1
|
Holthöfer L, Diederich S, Haug V, Lehmann L, Hewel C, Paul NW, Schweiger S, Gerber S, Linke M. A case of an Angelman-syndrome caused by an intragenic duplication of UBE3A uncovered by adaptive nanopore sequencing. Clin Epigenetics 2024; 16:101. [PMID: 39095842 PMCID: PMC11297752 DOI: 10.1186/s13148-024-01711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Adaptive nanopore sequencing as a diagnostic method for imprinting disorders and episignature analysis revealed an intragenic duplication of Exon 6 and 7 in UBE3A (NM_000462.5) in a patient with relatively mild Angelman-like syndrome. In an all-in-one nanopore sequencing analysis DNA hypomethylation of the SNURF:TSS-DMR, known contributing deletions on the maternal allele and point mutations in UBE3A could be ruled out as disease drivers. In contrast, breakpoints and orientation of the tandem duplication could clearly be defined. Segregation analysis in the family showed that the duplication derived de novo in the maternal grandfather. Our study shows the benefits of an all-in-one nanopore sequencing approach for the diagnostics of Angelman syndrome and other imprinting disorders.
Collapse
Affiliation(s)
- Laura Holthöfer
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Diederich
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Verena Haug
- Neuropediatrics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lioba Lehmann
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Charlotte Hewel
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Norbert W Paul
- Institute for History, Philosophy, and Ethics of Medicine, Johannes Gutenberg-University Medical Center Mainz, Mainz, Germany
| | - Susann Schweiger
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Gerber
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Linke
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
2
|
Jiang X, Liang B, Chen B, Wu X, Wang Y, Lin N, Huang H, Xu L. Prenatal diagnosis and genetic analysis of small supernumerary marker chromosomes in the eastern chinese han population: A retrospective study of 36 cases. Chromosome Res 2024; 32:9. [PMID: 39026136 DOI: 10.1007/s10577-024-09754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/17/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Small supernumerary marker chromosomes (sSMCs) are additional chromosomes with unclear structures and origins, and their correlations with clinical fetal phenotypes remain incompletely understood, which reduces the accuracy of genetic counseling. METHODS We conducted a retrospective analysis of a cohort of 36 cases of sSMCs diagnosed in our center. We performed G-banding and chromosomal microarray analysis (CMA). The resulting karyotypes were compared with case reports in the literature and various databases including OMIM, DECIPHER, ClinVar, ClinGen, ISCA, DGV, and PubMed. RESULTS Karyotype analysis data revealed that 19 out of 36 fetuses were mosaic. Copy number variants (CNVs) analysis results showed that 27 out of 36 fetuses harbored pathogenic/likely pathogenic variants. Among these 27 cases, 11 fetuses carried sex chromosome-related CNVs, including 4 female cases exhibiting Turner syndrome phenotypes and 7 cases showing Y chromosome deletions. In the remaining 16 fetuses with autosomal CNVs, 9 fetuses carried variants associated with Cat eye syndrome, Emanuel syndrome, Tetrasomy 18p, and 15q11-q13 duplication syndrome. Among these, 22 fetuses were terminated, and the remaining 5 fetuses were delivered and developed normally. Additionally, we identified a few variants with unclear pathogenicity. CONCLUSION Cytogenetic analysis is essential for identifying the pathogenicity of sSMCs and increasing the accuracy of genetic counseling.
Collapse
Affiliation(s)
- Xiali Jiang
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Bin Liang
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| | - Bilian Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Xiaoqing Wu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Yan Wang
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| |
Collapse
|
3
|
Saravanapandian V, Madani M, Nichols I, Vincent S, Dover M, Dikeman D, Philpot BD, Takumi T, Colwell CS, Jeste S, Paul KN, Golshani P. Sleep EEG signatures in mouse models of 15q11.2-13.1 duplication (Dup15q) syndrome. J Neurodev Disord 2024; 16:39. [PMID: 39014349 PMCID: PMC11251350 DOI: 10.1186/s11689-024-09556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Sleep disturbances are a prevalent and complex comorbidity in neurodevelopmental disorders (NDDs). Dup15q syndrome (duplications of 15q11.2-13.1) is a genetic disorder highly penetrant for NDDs such as autism and intellectual disability and it is frequently accompanied by significant disruptions in sleep patterns. The 15q critical region harbors genes crucial for brain development, notably UBE3A and a cluster of gamma-aminobutyric acid type A receptor (GABAAR) genes. We previously described an electrophysiological biomarker of the syndrome, marked by heightened beta oscillations (12-30 Hz) in individuals with Dup15q syndrome, akin to electroencephalogram (EEG) alterations induced by allosteric modulation of GABAARs. Those with Dup15q syndrome exhibited increased beta oscillations during the awake resting state and during sleep, and they showed profoundly abnormal NREM sleep. This study aims to assess the translational validity of these EEG signatures and to delve into their neurobiological underpinnings by quantifying sleep physiology in chromosome-engineered mice with maternal (matDp/ + mice) or paternal (patDp/ + mice) inheritance of the full 15q11.2-13.1-equivalent duplication, and mice with duplication of just the UBE3A gene (Ube3a overexpression mice; Ube3a OE mice) and comparing the sleep metrics with their respective wildtype (WT) littermate controls. METHODS We collected 48-h EEG/EMG recordings from 35 (23 male, 12 female) 12-24-week-old matDp/ + , patDp/ + , Ube3a OE mice, and their WT littermate controls. We quantified baseline sleep, sleep fragmentation, spectral power dynamics during sleep states, and recovery following sleep deprivation. Within each group, distinctions between Dup15q mutant mice and WT littermate controls were evaluated using analysis of variance (ANOVA) and student's t-test. The impact of genotype and time was discerned through repeated measures ANOVA, and significance was established at p < 0.05. RESULTS Our study revealed that across brain states, matDp/ + mice mirrored the elevated beta oscillation phenotype observed in clinical EEGs from individuals with Dup15q syndrome. Time to sleep onset after light onset was significantly reduced in matDp/ + and Ube3a OE mice. However, NREM sleep between Dup15q mutant and WT littermate mice remained unaltered, suggesting a divergence from the clinical presentation in humans. Additionally, while increased beta oscillations persisted in matDp/ + mice after 6-h of sleep deprivation, recovery NREM sleep remained unaltered in all groups, thus suggesting that these mice exhibit resilience in the fundamental processes governing sleep-wake regulation. CONCLUSIONS Quantification of mechanistic and translatable EEG biomarkers is essential for advancing our understanding of NDDs and their underlying pathophysiology. Our study of sleep physiology in the Dup15q mice underscores that the beta EEG biomarker has strong translational validity, thus opening the door for pre-clinical studies of putative drug targets, using the biomarker as a translational measure of drug-target engagement. The unaltered NREM sleep may be due to inherent differences in neurobiology between mice and humans. These nuanced distinctions highlight the complexity of sleep disruptions in Dup15q syndrome and emphasize the need for a comprehensive understanding that encompasses both shared and distinct features between murine models and clinical populations.
Collapse
Affiliation(s)
- Vidya Saravanapandian
- Department of Neurology and Semel Institute for Neuroscience, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA.
| | - Melika Madani
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - India Nichols
- Department of Biology, Spelman College, 350 Spelman Lane, Atlanta, GA, 30314, USA
| | - Scott Vincent
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Mary Dover
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Dante Dikeman
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Benjamin D Philpot
- Neuroscience Center, Department of Cell Biology and Physiology, and the Carolina Institute for Developmental Disabilities, UNC-Chapel Hill, NC, 27599, USA
| | - Toru Takumi
- Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan
| | - Christopher S Colwell
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Shafali Jeste
- Children's Hospital Los Angeles, 4650 Sunset Blvd, MS 82, Los Angeles, CA, 90027, USA
| | - Ketema N Paul
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Peyman Golshani
- Department of Neurology and Semel Institute for Neuroscience, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
- West Los Angeles VA Medical Center, 11301 Wilshire Blvd, Los Angeles, CA, 90073, USA
| |
Collapse
|
4
|
Gardner Z, Holbrook O, Tian Y, Odamah K, Man HY. The role of glia in the dysregulation of neuronal spinogenesis in Ube3a-dependent ASD. Exp Neurol 2024; 376:114756. [PMID: 38508482 PMCID: PMC11058030 DOI: 10.1016/j.expneurol.2024.114756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/14/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Overexpression of the Ube3a gene and the resulting increase in Ube3a protein are linked to autism spectrum disorder (ASD). However, the cellular and molecular processes underlying Ube3a-dependent ASD remain unclear. Using both male and female mice, we find that neurons in the somatosensory cortex of the Ube3a 2× Tg ASD mouse model display reduced dendritic spine density and increased immature filopodia density. Importantly, the increased gene dosage of Ube3a in astrocytes alone is sufficient to confer alterations in neurons as immature dendritic protrusions, as observed in primary hippocampal neuron cultures. We show that Ube3a overexpression in astrocytes leads to a loss of astrocyte-derived spinogenic protein, thrombospondin-2 (TSP2), due to a suppression of TSP2 gene transcription. By neonatal intraventricular injection of astrocyte-specific virus, we demonstrate that Ube3a overexpression in astrocytes in vivo results in a reduction in dendritic spine maturation in prelimbic cortical neurons, accompanied with autistic-like behaviors in mice. These findings reveal an astrocytic dominance in initiating ASD pathobiology at the neuronal and behavior levels. SIGNIFICANCE STATEMENT: Increased gene dosage of Ube3a is tied to autism spectrum disorders (ASDs), yet cellular and molecular alterations underlying autistic phenotypes remain unclear. We show that Ube3a overexpression leads to impaired dendritic spine maturation, resulting in reduced spine density and increased filopodia density. We find that dysregulation of spine development is not neuron autonomous, rather, it is mediated by an astrocytic mechanism. Increased gene dosage of Ube3a in astrocytes leads to reduced production of the spinogenic glycoprotein thrombospondin-2 (TSP2), leading to abnormalities in spines. Astrocyte-specific Ube3a overexpression in the brain in vivo confers dysregulated spine maturation concomitant with autistic-like behaviors in mice. These findings indicate the importance of astrocytes in aberrant neurodevelopment and brain function in Ube3a-depdendent ASD.
Collapse
Affiliation(s)
- Zachary Gardner
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Otto Holbrook
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Yuan Tian
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - KathrynAnn Odamah
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America; Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St., L-603, Boston, MA 02118, United States of America; Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA 02215, United States of America.
| |
Collapse
|
5
|
Tian Y, Qiao H, Zhu LQ, Man HY. Sexually dimorphic phenotypes and the role of androgen receptors in UBE3A-dependent autism spectrum disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592248. [PMID: 38746146 PMCID: PMC11092617 DOI: 10.1101/2024.05.02.592248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Autism spectrum disorders (ASDs) are characterized by social, communication, and behavioral challenges. UBE3A is one of the most common ASD genes. ASDs display a remarkable sex difference with a 4:1 male to female prevalence ratio; however, the underlying mechanism remains largely unknown. Using the UBE3A-overexpressing mouse model for ASD, we studied sex differences at behavioral, genetic, and molecular levels. We found that male mice with extra copies of Ube3A exhibited greater impairments in social interaction, repetitive self-grooming behavior, memory, and pain sensitivity, whereas female mice with UBE3A overexpression displayed greater olfactory defects. Social communication was impaired in both sexes, with males making more calls and females preferring complex syllables. At the molecular level, androgen receptor (AR) levels were reduced in both sexes due to enhanced degradation mediated by UBE3A. However, AR reduction significantly dysregulated AR target genes only in male, not female, UBE3A-overexpressing mice. Importantly, restoring AR levels in the brain effectively normalized the expression of AR target genes, and rescued the deficits in social preference, grooming behavior, and memory in male UBE3A-overexpressing mice, without affecting females. These findings suggest that AR and its signaling cascade play an essential role in mediating the sexually dimorphic changes in UBE3A-dependent ASD.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Hui Qiao
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA 02215, USA
| |
Collapse
|
6
|
Tian Y, Yu F, Yun E, Lin JW, Man HY. mRNA nuclear retention reduces AMPAR expression and promotes autistic behavior in UBE3A-overexpressing mice. EMBO Rep 2024; 25:1282-1309. [PMID: 38316900 PMCID: PMC10933332 DOI: 10.1038/s44319-024-00073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
UBE3A is a common genetic factor in ASD etiology, and transgenic mice overexpressing UBE3A exhibit typical autistic-like behaviors. Because AMPA receptors (AMPARs) mediate most of the excitatory synaptic transmission in the brain, and synaptic dysregulation is considered one of the primary cellular mechanisms in ASD pathology, we investigate here the involvement of AMPARs in UBE3A-dependent ASD. We show that expression of the AMPAR GluA1 subunit is decreased in UBE3A-overexpressing mice, and that AMPAR-mediated neuronal activity is reduced. GluA1 mRNA is trapped in the nucleus of UBE3A-overexpressing neurons, suppressing GluA1 protein synthesis. Also, SARNP, an mRNA nuclear export protein, is downregulated in UBE3A-overexpressing neurons, causing GluA1 mRNA nuclear retention. Restoring SARNP levels not only rescues GluA1 mRNA localization and protein expression, but also normalizes neuronal activity and autistic behaviors in mice overexpressing UBE3A. These findings indicate that SARNP plays a crucial role in the cellular and behavioral phenotypes of UBE3A-induced ASD by regulating nuclear mRNA trafficking and protein translation of a key AMPAR subunit.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Feiyuan Yu
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Eunice Yun
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Jen-Wei Lin
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA.
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
7
|
Roy B, Amemasor E, Hussain S, Castro K. UBE3A: The Role in Autism Spectrum Disorders (ASDs) and a Potential Candidate for Biomarker Studies and Designing Therapeutic Strategies. Diseases 2023; 12:7. [PMID: 38248358 PMCID: PMC10814747 DOI: 10.3390/diseases12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Published reports from the CDC's Autism and Development Disabilities Monitoring Networks have shown that an average of 1 in every 44 (2.3%) 8-year-old children were estimated to have ASD in 2018. Many of the ASDs exhibiting varying degrees of autism-like phenotypes have chromosomal anomalies in the Chr15q11-q13 region. Numerous potential candidate genes linked with ASD reside in this chromosomal segment. However, several clinical, in vivo, and in vitro studies selected one gene more frequently than others randomly and unbiasedly. This gene codes for UBE3A or Ubiquitin protein ligase E3A [also known as E6AP ubiquitin-protein ligase (E6AP)], an enzyme involved in the cellular degradation of proteins. This gene has been listed as one of the several genes with a high potential of causing ASD in the Autism Database. The gain of function mutations, triplication, or duplication in the UBE3A gene is also associated with ASDs like Angelman Syndrome (AS) and Dup15q Syndrome. The genetic imprinting of UBE3A in the brain and a preference for neuronal maternal-specific expression are the key features of various ASDs. Since the UBE3A gene is involved in two main important diseases associated with autism-like symptoms, there has been widespread research going on in understanding the link between this gene and autism. Additionally, since no universal methodology or mechanism exists for identifying UBE3A-mediated ASD, it continues to be challenging for neurobiologists, neuroscientists, and clinicians to design therapies or diagnostic tools. In this review, we focus on the structure and functional aspects of the UBE3A protein, discuss the primary relevance of the 15q11-q13 region in the cause of ASDs, and highlight the link between UBE3A and ASD. We try to broaden the knowledge of our readers by elaborating on the possible mechanisms underlying UBE3A-mediated ASDs, emphasizing the usage of UBE3A as a prospective biomarker in the preclinical diagnosis of ASDs and discuss the positive outcomes, advanced developments, and the hurdles in the field of therapeutic strategies against UBE3A-mediated ASDs. This review is novel as it lays a very detailed and comprehensive platform for one of the most important genes associated with diseases showing autistic-like symptoms. Additionally, this review also attempts to lay optimistic feedback on the possible steps for the diagnosis, prevention, and therapy of these UBE3A-mediated ASDs in the upcoming years.
Collapse
Affiliation(s)
- Bidisha Roy
- Life Science Centre, Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA; (E.A.); (S.H.); (K.C.)
| | | | | | | |
Collapse
|
8
|
Chaudhary P, Proulx J, Park IW. Ubiquitin-protein ligase E3A (UBE3A) mediation of viral infection and human diseases. Virus Res 2023; 335:199191. [PMID: 37541588 PMCID: PMC10430597 DOI: 10.1016/j.virusres.2023.199191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
The Ubiquitin-protein ligase E3A, UBE3A, also known as E6-associated protein (E6-AP), is known to play an essential role in regulating the degradation of various proteins by transferring Ub from E2 Ub conjugating enzymes to the substrate proteins. Several studies indicate that UBE3A regulates the stabilities of key viral proteins in the virus-infected cells and, thereby, the infected virus-mediated diseases, even if it were reported that UBE3A participates in non-viral-related human diseases. Furthermore, mutations such as deletions and duplications in the maternally inherited gene in the brain cause human neurodevelopmental disorders such as Angelman syndrome (AS) and autism. It is also known that UBE3A functions as a transcriptional coactivator for the expression of steroid hormone receptors. These reports establish that UBE3A is distinguished by its multitudinous functions that are paramount to viral pathology and human diseases. This review is focused on molecular mechanisms for such intensive participation of UBE3A in disease formation and virus regulation.
Collapse
Affiliation(s)
- Pankaj Chaudhary
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| | - Jessica Proulx
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - In-Woo Park
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
9
|
Xing L, Simon JM, Ptacek TS, Yi JJ, Loo L, Mao H, Wolter JM, McCoy ES, Paranjape SR, Taylor-Blake B, Zylka MJ. Autism-linked UBE3A gain-of-function mutation causes interneuron and behavioral phenotypes when inherited maternally or paternally in mice. Cell Rep 2023; 42:112706. [PMID: 37389991 PMCID: PMC10530456 DOI: 10.1016/j.celrep.2023.112706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/15/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023] Open
Abstract
The E3 ubiquitin ligase Ube3a is biallelically expressed in neural progenitors and glial cells, suggesting that UBE3A gain-of-function mutations might cause neurodevelopmental disorders irrespective of parent of origin. Here, we engineered a mouse line that harbors an autism-linked UBE3AT485A (T503A in mouse) gain-of-function mutation and evaluated phenotypes in animals that inherited the mutant allele paternally, maternally, or from both parents. We find that paternally and maternally expressed UBE3AT503A results in elevated UBE3A activity in neural progenitors and glial cells. Expression of UBE3AT503A from the maternal allele, but not the paternal one, leads to a persistent elevation of UBE3A activity in neurons. Mutant mice display behavioral phenotypes that differ by parent of origin. Expression of UBE3AT503A, irrespective of its parent of origin, promotes transient embryonic expansion of Zcchc12 lineage interneurons. Phenotypes of Ube3aT503A mice are distinct from Angelman syndrome model mice. Our study has clinical implications for a growing number of disease-linked UBE3A gain-of-function mutations.
Collapse
Affiliation(s)
- Lei Xing
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeremy M Simon
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA; Department of Genetics, The University of North Carolina at Chapel Hill, Campus Box #7264, Chapel Hill, NC 27599, USA
| | - Travis S Ptacek
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA
| | - Jason J Yi
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA
| | - Lipin Loo
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hanqian Mao
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA
| | - Justin M Wolter
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA; Department of Genetics, The University of North Carolina at Chapel Hill, Campus Box #7264, Chapel Hill, NC 27599, USA
| | - Eric S McCoy
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Smita R Paranjape
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bonnie Taylor-Blake
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark J Zylka
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA.
| |
Collapse
|
10
|
Peng K, Wang S, Liu R, Zhou L, Jeong GH, Jeong IH, Liu X, Kiyokawa H, Xue B, Zhao B, Shi H, Yin J. Effects of UBE3A on Cell and Liver Metabolism through the Ubiquitination of PDHA1 and ACAT1. Biochemistry 2023; 62:1274-1286. [PMID: 36920305 PMCID: PMC10077595 DOI: 10.1021/acs.biochem.2c00624] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/03/2023] [Indexed: 03/16/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is substantiated by the reprogramming of liver metabolic pathways that disrupts the homeostasis of lipid and glucose metabolism and thus promotes the progression of the disease. The metabolic pathways associated with NAFLD are regulated at different levels from gene transcription to various post-translational modifications including ubiquitination. Here, we used a novel orthogonal ubiquitin transfer platform to identify pyruvate dehydrogenase A1 (PDHA1) and acetyl-CoA acetyltransferase 1 (ACAT1), two important enzymes that regulate glycolysis and ketogenesis, as substrates of E3 ubiquitin ligase UBE3A/E6AP. We found that overexpression of UBE3A accelerated the degradation of PDHA1 and promoted glycolytic activities in HEK293 cells. Furthermore, a high-fat diet suppressed the expression of UBE3A in the mouse liver, which was associated with increased ACAT1 protein levels, while forced expression of UBE3A in the mouse liver resulted in decreased ACAT1 protein contents. As a result, the mice with forced expression of UBE3A in the liver exhibited enhanced accumulation of triglycerides, cholesterol, and ketone bodies. These results reveal the role of UBE3A in NAFLD development by inducing the degradation of ACAT1 in the liver and promoting lipid storage. Overall, our work uncovers an important mechanism underlying the regulation of glycolysis and lipid metabolism through UBE3A-mediated ubiquitination of PDHA1 and ACAT1 to regulate their stabilities and enzymatic activities in the cell.
Collapse
Affiliation(s)
- Kangli Peng
- Engineering
Research Center of Cell and Therapeutic Antibody, Ministry of Education,
and School of Pharmacy, Shanghai Jiao Tong
University, Shanghai 200240, China
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Shirong Wang
- Department
of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ruochuan Liu
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Li Zhou
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Geon H. Jeong
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - In Ho Jeong
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xianpeng Liu
- Department
of Pharmacology, Northwestern University, Chicago, Illinois 60611, United States
| | - Hiroaki Kiyokawa
- Department
of Pharmacology, Northwestern University, Chicago, Illinois 60611, United States
| | - Bingzhong Xue
- Department
of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Bo Zhao
- Engineering
Research Center of Cell and Therapeutic Antibody, Ministry of Education,
and School of Pharmacy, Shanghai Jiao Tong
University, Shanghai 200240, China
| | - Hang Shi
- Department
of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jun Yin
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
11
|
Dindot SV, Christian S, Murphy WJ, Berent A, Panagoulias J, Schlafer A, Ballard J, Radeva K, Robinson R, Myers L, Jepp T, Shaheen H, Hillman P, Konganti K, Hillhouse A, Bredemeyer KR, Black L, Douville J. An ASO therapy for Angelman syndrome that targets an evolutionarily conserved region at the start of the UBE3A-AS transcript. Sci Transl Med 2023; 15:eabf4077. [PMID: 36947593 DOI: 10.1126/scitranslmed.abf4077] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Angelman syndrome is a devastating neurogenetic disorder for which there is currently no effective treatment. It is caused by mutations or epimutations affecting the expression or function of the maternally inherited allele of the ubiquitin-protein ligase E3A (UBE3A) gene. The paternal UBE3A allele is imprinted in neurons of the central nervous system (CNS) by the UBE3A antisense (UBE3A-AS) transcript, which represents the distal end of the small nucleolar host gene 14 (SNHG14) transcription unit. Reactivating the expression of the paternal UBE3A allele in the CNS has long been pursued as a therapeutic option for Angelman syndrome. Here, we described the development of an antisense oligonucleotide (ASO) therapy for Angelman syndrome that targets an evolutionarily conserved region demarcating the start of the UBE3A-AS transcript. We designed and chemically optimized gapmer ASOs targeting specific sequences at the start of the human UBE3A-AS transcript. We showed that ASOs targeting this region precisely and efficiently repress the transcription of UBE3A-AS, reactivating the expression of the paternal UBE3A allele in neurotypical and Angelman syndrome induced pluripotent stem cell-derived neurons. We further showed that human-targeted ASOs administered to the CNS of cynomolgus macaques by lumbar intrathecal injection repress UBE3A-AS and reactivate the expression of the paternal UBE3A allele throughout the CNS. These findings support the advancement of this investigational molecular therapy for Angelman syndrome into clinical development (ClinicalTrials.gov, NCT04259281).
Collapse
Affiliation(s)
- Scott V Dindot
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA
- GeneTx Biotherapeutics LLC, Sarasota, FL 34233, USA
- Research Department, Ultragenyx Pharmaceutical, Novato, CA 94949, USA
| | - Sarah Christian
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | - Annalise Schlafer
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Johnathan Ballard
- Texas A&M Institute for Genomic Medicine (TIGM), Texas A&M University, College Station, TX 77843, USA
| | - Kamelia Radeva
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Ruth Robinson
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Luke Myers
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Thomas Jepp
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Hillary Shaheen
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Paul Hillman
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Kranti Konganti
- Texas A&M University Institute for Genome Sciences and Society (TIGSS), Texas A&M University, College Station, TX 77843, USA
| | - Andrew Hillhouse
- Texas A&M University Institute for Genome Sciences and Society (TIGSS), Texas A&M University, College Station, TX 77843, USA
| | - Kevin R Bredemeyer
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | - Julie Douville
- Charles River Laboratories, Montreal, Senneville, Quebec H9X 1C1, Canada
| | | | | |
Collapse
|
12
|
Punt AM, Judson MC, Sidorov MS, Williams BN, Johnson NS, Belder S, den Hertog D, Davis CR, Feygin MS, Lang PF, Jolfaei MA, Curran PJ, van IJcken WF, Elgersma Y, Philpot BD. Molecular and behavioral consequences of Ube3a gene overdosage in mice. JCI Insight 2022; 7:e158953. [PMID: 36134658 PMCID: PMC9675564 DOI: 10.1172/jci.insight.158953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022] Open
Abstract
Chromosome 15q11.2-q13.1 duplication syndrome (Dup15q syndrome) is a severe neurodevelopmental disorder characterized by intellectual disability, impaired motor coordination, and autism spectrum disorder. Chromosomal multiplication of the UBE3A gene is presumed to be the primary driver of Dup15q pathophysiology, given that UBE3A exhibits maternal monoallelic expression in neurons and that maternal duplications typically yield far more severe neurodevelopmental outcomes than paternal duplications. However, studies into the pathogenic effects of UBE3A overexpression in mice have yielded conflicting results. Here, we investigated the neurodevelopmental impact of Ube3a gene overdosage using bacterial artificial chromosome-based transgenic mouse models (Ube3aOE) that recapitulate the increases in Ube3a copy number most often observed in Dup15q. In contrast to previously published Ube3a overexpression models, Ube3aOE mice were indistinguishable from wild-type controls on a number of molecular and behavioral measures, despite suffering increased mortality when challenged with seizures, a phenotype reminiscent of sudden unexpected death in epilepsy. Collectively, our data support a model wherein pathogenic synergy between UBE3A and other overexpressed 15q11.2-q13.1 genes is required for full penetrance of Dup15q syndrome phenotypes.
Collapse
Affiliation(s)
- A. Mattijs Punt
- Department of Clinical Genetics and Department of Neuroscience and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Matthew C. Judson
- Neuroscience Center, Department of Cell Biology and Physiology, and the Carolina Institute for Developmental Disabilities and
| | - Michael S. Sidorov
- Neuroscience Center, Department of Cell Biology and Physiology, and the Carolina Institute for Developmental Disabilities and
| | - Brittany N. Williams
- Neuroscience Center, Department of Cell Biology and Physiology, and the Carolina Institute for Developmental Disabilities and
| | - Naomi S. Johnson
- Neuroscience Center, Department of Cell Biology and Physiology, and the Carolina Institute for Developmental Disabilities and
| | - Sabine Belder
- Department of Clinical Genetics and Department of Neuroscience and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Dion den Hertog
- Department of Clinical Genetics and Department of Neuroscience and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Courtney R. Davis
- Neuroscience Center, Department of Cell Biology and Physiology, and the Carolina Institute for Developmental Disabilities and
| | - Maximillian S. Feygin
- Neuroscience Center, Department of Cell Biology and Physiology, and the Carolina Institute for Developmental Disabilities and
| | - Patrick F. Lang
- Neuroscience Center, Department of Cell Biology and Physiology, and the Carolina Institute for Developmental Disabilities and
| | - Mehrnoush Aghadavoud Jolfaei
- Department of Clinical Genetics and Department of Neuroscience and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Patrick J. Curran
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Ype Elgersma
- Department of Clinical Genetics and Department of Neuroscience and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Benjamin D. Philpot
- Neuroscience Center, Department of Cell Biology and Physiology, and the Carolina Institute for Developmental Disabilities and
| |
Collapse
|
13
|
Rosenberg AGW, Wellink CM, Tellez Garcia JM, Pellikaan K, Van Abswoude DH, Davidse K, Van Zutven LJCM, Brüggenwirth HT, Resnick JL, Van der Lely AJ, De Graaff LCG. Health Problems in Adults with Prader-Willi Syndrome of Different Genetic Subtypes: Cohort Study, Meta-Analysis and Review of the Literature. J Clin Med 2022; 11:jcm11144033. [PMID: 35887798 PMCID: PMC9323859 DOI: 10.3390/jcm11144033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
Prader−Willi syndrome (PWS) is a complex, rare genetic disorder caused by a loss of expression of paternally expressed genes on chromosome 15q11.2-q13. The most common underlying genotypes are paternal deletion (DEL) and maternal uniparental disomy (mUPD). DELs can be subdivided into type 1 (DEL-1) and (smaller) type 2 deletions (DEL-2). Most research has focused on behavioral, cognitive and psychological differences between the different genotypes. However, little is known about physical health problems in relation to genetic subtypes. In this cross-sectional study, we compare physical health problems and other clinical features among adults with PWS caused by DEL (N = 65, 12 DEL-1, 27 DEL-2) and mUPD (N = 65). A meta-analysis, including our own data, showed that BMI was 2.79 kg/m2 higher in adults with a DEL (p = 0.001). There were no significant differences between DEL-1 and DEL-2. Scoliosis was more prevalent among adults with a DEL (80% vs. 58%; p = 0.04). Psychotic episodes were more prevalent among adults with an mUPD (44% vs. 9%; p < 0.001). In conclusion, there were no significant differences in physical health outcomes between the genetic subtypes, apart from scoliosis and BMI. The differences in health problems, therefore, mainly apply to the psychological domain.
Collapse
Affiliation(s)
- Anna G. W. Rosenberg
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (C.M.W.); (J.M.T.G.); (K.P.); (D.H.V.A.); (K.D.); (A.J.V.d.L.)
- Dutch Center of Reference for Prader–Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Charlotte M. Wellink
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (C.M.W.); (J.M.T.G.); (K.P.); (D.H.V.A.); (K.D.); (A.J.V.d.L.)
| | - Juan M. Tellez Garcia
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (C.M.W.); (J.M.T.G.); (K.P.); (D.H.V.A.); (K.D.); (A.J.V.d.L.)
| | - Karlijn Pellikaan
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (C.M.W.); (J.M.T.G.); (K.P.); (D.H.V.A.); (K.D.); (A.J.V.d.L.)
- Dutch Center of Reference for Prader–Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Denise H. Van Abswoude
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (C.M.W.); (J.M.T.G.); (K.P.); (D.H.V.A.); (K.D.); (A.J.V.d.L.)
- Dutch Center of Reference for Prader–Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Kirsten Davidse
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (C.M.W.); (J.M.T.G.); (K.P.); (D.H.V.A.); (K.D.); (A.J.V.d.L.)
- Dutch Center of Reference for Prader–Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Laura J. C. M. Van Zutven
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (L.J.C.M.V.Z.); (H.T.B.)
| | - Hennie T. Brüggenwirth
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (L.J.C.M.V.Z.); (H.T.B.)
| | - James L. Resnick
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Aart J. Van der Lely
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (C.M.W.); (J.M.T.G.); (K.P.); (D.H.V.A.); (K.D.); (A.J.V.d.L.)
- ENDO-ERN, European Reference Network on Rare Endocrine Conditions
| | - Laura C. G. De Graaff
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (C.M.W.); (J.M.T.G.); (K.P.); (D.H.V.A.); (K.D.); (A.J.V.d.L.)
- Dutch Center of Reference for Prader–Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Center for Adults with Rare Genetic Syndromes, Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- ENDO-ERN, European Reference Network on Rare Endocrine Conditions
- Correspondence: ; Tel.: +31-618-843-010
| |
Collapse
|
14
|
Lim ET, Chan Y, Dawes P, Guo X, Erdin S, Tai DJC, Liu S, Reichert JM, Burns MJ, Chan YK, Chiang JJ, Meyer K, Zhang X, Walsh CA, Yankner BA, Raychaudhuri S, Hirschhorn JN, Gusella JF, Talkowski ME, Church GM. Orgo-Seq integrates single-cell and bulk transcriptomic data to identify cell type specific-driver genes associated with autism spectrum disorder. Nat Commun 2022; 13:3243. [PMID: 35688811 PMCID: PMC9187732 DOI: 10.1038/s41467-022-30968-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 05/19/2022] [Indexed: 12/27/2022] Open
Abstract
Cerebral organoids can be used to gain insights into cell type specific processes perturbed by genetic variants associated with neuropsychiatric disorders. However, robust and scalable phenotyping of organoids remains challenging. Here, we perform RNA sequencing on 71 samples comprising 1,420 cerebral organoids from 25 donors, and describe a framework (Orgo-Seq) to integrate bulk RNA and single-cell RNA sequence data. We apply Orgo-Seq to 16p11.2 deletions and 15q11-13 duplications, two loci associated with autism spectrum disorder, to identify immature neurons and intermediate progenitor cells as critical cell types for 16p11.2 deletions. We further applied Orgo-Seq to identify cell type-specific driver genes. Our work presents a quantitative phenotyping framework to integrate multi-transcriptomic datasets for the identification of cell types and cell type-specific co-expressed driver genes associated with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Elaine T Lim
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA. .,Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA. .,NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA. .,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| | - Yingleong Chan
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.,Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.,NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Pepper Dawes
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.,Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.,NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Xiaoge Guo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.,Wyss Institute for Biologically Inspired Engineerin, Harvard University, Boston, MA, 02115, USA
| | - Serkan Erdin
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA
| | - Derek J C Tai
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Songlei Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.,Wyss Institute for Biologically Inspired Engineerin, Harvard University, Boston, MA, 02115, USA
| | - Julia M Reichert
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.,Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.,NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Mannix J Burns
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.,Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.,NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Ying Kai Chan
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.,Wyss Institute for Biologically Inspired Engineerin, Harvard University, Boston, MA, 02115, USA
| | - Jessica J Chiang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.,Wyss Institute for Biologically Inspired Engineerin, Harvard University, Boston, MA, 02115, USA
| | - Katharina Meyer
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaochang Zhang
- Department of Human Genetics, The University of Chicago, Chicago, IL, 60637, USA.,The Grossman Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Christopher A Walsh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA.,Howard Hughes Medical Institute, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.,Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Bruce A Yankner
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Soumya Raychaudhuri
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA.,Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Division of Rheumatology and Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Centre for Genetics and Genomics Versus Arthritis, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Joel N Hirschhorn
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA.,Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.,Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, 02115, USA
| | - James F Gusella
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.,Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Michael E Talkowski
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02115, USA
| | - George M Church
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA. .,Wyss Institute for Biologically Inspired Engineerin, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Mishra A, Prabha PK, Singla R, Kaur G, Sharma AR, Joshi R, Suroy B, Medhi B. Epigenetic Interface of Autism Spectrum Disorders (ASDs): Implications of Chromosome 15q11-q13 Segment. ACS Chem Neurosci 2022; 13:1684-1696. [PMID: 35635007 DOI: 10.1021/acschemneuro.2c00060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorders (ASDs) are multifactorial in nature and include both genetic and environmental factors. The increasing evidence advocates an important role of epigenetics in ASD etiology. One of the most common forms of epigenetic changes observed in the case of neurodevelopmental disorders is imprinting which is tightly regulated by developmental and tissue-specific mechanisms. Interestingly, many of these disorders that demonstrate autism-like phenotypes at varying degrees have found involvement of chromosome 15q11-q13 segment. Numerous studies demonstrate occurrence of ASD in the presence of chromosomal abnormalities located mainly in Chr15q11-q13 region. Several plausible candidate genes associated with ASD are in this chromosomal segment, including gamma aminobutyric acid A (GABAA) receptor genes GABRB3, GABRA5 and GABRG3, UBE3A, ATP 10A, MKRN3, ZNF, MAGEL2, Necdin (NDN), and SNRPN. The main objective of this review is to highlight the contribution of epigenetic modulations in chromosome 15q11-q13 segment toward the genetic etiology and pathophysiology of ASD. The present review reports the abnormalities in epigenetic regulation on genes and genomic regions located on chromosome 15 in relation to either syndromic (15q11-q13 maternal duplication) or nonsyndromic forms of ASD. Furthermore, studies reviewed in this article demonstrate conditions in which epigenetic dysregulation has been found to be a pathological factor for ASD development, thereby supporting a role for epigenetics in the multifactorial etiologies of ASD. Also, on the basis of the evidence found so far, we strongly emphasize the need to develop future therapeutic strategies as well as screening procedures for ASD that target mechanisms involving genes located on the chromosomal 15q11-q13 segment.
Collapse
Affiliation(s)
- Abhishek Mishra
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Praisy K Prabha
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rubal Singla
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Gurjeet Kaur
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Amit Raj Sharma
- Dept. of Neurology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rupa Joshi
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Benjamin Suroy
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Bikash Medhi
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
16
|
Zhang CY, Xiao X, Zhang Z, Hu Z, Li M. An alternative splicing hypothesis for neuropathology of schizophrenia: evidence from studies on historical candidate genes and multi-omics data. Mol Psychiatry 2022; 27:95-112. [PMID: 33686213 DOI: 10.1038/s41380-021-01037-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 01/31/2023]
Abstract
Alternative splicing of schizophrenia risk genes, such as DRD2, GRM3, and DISC1, has been extensively described. Nevertheless, the alternative splicing characteristics of the growing number of schizophrenia risk genes identified through genetic analyses remain relatively opaque. Recently, transcriptomic analyses in human brains based on short-read RNA-sequencing have discovered many "local splicing" events (e.g., exon skipping junctions) associated with genetic risk of schizophrenia, and further molecular characterizations have identified novel spliced isoforms, such as AS3MTd2d3 and ZNF804AE3E4. In addition, long-read sequencing analyses of schizophrenia risk genes (e.g., CACNA1C and NRXN1) have revealed multiple previously unannotated brain-abundant isoforms with therapeutic potentials, and functional analyses of KCNH2-3.1 and Ube3a1 have provided examples for investigating such spliced isoforms in vitro and in vivo. These findings suggest that alternative splicing may be an essential molecular mechanism underlying genetic risk of schizophrenia, however, the incomplete annotations of human brain transcriptomes might have limited our understanding of schizophrenia pathogenesis, and further efforts to elucidate these transcriptional characteristics are urgently needed to gain insights into the illness-correlated brain physiology and pathology as well as to translate genetic discoveries into novel therapeutic targets.
Collapse
Affiliation(s)
- Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhonghua Hu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Eye Center of Xiangya Hospital and Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
17
|
Weston KP, Gao X, Zhao J, Kim KS, Maloney SE, Gotoff J, Parikh S, Leu YC, Wu KP, Shinawi M, Steimel JP, Harrison JS, Yi JJ. Identification of disease-linked hyperactivating mutations in UBE3A through large-scale functional variant analysis. Nat Commun 2021; 12:6809. [PMID: 34815418 PMCID: PMC8635412 DOI: 10.1038/s41467-021-27156-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/01/2021] [Indexed: 12/03/2022] Open
Abstract
The mechanisms that underlie the extensive phenotypic diversity in genetic disorders are poorly understood. Here, we develop a large-scale assay to characterize the functional valence (gain or loss-of-function) of missense variants identified in UBE3A, the gene whose loss-of-function causes the neurodevelopmental disorder Angelman syndrome. We identify numerous gain-of-function variants including a hyperactivating Q588E mutation that strikingly increases UBE3A activity above wild-type UBE3A levels. Mice carrying the Q588E mutation exhibit aberrant early-life motor and communication deficits, and individuals possessing hyperactivating UBE3A variants exhibit affected phenotypes that are distinguishable from Angelman syndrome. Additional structure-function analysis reveals that Q588 forms a regulatory site in UBE3A that is conserved among HECT domain ubiquitin ligases and perturbed in various neurodevelopmental disorders. Together, our study indicates that excessive UBE3A activity increases the risk for neurodevelopmental pathology and suggests that functional variant analysis can help delineate mechanistic subtypes in monogenic disorders. UBE3A gene dysregulation is associated with neurodevelopmental disorders, but predicting the function of UBE3A variants remains difficult. The authors use a high-throughput assay to categorize variants by functional activity, and show that UBE3A hyperactivity increases the risk of neurodevelopmental disease.
Collapse
Affiliation(s)
- Kellan P Weston
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiaoyi Gao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jinghan Zhao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kwang-Soo Kim
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jill Gotoff
- Department of Pediatrics, Geisinger Medical Center, Danville, PA, 17822, USA
| | - Sumit Parikh
- Department of Neurogenetics, Neurosciences Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Yen-Chen Leu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joshua P Steimel
- Deparment of Mechanical Engineering, University of the Pacific, Stockton, CA, 95211, USA
| | - Joseph S Harrison
- Department of Chemistry, University of the Pacific, Stockton, CA, 95211, USA
| | - Jason J Yi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
18
|
Judson MC, Shyng C, Simon JM, Davis CR, Punt AM, Salmon MT, Miller NW, Ritola KD, Elgersma Y, Amaral DG, Gray SJ, Philpot BD. Dual-isoform hUBE3A gene transfer improves behavioral and seizure outcomes in Angelman syndrome model mice. JCI Insight 2021; 6:144712. [PMID: 34676830 PMCID: PMC8564914 DOI: 10.1172/jci.insight.144712] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 09/02/2021] [Indexed: 12/23/2022] Open
Abstract
Loss of the maternal UBE3A allele causes Angelman syndrome (AS), a debilitating neurodevelopmental disorder. Here, we devised an AS treatment strategy based on reinstating dual-isoform expression of human UBE3A (hUBE3A) in the developing brain. Kozak sequence engineering of our codon-optimized vector (hUBE3Aopt) enabled translation of both short and long hUBE3A protein isoforms at a near-endogenous 3:1 (short/long) ratio, a feature that could help to support optimal therapeutic outcomes. To model widespread brain delivery and early postnatal onset of hUBE3A expression, we packaged the hUBE3Aopt vector into PHP.B capsids and performed intracerebroventricular injections in neonates. This treatment significantly improved motor learning and innate behaviors in AS mice, and it rendered them resilient to epileptogenesis and associated hippocampal neuropathologies induced by seizure kindling. hUBE3A overexpression occurred frequently in the hippocampus but was uncommon in the neocortex and other major brain structures; furthermore, it did not correlate with behavioral performance. Our results demonstrate the feasibility, tolerability, and therapeutic potential for dual-isoform hUBE3A gene transfer in the treatment of AS.
Collapse
Affiliation(s)
- Matthew C Judson
- Neuroscience Center.,Department of Cell Biology and Physiology.,Carolina Institute for Developmental Disabilities
| | - Charles Shyng
- Carolina Institute for Developmental Disabilities.,Gene Therapy Center, and
| | - Jeremy M Simon
- Neuroscience Center.,Carolina Institute for Developmental Disabilities.,Department of Genetics, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | | | - A Mattijs Punt
- Department of Clinical Genetics and.,Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Noah W Miller
- Neuroscience Center.,Department of Cell Biology and Physiology
| | - Kimberly D Ritola
- Neuroscience Center.,Department of Pharmacology, UNC, Chapel Hill, North Carolina, USA.,Scientific Operations Manager-Viral Tools, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Ype Elgersma
- Department of Clinical Genetics and.,Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - David G Amaral
- Department of Psychiatry and Behavioral Sciences, MIND Institute, and.,California National Primate Research Center, University of California, Davis, California, USA
| | - Steven J Gray
- Gene Therapy Center, and.,Department of Pediatrics and.,Eugene McDermott Center for Human Growth and Development, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Benjamin D Philpot
- Neuroscience Center.,Department of Cell Biology and Physiology.,Carolina Institute for Developmental Disabilities
| |
Collapse
|
19
|
Sinnett SE, Boyle E, Lyons C, Gray SJ. Engineered microRNA-based regulatory element permits safe high-dose miniMECP2 gene therapy in Rett mice. Brain 2021; 144:3005-3019. [PMID: 33950254 DOI: 10.1093/brain/awab182] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/12/2022] Open
Abstract
MECP2 gene transfer has been shown to extend the survival of Mecp2-/y knockout (KO) mice modeling Rett syndrome (RTT), an X-linked neurodevelopmental disorder. However, controlling deleterious overexpression of MeCP2 remains the critical unmet obstacle towards a safe and effective gene therapy approach for RTT. A recently developed truncated miniMECP2 gene has also been shown to be therapeutic after AAV9-mediated gene transfer in KO neonates. We show that AAV9/miniMECP2 has a similar dose-dependent toxicity profile to that of a published second-generation AAV9/MECP2 vector after treatment in adolescent mice. To overcome that toxicity, we developed a risk-driven viral genome design strategy rooted in high-throughput profiling and genome mining to rationally develop a compact, synthetic miRNA target panel (miR-Responsive Auto-Regulatory Element, "miRARE") to minimize the possibility of miniMECP2 transgene overexpression in the context of RTT gene therapy. The goal of miRARE is to have a built-in inhibitory element responsive to MeCP2 overexpression. The data provided herein show that insertion of miRARE into the miniMECP2 gene expression cassette greatly improved the safety of miniMECP2 gene transfer without compromising efficacy. Importantly, this built-in regulation system does not require any additional exogenous drug application, and no miRNAs are expressed from the transgene cassette. Although broad applications of miRARE have yet to be determined, the design of miRARE suggests a potential use in gene therapy approaches for other dose-sensitive genes.
Collapse
Affiliation(s)
- Sarah E Sinnett
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Emily Boyle
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Christopher Lyons
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Steven J Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
20
|
Molecular Evolution, Neurodevelopmental Roles and Clinical Significance of HECT-Type UBE3 E3 Ubiquitin Ligases. Cells 2020; 9:cells9112455. [PMID: 33182779 PMCID: PMC7697756 DOI: 10.3390/cells9112455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitination belongs to the best characterized pathways of protein degradation in the cell; however, our current knowledge on its physiological consequences is just the tip of an iceberg. The divergence of enzymatic executors of ubiquitination led to some 600–700 E3 ubiquitin ligases embedded in the human genome. Notably, mutations in around 13% of these genes are causative of severe neurological diseases. Despite this, molecular and cellular context of ubiquitination remains poorly characterized, especially in the developing brain. In this review article, we summarize recent findings on brain-expressed HECT-type E3 UBE3 ligases and their murine orthologues, comprising Angelman syndrome UBE3A, Kaufman oculocerebrofacial syndrome UBE3B and autism spectrum disorder-associated UBE3C. We summarize evolutionary emergence of three UBE3 genes, the biochemistry of UBE3 enzymes, their biology and clinical relevance in brain disorders. Particularly, we highlight that uninterrupted action of UBE3 ligases is a sine qua non for cortical circuit assembly and higher cognitive functions of the neocortex.
Collapse
|
21
|
Baker EK, Butler MG, Hartin SN, Ling L, Bui M, Francis D, Rogers C, Field MJ, Slee J, Gamage D, Amor DJ, Godler DE. Relationships between UBE3A and SNORD116 expression and features of autism in chromosome 15 imprinting disorders. Transl Psychiatry 2020; 10:362. [PMID: 33116122 PMCID: PMC7595031 DOI: 10.1038/s41398-020-01034-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/20/2020] [Accepted: 10/02/2020] [Indexed: 12/21/2022] Open
Abstract
Chromosome 15 (C15) imprinting disorders including Prader-Willi (PWS), Angelman (AS) and chromosome 15 duplication (Dup15q) syndromes are severe neurodevelopmental disorders caused by abnormal expression of genes from the 15q11-q13 region, associated with abnormal DNA methylation and/or copy number changes. This study compared changes in mRNA levels of UBE3A and SNORD116 located within the 15q11-q13 region between these disorders and their subtypes and related these to the clinical phenotypes. The study cohort included 58 participants affected with a C15 imprinting disorder (PWS = 27, AS = 21, Dup15q = 10) and 20 typically developing controls. Semi-quantitative analysis of mRNA from peripheral blood mononuclear cells (PBMCs) was performed using reverse transcription droplet digital polymerase chain reaction (PCR) for UBE3A and SNORD116 normalised to a panel of internal control genes determined using the geNorm approach. Participants completed an intellectual/developmental functioning assessment and the Autism Diagnostic Observation Schedule-2nd Edition. The Dup15q group was the only condition with significantly increased UBE3A mRNA levels when compared to the control group (p < 0.001). Both the AS and Dup15q groups also had significantly elevated SNORD116 mRNA levels compared to controls (AS: p < 0.0001; Dup15q: p = 0.002). Both UBE3A and SNORD116 mRNA levels were positively correlated with all developmental functioning scores in the deletion AS group (p < 0.001), and autism features (p < 0.001) in the non-deletion PWS group. The findings suggest presence of novel interactions between expression of UBE3A and SNORD116 in PBMCs and brain specific processes underlying motor and language impairments and autism features in these disorders.
Collapse
Affiliation(s)
- Emma K Baker
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Merlin G Butler
- Department of Psychiatry, Behavioral Sciences and Pediatrics, University of Kansas Medical Centre, Kansas City, Kansas, USA
| | - Samantha N Hartin
- Department of Psychiatry, Behavioral Sciences and Pediatrics, University of Kansas Medical Centre, Kansas City, Kansas, USA
| | - Ling Ling
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - David Francis
- Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Carolyn Rogers
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, New South Wales, Australia
| | - Michael J Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, New South Wales, Australia
| | - Jennie Slee
- Department of Health, Government of Western Australia, Genetic Services of Western Australia, Perth, Western Australia, Australia
| | - Dinusha Gamage
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - David J Amor
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - David E Godler
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
22
|
Javed S, Selliah T, Lee YJ, Huang WH. Dosage-sensitive genes in autism spectrum disorders: From neurobiology to therapy. Neurosci Biobehav Rev 2020; 118:538-567. [PMID: 32858083 DOI: 10.1016/j.neubiorev.2020.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/26/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of heterogenous neurodevelopmental disorders affecting 1 in 59 children. Syndromic ASDs are commonly associated with chromosomal rearrangements or dosage imbalance involving a single gene. Many of these genes are dosage-sensitive and regulate transcription, protein homeostasis, and synaptic function in the brain. Despite vastly different molecular perturbations, syndromic ASDs share core symptoms including social dysfunction and repetitive behavior. However, each ASD subtype has a unique pathogenic mechanism and combination of comorbidities that require individual attention. We have learned a great deal about how these dosage-sensitive genes control brain development and behaviors from genetically-engineered mice. Here we describe the clinical features of eight monogenic neurodevelopmental disorders caused by dosage imbalance of four genes, as well as recent advances in using genetic mouse models to understand their pathogenic mechanisms and develop intervention strategies. We propose that applying newly developed quantitative molecular and neuroscience technologies will advance our understanding of the unique neurobiology of each disorder and enable the development of personalized therapy.
Collapse
Affiliation(s)
- Sehrish Javed
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Tharushan Selliah
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yu-Ju Lee
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Wei-Hsiang Huang
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
23
|
Luza S, Opazo CM, Bousman CA, Pantelis C, Bush AI, Everall IP. The ubiquitin proteasome system and schizophrenia. Lancet Psychiatry 2020; 7:528-537. [PMID: 32061320 DOI: 10.1016/s2215-0366(19)30520-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
The ubiquitin-proteasome system is a master regulator of neural development and the maintenance of brain structure and function. It influences neurogenesis, synaptogenesis, and neurotransmission by determining the localisation, interaction, and turnover of scaffolding, presynaptic, and postsynaptic proteins. Moreover, ubiquitin-proteasome system signalling transduces epigenetic changes in neurons independently of protein degradation and, as such, dysfunction of components and substrates of this system has been linked to a broad range of brain conditions. Although links between ubiquitin-proteasome system dysfunction and neurodegenerative disorders have been known for some time, only recently have similar links emerged for neurodevelopmental disorders, such as schizophrenia. Here, we review the components of the ubiquitin-proteasome system that are reported to be dysregulated in schizophrenia, and discuss specific molecular changes to these components that might, in part, explain the complex causes of this mental disorder.
Collapse
Affiliation(s)
- Sandra Luza
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia
| | - Carlos M Opazo
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia
| | - Chad A Bousman
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; The Cooperative Research Centre for Mental Health, Carlton South, VIC, Australia; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Departments of Medical Genetics, Psychiatry, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; University of Calgary, Calgary, AB, Canada
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; The Cooperative Research Centre for Mental Health, Carlton South, VIC, Australia; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; NorthWestern Mental Health, Melbourne, VIC, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia.
| | - Ian P Everall
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia; The Cooperative Research Centre for Mental Health, Carlton South, VIC, Australia; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
24
|
Abstract
Imprinting disorders are a group of congenital diseases caused by dysregulation of genomic imprinting, affecting prenatal and postnatal growth, neurocognitive development, metabolism and cancer predisposition. Aberrant expression of imprinted genes can be achieved through different mechanisms, classified into epigenetic - if not involving DNA sequence change - or genetic in the case of altered genomic sequence. Despite the underlying mechanism, the phenotype depends on the parental allele affected and opposite phenotypes may result depending on the involvement of the maternal or the paternal chromosome. Imprinting disorders are largely underdiagnosed because of the broad range of clinical signs, the overlap of presentation among different disorders, the presence of mild phenotypes, the mitigation of the phenotype with age and the limited availability of molecular techniques employed for diagnosis. This review briefly illustrates the currently known human imprinting disorders, highlighting endocrinological aspects of pediatric interest.
Collapse
Affiliation(s)
- Diana Carli
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy
| | - Evelise Riberi
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy
| | | | - Alessandro Mussa
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy,* Address for Correspondence: University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy Phone: +39-011-313-1985 E-mail:
| |
Collapse
|
25
|
Aguilera-Albesa S, de la Hoz AB, Ibarluzea N, Ordóñez-Castillo AR, Busto-Crespo O, Villate O, Ibiricu-Yanguas MA, Yoldi-Petri ME, García de Gurtubay I, Perez de Nanclares G, Pereda A, Tejada MI. Hereditary Spastic Paraplegia and Intellectual Disability: Clinicogenetic Lessons From a Family Suggesting a Dual Genetics Diagnosis. Front Neurol 2020; 11:41. [PMID: 32117010 PMCID: PMC7033498 DOI: 10.3389/fneur.2020.00041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/13/2020] [Indexed: 11/14/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a heterogeneous group of genetic disorders with spastic paraparesis as the main clinical feature. Complex forms may co-occur with other motor, sensory, and cognitive impairment. A growing number of loci and genes are being identified, but still more than 50% of the patients remain without molecular diagnosis. We present a Spanish family with autosomal dominant HSP and intellectual disability (ID) in which we found a possible dual genetic diagnosis with incomplete penetrance and variable expressivity in the parents and three siblings: a heterozygous duplication of 15q11.2–q13.1 found by array CGH and a novel missense heterozygous change in REEP1 [c.73A>G; p.(Lys25Glu)] found by whole exome sequencing (WES). Following the standard genetic diagnosis approach in ID, array CGH analysis was first performed in both brothers affected by spastic paraparesis and ID from school age, and a heterozygous duplication of 15q11.2–q13.1 was found. Subsequently, the duplication was also found in the healthy mother and in the sister, who presented attention deficit/hyperactivity disorder (ADHD) symptoms from school age and pes cavus with mild pyramidal signs at 22 years of age. Methylation analysis revealed that the three siblings carried the duplication unmethylated in the maternal allele, whereas their mother harbored it methylated in her paternal allele. Functional studies revealed an overexpression of UBE3A and ATP10A in the three siblings, and the slightest cognitive phenotype of the sister seems to be related to a lower expression of ATP10A. Later, searching for the cause of HSP, WES was performed revealing the missense heterozygous variant in REEP1 in all three siblings and the father, who presented subtle pyramidal signs in the lower limbs as well as the sister. Our findings reinforce the association of maternally derived UBE3A overexpression with neurodevelopmental disorders and support that a spectrum of clinical severity is present within families. They also reveal that a dual genetic diagnosis is possible in patients with presumed complex forms of HSP and cognitive impairment.
Collapse
Affiliation(s)
- Sergio Aguilera-Albesa
- Paediatric Neurology Unit, Department of Paediatrics, Navarra Health Service Hospital, Pamplona, Spain.,Navarrabiomed Health Research Institute, Pamplona, Spain
| | - Ana Belén de la Hoz
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Clinical Group Affiliated With the Centre for Biomedical Research on Rare Diseases (CIBERER), Valencia, Spain
| | - Nekane Ibarluzea
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Clinical Group Affiliated With the Centre for Biomedical Research on Rare Diseases (CIBERER), Valencia, Spain
| | | | - Olivia Busto-Crespo
- Department of Physical Medicine and Rehabilitation, Navarra Health Service, Pamplona, Spain
| | - Olatz Villate
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Clinical Group Affiliated With the Centre for Biomedical Research on Rare Diseases (CIBERER), Valencia, Spain.,Molecular Genetics Laboratory, Genetics Service, Cruces University Hospital, Osakidetza Basque Health Service, Barakaldo, Spain
| | - María Asunción Ibiricu-Yanguas
- Navarrabiomed Health Research Institute, Pamplona, Spain.,Department of Neurophysiology, Navarra Health Service Hospital, Pamplona, Spain
| | - María E Yoldi-Petri
- Paediatric Neurology Unit, Department of Paediatrics, Navarra Health Service Hospital, Pamplona, Spain.,Navarrabiomed Health Research Institute, Pamplona, Spain
| | - Iñaki García de Gurtubay
- Navarrabiomed Health Research Institute, Pamplona, Spain.,Department of Neurophysiology, Navarra Health Service Hospital, Pamplona, Spain
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Arrate Pereda
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain
| | - María Isabel Tejada
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Clinical Group Affiliated With the Centre for Biomedical Research on Rare Diseases (CIBERER), Valencia, Spain.,Molecular Genetics Laboratory, Genetics Service, Cruces University Hospital, Osakidetza Basque Health Service, Barakaldo, Spain
| |
Collapse
|
26
|
|
27
|
Zylka MJ. Prenatal treatment path for angelman syndrome and other neurodevelopmental disorders. Autism Res 2020; 13:11-17. [PMID: 31490639 PMCID: PMC7968581 DOI: 10.1002/aur.2203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Angelman syndrome (AS) is a rare neurodevelopmental disorder caused by mutation or deletion of the maternally inherited UBE3A allele. These pathogenic mutations lead to loss of maternal UBE3A expression in neurons. Antisense oligonucleotides and gene therapies are in development, which activate the intact but epigenetically silenced paternal UBE3A allele. Preclinical studies indicate that treating during the prenatal period could greatly reduce the severity of symptoms or prevent AS from developing. Genetic tests can detect the chromosome 15q11-q13 deletion that is the most common cause of AS. New, highly sensitive noninvasive prenatal tests that take advantage of single-cell genome sequencing technologies are expected to enter the clinic in the coming years and make early genetic diagnosis of AS more common. Efforts are needed to identify fetuses and newborns with maternal 15q11-q13 deletions and to phenotype these babies relative to neurotypical controls. Clinical and parent observations suggest AS symptoms are detectable in infants, including reports of problems with feeding and motor function. Quantitative phenotypes in the 0- to 1-year age range will permit a more rapid assessment of efficacy when future treatments are administered prenatally or shortly after birth. Although prenatal therapies are currently not available for AS, prenatal testing combined with prenatal treatment has the potential to revolutionize how clinicians detect and treat babies before they are symptomatic. This pioneering prenatal treatment path for AS will lay the foundation for treating other syndromic neurodevelopmental disorders. Autism Res 2020, 13: 11-17. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Prenatal treatment could benefit expectant parents whose babies test positive for the chromosome microdeletion that causes Angelman syndrome (AS). Prenatal treatment is predicted to have better outcomes than treating after symptoms develop and may even prevent AS altogether. This approach could generally be applied to the treatment of other syndromic neurodevelopmental disorders.
Collapse
Affiliation(s)
- Mark J Zylka
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
28
|
Tonazzini I, Van Woerden GM, Masciullo C, Mientjes EJ, Elgersma Y, Cecchini M. The role of ubiquitin ligase E3A in polarized contact guidance and rescue strategies in UBE3A-deficient hippocampal neurons. Mol Autism 2019; 10:41. [PMID: 31798818 PMCID: PMC6884852 DOI: 10.1186/s13229-019-0293-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/17/2019] [Indexed: 11/10/2022] Open
Abstract
Background Although neuronal extracellular sensing is emerging as crucial for brain wiring and therefore plasticity, little is known about these processes in neurodevelopmental disorders. Ubiquitin protein ligase E3A (UBE3A) plays a key role in neurodevelopment. Lack of UBE3A leads to Angelman syndrome (AS), while its increase is among the most prevalent genetic causes of autism (e.g., Dup15q syndrome). By using microstructured substrates that can induce specific directional stimuli in cells, we previously found deficient topographical contact guidance in AS neurons, which was linked to a dysregulated activation of the focal adhesion pathway. Methods Here, we study axon and dendrite contact guidance and neuronal morphological features of wild-type, AS, and UBE3A-overexpressing neurons (Dup15q autism model) on micrograting substrates, with the aim to clarify the role of UBE3A in neuronal guidance. Results We found that loss of axonal contact guidance is specific for AS neurons while UBE3A overexpression does not affect neuronal directional polarization along microgratings. Deficits at the level of axonal branching, growth cone orientation and actin fiber content, focal adhesion (FA) effectors, and actin fiber-binding proteins were observed in AS neurons. We tested different rescue strategies for restoring correct topographical guidance in AS neurons on microgratings, by either UBE3A protein re-expression or by pharmacological treatments acting on cytoskeleton contractility. Nocodazole, a drug that depolymerizes microtubules and increases cell contractility, rescued AS axonal alignment to the gratings by partially restoring focal adhesion pathway activation. Surprisingly, UBE3A re-expression only resulted in partial rescue of the phenotype. Conclusions We identified a specific in vitro deficit in axonal topographical guidance due selectively to the loss of UBE3A, and we further demonstrate that this defective guidance can be rescued to a certain extent by pharmacological or genetic treatment strategies. Overall, cytoskeleton dynamics emerge as important partners in UBE3A-mediated contact guidance responses. These results support the view that UBE3A-related deficits in early neuronal morphogenesis may lead to defective neuronal connectivity and plasticity.
Collapse
Affiliation(s)
- Ilaria Tonazzini
- Istituto Nanoscienze- Consiglio Nazionale delle Ricerche (CNR) & Scuola Normale Superiore, NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
- Department of Neuroscience, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Wytemaweg 80, 3000 CA Rotterdam, the Netherlands
| | - Geeske M. Van Woerden
- Department of Neuroscience, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Wytemaweg 80, 3000 CA Rotterdam, the Netherlands
| | - Cecilia Masciullo
- Istituto Nanoscienze- Consiglio Nazionale delle Ricerche (CNR) & Scuola Normale Superiore, NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Edwin J. Mientjes
- Department of Neuroscience, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Wytemaweg 80, 3000 CA Rotterdam, the Netherlands
| | - Ype Elgersma
- Department of Neuroscience, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Wytemaweg 80, 3000 CA Rotterdam, the Netherlands
| | - Marco Cecchini
- Istituto Nanoscienze- Consiglio Nazionale delle Ricerche (CNR) & Scuola Normale Superiore, NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
29
|
Association of genes with phenotype in autism spectrum disorder. Aging (Albany NY) 2019; 11:10742-10770. [PMID: 31744938 PMCID: PMC6914398 DOI: 10.18632/aging.102473] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a genetic heterogeneous neurodevelopmental disorder that is characterized by impairments in social interaction and speech development and is accompanied by stereotypical behaviors such as body rocking, hand flapping, spinning objects, sniffing and restricted behaviors. The considerable significance of the genetics associated with autism has led to the identification of many risk genes for ASD used for the probing of ASD specificity and shared cognitive features over the past few decades. Identification of ASD risk genes helps to unravel various genetic variants and signaling pathways which are involved in ASD. This review highlights the role of ASD risk genes in gene transcription and translation regulation processes, as well as neuronal activity modulation, synaptic plasticity, disrupted key biological signaling pathways, and the novel candidate genes that play a significant role in the pathophysiology of ASD. The current emphasis on autism spectrum disorders has generated new opportunities in the field of neuroscience, and further advancements in the identification of different biomarkers, risk genes, and genetic pathways can help in the early diagnosis and development of new clinical and pharmacological treatments for ASD.
Collapse
|
30
|
Sonzogni M, Hakonen J, Bernabé Kleijn M, Silva-Santos S, Judson MC, Philpot BD, van Woerden GM, Elgersma Y. Delayed loss of UBE3A reduces the expression of Angelman syndrome-associated phenotypes. Mol Autism 2019; 10:23. [PMID: 31143434 PMCID: PMC6532248 DOI: 10.1186/s13229-019-0277-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/10/2019] [Indexed: 11/10/2022] Open
Abstract
Background Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by mutations affecting UBE3A gene expression. Previous studies in mice revealed distinct critical periods during neurodevelopment in which reactivation of Ube3a gene expression can prevent the onset of behavioral deficits. Whether UBE3A is required for brain function throughout life is unknown. Here, we address the importance of maintaining UBE3A expression after normal brain development. Findings Using a conditional mouse, we deleted the Ube3a gene at three ages spanning brain maturation. We assessed the consequences of Ube3a gene deletion by testing the mice in behavioral tasks previously shown to produce robust phenotypes in AS model mice. Early embryonic deletion of Ube3a recapitulated all behavioral deficits of AS mice. In contrast, Ube3a gene deletion at 3 or 12 weeks of age did not have a significant effect on most behavioral tasks and did not increase seizure sensitivity. Conclusions Taken together, these results emphasize that UBE3A critically impacts early brain development, but plays a more limited role in adulthood. Our findings provide important considerations for upcoming clinical trials in which UBE3A gene expression is reactivated and suggest that even transient UBE3A reinstatement during a critical window of early development is likely to prevent most adverse Angelman syndrome phenotypes. However, sustained UBE3A expression into adulthood is probably needed for optimal clinical benefit.
Collapse
Affiliation(s)
- Monica Sonzogni
- 1Department of Neuroscience and the ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Johanna Hakonen
- 1Department of Neuroscience and the ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Mireia Bernabé Kleijn
- 1Department of Neuroscience and the ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Sara Silva-Santos
- 1Department of Neuroscience and the ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Matthew C Judson
- 2Neuroscience Center, Department of Cell Biology and Physiology, and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC USA
| | - Benjamin D Philpot
- 2Neuroscience Center, Department of Cell Biology and Physiology, and Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC USA
| | - Geeske M van Woerden
- 1Department of Neuroscience and the ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Ype Elgersma
- 1Department of Neuroscience and the ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
31
|
Salminen I, Read S, Hurd P, Crespi B. Genetic variation of UBE3A is associated with schizotypy in a population of typical individuals. Psychiatry Res 2019; 275:94-99. [PMID: 30897394 DOI: 10.1016/j.psychres.2019.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 01/17/2023]
Abstract
The maternally expressed imprinted gene UBE3A has been implicated in autism, schizophrenia and psychosis. The phenotype of Angelman syndrome, caused by loss of UBE3A expression, involves autism spectrum traits, while Prader-Willi syndrome, where the genotype of maternal disomy increases dosage of UBE3A, shows high penetrance for the development of psychosis. Maternal duplications of the 15q11-q13 chromosome region that overlap the imprinted region also show an association with schizophrenia, further implying a connection between increased dosage of UBE3A and the development of schizophrenia and psychosis. We phenotyped a large population of typical individuals for autism spectrum and schizotypal traits and genotyped them for a set of SNPs in UBE3A. Genetic variation of rs732739, an intronic SNP tagging a large haplotype spanning nearly the entire range of UBE3A, was significantly associated with variation in total schizotypy. Our results provide an independent line of evidence, connecting the imprinted UBE3A gene to the schizophrenia spectrum.
Collapse
Affiliation(s)
- Iiro Salminen
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Silven Read
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Pete Hurd
- Department of Psychology and Centre for Neuroscience, University of Alberta, Edmonton, Canada
| | - Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
32
|
Ramirez J, Lectez B, Osinalde N, Sivá M, Elu N, Aloria K, Procházková M, Perez C, Martínez-Hernández J, Barrio R, Šašková KG, Arizmendi JM, Mayor U. Quantitative proteomics reveals neuronal ubiquitination of Rngo/Ddi1 and several proteasomal subunits by Ube3a, accounting for the complexity of Angelman syndrome. Hum Mol Genet 2019; 27:1955-1971. [PMID: 29788202 DOI: 10.1093/hmg/ddy103] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/19/2018] [Indexed: 01/01/2023] Open
Abstract
Angelman syndrome is a complex neurodevelopmental disorder caused by the lack of function in the brain of a single gene, UBE3A. The E3 ligase coded by this gene is known to build K48-linked ubiquitin chains, a modification historically considered to target substrates for degradation by the proteasome. However, a change in protein abundance is not proof that a candidate UBE3A substrate is indeed ubiquitinated by UBE3A. We have here used an unbiased ubiquitin proteomics approach, the bioUb strategy, to identify 79 proteins that appear more ubiquitinated in the Drosophila photoreceptor cells when Ube3a is over-expressed. We found a significantly high number of those proteins to be proteasomal subunits or proteasome-interacting proteins, suggesting a wide proteasomal perturbation in the brain of Angelman patients. We focused on validating the ubiquitination by Ube3a of Rngo, a proteasomal component conserved from yeast (Ddi1) to humans (DDI1 and DDI2), but yet scarcely characterized. Ube3a-mediated Rngo ubiquitination in fly neurons was confirmed by immunoblotting. Using human neuroblastoma SH-SY5Y cells in culture, we also observed that human DDI1 is ubiquitinated by UBE3A, without being targeted for degradation. The novel observation that DDI1 is expressed in the developing mice brain, with a significant peak at E16.5, strongly suggests that DDI1 has biological functions not yet described that could be of relevance for Angelman syndrome clinical research.
Collapse
Affiliation(s)
- Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Benoit Lectez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Monika Sivá
- Department of Genetics and Microbiology, Charles University, 12843 Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic.,First Faculty of Medicine, Charles University, 12108 Prague, Czech Republic
| | - Nagore Elu
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Kerman Aloria
- Proteomics Core Facility-SGIKER, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Michaela Procházková
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Coralia Perez
- Functional Genomics Unit, CIC bioGUNE, 48160 Derio, Spain
| | - Jose Martínez-Hernández
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Rosa Barrio
- Functional Genomics Unit, CIC bioGUNE, 48160 Derio, Spain
| | - Klára Grantz Šašková
- Department of Genetics and Microbiology, Charles University, 12843 Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Jesus M Arizmendi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
33
|
Abstract
UBE3A is a dual function protein consisting of ubiquitin ligase as well as transcriptional co-activator function. UBE3A gene is imprinted in the brain with preferential maternal-specific expression particularly in the neuron and loss of activity of the maternally inherited UBE3A causes Angelman syndrome (AS), characterized by severe mental retardation, lack of speech, seizures and autistic features. Interestingly, duplication, triplication, or gain-of-function mutations in the UBE3A gene are also linked with autism clinically distinguished by social impairments and stereotyped behaviors. These findings indicate that the expression and activity of UBE3A must be tightly regulated during brain development and UBE3A might be playing a crucial role in controlling synaptic function and plasticity through proteasome-mediated degradation as well as transcriptional regulation of its target proteins. In fact, several recent reports demonstrated the role of UBE3A in the modulation of synaptic function and plasticity. This review focuses on the critical role of UBE3A in regulating the synaptic function and how its altered activity is associated with autism.
Collapse
Affiliation(s)
- Naman Vatsa
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Gurugram, India
| | - Nihar Ranjan Jana
- School of Bioscience, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
34
|
Kühnle S, Martínez-Noël G, Leclere F, Hayes SD, Harper JW, Howley PM. Angelman syndrome-associated point mutations in the Zn 2+-binding N-terminal (AZUL) domain of UBE3A ubiquitin ligase inhibit binding to the proteasome. J Biol Chem 2018; 293:18387-18399. [PMID: 30257870 PMCID: PMC6254356 DOI: 10.1074/jbc.ra118.004653] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/16/2018] [Indexed: 12/26/2022] Open
Abstract
Deregulation of the HECT ubiquitin ligase UBE3A/E6AP has been implicated in Angelman syndrome as well as autism spectrum disorders. We and others have previously identified the 26S proteasome as one of the major UBE3A-interacting protein complexes. Here, we characterize the interaction of UBE3A and the proteasomal subunit PSMD4 (Rpn10/S5a). We map the interaction to the highly conserved Zn2+-binding N-terminal (AZUL) domain of UBE3A, the integrity of which is crucial for binding to PSMD4. Interestingly, two Angelman syndrome point mutations that affect the AZUL domain show an impaired ability to bind PSMD4. Although not affecting the ubiquitin ligase or the estrogen receptor α-mediated transcriptional regulation activities, these AZUL domain mutations prevent UBE3A from stimulating the Wnt/β-catenin signaling pathway. Taken together, our data indicate that impaired binding to the 26S proteasome and consequential deregulation of Wnt/β-catenin signaling might contribute to the functional defect of these mutants in Angelman syndrome.
Collapse
Affiliation(s)
- Simone Kühnle
- From the Departments of Microbiology and Immunobiology and
| | | | | | | | - J Wade Harper
- Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Peter M Howley
- From the Departments of Microbiology and Immunobiology and.
| |
Collapse
|
35
|
Osinalde N, Duarri A, Ramirez J, Barrio R, Perez de Nanclares G, Mayor U. Impaired proteostasis in rare neurological diseases. Semin Cell Dev Biol 2018; 93:164-177. [PMID: 30355526 DOI: 10.1016/j.semcdb.2018.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022]
Abstract
Rare diseases are classified as such when their prevalence is 1:2000 or lower, but even if each of them is so infrequent, altogether more than 300 million people in the world suffer one of the ∼7000 diseases considered as rare. Over 1200 of these disorders are known to affect the brain or other parts of our nervous system, and their symptoms can affect cognition, motor function and/or social interaction of the patients; we refer collectively to them as rare neurological disorders or RNDs. We have focused this review on RNDs known to have compromised protein homeostasis pathways. Proteostasis can be regulated and/or altered by a chain of cellular mechanisms, from protein synthesis and folding, to aggregation and degradation. Overall, we provide a list comprised of above 215 genes responsible for causing more than 170 distinct RNDs, deepening on some representative diseases, including as well a clinical view of how those diseases are diagnosed and dealt with. Additionally, we review existing methodologies for diagnosis and treatment, discussing the potential of specific deubiquitinating enzyme inhibition as a future therapeutic avenue for RNDs.
Collapse
Affiliation(s)
- Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Anna Duarri
- Barcelona Stem Cell Bank, Center of Regenerative Medicine in Barcelona, 08908 Hospitalet de Llobregat, Barcelona, Spain
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Rosa Barrio
- Functional Genomics Unit, CIC bioGUNE, 48160 Derio, Spain
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Alava, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
36
|
Burette AC, Judson MC, Li AN, Chang EF, Seeley WW, Philpot BD, Weinberg RJ. Subcellular organization of UBE3A in human cerebral cortex. Mol Autism 2018; 9:54. [PMID: 30364390 PMCID: PMC6194692 DOI: 10.1186/s13229-018-0238-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/03/2018] [Indexed: 12/04/2022] Open
Abstract
Background Loss of UBE3A causes Angelman syndrome, whereas excess UBE3A activity appears to increase the risk for autism. Despite this powerful association with neurodevelopmental disorders, there is still much to be learned about UBE3A, including its cellular and subcellular organization in the human brain. The issue is important, since UBE3A’s localization is integral to its function. Methods We used light and electron microscopic immunohistochemistry to study the cellular and subcellular distribution of UBE3A in the adult human cerebral cortex. Experiments were performed on multiple tissue sources, but our results focused on optimally preserved material, using surgically resected human temporal cortex of high ultrastructural quality from nine individuals. Results We demonstrate that UBE3A is expressed in both glutamatergic and GABAergic neurons, and to a lesser extent in glial cells. We find that UBE3A in neurons has a non-uniform subcellular distribution. In somata, UBE3A preferentially concentrates in euchromatin-rich domains within the nucleus. Electron microscopy reveals that labeling concentrates in the head and neck of dendritic spines and is excluded from the PSD. Strongest labeling within the neuropil was found in axon terminals. Conclusions By highlighting the subcellular compartments in which UBE3A is likely to function in the human neocortex, our data provide insight into the diverse functional capacities of this E3 ligase. These anatomical data may help to elucidate the role of UBE3A in Angelman syndrome and autism spectrum disorder.
Collapse
Affiliation(s)
- Alain C Burette
- 1Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, 314 Taylor Hall, Campus, Box 7545, Chapel Hill, NC 27599-7545 USA
| | - Matthew C Judson
- 2Department of Cell Biology and Physiology and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Alissa N Li
- 3Department of Neurology, University of California, San Francisco, CA USA.,4Department of Pathology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA USA
| | - Edward F Chang
- 5Department of Neurological Surgery, University of California, 505 Parnassus Avenue, Box 0112, San Francisco, CA 94143-0112 USA
| | - William W Seeley
- 3Department of Neurology, University of California, San Francisco, CA USA.,4Department of Pathology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA USA
| | - Benjamin D Philpot
- 2Department of Cell Biology and Physiology and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599 USA.,6Neuroscience Curriculum, Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Richard J Weinberg
- 2Department of Cell Biology and Physiology and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599 USA
| |
Collapse
|
37
|
Gulyás-Kovács A, Keydar I, Xia E, Fromer M, Hoffman G, Ruderfer D, Sachidanandam R, Chess A. Unperturbed expression bias of imprinted genes in schizophrenia. Nat Commun 2018; 9:2914. [PMID: 30046039 PMCID: PMC6060121 DOI: 10.1038/s41467-018-04960-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/09/2018] [Indexed: 11/09/2022] Open
Abstract
How gene expression correlates with schizophrenia across individuals is beginning to be examined through analyses of RNA-seq from postmortem brains of individuals with disease and control brains. Here we focus on variation in allele-specific expression, following up on the CommonMind Consortium (CMC) RNA-seq experiments of nearly 600 human dorsolateral prefrontal cortex (DLPFC) samples. Analyzing the extent of allelic expression bias-a hallmark of imprinting-we find that the number of imprinted human genes is consistent with lower estimates (≈0.5% of all genes), and thus contradicts much higher estimates. Moreover, the handful of putatively imprinted genes are all in close genomic proximity to known imprinted genes. Joint analysis of the imprinted genes across hundreds of individuals allowed us to establish how allelic bias depends on various factors. We find that age and genetic ancestry have gene-specific, differential effect on allelic bias. In contrast, allelic bias appears to be independent of schizophrenia.
Collapse
Affiliation(s)
- Attila Gulyás-Kovács
- Department of Cell, Developmental and Regenerative Biology, ISMMS, New York, NY, 10029, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, ISMMS, New York, NY, 10029, USA
| | - Ifat Keydar
- Department of Cell, Developmental and Regenerative Biology, ISMMS, New York, NY, 10029, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, ISMMS, New York, NY, 10029, USA
- The Simon And Katya Michaeli Bioinformatics Laboratory For The Research Of The Genome Department of Human Molecular Genetics & Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| | - Eva Xia
- Department of Cell, Developmental and Regenerative Biology, ISMMS, New York, NY, 10029, USA
- Neuroscience Program, The Graduate School of Biomedical Sciences, ISMMS, New York, NY, 10029, USA
| | - Menachem Fromer
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, ISMMS, New York, NY, 10029, USA
- Division of Psychiatric Genomics, Department of Psychiatry, ISMMS, New York, NY, 10029, USA
- Verily Life Sciences, 94080, South San Francisco, USA
| | - Gabriel Hoffman
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, ISMMS, New York, NY, 10029, USA
| | - Douglas Ruderfer
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, ISMMS, New York, NY, 10029, USA
- Division of Psychiatric Genomics, Department of Psychiatry, ISMMS, New York, NY, 10029, USA
- Division of Genetic Medicine, Departments of Medicine, Psychiatry and Biomedical Informatics, Vanderbilt University, Nashville, TN, 37235, USA
| | | | - Andrew Chess
- Department of Cell, Developmental and Regenerative Biology, ISMMS, New York, NY, 10029, USA.
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, ISMMS, New York, NY, 10029, USA.
- Fishberg Department of Neuroscience, ISMMS, New York, NY, 10029, USA.
- Friedman Brain Institute, ISMMS, New York, NY, 10029, USA.
| |
Collapse
|
38
|
Viñas-Jornet M, Esteba-Castillo S, Baena N, Ribas-Vidal N, Ruiz A, Torrents-Rodas D, Gabau E, Vilella E, Martorell L, Armengol L, Novell R, Guitart M. High Incidence of Copy Number Variants in Adults with Intellectual Disability and Co-morbid Psychiatric Disorders. Behav Genet 2018; 48:323-336. [PMID: 29882083 PMCID: PMC6028865 DOI: 10.1007/s10519-018-9902-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/10/2018] [Indexed: 01/04/2023]
Abstract
A genetic analysis of unexplained mild-moderate intellectual disability and co-morbid psychiatric or behavioural disorders is not systematically conducted in adults. A cohort of 100 adult patients affected by both phenotypes were analysed in order to identify the presence of copy number variants (CNVs) responsible for their condition identifying a yield of 12.8% of pathogenic CNVs (19% when including clinically recognizable microdeletion syndromes). Moreover, there is a detailed clinical description of an additional 11% of the patients harbouring possible pathogenic CNVs—including a 7q31 deletion (IMMP2L) in two unrelated patients and duplications in 3q29, 9p24.2p24.1 and 15q14q15.1—providing new evidence of its contribution to the phenotype. This study adds further proof of including chromosomal microarray analysis (CMA) as a mandatory test to improve the diagnosis in the adult patients in psychiatric services.
Collapse
Affiliation(s)
- Marina Viñas-Jornet
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain.,Cellular Biology, Physiology and Immunology Department, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Susanna Esteba-Castillo
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Neus Baena
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain
| | - Núria Ribas-Vidal
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Anna Ruiz
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain
| | - David Torrents-Rodas
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Elisabeth Gabau
- Pediatry-Clinical Genetics Service, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, Reus, Spain
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, Reus, Spain
| | - Lluís Armengol
- Research and Development Department, qGenomics Laboratory, Barcelona, Spain
| | - Ramon Novell
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Míriam Guitart
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain.
| |
Collapse
|
39
|
Mechanistic insights into the genetics of affective psychosis from Prader-Willi syndrome. Lancet Psychiatry 2018; 5:370-378. [PMID: 29352661 DOI: 10.1016/s2215-0366(18)30009-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022]
Abstract
Schizophrenia and bipolar disorder are common, severe, and disabling psychotic disorders, which are difficult to research. We argue that the genetically determined neurodevelopmental disorder Prader-Willi syndrome (PWS), which is associated with a high risk of affective psychotic illness, can provide a window into genetic mechanisms and associated neural pathways. People with PWS can all show non-psychotic psychopathology and problem behaviours, but the prevalence of psychotic illness differs markedly by genetic subtype; people with PWS due to chromosome 15 maternal uniparental disomy have higher prevalence of psychotic illness compared with patients with PWS due to 15q11-13 deletions of paternal origin. On the basis of this observation and the neural differences between genetic subtypes, we hypothesise that the combined effects of the absent expression of specific maternally imprinted genes at 15q11-13, and excess maternally imprinted or paternally expressed genes on chromosome 15, affect the γ-aminobutyric acid-glutamatergic pathways and associated neural networks that underpin mood regulation and sensory processing, resulting in psychotic illness. We propose a model of potential mechanisms of psychosis in PWS, which might be relevant in the general population, and should inform future research.
Collapse
|
40
|
Neuronal Proteomic Analysis of the Ubiquitinated Substrates of the Disease-Linked E3 Ligases Parkin and Ube3a. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3180413. [PMID: 29693004 PMCID: PMC5859835 DOI: 10.1155/2018/3180413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/15/2018] [Indexed: 01/09/2023]
Abstract
Both Parkin and UBE3A are E3 ubiquitin ligases whose mutations result in severe brain dysfunction. Several of their substrates have been identified using cell culture models in combination with proteasome inhibitors, but not in more physiological settings. We recently developed the bioUb strategy to isolate ubiquitinated proteins in flies and have now identified by mass spectrometry analysis the neuronal proteins differentially ubiquitinated by those ligases. This is an example of how flies can be used to provide biological material in order to reveal steady state substrates of disease causing genes. Collectively our results provide new leads to the possible physiological functions of the activity of those two disease causing E3 ligases. Particularly, in the case of Parkin the novelty of our data originates from the experimental setup, which is not overtly biased by acute mitochondrial depolarisation. In the case of UBE3A, it is the first time that a nonbiased screen for its neuronal substrates has been reported.
Collapse
|
41
|
George AJ, Hoffiz YC, Charles AJ, Zhu Y, Mabb AM. A Comprehensive Atlas of E3 Ubiquitin Ligase Mutations in Neurological Disorders. Front Genet 2018; 9:29. [PMID: 29491882 PMCID: PMC5817383 DOI: 10.3389/fgene.2018.00029] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/22/2018] [Indexed: 01/11/2023] Open
Abstract
Protein ubiquitination is a posttranslational modification that plays an integral part in mediating diverse cellular functions. The process of protein ubiquitination requires an enzymatic cascade that consists of a ubiquitin activating enzyme (E1), ubiquitin conjugating enzyme (E2) and an E3 ubiquitin ligase (E3). There are an estimated 600-700 E3 ligase genes representing ~5% of the human genome. Not surprisingly, mutations in E3 ligase genes have been observed in multiple neurological conditions. We constructed a comprehensive atlas of disrupted E3 ligase genes in common (CND) and rare neurological diseases (RND). Of the predicted and known human E3 ligase genes, we found ~13% were mutated in a neurological disorder with 83 total genes representing 70 different types of neurological diseases. Of the E3 ligase genes identified, 51 were associated with an RND. Here, we provide an updated list of neurological disorders associated with E3 ligase gene disruption. We further highlight research in these neurological disorders and discuss the advanced technologies used to support these findings.
Collapse
Affiliation(s)
- Arlene J. George
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Yarely C. Hoffiz
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | | | - Ying Zhu
- Creative Media Industries Institute & Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Angela M. Mabb
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
42
|
Gilbert J, Man HY. Fundamental Elements in Autism: From Neurogenesis and Neurite Growth to Synaptic Plasticity. Front Cell Neurosci 2017; 11:359. [PMID: 29209173 PMCID: PMC5701944 DOI: 10.3389/fncel.2017.00359] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/31/2017] [Indexed: 01/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders with a high prevalence and impact on society. ASDs are characterized by deficits in both social behavior and cognitive function. There is a strong genetic basis underlying ASDs that is highly heterogeneous; however, multiple studies have highlighted the involvement of key processes, including neurogenesis, neurite growth, synaptogenesis and synaptic plasticity in the pathophysiology of neurodevelopmental disorders. In this review article, we focus on the major genes and signaling pathways implicated in ASD and discuss the cellular, molecular and functional studies that have shed light on common dysregulated pathways using in vitro, in vivo and human evidence. HighlightsAutism spectrum disorder (ASD) has a prevalence of 1 in 68 children in the United States. ASDs are highly heterogeneous in their genetic basis. ASDs share common features at the cellular and molecular levels in the brain. Most ASD genes are implicated in neurogenesis, structural maturation, synaptogenesis and function.
Collapse
Affiliation(s)
- James Gilbert
- Department of Biology, Boston University, Boston, MA, United States
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, United States.,Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
43
|
Excessive UBE3A dosage impairs retinoic acid signaling and synaptic plasticity in autism spectrum disorders. Cell Res 2017; 28:48-68. [PMID: 29076503 DOI: 10.1038/cr.2017.132] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/27/2017] [Accepted: 08/21/2017] [Indexed: 01/27/2023] Open
Abstract
The autism spectrum disorders (ASDs) are a collection of human neurological disorders with heterogeneous etiologies. Hyperactivity of E3 ubiquitin (Ub) ligase UBE3A, stemming from 15q11-q13 copy number variations, accounts for 1%-3% of ASD cases worldwide, but the underlying mechanisms remain incompletely characterized. Here we report that the functionality of ALDH1A2, the rate-limiting enzyme of retinoic acid (RA) synthesis, is negatively regulated by UBE3A in a ubiquitylation-dependent manner. Excessive UBE3A dosage was found to impair RA-mediated neuronal homeostatic synaptic plasticity. ASD-like symptoms were recapitulated in mice by overexpressing UBE3A in the prefrontal cortex or by administration of an ALDH1A antagonist, whereas RA supplements significantly alleviated excessive UBE3A dosage-induced ASD-like phenotypes. By identifying reduced RA signaling as an underlying mechanism in ASD phenotypes linked to UBE3A hyperactivities, our findings introduce a new vista of ASD etiology and facilitate a mode of therapeutic development against this increasingly prevalent disease.
Collapse
|
44
|
Copping NA, Christian SGB, Ritter DJ, Islam MS, Buscher N, Zolkowska D, Pride MC, Berg EL, LaSalle JM, Ellegood J, Lerch JP, Reiter LT, Silverman JL, Dindot SV. Neuronal overexpression of Ube3a isoform 2 causes behavioral impairments and neuroanatomical pathology relevant to 15q11.2-q13.3 duplication syndrome. Hum Mol Genet 2017; 26:3995-4010. [PMID: 29016856 PMCID: PMC5886211 DOI: 10.1093/hmg/ddx289] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 01/07/2023] Open
Abstract
Maternally derived copy number gains of human chromosome 15q11.2-q13.3 (Dup15q syndrome or Dup15q) cause intellectual disability, epilepsy, developmental delay, hypotonia, speech impairments, and minor dysmorphic features. Dup15q syndrome is one of the most common and penetrant chromosomal abnormalities observed in individuals with autism spectrum disorder (ASD). Although ∼40 genes are located in the 15q11.2-q13.3 region, overexpression of the ubiquitin-protein E3A ligase (UBE3A) gene is thought to be the predominant molecular cause of the phenotypes observed in Dup15q syndrome. The UBE3A gene demonstrates maternal-specific expression in neurons and loss of maternal UBE3A causes Angelman syndrome, a neurodevelopmental disorder with some overlapping neurological features to Dup15q. To directly test the hypothesis that overexpression of UBE3A is an important underlying molecular cause of neurodevelopmental dysfunction, we developed and characterized a mouse overexpressing Ube3a isoform 2 in excitatory neurons. Ube3a isoform 2 is conserved between mouse and human and known to play key roles in neuronal function. Transgenic mice overexpressing Ube3a isoform 2 in excitatory forebrain neurons exhibited increased anxiety-like behaviors, learning impairments, and reduced seizure thresholds. However, these transgenic mice displayed normal social approach, social interactions, and repetitive motor stereotypies that are relevant to ASD. Reduced forebrain, hippocampus, striatum, amygdala, and cortical volume were also observed. Altogether, these findings show neuronal overexpression of Ube3a isoform 2 causes phenotypes translatable to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nycole A Copping
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | | | - Dylan J Ritter
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Texas A&M, College Station, TX, USA
| | - M Saharul Islam
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Nathalie Buscher
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Dorota Zolkowska
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Michael C Pride
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Elizabeth L Berg
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Janine M LaSalle
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Jacob Ellegood
- The Hospital for Sick Children, Mouse Imaging Centre, Toronto, ON, Canada
| | - Jason P Lerch
- The Hospital for Sick Children, Mouse Imaging Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Lawrence T Reiter
- Departments of Neurology, Pediatrics and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jill L Silverman
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | | |
Collapse
|
45
|
Noor A, Bogatan S, Watkins N, Meschino WS, Stavropoulos DJ. Disruption of YWHAE gene at 17p13.3 causes learning disabilities and brain abnormalities. Clin Genet 2017; 93:365-367. [PMID: 28542865 DOI: 10.1111/cge.13056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 11/30/2022]
Abstract
There is a broad phenotypic spectrum of patients with 17p13.3 deletions. One of the most prominent feature is lissencephaly caused by haploinsufficiency of the gene PAFAH1B1. The deletion of this gene and those distal to it, results in Miller-Dieker syndrome, however there have been many reports of patients with haploinsufficiency of the distal genes alone. The deletions of these genes including YWHAE CRK and TUSC5 have been studied extensively and YWHAE has been postulated to be the cause of neurological abnormalities. The patients with deletions of the Miller-Dieker syndrome distal region present with variable clinical features including brain abnormalities, growth retardation, developmental delay, facial dysmorphisms and seizures. While there have been many patients reported to have deletions involving the YWHAE gene along with other genes, here we present the first detailed clinical description of a patient with deletion of YWHAE alone, allowing a more accurate characterization of the pathogenicity of YWHAE haploinsufficiency. The patient reported here demonstrated brain abnormalities, learning disabilities, and seizures supporting the role of YWHAE in these features. We review the literature and use this case report to better characterize and further confirm the genotype-phenotype relationship of the genes within the critical region of Miller-Dieker Syndrome.
Collapse
Affiliation(s)
- A Noor
- Department of Pathology and Laboratory Medicine, Division of Diagnostic Medical Genetics, Mount Sinai Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - S Bogatan
- Department of Pathology and Laboratory Medicine, Division of Diagnostic Medical Genetics, Mount Sinai Hospital, Toronto, Canada
| | - N Watkins
- Department of Pathology and Laboratory Medicine, Division of Diagnostic Medical Genetics, Mount Sinai Hospital, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - W S Meschino
- Genetics Program, North York General Hospital, Toronto, Canada.,Department of Paediatrics, University of Toronto, Toronto, Canada
| | - D J Stavropoulos
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
46
|
Yi JJ, Paranjape SR, Walker MP, Choudhury R, Wolter JM, Fragola G, Emanuele MJ, Major MB, Zylka MJ. The autism-linked UBE3A T485A mutant E3 ubiquitin ligase activates the Wnt/β-catenin pathway by inhibiting the proteasome. J Biol Chem 2017; 292:12503-12515. [PMID: 28559284 PMCID: PMC5535025 DOI: 10.1074/jbc.m117.788448] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/23/2017] [Indexed: 02/02/2023] Open
Abstract
UBE3A is a HECT domain E3 ubiquitin ligase whose dysfunction is linked to autism, Angelman syndrome, and cancer. Recently, we characterized a de novo autism-linked UBE3A mutant (UBE3AT485A) that disrupts phosphorylation control of UBE3A activity. Through quantitative proteomics and reporter assays, we found that the UBE3AT485A protein ubiquitinates multiple proteasome subunits, reduces proteasome subunit abundance and activity, stabilizes nuclear β-catenin, and stimulates canonical Wnt signaling more effectively than wild-type UBE3A. We also found that UBE3AT485A activates Wnt signaling to a greater extent in cells with low levels of ongoing Wnt signaling, suggesting that cells with low basal Wnt activity are particularly vulnerable to UBE3AT485A mutation. Ligase-dead UBE3A did not stimulate Wnt pathway activation. Overexpression of several proteasome subunits reversed the effect of UBE3AT485A on Wnt signaling. We also observed that subunits that interact with UBE3A and affect Wnt signaling are located along one side of the 19S regulatory particle, indicating a previously unrecognized spatial organization to the proteasome. Altogether, our findings indicate that UBE3A regulates Wnt signaling in a cell context-dependent manner and that an autism-linked mutation exacerbates these signaling effects. Our study has broad implications for human disorders associated with UBE3A gain or loss of function and suggests that dysfunctional UBE3A might affect additional proteins and pathways that are sensitive to proteasome activity.
Collapse
Affiliation(s)
- Jason J Yi
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Smita R Paranjape
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Matthew P Walker
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Rajarshi Choudhury
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Justin M Wolter
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Giulia Fragola
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Michael J Emanuele
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Michael B Major
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Mark J Zylka
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina 27599.
| |
Collapse
|
47
|
Maternally derived 15q11.2-q13.1 duplication and H19-DMR hypomethylation in a patient with Silver-Russell syndrome. J Hum Genet 2017; 62:919-922. [PMID: 28592837 DOI: 10.1038/jhg.2017.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 11/08/2022]
Abstract
Silver-Russell syndrome (SRS) is a congenital developmental disorder characterized by intrauterine and postnatal growth failure, craniofacial features (including a triangular shaped face and broad forehead), relative macrocephaly, protruding forehead, body asymmetry and feeding difficulties. Hypomethylation of the H19 differentially methylated region (DMR) on chromosome 11p15.5 is the most common cause of the SRS phenotype. We report the first SRS patient with hypomethylation of the H19-DMR and maternally derived 15q11.2-q13.1 duplication. Although her clinical manifestations overlapped with those of previously reported SRS cases, the patient's intellectual disability and facial dysmorphic features were inconsistent with the SRS phenotype. Methylation analyses, array comparative genomic hybridization, and a FISH analysis revealed the hypomethylation of the H19-DMR and a maternally derived interstitial 5.7 Mb duplication at 15q11.2-q13.1 encompassing the Prader-Willi/Angelman critical region in the patient. On the basis of the genetic and clinical findings in the present and previously reported cases, it is unlikely that the 15q duplication in the patient led to the development of hypomethylation of the H19-DMR and it is reasonable to consider that the characteristic phenotype in the patient was caused by the coexistence of the two (epi)genetic conditions. Further studies are needed to clarify the mechanisms leading to methylation aberrations in SRS.
Collapse
|
48
|
Hillman PR, Christian SGB, Doan R, Cohen ND, Konganti K, Douglas K, Wang X, Samollow PB, Dindot SV. Genomic imprinting does not reduce the dosage of UBE3A in neurons. Epigenetics Chromatin 2017; 10:27. [PMID: 28515788 PMCID: PMC5433054 DOI: 10.1186/s13072-017-0134-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The ubiquitin protein E3A ligase gene (UBE3A) gene is imprinted with maternal-specific expression in neurons and biallelically expressed in all other cell types. Both loss-of-function and gain-of-function mutations affecting the dosage of UBE3A are associated with several neurodevelopmental syndromes and psychological conditions, suggesting that UBE3A is dosage-sensitive in the brain. The observation that loss of imprinting increases the dosage of UBE3A in brain further suggests that inactivation of the paternal UBE3A allele evolved as a dosage-regulating mechanism. To test this hypothesis, we examined UBE3A transcript and protein levels among cells, tissues, and species with different imprinting states of UBE3A. RESULTS Overall, we found no correlation between the imprinting status and dosage of UBE3A. Importantly, we found that maternal Ube3a protein levels increase in step with decreasing paternal Ube3a protein levels during neurogenesis in mouse, fully compensating for loss of expression of the paternal Ube3a allele in neurons. CONCLUSIONS Based on our findings, we propose that imprinting of UBE3A does not function to reduce the dosage of UBE3A in neurons but rather to regulate some other, as yet unknown, aspect of gene expression or protein function.
Collapse
Affiliation(s)
- Paul R. Hillman
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845 USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77845 USA
| | - Sarah G. B. Christian
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845 USA
| | - Ryan Doan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845 USA
- Interdisciplinary Genetics Program, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77845 USA
| | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX USA
| | - Kranti Konganti
- Institute for Genome Science and Society, Texas A&M University, College Station, TX 77845 USA
| | - Kory Douglas
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Xu Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 USA
| | - Paul B. Samollow
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Scott V. Dindot
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845 USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77845 USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX 77843 USA
| |
Collapse
|
49
|
Jamal I, Kumar V, Vatsa N, Singh BK, Shekhar S, Sharma A, Jana NR. Environmental Enrichment Improves Behavioral Abnormalities in a Mouse Model of Angelman Syndrome. Mol Neurobiol 2016; 54:5319-5326. [PMID: 27581300 DOI: 10.1007/s12035-016-0080-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/23/2016] [Indexed: 12/27/2022]
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder largely caused by the loss of function of maternally inherited UBE3A. UBE3A-maternal deficient mice (AS mice) exhibit many typical features of AS including cognitive and motor deficits but the underlying mechanism of these behavioral abnormalities is poorly understood. Here, we demonstrate that rearing of AS mice in the enriched environment for prolonged period significantly improved their cognitive and motor dysfunction. Enriched environment also restored elevated serum corticosterone level and reduced anxiety-like behaviors in these mice. Biochemical analysis further revealed restoration of altered levels of brain-derived neurotrophic factor, glucocorticoid receptor, and phoshphorylated calcium/calmodulin-dependent protein kinase IIα in the hippocampus of AS mice maintained in the enriched environment. Enriched environment also significantly increased the number of parvalbumin-positive GABAergic interneuron in the hippocampus and basolateral amygdala of AS mice. These results indicate potential beneficial effect of enriched environment in the reversal of AS phenotype.
Collapse
Affiliation(s)
- Imran Jamal
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon, 122 051, India
| | - Vipendra Kumar
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon, 122 051, India
| | - Naman Vatsa
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon, 122 051, India
| | - Brijesh Kumar Singh
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon, 122 051, India
| | - Shashi Shekhar
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon, 122 051, India
| | - Ankit Sharma
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon, 122 051, India
| | - Nihar Ranjan Jana
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon, 122 051, India.
| |
Collapse
|
50
|
Berto S, Usui N, Konopka G, Fogel BL. ELAVL2-regulated transcriptional and splicing networks in human neurons link neurodevelopment and autism. Hum Mol Genet 2016; 25:2451-2464. [PMID: 27260404 DOI: 10.1093/hmg/ddw110] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/01/2016] [Accepted: 04/04/2016] [Indexed: 01/31/2023] Open
Abstract
The role of post-transcriptional gene regulation in human brain development and neurodevelopmental disorders remains mostly uncharacterized. ELAV-like RNA-binding proteins (RNAbps) are a family of proteins that regulate several aspects of neuronal function including neuronal excitability and synaptic transmission, both critical to the normal function of the brain in cognition and behavior. Here, we identify the downstream neuronal transcriptional and splicing networks of ELAVL2, an RNAbp with previously unknown function in the brain. Expression of ELAVL2 was reduced in human neurons and RNA-sequencing was utilized to identify networks of differentially expressed and alternatively spliced genes resulting from haploinsufficient levels of ELAVL2. These networks contain a number of autism-relevant genes as well as previously identified targets of other important RNAbps implicated in autism spectrum disorder (ASD) including RBFOX1 and FMRP. ELAVL2-regulated co-expression networks are also enriched for neurodevelopmental and synaptic genes, and include genes with human-specific patterns of expression in the frontal pole. Together, these data suggest that ELAVL2 regulation of transcript expression is critical for neuronal function and clinically relevant to ASD.
Collapse
Affiliation(s)
- Stefano Berto
- Department of Neuroscience, University of Texas Southwestern Medical School, 5323 Harry Hines Blvd, ND4.300, Dallas, TX 75390-9111, USA
| | - Noriyoshi Usui
- Department of Neuroscience, University of Texas Southwestern Medical School, 5323 Harry Hines Blvd, ND4.300, Dallas, TX 75390-9111, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical School, 5323 Harry Hines Blvd, ND4.300, Dallas, TX 75390-9111, USA
| | - Brent L Fogel
- Program in Neurogenetics and Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Gonda Room 1206, Los Angeles, CA 90095, USA
| |
Collapse
|