1
|
Ramos-Sánchez RY, López-Fontanet JJ, Izquierdo N. Adult Refsum Disease in Puerto Rico: A Case Report. Cureus 2023; 15:e45426. [PMID: 37859930 PMCID: PMC10581862 DOI: 10.7759/cureus.45426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2023] [Indexed: 10/21/2023] Open
Abstract
Patients with adult Refsum Disease (ARD) have retinitis pigmentosa and thus nyctalopia, anosmia, sensorineural deafness, polyneuropathy, and ataxia. Upon physical examination, patients with ARD have congenital short metacarpals, metatarsals, and cardiac arrhythmias. Manifestations due to the lack of phytanoyl-CoA hydroxylase in peroxisomes needed for alpha-oxidation of phytanic acid lead patients to accumulate phytanic acid in their body tissues. To our knowledge, no consensus for clinical diagnostic criteria for patients with ARD has been published. Our patient had nyctalopia, retinal findings, and visual field results compatible with retinitis pigmentosa. Additionally, the patient had decreased macular thickness and volume in both eyes, the findings being worse in the left eye. The patient had undergone hand surgery due to chronic pain in both hands, as well as his fourth and fifth metatarsal bones were shortened. Interestingly, audiology evaluation showed mild hearing loss in the right ear and mild to moderate hearing loss in the left ear. Inheritance patterns in patients with ARD have been described. Physical examination, phytanic acid evaluation, and genetic studies may all help reach an ARD diagnosis. This is the first report of adult Refsum disease in Puerto Rico.
Collapse
Affiliation(s)
- Raúl Y Ramos-Sánchez
- Ophthalmology, University of Puerto Rico, Medical Sciences Campus, San Juan, PRI
| | | | - Natalio Izquierdo
- Ophthalmology, University of Puerto Rico, Medical Sciences Campus, San Juan, PRI
| |
Collapse
|
2
|
Mori K, Naganuma T, Kihara A. Role of 2-hydroxy acyl-CoA lyase HACL2 in odd-chain fatty acid production via α-oxidation in vivo. Mol Biol Cell 2023; 34:ar85. [PMID: 37285239 PMCID: PMC10398889 DOI: 10.1091/mbc.e23-02-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Although most fatty acids (FAs) are even chain, certain tissues, including brain, contain relatively large quantities of odd-chain FAs in their sphingolipids. One of the pathways producing odd-chain FAs is the α-oxidation of 2-hydroxy (2-OH) FAs, where 2-OH acyl-CoA lyases (HACL1 and HACL2) catalyze the key cleavage reaction. However, the contribution of each HACL to odd-chain FA production in vivo remains unknown. Here, we found that HACL2 and HACL1 play major roles in the α-oxidation of 2-OH FAs (especially very-long-chain types) and 3-methyl FAs (other α-oxidation substrates), respectively, using ectopic expression systems of human HACL2 and HACL1 in yeast and analyzing Hacl1 and/or Hacl2 knockout (KO) CHO-K1 cells. We then generated Hacl2 KO mice and measured the quantities of odd-chain and 2-OH lipids (free FAs and sphingolipids [ceramides, sphingomyelins, and monohexosylceramides]) in 17 tissues. We observed fewer odd-chain lipids and more 2-OH lipids in many tissues of Hacl2 KO mice than in wild-type mice, and of these differences the reductions were most prominent for odd-chain monohexosylceramides in the brain and ceramides in the stomach. These results indicate that HACL2-involved α-oxidation of 2-OH FAs is mainly responsible for odd-chain FA production in the brain and stomach.
Collapse
Affiliation(s)
- Keisuke Mori
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tatsuro Naganuma
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
3
|
Wang X, Zhou L, Dong Z, Wang G. Identification of iron metabolism-related predictive markers of endometriosis and endometriosis-relevant ovarian cancer. Medicine (Baltimore) 2023; 102:e33478. [PMID: 37058039 PMCID: PMC10101319 DOI: 10.1097/md.0000000000033478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/17/2023] [Indexed: 04/15/2023] Open
Abstract
Endometriosis is associated with ovarian cancers, mainly endometrioid and clear-cell carcinomas. Iron metabolism has been shown to play a role in endometriosis. Therefore, it is vital to explore the relationship between iron metabolism and ovarian cancer and to identify novel markers for diagnostics and therapeutics. The endometriosis dataset GSE51981 and the ovarian cancer dataset GSE26712 were obtained from the gene expression omnibus database, and differentially expressed genes were identified. Iron metabolism genes were obtained from molecular signatures database, and hub genes from the 3 datasets were obtained. Seven hub genes were identified by bioinformatic analysis, and 3 hub genes (NCOA4, ETFDH, and TYW1) were further selected by logistic regression, which were verified in an independent endometriosis dataset (GSE25628) and ovarian cancer dataset (GSE14407), showing good predictive diagnostic value (area under the receiver operating characteristic curve of 0.88 and 0.9, respectively). Gene Ontology, gene set enrichment analysis, and immune infiltration analysis further confirmed the related functions, pathways, and immune relationship between iron metabolism and ovarian cancer. This study highlights the potential of targeting iron metabolism in the prevention of potential ovarian cancer and in the further exploration of endometriosis and endometriosis-relevant ovarian cancer therapeutics.
Collapse
Affiliation(s)
- Xu Wang
- School of Clinical Medicine, Dali University, Dali, Yunnan Province, China
| | - Lixiang Zhou
- School of Clinical Medicine, Dali University, Dali, Yunnan Province, China
| | - Zhaomei Dong
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, Yunnan Province, China
| | - Guangming Wang
- School of Clinical Medicine, Dali University, Dali, Yunnan Province, China
- Center of Genetic Testing, The First Affiliated Hospital of Dali University, Dali, Yunnan Province, China
| |
Collapse
|
4
|
Hundsberger F, Escher P, Schaller A, Valmaggia C, Todorova MG. The Value of a Combined Ophthalmogenetic Approach in Differentiating a Presumed Case of Isolated Retinitis Pigmentosa from Refsum Disease. Klin Monbl Augenheilkd 2023; 240:549-552. [PMID: 37164435 DOI: 10.1055/a-2055-1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
| | - Pascal Escher
- Department of Ophthalmology, University Hospital Bern, Bern, Switzerland
| | - André Schaller
- Division of Human Genetics, Department of Pediatrics, Inselspital University Hospital Bern, Bern, Switzerland
| | - Christophe Valmaggia
- Department of Ophthalmology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
- Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Margarita G Todorova
- Department of Ophthalmology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
- Department of Ophthalmology, University of Zurich, Zurich, Switzerland
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
5
|
Slanina AM, Coman AE, Anton-Păduraru DT, Popa E, Barbacariu CL, Novac O, Petroaie AD, Bacușcă AI, Manole M, Cosmescu A. PEX6 Mutation in a Child with Infantile Refsum Disease—A Case Report and Literature Review. CHILDREN 2023; 10:children10030530. [PMID: 36980088 PMCID: PMC10047879 DOI: 10.3390/children10030530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
The aim of this paper is to describe the temporal progression and clinical picture of a 2-year-old child with infantile Refsum disease, as well as the diagnostic procedures performed; this case presented multiple hematologic, metabolic, and developmental complications and progressive disabilities. Genetic testing revealed a mutation of the PEX6 (Peroxisomal Biogenesis Factor 6) gene, and the metabolic profile was consistent with the diagnosis. Particularly, the child also presented altered coagulation factors and developed a spontaneous brain hemorrhage. The clinical picture includes several neurological, ophthalmological, digestive, cutaneous, and endocrine disorders as a result of the very long chain fatty acid accumulation as well as secondary oxidative anomalies. The study of metabolic disorders occurring because of genetic mutations is a subject of core importance in the pathology of children today. The PEX mutations, difficult to identify antepartum, are linked to an array of cell anomalies with severe consequences on the patient’s status, afflicting multiple organs and systems. This is the reason for which our case history may be relevant, including a vast number of symptoms, as well as modified biological parameters.
Collapse
Affiliation(s)
- Ana-Maria Slanina
- Department of Family Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700115, Romania
| | - Adorata-Elena Coman
- Department of Family Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700115, Romania
| | - Dana-Teodora Anton-Păduraru
- Department of Mother and Child Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700115, Romania
- Correspondence:
| | - Elena Popa
- Department of Family Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700115, Romania
| | - Carmen-Liliana Barbacariu
- Department of Family Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700115, Romania
| | - Otilia Novac
- Department of Family Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700115, Romania
| | - Antoneta Dacia Petroaie
- Department of Family Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700115, Romania
| | - Agnes-Iacinta Bacușcă
- Department of Family Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700115, Romania
| | - Mihaela Manole
- Department of Family Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700115, Romania
| | - Adriana Cosmescu
- Department of Family Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700115, Romania
| |
Collapse
|
6
|
Stezin A, Pal PK. Treatable Ataxias: How to Find the Needle in the Haystack? J Mov Disord 2022; 15:206-226. [PMID: 36065614 DOI: 10.14802/jmd.22069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022] Open
Abstract
Treatable ataxias are a group of ataxic disorders with specific treatments. These disorders include genetic and metabolic disorders, immune-mediated ataxic disorders, and ataxic disorders associated with infectious and parainfectious etiology, vascular causes, toxins and chemicals, and endocrinopathies. This review provides a comprehensive overview of different treatable ataxias. The major metabolic and genetic treatable ataxic disorders include ataxia with vitamin E deficiency, abetalipoproteinemia, cerebrotendinous xanthomatosis, Niemann-Pick disease type C, autosomal recessive cerebellar ataxia due to coenzyme Q10 deficiency, glucose transporter type 1 deficiency, and episodic ataxia type 2. The treatment of these disorders includes the replacement of deficient cofactors and vitamins, dietary modifications, and other specific treatments. Treatable ataxias with immune-mediated etiologies include gluten ataxia, anti-glutamic acid decarboxylase antibody-associated ataxia, steroid-responsive encephalopathy associated with autoimmune thyroiditis, Miller-Fisher syndrome, multiple sclerosis, and paraneoplastic cerebellar degeneration. Although dietary modification with a gluten-free diet is adequate in gluten ataxia, other autoimmune ataxias are managed by short-course steroids, plasma exchange, or immunomodulation. For autoimmune ataxias secondary to malignancy, treatment of tumor can reduce ataxic symptoms. Chronic alcohol consumption, antiepileptics, anticancer drugs, exposure to insecticides, heavy metals, and recreational drugs are potentially avoidable and treatable causes of ataxia. Infective and parainfectious causes of cerebellar ataxias include acute cerebellitis, postinfectious ataxia, Whipple's disease, meningoencephalitis, and progressive multifocal leukoencephalopathy. These disorders are treated with steroids and antibiotics. Recognizing treatable disorders is of paramount importance when dealing with ataxias given that early treatment can prevent permanent neurological sequelae.
Collapse
Affiliation(s)
- Albert Stezin
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India.,Centre for Brain Research, Indian Institute of Science, Bengaluru, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| |
Collapse
|
7
|
Tang VD, Egense A, Yiu G, Meyers E, Moshiri A, Shankar SP. Retinal dystrophies: A look beyond the eyes. Am J Ophthalmol Case Rep 2022; 27:101613. [PMID: 35756836 PMCID: PMC9228281 DOI: 10.1016/j.ajoc.2022.101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 05/10/2022] [Accepted: 06/09/2022] [Indexed: 11/27/2022] Open
Abstract
Purpose To illustrate the importance of systemic evaluation in retinal dystrophies through examples of Alstrom syndrome, Bardet Biedl syndrome, and Refsum disease. Observations Detailed eye evaluations, including visual acuity, visual field, slit lamp examination, and indirect ophthalmoscopy were performed. Retinal imaging included fundus photography and spectral domain optical coherence tomography (SD-OCT). Functional testing of the retina was done using full field electroretinography (ffERG). In addition, molecular genetic testing was performed using a ciliopathy panel, a retinal dystrophy panel, and whole genome sequencing (WGS). We report three individuals who presented with vision concerns first to ophthalmology, noted to have retinal dystrophy, and then referred to genomic medicine for genetic testing. Additional evaluation led to suspicion of specific groups of systemic disorders and guided appropriate genetic testing. The first individual presented with retinal dystrophy, obesity, and short stature with no reported neurocognitive deficits. Genetic testing included a ciliopathy panel that was negative followed by WGS that identified biallelic variants in ALMS: a novel frame-shift pathogenic variant c.6525dupT (p.Gln2176Serfs*17) and a rare nonsense pathogenic variant c.2035C > T (p.Arg679Ter) consistent with Alstrom syndrome. The second individual presented with retinal dystrophy, central obesity, and mild neurocognitive deficits. A ciliopathy genetic testing panel identified a homozygous pathogenic variant in BBS7: c.389_390del (p.Asn130Thrfs*4), confirming the diagnosis of Bardet Biedl syndrome. The third individual presented with progressive vision loss due to retinitis pigmentosa, anosmia, hearing loss, and shortened metatarsals and digits. Genetic testing identified two variants in PHYH: c.375_375del (p.Glu126Argfs*2) a pathogenic variant and c.536A > G (p.His179Arg), a variant of uncertain significance (VUS), suggestive of Refsum disease. Additional biochemical testing revealed markedly elevated phytanic acid with a low concentration of pristanic acid and normal concentrations of very long-chain fatty acids (C22:0, C24:0, C26:0), a pattern consistent with a diagnosis of Refsum disease. Conclusions and importance In individuals who present with retinal dystrophy to ophthalmologists, additional systemic manifestations such as sensorineural hearing loss, anosmia, or polydactyly, should be sought and a positive history or examination finding should prompt an immediate referral to a clinical geneticist for additional evaluation and appropriate genetic testing. This facilitates pre-test genetic counseling and allows for more accurate diagnosis, prognosis, and management of affected individuals along with better recurrence risk estimates for family members. Identification of an underlying etiology also enhances the understanding of the pathophysiology of disease and expands the genotypic and phenotypic spectrum. Ultimately, successful recognition of these diseases facilitates development of targeted therapies and surveillance of affected individuals.
Collapse
|
8
|
Ophthalmic Diagnosis and Novel Management of Infantile Refsum Disease with Combination Docosahexaenoic Acid and Cholic Acid. Case Rep Ophthalmol Med 2021; 2021:1345937. [PMID: 34664020 PMCID: PMC8520494 DOI: 10.1155/2021/1345937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Infantile Refsum disease is a rare peroxisomal biogenesis disorder characterized by impaired alpha-oxidation and accumulation of phytanic acid in the tissues. Patients often present with fundus changes resembling retinitis pigmentosa, developmental delay, sensorineural hearing loss, ataxia, and hepatomegaly. Traditionally, mainstay treatment for this condition has been a phytanic acid-restricted diet, although supplementation with either docosahexaenoic acid or cholic acid has rarely been described in the literature. We present a case of infantile Refsum disease in a child with retinitis pigmentosa-like ocular findings, sensorineural hearing loss, and self-resolving hepatic disease, who developed novel findings of macular edema refractory to carbonic anhydrase inhibitors. We describe management with a phytanic acid-restricted diet and combination docosahexaenoic acid, and cholic acid therapy, which helped to limit progression of her disease.
Collapse
|
9
|
Zwara A, Wertheim-Tysarowska K, Mika A. Alterations of Ultra Long-Chain Fatty Acids in Hereditary Skin Diseases-Review Article. Front Med (Lausanne) 2021; 8:730855. [PMID: 34497816 PMCID: PMC8420999 DOI: 10.3389/fmed.2021.730855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/30/2021] [Indexed: 11/27/2022] Open
Abstract
The skin is a flexible organ that forms a barrier between the environment and the body's interior; it is involved in the immune response, in protection and regulation, and is a dynamic environment in which skin lipids play an important role in maintaining homeostasis. The different layers of the skin differ in both the composition and amount of lipids. The epidermis displays the best characteristics in this respect. The main lipids in this layer are cholesterol, fatty acids (FAs) and ceramides. FAs can occur in free form and as components of complex molecules. The most poorly characterized FAs are very long-chain fatty acids (VLCFAs) and ultra long-chain fatty acids (ULCFAs). VLCFAs and ULCFAs are among the main components of ceramides and are part of the free fatty acid (FFA) fraction. They are most abundant in the brain, liver, kidneys, and skin. VLCFAs and ULCFAs are responsible for the rigidity and impermeability of membranes, forming the mechanically and chemically strong outer layer of cell membranes. Any changes in the composition and length of the carbon chains of FAs result in a change in their melting point and therefore a change in membrane permeability. One of the factors causing a decrease in the amount of VLCFAs and ULCFAs is an improper diet. Another much more important factor is mutations in the genes which code proteins involved in the metabolism of VLCFAs and ULCFAs—regarding their elongation, their attachment to ceramides and their transformation. These mutations have their clinical consequences in the form of inborn errors in metabolism and neurodegenerative disorders, among others. Some of them are accompanied by skin symptoms such as ichthyosis and ichthyosiform erythroderma. In the following review, the structure of the skin is briefly characterized and the most important lipid components of the skin are presented. The focus is also on providing an overview of selected proteins involved in the metabolism of VLCFAs and ULCFAs in the skin.
Collapse
Affiliation(s)
- Agata Zwara
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
10
|
Roles of HIF and 2-Oxoglutarate-Dependent Dioxygenases in Controlling Gene Expression in Hypoxia. Cancers (Basel) 2021; 13:cancers13020350. [PMID: 33477877 PMCID: PMC7832865 DOI: 10.3390/cancers13020350] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that such dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. Abstract Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. We highlight the relevance of HIF and 2-OGDs in the control of gene expression in response to hypoxia and their relevance to human biology and health.
Collapse
|
11
|
Zhengqi Q, Zezhi G, Lei J, He Q, Jinyao P, Ying A. Prognostic role of PHYH for overall survival (OS) in clear cell renal cell carcinoma (ccRCC). Eur J Med Res 2021; 26:9. [PMID: 33468235 PMCID: PMC7816304 DOI: 10.1186/s40001-021-00482-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/08/2021] [Indexed: 01/21/2023] Open
Abstract
This study attempts to evaluate the prognostic role of PHYH for overall survival (OS) in clear cell renal cell carcinoma (ccRCC) by means of publicly available data from The Cancer Genome Atlas (TCGA). Clinical pathologic features and PHYH expression were downloaded from the TCGA database and relationships between them were analyzed by univariate and multivariate Cox regression analyses. Gene Set Enrichment Analysis (GSEA) and gene–gene interactions were also performed between tissues with different PHYH expression levels. PHYH expression levels were significantly lower in patient with ccRCC compared with normal tissues (p = 1.156e−19). Kaplan–Meier survival analysis showed that high expression of PHYH had a better prognosis than low expression (p = 9e−05). Moreover, PHYH expression was also significantly associated with high grade (G2-4, p = 0.025), high stage (StageIII & IV, p = 5.604e−05), and high level of stage_T (T3-4, p = 4.373e−05). Univariate and multivariate Cox regression analyses indicated that PHYH could be acted as an independent prognostic factor (p < 0.05). Nomogram including clinical pathologic features and PHYH expression were also provided. GSEA revealed that butanoate metabolism, histidine metabolism, propanoate metabolism, pyruvate metabolism, tryptophan metabolism, PPAR signalling pathway, and renin–angiotensin system were differentially enriched in PHYH high-expression phenotype. ICGC database was utilized to verify the expression level and survival benefit of PHYH (both p < 0.05). We suspect that elevated PHYH expression may be served as a potential prognostic molecular marker of better survival in ccRCC. Besides, alpha-oxidation was closely regulated by PHYH, and PPAR signalling, pyruvate metabolism, butanoate metabolism, and RAS might be the key pathways regulated by PHYH in CCRC.
Collapse
Affiliation(s)
- Qiu Zhengqi
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| | - Guo Zezhi
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jiang Lei
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Qiu He
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Pan Jinyao
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Ao Ying
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
12
|
Kunze M. The type-2 peroxisomal targeting signal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118609. [PMID: 31751594 DOI: 10.1016/j.bbamcr.2019.118609] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
The type-2 peroxisomal targeting signal (PTS2) is one of two peptide motifs destining soluble proteins for peroxisomes. This signal acts as amphiphilic α-helix exposing the side chains of all conserved residues to the same side. PTS2 motifs are recognized by a bipartite protein complex consisting of the receptor PEX7 and a co-receptor. Cargo-loaded receptor complexes are translocated across the peroxisomal membrane by a transient pore and inside peroxisomes, cargo proteins are released and processed in many, but not all species. The components of the bipartite receptor are re-exported into the cytosol by a ubiquitin-mediated and ATP-driven export mechanism. Structurally, PTS2 motifs resemble other N-terminal targeting signals, whereas the functional relation to the second peroxisomal targeting signal (PTS1) is unclear. Although only a few PTS2-carrying proteins are known in humans, subjects lacking a functional import mechanism for these proteins suffer from the severe inherited disease rhizomelic chondrodysplasia punctata.
Collapse
Affiliation(s)
- Markus Kunze
- Medical University of Vienna, Center for Brain Research, Department of Pathobiology of the Nervous System, Spitalgasse 4, 1090 Vienna, Austria.
| |
Collapse
|
13
|
Chen L, Wei Y, Chi W, Fang D, Jiang X, Zhang S. Potential Mutations in Chinese Pathologic Myopic Patients and Contributions to Phenotype. Curr Mol Med 2019; 18:689-697. [PMID: 30747064 PMCID: PMC6635424 DOI: 10.2174/1566524019666190211120016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/02/2022]
Abstract
Purpose Pathologic myopia is a leading cause of visual impairment in East Asia. The aim of this study was to investigate the potential mutations in Chinese pathologic myopic patients and to analyze the correlations between genotype and clinical phenotype. Method One hundred and three patients with pathologic myopia and one hundred and nine unrelated healthy controls were recruited from Zhongshan Ophthalmic Center. Detailed clinical data, including ultra-widefield retinal images, measurements of best-corrected visual acuity, axial length, refractive error and ophthalmic examination results, were obtained. Blood samples were collected for high-throughput DNA targeted sequencing. Based on the screening results, phenotype-genotype correlations were analyzed. Results The study included 196 eyes of 103 patients (36 men and 67 women) with an average age of 52.19 (38.92 – 65.46) years, an average refractive error of -11.80 D (-16.38 – -7.22) and a mean axial length of 28.26 mm (25.79 – 30.73). The patients were subdivided into three groups: myopic chorioretinal atrophy (190 eyes of 101 patients), myopic choroidal neovascularization (17 eyes of 15 patients), and myopic traction retinopathy (71 eyes of 61 patients). Systematic analysis of variants in the 255 genes revealed six potential pathogenic mutations: PEX7, OCA2, LRP5 (rs545382, c.1647T>C), TSPAN12 (rs41623, c.765G>T), RDH5 (rs3138142, c.423C>T) and TTC21B (rs80225158, c.2385G>C). OCA2 mutations were primarily observed in patients with myopic traction maculopathy. Conclusion Genetic alterations contribute to various clinical characteristics in Chinese pathologic myopic patients. The study may provide new insights into the etiology of pathologic myopia and potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- L Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Y Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - W Chi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - D Fang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - X Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - S Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Walport LJ, Schofield CJ. Adventures in Defining Roles of Oxygenases in the Regulation of Protein Biosynthesis. CHEM REC 2018; 18:1760-1781. [PMID: 30151867 DOI: 10.1002/tcr.201800056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022]
Abstract
The 2-oxoglutarate (2OG) dependent oxygenases were first identified as having roles in the post-translational modification of procollagen in animals. Subsequently in plants and microbes, they were shown to have roles in the biosynthesis of many secondary metabolites, including signalling molecules and the penicillin/cephalosporin antibiotics. Crystallographic studies of microbial 2OG oxygenases and related enzymes, coupled to DNA sequence analyses, led to the prediction that 2OG oxygenases are widely distributed in aerobic biology. This personal account begins with examples of the roles of 2OG oxygenases in antibiotic biosynthesis, and then describes efforts to assign functions to other predicted 2OG oxygenases. In humans, 2OG oxygenases have been found to have roles in small molecule metabolism, as well as in the epigenetic regulation of protein and nucleic acid biosynthesis and function. The roles and functions of human 2OG oxygenases are compared, focussing on discussion of their substrate and product selectivities. The account aims to emphasize how scoping the substrate selectivity of, sometimes promiscuous, enzymes can provide insights into their functions and so enable therapeutic work.
Collapse
Affiliation(s)
- Louise J Walport
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
15
|
Abstract
Peroxisomes play vital roles in a broad spectrum of cellular metabolic pathways. Defects in genes encoding peroxisomal proteins can result in a wide array of disorders, depending upon the metabolic pathways affected. These disorders can be broadly classified into 2 main groups; peroxisome biogenesis disorders (PBDs) and single peroxisomal enzyme deficiencies. Peroxisomal enzyme deficiencies are result of dysfunction of a specific metabolic pathway, while PBDs are due to generalized peroxisomal dysfunction. Mutations in PEX1 gene are the most common cause of PBDs, accounting for two-thirds of cases. Peroxisomal fission defects is a recently recognized entity, included under the subgroup of PBDs. The aim of this article is to provide a comprehensive review on the clinical and neuroimaging spectrum of peroxisomal disorders.
Collapse
|
16
|
Ruiz-Roso MB, Olivares-Álvaro E, Quintela JC, Ballesteros S, Espinosa-Parrilla JF, Ruiz-Roso B, Lahera V, de Las Heras N, Martín-Fernández B. Effects of Low Phytanic Acid-Concentrated DHA on Activated Microglial Cells: Comparison with a Standard Phytanic Acid-Concentrated DHA. Neuromolecular Med 2018; 20:328-342. [PMID: 29846873 DOI: 10.1007/s12017-018-8496-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/24/2018] [Indexed: 02/04/2023]
Abstract
Docosahexaenoic acid (DHA, 22:6 n-3) is an essential omega-3 (ω-3) long chain polyunsaturated fatty acid of neuronal membranes involved in normal growth, development, and function. DHA has been proposed to reduce deleterious effects in neurodegenerative processes. Even though, some inconsistencies in findings from clinical and pre-clinical studies with DHA could be attributed to the presence of phytanic acid (PhA) in standard DHA treatments. Thus, the aim of our study was to analyze and compare the effects of a low PhA-concentrated DHA with a standard PhA-concentrated DHA under different neurotoxic conditions in BV-2 activated microglial cells. To this end, mouse microglial BV-2 cells were stimulated with either lipopolysaccharide (LPS) or hydrogen peroxide (H2O2) and co-incubated with DHA 50 ppm of PhA (DHA (PhA:50)) or DHA 500 ppm of PhA (DHA (PhA:500)). Cell viability, superoxide anion (O2-) production, Interleukin 6 (L-6), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), glutathione peroxidase (GtPx), glutathione reductase (GtRd), Caspase-3, and the brain-derived neurotrophic factor (BDNF) protein expression were explored. Low PhA-concentrated DHA protected against LPS or H2O2-induced cell viability reduction in BV-2 activated cells and O2- production reduction compared to DHA (PhA:500). Low PhA-concentrated DHA also decreased COX-2, IL-6, iNOS, GtPx, GtRd, and SOD-1 protein expression when compared to DHA (PhA:500). Furthermore, low PhA-concentrated DHA increased BDNF protein expression in comparison to DHA (PhA:500). The study provides data supporting the beneficial effect of low PhA-concentrated DHA in neurotoxic injury when compared to a standard PhA-concentrated DHA in activated microglia.
Collapse
Affiliation(s)
- María Belén Ruiz-Roso
- Department of Physiology, Faculty of Medicine, Complutense University, 28040, Madrid, Spain
| | - Elena Olivares-Álvaro
- Department of Physiology, Faculty of Medicine, Complutense University, 28040, Madrid, Spain
| | | | - Sandra Ballesteros
- Department of Physiology, Faculty of Medicine, Complutense University, 28040, Madrid, Spain
| | | | - Baltasar Ruiz-Roso
- Department of Nutrition and Bromatology I (Nutrition), Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Vicente Lahera
- Department of Physiology, Faculty of Medicine, Complutense University, 28040, Madrid, Spain
| | - Natalia de Las Heras
- Department of Physiology, Faculty of Medicine, Complutense University, 28040, Madrid, Spain
| | - Beatriz Martín-Fernández
- Department of Physiology, Faculty of Medicine, Complutense University, 28040, Madrid, Spain.
- Natac Biotech S.L., 28923, Alcorcón, Madrid, Spain.
| |
Collapse
|
17
|
|
18
|
Braga Neto P, Pedroso JL, Kuo SH, Marcondes Junior CF, Teive HAG, Barsottini OGP. Current concepts in the treatment of hereditary ataxias. ARQUIVOS DE NEURO-PSIQUIATRIA 2017; 74:244-52. [PMID: 27050855 DOI: 10.1590/0004-282x20160038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/04/2016] [Indexed: 02/19/2023]
Abstract
Hereditary ataxias (HA) represents an extensive group of clinically and genetically heterogeneous neurodegenerative diseases, characterized by progressive ataxia combined with extra-cerebellar and multi-systemic involvements, including peripheral neuropathy, pyramidal signs, movement disorders, seizures, and cognitive dysfunction. There is no effective treatment for HA, and management remains supportive and symptomatic. In this review, we will focus on the symptomatic treatment of the main autosomal recessive ataxias, autosomal dominant ataxias, X-linked cerebellar ataxias and mitochondrial ataxias. We describe management for different clinical symptoms, mechanism-based approaches, rehabilitation therapy, disease modifying therapy, future clinical trials and perspectives, genetic counseling and preimplantation genetic diagnosis.
Collapse
Affiliation(s)
- Pedro Braga Neto
- Center of Health Sciences, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - José Luiz Pedroso
- Departmento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, United States
| | | | | | | |
Collapse
|
19
|
de Castro-Miró M, Tonda R, Escudero-Ferruz P, Andrés R, Mayor-Lorenzo A, Castro J, Ciccioli M, Hidalgo DA, Rodríguez-Ezcurra JJ, Farrando J, Pérez-Santonja JJ, Cormand B, Marfany G, Gonzàlez-Duarte R. Novel Candidate Genes and a Wide Spectrum of Structural and Point Mutations Responsible for Inherited Retinal Dystrophies Revealed by Exome Sequencing. PLoS One 2016; 11:e0168966. [PMID: 28005958 PMCID: PMC5179108 DOI: 10.1371/journal.pone.0168966] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/09/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND NGS-based genetic diagnosis has completely revolutionized the human genetics field. In this study, we have aimed to identify new genes and mutations by Whole Exome Sequencing (WES) responsible for inherited retinal dystrophies (IRD). METHODS A cohort of 33 pedigrees affected with a variety of retinal disorders was analysed by WES. Initial prioritization analysis included around 300 IRD-associated genes. In non-diagnosed families a search for pathogenic mutations in novel genes was undertaken. RESULTS Genetic diagnosis was attained in 18 families. Moreover, a plausible candidate is proposed for 10 more cases. Two thirds of the mutations were novel, including 4 chromosomal rearrangements, which expand the IRD allelic heterogeneity and highlight the contribution of private mutations. Our results prompted clinical re-evaluation of some patients resulting in assignment to a syndromic instead of non-syndromic IRD. Notably, WES unveiled four new candidates for non-syndromic IRD: SEMA6B, CEP78, CEP250, SCLT1, the two latter previously associated to syndromic disorders. We provide functional data supporting that missense mutations in CEP250 alter cilia formation. CONCLUSION The diagnostic efficiency of WES, and strictly following the ACMG/AMP criteria is 55% in reported causative genes or functionally supported new candidates, plus 30% families in which likely pathogenic or VGUS/VUS variants were identified in plausible candidates. Our results highlight the clinical utility of WES for molecular diagnosis of IRD, provide a wider spectrum of mutations and concomitant genetic variants, and challenge our view on syndromic vs non-syndromic, and causative vs modifier genes.
Collapse
Affiliation(s)
- Marta de Castro-Miró
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Raul Tonda
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Paula Escudero-Ferruz
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Rosa Andrés
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | | | - Joaquín Castro
- Servicio de Oftalmología, Unidad de Retina, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Daniel A. Hidalgo
- Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | | | - Jorge Farrando
- Institut Oftalmològic Quirón Barcelona, Barcelona, Spain
| | - Juan J. Pérez-Santonja
- Department of Ophthalmology, Alicante University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Gemma Marfany
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Roser Gonzàlez-Duarte
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Human disorders of peroxisome metabolism and biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:922-33. [DOI: 10.1016/j.bbamcr.2015.11.015] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
|
21
|
Schönfeld P, Reiser G. Brain Lipotoxicity of Phytanic Acid and Very Long-chain Fatty Acids. Harmful Cellular/Mitochondrial Activities in Refsum Disease and X-Linked Adrenoleukodystrophy. Aging Dis 2016; 7:136-49. [PMID: 27114847 PMCID: PMC4809606 DOI: 10.14336/ad.2015.0823] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 08/23/2015] [Indexed: 02/02/2023] Open
Abstract
It is increasingly understood that in the aging brain, especially in the case of patients suffering from neurodegenerative diseases, some fatty acids at pathologically high concentrations exert detrimental activities. To study such activities, we here analyze genetic diseases, which are due to compromised metabolism of specific fatty acids, either the branched-chain phytanic acid or very long-chain fatty acids (VLCFAs). Micromolar concentrations of phytanic acid or of VLCFAs disturb the integrity of neural cells by impairing Ca2+ homeostasis, enhancing oxidative stress or de-energizing mitochondria. Finally, these combined harmful activities accelerate cell death. Mitochondria are more severely targeted by phytanic acid than by VLCFAs. The insertion of VLCFAs into the inner membrane distorts the arrangement of membrane constituents and their functional interactions. Phytanic acid exerts specific protonophoric activity, induces reactive oxygen species (ROS) generation, and reduces ATP generation. A clear inhibition of the Na+, K+-ATPase activity by phytanic acid has also been reported. In addition to the instantaneous effects, a chronic exposure of brain cells to low micromolar concentrations of phytanic acid may produce neuronal damage in Refsum disease by altering epigenetic transcriptional regulation. Myelin-producing oligodendrocytes respond with particular sensitivity to VLCFAs. Deleterious activity of VLCFAs on energy-dependent mitochondrial functions declines with increasing the hydrocarbon chain length (C22:0 > C24:0 > C26:0). In contrast, the reverse sequence holds true for cell death induction by VLCFAs (C22:0 < C24:0 < C26:0). In adrenoleukodystrophy, the uptake of VLCFAs by peroxisomes is impaired by defects of the ABCD1 transporter. Studying mitochondria from ABCD1-deficient and wild-type mice proves that the energy-dependent functions are not altered in the disease model. Thus, a defective ABCD1 apparently exerts no obvious adaptive pressure on mitochondria. Further research has to elucidate the detailed mechanistic basis for the failures causing fatty acid-mediated neurodegeneration and should help to provide possible therapeutic interventions.
Collapse
Affiliation(s)
| | - Georg Reiser
- Institut für Neurobiochemie (Institut für Inflammation und Neurodegeneration), Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| |
Collapse
|
22
|
Role of molecular testing in the multidisciplinary diagnostic approach of ichthyosis. Orphanet J Rare Dis 2016; 11:4. [PMID: 26762237 PMCID: PMC4712481 DOI: 10.1186/s13023-016-0384-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/04/2016] [Indexed: 11/20/2022] Open
Abstract
Background The term ichthyosis describes a generalized disorder of cornification characterized by scaling and/or hyperkeratosis of different skin regions. Mutations in a broad group of genes related to keratinocyte differentiation and epidermal barrier function have been demonstrated to play a causative role in disease development. Ichthyosis may be classified in syndromic or non-syndromic forms based on the occurrence or absence of extracutaneous signs. In this setting, the diagnosis of ichthyosis is an integrated multistep process requiring a multidisciplinary approach in order to formulate the appropriate diagnostic hypothesis and to address the genetic testing. Methods Due to the complex features of the different ichthyoses and the high number of genes involved we have investigated a group of 64 patients, affected by syndromic and non-syndromic diseases, using Next Generation Sequencing as a new tool for the molecular diagnosis. Results Using this innovative molecular approach we were able to find pathogenic mutations in 53 out of 64 patients resulting in 82.8 % total detection rate. An interesting result from the analysis of the data is the high rate of novel sequence variations found compared to known mutations and the relevant rate of homozygous mutations. Conclusions The possibility to analyze a large number of genes associated with various diseases allows to study cases with phenotypes not well-determined, giving the opportunity to make new genotype-phenotype correlation. In some cases there were discrepancies between clinical features and histology or electron microscopy and only molecular analysis allowed to definitively resolve the diagnostic dilemma. The genetic diagnosis of ichthyosis leads to a more accurate and effective genetic counseling, allowing correct evaluation of the risk of recurrence, particularly in families with consanguineous background. Electronic supplementary material The online version of this article (doi:10.1186/s13023-016-0384-4) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
De Munter S, Verheijden S, Régal L, Baes M. Peroxisomal Disorders: A Review on Cerebellar Pathologies. Brain Pathol 2015; 25:663-78. [PMID: 26201894 PMCID: PMC8029412 DOI: 10.1111/bpa.12290] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/13/2015] [Indexed: 12/22/2022] Open
Abstract
Peroxisomes are organelles with diverse metabolic tasks including essential roles in lipid metabolism. They are of utmost importance for the normal functioning of the nervous system as most peroxisomal disorders are accompanied with neurological symptoms. Remarkably, the cerebellum exquisitely depends on intact peroxisomal function both during development and adulthood. In this review, we cover all aspects of cerebellar pathology that were reported in peroxisome biogenesis disorders and in diseases caused by dysfunction of the peroxisomal α-oxidation, β-oxidation or ether lipid synthesis pathways. We also discuss the phenotypes of mouse models in which cerebellar pathologies were recapitulated and search for connections with the metabolic abnormalities. It becomes increasingly clear that besides the most severe forms of peroxisome dysfunction that are associated with developmental cerebellar defects, milder impairments can give rise to ataxia later in life.
Collapse
Affiliation(s)
- Stephanie De Munter
- Department of Pharmaceutical and Pharmacological Sciences, Cell MetabolismKU Leuven—University of LeuvenB‐3000LeuvenBelgium
| | - Simon Verheijden
- Department of Clinical and Experimental MedicineTARGIDKU Leuven—University of LeuvenB‐3000LeuvenBelgium
| | - Luc Régal
- Department of Pediatric Neurology and Metabolic DisordersUZ Brussel—University Hospital Brussels1000BrusselsBelgium
| | - Myriam Baes
- Department of Pharmaceutical and Pharmacological Sciences, Cell MetabolismKU Leuven—University of LeuvenB‐3000LeuvenBelgium
| |
Collapse
|
24
|
Abstract
Ataxia is a disorder of balance and coordination resulted from dysfunctions involving cerebellum and its afferent and efferent connections. While a variety of disorders can cause secondary ataxias, the list of genetic causes of ataxias is growing longer. Genetic abnormalities may involve mitochondrial dysfunction, oxidative stress, abnormal mechanisms of DNA repair, possible protein misfolding, and abnormalities in cytoskeletal proteins. Few ataxias are fully treatable while hope for efficacious gene therapy and pharmacotherapy is emerging. A discussion of the ataxias is presented here with brief mention of acquired ataxias, and a greater focus on inherited ataxias.
Collapse
Affiliation(s)
- Umar Akbar
- Department of Neurology, Center for Movement Disorders and Neurorestoration College of Medicine, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, L3-100, Gainesville, FL 32611, USA
| | - Tetsuo Ashizawa
- Department of Neurology, Center for Movement Disorders and Neurorestoration College of Medicine, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, L3-100, Gainesville, FL 32611, USA.
| |
Collapse
|
25
|
"Role of peroxisomes in human lipid metabolism and its importance for neurological development". Neurosci Lett 2015; 637:11-17. [PMID: 26095698 DOI: 10.1016/j.neulet.2015.06.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/07/2015] [Indexed: 11/23/2022]
Abstract
Peroxisomes play a crucial role in normal neurological development as exemplified by the devastating neurological consequences of a defect in the biogenesis of peroxisomes as in Zellweger syndrome. The underlying basis for the important role of peroxisomes in neurological development resides in the fact that peroxisomes catalyze a number of physiological functions, notably involving the metabolism of different lipids. Indeed, peroxisomes catalyse the beta-oxidative breakdown of certain fatty acids including: (1.) the very long-chain fatty acids C22:0, C24:0, and C26:0; (2.) pristanic acid and (3.) the bile acid intermediates di- and trihydroxycholestanoic acid which cannot be oxidized in mitochondria. Furthermore, peroxisomes catalyze the synthesis of a particular type of lipids, i.e. ether-linked phospholipids, which are highly abundant in brain, especially in myelin. The current state of knowledge with respect to the metabolic role of peroxisomes will be described in this paper with particular emphasis on the role of peroxisomes in brain.
Collapse
|
26
|
Wanders RJA, Ferdinandusse S, Ebberink MS, Waterham HR. Phytanoyl-CoA Hydroxylase: A 2-Oxoglutarate-Dependent Dioxygenase Crucial for Fatty Acid Alpha-Oxidation in Humans. 2-OXOGLUTARATE-DEPENDENT OXYGENASES 2015. [DOI: 10.1039/9781782621959-00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Phytanoyl-CoA hydroxylase belongs to the family of 2-oxoglutarate-dependent dioxygenases and plays a crucial role in the α-oxidation of fatty acids. The complete α-oxidation pathway involves five different enzymes localized in peroxisomes. Thus far, phytanoyl-CoA hydroxylase deficiency has remained the only genetically determined inborn error of metabolism affecting the α-oxidation pathway. In this chapter we describe the current state of knowledge on fatty acid α-oxidation with special emphasis on phytanoyl-CoA hydroxylase and its deficiency in Refsum disease.
Collapse
Affiliation(s)
- Ronald J. A. Wanders
- Laboratory Genetic Metabolic Diseases, Departments of Paediatrics, Emma Children’s Hospital, and Clinical Chemistry, Academic Medical Center, University of Amsterdam Meibergdreef 9 1105 AZ Amsterdam the Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Departments of Paediatrics, Emma Children’s Hospital, and Clinical Chemistry, Academic Medical Center, University of Amsterdam Meibergdreef 9 1105 AZ Amsterdam the Netherlands
| | - Merel S. Ebberink
- Laboratory Genetic Metabolic Diseases, Departments of Paediatrics, Emma Children’s Hospital, and Clinical Chemistry, Academic Medical Center, University of Amsterdam Meibergdreef 9 1105 AZ Amsterdam the Netherlands
| | - Hans R. Waterham
- Laboratory Genetic Metabolic Diseases, Departments of Paediatrics, Emma Children’s Hospital, and Clinical Chemistry, Academic Medical Center, University of Amsterdam Meibergdreef 9 1105 AZ Amsterdam the Netherlands
| |
Collapse
|
27
|
Nanetti L, Pensato V, Leoni V, Rizzetto M, Caccia C, Taroni F, Mariotti C, Gellera C. PEX7 Mutations Cause Congenital Cataract Retinopathy and Late-Onset Ataxia and Cognitive Impairment: Report of Two Siblings and Review of the Literature. J Clin Neurol 2015; 11:197-9. [PMID: 25851898 PMCID: PMC4387488 DOI: 10.3988/jcn.2015.11.2.197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 12/02/2022] Open
Affiliation(s)
- Lorenzo Nanetti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
| | - Viviana Pensato
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
| | - Valerio Leoni
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
| | - Manuela Rizzetto
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
| | - Claudio Caccia
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
| | - Franco Taroni
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
| | - Caterina Mariotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Fondazione Istituto Neurologico Carlo Besta, Milano, Italy.
| | - Cinzia Gellera
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
28
|
Subramony S, Moscovich M, Ashizawa T. Genetics and Clinical Features of Inherited Ataxias. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
29
|
Zhao L, Wang F, Wang H, Li Y, Alexander S, Wang K, Willoughby CE, Zaneveld JE, Jiang L, Soens ZT, Earle P, Simpson D, Silvestri G, Chen R. Next-generation sequencing-based molecular diagnosis of 82 retinitis pigmentosa probands from Northern Ireland. Hum Genet 2014; 134:217-30. [PMID: 25472526 DOI: 10.1007/s00439-014-1512-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/20/2014] [Indexed: 11/24/2022]
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal disorders characterized by progressive photoreceptor degeneration. An accurate molecular diagnosis is essential for disease characterization and clinical prognoses. A retinal capture panel that enriches 186 known retinal disease genes, including 55 known RP genes, was developed. Targeted next-generation sequencing was performed for a cohort of 82 unrelated RP cases from Northern Ireland, including 46 simplex cases and 36 familial cases. Disease-causing mutations were identified in 49 probands, including 28 simplex cases and 21 familial cases, achieving a solving rate of 60 %. In total, 65 pathogenic mutations were found, and 29 of these were novel. Interestingly, the molecular information of 12 probands was neither consistent with their initial inheritance pattern nor clinical diagnosis. Further clinical reassessment resulted in a refinement of the clinical diagnosis in 11 patients. This is the first study to apply next-generation sequencing-based, comprehensive molecular diagnoses to a large number of RP probands from Northern Ireland. Our study shows that molecular information can aid clinical diagnosis, potentially changing treatment options, current family counseling and management.
Collapse
Affiliation(s)
- Li Zhao
- Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
van Paassen BW, van der Kooi AJ, van Spaendonck-Zwarts KY, Verhamme C, Baas F, de Visser M. PMP22 related neuropathies: Charcot-Marie-Tooth disease type 1A and Hereditary Neuropathy with liability to Pressure Palsies. Orphanet J Rare Dis 2014; 9:38. [PMID: 24646194 PMCID: PMC3994927 DOI: 10.1186/1750-1172-9-38] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 03/06/2014] [Indexed: 12/18/2022] Open
Abstract
PMP22 related neuropathies comprise (1) PMP22 duplications leading to Charcot-Marie-Tooth disease type 1A (CMT1A), (2) PMP22 deletions, leading to Hereditary Neuropathy with liability to Pressure Palsies (HNPP), and (3) PMP22 point mutations, causing both phenotypes. Overall prevalence of CMT is usually reported as 1:2,500, epidemiological studies show that 20-64% of CMT patients carry the PMP22 duplication. The prevalence of HNPP is not well known. CMT1A usually presents in the first two decades with difficulty walking or running. Distal symmetrical muscle weakness and wasting and sensory loss is present, legs more frequently and more severely affected than arms. HNPP typically leads to episodic, painless, recurrent, focal motor and sensory peripheral neuropathy, preceded by minor compression on the affected nerve. Electrophysiological evaluation is needed to determine whether the polyneuropathy is demyelinating. Sonography of the nerves can be useful. Diagnosis is confirmed by finding respectively a PMP22 duplication, deletion or point mutation. Differential diagnosis includes other inherited neuropathies, and acquired polyneuropathies. The mode of inheritance is autosomal dominant and de novo mutations occur. Offspring of patients have a chance of 50% to inherit the mutation from their affected parent. Prenatal testing is possible; requests for prenatal testing are not common. Treatment is currently symptomatic and may include management by a rehabilitation physician, physiotherapist, occupational therapist and orthopaedic surgeon. Adult CMT1A patients show slow clinical progression of disease, which seems to reflect a process of normal ageing. Life expectancy is normal.
Collapse
Affiliation(s)
- Barbara W van Paassen
- Department of Clinical Genetics, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| | | | | | | | | | | |
Collapse
|
31
|
Refsum Disease Presenting with a Late-Onset Leukodystrophy. JIMD Rep 2014; 19:7-10. [DOI: 10.1007/8904_2014_355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/07/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022] Open
|
32
|
|
33
|
Abstract
Inborn errors of metabolism may impact on muscle and peripheral nerve. Abnormalities involve mitochondria and other subcellular organelles such as peroxisomes and lysosomes related to the turnover and recycling of cellular compartments. Treatable causes are β-oxidation defects producing progressive neuropathy; pyruvate dehydrogenase deficiency, porphyria, or vitamin B12 deficiency causing recurrent episodes of neuropathy or acute motor deficit mimicking Guillain-Barré syndrome. On the other hand, lysosomal (mucopolysaccharidosis, Gaucher and Fabry diseases), mitochondriopathic (mitochondrial or nuclear mutations or mDNA depletion), peroxisomal (adrenomyeloneuropathy, Refsum disease, sterol carrier protein-2 deficiency, cerebrotendinous xanthomatosis, α-methylacyl racemase deficiency) diseases are multisystemic disorders involving also the heart, liver, brain, retina, and kidney. Pathophysiology of most metabolic myopathies is related to the impairment of energy production or to abnormal production of reactive oxygen species (ROS). Main symptoms are exercise intolerance with myalgias, cramps and recurrent myoglobinuria or limb weakness associated with elevation of serum creatine kinase. Carnitine palmitoyl transferase deficiency, followed by acid maltase deficiency, and lipin deficiency, are the most common cause of isolated rhabdomyolysis. Metabolic myopathies are frequently associated to extra-neuromuscular disorders particularly involving the heart, liver, brain, retina, skin, and kidney.
Collapse
Affiliation(s)
- Adele D'Amico
- Molecular Medicine and Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS-Children's Hospital Bambino Gesù, Rome, Italy
| | | |
Collapse
|
34
|
|
35
|
|
36
|
Kohlschütter A, Santer R, Lukacs Z, Altenburg C, Kemper MJ, Rüther K. A child with night blindness: preventing serious symptoms of Refsum disease. J Child Neurol 2012; 27:654-6. [PMID: 22156782 DOI: 10.1177/0883073811424799] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Refsum disease is a genetic progressive neurological disorder caused by neurotoxic phytanic acid, a nutritional component patients are unable to metabolize. Symptoms include retinopathy, polyneuropathy, ataxia, and deafness. They are variable and rarely recognized before adulthood. The authors report the case of a 14-year-old girl diagnosed because of night blindness. They treated her with a phytanic acid-poor diet and extracorporeal lipid apheresis. They used different methods over a 30-month period. Thereafter, the patient was treated with diet only. Membrane filtration and heparin-induced extracorporeal low-density lipoprotein precipitation apheresis were well tolerated. Withdrawal of phytanic acid was studied quantitatively. During a 5-year period, blood phytanic acid levels decreased to a noncritical range. The patient remained free of ophthalmological and neurological progression for a total observation of 12 years. Early diagnosis and effective measures to keep the phytanic acid load low can probably prevent the serious sequelae of Refsum disease. Developing a method for newborn screening is desirable.
Collapse
Affiliation(s)
- Alfried Kohlschütter
- Clinic for Degenerative Brain Diseases, Children's Hospital, University Medical Center Eppendorf, Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Robert J Courtney
- Case Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
38
|
Kruska N, Reiser G. Phytanic acid and pristanic acid, branched-chain fatty acids associated with Refsum disease and other inherited peroxisomal disorders, mediate intracellular Ca2+ signaling through activation of free fatty acid receptor GPR40. Neurobiol Dis 2011; 43:465-72. [PMID: 21570468 DOI: 10.1016/j.nbd.2011.04.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/18/2011] [Accepted: 04/22/2011] [Indexed: 01/28/2023] Open
Abstract
The accumulation of the two branched-chain fatty acids phytanic acid and pristanic acid is known to play an important role in several diseases with peroxisomal impairment, like Refsum disease, Zellweger syndrome and α-methylacyl-CoA racemase deficiency. Recent studies elucidated that the toxic activity of phytanic acid and pristanic acid is mediated by multiple mitochondrial dysfunctions, generation of reactive oxygen species and Ca2+ deregulation via the InsP3-Ca2+ signaling pathway in glial cells. However, the exact signaling mechanism through which both fatty acids mediate toxicity is still under debate. Here, we studied the ability of phytanic acid and pristanic acid to activate the free fatty acid receptor GPR40, a G-protein-coupled receptor, which was described to be involved in the Ca2+ signaling of fatty acids. We treated HEK 293 cells expressing the GPR40 receptor with phytanic acid or pristanic acid. This resulted in a significant increase in the intracellular Ca2+ level, similar to the effect seen after treatment with the synthetic GPR40 agonist GW9508. Furthermore, we demonstrate that the GPR40 activation might be due to an interaction of the carboxylate moiety of fatty acids with the receptor. Our findings indicate that the phytanic acid- and pristanic acid-mediated Ca2+ deregulation can involve the activation of GPR40. Therefore, we suppose that activation of GPR40 might be part of the signaling cascade of the toxicity of phytanic and pristanic acids.
Collapse
Affiliation(s)
- Nicol Kruska
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | | |
Collapse
|
39
|
Revised nomenclature and classification of inherited ichthyoses: results of the First Ichthyosis Consensus Conference in Sorèze 2009. J Am Acad Dermatol 2010; 63:607-41. [PMID: 20643494 DOI: 10.1016/j.jaad.2009.11.020] [Citation(s) in RCA: 454] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/30/2009] [Accepted: 11/17/2009] [Indexed: 12/21/2022]
Abstract
BACKGROUND Inherited ichthyoses belong to a large, clinically and etiologically heterogeneous group of mendelian disorders of cornification, typically involving the entire integument. Over the recent years, much progress has been made defining their molecular causes. However, there is no internationally accepted classification and terminology. OBJECTIVE We sought to establish a consensus for the nomenclature and classification of inherited ichthyoses. METHODS The classification project started at the First World Conference on Ichthyosis in 2007. A large international network of expert clinicians, skin pathologists, and geneticists entertained an interactive dialogue over 2 years, eventually leading to the First Ichthyosis Consensus Conference held in Sorèze, France, on January 23 and 24, 2009, where subcommittees on different issues proposed terminology that was debated until consensus was reached. RESULTS It was agreed that currently the nosology should remain clinically based. "Syndromic" versus "nonsyndromic" forms provide a useful major subdivision. Several clinical terms and controversial disease names have been redefined: eg, the group caused by keratin mutations is referred to by the umbrella term, "keratinopathic ichthyosis"-under which are included epidermolytic ichthyosis, superficial epidermolytic ichthyosis, and ichthyosis Curth-Macklin. "Autosomal recessive congenital ichthyosis" is proposed as an umbrella term for the harlequin ichthyosis, lamellar ichthyosis, and the congenital ichthyosiform erythroderma group. LIMITATIONS As more becomes known about these diseases in the future, modifications will be needed. CONCLUSION We have achieved an international consensus for the classification of inherited ichthyosis that should be useful for all clinicians and can serve as reference point for future research.
Collapse
|
40
|
Rüether K, Baldwin E, Casteels M, Feher MD, Horn M, Kuranoff S, Leroy BP, Wanders RJ, Wierzbicki AS. Adult Refsum disease: a form of tapetoretinal dystrophy accessible to therapy. Surv Ophthalmol 2010; 55:531-8. [PMID: 20850855 DOI: 10.1016/j.survophthal.2010.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 03/28/2010] [Accepted: 03/30/2010] [Indexed: 11/29/2022]
Abstract
Adult Refsum disease is characterized by an elevated plasma phytanic acid level and high concentrations of phytanic acid in a variety of tissues. Besides tapetoretinal degeneration, additional symptoms are anosmia, skeletal malformations, chronic polyneuropathy, cerebellar ataxia, sensorineural hearing loss, ichthyosis, and cardiac abnormalities. A diet low in phytanic acid ameliorates polyneuropathy and ataxia and slows or even stops the other manifestations. In order to be able to apply dietary therapy, as many patients as possible (even better if all of them are) have to be identified at an early stage. The ophthalmologist plays a crucial role in achieving this goal because of the early manifestation of the tapetoretinal degeneration.
Collapse
Affiliation(s)
- Klaus Rüether
- Charité-Eye Hospital, Campus Virchow-Klinikum, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Conduction diseases (CD) include defects in impulse generation and conduction. Patients with CD may manifest a wide range of clinical presentations, from asymptomatic to potentially life-threatening arrhythmias. The pathophysiologic mechanisms underlying CD are diverse and may have implications for diagnosis, treatment, and prognosis. Known causes of functional CD include cardiac ion channelopathies or defects in modifying proteins, such as cytoskeletal proteins. Progress in molecular biology and genetics along with development of animal models has increased the understanding of the molecular mechanisms of these disorders. This article discusses the genetic basis for CD and its clinical implications.
Collapse
Affiliation(s)
- Roy Beinart
- Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
42
|
Berger W, Kloeckener-Gruissem B, Neidhardt J. The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res 2010; 29:335-75. [PMID: 20362068 DOI: 10.1016/j.preteyeres.2010.03.004] [Citation(s) in RCA: 412] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During the last two to three decades, a large body of work has revealed the molecular basis of many human disorders, including retinal and vitreoretinal degenerations and dysfunctions. Although belonging to the group of orphan diseases, they affect probably more than two million people worldwide. Most excitingly, treatment of a particular form of congenital retinal degeneration is now possible. A major advantage for treatment is the unique structure and accessibility of the eye and its different components, including the vitreous and retina. Knowledge of the many different eye diseases affecting retinal structure and function (night and colour blindness, retinitis pigmentosa, cone and cone rod dystrophies, photoreceptor dysfunctions, as well as vitreoretinal traits) is critical for future therapeutic development. We have attempted to present a comprehensive picture of these disorders, including biological, clinical, genetic and molecular information. The structural organization of the review leads the reader through non-syndromic and syndromic forms of (i) rod dominated diseases, (ii) cone dominated diseases, (iii) generalized retinal degenerations and (iv) vitreoretinal disorders, caused by mutations in more than 165 genes. Clinical variability and genetic heterogeneity have an important impact on genetic testing and counselling of affected families. As phenotypes do not always correlate with the respective genotypes, it is of utmost importance that clinicians, geneticists, counsellors, diagnostic laboratories and basic researchers understand the relationships between phenotypic manifestations and specific genes, as well as mutations and pathophysiologic mechanisms. We discuss future perspectives.
Collapse
Affiliation(s)
- Wolfgang Berger
- Division of Medical Molecular Genetics and Gene Diagnostics, Institute of Medical Genetics, University of Zurich, Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland.
| | | | | |
Collapse
|
43
|
Marmolino D, Manto M. Past, present and future therapeutics for cerebellar ataxias. Curr Neuropharmacol 2010; 8:41-61. [PMID: 20808545 PMCID: PMC2866461 DOI: 10.2174/157015910790909476] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/18/2009] [Accepted: 11/30/2009] [Indexed: 01/14/2023] Open
Abstract
Cerebellar ataxias are a group of disabling neurological disorders. Patients exhibit a cerebellar syndrome and can also present with extra-cerebellar deficits, namely pigmentary retinopathy, extrapyramidal movement disorders, pyramidal signs, cortical symptoms (seizures, cognitive impairment/behavioural symptoms), and peripheral neuropathy. Recently, deficits in cognitive operations have been unraveled. Cerebellar ataxias are heterogeneous both at the phenotypic and genotypic point of view. Therapeutical trials performed during these last 4 decades have failed in most cases, in particular because drugs were not targeting a deleterious pathway, but were given to counteract putative defects in neurotransmission. The identification of the causative mutations of many hereditary ataxias, the development of relevant animal models and the recent identifications of the molecular mechanisms underlying ataxias are impacting on the development of new drugs. We provide an overview of the pharmacological treatments currently used in the clinical practice and we discuss the drugs under development.
Collapse
Affiliation(s)
- D Marmolino
- Laboratoire de Neurologie Expèrimentale ULB-Erasme, Brussels, Belgium.
| | | |
Collapse
|
44
|
Embiruçu EK, Martyn ML, Schlesinger D, Kok F. Autosomal recessive ataxias: 20 types, and counting. ARQUIVOS DE NEURO-PSIQUIATRIA 2009; 67:1143-56. [DOI: 10.1590/s0004-282x2009000600036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 09/22/2009] [Indexed: 11/22/2022]
Abstract
More than 140 years after the first description of Friedreich ataxia, autosomal recessive ataxias have become one of the more complex fields in Neurogenetics. Currently this group of diseases contains more than 20 clinical entities and an even larger number of associated genes. Some disorders are very rare, restricted to isolated populations, and others are found worldwide. An expressive number of recessive ataxias are treatable, and responsibility for an accurate diagnosis is high. The purpose of this review is to update the practitioner on clinical and pathophysiological aspects of these disorders and to present an algorithm to guide the diagnosis.
Collapse
Affiliation(s)
| | | | - David Schlesinger
- University of São Paulo, Brazil; Universidade de São Paulo; Universidade de São Paulo
| | - Fernando Kok
- University of São Paulo, Brazil; Universidade de São Paulo
| |
Collapse
|
45
|
Abstract
Ichthyoses constitute a large group of cornification disorders that affect the entire integument. The skin is characterized by visible scaling and in many cases by inflammation, for example, in bullous/keratinopathic ichthyosis or Netherton syndrome. From the viewpoint of classification it is useful to distinguish non-syndromic from syndromic types of ichthyosis. Ichthyosis vulgaris and recessive X-linked ichthyosis are common disorders - often of delayed onset, in contrast to congenital ichthyoses, which belong to the group of rare diseases and present at birth with either the features of collodion membrane or congenital ichthyosiform erythroderma. The diagnostic steps are based on clinical data, analyses such as the steroid sulfatase activity test, skin biopsies, and genetic results. However, the dramatic increase in knowledge about the pathophysiology of these conditions has not led to a curative therapy so far. The therapeutic management is multidisciplinary and involves ichthyosis patient organizations in many countries. The mainstay of treatment remains with moisturizing creams containing, for example, urea, lactic acid and other humectants and keratolytics, regular bathing, and mechanical scale removal. Patients with lamellar ichthyosis or ichthyosiform erythroderma in particular profit from oral therapy with retinoids or retinoic acid metabolism-blocking agents.
Collapse
Affiliation(s)
- Vinzenz Oji
- Department of Dermatology, University of Münster, Münster, Germany.
| | | |
Collapse
|
46
|
|
47
|
Abstract
The large-scale structural biology projects that target human proteins focus predominantly on the catalytic domains of potential therapeutic targets and the domains of human proteins that mediate protein-protein and protein-small-molecule interactions. Their main scientific objective is to elucidate the molecular basis for specificity and selectivity of function within large protein families of therapeutic interest, such as kinases, phosphatases, and proteins involved in epigenetic regulation. Half of the unique human protein structures determined in the past three years derive from these initiatives.
Collapse
Affiliation(s)
- Aled Edwards
- Banting and Best Department of Medical Research, University of Toronto, Ontario M5G 1L6, Canada
| |
Collapse
|
48
|
Tranchant C, Anheim M. [Autosomal recessive cerebellar ataxias]. Presse Med 2009; 38:1852-9. [PMID: 19442480 DOI: 10.1016/j.lpm.2009.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/13/2009] [Accepted: 01/20/2009] [Indexed: 10/20/2022] Open
Abstract
Friedreich ataxia is the most frequent recessive cerebral ataxia d should always be researched first. Ataxia with isolated vitamin E deficiency and abetalipoproteinemia have a specific treatment. Associated neurological signs such polyneuroapthy, ophtalmologic or oculomotor signs, pyramidal signs, and cerebellar MRI can lead to the etiological diagnosis. Biological tests should be: vitamin E, cholesterol, alpha-fetoprotein levels, acanthocytes, than phytanic acid, cholestanol, lysosomal enzymes. Numerous autosomal recessive cerebellar ataxia remain without etiology.
Collapse
Affiliation(s)
- Christine Tranchant
- Clinique neurologique, Hôpitaux universitaires, F-67091 Strasbourg Cedex, France.
| | | |
Collapse
|
49
|
Fiskerstrand T, Knappskog P, Majewski J, Wanders RJ, Boman H, Bindoff LA. A novel Refsum-like disorder that maps to chromosome 20. Neurology 2009; 72:20-7. [PMID: 19005174 DOI: 10.1212/01.wnl.0000333664.90605.23] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Clinical and genetic characterization of a neurologic disorder resembling Refsum disease in a Norwegian consanguineous family. METHODS The affected individuals comprise a brother and sister and their third cousin. The family comes from a small island community and genealogic studies showed that both sets of parents are descendants of a man born in 1585. Based on the hypothesis that this is an autosomal recessive disease and that the patients were homozygous for the same mutation (identical by descent), we used homozygosity mapping to define the genetic locus of this disorder. RESULTS This slowly progressive disorder starts in childhood with signs of peripheral neuropathy (pes cavus, tendoachilles contracture). Hearing loss and cataract become evident in the third decade. Subsequently, patients develop a disorder of gait due to the combination of ataxia and spasticity, and a pigment retinopathy. While the clinical picture is reminiscent of Refsum disease, affected individuals have normal phytanic and pristanic acid levels in plasma, as well as normal enzymatic activity for alpha-oxidation. We mapped the disease to a 15.96 Mb region on chromosome 20 (20p11.21-q12), containing approximately 200 genes (maximum lod score = 6.3). Sequencing of 23 candidate genes failed to demonstrate detrimental sequence variants. CONCLUSIONS Our findings show that the clinical syndromes that include Refsum disease are more heterogeneous than previously recognized. We have chosen to report the clinical features and mapping of this novel disorder in the hope that this will permit identification of other families and thus proper genetic characterization.
Collapse
Affiliation(s)
- T Fiskerstrand
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | | |
Collapse
|
50
|
Ataxia with loss of Purkinje cells in a mouse model for Refsum disease. Proc Natl Acad Sci U S A 2008; 105:17712-7. [PMID: 19004801 DOI: 10.1073/pnas.0806066105] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Refsum disease is caused by a deficiency of phytanoyl-CoA hydroxylase (PHYH), the first enzyme of the peroxisomal alpha-oxidation system, resulting in the accumulation of the branched-chain fatty acid phytanic acid. The main clinical symptoms are polyneuropathy, cerebellar ataxia, and retinitis pigmentosa. To study the pathogenesis of Refsum disease, we generated and characterized a Phyh knockout mouse. We studied the pathological effects of phytanic acid accumulation in Phyh(-/-) mice fed a diet supplemented with phytol, the precursor of phytanic acid. Phytanic acid accumulation caused a reduction in body weight, hepatic steatosis, and testicular atrophy with loss of spermatogonia. Phenotype assessment using the SHIRPA protocol and subsequent automated gait analysis using the CatWalk system revealed unsteady gait with strongly reduced paw print area for both fore- and hindpaws and reduced base of support for the hindpaws. Histochemical analyses in the CNS showed astrocytosis and up-regulation of calcium-binding proteins. In addition, a loss of Purkinje cells in the cerebellum was observed. No demyelination was present in the CNS. Motor nerve conduction velocity measurements revealed a peripheral neuropathy. Our results show that, in the mouse, high phytanic acid levels cause a peripheral neuropathy and ataxia with loss of Purkinje cells. These findings provide important insights in the pathophysiology of Refsum disease.
Collapse
|