monitoring responses to therapeutic interventions are being studied, and clinically feasible findings are being explored as primary outcomes in interventional trials. The realization that distinct subgroups exist under the umbrella of SLD should guide more precise and personalized treatment recommendations and facilitate advancements in pharmacotherapeutics. This review summarizes recent updates of pathophysiology-based nomenclature and outlines both effective pharmacotherapeutics and those in the pipeline for MASLD/MASH, detailing their mode of action and the current status of phase 2 and 3 clinical trials. Of the extensive arsenal of pharmacotherapeutics in the MASLD/MASH pipeline, several have been rejected, whereas other, mainly monotherapy options, have shown only marginal benefits and are now being tested as part of combination therapies, yet others are still in development as monotherapies. Although the Food and Drug Administration (FDA) has recently approved resmetirom, additional therapeutic approaches in development will ideally target MASH and fibrosis while improving cardiometabolic risk factors. Due to the urgent need for the development of novel therapeutic strategies and the potential availability of safety and tolerability data, repurposing existing and approved drugs is an appealing option. Finally, it is essential to highlight that SLD and, by extension, MASLD should be recognized and approached as a systemic disease affecting multiple organs, with the vigorous implementation of interdisciplinary and coordinated action plans. SIGNIFICANCE STATEMENT: Steatotic liver disease (SLD), including metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, is the most prevalent chronic liver condition, affecting more than one-fourth of the global population. This review aims to provide the most recent information regarding SLD pathophysiology, diagnosis, and management according to the latest advancements in the guidelines and clinical trials. Collectively, it is hoped that the information provided furthers the understanding of the current state of SLD with direct clinical implications and stimulates research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Emir Muzurović
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Špela Volčanšek
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Marlene Chakhtoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Michael A Hill
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Dimitri P Mikhailidis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| |
Collapse
|
21
|
McHenry S, Glover M, Ahmed A, Alayo Q, Zulfiqar M, Ludwig DR, Ciorba MA, Davidson NO, Deepak P. NAFLD Is Associated With Quiescent Rather Than Active Crohn's Disease. Inflamm Bowel Dis 2024; 30:757-767. [PMID: 37454277 PMCID: PMC11491614 DOI: 10.1093/ibd/izad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND AND AIMS Crohn's disease (CD) confers an increased risk of nonalcoholic fatty liver disease (NAFLD), but the pathogenesis remains poorly understood. We determined if active intestinal inflammation increases the risk of NAFLD in patients with CD. METHODS Two cohorts (2017/2018 and 2020) with CD and no known liver disease were enrolled consecutively during staging magnetic resonance enterography. We quantified proton density fat fraction, MaRIA (Magnetic Resonance Index of Activity), and visceral adipose tissue. NAFLD was diagnosed when proton density fat fraction ≥5.5%. Synchronous endoscopy was graded by the Simple Endoscopic Score for CD and Rutgeerts score, while clinical activity was graded by the Harvey-Bradshaw index. Cytokine profiling was performed for the 2020 cohort. Transient elastography and liver biopsy were requested by standard of care. RESULTS NAFLD was diagnosed in 40% (n = 144 of 363), with higher prevalence during radiographically quiescent disease (odds ratio, 1.7; P = .01), independent of body mass index/visceral adipose tissue (adjusted odds ratio, 7.8; P = .03). These findings were corroborated by endoscopic disease activity, but not by aggregate clinical symptoms. Circulating interleukin-8 was independent of body mass index to predict NAFLD, but traditional proinflammatory cytokines were not. NAFLD subjects had similar liver stiffness estimates regardless of CD activity. Definitive or borderline steatohepatitis was present in most patients that underwent liver biopsy. CONCLUSIONS Quiescent CD is associated with risk of NAFLD. These findings suggest potentially distinct pathogenic mechanisms of NAFLD in patients with CD compared with the prevailing leaky gut hypothesis proposed for individuals without inflammatory bowel disease. Future validation and mechanistic studies are needed to dissect these distinct disease modifying factors.
Collapse
Affiliation(s)
- Scott McHenry
- Division of Gastroenterology, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew Glover
- Division of Gastroenterology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ali Ahmed
- Division of Gastroenterology, Washington University in St. Louis, St. Louis, MO, USA
- Inflammatory Bowel Disease Section, Washington University in St. Louis, St. Louis, MO, USA
| | - Quazim Alayo
- Division of Gastroenterology, Washington University in St. Louis, St. Louis, MO, USA
- Inflammatory Bowel Disease Section, Washington University in St. Louis, St. Louis, MO, USA
| | - Maria Zulfiqar
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Daniel R Ludwig
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew A Ciorba
- Division of Gastroenterology, Washington University in St. Louis, St. Louis, MO, USA
- Inflammatory Bowel Disease Section, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Washington University in St. Louis, St. Louis, MO, USA
| | - Parakkal Deepak
- Division of Gastroenterology, Washington University in St. Louis, St. Louis, MO, USA
- Inflammatory Bowel Disease Section, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
22
|
Loomba R, Clark G, Teckman J, Ajmera V, Behling C, Brantly M, Brenner D, D'Armiento J, Fried MW, Iyer JS, Mandorfer M, Rockey DC, Tincopa M, Vuppalanchi R, Younossi Z, Krag A, Turner AM, Strnad P. Review article: New developments in biomarkers and clinical drug development in alpha-1 antitrypsin deficiency-related liver disease. Aliment Pharmacol Ther 2024; 59:1183-1195. [PMID: 38516814 DOI: 10.1111/apt.17967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Alpha-1 antitrypsin liver disease (AATLD) occurs in a subset of patients with alpha-1 antitrypsin deficiency. Risk factors for disease progression and specific pathophysiologic features are not well known and validated non-invasive assessments for disease severity are lacking. Currently, there are no approved treatments for AATLD. AIMS To outline existing understanding of AATLD and to identify knowledge gaps critical to improving clinical trial design and development of new treatments. METHODS This report was developed following a multi-stakeholder forum organised by the Alpha-1 Antitrypsin Deficiency Related Liver Disease Expert Panel in which experts presented an overview of the available literature on this topic. RESULTS AATLD results from a 'gain of toxic function' and primarily manifests in those with the homozygous Pi*ZZ genotype. Accumulation of misfolded 'Z' AAT protein in liver cells triggers intracellular hepatocyte injury which may ultimately lead to hepatic fibrosis. Male gender, age over 50 years, persistently elevated liver tests, concomitant hepatitis B or C virus infection, and metabolic syndrome, including obesity and type 2 diabetes mellitus, are known risk factors for adult AATLD. While the gold standard for assessing AATLD disease activity is liver histology, less invasive measures with low intra- and inter-observer variability are needed. Measurement of liver stiffness shows promise; validated thresholds for staging AATLD are in development. Such advances will help patients by enabling risk stratification and personalised surveillance, along with streamlining the development process for novel therapies. CONCLUSIONS This inaugural forum generated a list of recommendations to address unmet needs in the field of AATLD.
Collapse
Affiliation(s)
- Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Ginger Clark
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jeff Teckman
- Pediatrics and Biochemistry, St. Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Veeral Ajmera
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Cynthia Behling
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, San Diego, California, USA
- Pacific Rim Pathology Lab, San Diego, California, USA
| | - Mark Brantly
- Division of Pulmonary, Critical Care & Sleep Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - David Brenner
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jeanine D'Armiento
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | | | | | - Mattias Mandorfer
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Don C Rockey
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Monica Tincopa
- University of California San Diego, San Diego, California, USA
| | - Raj Vuppalanchi
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | - Pavel Strnad
- University Hospital RWTH Aachen, Healthcare Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| |
Collapse
|
23
|
Song X, Sun J, Liu H, Mushtaq A, Huang Z, Li D, Zhang L, Chen F. Lycopene Alleviates Endoplasmic Reticulum Stress in Steatohepatitis through Inhibition of the ASK1-JNK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7832-7844. [PMID: 38544357 DOI: 10.1021/acs.jafc.3c08108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Lycopene has been proven to alleviate nonalcoholic steatohepatitis (NASH), but the precise mechanisms are inadequately elucidated. In this study, we found a previously unknown regulatory effect of lycopene on the apoptosis signal-regulating kinase 1 (ASK1) signaling pathway in both in vivo and in vitro models. Lycopene supplementation (3 and 6 mg/kg/day) exhibited a significant reduction in lipid accumulation, inflammation, and fibrosis of the liver in mice fed with a high-fat/high-cholesterol diet or a methionine-choline-deficient diet. RNA sequencing uncovered that the mitogen-activated protein kinases signaling pathway, which is closely associated with inflammation and endoplasmic reticulum (ER) stress, was significantly downregulated by lycopene. Furthermore, we found lycopene ameliorated ER swelling and decreased the expression levels of ER stress markers (i.e., immunoglobulin heavy chain binding protein, C/EBP homologous protein, and X-box binding protein 1s). Especially, the inositol-requiring enzyme 1α involved in the ASK1 phosphorylation was inhibited by lycopene, resulting in the decline of the subsequent c-Jun N-terminal kinase (JNK) signaling cascade. ASK1 inhibitor DQOP-1 eliminated the lycopene-induced inhibition of the ASK1-JNK pathway in oleic acid and palmitic acid-induced HepG2 cells. Molecular docking further indicated hydrophobic interactions between lycopene and ASK1. Collectively, our research indicates that lycopene can alleviate ER stress and attenuate inflammation cascades and lipid accumulation by inhibiting the ASK1-JNK pathway.
Collapse
Affiliation(s)
- Xunyu Song
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Jun Sun
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Hanxiong Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Aroosa Mushtaq
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Zhoumei Huang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Daotong Li
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Lujia Zhang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| |
Collapse
|
24
|
Gabriel-Medina P, Ferrer-Costa R, Ciudin A, Augustin S, Rivera-Esteban J, Pericàs JM, Selva DM, Rodriguez-Frias F. Accuracy of a sequential algorithm based on FIB-4 and ELF to identify high-risk advanced liver fibrosis at the primary care level. Intern Emerg Med 2024; 19:745-756. [PMID: 37952070 PMCID: PMC11039533 DOI: 10.1007/s11739-023-03441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/21/2023] [Indexed: 11/14/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease, and liver fibrosis is the strongest predictor of morbimortality. We aimed to assess the performance of a sequential algorithm encompassing the Fibrosis 4 (FIB-4) and Enhanced Liver Fibrosis (ELF) scores for identifying patients at risk of advanced fibrosis. This cross-sectional study included one hospital-based cohort with biopsy-proven NAFLD (n = 140) and two primary care cohorts from different clinical settings: Type 2 Diabetes (T2D) follow-up (n = 141) and chronic liver disease (CLD) initial study (n = 138). Logistic regression analysis was performed to assess liver fibrosis diagnosis models based on FIB-4 and ELF biomarkers. The sequential algorithm retrieved the following accuracy parameters in predicting stages F3-4 in the biopsy-confirmed cohort: sensitivity (85%), specificity (73%), negative predictive value (79%) and positive predictive value (81%). In both T2D and CLD cohorts, a total of 28% of patients were classified as stages F3-4. Furthermore, of all F3-4 classified patients in the T2D cohort, 80% had a diagnosis of liver disease and 44% were referred to secondary care. Likewise, of all F3-4 classified patients in the CLD cohort, 71% had a diagnosis of liver disease and 44% were referred to secondary care. These results suggest the potential utility of this algorithm as a liver fibrosis stratifying tool in primary care, where updating referral protocols to detect high-risk F3-4 is needed. FIB-4 and ELF sequential measurement is an efficient strategy to prioritize patients with high risk of F3-4 in populations with metabolic risk factors.
Collapse
Affiliation(s)
- Pablo Gabriel-Medina
- Clinical Biochemistry Department, Vall d'Hebron University Hospital, 08035, Barcelona, Spain.
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), 08193, Barcelona, Spain.
- Clinical Biochemistry Research Team, Vall d'Hebron Institut de Recerca (VHIR), 08035, Barcelona, Spain.
| | - Roser Ferrer-Costa
- Clinical Biochemistry Department, Vall d'Hebron University Hospital, 08035, Barcelona, Spain.
- Clinical Biochemistry Research Team, Vall d'Hebron Institut de Recerca (VHIR), 08035, Barcelona, Spain.
| | - Andreea Ciudin
- Endocrinology and Nutrition Department, Vall d'Hebron University Hospital, 08035, Barcelona, Spain
- Diabetes and Metabolism Department, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain
| | - Salvador Augustin
- Liver Unit, Internal Medicine Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, 08035, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
| | - Jesus Rivera-Esteban
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), 08193, Barcelona, Spain
- Liver Unit, Internal Medicine Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - J M Pericàs
- Liver Unit, Internal Medicine Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron University Hospital, 08035, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
| | - D M Selva
- Diabetes and Metabolism Department, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain
| | - Francisco Rodriguez-Frias
- Clinical Biochemistry Department, Vall d'Hebron University Hospital, 08035, Barcelona, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), 08193, Barcelona, Spain
- Clinical Biochemistry Research Team, Vall d'Hebron Institut de Recerca (VHIR), 08035, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029, Madrid, Spain
| |
Collapse
|
25
|
Burroughs-Ray DC, Whitwell S, Williams N, Imran H, Jackson CD. Know Your Guidelines Series: Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings. South Med J 2024; 117:206-207. [PMID: 38569610 DOI: 10.14423/smj.0000000000001669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
|
26
|
Zhu X, Zhou Z, Pan X. Research reviews and prospects of gut microbiota in liver cirrhosis: a bibliometric analysis (2001-2023). Front Microbiol 2024; 15:1342356. [PMID: 38550860 PMCID: PMC10972893 DOI: 10.3389/fmicb.2024.1342356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/15/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION The gut-liver axis has emerged as a focal point in chronic liver disorders, prompting more research into the role of the gut microbiota in liver cirrhosis. In individuals with liver cirrhosis, changes in the structure and function of the gut microbiota are closely tied to clinical prognosis. However, there is a scarcity of bibliometric evaluations conducted in this particular field. METHODS This study is aiming to conduct a complete analysis of the knowledge structure and centers pertaining to gut microbiota in liver cirrhosis using bibliometric methods. Publications on gut microbiota and liver cirrhosis from 2001 to 2023 are sourced from the Web of Science Core Collection. For the bibliometric analysis, we employ VOSviewer, CiteSpace, and the R package "bibliometrix". RESULTS Our study encompasses a comprehensive collection of 3109 articles originating from 96 countries, with notable contributions from leading nations such as the United States and China. The quantity of publications concerning the gut microbiota of liver cirrhosis rises annually. The University of California San Diego, Virginia Commonwealth University, Zhejiang University are the primary research institutions. World Journal of Gastroenterology publishes the most papers in this field, while hepatology is the most frequently co-cited journal. These publications come from a total of 15,965 authors, and the most prolific authors are Bajaj Jasmohan S., Schnabl Bernd and Gillevet Patrick M., while the most co-cited authors are Bajaj Jasmohan S., Younossi Zobair M., and Reiner Wiest. In addition, "dysbiosis", "gut microbiota", "intestinal barrier", "fecal microbiota transplantation", and "complement-system" are the primary keywords of research trends in recent years. DISCUSSION This study offering a comprehensive insight into the research dynamics surrounding gut microbiota in patients with liver cirrhosis. It delineates the current research frontiers and hotspots, serving as a valuable guide for scholars.
Collapse
Affiliation(s)
- Xiaofei Zhu
- Department of Infectious Diseases, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Ziyuan Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaxia Pan
- Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
27
|
Navarro-Masip È, Mestres N, Zorzano-Martínez M, Salinas-Roca B, Sánchez E, López-Cano C, Herrerías F, de la Fuente MC, Santamaría M, León-Mengíbar J, Soler AG, Bueno M, Lecube A. Mid-term Effects of Bariatric Surgery on Metabolic Dysfunction-Associated Fatty Liver Disease Remission and Predictive Factors: A Prospective Study with a Focus on Non-invasive Diagnosis. Obes Surg 2024; 34:841-849. [PMID: 38285299 DOI: 10.1007/s11695-024-07071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD), now termed metabolic dysfunction-associated fatty liver disease (MAFLD), is a growing health concern associated with obesity and type 2 diabetes. Bariatric surgery offers potential benefits, but its impact on MAFLD remains incompletely understood, with scarce long-term follow-up prospective studies. Moreover, being liver biopsy the gold standard for liver condition measurement, the need for non-invasive techniques that allow the assessment of MAFLD development after bariatric surgery is imperative. OWLiver® Care and OWLiver® represent two serum lipidomic tests, featuring panels comprising 11 and 20 triglycerides, respectively. MATERIALS AND METHODS We conducted a prospective study involving 80 Caucasians to assess the effects of bariatric surgery on MAFLD using non-invasive diagnostics and to identify baseline predictors of MAFLD remission. Serum samples were collected before surgery and at a 3-year follow-up. RESULTS After 3 years, the proportion of patients exhibiting a healthy liver escalated from 5.0% at baseline to 26.3%. Conversely, the percentage of steatohepatitis declined from 35.1% to a mere 7.6%. Younger age, female gender, and the absence of type 2 diabetes were associated with MAFLD remission. However, age stood as the only independent variable associated with this favorable liver evolution (R2 = 0.112). CONCLUSION Bariatric surgery demonstrates mid-term benefits in improving MAFLD, with younger age as a baseline predictor of remission. Non-invasive diagnostic methods, like OWLiver®, are valuable tools for monitoring MAFLD evolution. Further research with larger populations and longer follow-up periods is warranted to refine personalized treatment approaches.
Collapse
Affiliation(s)
- Èlia Navarro-Masip
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida, Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Núria Mestres
- General and Digestive Surgery Department, Arnau de Vilanova University Hospital, Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Marta Zorzano-Martínez
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida, Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital, Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Blanca Salinas-Roca
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida, Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain
- Facultat de Ciències de la Salut-Universitat Ramón Llull Blanquerna, C/ de Padilla, 326-332, 08025, Barcelona, Catalonia, Spain
| | - Enric Sánchez
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida, Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain
- Medicine and Surgery Department, University of Lleida (UdL), Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Carolina López-Cano
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida, Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital, Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain
- Medicine and Surgery Department, University of Lleida (UdL), Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Fernando Herrerías
- General and Digestive Surgery Department, Arnau de Vilanova University Hospital, Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain
- Medicine and Surgery Department, University of Lleida (UdL), Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Mari Cruz de la Fuente
- General and Digestive Surgery Department, Arnau de Vilanova University Hospital, Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain
- Medicine and Surgery Department, University of Lleida (UdL), Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Maite Santamaría
- General and Digestive Surgery Department, Arnau de Vilanova University Hospital, Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain
- Medicine and Surgery Department, University of Lleida (UdL), Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Josep León-Mengíbar
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida, Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital, Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Ana-Gloria Soler
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida, Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital, Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Marta Bueno
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida, Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital, Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Albert Lecube
- Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida, Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain.
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital, Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain.
- Medicine and Surgery Department, University of Lleida (UdL), Avinguda Rovira Roure 80, 25198, Lleida, Catalonia, Spain.
| |
Collapse
|
28
|
Mourad S, Abdualkader AM, Li X, Jani S, Ceddia RB, Al Batran R. A high-fat diet supplemented with medium-chain triglycerides ameliorates hepatic steatosis by reducing ceramide and diacylglycerol accumulation in mice. Exp Physiol 2024; 109:350-364. [PMID: 38192209 PMCID: PMC10988743 DOI: 10.1113/ep091545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is projected to be the most common chronic liver disease worldwide and is closely linked to obesity, insulin resistance and type 2 diabetes. Currently, no pharmacological treatments are available to treat NAFLD, and lifestyle modification, including dietary interventions, is the only remedy. Therefore, we conducted a study to determine whether supplementation with medium-chain triglycerides (MCTs), containing a mixture of C8 and C10 (60/40), attenuates NAFLD in obese and insulin-resistant mice. To achieve that, we fed C57BL/6 male mice a high-fat diet (HFD) for 12 weeks to induce obesity and hepatic steatosis, after which obese mice were assigned randomly either to remain on the HFD or to transition to an HFD supplemented with MCTs (HFD + MCTs) or a low-fat diet (LFD) for 6 weeks as another dietary intervention model. Another group of mice was kept on an LFD throughout the study and used as a lean control group. Obese mice that transitioned to HFD + MCTs exhibited improvement in glucose and insulin tolerance tests, and the latter improvement was independent of changes in adiposity when compared with HFD-fed mice. Additionally, supplementation with MCTs significantly reduced hepatic steatosis, improved liver enzymes and decreased hepatic expression of inflammation-related genes to levels similar to those observed in obese mice transitioned to an LFD. Importantly, HFD + MCTs markedly lowered hepatic ceramide and diacylglycerol content and prevented protein kinase C-ε translocation to the plasma membrane. Our study demonstrated that supplementation with MCTs formulated mainly from C8 and C10 effectively ameliorated NAFLD in obese mice.
Collapse
Affiliation(s)
- Stephanie Mourad
- Faculty of PharmacyUniversité de MontréalMontréalQuebecCanada
- Montreal Diabetes Research CenterMontréalQuebecCanada
- Cardiometabolic Health, Diabetes and Obesity Research NetworkMontréalQuebecCanada
| | - Abdualrahman Mohammed Abdualkader
- Faculty of PharmacyUniversité de MontréalMontréalQuebecCanada
- Montreal Diabetes Research CenterMontréalQuebecCanada
- Cardiometabolic Health, Diabetes and Obesity Research NetworkMontréalQuebecCanada
| | - Xiaobei Li
- Faculty of PharmacyUniversité de MontréalMontréalQuebecCanada
- Montreal Diabetes Research CenterMontréalQuebecCanada
- Cardiometabolic Health, Diabetes and Obesity Research NetworkMontréalQuebecCanada
| | - Shailee Jani
- Muscle Health Research Center, School of Kinesiology and Health ScienceYork UniversityNorth YorkOntarioCanada
| | - Rolando B. Ceddia
- Muscle Health Research Center, School of Kinesiology and Health ScienceYork UniversityNorth YorkOntarioCanada
| | - Rami Al Batran
- Faculty of PharmacyUniversité de MontréalMontréalQuebecCanada
- Montreal Diabetes Research CenterMontréalQuebecCanada
- Cardiometabolic Health, Diabetes and Obesity Research NetworkMontréalQuebecCanada
| |
Collapse
|
29
|
Chen G, Fan L, Yang T, Xu T, Wang Z, Wang Y, Kong L, Sun X, Chen K, Xie Q, Zhao H. Prognostic nutritional index (PNI) and risk of non-alcoholic fatty liver disease and advanced liver fibrosis in US adults: Evidence from NHANES 2017-2020. Heliyon 2024; 10:e25660. [PMID: 38390093 PMCID: PMC10881309 DOI: 10.1016/j.heliyon.2024.e25660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Objective This study explored the potential association between the Prognostic Nutritional Index (PNI) and the incidence of non-alcoholic fatty liver disease (NAFLD) and advanced liver fibrosis (AF) in the adult population of the United States. Methods Information on 6409 participants ≥18 years old was downloaded from the U.S. National Health and Nutrition Examination Survey (NHANES) from 2017 to 2020. Multivariate analysis was combined with demographic factors to assess the relationships between PNI, NAFLD, and AF. A restricted cubic spline (RCS) was used to characterise the nonlinear association between the PNI and NAFLD and AF. Results Patients without NAFLD had substantially lower mean values for parameters such as age, lymphocyte count, neutrophil count, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), systemic immune-inflammatory index (SII), total cholesterol, triglycerides, HbA1c, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) than patients with NAFLD. Interestingly, non-NAFLD patients showed a pronounced increase in serum albumin levels compared to their NAFLD counterparts. In the subset without AF, there were discernibly lower measures of NLR, age, AST, ALT, γ-glutamyl transferase, triglycerides, neutrophil count, and body mass index (BMI) than in patients with AF. It was evident that those without AF had markedly elevated mean albumin and PNI levels in comparison to AF-affected individuals. In the comprehensive multivariable framework, a direct correlation was observed between PNI and NAFLD (adjusted odds ratio[aOR] = 1.07, 95% confidence interval [CI]: 1.05-1.09; p < 0.001), whereas PNI and AF were inversely correlated (aOR = 0.92; 95% CI: 0.88-0.96; p < 0.001). Within the RCS model, a swift ascendancy was noted in the relationship between the PNI and NAFLD, peaking at approximately 52. Conversely, a non-linear inverse association was observed between PNI and AF. Conclusion Our analytical results indicate that elevated PNI levels are positively associated with an increased risk of NAFLD, but inversely related to the risk of AF. For robust validation of these observations, further research is required.
Collapse
Affiliation(s)
- Ge Chen
- Qingdao Medical College of Qingdao University, Qingdao, Shandong, China
- The First Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong, China
| | - Liqing Fan
- The First Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong, China
| | - Ting Yang
- The First Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong, China
| | - Tingting Xu
- The First Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong, China
| | - Zixuan Wang
- Qingdao Medical College of Qingdao University, Qingdao, Shandong, China
- The First Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong, China
| | - Yan Wang
- The First Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong, China
| | - Lingling Kong
- The First Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong, China
| | - Xutong Sun
- The First Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong, China
| | - Kan Chen
- Laizhou Maternity and Child Healthcare Hospital, Laizhou, Shandong, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhao
- The First Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong, China
| |
Collapse
|
30
|
Liu K, Tang S, Liu C, Ma J, Cao X, Yang X, Zhu Y, Chen K, Liu Y, Zhang C, Liu Y. Systemic immune-inflammatory biomarkers (SII, NLR, PLR and LMR) linked to non-alcoholic fatty liver disease risk. Front Immunol 2024; 15:1337241. [PMID: 38481995 PMCID: PMC10933001 DOI: 10.3389/fimmu.2024.1337241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/15/2024] [Indexed: 04/10/2024] Open
Abstract
Background Systemic immune-inflammatory biomarkers including systemic immune inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio (LMR) have been demonstrated to be associated with the risk and severity of various liver diseases. However, studies on their role and clinical significance in metabolic diseases, especially in nonalcoholic fatty liver disease (NAFLD), are limited and results are inconsistent. Methods 10821 adults aged 20 years or older were enrolled in this cross-sectional study, sourced from six cycles of the National Health and Nutrition Examination Survey (NHANES). Survey-weighted logistic regression was employed to investigate the correlation between systemic immune-inflammatory biomarkers (SII, NLR, PLR, and LMR) and NAFLD risk. Restricted cubic spline regression models and segmented regression models were used to describe nonlinear relationships and threshold effects. Subgroup and sensitivity analyses were also conducted. Results After adjusting for all confounding variables, there was a significant positive association observed between ln-transformed SII (OR= 1.46, 95% CI: 1.27-1.69, P <0.001), NLR (OR= 1.25, 95% CI: 1.05-1.49, P =0.015), LMR (OR= 1.39, 95% CI: 1.14-1.69, P = 0.002) with NAFLD. A nonlinear dose-response relationship with an inverted "U"-shaped threshold of 4.64 was observed between ln(PLR) and NAFLD risk. When ln(PLR) was below 4.64, each unit increase in ln(PLR) was associated with a 0.55-fold increase in the risk of NAFLD (OR= 1.55, 95% CI: 1.05-2.31, P <0.05). Conversely, when ln(PLR) exceeded 4.64, each unit increase in ln(PLR) was associated with a 0.40-fold decrease in the risk of NAFLD (OR= 0.60, 95% CI. 0.44-0.81, P <0.05). Conclusion ln-transformed SII, NLR, and LMR were linearly associated with NAFLD risk. ln(PLR) showed an inverted "U"-shaped nonlinear dose-response relationship with the risk of NAFLD.
Collapse
Affiliation(s)
- Ke Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shiyun Tang
- The National Clinical Trial Center of Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chenhao Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jianli Ma
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiyu Cao
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiuli Yang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ke Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- People's Hospital of Xinjin District, Chengdu, Sichuan, China
| | - Ya Liu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
31
|
Ratziu V, Hompesch M, Petitjean M, Serdjebi C, Iyer JS, Parwani AV, Tai D, Bugianesi E, Cusi K, Friedman SL, Lawitz E, Romero-Gómez M, Schuppan D, Loomba R, Paradis V, Behling C, Sanyal AJ. Artificial intelligence-assisted digital pathology for non-alcoholic steatohepatitis: current status and future directions. J Hepatol 2024; 80:335-351. [PMID: 37879461 DOI: 10.1016/j.jhep.2023.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
The worldwide prevalence of non-alcoholic steatohepatitis (NASH) is increasing, causing a significant medical burden, but no approved therapeutics are currently available. NASH drug development requires histological analysis of liver biopsies by expert pathologists for trial enrolment and efficacy assessment, which can be hindered by multiple issues including sample heterogeneity, inter-reader and intra-reader variability, and ordinal scoring systems. Consequently, there is a high unmet need for accurate, reproducible, quantitative, and automated methods to assist pathologists with histological analysis to improve the precision around treatment and efficacy assessment. Digital pathology (DP) workflows in combination with artificial intelligence (AI) have been established in other areas of medicine and are being actively investigated in NASH to assist pathologists in the evaluation and scoring of NASH histology. DP/AI models can be used to automatically detect, localise, quantify, and score histological parameters and have the potential to reduce the impact of scoring variability in NASH clinical trials. This narrative review provides an overview of DP/AI tools in development for NASH, highlights key regulatory considerations, and discusses how these advances may impact the future of NASH clinical management and drug development. This should be a high priority in the NASH field, particularly to improve the development of safe and effective therapeutics.
Collapse
Affiliation(s)
- Vlad Ratziu
- Sorbonne Université, ICAN Institute for Cardiometabolism and Nutrition, Hospital Pitié-Salpêtrière, INSERM UMRS 1138 CRC, Paris, France.
| | | | | | | | | | - Anil V Parwani
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | | | | | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric Lawitz
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Manuel Romero-Gómez
- Hospital Universitario Virgen del Rocío, CiberEHD, Insituto de Biomedicina de Sevilla (HUVR/CSIC/US), Universidad de Sevilla, Seville, Spain
| | - Detlef Schuppan
- Institute of Translational Immunology and Department of Medicine, University Medical Center, Mainz, Germany; Department of Hepatology and Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rohit Loomba
- NAFLD Research Center, University of California at San Diego, San Diego, CA, USA
| | - Valérie Paradis
- Université Paris Cité, Service d'Anatomie Pathologique, Hôpital Beaujon, Paris, France
| | | | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
32
|
Aggio D, Gallop K, Wittrup-Jensen V, Farsani SF, Lloyd AJ. Estimating utility values for non-alcoholic steatohepatitis health states: a discrete choice experiment. J Comp Eff Res 2024; 13:e230033. [PMID: 38226909 PMCID: PMC10842270 DOI: 10.57264/cer-2023-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
Background: This study estimated utility values for non-alcoholic steatohepatitis (NASH). Previous studies have assumed that health-related quality of life does not vary between the early stages of NASH. Materials & Methods: Discrete choice experiment (DCE) surveys estimated the value of avoiding fibrosis progression. Patients also completed the EQ-5D-5L. Marginal rates of substitution estimated utility change associated with fibrosis progression. Results: DCE surveys were completed by the UK general public (n = 520) and patients with NASH (n = 154). The utility decline between fibrosis stages F1 and F4 decompensated was between -0.521 to -0.646 (depending on method). Conclusion: Three methods were used to estimate utilities for NASH, each one showed sensitivity to advancing fibrosis, including in the early stages, which is often considered asymptomatic.
Collapse
Affiliation(s)
- Daniel Aggio
- Acaster Lloyd Consulting Ltd, London, WC1X 8NL, UK
| | - Katy Gallop
- Acaster Lloyd Consulting Ltd, London, WC1X 8NL, UK
| | | | | | | |
Collapse
|
33
|
He X, Gao X, Hong Y, Zhong J, Li Y, Zhu W, Ma J, Huang W, Li Y, Li Y, Wang H, Liu Z, Bao Y, Pan L, Zheng N, Sheng L, Li H. High Fat Diet and High Sucrose Intake Divergently Induce Dysregulation of Glucose Homeostasis through Distinct Gut Microbiota-Derived Bile Acid Metabolism in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:230-244. [PMID: 38079533 DOI: 10.1021/acs.jafc.3c02909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
A high calorie diet such as excessive fat and sucrose intake is always accompanied by impaired glucose homeostasis such as T2DM (type 2 diabetes mellitus). However, it remains unclear how fat and sucrose individually affect host glucose metabolism. In this study, mice were fed with high fat diet (HFD) or 30% sucrose in drinking water (HSD) for 24 weeks, and glucose metabolism, gut microbiota composition, as well as bile acid (BA) profile were investigated. In addition, the functional changes of HFD or HSD-induced gut microbiota were further verified by fecal microbiota transplantation (FMT) and ex vivo culture of gut bacteria with BAs. Our results showed that both HFD and HSD caused dysregulated lipid metabolism, while HFD feeding had a more severe effect on impaired glucose homeostasis, accompanied by reduced hyocholic acid (HCA) levels in all studied tissues. Meanwhile, HFD had a more dramatic influence on composition and function of gut microbiota based on α diversity indices, β diversity analysis, as well as the abundance of secondary BA producers than HSD. In addition, the phenotypes of impaired glucose homeostasis and less formation of HCA caused by HFD can be transferred to recipient mice by FMT. Ex vivo culture with gut bacteria and BAs revealed HFD-altered gut bacteria produced less HCA than HSD, which might closely associate with reduced relative abundance of C7 epimerase-coding bacteria g_norank/unclassified_f_Eggerthellaceae and bile salt hydrolase-producing bacteria Lactobacillus and Bifidobacterium in HFD group. Our findings revealed that the divergent effects of different high-calorie diets on glucose metabolism may be due to the gut microbiota-mediated generation and metabolism of BAs, highlighting the importance of dietary management in T2DM.
Collapse
Affiliation(s)
- Xiaofang He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Hong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Zhong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Yue Li
- Department of Endocrinology, Shanghai Fifth People's Hospital, Shanghai Medical School, Fudan University, Shanghai 200032, China
| | - Weize Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junli Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenjin Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zekun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiyang Bao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lingyun Pan
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
34
|
Kalveram L, Baumann U, De Bruyne R, Draijer L, Janczyk W, Kelly D, Koot BG, Lacaille F, Lefere S, Lev HM, Lubrecht J, Mann JP, Mosca A, Rajwal S, Socha P, Vreugdenhil A, Alisi A, Hudert CA. Noninvasive scores are poorly predictive of histological fibrosis in paediatric fatty liver disease. J Pediatr Gastroenterol Nutr 2024; 78:27-35. [PMID: 38291699 DOI: 10.1002/jpn3.12068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/01/2023] [Accepted: 10/25/2023] [Indexed: 02/01/2024]
Abstract
OBJECTIVES Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in children. Roughly a quarter of paediatric patients with NAFLD develop nonalcoholic steatohepatitis and fibrosis. Here, we evaluated the diagnostic accuracy of previously published noninvasive fibrosis scores to predict liver fibrosis in a large European cohort of paediatric patients with NAFLD. METHODS The 457 patients with biopsy-proven NAFLD from 10 specialized centers were included. We assessed diagnostic accuracy for the prediction of any (F ≥ 1), moderate (F ≥ 2) or advanced (F ≥ 3) fibrosis for the AST/platelet ratio (APRI), Fibrosis 4 score (FIB-4), paediatric NAFLD fibrosis score (PNFS) and paediatric NAFLD fibrosis index (PNFI). RESULTS Patients covered the full spectrum of fibrosis (F0: n = 103; F1: n = 230; F2: n = 78; F3: n = 44; F4: n = 2). None of the scores were able to accurately distinguish the presence of any fibrosis from no fibrosis. For the detection of moderate fibrosis, area under the receiver operating characteristic curve (AUROC) were: APRI: 0.697, FIB-4: 0.663, PNFI: 0.515, PNFS: 0.665, while for detection of advanced fibrosis AUROCs were: APRI: 0.759, FIB-4: 0.611, PNFI: 0.521, PNFS: 0.712. Fibrosis scores showed no diagnostic benefit over using ALT ≤ 50/ > 50 IU/L as a cut-off. CONCLUSIONS Established fibrosis scores lack diagnostic accuracy to replace liver biopsy for staging of fibrosis, giving similar results as compared to using ALT alone. New diagnostic tools are needed for Noninvasive risk-stratification in paediatric NAFLD.
Collapse
Affiliation(s)
- Laura Kalveram
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität zu Berlin and Humboldt-Universität zu, Berlin, Germany
| | - Ulrich Baumann
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases Hannover, Hannover Medical School, Hanover, Germany
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Ruth De Bruyne
- Pediatric Gastroenterology, Hepatology and Nutrition, Ghent University, Ghent, Belgium
| | - Laura Draijer
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Netherlands
| | - Wojciech Janczyk
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Paediatrics, Children's Memorial Health Institute, Warsaw, Poland
| | - Deirdre Kelly
- Liver unit, Birmingham Children's Hospital, University of Birmingham, Birmingham, UK
| | - Bart G Koot
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Netherlands
| | - Florence Lacaille
- Gastroenterology-Hepatology-Nutrition Unit, Hôpital Universitaire Necker-Enfants maladies, Paris, France
| | - Sander Lefere
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Hadar Moran Lev
- Pediatric Gastroenterology Unit, Dana Dwek Children's Hospital, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Judith Lubrecht
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jake P Mann
- Liver unit, Birmingham Children's Hospital, University of Birmingham, Birmingham, UK
| | - Antonella Mosca
- Hepatology, Gastroenterology, Nutrition, and Liver Transplantation Unit, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy
| | - Sanjay Rajwal
- Children's Liver Unit, Leeds Teaching Hospitals NHS Trust, Leeds Children's Hospital, Leeds, UK
| | - Piotr Socha
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Paediatrics, Children's Memorial Health Institute, Warsaw, Poland
| | - Anita Vreugdenhil
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Anna Alisi
- Genetics of Complex Phenotypes Research Unit, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy
| | - Christian A Hudert
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität zu Berlin and Humboldt-Universität zu, Berlin, Germany
| |
Collapse
|
35
|
Emam RF, Soliman AF, Darweesh SK, AbdElmagid RA, Ibrahim OM, Mohamed DM. Steatosis regression assessed by cap after Vitamin 'D' supplementation in NAFLD patients with Vitamin 'D' deficiency. Eur J Gastroenterol Hepatol 2024; 36:101-106. [PMID: 37942743 DOI: 10.1097/meg.0000000000002653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease, and previous studies suggested a relationship between vitamin D deficiency and NAFLD. It is suggested that vitamin D supplementation may have significant beneficial effect on liver biochemistry and histology. OBJECTIVE This study aims to assess the degree of possible steatosis regression using controlled attenuation parameter (CAP) in NAFLD patients with vitamin D deficiency after vitamin D supplementation and evaluating its effect on lipid profile and transaminases. PATIENTS AND METHODS This study was conducted on 100 NAFLD patients with vitamin D deficiency. They received 10000 IU/week of vitamin D orally for 3 months. CAP was used to assess hepatic steatosis and fibrosis before/after intervention. Transaminases, lipid profile, and vitamin D levels were evaluated before/after treatment. RESULTS Serum AST, ALT, cholesterol, TG, LDL and HDL showed a significant reduction posttreatment in patients with both normal and elevated baseline levels ( P < 0.001). The posttreatment mean CAP showed a significant reduction (300.44 ± 37.56 vs. 265 ± 36.19 dB/ml) ( P < 0.001), and there was a significant improvement in the mean fibrosis values by LSM (5.32 ± 1.53 vs. 4.86 ± 1.28 KPa) ( P = 0.001). After supplementation, serum vitamin D level was raised significantly in the majority of patients ( P < 0.001); however, only 13% of them reached sufficient levels (>30 ng/ml), insufficient levels (20-29 ng/ml) was reached in 83% and 5% showed vitamin D deficiency (<20 ng/ml). CONCLUSION A significant improvement was detected in hepatic steatosis (by CAP); mean values of LSM, transaminases and lipid profile after three months of oral vitamin D supplementation.
Collapse
Affiliation(s)
- Rabab Fouad Emam
- Hepato-gastroenterology and Endemic Medicine Department, Faculty of Medicine, Cairo University
| | - Ahmed Fouad Soliman
- Hepato-gastroenterology and Endemic Medicine Department, Faculty of Medicine, Cairo University
| | - Samar Kamal Darweesh
- Hepato-gastroenterology and Endemic Medicine Department, Faculty of Medicine, Cairo University
| | | | - Ola Mohamed Ibrahim
- Clinical and Chemical pathology Department, Student's Hospital, Cairo University
| | - Dina Mahmoud Mohamed
- Hepato-gastroenterology and Endemic Medicine Department, Student's Hospital, Cairo University, Cairo, Egypt
| |
Collapse
|
36
|
Kadi D, Loomba R, Bashir MR. Diagnosis and Monitoring of Nonalcoholic Steatohepatitis: Current State and Future Directions. Radiology 2024; 310:e222695. [PMID: 38226882 DOI: 10.1148/radiol.222695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease, with a worldwide prevalence of 25%. NAFLD is a spectrum that includes nonalcoholic fatty liver defined histologically by isolated hepatocytes steatosis without inflammation and nonalcoholic steatohepatitis (NASH) is the inflammatory subtype of NAFLD and is associated with disease progression, development of cirrhosis, and increased rates of liver-specific and overall mortality. The differentiation between NAFLD and NASH as well as staging NASH are important yet challenging clinical problems. Liver biopsy is currently the standard for disease diagnosis and fibrosis staging. However, this procedure is invasive, costly, and cannot be used for longitudinal monitoring. Therefore, several noninvasive quantitative imaging biomarkers have been proposed that can estimate the severity of hepatic steatosis and fibrosis. Despite this, noninvasive diagnosis of NASH and accurate risk stratification remain unmet needs. In this work, the most relevant available imaging biomarkers are reviewed and their application in patients with NAFLD are discussed.
Collapse
Affiliation(s)
- Diana Kadi
- From the Department of Radiology (D.K., M.R.B.), Center for Advanced Magnetic Resonance Development (M.R.B.), Department of Pathology (M.R.B.), and Division of Hepatology (M.R.B.), Duke University Medical Center, Durham, NC 27705; and Division of Gastroenterology, Department of Medicine, NAFLD Research Center, University of California at San Diego, La Jolla, Calif (R.L.)
| | - Rohit Loomba
- From the Department of Radiology (D.K., M.R.B.), Center for Advanced Magnetic Resonance Development (M.R.B.), Department of Pathology (M.R.B.), and Division of Hepatology (M.R.B.), Duke University Medical Center, Durham, NC 27705; and Division of Gastroenterology, Department of Medicine, NAFLD Research Center, University of California at San Diego, La Jolla, Calif (R.L.)
| | - Mustafa R Bashir
- From the Department of Radiology (D.K., M.R.B.), Center for Advanced Magnetic Resonance Development (M.R.B.), Department of Pathology (M.R.B.), and Division of Hepatology (M.R.B.), Duke University Medical Center, Durham, NC 27705; and Division of Gastroenterology, Department of Medicine, NAFLD Research Center, University of California at San Diego, La Jolla, Calif (R.L.)
| |
Collapse
|
37
|
Jin J, He Y, Guo J, Pan Q, Wei X, Xu C, Qi Z, Li Q, Ma S, Lin J, Jiang N, Ma J, Wang X, Jiang L, Ding Q, Osto E, Zhi X, Meng D. BACH1 controls hepatic insulin signaling and glucose homeostasis in mice. Nat Commun 2023; 14:8428. [PMID: 38129407 PMCID: PMC10739811 DOI: 10.1038/s41467-023-44088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatic insulin resistance is central to the metabolic syndrome. Here we investigate the role of BTB and CNC homology 1 (BACH1) in hepatic insulin signaling. BACH1 is elevated in the hepatocytes of individuals with obesity and patients with non-alcoholic fatty liver disease (NAFLD). Hepatocyte-specific Bach1 deletion in male mice on a high-fat diet (HFD) ameliorates hyperglycemia and insulin resistance, improves glucose homeostasis, and protects against steatosis, whereas hepatic overexpression of Bach1 in male mice leads to the opposite phenotype. BACH1 directly interacts with the protein-tyrosine phosphatase 1B (PTP1B) and the insulin receptor β (IR-β), and loss of BACH1 reduces the interaction between PTP1B and IR-β upon insulin stimulation and enhances insulin signaling in hepatocytes. Inhibition of PTP1B significantly attenuates BACH1-mediated suppression of insulin signaling in HFD-fed male mice. Hepatic BACH1 knockdown ameliorates hyperglycemia and improves insulin sensitivity in diabetic male mice. These results demonstrate a critical function for hepatic BACH1 in the regulation of insulin signaling and glucose homeostasis.
Collapse
Affiliation(s)
- Jiayu Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yunquan He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qi Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiangxiang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhiyuan Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qinhan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Siyu Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiayi Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Nan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jinghua Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xinhong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lindi Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Elena Osto
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
38
|
Zhang J, Ma S, Zhou W, Feng J, Kang Y, Yang W, Zhang H, Deng F. Genetic polymorphisms of CYP2B6 is a risk of metabolic associated fatty liver disease in Chinese population. Toxicol Appl Pharmacol 2023; 481:116770. [PMID: 37995809 DOI: 10.1016/j.taap.2023.116770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/19/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND The expression and activity of cytochrome P450 2B6 (CYP2B6) may be related to the metabolic associated fat liver disease (MAFLD). Since constitutive androstane receptor (CAR) is a classic transcriptional regulator of CYP2B6, and the single nucleotide polymorphisms (SNPs) of CYP2B6 and CAR are both associated with adverse reactions of efavirenz, we hypothesized that genetic polymorphisms of CAR might also result in additional interindividual variability in CYP2B6. This study was devoted to explore the association between CYP2B6 and CAR SNPs and susceptibility to MAFLD. MATERIALS AND METHODS A total of 590 objects of study (118 with MAFLD and 472 healthy control) between December 2014 and April 2018 were retrospectively enrolled. Twenty-two selected SNPs in CYP2B6 and CAR were genotyped with a custom-designed 48-plex SNP Scan TM® Kit. The frequencies of the alleles, genotypes and genetic models of the variants were compared between the two groups. The odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) were calculated. RESULTS The T allele of rs3745274 in CYP2B6 was associated with a decreased risk for MAFLD (OR 0.610; 95% CI: 0.451-0.825, p = 0.001) which was still statistically significant after adjusting with Bonferroni method(p = 0.014) The allele, genotype and genetic model frequencies were similar in the two groups for the other twenty-one SNPs (all P > 0.05). There were no multiplicative or additive interactions between the SNPs. CONCLUSION Our study revealed that rs3745274 variants in CYP2B6 is associated with susceptibility to MAFLD in the Han Chinese population.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Laboratory Medicine and Department of Blood Transfusion, Chengdu Second People's Hospital, Chengdu, China
| | - Shijie Ma
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Zhou
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Feng
- Department of Traditional Chinese Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuwei Kang
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Yang
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Heping Zhang
- Department of Nephrology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| | - Fei Deng
- Department of Nephrology, Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu Jinniu District People's Hospital, Chengdu, China; Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
39
|
Liu C, Zhu S, Zhang J, Wu P, Wang X, Du S, Wang E, Kang Y, Song K, Yu J. Global, regional, and national burden of liver cancer due to non-alcoholic steatohepatitis, 1990-2019: a decomposition and age-period-cohort analysis. J Gastroenterol 2023; 58:1222-1236. [PMID: 37665532 DOI: 10.1007/s00535-023-02040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Identifying past temporal trends in non-alcoholic steatohepatitis (NASH)-associated liver cancer (NALC) can increase public awareness of the disease and facilitate future policy development. METHODS Annual deaths and age-standardized death rates (ASDR) for NALC from 1990 to 2019 were collected from the Global Burden of Disease (GBD) 2019 study. The long-term trend and the critical inflection of mortality of NALC were detected by Joinpoint analysis. Age-period-cohort analysis was employed to evaluate the effects of age, period, and cohort. Last, decomposition analysis was used to reveal the aging and population growth effects for NALC burden. RESULTS Between 1990 and 2019, the ASDR of NALC witnessed an overall declining trend on a global scale, with a decrease in females and a stable trend in males. However, the global ASDR demonstrated a significant upward trend from 2010 to 2019. Southern sub-Saharan Africa and Southeast Asia have the highest NALC burdens, while high socio-demographic index (SDI) region experienced the fastest escalation of NALC burdens over 30 years. The decomposition analysis revealed that population growth and aging were the primary catalysts behind the increase in global NALC deaths. Age-period-cohort analyses showed that NALC mortality declined the fastest among females aged 40-45 years in high SDI region, accompanied by a deteriorating period effect trend during the period of 2010-2019. CONCLUSION The global absolute deaths and ASDR of NALC have witnessed a rise in the past decade, with populations exhibiting considerable disparities based on sex, age, and region. Population growth, aging, and metabolism-related factors were the main factors behind the increase in global NALC deaths.
Collapse
Affiliation(s)
- Chunlong Liu
- Department of Hepatobiliary and Pancreatic Surgery, Fuyang People's Hospital, Anhui Medical University, Fuyang, 236000, China
| | - Shijie Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Jian Zhang
- Department of Neurosurgery, the Seventh Clinical College of China Medical University, Fushun, 113001, China
| | - Panpan Wu
- Department of Hepatobiliary and Pancreatic Surgery, Fuyang People's Hospital, Anhui Medical University, Fuyang, 236000, China
| | - Xuan Wang
- Department of Hepatobiliary and Pancreatic Surgery, Fuyang People's Hospital, Anhui Medical University, Fuyang, 236000, China
| | - Sen Du
- Department of Hepatobiliary and Pancreatic Surgery, Fuyang People's Hospital, Bengbu Medical College, Fuyang, 236000, China
| | - Enzhao Wang
- Graduate School, Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Yunkang Kang
- Department of Orthopedics, Fuyang People's Hospital, Anhui Medical University, Anhui Medical University, Fuyang, 236000, China
| | - Kun Song
- Department of Hepatobiliary and Pancreatic Surgery, Fuyang People's Hospital, Anhui Medical University, Fuyang, 236000, China.
- Graduate School, Wannan Medical College, Wuhu, 241000, Anhui, China.
| | - Jiangtao Yu
- Department of Hepatobiliary and Pancreatic Surgery, Fuyang People's Hospital, Anhui Medical University, Fuyang, 236000, China.
- Department of Hepatobiliary and Pancreatic Surgery, Fuyang People's Hospital, Bengbu Medical College, Fuyang, 236000, China.
| |
Collapse
|
40
|
Moreira RO, Valerio CM, Villela-Nogueira CA, Cercato C, Gerchman F, Lottenberg AMP, Godoy-Matos AF, Oliveira RDA, Brandão Mello CE, Álvares-da-Silva MR, Leite NC, Cotrim HP, Parisi ER, Silva GF, Miranda PAC, Halpern B, Pinto Oliveira C. Brazilian evidence-based guideline for screening, diagnosis, treatment, and follow-up of metabolic dysfunction-associated steatotic liver disease (MASLD) in adult individuals with overweight or obesity: A joint position statement from the Brazilian Society of Endocrinology and Metabolism (SBEM), Brazilian Society of Hepatology (SBH), and Brazilian Association for the Study of Obesity and Metabolic Syndrome (Abeso). ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:e230123. [PMID: 38048417 DOI: 10.20945/2359-4292-2023-0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Introduction Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as Nonalcoholic fatty liver disease (NAFLD), is one of the most common hepatic diseases in individuals with overweight or obesity. In this context, a panel of experts from three medical societies was organized to develop an evidence-based guideline on the screening, diagnosis, treatment, and follow-up of MASLD. Material and methods A MEDLINE search was performed to identify randomized clinical trials, meta-analyses, cohort studies, observational studies, and other relevant studies on NAFLD. In the absence of studies on a certain topic or when the quality of the study was not adequate, the opinion of experts was adopted. Classes of Recommendation and Levels of Evidence were determined using prespecified criteria. Results Based on the literature review, 48 specific recommendations were elaborated, including 11 on screening and diagnosis, 9 on follow-up,14 on nonpharmacologic treatment, and 14 on pharmacologic and surgical treatment. Conclusion A literature search allowed the development of evidence-based guidelines on the screening, diagnosis, treatment, and follow-up of MASLD in individuals with overweight or obesity.
Collapse
Affiliation(s)
- Rodrigo Oliveira Moreira
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione, Rio de Janeiro, RJ, Brasil,
- Faculdade de Medicina de Valença,Centro Universitário de Valença, Valença, RJ, Brasil
- Faculdade de Medicina, Centro Universitário Presidente Antônio Carlos, Juiz de Fora, MG, Brasil
| | - Cynthia Melissa Valerio
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione, Rio de Janeiro, RJ, Brasil
| | - Cristiane Alves Villela-Nogueira
- Departamento de Clínica Médica, Faculdade de Medicina e Serviço de Hepatologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Cintia Cercato
- Grupo de Obesidade, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brasil
- Laboratório de Lípides, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Fernando Gerchman
- Programa de Pós-graduação em Ciências Médicas (Endocrinologia), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Divisão de Endocrinologia e Metabolismo, Hospital das Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - Ana Maria Pita Lottenberg
- Laboratório de Lípides, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Hospital Israelita Albert Einstein, São Paulo, SP, Brasil
| | | | | | - Carlos Eduardo Brandão Mello
- Departamento de Clínica Médica e da Disciplina de Gastroenterologia Clínica e Cirúrgica, Escola de Medicina e Cirurgia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Departamento de Clínica Médica e Serviço de Hepatologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Mãrio Reis Álvares-da-Silva
- Serviço de Gastroenterologia, Hospital das Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Nathalie Carvalho Leite
- Serviço de Clínica Médica e Serviço de Hepatologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | - Edison Roberto Parisi
- Disciplina de Gastroenterologia e Hepatologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Giovanni Faria Silva
- Departamento de Clínica Médica da Faculdade de Medicina de Botucatu, Botucatu, SP, Brasil
| | | | - Bruno Halpern
- Grupo de Obesidade, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Claudia Pinto Oliveira
- Laboratório de Investigação Médica (LIM07), Departamento de Gastroenterologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
41
|
Tang X, Yang L, Zhang P, Wang C, Luo S, Liu B, Fu Y, Candotti D, Allain JP, Zhang L, Li C, Li T. Occult Hepatitis B Virus Infection and Liver Fibrosis in Chinese Patients. J Infect Dis 2023; 228:1375-1384. [PMID: 37170968 DOI: 10.1093/infdis/jiad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/20/2023] [Accepted: 05/11/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND The impact of hepatitis B surface antigen (HBsAg)-negative/hepatitis B virus (HBV) DNA-positive occult HBV infection (OBI) on the severity of liver fibrosis remains unclear. METHODS A total of 1772 patients negative for HBsAg but positive for antibody to hepatitis B core antigen (HBcAg), stratified by the presence or absence of OBI, were selected for long-term carriage leading to elevation of ≥2 of 4 liver fibrosis indexes-hyaluronic acid (HA), laminin, type III procollagen peptide (PCIII), and type IV collagen (CIV)-at testing in a Chinese hospital. Patients were tested for serum viral load, HBV markers, and histopathological changes in liver biopsy specimens. RESULTS OBI was identified in 148 patients with liver fibrosis (8.4%), who had significantly higher levels of HA, laminin, PCIII, and CIV than 1624 fibrotic patients without OBI (P < .05). In 36 patients with OBI who underwent liver biopsy, significant correlations were observed between OBI viral load and serum HA levels (P = .01), PCIII levels (P = .01), and pathological histological activity index (HAI) scores (P < .001), respectively; HAI scores and PCIII levels (P = .04); HBcAg immunohistochemical scores and HA levels (P < .001); and HBcAg immunohistochemical scores and PCIII levels (P = .03). Positive fluorescent in situ hybridization results were significantly more frequent in patients with OBIs (80.6% vs 37.5% in those without OBIs). Among patients with OBIs, HBcAg was detected in the liver tissue in 52.8% and HBsAg in 5.6%. CONCLUSIONS OBI status appears to be associated with liver fibrosis severity.
Collapse
Affiliation(s)
- Xi Tang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases, The First Foshan People's Hospital, Foshan, China
| | - Liu Yang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Panli Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Cong Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shengxue Luo
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Bochao Liu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yongshui Fu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Institute of Blood Transfusion, Guangzhou Blood Center, Guangzhou, China
| | - Daniel Candotti
- Department of Virology, Henri Mondor Hospital, AP-HP and University of Paris-Est, INSERM U955, IMRB, Créteil, France
| | - Jean-Pierre Allain
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Depratment of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
42
|
Nishio T, Taura K, Koyama Y, Ishii T, Hatano E. Current status of preoperative risk assessment for posthepatectomy liver failure in patients with hepatocellular carcinoma. Ann Gastroenterol Surg 2023; 7:871-886. [PMID: 37927928 PMCID: PMC10623981 DOI: 10.1002/ags3.12692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/08/2023] [Accepted: 05/03/2023] [Indexed: 11/07/2023] Open
Abstract
Liver resection is an effective therapeutic option for patients with hepatocellular carcinoma. However, posthepatectomy liver failure (PHLF) remains a major cause of hepatectomy-related mortality, and the accurate prediction of PHLF based on preoperative assessment of liver functional reserve is a critical issue. The definition of PHLF proposed by the International Study Group for Liver Surgery has gained acceptance as a standard grading criterion. Liver function can be estimated using a variety of parameters, including routine blood biochemical examinations, clinical scoring systems, dynamic liver function tests, liver stiffness and fibrosis markers, and imaging studies. The Child-Pugh score and model for end-stage liver disease scores are conventionally used for estimating liver decompensation, although the alternatively developed albumin-bilirubin score shows superior performance for predicting hepatic dysfunction. Indocyanine green clearance, a dynamic liver function test mostly used in Japan and other Asian countries, serves as a quantitative estimation of liver function reserve and helps determine indications for surgical procedures according to the estimated risk of PHLF. In an attempt to improve predictive accuracy, specific evaluation of liver fibrosis and portal hypertension has gained popularity, including liver stiffness measurements using ultrasonography or magnetic resonance elastography, as well as noninvasive fibrosis markers. Imaging modalities, including Tc-99m-labeled galactosyl serum albumin scintigraphy and gadolinium-enhanced magnetic resonance imaging, are used for preoperative evaluation in combination with liver volume. This review aims to provide an overview of the usefulness of current options for the preoperative assessment of liver function in predicting PHLF.
Collapse
Affiliation(s)
- Takahiro Nishio
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Kojiro Taura
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
- Department of Gastroenterological Surgery and OncologyKitano HospitalOsakaJapan
| | - Yukinori Koyama
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Takamichi Ishii
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
43
|
Bailey NN, Peterson SJ, Parikh MA, Jackson KA, Frishman WH. Pegozafermin Is a Potential Master Therapeutic Regulator in Metabolic Disorders: A Review. Cardiol Rev 2023:00045415-990000000-00170. [PMID: 37889055 DOI: 10.1097/crd.0000000000000625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Pegozafermin (PGZ), a novel glycopegylated version of human fibroblast growth factor 21 (FGF21), has demonstrated potential for addressing metabolic comorbidities, including severe hypertriglyceridemia, insulin resistance, nonalcoholic fatty liver disease, and obesity. FGF21 is a naturally occurring peptide hormone primarily produced by the liver, with a half-life of 0.5 to 2 hours. It can influence metabolic processes through endocrine cellular effects. FGF21 receptors are found in the liver, adipose, skeletal muscles, and pancreatic tissues. Those receptors rely on the beta klotho (KLB) coreceptors, a transmembrane protein, to activate the FGF21 signaling pathway and FGF21's associated transcription factors. PGZ, through its extended half-life of 55 to 100 hours, has evidenced significant improvements in metabolic functions. Its mechanism of action includes promoting adiponectin levels, enhancing insulin sensitivity, increasing triglyceride uptake, and reducing de novo lipogenesis. This emerging pharmaceutical compound has shown promise in treating liver fibrosis and inflammation linked to nonalcoholic steatohepatitis. The ENTRIGUE trial, a phase 2 clinical trial of PGZ, has demonstrated a 57% reduction in triglyceride level compared to placebo; a 45% reduction in liver hepatic steatosis; improved insulin sensitivity; reductions in nonhigh-density lipoprotein-cholesterol; and reductions in apolipoprotein B-100.
Collapse
Affiliation(s)
- Nadian N Bailey
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
| | - Stephen J Peterson
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
- Weill Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Manish A Parikh
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
- Weill Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Kaedrea A Jackson
- Department of Emergency Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
| | | |
Collapse
|
44
|
Tsujita Y, Sofue K, Ueshima E, Ueno Y, Hori M, Murakami T. Clinical Application of Quantitative MR Imaging in Nonalcoholic Fatty Liver Disease. Magn Reson Med Sci 2023; 22:435-445. [PMID: 35584952 PMCID: PMC10552668 DOI: 10.2463/mrms.rev.2021-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Viral hepatitis was previously the most common cause of chronic liver disease. However, in recent years, nonalcoholic fatty liver disease (NAFLD) cases have been increasing, especially in developed countries. NAFLD is histologically characterized by fat, fibrosis, and inflammation in the liver, eventually leading to cirrhosis and hepatocellular carcinoma. Although biopsy is the gold standard for the assessment of the liver parenchyma, quantitative evaluation methods, such as ultrasound, CT, and MRI, have been reported to have good diagnostic performances. The quantification of liver fat, fibrosis, and inflammation is expected to be clinically useful in terms of the prognosis, early intervention, and treatment response for the management of NAFLD. The aim of this review was to discuss the basics and prospects of MRI-based tissue quantifications of the liver, mainly focusing on proton density fat fraction for the quantification of fat deposition, MR elastography for the quantification of fibrosis, and multifrequency MR elastography for the evaluation of inflammation.
Collapse
Affiliation(s)
- Yushi Tsujita
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Keitaro Sofue
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Eisuke Ueshima
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yoshiko Ueno
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Masatoshi Hori
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takamichi Murakami
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
45
|
Jordan VC, Sojoodi M, Shroff S, Pagan PG, Barrett SC, Wellen J, Tanabe KK, Chung RT, Caravan P, Gale EM. Molecular magnetic resonance imaging of liver inflammation using an oxidatively activated probe. JHEP Rep 2023; 5:100850. [PMID: 37818152 PMCID: PMC10561122 DOI: 10.1016/j.jhepr.2023.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 10/12/2023] Open
Abstract
Background & Aims Many liver diseases are driven by inflammation, but imaging to non-invasively diagnose and quantify liver inflammation has been underdeveloped. The inflammatory liver microenvironment is aberrantly oxidising owing in part to reactive oxygen species generated by myeloid leucocytes. We hypothesised that magnetic resonance imaging using the oxidatively activated probe Fe-PyC3A will provide a non-invasive biomarker of liver inflammation. Methods A mouse model of drug-induced liver injury was generated through intraperitoneal injection of a hepatoxic dose of acetaminophen. A mouse model of steatohepatitis was generated via a choline-deficient, l-amino acid defined high-fat diet (CDAHFD). Images were acquired dynamically before and after intravenous injection of Fe-PyC3A. The contrast agent gadoterate meglumine was used as a non-oxidatively activated negative control probe in mice fed CDAHFD. The (post-pre) Fe-PyC3A injection change in liver vs. muscle contrast-to-noise ratio (ΔCNR) recorded 2 min post-injection was correlated with liver function test values, histologic scoring assigned using the NASH Clinical Research Network criteria, and intrahepatic myeloid leucocyte composition determined by flow cytometry. Results For mice receiving i.p. injections of acetaminophen, intrahepatic neutrophil composition correlated poorly with liver test values but positively and significantly with ΔCNR (r = 0.64, p <0.0001). For mice fed CDAHFD, ΔCNR generated by Fe-PyC3A in the left lobe was significantly greater in mice meeting histologic criteria strongly associated with a diagnosis NASH compared to mice where histology was consistent with likely non-NASH (p = 0.0001), whereas no differential effect was observed using gadoterate meglumine. In mice fed CDAHFD, ΔCNR did not correlate strongly with fractional composition of any specific myeloid cell subpopulation as determined by flow cytometry. Conclusions Magnetic resonance imaging using Fe-PyC3A merits further evaluation as a non-invasive biomarker for liver inflammation. Impact and implications Non-invasive tests to diagnose and measure liver inflammation are underdeveloped. Inflammatory cells such as neutrophils release reactive oxygen species which creates an inflammatory liver microenvironment that can drive chemical oxidation. We recently invented a new class of magnetic resonance imaging probe that is made visible to the scanner only after chemical oxidation. Here, we demonstrate how this imaging technology could be applied as a non-invasive biomarker for liver inflammation.
Collapse
Affiliation(s)
- Veronica Clavijo Jordan
- Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mozhdeh Sojoodi
- Harvard Medical School, Boston, MA, USA
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Stuti Shroff
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Patricia Gonzalez Pagan
- Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Stephen Cole Barrett
- Harvard Medical School, Boston, MA, USA
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | | | - Kenneth K. Tanabe
- Harvard Medical School, Boston, MA, USA
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Raymond T. Chung
- Harvard Medical School, Boston, MA, USA
- Gastroenterology Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Choudhuri G, Shah S, Kulkarni A, Jagtap N, Gaonkar P, Desai A, Adhav C. Non-alcoholic Steatohepatitis in Asians: Current Perspectives and Future Directions. Cureus 2023; 15:e42852. [PMID: 37664266 PMCID: PMC10473263 DOI: 10.7759/cureus.42852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a subset of non-alcoholic fatty liver disease (NAFLD), which, apart from excess fat in the liver, may be characterised by some level of inflammatory infiltration and fibrogenesis, occasionally progressing to liver cirrhosis or hepatocellular carcinoma (HCC). The objective of the current review is to elucidate the rising prevalence, the role of microbiome and genetics in pathogenesis, diagnostic challenges, and novel treatment alternatives for NASH. Newer diagnostic techniques are being developed since using liver biopsy in a larger population is not a reasonable option and is primarily restricted to clinical research, at least in developing countries. Besides these technical challenges, another important factor leading to deviation from guideline practice is the lack of health insurance coverage in countries like India. It leads to reluctance on the part of physicians and patients to delay required tests to curb out-of-pocket expenditure. There is no cure for NASH, with liver transplantation remaining the last option for those who progress to end-stage liver disease (ESLD) or are detected with early-stage HCC. Thus, lifestyle modification remains the only viable option for many, but compliance and long-term adherence remain major challenges. In obese individuals, bariatric surgery and weight reduction have shown favourable results. In patients with less severe obesity, endoscopic bariatric metabolic therapies (EBMT) are rapidly emerging as less invasive therapies. However, access and acceptability remain poor for these weight reduction methods. Therefore, intense research is being conducted for potential newer drug classes with several agents currently in phase II or III of clinical development. Some of these have demonstrated promising results, such as a reduction in hepatic fat content, and attenuation of fibrosis with an acceptable tolerability profile in phase II studies. The developments in the management of NASH have been fairly encouraging. Further well-designed long-term prospective studies should be undertaken to generate evidence with definitive results.
Collapse
Affiliation(s)
| | - Saumin Shah
- Gastroenterology, Gujarat Gastro and Vascular Hospital, Surat, IND
| | - Anand Kulkarni
- Gastroenterology and Hepatology, Asian Institute of Gastroenterology, Hyderabad, IND
| | - Nitin Jagtap
- Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, IND
| | | | | | | |
Collapse
|
47
|
Staufer K, Stauber RE. Steatotic Liver Disease: Metabolic Dysfunction, Alcohol, or Both? Biomedicines 2023; 11:2108. [PMID: 37626604 PMCID: PMC10452742 DOI: 10.3390/biomedicines11082108] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and alcohol-related liver disease (ALD), both of them accounting for fatty liver disease (FLD), are among the most common chronic liver diseases globally, contributing to substantial public health burden. Both NAFLD and ALD share a similar picture of clinical presentation yet may have differences in prognosis and treatment, which renders early and accurate diagnosis difficult but necessary. While NAFLD is the fastest increasing chronic liver disease, the prevalence of ALD has seemingly remained stable in recent years. Lately, the term steatotic liver disease (SLD) has been introduced, replacing FLD to reduce stigma. SLD represents an overarching term to primarily comprise metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), as well as alcohol-related liver disease (ALD), and MetALD, defined as a continuum across which the contribution of MASLD and ALD varies. The present review discusses current knowledge on common denominators of NAFLD/MASLD and ALD in order to highlight clinical and research needs to improve our understanding of SLD.
Collapse
Affiliation(s)
- Katharina Staufer
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Rudolf E Stauber
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
48
|
Orry S, Dalstrup Jakobsen D, Kristensen NM, Meldgaard Bruun J. Uric acid and sCD163 as biomarkers for metabolic dysfunction and MAFLD in children and adolescents with overweight and obesity. J Pediatr Endocrinol Metab 2023; 0:jpem-2023-0228. [PMID: 37285233 DOI: 10.1515/jpem-2023-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023]
Abstract
OBJECTIVES The prevalence of childhood obesity increases globally, and noninvasive methods are needed to identify metabolic dysfunction and obesity-related complications such as pediatric metabolic associated fatty liver disease (MAFLD). We investigated whether uric acid (UA) and the macrophage marker soluble form of cysteine scavenger receptor CD163 (sCD163) can be used as biomarkers for deteriorated metabolism or pediatric MAFLD in children with overweight or obesity. METHODS Cross-sectional clinical and biochemical data from 94 children with overweight or obesity was included. Surrogate liver markers were calculated, and correlations were investigated using Pearson's or Spearman's correlation test. RESULTS UA and sCD163 correlated with BMI standard deviation score (r=0.23, p<0.05; r=0.33, p<0.01) and body fat (r=0.24, p<0.05; r=0.27, p=0.01). UA correlated with triglycerides (ρ=0.21, p<0.05), fat free mass (r=0.33, p<0.01), and gamma-glutamyl transferase (r=0.39, p<0.01). sCD163 correlated with the pediatric NAFLD fibrosis score (r=0.28, p<0.01) and alanine aminotransferase (r=0.28, p<0.01). No correlation was found between UA and pediatric MAFLD. CONCLUSIONS UA and sCD163 was identified as markers of a deranged metabolic profile, thus acting as easily accessible biomarkers for obesity and an obesity-related deranged metabolism. Furthermore, increasing levels of sCD163 could be a useful biomarker of pediatric MAFLD. Future prospective studies are warranted.
Collapse
Affiliation(s)
- Sofie Orry
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Dorthe Dalstrup Jakobsen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, University of Aarhus, Aarhus, Denmark
- Danish National Center for Obesity, Aarhus, Denmark
| | | | - Jens Meldgaard Bruun
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, University of Aarhus, Aarhus, Denmark
- Danish National Center for Obesity, Aarhus, Denmark
| |
Collapse
|
49
|
Jang W, Song JS. Non-Invasive Imaging Methods to Evaluate Non-Alcoholic Fatty Liver Disease with Fat Quantification: A Review. Diagnostics (Basel) 2023; 13:diagnostics13111852. [PMID: 37296703 DOI: 10.3390/diagnostics13111852] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Hepatic steatosis without specific causes (e.g., viral infection, alcohol abuse, etc.) is called non-alcoholic fatty liver disease (NAFLD), which ranges from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), fibrosis, and NASH-related cirrhosis. Despite the usefulness of the standard grading system, liver biopsy has several limitations. In addition, patient acceptability and intra- and inter-observer reproducibility are also concerns. Due to the prevalence of NAFLD and limitations of liver biopsies, non-invasive imaging methods such as ultrasonography (US), computed tomography (CT), and magnetic resonance imaging (MRI) that can reliably diagnose hepatic steatosis have developed rapidly. US is widely available and radiation-free but cannot examine the entire liver. CT is readily available and helpful for detection and risk classification, significantly when analyzed using artificial intelligence; however, it exposes users to radiation. Although expensive and time-consuming, MRI can measure liver fat percentage with magnetic resonance imaging proton density fat fraction (MRI-PDFF). Specifically, chemical shift-encoded (CSE)-MRI is the best imaging indicator for early liver fat detection. The purpose of this review is to provide an overview of each imaging modality with an emphasis on the recent progress and current status of liver fat quantification.
Collapse
Affiliation(s)
- Weon Jang
- Department of Radiology, Jeonbuk National University Medical School and Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Jeonbuk, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Jeonbuk, Republic of Korea
| | - Ji Soo Song
- Department of Radiology, Jeonbuk National University Medical School and Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Jeonbuk, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Jeonbuk, Republic of Korea
| |
Collapse
|
50
|
Nuchniyom P, Intui K, Laoung-On J, Jaikang C, Quiggins R, Photichai K, Sudwan P. Effects of Nelumbonucifera Gaertn. Petal Tea Extract on Hepatotoxicity and Oxidative Stress Induced by Mancozeb in Rat Model. TOXICS 2023; 11:480. [PMID: 37368582 DOI: 10.3390/toxics11060480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Mancozeb (Mz) is one of the most widely used pesticides that has been reported to cause adverse human health risks. White Nelumbo nucifera (N. nucifera) petals have therapeutic properties to prevent toxicity. Hence, this study attempted to determine the effects of N. nucifera extract on hepatotoxicity and oxidative stress in mancozeb-treated rats. Seventy-two male rats were divided into nine groups and designed with a control; N. nucifera extract was administered at the doses of 0.55, 1.1, and 2.2 mg/kg bw/day, Mz was administered at 500 mg/kg bw/day, and the co-treatment groups (N. nucifera and Mz) were administered 0.55, 1.1, and 2.2 mg/kg bw/day of N. nucifera followed by administering Mz 500 mg/kg bw/day daily for 30 days. The results showed that all doses of N. nucifera extract did not induce hepatic toxicity and could suppress the toxicity of mancozeb by increasing body weight gain and decreasing relative liver weight, lobular inflammation, and total injury score. The combination treatment also decreased the molecular markers of oxidative stress (2-hydroxybutyric acid, 4-hydroxynonenal, l-tyrosine, pentosidine, and N6-carboxymethyllysine). Furthermore, the reduced glutathione and oxidized glutathione contents were adjusted close to the normal level. Therefore, N. nucifera extract is a natural antioxidant supplement that could decrease the toxicity of mancozeb and can be safely consumed.
Collapse
Affiliation(s)
- Pimchanok Nuchniyom
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ketsarin Intui
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Laoung-On
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Churdsak Jaikang
- Department of Toxicology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ranida Quiggins
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kornravee Photichai
- Center of Veterinary Diagnosis and Technology Transfer, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Paiwan Sudwan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|