1
|
Harutyunyan L, Callaerts P, Vermeer S. PHARC syndrome: an overview. Orphanet J Rare Dis 2024; 19:416. [PMID: 39501272 PMCID: PMC11539745 DOI: 10.1186/s13023-024-03418-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/13/2024] [Indexed: 11/08/2024] Open
Abstract
PHARC, polyneuropathy, hearing loss, cerebellar ataxia, retinitis pigmentosa and cataracts, or PHARC is a very rare progressive neurodegenerative autosomal recessive disease caused by biallelic mutations in the ABHD12 (a/b-hydrolase domain containing 12) gene, which encodes a lyso-phosphatidylserine (lyso-PS) lipase. The Orpha number for PHARC is ORPHA171848. The clinical picture of PHARC syndrome is very heterogeneous with a wide range of age at onset for each symptom, making a clinical diagnosis very challenging. Differential diagnoses of the disease include Refsum disease, Charcot-Marie-Tooth disease, and Usher syndrome. Many aspects of the disease, such as the biochemistry and pathophysiology, are still not fully understood. We generated a clinical overview of all PHARC patients, including their mutations, described in literature so far. Furthermore, we give an outline of the most recent developments in research on the pathophysiology of PHARC syndrome in an attempt to gain more insight into and increase awareness of the heterogeneity of the disease. We included 58 patients with PHARC from 37 different families with 27 known ABHD12 mutations. The age at onset (from early childhood to late thirties) and the severity of each feature of PHARC varied widely among patients. Demyelinating polyneuropathy was reported in 91% of the patients. In 86% of patients, hearing loss was present and 74% had cerebellar ataxia, the most variable symptom of PHARC. Retinitis pigmentosa and cataracts occurred in 82% and 86% of patients, respectively. Due to the rareness of the disease and the variable clinical phenotype, a diagnosis of PHARC is often delayed and mostly only made after an extensive genetic work-up. Therefore, we recommend adding the ABHD12 gene to diagnostic gene panels for polyneuropathy, cerebellar ataxia, hearing loss, retinal dystrophy, and cataracts. In addition, a full clinical work-up, neurological (with EMG and neuroimaging of the brain) and ophthalmological (with ERG) examination and audiological tests are indispensable to obtain a comprehensive overview of the clinical phenotype as some symptoms in PHARC may be very subtle and easily overlooked if not tested for. In conclusion, we strongly recommend that patients with (suspected) PHARC should be evaluated in a multidisciplinary setting involving ophthalmologists, audiologists, neurologists, and geneticists to ensure the best possible care. Furthermore, we discuss whether PHARC is a spectrum with various incomplete phenotypes even later in life, or whether it is a syndrome in which the clinical symptoms are variable in severity and age of onset.
Collapse
Affiliation(s)
- Lusine Harutyunyan
- Laboratory for Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, Louvain, Belgium
- Centre of Human Genetics, University Hospitals Leuven, Herestraat 49, 3000, Louvain, Belgium
- Disability Studies, Family Medicine and Population Health, University Antwerp, Antwerp, Belgium
| | - Patrick Callaerts
- Laboratory for Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, Louvain, Belgium
| | - Sascha Vermeer
- Centre of Human Genetics, University Hospitals Leuven, Herestraat 49, 3000, Louvain, Belgium.
| |
Collapse
|
2
|
Long X, Xiong W, Wang X, Geng J, Zhong M, Huang Y, Liu M, Bu F, Cheng J, Lu Y, Yuan H. Genotype-phenotype spectrum and correlation of PHARC Syndrome due to pathogenic ABHD12 variants. BMC Med Genomics 2024; 17:203. [PMID: 39123271 PMCID: PMC11312174 DOI: 10.1186/s12920-024-01984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND A comprehensive understanding of the genetic basis of rare diseases and their regulatory mechanisms is essential for human molecular genetics. However, the genetic mutant spectrum of pathogenic genes within the Chinese population remains underrepresented. Here, we reported previously unreported functional ABHD12 variants in two Chinese families and explored the correlation between genetic polymorphisms and phenotypes linked to PHARC syndrome. METHODS Participants with biallelic pathogenic ABHD12 variants were recruited from the Chinese Deafness Genetics Cohort. These participants underwent whole-genome sequencing. Subsequently, a comprehensive literature review was conducted. RESULTS Two Han Chinese families were identified, one with a compound heterozygous variant and the other with a novel homozygous variant in ABHD12. Among 65 PHARC patients, including 62 from the literature and 3 from this study, approximately 90% (57 out of 63) exhibited hearing loss, 82% (50 out of 61) had cataracts, 82% (46 out of 56) presented with retinitis pigmentosa, 79% (42 out of 53) experienced polyneuropathy, and 63% (36 out of 57) displayed ataxia. Seventeen different patterns were observed in the five main phenotypes of PHARC syndrome. A total of 33 pathogenic variants were identified in the ABHD12. Compared with other genotypes, individuals with biallelic truncating variants showed a higher incidence of polyneuropathy (p = 0.006), but no statistically significant differences were observed in the incidence of hearing loss, ataxia, retinitis pigmentosa and cataracts. CONCLUSIONS The diagnosis of PHARC syndrome is challenging because of its genetic heterogeneity. Therefore, exploring novel variants and establishing genotype-phenotype correlations can significantly enhance gene diagnosis and genetic counseling for this complex disease.
Collapse
Affiliation(s)
- Xicui Long
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Wenyu Xiong
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Xuegang Wang
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Jia Geng
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Mingjun Zhong
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Yu Huang
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Man Liu
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Fengxiao Bu
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Jing Cheng
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China
| | - Yu Lu
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China.
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China.
| | - Huijun Yuan
- Department of Oto-Rhino-Laryngology, West China Hospital of Sichuan University, Chengdu, 610000, China.
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China.
| |
Collapse
|
3
|
Dingwall CB, Sasaki Y, Strickland A, Summers DW, Bloom AJ, DiAntonio A, Milbrandt J. Suppressing phagocyte activation by overexpressing the phosphatidylserine lipase ABHD12 preserves sarmopathic nerves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599919. [PMID: 38979309 PMCID: PMC11230269 DOI: 10.1101/2024.06.20.599919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Programmed axon degeneration (AxD) is a key feature of many neurodegenerative diseases. In healthy axons, the axon survival factor NMNAT2 inhibits SARM1, the central executioner of AxD, preventing it from initiating the rapid local NAD+ depletion and metabolic catastrophe that precipitates axon destruction. Because these components of the AxD pathway act within neurons, it was also assumed that the timetable of AxD was set strictly by a cell-intrinsic mechanism independent of neuron-extrinsic processes later activated by axon fragmentation. However, using a rare human disease model of neuropathy caused by hypomorphic NMNAT2 mutations and chronic SARM1 activation (sarmopathy), we demonstrated that neuronal SARM1 can initiate macrophage-mediated axon elimination long before stressed-but-viable axons would otherwise succumb to cell-intrinsic metabolic failure. Investigating potential SARM1-dependent signals that mediate macrophage recognition and/or engulfment of stressed-but-viable axons, we found that chronic SARM1 activation triggers axonal blebbing and dysregulation of phosphatidylserine (PS), a potent phagocyte immunomodulatory molecule. Neuronal expression of the phosphatidylserine lipase ABDH12 suppresses nerve macrophage activation, preserves motor axon integrity, and rescues motor function in this chronic sarmopathy model. We conclude that PS dysregulation is an early SARM1-dependent axonal stress signal, and that blockade of phagocytic recognition and engulfment of stressed-but-viable axons could be an attractive therapeutic target for management of neurological disorders involving SARM1 activation.
Collapse
|
4
|
Wawrocka A, Walczak-Sztulpa J, Kuszel L, Niedziela-Schwartz Z, Skorczyk-Werner A, Bernardczyk-Meller J, Krawczynski MR. Coexistence of Retinitis Pigmentosa and Ataxia in Patients with PHARC, PCARP, and Oliver-McFarlane Syndromes. Int J Mol Sci 2024; 25:5759. [PMID: 38891946 PMCID: PMC11172263 DOI: 10.3390/ijms25115759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Retinitis pigmentosa (RP) is an inherited retinal dystrophy caused by the loss of photoreceptors and retinal pigment epithelial atrophy, leading to severe visual impairment or blindness. RP can be classified as nonsyndromic or syndromic with complex clinical phenotypes. Three unrelated Polish probands affected with retinitis pigmentosa coexisting with cerebellar ataxia were recruited for this study. Clinical heterogeneity and delayed appearance of typical disease symptoms significantly prolonged the patients' diagnostic process. Therefore, many clinical and genetic tests have been performed in the past. Here, we provide detailed clinical and genetic analysis results of the patients. Whole-exome sequencing (WES) and targeted NGS analysis allow the identification of four novel and two previously reported variants in the following genes: ABHD12, FLVCR1, and PNPLA6. The use of next-generation sequencing (NGS) methods finally allowed for confirmation of the clinical diagnosis. Ultra-rare diseases such as PHARC, PCARP, and Oliver-McFarlane syndromes were diagnosed in patients, respectively. Our findings confirmed the importance of the application of next-generation sequencing methods, especially in ultra-rare genetic disorders with overlapping features.
Collapse
Affiliation(s)
- Anna Wawrocka
- Department of Medical Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (J.W.-S.); (L.K.); (A.S.-W.); (M.R.K.)
| | - Joanna Walczak-Sztulpa
- Department of Medical Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (J.W.-S.); (L.K.); (A.S.-W.); (M.R.K.)
| | - Lukasz Kuszel
- Department of Medical Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (J.W.-S.); (L.K.); (A.S.-W.); (M.R.K.)
| | | | - Anna Skorczyk-Werner
- Department of Medical Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (J.W.-S.); (L.K.); (A.S.-W.); (M.R.K.)
| | | | - Maciej R. Krawczynski
- Department of Medical Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (J.W.-S.); (L.K.); (A.S.-W.); (M.R.K.)
- Centers for Medical Genetics GENESIS, 60-406 Poznan, Poland
| |
Collapse
|
5
|
Chakraborty A, Kamat SS. Lysophosphatidylserine: A Signaling Lipid with Implications in Human Diseases. Chem Rev 2024; 124:5470-5504. [PMID: 38607675 DOI: 10.1021/acs.chemrev.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Lysophosphatidylserine (lyso-PS) has emerged as yet another important signaling lysophospholipid in mammals, and deregulation in its metabolism has been directly linked to an array of human autoimmune and neurological disorders. It has an indispensable role in several biological processes in humans, and therefore, cellular concentrations of lyso-PS are tightly regulated to ensure optimal signaling and functioning in physiological settings. Given its biological importance, the past two decades have seen an explosion in the available literature toward our understanding of diverse aspects of lyso-PS metabolism and signaling and its association with human diseases. In this Review, we aim to comprehensively summarize different aspects of lyso-PS, such as its structure, biodistribution, chemical synthesis, and SAR studies with some synthetic analogs. From a biochemical perspective, we provide an exhaustive coverage of the diverse biological activities modulated by lyso-PSs, such as its metabolism and the receptors that respond to them in humans. We also briefly discuss the human diseases associated with aberrant lyso-PS metabolism and signaling and posit some future directions that may advance our understanding of lyso-PS-mediated mammalian physiology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
6
|
Demir S, Sevik MO, Ersoy A, Geckinli BB, Sahin O, Arslan Ates E. PHARC syndrome which an ultra-rare syndrome with retinitis pigmentosa and cataracts: case report and review of the literature. Ophthalmic Genet 2024; 45:113-119. [PMID: 38186350 DOI: 10.1080/13816810.2023.2289449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND PHARC syndrome (MIM:612674) is a rare neurodegenerative disorder characterized by demyelinating polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataracts (PHARC). The syndrome is caused by mutations in the ABHD12 gene, which encodes αβ-hydrolase domain-containing protein 12 related to endocannabinoid metabolism. PHARC syndrome is one of the rare diseases; so far, only 51 patients have been reported in the literature. METHODS We evaluated the 25-year-old male patient referred to us due to vision loss, cataracts, and hearing loss. Ophthalmological examinations and genetic analyses were performed using targeted next-generation sequencing. RESULTS In the genetic analysis, the patient was diagnosed with PHARC syndrome by detecting homozygous (NM_001042472.3): c.871del (p.Tyr291IlefsTer28) novel pathogenic variation in the ABHD12 gene. Following the molecular diagnosis, he was referred to the neurology department for reverse phenotyping and sensorimotor demyelinating polyneuropathy was detected in the neurological evaluation. CONCLUSIONS In this study, we report a novel variation in ABHD12 gene in the first Turkish-origin PHARC patient. We present this study to contribute genotype-phenotype correlation of PHARC syndrome and emphasize the importance of molecular genetic diagnosis in order to determine the appropriate clinical approach. This report is essential for expanding the phenotypic spectrum in different populations and understanding the genotype-phenotype correlation of PHARC syndrome via novel pathogenic variation in the ABHD12 gene.
Collapse
Affiliation(s)
- Senol Demir
- Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Mehmet Orkun Sevik
- Department of Ophthalmology, School of Medicine,Marmara University, Istanbul, Turkey
| | - Aysenur Ersoy
- Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Bilgen Bilge Geckinli
- Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ozlem Sahin
- Department of Ophthalmology, School of Medicine,Marmara University, Istanbul, Turkey
| | - Esra Arslan Ates
- Department of Medical Genetics, Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
7
|
Daneshi A, Garshasbi M, Farhadi M, Falavarjani KG, Vafaee-Shahi M, Almadani N, Zabihi M, Ghalavand MA, Falah M. Genetic insights into PHARC syndrome: identification of a novel frameshift mutation in ABHD12. BMC Med Genomics 2023; 16:235. [PMID: 37803361 PMCID: PMC10557151 DOI: 10.1186/s12920-023-01682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Mutations in ABHD12 (OMIM: 613,599) are associated with polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract (PHARC) syndrome (OMIM: 612674), which is a rare autosomal recessive neurodegenerative disease. PHARC syndrome is easily misdiagnosed as other neurologic disorders, such as retinitis pigmentosa, Charcot-Marie-Tooth disease, and Refsum disease, due to phenotype variability and slow progression. This paper presents a novel mutation in ABHD12 in two affected siblings with PHARC syndrome phenotypes. In addition, we summarize genotype-phenotype information of the previously reported patients with ABHD12 mutation. METHODS Following a thorough medical evaluation, whole-exome sequencing was done on the proband to look for potential genetic causes. This was followed by confirmation of identified variant in the proband and segregation analysis in the family by Sanger sequencing. The variants were interpreted based on the American College of Medical Genetics and Genomics (ACMG) guidelines. RESULTS A novel pathogenic homozygous frameshift variant, NM_001042472.3:c.601dup, p.(Val201GlyfsTer4), was identified in exon 6 of ABHD12 (ACMG criteria: PVS1 and PM2, PM1, PM4, PP3, and PP4). Through Sanger sequencing, we showed that this variant is co-segregated with the disease in the family. Further medical evaluations confirmed the compatibility of the patients' phenotype with PHARC syndrome. CONCLUSIONS Our findings expand the spectrum of mutations in the ABHD12 and emphasize the significance of multidisciplinary diagnostic collaboration among clinicians and geneticists to solve the differential diagnosis of related disorders. Moreover, a summary based on mutations found so far in the ABHD12 gene did not suggest a clear genotype-phenotype correlation for PHARC syndrome.
Collapse
Affiliation(s)
- Ahmad Daneshi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Khalil Ghasemi Falavarjani
- Eye Research Centre, Five Senses Health Institute, School of Medicine, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vafaee-Shahi
- Pediatric Growth and Development Research Center, Institute of Endocrinology and metabolism, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Navid Almadani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - MohammadSina Zabihi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Ghalavand
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoumeh Falah
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Kayama H, Takeda K. Emerging roles of host and microbial bioactive lipids in inflammatory bowel diseases. Eur J Immunol 2023; 53:e2249866. [PMID: 37191284 DOI: 10.1002/eji.202249866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/11/2023] [Accepted: 05/15/2023] [Indexed: 05/17/2023]
Abstract
The intestinal tract harbors diverse microorganisms, host- and microbiota-derived metabolites, and potentially harmful dietary antigens. The epithelial barrier separates the mucosa, where diverse immune cells exist, from the lumen to avoid excessive immune reactions against microbes and dietary antigens. Inflammatory bowel disease (IBD), such as ulcerative colitis and Crohn's disease, is characterized by a chronic and relapsing disorder of the gastrointestinal tract. Although the precise etiology of IBD is still largely unknown, accumulating evidence suggests that IBD is multifactorial, involving host genetics and microbiota. Alterations in the metabolomic profiles and microbial community are features of IBD. Advances in mass spectrometry-based lipidomic technologies enable the identification of changes in the composition of intestinal lipid species in IBD. Because lipids have a wide range of functions, including signal transduction and cell membrane formation, the dysregulation of lipid metabolism drastically affects the physiology of the host and microorganisms. Therefore, a better understanding of the intimate interactions of intestinal lipids with host cells that are implicated in the pathogenesis of intestinal inflammation might aid in the identification of novel biomarkers and therapeutic targets for IBD. This review summarizes the current knowledge on the mechanisms by which host and microbial lipids control and maintain intestinal health and diseases.
Collapse
Affiliation(s)
- Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI, Osaka University, Suita, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Infection Disease Education and Research, Osaka University, Suita, Japan
| |
Collapse
|
9
|
Bernal‐Chico A, Tepavcevic V, Manterola A, Utrilla C, Matute C, Mato S. Endocannabinoid signaling in brain diseases: Emerging relevance of glial cells. Glia 2023; 71:103-126. [PMID: 35353392 PMCID: PMC9790551 DOI: 10.1002/glia.24172] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023]
Abstract
The discovery of cannabinoid receptors as the primary molecular targets of psychotropic cannabinoid Δ9 -tetrahydrocannabinol (Δ9 -THC) in late 1980s paved the way for investigations on the effects of cannabis-based therapeutics in brain pathology. Ever since, a wealth of results obtained from studies on human tissue samples and animal models have highlighted a promising therapeutic potential of cannabinoids and endocannabinoids in a variety of neurological disorders. However, clinical success has been limited and major questions concerning endocannabinoid signaling need to be satisfactorily addressed, particularly with regard to their role as modulators of glial cells in neurodegenerative diseases. Indeed, recent studies have brought into the limelight diverse, often unexpected functions of astrocytes, oligodendrocytes, and microglia in brain injury and disease, thus providing scientific basis for targeting glial cells to treat brain disorders. This Review summarizes the current knowledge on the molecular and cellular hallmarks of endocannabinoid signaling in glial cells and its clinical relevance in neurodegenerative and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Ana Bernal‐Chico
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Neuroimmunology UnitBiocruces BizkaiaBarakaldoSpain
| | | | - Andrea Manterola
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Present address:
Parque Científico y Tecnológico de GuipuzkoaViralgenSan SebastianSpain
| | | | - Carlos Matute
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Susana Mato
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Neuroimmunology UnitBiocruces BizkaiaBarakaldoSpain
| |
Collapse
|
10
|
Belyaeva EO, Lebedev IN. Interloci CNV Interactions in Variability of the Phenotypes of Neurodevelopmental Disorders. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Nguyen XTA, Almushattat H, Strubbe I, Georgiou M, Li CHZ, van Schooneveld MJ, Joniau I, De Baere E, Florijn RJ, Bergen AA, Hoyng CB, Michaelides M, Leroy BP, Boon CJF. The Phenotypic Spectrum of Patients with PHARC Syndrome Due to Variants in ABHD12: An Ophthalmic Perspective. Genes (Basel) 2021; 12:1404. [PMID: 34573385 PMCID: PMC8467809 DOI: 10.3390/genes12091404] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 01/08/2023] Open
Abstract
This study investigated the phenotypic spectrum of PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa and early-onset cataract) syndrome caused by biallelic variants in the ABHD12 gene. A total of 15 patients from 12 different families were included, with a mean age of 36.7 years (standard deviation [SD] ± 11.0; range from 17.5 to 53.9) at the most recent examination. The presence and onset of neurological, audiological and ophthalmic symptoms were variable, with no evident order of symptom appearance. The mean best-corrected visual acuity was 1.1 logMAR (SD ± 0.9; range from 0.1 to 2.8; equivalent to 20/250 Snellen) and showed a trend of progressive decline. Different types of cataract were observed in 13 out of 15 patients (87%), which also included congenital forms of cataract. Fundus examination revealed macular involvement in all patients, ranging from alterations of the retinal pigment epithelium to macular atrophy. Intraretinal spicular hyperpigmentation was observed in 7 out of 15 patients (47%). From an ophthalmic perspective, clinical manifestations in patients with PHARC demonstrate variability with regard to their onset and severity. Given the variable nature of PHARC, an early multidisciplinary assessment is recommended to assess disease severity.
Collapse
Affiliation(s)
- Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; (H.A.); (M.J.v.S.)
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; (H.A.); (M.J.v.S.)
| | - Ine Strubbe
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; (I.S.); (I.J.); (B.P.L.)
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (M.G.); (M.M.)
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK
| | - Catherina H. Z. Li
- Department of Ophthalmology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (C.H.Z.L.); (C.B.H.)
- Donders Institute for Brain, Cognition and Behaviour, 6525 HR Nijmegen, The Netherlands
| | - Mary J. van Schooneveld
- Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; (H.A.); (M.J.v.S.)
| | - Inge Joniau
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; (I.S.); (I.J.); (B.P.L.)
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium;
| | - Ralph J. Florijn
- Department of Clinical Genetics, Amsterdam UMC, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; (R.J.F.); (A.A.B.)
| | - Arthur A. Bergen
- Department of Clinical Genetics, Amsterdam UMC, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; (R.J.F.); (A.A.B.)
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (C.H.Z.L.); (C.B.H.)
- Donders Institute for Brain, Cognition and Behaviour, 6525 HR Nijmegen, The Netherlands
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (M.G.); (M.M.)
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK
| | - Bart P. Leroy
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; (I.S.); (I.J.); (B.P.L.)
- Center for Medical Genetics, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium;
- Division of Ophthalmology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Center for Cellular & Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Camiel J. F. Boon
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; (H.A.); (M.J.v.S.)
| |
Collapse
|
12
|
Yahia A, Elsayed LEO, Valter R, Hamed AAA, Mohammed IN, Elseed MA, Salih MA, Esteves T, Auger N, Abubaker R, Koko M, Abozar F, Malik H, Adil R, Emad S, Musallam MA, Idris R, Eltazi IZM, Babai A, Ahmed EAA, Abd Allah ASI, Mairey M, Ahmed AKMA, Elbashir MI, Brice A, Ibrahim ME, Ahmed AE, Lamari F, Stevanin G. Pathogenic Variants in ABHD16A Cause a Novel Psychomotor Developmental Disorder With Spastic Paraplegia. Front Neurol 2021; 12:720201. [PMID: 34489854 PMCID: PMC8417901 DOI: 10.3389/fneur.2021.720201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction: Hereditary spastic paraplegia is a clinically and genetically heterogeneous neurological entity that includes more than 80 disorders which share lower limb spasticity as a common feature. Abnormalities in multiple cellular processes are implicated in their pathogenesis, including lipid metabolism; but still 40% of the patients are undiagnosed. Our goal was to identify the disease-causing variants in Sudanese families excluded for known genetic causes and describe a novel clinico-genetic entity. Methods: We studied four patients from two unrelated consanguineous Sudanese families who manifested a neurological phenotype characterized by spasticity, psychomotor developmental delay and/or regression, and intellectual impairment. We applied next-generation sequencing, bioinformatics analysis, and Sanger sequencing to identify the genetic culprit. We then explored the consequences of the identified variants in patients-derived fibroblasts using targeted-lipidomics strategies. Results and Discussion: Two homozygous variants in ABHD16A segregated with the disease in the two studied families. ABHD16A encodes the main brain phosphatidylserine hydrolase. In vitro, we confirmed that ABHD16A loss of function reduces the levels of certain long-chain lysophosphatidylserine species while increases the levels of multiple phosphatidylserine species in patient's fibroblasts. Conclusion:ABHD16A loss of function is implicated in the pathogenesis of a novel form of complex hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Ashraf Yahia
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan.,Department of Biochemistry, Faculty of Medicine, National University, Khartoum, Sudan.,Sorbonne Université, Institut du Cerveau-Paris Brain Institute, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.,Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Liena E O Elsayed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan.,College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Remi Valter
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.,Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Ahlam A A Hamed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Maha A Elseed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mustafa A Salih
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Typhaine Esteves
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.,Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Nicolas Auger
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.,Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Rayan Abubaker
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Mahmoud Koko
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Tubingen, Germany
| | - Fatima Abozar
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Hiba Malik
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Rawaa Adil
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sara Emad
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Razaz Idris
- Letterkenny University Hospital, Letterkenny, Ireland
| | - Isra Z M Eltazi
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Arwa Babai
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Elhami A A Ahmed
- UNESCO Chair on Bioethics, University of Khartoum, Khartoum, Sudan
| | | | - Mathilde Mairey
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Ahmed K M A Ahmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan.,Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,Immunology Frontier Research Center, Osaka University, Suita, Japan
| | | | - Alexis Brice
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Muntaser E Ibrahim
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Ammar E Ahmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Foudil Lamari
- APHP, Pitié-Salpêtrière Hospital, Metabolic Biochemistry unit, Department of Biochemistry of Neurometabolic Diseases, Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.,Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
13
|
Omi J, Kano K, Aoki J. Current Knowledge on the Biology of Lysophosphatidylserine as an Emerging Bioactive Lipid. Cell Biochem Biophys 2021; 79:497-508. [PMID: 34129148 PMCID: PMC8551102 DOI: 10.1007/s12013-021-00988-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2021] [Indexed: 01/22/2023]
Abstract
Lysophosphatidylserine (LysoPS) is an emerging lysophospholipid (LPL) mediator, which acts through G protein-coupled receptors, like lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). LysoPS is detected in various tissues and cells and thought to be produced mainly by the deacylation of phosphatidylserine. LysoPS has been known to stimulate degranulation of mast cells. Recently, four LysoPS-specific G protein-coupled receptors (GPCRs) were identified. These GPCRs belong to the P2Y family which covers receptors for nucleotides and LPLs and are predominantly expressed in immune cells such as lymphocytes and macrophages. Studies on knockout mice of these GPCRs have revealed that LysoPS has immune-modulatory functions. Up-regulation of a LysoPS-producing enzyme, PS-specific phospholipase A1, was frequently observed in situations where the immune system is activated including autoimmune diseases and organ transplantations. Therefore, modulation of LysoPS signaling appears to be a promising method for providing therapies for the treatment of immune diseases. In this review, we summarize the biology of LysoPS-producing enzymes and receptors, recent developments in LysoPS signal modulators, and prospects for future therapeutic applications.
Collapse
Affiliation(s)
- Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
- AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Tokyo, Japan.
| |
Collapse
|
14
|
Trinh TT, Blasco H, Maillot F, Bakhos D. Hearing loss in inherited metabolic disorders: A systematic review. Metabolism 2021; 122:154841. [PMID: 34333001 DOI: 10.1016/j.metabol.2021.154841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Inherited metabolic disorders (IMDs) have been observed in individuals with hearing loss (HL), but IMDs are rarely the cause of syndromic HL. With early diagnosis, management of HL is more effective and cortical reorganization is possible with hearing aids or cochlear implants. This review describes relationships between IMDs and HL in terms of incidence, etiology of HL, pathophysiology, and treatment. Forty types of IMDs are described in the literature, mainly in case reports. Management and prognosis are noted where existing. We also describe IMDs with HL given age of occurrence of HL. Reviewing the main IMDs that are associated with HL may provide an additional clinical tool with which to better diagnose syndromic HL.
Collapse
Affiliation(s)
- T-T Trinh
- CHRU de Tours, service ORL et Chirurgie Cervico-Faciale, Tours, France.
| | - H Blasco
- Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; Université François Rabelais, Tours, France; INSERM U1253, Tours, France
| | - F Maillot
- Université François Rabelais, Tours, France; INSERM U1253, Tours, France; CHU de Tours, service de Médecine Interne, Tours, France
| | - D Bakhos
- CHRU de Tours, service ORL et Chirurgie Cervico-Faciale, Tours, France; Université François Rabelais, Tours, France; INSERM U1253, Tours, France
| |
Collapse
|
15
|
Dias Bastos PA, Mendonça M, Lampreia T, Magriço M, Oliveira J, Barbosa R. PHARC Syndrome, a Rare Genetic Disorder-Case Report. Mov Disord Clin Pract 2021; 8:977-979. [PMID: 34405110 DOI: 10.1002/mdc3.13266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/10/2022] Open
Affiliation(s)
- Paulo André Dias Bastos
- NOVA Medical School, Faculdade de Ciências Médicas Universidade Nova de Lisboa Lisbon Portugal.,Department of Neurology, Hospital de Egas Moniz Centro Hospitalar de Lisboa Ocidental Lisbon Portugal
| | - Marcelo Mendonça
- Department of Neurology, Hospital de Egas Moniz Centro Hospitalar de Lisboa Ocidental Lisbon Portugal.,CEDOC-NOVA Medical School, Faculdade de Ciências Médicas Universidade Nova de Lisboa Lisbon Portugal.,Champalimaud Research, Champalimaud Centre for the Unknown Lisbon Portugal
| | - Tânia Lampreia
- Department of Neurology Hospital Beatriz Ângelo Lisbon Portugal
| | - Marta Magriço
- Department of Neurology, Hospital de Egas Moniz Centro Hospitalar de Lisboa Ocidental Lisbon Portugal
| | - Jorge Oliveira
- Center for Predictive and Preventive Genetics (CGPP) Institute for Molecular and Cell Biology (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto Porto Portugal
| | - Raquel Barbosa
- Department of Neurology, Hospital de Egas Moniz Centro Hospitalar de Lisboa Ocidental Lisbon Portugal.,CEDOC-NOVA Medical School, Faculdade de Ciências Médicas Universidade Nova de Lisboa Lisbon Portugal
| |
Collapse
|
16
|
Druggable Targets in Endocannabinoid Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:177-201. [PMID: 32894511 DOI: 10.1007/978-3-030-50621-6_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cannabis and cannabinoid-based extracts have long been utilized for their perceived therapeutic value, and support for the legalization of cannabis for medicinal purposes continues to increase worldwide. Since the discovery of Δ9-tetrahydrocannabinol (THC) as the primary psychoactive component of cannabis over 50 years ago, substantial effort has been directed toward detection of endogenous mediators of cannabinoid activity. The discovery of anandamide and 2-arachidonoylglycerol as two endogenous lipid mediators of cannabinoid-like effects (endocannabinoids) has inspired exponential growth in our understanding of this essential pathway, as well as the pathological conditions that result from dysregulated endocannabinoid signaling. This review examines current knowledge of the endocannabinoid system including metabolic enzymes involved in biosynthesis and degradation and their receptors, and evaluates potential druggable targets for therapeutic intervention.
Collapse
|
17
|
The Lysophosphatidylserines-An Emerging Class of Signalling Lysophospholipids. J Membr Biol 2020; 253:381-397. [PMID: 32767057 DOI: 10.1007/s00232-020-00133-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022]
Abstract
Lysophospholipids are potent hormone-like signalling biological lipids that regulate many important biological processes in mammals (including humans). Lysophosphatidic acid and sphingosine-1-phosphate represent the best studied examples for this lipid class, and their metabolic enzymes and/or cognate receptors are currently under clinical investigation for treatment of various neurological and autoimmune diseases in humans. Over the past two decades, the lysophsophatidylserines (lyso-PSs) have emerged as yet another biologically important lysophospholipid, and deregulation in its metabolism has been linked to various human pathophysiological conditions. Despite its recent emergence, an exhaustive review summarizing recent advances on lyso-PSs and the biological pathways that this bioactive lysophospholipid regulates has been lacking. To address this, here, we summarize studies that led to the discovery of lyso-PS as a potent signalling biomolecule, and discuss the structure, its detection in biological systems, and the biodistribution of this lysophospholipid in various mammalian systems. Further, we describe in detail the enzymatic pathways that are involved in the biosynthesis and degradation of this lipid and the putative lyso-PS receptors reported in the literature. Finally, we discuss the various biological pathways directly regulated by lyso-PSs in mammals and prospect new questions for this still emerging biomedically important signalling lysophospholipid.
Collapse
|
18
|
Singh S, Joshi A, Kamat SS. Mapping the Neuroanatomy of ABHD16A, ABHD12, and Lysophosphatidylserines Provides New Insights into the Pathophysiology of the Human Neurological Disorder PHARC. Biochemistry 2020; 59:2299-2311. [PMID: 32462874 DOI: 10.1021/acs.biochem.0c00349] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lysophosphatidylserine (lyso-PS), a lysophospholipid derived from phosphatidylserine (PS), has emerged as a potent signaling lipid in mammalian physiology. In vivo, the metabolic serine hydrolases ABHD16A and ABHD12 are major lipases that biosynthesize and degrade lyso-PS, respectively. Of biomedical relevance, deleterious mutations to ABHD12 cause accumulation of lyso-PS in the brain, and this deregulated lyso-PS metabolism leads to the human genetic neurological disorder PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract). While the roles of ABHD16A and ABHD12 in lyso-PS metabolism in the mammalian brain are well established, the anatomical and (sub)cellular localizations of both lipases and the functional cross-talk between them with respect to regulating lyso-PS lipids remain under investigated. Here, using subcellular organelle fractionation, biochemical assays, and immunofluorescence-based high-resolution microscopy, we show that the PS lipase ABHD16A is an endoplasmic reticulum-localized enzyme, an organelle intricately regulating cellular PS levels. In addition, leveraging immunohistochemical analysis using genetic ABHD16A and ABHD12 knockout mice as important controls, we map the anatomical distribution of both of these lipases in tandem in the murine brain and show for the first time the distinct localization of these lipases to different regions and cells of the cerebellum. We complement the aforementioned immunohistochemical studies by quantitatively measuring lyso-PS concentrations in various brain regions using mass spectrometry and find that the cerebellar lyso-PS levels are most affected by deletion of ABHD16A (decreased) or ABHD12 (increased). Taken together, our studies provide new insights into lyso-PS signaling in the cerebellum, the most atrophic brain region in human PHARC subjects.
Collapse
Affiliation(s)
- Shubham Singh
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Alaumy Joshi
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
19
|
Nolen RM, Hufnagel RB, Friedman TB, Turriff AE, Brewer CC, Zalewski CK, King KA, Wafa TT, Griffith AJ, Brooks BP, Zein WM. Atypical and ultra-rare Usher syndrome: a review. Ophthalmic Genet 2020; 41:401-412. [PMID: 32372680 DOI: 10.1080/13816810.2020.1747090] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Usher syndrome has classically been described as a combination of hearing loss and rod-cone dystrophy; vestibular dysfunction is present in many patients. Three distinct clinical subtypes were documented in the late 1970s. Genotyping efforts have led to the identification of several genes associated with the disease. Recent literature has seen multiple publications referring to "atypical" Usher syndrome presentations. This manuscript reviews the molecular etiology of Usher syndrome, highlighting rare presentations and molecular causes. Reports of "atypical" disease are summarized noting the wide discrepancy in the spectrum of phenotypic deviations from the classical presentation. Guidelines for establishing a clear nomenclature system are suggested.
Collapse
Affiliation(s)
- Rosalie M Nolen
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Amy E Turriff
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Carmen C Brewer
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Christopher K Zalewski
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Kelly A King
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Talah T Wafa
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
20
|
Leishman E, Mackie K, Bradshaw HB. Elevated Levels of Arachidonic Acid-Derived Lipids Including Prostaglandins and Endocannabinoids Are Present Throughout ABHD12 Knockout Brains: Novel Insights Into the Neurodegenerative Phenotype. Front Mol Neurosci 2019; 12:142. [PMID: 31213981 PMCID: PMC6555221 DOI: 10.3389/fnmol.2019.00142] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
Derived from arachidonic acid (AA), the endogenous cannabinoid (eCB) 2-arachidonoyl glycerol (2-AG) is a substrate for α/β hydrolase domain-12 (ABHD12). Loss-of-function mutations of ABHD12 are associated with the neurodegenerative disorder polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract (PHARC). ABHD12 knockout (KO) mice show PHARC-like behaviors in older adulthood. Here, we test the hypothesis that ABHD12 deletion age-dependently regulates bioactive lipids in the CNS. Lipidomics analysis of the brainstem, cerebellum, cortex, hippocampus, hypothalamus, midbrain, striatum and thalamus from male young (3–4 months) and older (7 months) adult ABHD12 KO and age-matched wild-type (WT) mice was performed on over 80 lipids via HPLC/MS/MS, including eCBs, lipoamines, 2-acyl glycerols, free fatty acids, and prostaglandins (PGs). Aging and ABHD12 deletion drove widespread changes in the CNS lipidome; however, the effects of ABHD12 deletion were similar between old and young mice, meaning that many alterations in the lipidome precede PHARC-like symptoms. AA-derived lipids were particularly sensitive to ABHD12 deletion. 2-AG increased in the striatum, hippocampus, cerebellum, thalamus, midbrain, and brainstem, whereas the eCB N-arachidonoyl ethanolamine (AEA) increased in all 8 brain regions, along with at least 2-PGs. Aging also had a widespread effect on the lipidome and more age-related changes in bioactive lipids were found in ABHD12 KO mice than WT suggesting that ABHD12 deletion exacerbates the effects of age. The most robust effects of aging (independent of genotype) across the CNS were decreases in N-acyl GABAs and N-acyl glycines. In conclusion, levels of bioactive lipids are dynamic throughout adulthood and deleting ABHD12 disrupts the wider lipidome, modulating multiple AA-derived lipids with potential consequences for neuropathology.
Collapse
Affiliation(s)
- Emma Leishman
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, United States
| | - Ken Mackie
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States.,Gill Center for Biomolecular Science, Indiana University Bloomington, Bloomington, IN, United States
| | - Heather B Bradshaw
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States
| |
Collapse
|
21
|
Gómez-Ruiz M, Rodríguez-Cueto C, Luna-Piñel E, Hernández-Gálvez M, Fernández-Ruiz J. Endocannabinoid System in Spinocerebellar Ataxia Type-3 and Other Autosomal-Dominant Cerebellar Ataxias: Potential Role in Pathogenesis and Expected Relevance as Neuroprotective Targets. Front Mol Neurosci 2019; 12:94. [PMID: 31068788 PMCID: PMC6491810 DOI: 10.3389/fnmol.2019.00094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/29/2019] [Indexed: 12/31/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) are a group of hereditary and progressive neurological disorders characterized by a loss of balance and motor coordination typically associated with cerebellar atrophy. The most prevalent SCA types are all polyQ disorders like Huntington’s disease, sharing the most relevant events in pathogenesis with this basal ganglia disorder, but with most of the damage concentrated in cerebellar neurons, and in their afferent and efferent connections (e.g., brainstem nuclei). SCAs have no cure and effective symptom-alleviating and disease-modifying therapies are not currently available. However, based on results obtained in studies conducted in murine models and information derived from analyses in post-mortem tissue samples from patients, which show notably higher levels of CB1 receptors found in different cerebellar neuronal subpopulations, the blockade of these receptors has been proposed for acutely modulating motor incoordination in cerebellar ataxias, whereas their chronic activation has been proposed for preserving specific neuronal losses. Additional studies in post-mortem tissues from SCA patients have also demonstrated elevated levels of CB2 receptors in Purkinje neurons as well as in glial elements in the granular layer and in the cerebellar white matter, with a similar profile found for endocannabinoid hydrolyzing enzymes, then suggesting that activating CB2 receptors and/or inhibiting these enzymes may also serve to develop cannabinoid-based neuroprotective therapies. The present review will address both aspects. On one hand, the endocannabinoid system becomes dysregulated in the cerebellum and also in other CNS structures (e.g., brainstem, basal ganglia) in SCAs, which may contribute to the progression of pathogenic events in these diseases. On the other hand, these endocannabinoid alterations may be pharmacologically corrected or enhanced, and this may have therapeutic consequences, either alleviating specific symptoms or eliciting neuroprotective effects, an objective presently under investigation.
Collapse
Affiliation(s)
- María Gómez-Ruiz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Eva Luna-Piñel
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Mariluz Hernández-Gálvez
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| |
Collapse
|
22
|
Li T, Feng Y, Liu Y, He C, Liu J, Chen H, Deng Y, Li M, Li W, Song J, Niu Z, Sang S, Wen J, Men M, Chen X, Li J, Liu X, Ling J. A novel ABHD12 nonsense variant in Usher syndrome type 3 family with genotype-phenotype spectrum review. Gene 2019; 704:113-120. [PMID: 30974196 DOI: 10.1016/j.gene.2019.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022]
Abstract
Usher syndrome (USH) is a clinically common autosomal recessive disorder characterized by retinitis pigmentosa (RP) and sensorineural hearing loss with or without vestibular dysfunction. In this study, we identified a Hunan family of Chinese descent with two affected members clinically diagnosed with Usher syndrome type 3 (USH3) displaying hearing, visual acuity, and olfactory decline. Whole-exome sequencing (WES) identified a nonsense variant in ABHD12 gene that was confirmed to be segregated in this family by Sanger sequencing and exhibited a recessive inheritance pattern. In this family, two patients carried homozygous variant in the ABHD12 (NM_015600: c.249C>G). Mutation of ABHD12, an enzyme that hydrolyzes an endocannabinoid lipid transmitter, caused incomplete PHARC syndrome, as demonstrated in previous reports. Therefore, we also conducted a summary based on variants in ABHD12 in PHARC patients, and in PHARC patients showing that there was no obvious correlation between the genotype and phenotype. We believe that this should be considered during the differential diagnosis of USH. Our findings predicted the potential function of this gene in the development of hearing and vision loss, particularly with regard to impaired signal transmission, and identified a novel nonsense variant to expand the variant spectrum in ABHD12.
Collapse
Affiliation(s)
- Taoxi Li
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan 410008, China; Center for Medical Genetics, Central South University, Changsha, Hunan 410008, China
| | - Yong Feng
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan 410008, China; Center for Medical Genetics, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yalan Liu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chufeng He
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jing Liu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan 410008, China
| | - Hongsheng Chen
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan 410008, China
| | - Yuyuan Deng
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan 410008, China
| | - Meng Li
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan 410008, China
| | - Wu Li
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan 410008, China
| | - Jian Song
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan 410008, China
| | - Zhijie Niu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan 410008, China
| | - Shushan Sang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan 410008, China
| | - Jie Wen
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan 410008, China
| | - Meichao Men
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan 410008, China
| | - Xiaoya Chen
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan 410008, China
| | - Jiada Li
- Center for Medical Genetics, Central South University, Changsha, Hunan 410008, China
| | - Xuezhong Liu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Jie Ling
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
23
|
Xu J, Gu W, Ji K, Xu Z, Zhu H, Zheng W. Sequence analysis and structure prediction of ABHD16A and the roles of the ABHD family members in human disease. Open Biol 2019; 8:rsob.180017. [PMID: 29794032 PMCID: PMC5990648 DOI: 10.1098/rsob.180017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Abhydrolase domain containing 16A (ABHD16A) is a member of the α/β hydrolase domain-containing (ABHD) protein family and is expressed in a variety of animal cells. Studies have shown that ABHD16A has acylglycerol lipase and phosphatidylserine lipase activities. Its gene location in the main histocompatibility complex (MHC) III gene cluster suggests that this protein may participate in the immunomodulation of the body. The results of studies investigating nearly 20 species of ABHDs reveal that the ABHD proteins are key factors in metabolic regulation and disease occurrence and development. In this paper, we summarize the related progress regarding the function of ABHD16A and other ABHD proteins. A prediction of the active sites and structural domains of ABHD16A and an analysis of the amino acid sites are included. Moreover, we analysed the amino acid sequences of the ABHD16A molecules in different species and provide an overview of the related functions and diseases associated with these proteins. The functions and diseases related to ABHD are systematically summarized and highlighted. Future research directions for studies investigating the functions and mechanisms of these proteins are also suggested. Further studies investigating the function of ABHD proteins may further confirm their positions as important determinants of lipid metabolism and related diseases.
Collapse
Affiliation(s)
- Jun Xu
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, People's Republic of China
| | - Weizhen Gu
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, People's Republic of China
| | - Kai Ji
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, People's Republic of China
| | - Zhao Xu
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, People's Republic of China
| | - Haihua Zhu
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, People's Republic of China.,Henan Business Research Institute Co. Ltd, Zhengzhou, He'nan, People's Republic of China
| | - Wenming Zheng
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, People's Republic of China
| |
Collapse
|
24
|
Ogasawara D, Ichu TA, Jing H, Hulce JJ, Reed A, Ulanovskaya OA, Cravatt BF. Discovery and Optimization of Selective and in Vivo Active Inhibitors of the Lysophosphatidylserine Lipase α/β-Hydrolase Domain-Containing 12 (ABHD12). J Med Chem 2019; 62:1643-1656. [PMID: 30720278 DOI: 10.1021/acs.jmedchem.8b01958] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ABHD12 is a membrane-bound hydrolytic enzyme that acts on the lysophosphatidylserine (lyso-PS) and lysophosphatidylinositol (lyso-PI) classes of immunomodulatory lipids. Human and mouse genetic studies point to a key role for the ABHD12-(lyso)-PS/PI pathway in regulating (neuro)immunological functions in both the central nervous system and periphery. Selective inhibitors of ABHD12 would offer valuable pharmacological probes to complement genetic models of ABHD12-regulated (lyso)-PS/PI metabolism and signaling. Here, we provide a detailed description of the discovery and activity-based protein profiling (ABPP) guided optimization of reversible thiourea inhibitors of ABHD12 that culminated in the identification of DO264 as a potent, selective, and in vivo active ABHD12 inhibitor. We also show that DO264, but not a structurally related inactive control probe (S)-DO271, augments inflammatory cytokine production from human THP-1 macrophage cells. The in vitro and in vivo properties of DO264 designate this compound as a suitable chemical probe for studying the biological functions of ABHD12-(lyso)-PS/PI pathways.
Collapse
Affiliation(s)
- Daisuke Ogasawara
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Taka-Aki Ichu
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Hui Jing
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Jonathan J Hulce
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Alex Reed
- Abide Therapeutics , 10835 Road to the Cure , San Diego , California 92121 , United States
| | - Olesya A Ulanovskaya
- Abide Therapeutics , 10835 Road to the Cure , San Diego , California 92121 , United States
| | - Benjamin F Cravatt
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
25
|
Kelkar DS, Ravikumar G, Mehendale N, Singh S, Joshi A, Sharma AK, Mhetre A, Rajendran A, Chakrapani H, Kamat SS. A chemical-genetic screen identifies ABHD12 as an oxidized-phosphatidylserine lipase. Nat Chem Biol 2019; 15:169-178. [PMID: 30643283 PMCID: PMC6420073 DOI: 10.1038/s41589-018-0195-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS) are transient, highly reactive intermediates or byproducts produced during oxygen metabolism. However, when innate mechanisms are unable to cope with sequestration of surplus ROS, oxidative stress results, in which excess ROS damage biomolecules. Oxidized phosphatidylserine (PS), a proapoptotic 'eat me' signal, is produced in response to elevated ROS, yet little is known regarding its chemical composition and metabolism. Here, we report a small molecule that generates ROS in different mammalian cells. We used this molecule to detect, characterize and study oxidized PS in mammalian cells. We developed a chemical-genetic screen to identify enzymes that regulate oxidized PS in mammalian cells and found that the lipase ABHD12 hydrolyzes oxidized PS. We validated these findings in different physiological settings including primary peritoneal macrophages and brains from Abhd12-/- mice under inflammatory stress, and in the process, we functionally annotated an enzyme regulating oxidized PS in vivo.
Collapse
Affiliation(s)
- Dhanashree S Kelkar
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Govindan Ravikumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Neelay Mehendale
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Shubham Singh
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Alaumy Joshi
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Ajay Kumar Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Amol Mhetre
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Abinaya Rajendran
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India.
| |
Collapse
|
26
|
Kind L, Kursula P. Structural properties and role of the endocannabinoid lipases ABHD6 and ABHD12 in lipid signalling and disease. Amino Acids 2018; 51:151-174. [PMID: 30564946 DOI: 10.1007/s00726-018-2682-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/23/2018] [Indexed: 12/18/2022]
Abstract
The endocannabinoid (eCB) system is an important part of both the human central nervous system (CNS) and peripheral tissues. It is involved in the regulation of various physiological and neuronal processes and has been associated with various diseases. The eCB system is a complex network composed of receptor molecules, their cannabinoid ligands, and enzymes regulating the synthesis, release, uptake, and degradation of the signalling molecules. Although the eCB system and the molecular processes of eCB signalling have been studied extensively over the past decades, the involved molecules and underlying signalling mechanisms have not been described in full detail. An example pose the two poorly characterised eCB-degrading enzymes α/β-hydrolase domain protein six (ABHD6) and ABHD12, which have been shown to hydrolyse 2-arachidonoyl glycerol-the main eCB in the CNS. We review the current knowledge about the eCB system and the role of ABHD6 and ABHD12 within this important signalling system and associated diseases. Homology modelling and multiple sequence alignments highlight the structural features of the studied enzymes and their similarities, as well as the structural basis of disease-related ABHD12 mutations. However, homologies within the ABHD family are very low, and even the closest homologues have widely varying substrate preferences. Detailed experimental analyses at the molecular level will be necessary to understand these important enzymes in full detail.
Collapse
Affiliation(s)
- Laura Kind
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway. .,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
27
|
Joshi A, Shaikh M, Singh S, Rajendran A, Mhetre A, Kamat SS. Biochemical characterization of the PHARC-associated serine hydrolase ABHD12 reveals its preference for very-long-chain lipids. J Biol Chem 2018; 293:16953-16963. [PMID: 30237167 PMCID: PMC6217928 DOI: 10.1074/jbc.ra118.005640] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/17/2018] [Indexed: 01/06/2023] Open
Abstract
Polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract (PHARC) is a rare genetic human neurological disorder caused by null mutations to the Abhd12 gene, which encodes the integral membrane serine hydrolase enzyme ABHD12. Although the role that ABHD12 plays in PHARC is understood, the thorough biochemical characterization of ABHD12 is lacking. Here, we report the facile synthesis of mono-1-(fatty)acyl-glycerol lipids of varying chain lengths and unsaturation and use this lipid substrate library to biochemically characterize recombinant mammalian ABHD12. The substrate profiling study for ABHD12 suggested that this enzyme requires glycosylation for optimal activity and that it has a strong preference for very-long-chain lipid substrates. We further validated this substrate profile against brain membrane lysates generated from WT and ABHD12 knockout mice. Finally, using cellular organelle fractionation and immunofluorescence assays, we show that mammalian ABHD12 is enriched on the endoplasmic reticulum membrane, where most of the very-long-chain fatty acids are biosynthesized in cells. Taken together, our findings provide a biochemical explanation for why very-long-chain lipids (such as lysophosphatidylserine lipids) accumulate in the brains of ABHD12 knockout mice, which is a murine model of PHARC.
Collapse
Affiliation(s)
| | - Minhaj Shaikh
- Chemistry, Indian Institute of Science Education and Research Pune, Pune 411008, India
| | | | | | | | | |
Collapse
|
28
|
Baggelaar MP, Maccarrone M, van der Stelt M. 2-Arachidonoylglycerol: A signaling lipid with manifold actions in the brain. Prog Lipid Res 2018; 71:1-17. [PMID: 29751000 DOI: 10.1016/j.plipres.2018.05.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 11/19/2022]
Abstract
2-Arachidonoylglycerol (2-AG) is a signaling lipid in the central nervous system that is a key regulator of neurotransmitter release. 2-AG is an endocannabinoid that activates the cannabinoid CB1 receptor. It is involved in a wide array of (patho)physiological functions, such as emotion, cognition, energy balance, pain sensation and neuroinflammation. In this review, we describe the biosynthetic and metabolic pathways of 2-AG and how chemical and genetic perturbation of these pathways has led to insight in the biological role of this signaling lipid. Finally, we discuss the potential therapeutic benefits of modulating 2-AG levels in the brain.
Collapse
Affiliation(s)
- Marc P Baggelaar
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; European Centre for Brain Research/IRCCS Santa Lucia Foundation, via del Fosso del Fiorano 65, 00143 Rome, Italy
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands..
| |
Collapse
|
29
|
Lerat J, Cintas P, Beauvais-Dzugan H, Magdelaine C, Sturtz F, Lia AS. A complex homozygous mutation in ABHD12 responsible for PHARC syndrome discovered with NGS and review of the literature. J Peripher Nerv Syst 2018; 22:77-84. [PMID: 28448692 DOI: 10.1111/jns.12216] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 01/09/2023]
Abstract
PHARC syndrome (MIM612674) is an autosomal recessive neurodegenerative pathology that leads to demyelinating Polyneuropathy, Hearing loss, cerebellar Ataxia, Retinitis pigmentosa, and early-onset Cataracts (PHARC). These various symptoms can appear at different ages. PHARC syndrome is caused by mutations in ABHD12 (α-β hydrolase domain 12), of which several have been described. We report here a new complex homozygous mutation c.379_385delAACTACTinsGATTCCTTATATACCATTGTAGTCTTACTGCTTTTGGTGAACACA (p.Asn127Aspfs*23). This mutation was detected in a 36-year-old man, who presented neuropathic symptoms from the age of 15, using a next-generation sequencing panel. This result suggests that the involvement of ABHD12 in polyneuropathies is possibly underestimated. We then performed a comparative study of other patients presenting ABHD12 mutations and searched for genotype-phenotype correlations and functional explanations in this heterogeneous population.
Collapse
Affiliation(s)
- Justine Lerat
- EA6309 - Neuropathies Périphériques et Maintenance Myélinique, Université de Limoges, Limoges, France.,Service Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, CHU Dupuytren, Limoges, France
| | - Pascal Cintas
- Explorations Neurophysiologiques, Centre SLA, Centre de Référence de Pathologie Neuromusculaire, CHU Toulouse, Hôpital Pierre-Paul Riquet, Toulouse, France
| | - Hélène Beauvais-Dzugan
- EA6309 - Neuropathies Périphériques et Maintenance Myélinique, Université de Limoges, Limoges, France.,Laboratoire de Biochimie et Génétique Moléculaire, CHU Dupuytren, Limoges, France
| | - Corinne Magdelaine
- EA6309 - Neuropathies Périphériques et Maintenance Myélinique, Université de Limoges, Limoges, France.,Laboratoire de Biochimie et Génétique Moléculaire, CHU Dupuytren, Limoges, France
| | - Franck Sturtz
- EA6309 - Neuropathies Périphériques et Maintenance Myélinique, Université de Limoges, Limoges, France.,Laboratoire de Biochimie et Génétique Moléculaire, CHU Dupuytren, Limoges, France
| | - Anne-Sophie Lia
- EA6309 - Neuropathies Périphériques et Maintenance Myélinique, Université de Limoges, Limoges, France.,Laboratoire de Biochimie et Génétique Moléculaire, CHU Dupuytren, Limoges, France
| |
Collapse
|
30
|
Harel T, Lupski JR. Genomic disorders 20 years on-mechanisms for clinical manifestations. Clin Genet 2017; 93:439-449. [PMID: 28950406 DOI: 10.1111/cge.13146] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/01/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022]
Abstract
Genomic disorders result from copy-number variants (CNVs) or submicroscopic rearrangements of the genome rather than from single nucleotide variants (SNVs). Diverse technologies, including array comparative genomic hybridization (aCGH) and single nucleotide polymorphism (SNP) microarrays, and more recently, whole genome sequencing and whole-exome sequencing, have enabled robust genome-wide unbiased detection of CNVs in affected individuals and in reportedly healthy controls. Sequencing of breakpoint junctions has allowed for elucidation of upstream mechanisms leading to genomic instability and resultant structural variation, whereas studies of the association between CNVs and specific diseases or susceptibility to morbid traits have enhanced our understanding of the downstream effects. In this review, we discuss the hallmarks of genomic disorders as they were defined during the first decade of the field, including genomic instability and the mechanism for rearrangement defined as nonallelic homologous recombination (NAHR); recurrent vs nonrecurrent rearrangements; and gene dosage sensitivity. Moreover, we highlight the exciting advances of the second decade of this field, including a deeper understanding of genomic instability and the mechanisms underlying complex rearrangements, mechanisms for constitutional and somatic chromosomal rearrangements, structural intra-species polymorphisms and susceptibility to NAHR, the role of CNVs in the context of genome-wide copy number and single nucleotide variation, and the contribution of noncoding CNVs to human disease.
Collapse
Affiliation(s)
- T Harel
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - J R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
31
|
Tingaud-Sequeira A, Raldúa D, Lavie J, Mathieu G, Bordier M, Knoll-Gellida A, Rambeau P, Coupry I, André M, Malm E, Möller C, Andreasson S, Rendtorff ND, Tranebjærg L, Koenig M, Lacombe D, Goizet C, Babin PJ. Functional validation of ABHD12 mutations in the neurodegenerative disease PHARC. Neurobiol Dis 2016; 98:36-51. [PMID: 27890673 DOI: 10.1016/j.nbd.2016.11.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 10/25/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022] Open
Abstract
ABHD12 mutations have been linked to neurodegenerative PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and early-onset cataract), a rare, progressive, autosomal, recessive disease. Although ABHD12 is suspected to play a role in the lysophosphatidylserine and/or endocannabinoid pathways, its precise functional role(s) leading to PHARC disease had not previously been characterized. Cell and zebrafish models were designed to demonstrate the causal link between an identified new missense mutation p.T253R, characterized in ABHD12 from a young patient, the previously characterized p.T202I and p.R352* mutations, and the associated PHARC. Measuring ABHD12 monoacylglycerol lipase activity in transfected HEK293 cells demonstrated inhibition with mutated isoforms. Both the expression pattern of zebrafish abhd12 and the phenotype of specific antisense morpholino oligonucleotide gene knockdown morphants were consistent with human PHARC hallmarks. High abhd12 transcript levels were found in the optic tectum and tract, colocalized with myelin basic protein, and in the spinal cord. Morphants have myelination defects and concomitant functional deficits, characterized by progressive ataxia and motor skill impairment. A disruption of retina architecture and retinotectal projections was observed, together with an inhibition of lens clarification and a low number of mechanosensory hair cells in the inner ear and lateral line system. The severe phenotypes in abhd12 knockdown morphants were rescued by introducing wild-type human ABHD12 mRNA, but not by mutation-harboring mRNAs. Zebrafish may provide a suitable vertebrate model for ABHD12 insufficiency and the study of functional impairment and potential therapeutic rescue of this rare, neurodegenerative disease.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Univ. Bordeaux, INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), F-33076 Bordeaux, France
| | | | - Julie Lavie
- Univ. Bordeaux, INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), F-33076 Bordeaux, France
| | - Guilaine Mathieu
- Univ. Bordeaux, INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), F-33076 Bordeaux, France
| | - Magali Bordier
- Univ. Bordeaux, INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), F-33076 Bordeaux, France; CHU Bordeaux, Hôpital Pellegrin, Service de Génétique Médicale, Bordeaux, France
| | - Anja Knoll-Gellida
- Univ. Bordeaux, INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), F-33076 Bordeaux, France
| | - Pierre Rambeau
- Univ. Bordeaux, INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), F-33076 Bordeaux, France
| | - Isabelle Coupry
- Univ. Bordeaux, INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), F-33076 Bordeaux, France
| | - Michèle André
- Univ. Bordeaux, INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), F-33076 Bordeaux, France
| | - Eva Malm
- Department of Ophthalmology, Lund University Hospital, Lund, Sweden
| | - Claes Möller
- School of Medicine and Health, Örebro University, Sweden
| | - Sten Andreasson
- Department of Ophthalmology, Lund University Hospital, Lund, Sweden
| | - Nanna D Rendtorff
- Department Audiology, Bispebjerg Hospital/Rigshospitalet, Department of Clinical Genetics, Rigshospitalet/The Kennedy Center, University of Copenhagen, Institute for Clinical Medicine Copenhagen, Denmark
| | - Lisbeth Tranebjærg
- Department Audiology, Bispebjerg Hospital/Rigshospitalet, Department of Clinical Genetics, Rigshospitalet/The Kennedy Center, University of Copenhagen, Institute for Clinical Medicine Copenhagen, Denmark
| | - Michel Koenig
- Laboratoire de Génétique Moléculaire et unité INSERM UMR_S827, IURC, Montpellier, France
| | - Didier Lacombe
- Univ. Bordeaux, INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), F-33076 Bordeaux, France; CHU Bordeaux, Hôpital Pellegrin, Service de Génétique Médicale, Bordeaux, France
| | - Cyril Goizet
- Univ. Bordeaux, INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), F-33076 Bordeaux, France; CHU Bordeaux, Hôpital Pellegrin, Service de Génétique Médicale, Bordeaux, France
| | - Patrick J Babin
- Univ. Bordeaux, INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), F-33076 Bordeaux, France.
| |
Collapse
|
32
|
Rodríguez-Cueto C, Hernández-Gálvez M, Hillard CJ, Maciel P, García-García L, Valdeolivas S, Pozo MA, Ramos JA, Gómez-Ruiz M, Fernández-Ruiz J. Dysregulation of the endocannabinoid signaling system in the cerebellum and brainstem in a transgenic mouse model of spinocerebellar ataxia type-3. Neuroscience 2016; 339:191-209. [PMID: 27717809 DOI: 10.1016/j.neuroscience.2016.09.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 11/15/2022]
Abstract
Spinocerebellar ataxia type-3 (SCA-3) is a rare disease but it is the most frequent type within the autosomal dominant inherited ataxias. The disease lacks an effective treatment to alleviate major symptoms and to modify disease progression. Our recent findings that endocannabinoid receptors and enzymes are significantly altered in the post-mortem cerebellum of patients affected by autosomal-dominant hereditary ataxias suggest that targeting the endocannabinoid signaling system may be a promising therapeutic option. Our goal was to investigate the status of the endocannabinoid signaling system in a transgenic mouse model of SCA-3, in the two CNS structures most affected in this disease - cerebellum and brainstem. These animals exhibited progressive motor incoordination, imbalance, abnormal gait, muscle weakness, and dystonia, in parallel to reduced in vivo brain glucose metabolism, deterioration of specific neuron subsets located in the dentate nucleus and pontine nuclei, small changes in microglial morphology, and reduction in glial glutamate transporters. Concerning the endocannabinoid signaling, our data indicated no changes in CB2 receptors. By contrast, CB1 receptors increased in the Purkinje cell layer, in particular in terminals of basket cells, but they were reduced in the dentate nucleus. We also measured the levels of endocannabinoid lipids and found reductions in anandamide and oleoylethanolamide in the brainstem. These changes correlated with an increase in the FAAH enzyme in the brainstem, which also occurred in some cerebellar areas, whereas other endocannabinoid-related enzymes were not altered. Collectively, our results in SCA-3 mutant mice confirm a possible dysregulation in the endocannabinoid system in the most important brain structures affected in this type of ataxia, suggesting that a pharmacological manipulation addressed to correct these changes could be a promising option in SCA-3.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Mariluz Hernández-Gálvez
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain; Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense, Madrid, Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Patricia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Portugal
| | - Luis García-García
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense, Madrid, Spain; Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Sara Valdeolivas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Miguel A Pozo
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense, Madrid, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - José A Ramos
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - María Gómez-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain; Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense, Madrid, Spain.
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.
| |
Collapse
|
33
|
Bileck A, Ferk F, Al-Serori H, Koller VJ, Muqaku B, Haslberger A, Auwärter V, Gerner C, Knasmüller S. Impact of a synthetic cannabinoid (CP-47,497-C8) on protein expression in human cells: evidence for induction of inflammation and DNA damage. Arch Toxicol 2015; 90:1369-82. [PMID: 26194647 DOI: 10.1007/s00204-015-1569-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/06/2015] [Indexed: 01/12/2023]
Abstract
Synthetic cannabinoids (SCs) are marketed worldwide as legal surrogates for marihuana. In order to predict potential health effects in consumers and to elucidate the underlying mechanisms of action, we investigated the impact of a representative of the cyclohexylphenols, CP47,497-C8, which binds to both cannabinoid receptors, on protein expression patterns, genomic stability and on induction of inflammatory cytokines in human lymphocytes. After treatment of the cells with the drug, we found pronounced up-regulation of a variety of enzymes in nuclear extracts which are involved in lipid metabolism and inflammatory signaling; some of the identified proteins are also involved in the endogenous synthesis of endocannabinoids. The assumption that the drug causes inflammation is further supported by results obtained in additional experiments with cytosols of LPS-stimulated lymphocytes which showed that the SC induces pro-inflammatory cytokines (IL12p40 and IL-6) as well as TNF-α. Furthermore, the proteome analyses revealed that the drug causes down-regulation of proteins which are involved in DNA repair. This observation provides an explanation for the formation of comets which was seen in single-cell gel electrophoresis assays and for the induction of micronuclei (which reflect structural and numerical chromosomal aberrations) by the drug. These effects were seen in experiments with human lymphocytes which were conducted under identical conditions as the proteome analysis. Taken together, the present findings indicate that the drug (and possibly other structurally related SCs) may cause DNA damage and inflammation in directly exposed cells of consumers.
Collapse
Affiliation(s)
- Andrea Bileck
- Faculty of Chemistry, Institute of Analytical Chemistry, University of Vienna, Währingerstr. 38, 1090, Vienna, Austria
| | - Franziska Ferk
- Department of Internal Medicine 1, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Halh Al-Serori
- Department of Internal Medicine 1, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Verena J Koller
- Department of Internal Medicine 1, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Besnik Muqaku
- Faculty of Chemistry, Institute of Analytical Chemistry, University of Vienna, Währingerstr. 38, 1090, Vienna, Austria
| | - Alexander Haslberger
- Department of Nutritional Sciences, University of Vienna, UZA 2/2D541, Althanstrasse 14, 1090, Vienna, Austria
| | - Volker Auwärter
- Institute of Forensic Medicine, University Medical Center Freiburg, Albertstraße 9, 79104, Freiburg, Germany
| | - Christopher Gerner
- Faculty of Chemistry, Institute of Analytical Chemistry, University of Vienna, Währingerstr. 38, 1090, Vienna, Austria
| | - Siegfried Knasmüller
- Department of Internal Medicine 1, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria.
| |
Collapse
|
34
|
Hamza W, Ali Pacha L, Hamadouche T, Muller J, Drouot N, Ferrat F, Makri S, Chaouch M, Tazir M, Koenig M, Benhassine T. Molecular and clinical study of a cohort of 110 Algerian patients with autosomal recessive ataxia. BMC MEDICAL GENETICS 2015; 16:36. [PMID: 26068213 PMCID: PMC4630839 DOI: 10.1186/s12881-015-0180-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 05/29/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autosomal recessive cerebellar ataxias (ARCA) are a complex group of neurodegenerative disorders with great genetic and phenotypic heterogeneity, over 30 genes/loci have been associated with more than 20 different clinical forms of ARCA. Genetic heterogeneity combined with highly variable clinical expression of the cerebellar symptoms and overlapping features complicate furthermore the etiological diagnosis of ARCA. The determination of the most frequent mutations and corresponding ataxias, as well as particular features specific to a population, are mandatory to facilitate and speed up the diagnosis process, especially when an appropriate treatment is available. METHODS We explored 166 patients (115 families) refered to the neurology units of Algiers central hospitals (Algeria) with a cerebellar ataxia phenotype segregating as an autosomal recessive pattern of inheritance. Genomic DNA was extracted from peripheral blood samples and mutational screening was performed by PCR and direct sequencing or by targeted genomic capture and massive parallel sequencing of 57 genes associated with inherited cerebellar ataxia phenotypes. RESULTS In this work we report the clinical and molecular results obtained on a large cohort of Algerian patients (110 patients/76 families) with genetically determined autosomal recessive ataxia, representing 9 different types of ARCA and 23 different mutations, including 6 novel ones. The five most common ARCA in this cohort were Friedreich ataxia, ataxia with isolated vitamin E deficiency, ataxia with oculomotor apraxia type 2, autosomal recessive spastic ataxia of Charlevoix-Saguenay and ataxia with oculomotor apraxia type 1. CONCLUSION We report here a large cohort of patients with genetically determined autosomal recessive ataxia and the first study of the genetic context of ARCA in Algeria. This study showed that in Algerian patients, the two most common types of ataxia (Friedreich ataxia and ataxia with isolated vitamin E deficiency) coexist with forms that may be less common or underdiagnosed. To refine the genotype/phenotype correlation in rare and heteregeneous diseases as autosomal recessive ataxias, more extensive epidemiological investigations and reports are necessary as well as more accurate and detailed clinical characterizations. The use of standardized clinical and molecular protocols would thus enable a better knowledge of the different forms of ARCA.
Collapse
Affiliation(s)
- Wahiba Hamza
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques, USTHB, Alger, Algeria.
| | - Lamia Ali Pacha
- Service de Neurologie, CHU Mustapha Bacha, Alger, Algeria. .,Laboratoire de Neurosciences, Université d'Alger 1, Alger, Algeria.
| | - Tarik Hamadouche
- Laboratoire de Neurosciences, Université d'Alger 1, Alger, Algeria. .,Laboratoire de Biologie Moléculaire, Faculté des Sciences, UMBB, Boumerdes, Algeria.
| | - Jean Muller
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/Université de Strasbourg UMR7104, INSERM U964, Illkirch, France. .,Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/Université de Strasbourg UMR7104, INSERM U964, Illkirch, France.
| | - Farida Ferrat
- Service de Neurologie, CHU Ben Aknoun, Alger, Algeria.
| | - Samira Makri
- Service de Neurologie, EHS Ali Aït Idir, Alger, Algeria.
| | | | - Meriem Tazir
- Service de Neurologie, CHU Mustapha Bacha, Alger, Algeria. .,Laboratoire de Neurosciences, Université d'Alger 1, Alger, Algeria.
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares, Institut Universitaire de Recherche Clinique, Université de Montpellier, CHU de Montpellier, Montpellier, France.
| | - Traki Benhassine
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques, USTHB, Alger, Algeria.
| |
Collapse
|
35
|
Yoshimura H, Hashimoto T, Murata T, Fukushima K, Sugaya A, Nishio SY, Usami SI. Novel ABHD12 Mutations in PHARC Patients. Ann Otol Rhinol Laryngol 2015; 124 Suppl 1:77S-83S. [DOI: 10.1177/0003489415574513] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: This study examines ABHD12 mutation analysis in 2 PHARC patients, originally thought to be Usher syndrome. Methods: The ABHD12 gene of 2 patients, who suffered from deaf-blindness and dysfunctional central and peripheral nervous systems, were sequenced. Results: We identified that both cases carried the same novel splice site mutation in the ABHD12 gene. However, 1 had epilepsy and the other had peripheral neuropathy. Based on haplotype analysis, the mutation is likely not a hot spot, but rather could be attributable to a common ancestor. Conclusion: This study shows that PHARC has phenotypic variability, even within a family, which is consistent with previous reports. Differential diagnosis of “deaf-blindness” diseases is crucial. Confirming the presence of associated symptoms is necessary for differentiating some deaf-blindness syndromes. In addition, mutation analysis is a useful tool for confirming the diagnosis.
Collapse
Affiliation(s)
- Hidekane Yoshimura
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | | | - Toshinori Murata
- Department of Ophthalmology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kunihiro Fukushima
- Department of Otorhinolaryngology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Akiko Sugaya
- Department of Otorhinolaryngology–Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Shin-ya Nishio
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Hearing Implant Science, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin-ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Hearing Implant Science, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
36
|
Abstract
Eukaryotic and prokaryotic organisms possess huge numbers of uncharacterized enzymes. Selective inhibitors offer powerful probes for assigning functions to enzymes in native biological systems. Here, we discuss how the chemical proteomic platform activity-based protein profiling (ABPP) can be implemented to discover selective and in vivo-active inhibitors for enzymes. We further describe how these inhibitors have been used to delineate the biochemical and cellular functions of enzymes, leading to the discovery of metabolic and signaling pathways that make important contributions to human physiology and disease. These studies demonstrate the value of selective chemical probes as drivers of biological inquiry.
Collapse
Affiliation(s)
- Micah J Niphakis
- The Skaggs Institute for Chemical Biology and the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037;
| | | |
Collapse
|
37
|
Immunomodulatory lysophosphatidylserines are regulated by ABHD16A and ABHD12 interplay. Nat Chem Biol 2015; 11:164-71. [PMID: 25580854 PMCID: PMC4301979 DOI: 10.1038/nchembio.1721] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/04/2014] [Indexed: 01/25/2023]
|
38
|
Wortmann SB, Espeel M, Almeida L, Reimer A, Bosboom D, Roels F, de Brouwer APM, Wevers RA. Inborn errors of metabolism in the biosynthesis and remodelling of phospholipids. J Inherit Metab Dis 2015; 38:99-110. [PMID: 25178427 DOI: 10.1007/s10545-014-9759-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 11/24/2022]
Abstract
Since the proposal to define a separate subgroup of inborn errors of metabolism involved in the biosynthesis and remodelling of phospholipids, sphingolipids and long chain fatty acids in 2013, this group is rapidly expanding. This review focuses on the disorders involved in the biosynthesis of phospholipids. Phospholipids are involved in uncountable cellular processes, e.g. as structural components of membranes, by taking part in vesicle and mitochondrial fusion and fission or signal transduction. Here we provide an overview on both pathophysiology and the extremely heterogeneous clinical presentations of the disorders reported so far (Sengers syndrome (due to mutations in AGK), MEGDEL syndrome (or SERAC defect, SERAC1), Barth syndrome (or TAZ defect, TAZ), congenital muscular dystrophy due to CHKB deficiency (CHKB). Boucher-Neuhäuser/Gordon Holmes syndrome (PNPLA6), PHARC syndrome (ABHD12), hereditary spastic paraplegia type 28, 54 and 56 (HSP28, DDHD1; HSP54, DDHD2; HSP56, CYP2U1), Lenz Majewski syndrome (PTDSS1), spondylometaphyseal dysplasia with cone-rod dystrophy (PCYT1A), atypical haemolytic-uremic syndrome due to DGKE deficiency (DGKE).
Collapse
Affiliation(s)
- Saskia B Wortmann
- Nijmegen Centre for Mitochondrial Disorders (NCMD) at the Amalia Children's Hospital, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands,
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Chen YZ, Friedman JR, Chen DH, Chan GCK, Bloss CS, Hisama FM, Topol SE, Carson AR, Pham PH, Bonkowski ES, Scott ER, Lee JK, Zhang G, Oliveira G, Xu J, Scott-Van Zeeland AA, Chen Q, Levy S, Topol EJ, Storm D, Swanson PD, Bird TD, Schork NJ, Raskind WH, Torkamani A. Gain-of-function ADCY5 mutations in familial dyskinesia with facial myokymia. Ann Neurol 2014; 75:542-9. [PMID: 24700542 DOI: 10.1002/ana.24119] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To identify the cause of childhood onset involuntary paroxysmal choreiform and dystonic movements in 2 unrelated sporadic cases and to investigate the functional effect of missense mutations in adenylyl cyclase 5 (ADCY5) in sporadic and inherited cases of autosomal dominant familial dyskinesia with facial myokymia (FDFM). METHODS Whole exome sequencing was performed on 2 parent-child trios. The effect of mutations in ADCY5 was studied by measurement of cyclic adenosine monophosphate (cAMP) accumulation under stimulatory and inhibitory conditions. RESULTS The same de novo mutation (c.1252C>T, p.R418W) in ADCY5 was found in both studied cases. An inherited missense mutation (c.2176G>A, p.A726T) in ADCY5 was previously reported in a family with FDFM. The significant phenotypic overlap with FDFM was recognized in both cases only after discovery of the molecular link. The inherited mutation in the FDFM family and the recurrent de novo mutation affect residues in different protein domains, the first cytoplasmic domain and the first membrane-spanning domain, respectively. Functional studies revealed a statistically significant increase in β-receptor agonist-stimulated intracellular cAMP consistent with an increase in adenylyl cyclase activity for both mutants relative to wild-type protein, indicative of a gain-of-function effect. INTERPRETATION FDFM is likely caused by gain-of-function mutations in different domains of ADCY5-the first definitive link between adenylyl cyclase mutation and human disease. We have illustrated the power of hypothesis-free exome sequencing in establishing diagnoses in rare disorders with complex and variable phenotype. Mutations in ADCY5 should be considered in patients with undiagnosed complex movement disorders even in the absence of a family history.
Collapse
Affiliation(s)
- Ying-Zhang Chen
- Department of Medicine/Medical Genetics, University of Washington, Seattle, WA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Thomas G, Brown AL, Brown JM. In vivo metabolite profiling as a means to identify uncharacterized lipase function: recent success stories within the alpha beta hydrolase domain (ABHD) enzyme family. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1097-101. [PMID: 24423940 DOI: 10.1016/j.bbalip.2014.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/03/2014] [Accepted: 01/05/2014] [Indexed: 01/23/2023]
Abstract
Genome sequencing efforts have identified many uncharacterized lipase/esterase enzymes that have potential to be drug targets for metabolic diseases such as obesity, diabetes, and atherosclerosis. However, sequence information and associated structural predictions provide only a loose framework for linking enzyme function to disease risk. We are now confronted with the challenge of functionally annotating a large number of uncharacterized lipases, with the goal of generating new therapies for metabolic diseases. This daunting challenge involves gathering not only sequence-driven predictions, but also more importantly structural, biochemical (substrates and products), and physiological data. At the center of such drug discovery efforts are accurately identifying physiologically relevant substrates and products of individual lipases, and determining whether newly identified substrates/products can modulate disease in appropriate preclinical animal model systems. This review describes the importance of coupling in vivo metabolite profiling to in vitro enzymology as a powerful means to assign lipase function in disease specific contexts using animal models. In particular, we highlight recent examples using this multidisciplinary approach to functionally annotate genes within the α/β hydrolase fold domain (ABHD) family of enzymes. These new discoveries within the ABHD enzyme family serve as powerful examples of linking novel lipase function to human disease. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Gwynneth Thomas
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Amanda L Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.
| |
Collapse
|