1
|
Walewska E, Makowczenko KG, Witek K, Laniecka E, Molcan T, Alvarez-Sanchez A, Kelsey G, Perez-Garcia V, Galvão AM. Fetal growth restriction and placental defects in obese mice are associated with impaired decidualisation: the role of increased leptin signalling modulators SOCS3 and PTPN2. Cell Mol Life Sci 2024; 81:329. [PMID: 39090270 PMCID: PMC11335253 DOI: 10.1007/s00018-024-05336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/05/2024] [Accepted: 06/28/2024] [Indexed: 08/04/2024]
Abstract
Decidualisation of the endometrium is a key event in early pregnancy, which enables embryo implantation. Importantly, the molecular processes impairing decidualisation in obese mothers are yet to be characterised. We hypothesise that impaired decidualisation in obese mice is mediated by the upregulation of leptin modulators, the suppressor of cytokine signalling 3 (SOCS3) and the protein tyrosine phosphatase non-receptor type 2 (PTPN2), together with the disruption of progesterone (P4)-signal transducer and activator of transcription (STAT3) signalling. After feeding mice with chow diet (CD) or high-fat diet (HFD) for 16 weeks, we confirmed the downregulation of P4 and oestradiol (E2) steroid receptors in decidua from embryonic day (E) 6.5 and decreased proliferation of stromal cells from HFD. In vitro decidualised mouse endometrial stromal cells (MESCs) and E6.5 deciduas from the HFD showed decreased expression of decidualisation markers, followed by the upregulation of SOCS3 and PTPN2 and decreased phosphorylation of STAT3. In vivo and in vitro leptin treatment of mice and MESCs mimicked the results observed in the obese model. The downregulation of Socs3 and Ptpn2 after siRNA transfection of MESCs from HFD mice restored the expression level of decidualisation markers. Finally, DIO mice placentas from E18.5 showed decreased labyrinth development and vascularisation and fetal growth restricted embryos. The present study revealed major defects in decidualisation in obese mice, characterised by altered uterine response to E2 and P4 steroid signalling. Importantly, altered hormonal response was associated with increased expression of leptin signalling modulators SOCS3 and PTPN2. Elevated levels of SOCS3 and PTPN2 were shown to molecularly affect decidualisation in obese mice, potentially disrupting the STAT3-PR regulatory molecular hub.
Collapse
Affiliation(s)
- Edyta Walewska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Karol G Makowczenko
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Krzysztof Witek
- Laboratory of Cell and Tissue Analysis and Imaging, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Elżbieta Laniecka
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Tomasz Molcan
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Andrea Alvarez-Sanchez
- Molecular Mechanisms of Placental Invasion, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Vicente Perez-Garcia
- Molecular Mechanisms of Placental Invasion, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, 46012, Valencia, Spain.
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
| | - António M Galvão
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland.
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
- Department of Comparative Biomedical Sciences, Royal Veterinary College, 4 Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
2
|
Heydari R, Karimi P, Meyfour A. Long non-coding RNAs as pathophysiological regulators, therapeutic targets and novel extracellular vesicle biomarkers for the diagnosis of inflammatory bowel disease. Biomed Pharmacother 2024; 176:116868. [PMID: 38850647 DOI: 10.1016/j.biopha.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing disease of the gastrointestinal (GI) system that includes two groups, Crohn's disease (CD) and ulcerative colitis (UC). To cope with these two classes of IBD, the investigation of pathogenic mechanisms and the discovery of new diagnostic and therapeutic approaches are crucial. Long non-coding RNAs (lncRNAs) which are non-coding RNAs with a length of longer than 200 nucleotides have indicated significant association with the pathology of IBD and strong potential to be used as accurate biomarkers in diagnosing and predicting responses to the IBD treatment. In the current review, we aim to investigate the role of lncRNAs in the pathology and development of IBD. We first describe recent advances in research on dysregulated lncRNAs in the pathogenesis of IBD from the perspective of epithelial barrier function, intestinal immunity, mitochondrial function, and intestinal autophagy. Then, we highlight the possible translational role of lncRNAs as therapeutic targets, diagnostic biomarkers, and predictors of therapeutic response in colon tissues and plasma samples. Finally, we discuss the potential of extracellular vesicles and their lncRNA cargo in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Padideh Karimi
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Hu Y, Lu Y, Fang Y, Zhang Q, Zheng Z, Zheng X, Ye X, Chen Y, Ding J, Yang J. Role of long non-coding RNA in inflammatory bowel disease. Front Immunol 2024; 15:1406538. [PMID: 38895124 PMCID: PMC11183289 DOI: 10.3389/fimmu.2024.1406538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a group of recurrent chronic inflammatory diseases, including Crohn's disease (CD) and ulcerative colitis (UC). Although IBD has been extensively studied for decades, its cause and pathogenesis remain unclear. Existing research suggests that IBD may be the result of an interaction between genetic factors, environmental factors and the gut microbiome. IBD is closely related to non-coding RNAs (ncRNAs). NcRNAs are composed of microRNA(miRNA), long non-coding RNA(lnc RNA) and circular RNA(circ RNA). Compared with miRNA, the role of lnc RNA in IBD has been little studied. Lnc RNA is an RNA molecule that regulates gene expression and regulates a variety of molecular pathways involved in the pathbiology of IBD. Targeting IBD-associated lnc RNAs may promote personalized treatment of IBD and have therapeutic value for IBD patients. Therefore, this review summarized the effects of lnc RNA on the intestinal epithelial barrier, inflammatory response and immune homeostasis in IBD, and summarized the potential of lnc RNA as a biomarker of IBD and as a predictor of therapeutic response to IBD in the future.
Collapse
Affiliation(s)
- Yufei Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yifan Lu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yi Fang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Qizhe Zhang
- Department of Geriatrics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Zhuoqun Zheng
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xiaojuan Zheng
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xiaohua Ye
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yanping Chen
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Yuan Z, Ye J, Liu B, Zhang L. Unraveling the role of autophagy regulation in Crohn's disease: from genetic mechanisms to potential therapeutics. ADVANCED BIOTECHNOLOGY 2024; 2:14. [PMID: 39883213 PMCID: PMC11740883 DOI: 10.1007/s44307-024-00021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 01/31/2025]
Abstract
Autophagy serves as the primary intracellular degradation mechanism in which damaged organelles and self-cytoplasmic proteins are transported to the lysosome for degradation. Crohn's disease, an idiopathic chronic inflammatory disorder of the gastrointestinal tract, manifests in diverse regions of the digestive system. Recent research suggests that autophagy modulation may be a new avenue for treating Crohn's disease, and several promising small-molecule modulators of autophagy have been reported as therapeutic options. In this review, we discuss in detail how mutations in autophagy-related genes function in Crohn's disease and summarize the modulatory effects on autophagy of small-molecule drugs currently used for Crohn's disease treatment. Furthermore, we delve into the therapeutic potential of small-molecule autophagy inducers on Crohn's disease, emphasizing the prospects for development in this field. We aim to highlight the significance of autophagy modulation in Crohn's disease, with the aspiration of contributing to the development of more efficacious treatments that can alleviate their suffering, and improve their quality of life.
Collapse
Affiliation(s)
- Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jing Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
5
|
Liu S, Liu F, Zhang Z, Zhuang Z, Chen Y. PTPN2 inhibits the proliferation of psoriatic keratinocytes by dephosphorylation of STAT3. Cell Biochem Funct 2024; 42:e3947. [PMID: 38379221 DOI: 10.1002/cbf.3947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
Psoriasis is a recurrent and protracted disease that severely impacts the patient's physical and mental health. Thus, there is an urgent need to explore its pathogenesis to identify therapeutic targets. The expression level of protein tyrosine phosphatase nonreceptor type 2 (PTPN2) was analyzed by immunohistochemistry techniques in psoriatic tissues and imiquimod-induced psoriatic mouse models. PTPN2 and signal transducer and activator of transcription 3 (STAT3) were overexpressed or silenced in human keratinocytes or an interleukin (IL)-6-induced psoriasis HaCaT cell model using overexpression plasmid transfection or small interfering RNA technology in vitro, and the effects of PTPN2 on STAT3, HaCaT cell function, and autophagy levels were investigated using reverse transcription-quantitative polymerase chain reaction, Western blot, Cell Counting Kit 8, 5-ethynyl-20-deoxyuridine, flow cytometry, and transmission electron microscopy. PTPN2 expression was found to be significantly downregulated in psoriatic tissues. Then, the in vitro antipsoriatic properties of PTPN2 were investigated in an IL-6-induced psoriasis-like cell model, and the results demonstrated that inhibition of keratinocyte proliferation by PTPN2 may be associated with elevated STAT3 dephosphorylation and autophagy levels. These findings provide novel insights into the mechanisms of autophagy in psoriatic keratinocytes and may be essential for developing new therapeutic strategies to improve inflammatory homeostasis in psoriatic patients.
Collapse
Affiliation(s)
- Shougang Liu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Fanghua Liu
- Department of Dermatology, Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
- Department of Dermatology, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, People's Republic of China
| | - Zeqiao Zhang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhe Zhuang
- Department of Dermatology, Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Yongfeng Chen
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Department of Dermatology, Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| |
Collapse
|
6
|
Simovic I, Hilmi I, Ng RT, Chew KS, Wong SY, Lee WS, Riordan S, Castaño-Rodríguez N. ATG16L1 rs2241880/T300A increases susceptibility to perianal Crohn's disease: An updated meta-analysis on inflammatory bowel disease risk and clinical outcomes. United European Gastroenterol J 2024; 12:103-121. [PMID: 37837511 PMCID: PMC10859713 DOI: 10.1002/ueg2.12477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/17/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND ATG16L1 plays a fundamental role in the degradative intracellular pathway known as autophagy, being a mediator of inflammation and microbial homeostasis. The variant rs2241880 can diminish these capabilities, potentially contributing to inflammatory bowel disease (IBD) pathogenesis. OBJECTIVES To perform an updated meta-analysis on the association between ATG16L1 rs2241880 and IBD susceptibility by exploring the impact of age, ethnicity, and geography. Moreover, to investigate the association between rs2241880 and clinical features. METHODS Literature searches up until September 2022 across 7 electronic public databases were performed for all case-control studies on ATG16L1 rs2241880 and IBD. Pooled odds ratios (ORP ) and 95% CI were calculated under the random effects model. RESULTS Our analyses included a total of 30,606 IBD patients, comprising 21,270 Crohn's disease (CD) and 9336 ulcerative colitis (UC) patients, and 33,329 controls. ATG16L1 rs2241880 was significantly associated with CD susceptibility, where the A allele was protective (ORP : 0.74, 95% CI: 0.72-0.77, p-value: <0.001), while the G allele was a risk factor (ORP : 1.23, 95% CI: 1.09-1.39, p-value: 0.001), depending on the minor allele frequencies observed in this multi-ancestry study sample. rs2241880 was predominantly relevant in Caucasians from North America and Europe, and in Latin American populations. Importantly, CD patients harbouring the G allele were significantly more predisposed to perianal disease (ORP : 1.21, 95% CI: 1.07-1.38, p-value: 0.003). CONCLUSIONS ATG16L1 rs2241880 (G allele) is a consistent risk factor for IBD in Caucasian cohorts and influences clinical outcomes. As its role in non-Caucasian populations remains ambiguous, further studies in under-reported populations are necessary.
Collapse
Affiliation(s)
- Isidora Simovic
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ida Hilmi
- Department of Medicine, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Ruey Terng Ng
- Department of Paediatrics, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Kee Seang Chew
- Department of Paediatrics, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Shin Yee Wong
- Department of Paediatrics, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Way Seah Lee
- Department of Paediatrics, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Stephen Riordan
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Kuala Lumpur, Malaysia
| | | |
Collapse
|
7
|
Tang XE, Cheng YQ, Tang CK. Protein tyrosine phosphatase non-receptor type 2 as the therapeutic target of atherosclerotic diseases: past, present and future. Front Pharmacol 2023; 14:1219690. [PMID: 37670950 PMCID: PMC10475599 DOI: 10.3389/fphar.2023.1219690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
Tyrosine-protein phosphatase non-receptor type 2(PTPN2), an important member of the protein tyrosine phosphatase family, can regulate various signaling pathways and biological processes by dephosphorylating receptor protein tyrosine kinases. Accumulating evidence has demonstrated that PTPN2 is involved in the occurrence and development of atherosclerotic cardiovascular disease. Recently, it has been reported that PTPN2 exerts an anti-atherosclerotic effect by regulating vascular endothelial injury, monocyte proliferation and migration, macrophage polarization, T cell polarization, autophagy, pyroptosis, and insulin resistance. In this review, we summarize the latest findings on the role of PTPN2 in the pathogenesis of atherosclerosis to provide a rationale for better future research and therapeutic interventions.
Collapse
Affiliation(s)
- Xiao-Er Tang
- Department of Pathophysiology, Shaoyang University, Shaoyang, Hunan, China
| | - Ya-Qiong Cheng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| |
Collapse
|
8
|
Műzes G, Sipos F. Autoimmunity and Carcinogenesis: Their Relationship under the Umbrella of Autophagy. Biomedicines 2023; 11:biomedicines11041130. [PMID: 37189748 DOI: 10.3390/biomedicines11041130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
The immune system and autophagy share a functional relationship. Both innate and adaptive immune responses involve autophagy and, depending on the disease’s origin and pathophysiology, it may have a detrimental or positive role on autoimmune disorders. As a “double-edged sword” in tumors, autophagy can either facilitate or impede tumor growth. The autophagy regulatory network that influences tumor progression and treatment resistance is dependent on cell and tissue types and tumor stages. The connection between autoimmunity and carcinogenesis has not been sufficiently explored in past studies. As a crucial mechanism between the two phenomena, autophagy may play a substantial role, though the specifics remain unclear. Several autophagy modifiers have demonstrated beneficial effects in models of autoimmune disease, emphasizing their therapeutic potential as treatments for autoimmune disorders. The function of autophagy in the tumor microenvironment and immune cells is the subject of intensive study. The objective of this review is to investigate the role of autophagy in the simultaneous genesis of autoimmunity and malignancy, shedding light on both sides of the issue. We believe our work will assist in the organization of current understanding in the field and promote additional research on this urgent and crucial topic.
Collapse
Affiliation(s)
- Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| | - Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| |
Collapse
|
9
|
Stanford SM, Bottini N. Targeting protein phosphatases in cancer immunotherapy and autoimmune disorders. Nat Rev Drug Discov 2023; 22:273-294. [PMID: 36693907 PMCID: PMC9872771 DOI: 10.1038/s41573-022-00618-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/25/2023]
Abstract
Protein phosphatases act as key regulators of multiple important cellular processes and are attractive therapeutic targets for various diseases. Although extensive effort has been dedicated to phosphatase-targeted drug discovery, early expeditions for competitive phosphatase inhibitors were plagued by druggability issues, leading to the stigmatization of phosphatases as difficult targets. Despite challenges, persistent efforts have led to the identification of several drug-like, non-competitive modulators of some of these enzymes - including SH2 domain-containing protein tyrosine phosphatase 2, protein tyrosine phosphatase 1B, vascular endothelial protein tyrosine phosphatase and protein phosphatase 1 - reigniting interest in therapeutic targeting of phosphatases. Here, we discuss recent progress in phosphatase drug discovery, with emphasis on the development of selective modulators that exhibit biological activity. The roles and regulation of protein phosphatases in immune cells and their potential as powerful targets for immuno-oncology and autoimmunity indications are assessed.
Collapse
Affiliation(s)
| | - Nunzio Bottini
- Department of Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
10
|
Chatterjee K, Dutta AK, Goel A, Aaron R, Balakrishnan V, Thomas A, John A, Jaleel R, David D, Kurien RT, Chowdhury SD, Simon EG, Joseph AJ, Premkumar P, Pulimood AB. Common polymorphisms of protein tyrosine phosphate non-receptor type 2 gene are not associated with risk of Crohn’s disease in Indian. World J Gastrointest Pathophysiol 2022; 13:114-123. [PMID: 36161231 PMCID: PMC9350595 DOI: 10.4291/wjgp.v13.i4.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/18/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multiple genetic risk factors for Crohn’s disease (CD) have been identified. However, these observations are not consistent across different populations. The protein tyrosine phosphate non-receptor type 2 (PTPN2) gene plays a role in various aspects of host defense including epithelial barrier function, autophagy, and innate and adaptive immune response. Two common polymorphisms in the PTPN2 gene (rs2542151 and rs7234029) have been associated with risk of CD in Western countries.
AIM To evaluate the association of PTPN2 gene polymorphisms with risk of CD in Indian population.
METHODS We conducted a prospective case-control study. Patients with CD were recruited, and their clinical and investigation details were noted. Controls were patients without organic gastrointestinal disease or other comorbid illnesses. Two common polymorphisms in the PTPN2 gene (rs2542151 and rs7234029) were assessed. DNA was extracted from peripheral blood samples of cases and controls and target DNA was amplified using specific sets of primers. The amplified fragments were digested with restriction enzymes and the presence of polymorphism was detected by restriction fragment length polymorphism. The frequency of alleles was determined. The frequencies of genotypes and alleles were compared between cases and controls to look for significant differences.
RESULTS A total of 108 patients with CD (mean age 37.5 ± 12.7 years, females 42.6%) and 100 controls (mean age 39.9 ± 13.5 years, females 37%) were recruited. For the single nucleotide polymorphism (SNP) rs7234029, the overall frequency of G variant genotype (AG or GG) was noted to be significantly lower in the cases compared to controls (35.2% vs 50%, P = 0.05). For the SNP rs2542151, the overall frequency of G variant genotype (GT or GG) was noted to be similar in cases compared to controls (43.6% vs 47%, P = 0.73). There were no significant differences in minor allele (G) frequency for both polymorphisms between the cases and controls. Both the SNPs had no significant association with age of onset of illness, gender, disease location, disease behaviour, perianal disease, or extraintestinal manifestations of CD.
CONCLUSION Unlike observation form the West, polymorphisms in the PTPN2 gene (rs7234029 and rs2542151) are not associated with an increased risk of developing CD in Indian patients.
Collapse
Affiliation(s)
- Kaushik Chatterjee
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Amit Kumar Dutta
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Ashish Goel
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Rekha Aaron
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Vijayalekshmi Balakrishnan
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Ajith Thomas
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Anoop John
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Rajeeb Jaleel
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Deepu David
- Department of Gastroenterology, Christian Medical College, Vellore 632004, Tamil Nadu, India
| | - Reuben Thomas Kurien
- Department of Gastroenterology, Christian Medical College, Vellore 632004, Tamil Nadu, India
| | - SD Chowdhury
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| | - Ebby George Simon
- Department of Gastroenterology, Christian Medical College, Vellore 632004, Tamil Nadu, India
| | - AJ Joseph
- Department of Gastroenterology, Christian Medical College, Vellore 632004, Tamil Nadu, India
| | - Prasanna Premkumar
- Departments of Biostatistics, Christian Medical College, Vellore 632004, Tamil Nadu, India
| | - Anna B Pulimood
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore 632004, Tamil Nadu, India
| |
Collapse
|
11
|
Abraham C, Abreu MT, Turner JR. Pattern Recognition Receptor Signaling and Cytokine Networks in Microbial Defenses and Regulation of Intestinal Barriers: Implications for Inflammatory Bowel Disease. Gastroenterology 2022; 162:1602-1616.e6. [PMID: 35149024 PMCID: PMC9112237 DOI: 10.1053/j.gastro.2021.12.288] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease is characterized by defects in epithelial function and dysregulated inflammatory signaling by lamina propria mononuclear cells including macrophages and dendritic cells in response to microbiota. In this review, we focus on the role of pattern recognition receptors in the inflammatory response as well as epithelial barrier regulation. We explore cytokine networks that increase inflammation, regulate paracellular permeability, cause epithelial damage, up-regulate epithelial proliferation, and trigger restitutive processes. We focus on studies using patient samples as well as speculate on pathways that can be targeted to more holistically treat patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, Connecticut.
| | - Maria T. Abreu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Miami Leonard Miller School of Medicine, Miami, FL
| | - Jerrold R. Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Spalinger MR, Shawki A, Chatterjee P, Canale V, Santos A, Sayoc-Becerra A, Scharl M, Tremblay ML, Borneman J, McCole DF. Autoimmune susceptibility gene PTPN2 is required for clearance of adherent-invasive Escherichia coli by integrating bacterial uptake and lysosomal defence. Gut 2022; 71:89-99. [PMID: 33563644 PMCID: PMC8666829 DOI: 10.1136/gutjnl-2020-323636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/03/2021] [Accepted: 01/19/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Alterations in the intestinal microbiota are linked with a wide range of autoimmune and inflammatory conditions, including inflammatory bowel diseases (IBD), where pathobionts penetrate the intestinal barrier and promote inflammatory reactions. In patients with IBD, the ability of intestinal macrophages to efficiently clear invading pathogens is compromised resulting in increased bacterial translocation and excessive immune reactions. Here, we investigated how an IBD-associated loss-of-function variant in the protein tyrosine phosphatase non-receptor type 2 (PTPN2) gene, or loss of PTPN2 expression affected the ability of macrophages to respond to invading bacteria. DESIGN IBD patient-derived macrophages with wild-type (WT) PTPN2 or carrying the IBD-associated PTPN2 SNP, peritoneal macrophages from WT and constitutive PTPN2-knockout mice, as well as mice specifically lacking PTPN2 in macrophages were infected with non-invasive K12 Escherichia coli, the human adherent-invasive E. coli (AIEC) LF82, or a novel mouse AIEC (mAIEC) strain. RESULTS Loss of PTPN2 severely compromises the ability of macrophages to clear invading bacteria. Specifically, loss of functional PTPN2 promoted pathobiont invasion/uptake into macrophages and intracellular survival/proliferation by three distinct mechanisms: Increased bacterial uptake was mediated by enhanced expression of carcinoembryonic antigen cellular adhesion molecule (CEACAM)1 and CEACAM6 in PTPN2-deficient cells, while reduced bacterial clearance resulted from defects in autophagy coupled with compromised lysosomal acidification. In vivo, mice lacking PTPN2 in macrophages were more susceptible to mAIEC infection and mAIEC-induced disease. CONCLUSIONS Our findings reveal a tripartite regulatory mechanism by which PTPN2 preserves macrophage antibacterial function, thus crucially contributing to host defence against invading bacteria.
Collapse
Affiliation(s)
- Marianne Rebecca Spalinger
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Ali Shawki
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| | - Pritha Chatterjee
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| | - Vinicius Canale
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| | - Alina Santos
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| | - Anica Sayoc-Becerra
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Michel L Tremblay
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Goodman Cancer Research Centre, Rosalind and Morris Goodman Cancer Research Centre, Montreal, Quebec, Canada
| | - James Borneman
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, California, USA
| | - Declan F McCole
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| |
Collapse
|
13
|
Modulation of the Mucosa-Associated Microbiome Linked to the PTPN2 Risk Gene in Patients with Primary Sclerosing Cholangitis and Ulcerative Colitis. Microorganisms 2021; 9:microorganisms9081752. [PMID: 34442830 PMCID: PMC8399714 DOI: 10.3390/microorganisms9081752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/31/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota appears to be involved in the pathogenesis of primary sclerosing cholangitis (PSC). The protein tyrosine phosphatase nonreceptor 2 (PTPN2) gene risk variant rs1893217 is associated with gut dysbiosis in inflammatory bowel disease (IBD), and PTPN2 was mentioned as a possible risk gene for PSC. This study assessed the microbial profile of ulcerative colitis (UC) patients with PSC and without PSC (non-PSC). Additionally, effects of the PTPN2 risk variant were assessed. In total, 216 mucosal samples from ileum, colon, and rectum were collected from 7 PSC and 42 non-PSC patients, as well as 28 control subjects (non-IBD). The microbial composition was derived from 16S rRNA sequencing data. Overall, bacterial richness was highest in PSC patients, who also had a higher relative abundance of the genus Roseburia compared to non-PSC, as well as Haemophilus, Fusobacterium, Bifidobacterium, and Actinobacillus compared to non-IBD, as well as a lower relative abundance of Bacteroides compared to non-PSC and non-IBD, respectively. After exclusion of patients with the PTPN2 risk variant, Brachyspira was higher in PSC compared to non-PSC, while, solely in colon samples, Eubacterium and Tepidimonas were higher in PSC vs. non-IBD. In conclusion, this study underlines the presence of gut mucosa-associated microbiome changes in PSC patients and rather weakens the role of PTPN2 as a PSC risk gene.
Collapse
|
14
|
Vinette V, Aubry I, Insull H, Uetani N, Hardy S, Tremblay ML. Protein tyrosine phosphatome metabolic screen identifies TC-PTP as a positive regulator of cancer cell bioenergetics and mitochondrial dynamics. FASEB J 2021; 35:e21708. [PMID: 34169549 DOI: 10.1096/fj.202100207r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
Metabolic reprogramming occurs in cancer cells and is regulated partly by the opposing actions of tyrosine kinases and tyrosine phosphatases. Several members of the protein tyrosine phosphatase (PTP) superfamily have been linked to cancer as either pro-oncogenic or tumor-suppressive enzymes. In order to investigate which PTPs can modulate the metabolic state of cancer cells, we performed an shRNA screen of PTPs in HCT116 human colorectal cancer cells. Among the 72 PTPs efficiently targeted, 24 were found to regulate mitochondrial respiration, 8 as negative and 16 as positive regulators. Of the latter, we selected TC-PTP (PTPN2) for further characterization since inhibition of this PTP resulted in major functional defects in oxidative metabolism without affecting glycolytic flux. Transmission electron microscopy revealed an increase in the number of damaged mitochondria in TC-PTP-null cells, demonstrating the potential role of this PTP in regulating mitochondrial homeostasis. Downregulation of STAT3 by siRNA-mediated silencing partially rescued the mitochondrial respiration defect observed in TC-PTP-deficient cells, supporting the role of this signaling axis in regulating mitochondrial activity. In addition, mitochondrial stress prevented an increased expression of electron transport chain-related genes in cells with TC-PTP silencing, correlating with decreased ATP production, cellular proliferation, and migration. Our shRNA-based metabolic screen revealed that PTPs can serve as either positive or negative regulators of cancer cell metabolism. Taken together, our findings uncover a new role for TC-PTP as an activator of mitochondrial metabolism, validating this PTP as a key target for cancer therapeutics.
Collapse
Affiliation(s)
- Valerie Vinette
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Isabelle Aubry
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Hayley Insull
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Noriko Uetani
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Serge Hardy
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Michel L Tremblay
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
15
|
Akbari G. Emerging roles of microRNAs in intestinal ischemia/reperfusion-induced injury: a review. J Physiol Biochem 2020; 76:525-537. [PMID: 33140255 DOI: 10.1007/s13105-020-00772-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Intestinal ischemia/reperfusion (II/R) injury is a serious pathological phenomenon in underlying hemorrhagic shock, trauma, strangulated intestinal obstruction, and acute mesenteric ischemia which associated with high morbidity and mortality. MicroRNAs (miRNAs, miRs) are endogenous non-coding RNAs that regulate post-transcriptionally target mRNA translation via degrading it and/or suppressing protein synthesis. This review discusses on the role of some miRNAs in underlying II/R injury. Some of these miRNAs can have protective action through agomiR or specific antagomiR, and others can have destructive effects in the basal level of II/R insult. Based on these literature reviews, II/R injury affects several miRNAs and their specific target genes. Some miRNAs upregulate under condition of II/R injury, and multiple miRNAs downregulate following II/R damage. Data of this review have been collected from the scientific articles published in databases such as Science Direct, Scopus, PubMed, Web of Science, and Scientific Information Database from 2000 to 2020. It is shown a correlation between changes in the expression of miRNAs and autophagy, inflammation, oxidative stress, apoptosis, and epithelial barrier function. Taken together, agomiR or antagomiR of some miRNAs can be considered as one new target for the research and development of innovative drugs to the prevention or treatment of II/R damage.
Collapse
Affiliation(s)
- Ghaidafeh Akbari
- Medicinal Plants Research Center, Department of Physiology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
16
|
Hsieh WC, Svensson MN, Zoccheddu M, Tremblay ML, Sakaguchi S, Stanford SM, Bottini N. PTPN2 links colonic and joint inflammation in experimental autoimmune arthritis. JCI Insight 2020; 5:141868. [PMID: 33055428 PMCID: PMC7605542 DOI: 10.1172/jci.insight.141868] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/09/2020] [Indexed: 12/28/2022] Open
Abstract
Loss-of-function variants of protein tyrosine phosphatase non-receptor type 2 (PTPN2) enhance risk of inflammatory bowel disease and rheumatoid arthritis; however, whether the association between PTPN2 and autoimmune arthritis depends on gut inflammation is unknown. Here we demonstrate that induction of subclinical intestinal inflammation exacerbates development of autoimmune arthritis in SKG mice. Ptpn2-haploinsufficient SKG mice — modeling human carriers of disease-associated variants of PTPN2 — displayed enhanced colitis-induced arthritis and joint accumulation of Tregs expressing RAR-related orphan receptor γT (RORγt) — a gut-enriched Treg subset that can undergo conversion into FoxP3–IL-17+ arthritogenic exTregs. SKG colonic Tregs underwent higher conversion into arthritogenic exTregs when compared with peripheral Tregs, which was exacerbated by haploinsufficiency of Ptpn2. Ptpn2 haploinsufficiency led to selective joint accumulation of RORγt-expressing Tregs expressing the colonic marker G protein–coupled receptor 15 (GPR15) in arthritic mice and selectively enhanced conversion of GPR15+ Tregs into exTregs in vitro and in vivo. Inducible Treg-specific haploinsufficiency of Ptpn2 enhanced colitis-induced SKG arthritis and led to specific joint accumulation of GPR15+ exTregs. Our data validate the SKG model for studies at the interface between intestinal and joint inflammation and suggest that arthritogenic variants of PTPN2 amplify the link between gut inflammation and arthritis through conversion of colonic Tregs into exTregs. Loss of protein tyrosine phosphatase non-receptor type 2 amplifies the link between gut and joint inflammation through conversion of colonic Tregs into arthritogenic exTregs.
Collapse
Affiliation(s)
- Wan-Chen Hsieh
- Department of Medicine, UCSD School of Medicine, La Jolla, California, USA
| | - Mattias Nd Svensson
- Department of Medicine, UCSD School of Medicine, La Jolla, California, USA.,Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Zoccheddu
- Department of Medicine, UCSD School of Medicine, La Jolla, California, USA
| | - Michael L Tremblay
- Rosalind and Morris Goodman Cancer Research Centre.,Department of Biochemistry, and.,Division of Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | - Nunzio Bottini
- Department of Medicine, UCSD School of Medicine, La Jolla, California, USA
| |
Collapse
|
17
|
Which long noncoding RNAs and circular RNAs contribute to inflammatory bowel disease? Cell Death Dis 2020; 11:456. [PMID: 32541691 PMCID: PMC7295799 DOI: 10.1038/s41419-020-2657-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD), a chronic relapsing gastrointestinal inflammatory disease, mainly comprises ulcerative colitis (UC) and Crohn’s disease (CD). Although the mechanisms and pathways of IBD have been widely examined in recent decades, its exact pathogenesis remains unclear. Studies have focused on the discovery of new therapeutic targets and application of precision medicine. Recently, a strong connection between IBD and noncoding RNAs (ncRNAs) has been reported. ncRNAs include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). The contributions of lncRNAs and circRNAs in IBD are less well-studied compared with those of miRNAs. However, lncRNAs and circRNAs are likely to drive personalized therapy for IBD. They will enable accurate diagnosis, prognosis, and prediction of therapeutic responses and promote IBD therapy. Herein, we briefly describe the molecular functions of lncRNAs and circRNAs and provide an overview of the current knowledge of the altered expression profiles of lncRNAs and circRNAs in patients with IBD. Further, we discuss how these RNAs are involved in the nosogenesis of IBD and are emerging as biomarkers.
Collapse
|
18
|
Younis N, Zarif R, Mahfouz R. Inflammatory bowel disease: between genetics and microbiota. Mol Biol Rep 2020; 47:3053-3063. [PMID: 32086718 DOI: 10.1007/s11033-020-05318-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disease that can involve any part of the gastrointestinal tract. It includes two main disorders: Crohn's disease (CD) and Ulcerative colitis (UC). CD and UC often share a similar clinical presentation; however, they affect distinct parts of the GI Tract with a different gut wall inflammatory extent. Ultimately, IBD seems to emanate from an uncontrollably continuous inflammatory process arising against the intestinal microbiome in a genetically susceptible individual. It is a multifactorial disease stemming from the impact of both environmental and genetic components on the intestinal microbiome. Furthermore, IBD genetics has gained a lot of attention. Around 200 loci were identified as imparting an increased risk for IBD. Few of them were heavily investigated and determined as highly linked to IBD. These genes, as discussed below, include NOD2, ATG16L1, IRGM, LRRK2, PTPN2, IL23R, Il10, Il10RA, Il10RB, CDH1 and HNF4α among others. Consequently, the incorporation of a genetic panel covering these key genes would markedly enhance the diagnosis and evaluation of IBD.
Collapse
Affiliation(s)
- Nour Younis
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Cairo Street, Beirut, Lebanon
| | - Rana Zarif
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Cairo Street, Beirut, Lebanon
| | - Rami Mahfouz
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Cairo Street, Beirut, Lebanon.
| |
Collapse
|
19
|
Biological Functions of Autophagy Genes: A Disease Perspective. Cell 2019; 176:11-42. [PMID: 30633901 DOI: 10.1016/j.cell.2018.09.048] [Citation(s) in RCA: 1925] [Impact Index Per Article: 320.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/16/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
Abstract
The lysosomal degradation pathway of autophagy plays a fundamental role in cellular, tissue, and organismal homeostasis and is mediated by evolutionarily conserved autophagy-related (ATG) genes. Definitive etiological links exist between mutations in genes that control autophagy and human disease, especially neurodegenerative, inflammatory disorders and cancer. Autophagy selectively targets dysfunctional organelles, intracellular microbes, and pathogenic proteins, and deficiencies in these processes may lead to disease. Moreover, ATG genes have diverse physiologically important roles in other membrane-trafficking and signaling pathways. This Review discusses the biological functions of autophagy genes from the perspective of understanding-and potentially reversing-the pathophysiology of human disease and aging.
Collapse
|
20
|
Wiede F, Brodnicki TC, Goh PK, Leong YA, Jones GW, Yu D, Baxter AG, Jones SA, Kay TWH, Tiganis T. T-Cell-Specific PTPN2 Deficiency in NOD Mice Accelerates the Development of Type 1 Diabetes and Autoimmune Comorbidities. Diabetes 2019; 68:1251-1266. [PMID: 30936146 DOI: 10.2337/db18-1362] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/17/2019] [Indexed: 11/13/2022]
Abstract
Genome-wide association studies have identified PTPN2 as an important non-MHC gene for autoimmunity. Single nucleotide polymorphisms that reduce PTPN2 expression have been linked with the development of various autoimmune disorders, including type 1 diabetes. The tyrosine phosphatase PTPN2 attenuates T-cell receptor and cytokine signaling in T cells to maintain peripheral tolerance, but the extent to which PTPN2 deficiency in T cells might influence type 1 diabetes onset remains unclear. NOD mice develop spontaneous autoimmune type 1 diabetes similar to that seen in humans. In this study, T-cell PTPN2 deficiency in NOD mice markedly accelerated the onset and increased the incidence of type 1 diabetes as well as that of other disorders, including colitis and Sjögren syndrome. Although PTPN2 deficiency in CD8+ T cells alone was able to drive the destruction of pancreatic β-cells and the onset of diabetes, T-cell-specific PTPN2 deficiency was also accompanied by increased CD4+ T-helper type 1 differentiation and T-follicular-helper cell polarization and increased the abundance of B cells in pancreatic islets as seen in human type 1 diabetes. These findings causally link PTPN2 deficiency in T cells with the development of type 1 diabetes and associated autoimmune comorbidities.
Collapse
Affiliation(s)
- Florian Wiede
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Thomas C Brodnicki
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Pei Kee Goh
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Yew A Leong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Gareth W Jones
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, U.K
- Systems Immunity University Research Institute, Cardiff University, Cardiff, U.K
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, U.K
| | - Di Yu
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Alan G Baxter
- Comparative Genomics Centre, James Cook University, Townsville, Queensland, Australia
| | - Simon A Jones
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, U.K
- Systems Immunity University Research Institute, Cardiff University, Cardiff, U.K
| | - Thomas W H Kay
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Yilmaz B, Spalinger MR, Biedermann L, Franc Y, Fournier N, Rossel JB, Juillerat P, Rogler G, Macpherson AJ, Scharl M. The presence of genetic risk variants within PTPN2 and PTPN22 is associated with intestinal microbiota alterations in Swiss IBD cohort patients. PLoS One 2018; 13:e0199664. [PMID: 29965986 PMCID: PMC6028086 DOI: 10.1371/journal.pone.0199664] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/12/2018] [Indexed: 01/03/2023] Open
Abstract
Background Genetic risk factors, intestinal microbiota and a dysregulated immune system contribute to the pathogenesis of inflammatory bowel disease (IBD). We have previously demonstrated that dysfunction of protein tyrosine phosphatase non-receptor type 2 (PTPN2) and PTPN22 contributes to alterations of intestinal microbiota and the onset of chronic intestinal inflammation in vivo. Here, we investigated the influence of PTPN2 and PTPN22 gene variants on intestinal microbiota composition in IBD patients. Methods Bacterial DNA from mucosa-associated samples of 75 CD and 57 UC patients were sequenced using 16S rRNA sequencing approach. Microbial analysis, including alpha diversity, beta diversity and taxonomical analysis by comparing to PTPN2 (rs1893217) and PTPN22 (rs2476601) genotypes was performed in QIIME, the phyloseq R package and MaAsLin pipeline. Results In PTPN2 variant UC patients, we detected an increase in relative abundance of unassigned genera from Clostridiales and Lachnospiraceae families and reduction of Roseburia when compared to PTPN2 wild-type (WT) patients. Ruminoccocus was increased in PTPN22 variant UC patients. In CD patients with severe disease course, Faecalibacterium, Bilophila, Coprococcus, unclassified Erysipelotrichaeceae, unassigned genera from Clostridiales and Ruminococcaceae families were reduced and Bacteroides were increased in PTPN2 WT carriers, while Faecalibacterium, Bilophila, Coprococcus, and Erysipelotrichaeceae were reduced in PTPN22 WT patients when compared to patients with mild disease. In UC patients with severe disease, relative abundance of Lachnobacterium was reduced in PTPN2 and PTPN22 WT patients, Dorea was increased in samples from PTPN22 WT carriers and an unassigned genus from Ruminococcaceae gen. was increased in patients with PTPN2 variant genotype. Conclusions We identified that IBD-associated genetic risk variants, disease severity and the interaction of these factors are related to significant alterations in intestinal microbiota composition of IBD patients.
Collapse
Affiliation(s)
- Bahtiyar Yilmaz
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marianne R. Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Luc Biedermann
- Department of Gastroenterology and Hepatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Yannick Franc
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Lausanne, Switzerland
| | - Nicolas Fournier
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Lausanne, Switzerland
| | - Jean-Benoit Rossel
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Lausanne, Switzerland
| | - Pascal Juillerat
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Andrew J. Macpherson
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
22
|
Li Z, Wang G, Feng D, Zu G, Li Y, Shi X, Zhao Y, Jing H, Ning S, Le W, Yao J, Tian X. Targeting the miR-665-3p-ATG4B-autophagy axis relieves inflammation and apoptosis in intestinal ischemia/reperfusion. Cell Death Dis 2018; 9:483. [PMID: 29706629 PMCID: PMC5924757 DOI: 10.1038/s41419-018-0518-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 02/08/2023]
Abstract
Autophagy is an essential cytoprotective response against pathologic stresses that selectively degrades damaged cellular components. Impaired autophagy contributes to organ injury in multiple diseases, including ischemia/reperfusion (I/R), but the exact mechanism by which impaired autophagy is regulated remains unclear. Several researchers have demonstrated that microRNAs (miRNAs) negatively regulate autophagy by targeting autophagy-related genes (ATGs). Therefore, the effect of ATG-related miRNAs on I/R remains a promising research avenue. In our study, we found that autophagy flux is impaired during intestinal I/R. A miRNA microarray analysis showed that miR-665-3p was highly expressed in the I/R group, which was confirmed by qRT-PCR. Then, we predicted and proved that miR-665-3p negatively regulates ATG4B expression in Caco-2 and IEC-6 cells. In ileum biopsy samples from patients with intestinal infarction, there was an inverse correlation between miR-665-3p and ATG4B expression, which supports the in vitro findings. Moreover, based on miR-665-3p regulation of autophagy in response to hypoxia/reoxygenation in vitro, gain-of-function and loss-of-function approaches were used to investigate the therapeutic potential of miR-665-3p. Additionally, we provide evidence that ATG4B is indispensable for protection upon inhibition of miR-665-3p. Finally, we observed that locked nucleic acid-modified inhibition of miR-665-3p in vivo alleviates I/R-induced systemic inflammation and apoptosis via recovery of autophagic flux. Our study highlights miR-665-3p as a novel small molecule that regulates autophagy by targeting ATG4B, suggesting that miR-665-3p inhibition may be a potential therapeutic approach against inflammation and apoptosis for the clinical treatment of intestinal I/R.
Collapse
Affiliation(s)
- Zhenlu Li
- Department of General Surgery, The Second Hospital of Dalian Medical University, 116023, Dalian, China
| | - Guangzhi Wang
- Department of General Surgery, The Second Hospital of Dalian Medical University, 116023, Dalian, China
| | - Dongcheng Feng
- Department of General Surgery, The Second Hospital of Dalian Medical University, 116023, Dalian, China
| | - Guo Zu
- Department of General Surgery, The Second Hospital of Dalian Medical University, 116023, Dalian, China
| | - Yang Li
- Department of General Surgery, The Second Hospital of Dalian Medical University, 116023, Dalian, China
| | - Xue Shi
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Huirong Jing
- Department of General Surgery, The Second Hospital of Dalian Medical University, 116023, Dalian, China
| | - Shili Ning
- Department of General Surgery, The Second Hospital of Dalian Medical University, 116023, Dalian, China
| | - Weidong Le
- Clinical Research Center on Neurological Diseases, the First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China.
| | - Xiaofeng Tian
- Department of General Surgery, The Second Hospital of Dalian Medical University, 116023, Dalian, China.
| |
Collapse
|
23
|
Houtman M, Shchetynsky K, Chemin K, Hensvold AH, Ramsköld D, Tandre K, Eloranta ML, Rönnblom L, Uebe S, Catrina AI, Malmström V, Padyukov L. T cells are influenced by a long non-coding RNA in the autoimmune associated PTPN2 locus. J Autoimmun 2018; 90:28-38. [PMID: 29398253 DOI: 10.1016/j.jaut.2018.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/31/2022]
Abstract
Non-coding SNPs in the protein tyrosine phosphatase non-receptor type 2 (PTPN2) locus have been linked with several autoimmune diseases, including rheumatoid arthritis, type I diabetes, and inflammatory bowel disease. However, the functional consequences of these SNPs are poorly characterized. Herein, we show in blood cells that SNPs in the PTPN2 locus are highly correlated with DNA methylation levels at four CpG sites downstream of PTPN2 and expression levels of the long non-coding RNA (lncRNA) LINC01882 downstream of these CpG sites. We observed that LINC01882 is mainly expressed in T cells and that anti-CD3/CD28 activated naïve CD4+ T cells downregulate the expression of LINC01882. RNA sequencing analysis of LINC01882 knockdown in Jurkat T cells, using a combination of antisense oligonucleotides and RNA interference, revealed the upregulation of the transcription factor ZEB1 and kinase MAP2K4, both involved in IL-2 regulation. Overall, our data suggests the involvement of LINC01882 in T cell activation and hints towards an auxiliary role of these non-coding SNPs in autoimmunity associated with the PTPN2 locus.
Collapse
Affiliation(s)
- Miranda Houtman
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden.
| | - Klementy Shchetynsky
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Karine Chemin
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Aase Haj Hensvold
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Ramsköld
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Tandre
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Steffen Uebe
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Anca Irinel Catrina
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Vivianne Malmström
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Leonid Padyukov
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Abstract
The discovery of numerous genetic variants in the human genome that are associated with inflammatory bowel disease (IBD) has revealed critical pathways that play important roles in intestinal homeostasis. These genetic studies have identified a critical role for macroautophagy/autophagy and more recently, lysosomal function, in maintaining the intestinal barrier and mucosal homeostasis. This review highlights recent work on the functional characterization of IBD-associated human genetic variants in cell type-specific functions for autophagy.
Collapse
Affiliation(s)
- Kara G Lassen
- a Broad Institute ; Cambridge , MA USA.,b Center for Computational and Integrative Biology ; Massachusetts General Hospital ; Boston , MA USA
| | - Ramnik J Xavier
- a Broad Institute ; Cambridge , MA USA.,b Center for Computational and Integrative Biology ; Massachusetts General Hospital ; Boston , MA USA.,c Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease ; Massachusetts General Hospital; Harvard Medical School ; Boston , MA USA
| |
Collapse
|
25
|
Byun YS, Lee HJ, Shin S, Chung SH. Elevation of autophagy markers in Sjögren syndrome dry eye. Sci Rep 2017; 7:17280. [PMID: 29222450 PMCID: PMC5722946 DOI: 10.1038/s41598-017-17128-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
Autophagy is known to be implicated in the pathogenesis of Sjögren syndrome (SS), but evidences are limited. We aimed to examine the levels of autophagy markers in tear film and conjunctival epithelial cells from SS dry eye patients, and analyze their correlations with clinical features. Patients with SS dry eye exhibited lower Schirmer values, lower tear breakup time, and higher ocular staining scores. In tears, ATG5 and LC3B-II/I levels were significantly higher in SS dry eye. ATG5 and LC3B-II mRNA in the conjunctiva were also elevated in SS dry eye compared with non-SS dry eye. The immunostaining of conjunctival epithelium showed a punctate pattern of ATG5 and LC3B-II in SS dry eye. These staining patterns were also observed in the lacrimal gland of SS animal models. ATG5 levels in tears and the conjunctival epithelium strongly correlated with ocular staining scores, and one month of topical corticosteroid treatment reduced both ATG5 and LC3B-II/I levels in tear film and the conjunctival epithelium of patients with SS dry eye. Our results suggest that autophagy is enhanced or dysregulated in SS and autophagy markers may be serve as both diagnostic and therapeutic biomarkers in SS dry eye.
Collapse
Affiliation(s)
- Yong-Soo Byun
- Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, Catholic University of Korea, College of Medicine, Seoul, Republic of Korea.,Catholic Institute for Visual Science, Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, Catholic University of Korea, College of Medicine, Seoul, Republic of Korea.,Catholic Institute for Visual Science, Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Soojung Shin
- Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, Catholic University of Korea, College of Medicine, Seoul, Republic of Korea.,Catholic Institute for Visual Science, Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - So-Hyang Chung
- Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, Catholic University of Korea, College of Medicine, Seoul, Republic of Korea. .,Catholic Institute for Visual Science, Catholic University of Korea, College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Recent advances in understanding the role of protein-tyrosine phosphatases in development and disease. Dev Biol 2017; 428:283-292. [PMID: 28728679 DOI: 10.1016/j.ydbio.2017.03.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 01/15/2023]
Abstract
Protein-tyrosine phosphatases (PTPs) remove phosphate groups from tyrosine residues, and thereby propagate or inhibit signal transduction, and hence influence cellular processes such as cell proliferation and differentiation. The importance of tightly controlled PTP activity is reflected by the numerous mechanisms employed by the cell to control PTP activity, including a variety of post-translational modifications, and restricted subcellular localization. This review highlights the strides made in the last decade and discusses the important role of PTPs in key aspects of embryonic development: the regulation of stem cell self-renewal and differentiation, gastrulation and somitogenesis during early embryonic development, osteogenesis, and angiogenesis. The tentative importance of PTPs in these processes is highlighted by the diseases that present upon aberrant activity.
Collapse
|
27
|
Wiede F, Dudakov JA, Lu KH, Dodd GT, Butt T, Godfrey DI, Strasser A, Boyd RL, Tiganis T. PTPN2 regulates T cell lineage commitment and αβ versus γδ specification. J Exp Med 2017; 214:2733-2758. [PMID: 28798028 PMCID: PMC5584121 DOI: 10.1084/jem.20161903] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 05/26/2017] [Accepted: 06/28/2017] [Indexed: 01/18/2023] Open
Abstract
During early thymocyte development, coordinated JAK/STAT5 and SFK/pre-TCR signaling is critical for T cell lineage commitment and αβ versus γδ specification. Wiede et al. show a role for the tyrosine phosphatase PTPN2 in attenuating SRC family kinase LCK and STAT5 signaling to regulate αβ and γδ T cell development. In the thymus, hematopoietic progenitors commit to the T cell lineage and undergo sequential differentiation to generate diverse T cell subsets, including major histocompatibility complex (MHC)–restricted αβ T cell receptor (TCR) T cells and non–MHC-restricted γδ TCR T cells. The factors controlling precursor commitment and their subsequent maturation and specification into αβ TCR versus γδ TCR T cells remain unclear. Here, we show that the tyrosine phosphatase PTPN2 attenuates STAT5 (signal transducer and activator of transcription 5) signaling to regulate T cell lineage commitment and SRC family kinase LCK and STAT5 signaling to regulate αβ TCR versus γδ TCR T cell development. Our findings identify PTPN2 as an important regulator of critical checkpoints that dictate the commitment of multipotent precursors to the T cell lineage and their subsequent maturation into αβ TCR or γδ TCR T cells.
Collapse
Affiliation(s)
- Florian Wiede
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia .,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Jarrod A Dudakov
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Kun-Hui Lu
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Garron T Dodd
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Tariq Butt
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Dale I Godfrey
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Strasser
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Richard L Boyd
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia .,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Loss of T-cell protein tyrosine phosphatase in the intestinal epithelium promotes local inflammation by increasing colonic stem cell proliferation. Cell Mol Immunol 2017; 15:367-376. [PMID: 28287113 PMCID: PMC6052838 DOI: 10.1038/cmi.2016.72] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/27/2022] Open
Abstract
T-cell protein tyrosine phosphatase (TC-PTP) has a critical role in the development of the immune system and has been identified as a negative regulator of inflammation. Single-nucleotide polymorphisms in the TC-PTP locus have been associated with increased susceptibility to inflammatory bowel diseases (IBDs) in patients. To further understand how TC-PTP is related to IBDs, we investigated the role of TC-PTP in maintaining the intestinal epithelial barrier using an in vivo genetic approach. Intestinal epithelial cell (IEC)-specific deletion of TC-PTP was achieved in a mouse model at steady state and in the context of dextran sulphate sodium (DSS)-induced colitis. Knockout (KO) of TC-PTP in IECs did not result in an altered intestinal barrier. However, upon DSS treatment, IEC-specific TC-PTP KO mice displayed a more severe colitis phenotype with a corresponding increase in the immune response and inflammatory cytokine profile. The absence of TC-PTP caused an altered turnover of IECs, which is further explained by the role of the tyrosine phosphatase in colonic stem cell (CoSC) proliferation. Our results suggest a novel role for TC-PTP in regulating the homeostasis of CoSC proliferation. This supports the protective function of TC-PTP against IBDs, independently of its previously demonstrated role in intestinal immunity.
Collapse
|
29
|
Nakka P, Raphael BJ, Ramachandran S. Gene and Network Analysis of Common Variants Reveals Novel Associations in Multiple Complex Diseases. Genetics 2016; 204:783-798. [PMID: 27489002 PMCID: PMC5068862 DOI: 10.1534/genetics.116.188391] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/24/2016] [Indexed: 12/11/2022] Open
Abstract
Genome-wide association (GWA) studies typically lack power to detect genotypes significantly associated with complex diseases, where different causal mutations of small effect may be present across cases. A common, tractable approach for identifying genomic elements associated with complex traits is to evaluate combinations of variants in known pathways or gene sets with shared biological function. Such gene-set analyses require the computation of gene-level P-values or gene scores; these gene scores are also useful when generating hypotheses for experimental validation. However, commonly used methods for generating GWA gene scores are computationally inefficient, biased by gene length, imprecise, or have low true positive rate (TPR) at low false positive rates (FPR), leading to erroneous hypotheses for functional validation. Here we introduce a new method, PEGASUS, for analytically calculating gene scores. PEGASUS produces gene scores with as much as 10 orders of magnitude higher numerical precision than competing methods. In simulation, PEGASUS outperforms existing methods, achieving up to 30% higher TPR when the FPR is fixed at 1%. We use gene scores from PEGASUS as input to HotNet2 to identify networks of interacting genes associated with multiple complex diseases and traits; this is the first application of HotNet2 to common variation. In ulcerative colitis and waist-hip ratio, we discover networks that include genes previously associated with these phenotypes, as well as novel candidate genes. In contrast, existing methods fail to identify these networks. We also identify networks for attention-deficit/hyperactivity disorder, in which GWA studies have yet to identify any significant SNPs.
Collapse
Affiliation(s)
- Priyanka Nakka
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912 Center for Computational Molecular Biology, Brown University, Providence, Rhode Island 02912
| | - Benjamin J Raphael
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island 02912 Department of Computer Science, Brown University, Providence, Rhode Island 02912
| | - Sohini Ramachandran
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912 Center for Computational Molecular Biology, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
30
|
Wiede F, Sacirbegovic F, Leong YA, Yu D, Tiganis T. PTPN2-deficiency exacerbates T follicular helper cell and B cell responses and promotes the development of autoimmunity. J Autoimmun 2016; 76:85-100. [PMID: 27658548 DOI: 10.1016/j.jaut.2016.09.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/08/2016] [Accepted: 09/11/2016] [Indexed: 02/07/2023]
Abstract
Non-coding single nucleotide polymorphisms that repress PTPN2 expression have been linked with the development of type 1 diabetes, rheumatoid arthritis and Crohn's disease. PTPN2 attenuates CD8+ T cell responses to self and prevents overt autoreactivity in the context of T cell homeostasis and antigen cross-presentation. The role of PTPN2 in other immune subsets in the development of autoimmunity remains unclear. Here we show that the inducible deletion of PTPN2 in hematopoietic compartment of adult non-autoimmune prone mice results in systemic inflammation and autoimmunity. PTPN2-deficient mice had increased inflammatory monocytes, B cells and effector T cells in lymphoid and non-lymphoid tissues and exhibited symptoms of dermatitis, glomerulonephritis, pancreatitis and overt liver disease. Autoimmunity was characterised by the formation of germinal centers in the spleen and associated with markedly increased germinal center B cells and T follicular helper (Tfh) cells and circulating anti-nuclear antibodies, inflammatory cytokines and immunoglobulins. CD8+ T cell proliferative responses were enhanced, and interleukin-21-induced STAT-3 signalling in Tfh cells and B cells was increased and accompanied by enhanced B cell proliferation ex vivo. These results indicate that deficiencies in PTPN2 across multiple immune lineages, including naive T cells, Tfh cells and B cells, contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Florian Wiede
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Faruk Sacirbegovic
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Yew Ann Leong
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Di Yu
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Tony Tiganis
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
31
|
Ghisalberti CA, Borzì RM, Cetrullo S, Flamigni F, Cairo G. Soft TCPTP Agonism-Novel Target to Rescue Airway Epithelial Integrity by Exogenous Spermidine. Front Pharmacol 2016; 7:147. [PMID: 27375482 PMCID: PMC4892113 DOI: 10.3389/fphar.2016.00147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
A reparative approach of disrupted epithelium in obstructive airway diseases, namely asthma and chronic obstructive pulmonary disease (COPD), may afford protection and long-lasting results compared to conventional therapies, e.g., corticosteroids or immunosuppressant drugs. Here, we propose the polyamine spermidine as a novel therapeutic agent in airways diseases, based on a recently identified mode of action: T-cell protein tyrosine phosphatase (TCPTP) agonism. It may include and surpass single-inhibitors of stress and secondary growth factor pathway signaling, i.e., the new medicinal chemistry in lung diseases. Enhanced polyamine biosynthesis has been charged with aggravating prognosis by competing for L-arginine at detriment of nitric oxide (NO) synthesis with bronchoconstrictive effects. Although excess spermine, a higher polyamine, is harmful to airways physiology, spermidine can pivot the cell homeostasis during stress conditions by the activation of TCPTP. In fact, the dephosphorylating activity of TCPTP inhibits the signaling cascade that leads to the expression of genes involved in detachment and epithelial-to-mesenchymal transition (EMT), and increases the expression of adhesion and tight junction proteins, thereby enhancing the barrier functionality in inflammation-prone tissues. Moreover, a further beneficial effect of spermidine may derive from its ability to promote autophagy, possibly in a TCPTP-dependent way. Since doses of spermidine in the micromolar range are sufficient to activate TCPTP, low amounts of spermidine administered in sustained release modality may provide an optimal pharmacologic profile for the treatment of obstructive airway diseases.
Collapse
Affiliation(s)
- Carlo A Ghisalberti
- Department of Biomedical Sciences for Health, University of MilanMilan, Italy; TixupharmaMilan, Italy
| | - Rosa M Borzì
- Laboratory of Immunorheumatology and Tissue Regeneration, Rizzoli Orthopaedic Institute Bologna, Italy
| | - Silvia Cetrullo
- Department of Biomedical and Neuromotor Sciences, University of Bologna Bologna, Italy
| | - Flavio Flamigni
- Department of Biomedical and Neuromotor Sciences, University of Bologna Bologna, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan Milan, Italy
| |
Collapse
|
32
|
Sifuentes-Dominguez L, Patel AS. Genetics and Therapeutics in Pediatric Ulcerative Colitis: the Past, Present and Future. F1000Res 2016; 5. [PMID: 26973787 PMCID: PMC4776672 DOI: 10.12688/f1000research.7440.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2016] [Indexed: 12/19/2022] Open
Abstract
Ulcerative colitis (UC) is a relapsing and remitting disease with significant phenotypic and genotypic variability. Though more common in adults, UC is being increasingly diagnosed in childhood. The subsequent lifelong course of disease results in challenges for the patient and physician. Currently, there is no medical cure for UC. Even though surgical removal of the colon can be curative, complications including infertility in females make colectomy an option often considered only when the disease presents with life-threatening complications or when medical management fails. One of the greatest challenges the clinician faces in the care of patients with UC is the inability to predict at diagnosis which patient is going to respond to a specific therapy or will eventually require surgery. This therapeutic conundrum frames the discussion to follow, specifically the concept of individualized or personalized treatment strategies based on genetic risk factors. As we move to therapeutics, we will elucidate traditional approaches and discuss known and novel agents. As we look to the future, we can expect increasing integrated approaches using several scientific disciplines to inform how genetic interactions shape and mold the pathogenesis and therapeutics of UC.
Collapse
Affiliation(s)
| | - Ashish S Patel
- Children's Health, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
33
|
Aradi B, Kato M, Filkova M, Karouzakis E, Klein K, Scharl M, Kolling C, Michel BA, Gay RE, Buzas EI, Gay S, Jüngel A. Protein tyrosine phosphatase nonreceptor type 2: an important regulator of lnterleukin-6 production in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol 2016; 67:2624-33. [PMID: 26139109 DOI: 10.1002/art.39256] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 06/18/2015] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate the role of protein tyrosine phosphatase nonreceptor type 2 (PTPN2) in the pathogenesis of rheumatoid arthritis (RA). METHODS Synovial tissue samples from patients with RA and patients with osteoarthritis (OA) were stained for PTPN2. Synovial fibroblasts were stimulated with tumor necrosis factor (TNF) and interleukin-1β (IL-1β), lipopolysaccharide (LPS), TRAIL, or thapsigargin. The expression of PTPN2 in synovial fibroblasts and peripheral blood mononuclear cells (PBMCs) was analyzed by real-time polymerase chain reaction and Western blotting. Cell death, the release of IL-6 and IL-8, and the induction of autophagy were analyzed after PTPN2 silencing. Methylated DNA immunoprecipitation analysis was used to evaluate DNA methylation-regulated gene expression of PTPN2. RESULTS PTPN2 was significantly overexpressed in synovial tissue samples from RA patients compared to OA patients. Patients receiving anti-TNF therapy showed significantly reduced staining for PTPN2 compared with patients treated with nonbiologic agents. PTPN2 expression was higher in RA synovial fibroblasts (RASFs) than in OASFs. This differential expression was not regulated by DNA methylation. PTPN2 was further up-regulated after stimulation with TNF, TNF combined with IL-1β, or LPS. There was no significant difference in basal PTPN2 expression in PBMCs from patients with RA, ankylosing spondylitis, or systemic lupus erythematosus or healthy controls. Most interestingly, PTPN2 silencing in RASFs significantly increased the production of the inflammatory cytokine IL-6 but did not affect levels of IL-8. Moreover, functional analysis showed that high PTPN2 levels contributed to the increased apoptosis resistance of RASFs and increased autophagy. CONCLUSION This is the first study of PTPN2 in RASFs showing that PTPN2 regulates IL-6 production, cell death, and autophagy. Our findings indicate that PTPN2 is linked to the pathogenesis of RA via synovial fibroblasts.
Collapse
Affiliation(s)
- Borbala Aradi
- Center of Experimental Rheumatology, University Hospital Zurich, and Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Masaru Kato
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Maria Filkova
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland, and Charles University in Prague, Prague, Czech Republic
| | - Emmanuel Karouzakis
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Kerstin Klein
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Scharl
- Zurich Center for Integrative Human Physiology and University Hospital Zurich, Zurich, Switzerland
| | | | - Beat A Michel
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Renate E Gay
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Steffen Gay
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Astrid Jüngel
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Spalinger MR, McCole DF, Rogler G, Scharl M. Protein tyrosine phosphatase non-receptor type 2 and inflammatory bowel disease. World J Gastroenterol 2016; 22:1034-1044. [PMID: 26811645 PMCID: PMC4716018 DOI: 10.3748/wjg.v22.i3.1034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/31/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Genome wide association studies have associated single nucleotide polymorphisms within the gene locus encoding protein tyrosine phosphatase non-receptor type 2 (PTPN2) with the onset of inflammatory bowel disease (IBD) and other inflammatory disorders. Expression of PTPN2 is enhanced in actively inflamed intestinal tissue featuring a marked up-regulation in intestinal epithelial cells. PTPN2 deficient mice suffer from severe intestinal and systemic inflammation and display aberrant innate and adaptive immune responses. In particular, PTPN2 is involved in the regulation of inflammatory signalling cascades, and critical for protecting intestinal epithelial barrier function, regulating innate and adaptive immune responses, and finally for maintaining intestinal homeostasis. On one hand, dysfunction of PTPN2 has drastic effects on innate host defence mechanisms, including increased secretion of pro-inflammatory cytokines, limited autophagosome formation in response to invading pathogens, and disruption of the intestinal epithelial barrier. On the other hand, PTPN2 function is crucial for controlling adaptive immune functions, by regulating T cell proliferation and differentiation as well as maintaining T cell tolerance. In this way, dysfunction of PTPN2 contributes to the manifestation of IBD. The aim of this review is to present an overview of recent findings on the role of PTPN2 in intestinal homeostasis and the impact of dysfunctional PTPN2 on intestinal inflammation.
Collapse
|
35
|
Abstract
INTRODUCTION Autophagy is a cellular stress response that plays key roles in physiological processes, such as adaptation to starvation, degradation of aberrant proteins or organelles, anti-microbial defense, protein secretion, and innate and adaptive immunity. Dysfunctional autophagy is recognized as a contributing factor in many chronic inflammatory diseases, including inflammatory bowel disease (IBD). Genetic studies have identified multiple IBD-associated risk loci that include genes required for autophagy, and several lines of evidence demonstrate that autophagy is impaired in IBD patients. How dysfunctional autophagy contributes to IBD onset is currently under investigation by researchers. KEY MESSAGES Dysfunctional autophagy has been identified to play a role in IBD pathogenesis by altering processes that include (1) intracellular bacterial killing, (2) anti-microbial peptide secretion by Paneth cells, (3) pro-inflammatory cytokine production by macrophages, (4) antigen presentation by dendritic cells, (5) goblet cell function, and (6) the endoplasmic reticulum stress response in enterocytes. The overall effect of dysregulation of these processes varies by cell type, stimulus, as well as cellular context. Manipulation of the autophagic pathway may provide a new avenue in the search for effective therapies for IBD. CONCLUSION Autophagy plays multiple roles in IBD pathogenesis. A better understanding of the role of autophagy in IBD patients may provide better subclassification of IBD phenotypes and novel approaches to disease management.
Collapse
Affiliation(s)
- Faris El-Khider
- Department of Gastroenterology & Hepatology, Digestive Disease Institute, Cleveland Clinic,Department of Pathobiology, Lerner Research Institute, Cleveland Clinic
| | - Christine McDonald
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic,Corresponding author: Christine McDonald, Department of Pathobiology, Lerner Research Institute, NC22, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, 44195, USA, Phone: (216) 445-7058,
| |
Collapse
|
36
|
Sharp RC, Abdulrahim M, Naser ES, Naser SA. Genetic Variations of PTPN2 and PTPN22: Role in the Pathogenesis of Type 1 Diabetes and Crohn's Disease. Front Cell Infect Microbiol 2015; 5:95. [PMID: 26734582 PMCID: PMC4689782 DOI: 10.3389/fcimb.2015.00095] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/07/2015] [Indexed: 12/12/2022] Open
Abstract
Genome wide association studies have identified several genes that might be associated with increase susceptibility to Type 1 Diabetes (T1D) and Crohn's disease. Both Crohn's disease and T1D have a profound impact on the lives of patients and it is pivotal to investigate the genetic role in patients acquiring these diseases. Understanding the effect of single nucleotide polymorphisms (SNP's) in key genes in patients suffering from T1D and Crohn's disease is crucial to finding an effective treatment and generating novel therapeutic drugs. This review article is focused on the impact of SNP's in PTPN2 (protein tyrosine phosphatase, non-receptor type 2) and PTPN22 (protein tyrosine phosphatase non-receptor type 22) on the development of Crohn's disease and T1D. The PTPN2 gene mutation in T1D patients play a direct role in the destruction of beta cells while in Crohn's disease patients, it modulates the innate immune responses. The PTPN22 gene mutations also play a role in both diseases by modulating intracellular signaling. Examining the mechanism through which these genes increase the susceptibility to both diseases and gaining a better understanding of their structure and function is of vital importance to understand the etiology and pathogenesis of Type 1 Diabetes and Crohn's disease.
Collapse
Affiliation(s)
- Robert C Sharp
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Muna Abdulrahim
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Ebraheem S Naser
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Saleh A Naser
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| |
Collapse
|
37
|
Nicotine-induced cellular stresses and autophagy in human cancer colon cells: A supportive effect on cell homeostasis via up-regulation of Cox-2 and PGE(2) production. Int J Biochem Cell Biol 2015; 65:239-56. [PMID: 26100595 DOI: 10.1016/j.biocel.2015.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 05/28/2015] [Accepted: 06/12/2015] [Indexed: 12/12/2022]
Abstract
Nicotine, one of the active components in cigarette smoke, has been described to contribute to the protective effect of smoking in ulcerative colitis (UC) patients. Furthermore, the nicotinic acetylcholine receptor α7 subunit (α7nAChR) expressed on immune cells, is an essential regulator of inflammation. As intestinal epithelial cells also express α7nAChR, we investigated how nicotine could participate in the homeostasis of intestinal epithelial cells. First, using the human adenocarcinoma cell line HT-29, we revealed that nicotine, which triggers an influx of extracellular Ca(2+) following α7nAChR stimulation, induces mitochondrial reactive oxygen species (ROS) production associated with a disruption of the mitochondrial membrane potential and endoplasmic reticulum stress. This results in caspase-3 activation, which in turn induces apoptosis. Additionally, we have shown that nicotine induces a PI3-K dependent up-regulation of cyclooxygenase-2 (Cox-2) expression and prostaglandin E2 (PGE2) production. In this context, we suggest that this key mediator participates in the cytoprotective effects of nicotine against apoptosis by stimulating autophagy in colon cancer cells. Our results provide new insight into one potential mechanism by which nicotine could protect from UC and suggest an anti-inflammatory role for the cholinergic pathway at the epithelial cell level.
Collapse
|
38
|
Yang Z, Goronzy JJ, Weyand CM. Autophagy in autoimmune disease. J Mol Med (Berl) 2015; 93:707-17. [PMID: 26054920 DOI: 10.1007/s00109-015-1297-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/08/2015] [Accepted: 05/19/2015] [Indexed: 12/19/2022]
Abstract
Autophagy is a protective and life-sustaining process in which cytoplasmic components are packaged into double-membrane vesicles and targeted to lysosomes for degradation. This process of cellular self-digestion is an essential stress response and is cytoprotective by removing damaged organelles and proteins that threaten the cell's survival. Key outcomes include energy generation and recycling of metabolic precursors. In the immune system, autophagy regulates processes such as antigen uptake and presentation, removal of pathogens, survival of short- and long-lived immune cells, and cytokine-dependent inflammation. In all cases, a window of optimal autophagic activity appears critical to balance catabolic, reparative, and inflammation-inducing processes. Dysregulation of autophagosome formation and autophagic flux can have deleterious consequences, ranging from a failure to "clean house" to the induction of autophagy-induced cell death. Abnormalities in the autophagic pathway have been implicated in numerous autoimmune diseases. Genome-wide association studies have linked polymorphisms in autophagy-related genes with predisposition for tissue-destructive inflammatory disease, specifically in inflammatory bowel disease and systemic lupus erythematosus. Although the precise mechanisms by which dysfunctional autophagy renders the host susceptible to continuous inflammation remain unclear, autophagy's role in regulating the long-term survival of adaptive immune cells has recently surfaced as a defect in multiple sclerosis and rheumatoid arthritis. Efforts are underway to identify autophagy-inducing and autophagy-suppressing pharmacologic interventions that can be added to immunosuppressive therapy to improve outcomes of patients with autoimmune disease.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Medicine, Stanford University School of Medicine, CCSR Building Rm 2225, 269 Campus Drive West, Stanford, CA, 94305-5166, USA
| | | | | |
Collapse
|
39
|
Role of protein tyrosine phosphatases in regulating the immune system: implications for chronic intestinal inflammation. Inflamm Bowel Dis 2015; 21:645-55. [PMID: 25581833 PMCID: PMC4329025 DOI: 10.1097/mib.0000000000000297] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Current hypothesis suggests that genetic, immunological, and bacterial factors contribute essentially to the pathogenesis of inflammatory bowel disease. Variations within the gene loci encoding protein tyrosine phosphatases (PTPs) have been associated with the onset of inflammatory bowel disease. PTPs modulate the activity of their substrates by dephosphorylation of tyrosine residues and are critical for the regulation of fundamental cellular signaling processes. Evidence emerges that expression levels of PTPN2, PTPN11, and PTPN22 are altered in actively inflamed intestinal tissue. PTPN2 seems to be critical for protecting intestinal epithelial barrier function, regulating innate and adaptive immune responses and finally for maintaining intestinal homeostasis. These observations have been confirmed in PTPN2 knockout mice in vivo. Those animals are clearly more susceptible to intestinal and systemic inflammation and feature alterations in innate and adaptive immune responses. PTPN22 controls inflammatory signaling in lymphocytes and mononuclear cells resulting in aberrant cytokine secretion pattern and autophagosome formation. PTPN22 deficiency in vivo results in more severe colitis demonstrating the relevance of PTPN22 for intestinal homeostasis in vivo. Of note, loss of PTPN22 promotes mitogen-activated protein kinase-induced cytokine secretion but limits secretion of nuclear factor κB-associated cytokines and autophagy in mononuclear cells. Loss of PTPN11 is also associated with increased colitis severity in vivo. In summary, dysfunction of those PTPs results in aberrant and uncontrolled immune responses that result in chronic inflammatory conditions. This way, it becomes more and more evident that dysfunction of PTPs displays an important factor in the pathogenesis of chronic intestinal inflammation, in particular inflammatory bowel disease.
Collapse
|
40
|
Guo CC, Deng Y, Ye H, Zhu YZ, Zheng XB. Role of MAPK signaling pathways in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2015; 23:229-235. [DOI: 10.11569/wcjd.v23.i2.229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are a group of highly conserved serine protein kinases which are distributed in the cytoplasm. MAPK signal transduction pathways play a major role in inflammatory reactions and have a close relation with inflammatory bowel disease (IBD). They could be involved in the regulation of inflammatory mediators as well as IBD-associated genes. This paper reviews the role of MAPK signaling pathways in the pathogenesis of IBD, aiming at providing a new method for the treatment of IBD.
Collapse
|
41
|
Liu CE, Huang YH. PTPN2 and NF-κB single nucleotide polymorphisms associated with susceptibility to ulcerative colitis. Shijie Huaren Xiaohua Zazhi 2015; 23:71-77. [DOI: 10.11569/wcjd.v23.i1.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is a form of chronic and recurrent bowel disease with unknown etiology. Pieces of evidence suggest that UC should be evolved as a result of inappropriate and ongoing activation of the mucosal immune system driven by the luminal commensal microflora in a genetically susceptible host. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) and nuclear factor-kappa B (NF-κB) play important roles not only in inflammatory pathways, but also in the development of UC. In recent years, association of PTPN2 and NF-κB gene polymorphisms with susceptibility to UC has become a research focus in Western counties, but the studies are controversial in southern China. This paper reviews the PTPN2 and NF-κB gene single nucleotide poly-morphisms (SNPs) associated with susceptibility to UC.
Collapse
|
42
|
Gerster R, Eloranta JJ, Hausmann M, Ruiz PA, Cosin-Roger J, Terhalle A, Ziegler U, Kullak-Ublick GA, von Eckardstein A, Rogler G. Anti-inflammatory Function of High-Density Lipoproteins via Autophagy of IκB Kinase. Cell Mol Gastroenterol Hepatol 2014; 1:171-187.e1. [PMID: 28247863 PMCID: PMC5301135 DOI: 10.1016/j.jcmgh.2014.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 12/12/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Plasma levels of high-density lipoprotein (HDL) cholesterol are frequently found decreased in patients with inflammatory bowel disease (IBD). Therefore, and because HDL exerts anti-inflammatory activities, we investigated whether HDL and its major protein component apolipoprotein A-I (apoA-I) modulate mucosal inflammatory responses in vitro and in vivo. METHODS The human intestinal epithelial cell line T84 was used as the in vitro model for measuring the effects of HDL on the expression and secretion of tumor necrosis factor (TNF), interleukin-8 (IL-8), and intracellular adhesion molecule (ICAM). Nuclear factor-κB (NF-κB)-responsive promoter activity was studied by dual luciferase reporter assays. Mucosal damage from colitis induced by dextran sodium sulphate (DSS) and 2,4,6-trinitrobenzenesulfonic acid (TNBS) was scored by colonoscopy and histology in apoA-I transgenic (Tg) and apoA-I knockout (KO) and wild-type (WT) mice. Myeloperoxidase (MPO) activity and TNF and ICAM expression were determined in intestinal tissue samples. Autophagy was studied by Western blot analysis, immunofluorescence, and electron microscopy. RESULTS HDL and apoA-I down-regulated TNF-induced mRNA expression of TNF, IL-8, and ICAM, as well as TNF-induced NF-κB-responsive promoter activity. DSS/TNBS-treated apoA-I KO mice displayed increased mucosal damage upon both colonoscopy and histology, increased intestinal MPO activity and mRNA expression of TNF and ICAM as compared with WT and apoA-I Tg mice. In contrast, apoA-I Tg mice showed less severe symptoms monitored by colonoscopy and MPO activity in both the DSS and TNBS colitis models. In addition, HDL induced autophagy, leading to recruitment of phosphorylated IκB kinase to the autophagosome compartment, thereby preventing NF-κB activation and induction of cytokine expression. CONCLUSIONS Taken together, the in vitro and in vivo findings suggest that HDL and apoA-I suppress intestinal inflammation via autophagy and are potential therapeutic targets for the treatment of IBD.
Collapse
Key Words
- 3-MA, 3-methyl adenine
- ApoA-I, apolipoprotein A-I
- Apolipoprotein A-I
- Autophagy
- CD, Crohn’s disease
- DAPI, 4′,6-diamidino-2-phenylindole
- DSS, dextran sodium sulphate
- EMSA, electrophoretic mobility shift assay
- HDL, high-density lipoprotein
- IBD, inflammatory bowel disease
- ICAM, intracellular adhesion molecule
- IL, interleukin
- Inflammatory Bowel Disease
- KO, knockout
- LC3II, light chain 3 II
- MEICS, murine endoscopic index of colitis severity
- MPO, myeloperoxidase
- NF-κB
- NF-κB, nuclear factor κB
- PBS, phosphate-buffered saline
- PFA, paraformaldehyde
- PI-3, phosphatidylinositol-3
- RT-PCR, real-time polymerase chain reaction
- TNBS, 2,4,6-trinitrobenzenesulfonic acid
- TNF, tumor necrosis factor
- Tg, transgenic
- WT, wild type
- mTOR, the mammalian target of rapamycin
- p-IKK, phosphorylated IκB kinase
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Ragam Gerster
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Schlieren, Switzerland
- Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Jyrki J. Eloranta
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Schlieren, Switzerland
| | - Martin Hausmann
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Pedro A. Ruiz
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Jesus Cosin-Roger
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Anne Terhalle
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Urs Ziegler
- Centre for Microscopy and Image Analysis, University Hospital Zurich, Zurich, Switzerland
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Schlieren, Switzerland
- Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Correspondence Address correspondence to: Gerhard Rogler, MD, PhD, Division of Gastroenterology and Hepatology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland. fax: +41-0-44-255-9497.
| |
Collapse
|
43
|
Sorbara MT, Girardin SE. Emerging themes in bacterial autophagy. Curr Opin Microbiol 2014; 23:163-70. [PMID: 25497773 DOI: 10.1016/j.mib.2014.11.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
The role of autophagy in the control of intracellular bacterial pathogens, also known as xenophagy, is well documented. Here, we highlight recent advances in the field of xenophagy. We review the importance of bacterial targeting by ubiquitination, diacylglycerol (DAG) or proteins such as Nod1, Nod2, NDP52, p62, NBR1, optineurin, LRSAM1 and parkin in the process of xenophagy. The importance of metabolic sensors, such as mTOR and AMPK, in xenophagy induction is also discussed. We also review the in vitro and in vivo evidence that demonstrate a global role for xenophagy in the control of bacterial growth. Finally, the mechanisms evolved by bacteria to escape xenophagy are presented.
Collapse
Affiliation(s)
- Matthew T Sorbara
- Department of Immunology, University of Toronto, Toronto M5S 1A8, Canada
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.
| |
Collapse
|
44
|
Lin R, Jiang Y, Zhao XY, Guan Y, Qian W, Fu XC, Ren HY, Hou XH. Four types of Bifidobacteria trigger autophagy response in intestinal epithelial cells. J Dig Dis 2014; 15:597-605. [PMID: 25123057 DOI: 10.1111/1751-2980.12179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To investigate the influence of gut microbiota on autophagy activation in intestinal epithelial cells (IEC) and to evaluate the IEC autophagy response to different types of Bifidobacteria. METHODS IEC-18 cells were treated with lipopolysaccharide (LPS) derived from enteropathogenic Escherichia coli (EPEC) O127:B8 and culture medium supernatants of four types of Bifidobacteria. Transepithelial electrical resistance (TEER) was measured using an epithelial voltohmmeter. Autophagy was determined by transmission electron microscopy (TEM), the ratio of LC3-II to LC3-I and the persistence of both green fluorescent protein (GFP) and mCherry signals using a tandem mCherry-GFP-LC3 construct. The expression of Atg12-Atg5-Atg16 complex was measured by quantitative real-time polymerase chain reaction. RESULTS EPEC-LPS significantly diminished the TEER of IEC compared with untreated controls by 45-55%. This reduction was not observed after treated with Bifidobacteria at all time points. Bifidobacteria could initiate the activation of autophagy in IEC, based on both the ratio of LC3-II to LC3-I and TEM. There was no difference in the influence of the four types of Bifidobacteria on the autophagy response. Compared with Bifidobacteria, IEC reacted to EPEC-LPS much more intensively by autophagy accumulation. More mCherry(+) LC3 autophagic puncta and increased expressions of autophagy genes Atg5, Atg12 and Atg16 could be detected after being treated with Bifidobacteria and EPEC-LPS. CONCLUSIONS Bifidobacteria initiate autophagy activation in IEC. The Atg12-Atg5-Atg16 multimeric complex might participate in the activation of Bifidobacteria-induced cell autophagy.
Collapse
Affiliation(s)
- Rong Lin
- Division of Gastroenterology, Union Hospital, Wuhan, Hubei Province, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Technological advances in the large scale analysis of human genetics have generated profound insights into possible genetic contributions to chronic diseases including the inflammatory bowel diseases (IBDs), Crohn's disease and ulcerative colitis. To date, 163 distinct genetic risk loci have been associated with either Crohn's disease or ulcerative colitis, with a substantial degree of genetic overlap between these 2 conditions. Although many risk variants show a reproducible correlation with disease, individual gene associations only affect a subset of patients, and the functional contribution(s) of these risk variants to the onset of IBD is largely undetermined. Although studies in twins have demonstrated that the development of IBD is not mediated solely by genetic risk, it is nevertheless important to elucidate the functional consequences of risk variants for gene function in relevant cell types known to regulate key physiological processes that are compromised in IBD. This article will discuss IBD candidate genes that are known to be, or are suspected of being, involved in regulating the intestinal epithelial barrier and several of the physiological processes presided over by this dynamic and versatile layer of cells. This will include assembly and regulation of tight junctions, cell adhesion and polarity, mucus and glycoprotein regulation, bacterial sensing, membrane transport, epithelial differentiation, and restitution.
Collapse
|
46
|
Abstract
Crohn's disease (CD) is characterized by a breakdown of the intestinal epithelial barrier function leading to an uncontrolled immune response to bacterial antigens. Available data demonstrate that appropriate response and early host defense against invading bacteria are crucial to maintain tolerance towards commensal bacteria. When the mechanisms of early removal of invading bacteria are disturbed, a loss of tolerance and a full-blown adaptive immune reaction, which is mounted against the usually harmless commensal flora, are induced. Dysfunction of autophagy caused by genetic variations within CD susceptibility genes, such as ATG16L1 and IRGM, results in defective handling of intracellular and invading bacteria and causes prolonged survival and defective clearance of those microbes. Dysfunction of ATG16L1 and IRGM has also been shown to cause aberrant Paneth cell function and uncontrolled secretion of proinflammatory cytokines finally resulting in increased susceptibility to bacterial infection and the onset of colitis. Interestingly, autophagy can also be regulated by other CD susceptibility genes, such as NOD2 (nucleotide oligomerization domain 2) or PTPN2 (protein tyrosine phosphatase nonreceptor type 2) and the presence of the CD-associated variations within these genes results in similar effects. Taken together, more and more evidence suggests a close functional correlation between loss of tolerance and defective autophagy in CD patients. Therefore, most likely, the onset of CD is triggered by both a loss of tolerance as well as a dysfunction of autophagy, which finally results in the onset of chronic intestinal inflammation.
Collapse
Affiliation(s)
- Marianne R Spalinger
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
47
|
Associations between PTPN2 polymorphisms and susceptibility to ulcerative colitis and Crohn's disease: a meta-analysis. Inflamm Res 2013; 63:71-9. [PMID: 24127071 DOI: 10.1007/s00011-013-0673-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/29/2013] [Accepted: 10/03/2013] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Ulcerative colitis (UC) and Crohn's disease (CD) result from an interaction between genetic and environmental factors. Though several polymorphisms have been identified in PTPN2, their roles in the incidence of UC and CD are conflicting. This meta-analysis was aimed to clarify the impact of these polymorphisms on UC and CD risk. METHOD PubMed, EMBASE, Cochrane Library and CBM were searched until 23 July 2013 for eligible studies on three PTPN2 polymorphisms: rs2542151, rs1893217 and rs7234029. Data were extracted, and pooled odd ratios (ORs) as well as 95 % confidence intervals (95 % CIs) were calculated. CONCLUSION The meta-analysis indicated that rs2542151, rs1893217 and rs1893217 were associated with increased CD risk, while the former was associated with increased UC risk. The differences in age of onset and ethnic groups may influence the associations. Gene-gene and gene-environment interactions should be investigated in the future. RESULTS Seventeen studies with 18,308 cases and 20,406 controls were included. Significant associations were found between rs2542151 polymorphism and CD susceptibility (OR = 1.22, 95 % CI, 1.15-1.30, I (2) = 32 %), as well as between rs2542151 and UC susceptibility (OR = 1.16, 95 % CI, 1.07-1.25, I (2) = 39 %). A similar result was found in Caucasians, but not in Asians. Moreover, a significant increase in CD risk for all carriers of the minor allele of rs1893217 (OR = 1.45, 95 % CI, 1.23-1.70, I (2) = 0 %) and rs7234029 (OR = 1.36, 95 % CI, 1.16-1.59, I (2) = 0 %) were found. For children, the rs1893217 polymorphism appeared to confer susceptibility to CD (OR = 1.56, 95 % CI, 1.28-1.89, I (2) = 0 %).
Collapse
|
48
|
Owens BMJ, Steevels TAM, Dudek M, Walcott D, Sun MY, Mayer A, Allan P, Simmons A. CD90(+) Stromal Cells are Non-Professional Innate Immune Effectors of the Human Colonic Mucosa. Front Immunol 2013; 4:307. [PMID: 24137162 PMCID: PMC3786311 DOI: 10.3389/fimmu.2013.00307] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/13/2013] [Indexed: 01/28/2023] Open
Abstract
Immune responses at the intestinal mucosa must allow for host protection whilst simultaneously avoiding inappropriate inflammation. Although much work has focused on the innate immune functionality of hematopoietic immune cells, non-hematopoietic cell populations – including epithelial and stromal cells – are now recognized as playing a key role in innate defense at this site. In this study we examined the innate immune capacity of primary human intestinal stromal cells (iSCs). CD90+ iSCs isolated from human colonic mucosa expressed a wide array of innate immune receptors and functionally responded to stimulation with bacterial ligands. iSCs also sensed infection with live Salmonella typhimurium, rapidly expressing IL-1 family cytokines via a RIPK2/p38MAPK-dependent signaling process. In addition to responding to innate immune triggers, primary iSCs exhibited a capacity for bacterial uptake, phagocytosis, and antigen processing, although to a lesser extent than professional APCs. Thus CD90+ iSCs represent an abundant population of “non-professional” innate immune effector cells of the human colonic mucosa and likely play an important adjunctive role in host defense and immune regulation at this site.
Collapse
Affiliation(s)
- Benjamin M J Owens
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford , Oxford , UK
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Randall-Demllo S, Chieppa M, Eri R. Intestinal epithelium and autophagy: partners in gut homeostasis. Front Immunol 2013; 4:301. [PMID: 24137160 PMCID: PMC3786390 DOI: 10.3389/fimmu.2013.00301] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/10/2013] [Indexed: 12/21/2022] Open
Abstract
One of the most significant challenges of cell biology is to understand how each type of cell copes with its specific workload without suffering damage. Among the most intriguing questions concerns intestinal epithelial cells in mammals; these cells act as a barrier between the internally protected region and the external environment that is exposed constantly to food and microbes. A major process involved in the processing of microbes is autophagy. In the intestine, through multiple, complex signaling pathways, autophagy including macroautophagy and xenophagy is pivotal in mounting appropriate intestinal immune responses and anti-microbial protection. Dysfunctional autophagy mechanism leads to chronic intestinal inflammation, such as inflammatory bowel disease (IBD). Studies involving a number of in vitro and in vivo mouse models in addition to human clinical studies have revealed a detailed role for autophagy in the generation of chronic intestinal inflammation. A number of genome-wide association studies identified roles for numerous autophagy genes in IBD, especially in Crohn’s disease. In this review, we will explore in detail the latest research linking autophagy to intestinal homeostasis and how alterations in autophagy pathways lead to intestinal inflammation.
Collapse
Affiliation(s)
- Sarron Randall-Demllo
- Mucosal Biology Laboratory, School of Human Life Sciences, University of Tasmania , Launceston, TAS , Australia
| | | | | |
Collapse
|
50
|
Spalinger MR, Lang S, Vavricka SR, Fried M, Rogler G, Scharl M. Protein tyrosine phosphatase non-receptor type 22 modulates NOD2-induced cytokine release and autophagy. PLoS One 2013; 8:e72384. [PMID: 23991106 PMCID: PMC3753240 DOI: 10.1371/journal.pone.0072384] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/09/2013] [Indexed: 11/24/2022] Open
Abstract
Background Variations within the gene locus encoding protein tyrosine phosphatase non-receptor type 22 (PTPN22) are associated with the risk to develop inflammatory bowel disease (IBD). PTPN22 is involved in the regulation of T- and B-cell receptor signaling, but although it is highly expressed in innate immune cells, its function in other signaling pathways is less clear. Here, we study whether loss of PTPN22 controls muramyl-dipeptide (MDP)-induced signaling and effects in immune cells. Material & Methods Stable knockdown of PTPN22 was induced in THP-1 cells by shRNA transduction prior to stimulation with the NOD2 ligand MDP. Cells were analyzed for signaling protein activation and mRNA expression by Western blot and quantitative PCR; cytokine secretion was assessed by ELISA, autophagosome induction by Western blot and immunofluorescence staining. Bone marrow derived dendritic cells (BMDC) were obtained from PTPN22 knockout mice or wild-type animals. Results MDP-treatment induced PTPN22 expression and activity in human and mouse cells. Knockdown of PTPN22 enhanced MDP-induced activation of mitogen-activated protein kinase (MAPK)-isoforms p38 and c-Jun N-terminal kinase as well as canonical NF-κB signaling molecules in THP-1 cells and BMDC derived from PTPN22 knockout mice. Loss of PTPN22 enhanced mRNA levels and secretion of interleukin (IL)-6, IL-8 and TNF in THP-1 cells and PTPN22 knockout BMDC. Additionally, loss of PTPN22 resulted in increased, MDP-mediated autophagy in human and mouse cells. Conclusions Our data demonstrate that PTPN22 controls NOD2 signaling, and loss of PTPN22 renders monocytes more reactive towards bacterial products, what might explain the association of PTPN22 variants with IBD pathogenesis.
Collapse
Affiliation(s)
- Marianne R. Spalinger
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Silvia Lang
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Stephan R. Vavricka
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Division of Gastroenterology and Hepatology, Stadtspital Triemli, Zurich, Switzerland
| | - Michael Fried
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|