1
|
Sun CS, Hou R, Huang QY, Li ZH, Xu XR. Food web bioaccumulation model for ecological risk assessment of emerging organic pollutants in marine ecosystems: Principles, advances and challenges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125292. [PMID: 39537087 DOI: 10.1016/j.envpol.2024.125292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
The bioaccumulation and trophic transfer of pollutants in marine ecosystem members determine their ultimate ecological risks. Food web bioaccumulation models are widely used in scientific and regulatory programs to assess the bioaccumulation and ecological risks of pollutants at the ecosystem scale. The food web models are mainly established through concentration- and fugacity-based modeling approaches and include some chemical, food web-related, physiological and environmental factors. The models applied in the "forward approach" predict bioaccumulation and conduct internal exposure level-based ecological risk assessment (IEL-ERA), whereas those in the "reverse approach" are used to back-calculate the IEL-based predicted no-effect concentrations (PNECs) or environmental criteria. However, some challenges still exist in the application of food web model integrated risk assessment, including the lack of standardized/generalized frameworks, the lack of chemical- and species-specific toxicokinetic data and internal exposure (or tissue residue)-based toxicity data, and the lack of uncertainty-control methods in model estimation and parameterization. There are urgent requirements to improve models, integrate methods and update study designs in the assessment and prediction of "system-scale risks" of marine emerging organic pollutants.
Collapse
Affiliation(s)
- Chuan-Sheng Sun
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Marine College, Shandong University, Weihai, 264209, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Qian-Yi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, 264209, China
| | - Xiang-Rong Xu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|
2
|
Oldenkamp R, Benestad RE, Hader JD, Mentzel S, Nathan R, Madsen AL, Jannicke Moe S. Incorporating climate projections in the environmental risk assessment of pesticides in aquatic ecosystems. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:384-400. [PMID: 37795750 DOI: 10.1002/ieam.4849] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
Global climate change will significantly impact the biodiversity of freshwater ecosystems, both directly and indirectly via the exacerbation of impacts from other stressors. Pesticides form a prime example of chemical stressors that are expected to synergize with climate change. Aquatic exposures to pesticides might change in magnitude due to increased runoff from agricultural fields, and in composition, as application patterns will change due to changes in pest pressures and crop types. Any prospective chemical risk assessment that aims to capture the influence of climate change should properly and comprehensively account for the variabilities and uncertainties that are inherent to projections of future climate. This is only feasible if they probabilistically propagate extensive ensembles of climate model projections. However, current prospective risk assessments typically make use of process-based models of chemical fate that do not typically allow for such high-throughput applications. Here, we describe a Bayesian network model that does. It incorporates a two-step univariate regression model based on a 30-day antecedent precipitation index, circumventing the need for computationally laborious mechanistic models. We show its feasibility and application potential in a case study with two pesticides in a Norwegian stream: the fungicide trifloxystrobin and herbicide clopyralid. Our analysis showed that variations in pesticide application rates as well as precipitation intensity lead to variations in in-stream exposures. When relating to aquatic risks, the influence of these processes is reduced and distributions of risk are dominated by effect-related parameters. Predicted risks for clopyralid were negligible, but the probability of unacceptable future environmental risks due to exposure to trifloxystrobin (i.e., a risk quotient >1) was 8%-12%. This percentage further increased to 30%-35% when a more conservative precautionary factor of 100 instead of 30 was used. Integr Environ Assess Manag 2024;20:384-400. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Rik Oldenkamp
- Amsterdam Institute for Life and Environment (A-LIFE)-Section Chemistry for Environment and Health, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - John D Hader
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Sophie Mentzel
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Rory Nathan
- Department of Infrastructure Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Anders L Madsen
- Hugin Expert A/S, Alborg, Denmark
- Department of Computer Science, Aalborg University, Aalborg, Denmark
| | - S Jannicke Moe
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| |
Collapse
|
3
|
Mentzel S, Martínez-Megías C, Grung M, Rico A, Tollefsen KE, Van den Brink PJ, Moe SJ. Using a Bayesian Network Model to Predict Risk of Pesticides on Aquatic Community Endpoints in a Rice Field-A Southern European Case Study. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:182-196. [PMID: 37750580 DOI: 10.1002/etc.5755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Bayesian network (BN) models are increasingly used as tools to support probabilistic environmental risk assessments (ERAs), because they can better account for uncertainty compared with the simpler approaches commonly used in traditional ERA. We used BNs as metamodels to link various sources of information in a probabilistic framework, to predict the risk of pesticides to aquatic communities under given scenarios. The research focused on rice fields surrounding the Albufera Natural Park (Valencia, Spain), and considered three selected pesticides: acetamiprid (an insecticide), 2-methyl-4-chlorophenoxyacetic acid (MCPA; a herbicide), and azoxystrobin (a fungicide). The developed BN linked the inputs and outputs of two pesticide models: a process-based exposure model (Rice Water Quality [RICEWQ]), and a probabilistic effects model (Predicts the Ecological Risk of Pesticides [PERPEST]) using case-based reasoning with data from microcosm and mesocosm experiments. The model characterized risk at three levels in a hierarchy: biological endpoints (e.g., molluscs, zooplankton, insects, etc.), endpoint groups (plants, invertebrates, vertebrates, and community processes), and community. The pesticide risk to a biological endpoint was characterized as the probability of an effect for a given pesticide concentration interval. The risk to an endpoint group was calculated as the joint probability of effect on any of the endpoints in the group. Likewise, community-level risk was calculated as the joint probability of any of the endpoint groups being affected. This approach enabled comparison of risk to endpoint groups across different pesticide types. For example, in a scenario for the year 2050, the predicted risk of the insecticide to the community (40% probability of effect) was dominated by the risk to invertebrates (36% risk). In contrast, herbicide-related risk to the community (63%) resulted from risk to both plants (35%) and invertebrates (38%); the latter might represent (in the present study) indirect effects of toxicity through the food chain. This novel approach combines the quantification of spatial variability of exposure with probabilistic risk prediction for different components of aquatic ecosystems. Environ Toxicol Chem 2024;43:182-196. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Sophie Mentzel
- Department of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research, Oslo, Norway
| | - Claudia Martínez-Megías
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
- Water Institute, Madrid Institute for Advanced Studies, Parque Científico Tecnológico de la Universidad de Alcalá, Alcalá de Henares, Spain
| | - Merete Grung
- Department of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research, Oslo, Norway
| | - Andreu Rico
- Water Institute, Madrid Institute for Advanced Studies, Parque Científico Tecnológico de la Universidad de Alcalá, Alcalá de Henares, Spain
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Knut Erik Tollefsen
- Department of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research, Oslo, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Paul J Van den Brink
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, The Netherlands
- Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, The Netherlands
| | - S Jannicke Moe
- Department of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research, Oslo, Norway
| |
Collapse
|
4
|
Krogseth IS, Breivik K, Frantzen S, Nilsen BM, Eckhardt S, Nøst TH, Wania F. Modelling PCB-153 in northern ecosystems across time, space, and species using the nested exposure model. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1986-2000. [PMID: 37811766 DOI: 10.1039/d2em00439a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
There is concern over possible effects on ecosystems and humans from exposure to persistent organic pollutants (POPs) and chemicals with similar properties. The main objective of this study was to develop, evaluate, and apply the Nested Exposure Model (NEM) designed to simulate the link between global emissions and resulting ecosystem exposure while accounting for variation in time and space. NEM, using environmental and biological data, global emissions, and physicochemical properties as input, was used to estimate PCB-153 concentrations in seawater and biota of the Norwegian marine environment from 1930 to 2020. These concentrations were compared to measured concentrations in (i) seawater, (ii) an Arctic marine food web comprising zooplankton, fish and marine mammals, and (iii) Atlantic herring (Clupea harengus) and Atlantic cod (Gadus morhua) from large baseline studies and monitoring programs. NEM reproduced PCB-153 concentrations in seawater, the Arctic food web, and Norwegian fish within a factor of 0.1-31, 0.14-3.1, and 0.09-21, respectively. The model also successfully reproduced measured trophic magnification factors for PCB-153 at Svalbard as well as geographical variations in PCB-153 burden in Atlantic cod between the Skagerrak, North Sea, Norwegian Sea, and Barents Sea, but estimated a steeper decline in PCB-153 concentration in herring and cod during the last decades than observed. Using the evaluated model with various emission scenarios showed the important contribution of European and global primary emissions for the PCB-153 load in fish from Norwegian marine offshore areas.
Collapse
Affiliation(s)
- Ingjerd S Krogseth
- The Climate and Environmental Research Institute NILU, Tromsø, Norway.
- Department of Arctic and Marine Biology, UiT - Arctic University of Norway, Tromsø, Norway
| | - Knut Breivik
- The Climate and Environmental Research Institute NILU, Tromsø, Norway.
- Department of Chemistry, University of Oslo, Oslo, Norway
| | | | | | - Sabine Eckhardt
- The Climate and Environmental Research Institute NILU, Tromsø, Norway.
| | - Therese H Nøst
- Department of Community Medicine, UiT - Arctic University of Norway, Tromsø, Norway
- Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Frank Wania
- Department of Physical and Environmental Science, University of Toronto Scarborough, Toronto, Canada
| |
Collapse
|
5
|
Glassmeyer ST, Burns EE, Focazio MJ, Furlong ET, Gribble MO, Jahne MA, Keely SP, Kennicutt AR, Kolpin DW, Medlock Kakaley EK, Pfaller SL. Water, Water Everywhere, but Every Drop Unique: Challenges in the Science to Understand the Role of Contaminants of Emerging Concern in the Management of Drinking Water Supplies. GEOHEALTH 2023; 7:e2022GH000716. [PMID: 38155731 PMCID: PMC10753268 DOI: 10.1029/2022gh000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 12/30/2023]
Abstract
The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.
Collapse
Affiliation(s)
- Susan T. Glassmeyer
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | | | - Michael J. Focazio
- Retired, Environmental Health ProgramEcosystems Mission AreaU.S. Geological SurveyRestonVAUSA
| | - Edward T. Furlong
- Emeritus, Strategic Laboratory Sciences BranchLaboratory & Analytical Services DivisionU.S. Geological SurveyDenverCOUSA
| | - Matthew O. Gribble
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Michael A. Jahne
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Scott P. Keely
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Alison R. Kennicutt
- Department of Civil and Mechanical EngineeringYork College of PennsylvaniaYorkPAUSA
| | - Dana W. Kolpin
- U.S. Geological SurveyCentral Midwest Water Science CenterIowa CityIAUSA
| | | | - Stacy L. Pfaller
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| |
Collapse
|
6
|
Chaideftou E. Proposed schemes on more integrative ecological risk assessment of pesticides. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1450-1453. [PMID: 36314111 DOI: 10.1002/ieam.4687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
|
7
|
Schlüter U, Meyer J, Ahrens A, Borghi F, Clerc F, Delmaar C, Di Guardo A, Dudzina T, Fantke P, Fransman W, Hahn S, Heussen H, Jung C, Koivisto J, Koppisch D, Paini A, Savic N, Spinazzè A, Zare Jeddi M, von Goetz N. Exposure modelling in Europe: how to pave the road for the future as part of the European Exposure Science Strategy 2020-2030. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:499-512. [PMID: 35918394 PMCID: PMC9349043 DOI: 10.1038/s41370-022-00455-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 05/26/2023]
Abstract
Exposure models are essential in almost all relevant contexts for exposure science. To address the numerous challenges and gaps that exist, exposure modelling is one of the priority areas of the European Exposure Science Strategy developed by the European Chapter of the International Society of Exposure Science (ISES Europe). A strategy was developed for the priority area of exposure modelling in Europe with four strategic objectives. These objectives are (1) improvement of models and tools, (2) development of new methodologies and support for understudied fields, (3) improvement of model use and (4) regulatory needs for modelling. In a bottom-up approach, exposure modellers from different European countries and institutions who are active in the fields of occupational, population and environmental exposure science pooled their expertise under the umbrella of the ISES Europe Working Group on exposure models. This working group assessed the state-of-the-art of exposure modelling in Europe by developing an inventory of exposure models used in Europe and reviewing the existing literature on pitfalls for exposure modelling, in order to identify crucial modelling-related strategy elements. Decisive actions were defined for ISES Europe stakeholders, including collecting available models and accompanying information in a living document curated and published by ISES Europe, as well as a long-term goal of developing a best-practices handbook. Alongside these actions, recommendations were developed and addressed to stakeholders outside of ISES Europe. Four strategic objectives were identified with an associated action plan and roadmap for the implementation of the European Exposure Science Strategy for exposure modelling. This strategic plan will foster a common understanding of modelling-related methodology, terminology and future research in Europe, and have a broader impact on strategic considerations globally.
Collapse
Affiliation(s)
- Urs Schlüter
- Federal Institute for Occupational Safety and Health (BAuA), Friedrich-Henkel-Weg 1-25, D-44149, Dortmund, Germany.
| | - Jessica Meyer
- Federal Institute for Occupational Safety and Health (BAuA), Friedrich-Henkel-Weg 1-25, D-44149, Dortmund, Germany
| | - Andreas Ahrens
- Exposure and Supply Chain Unit, European Chemicals Agency (ECHA), P.O. Box 400, FI-00121, Helsinki, Finland
| | - Francesca Borghi
- Department of Science and High Technology, University of Insubria, 22100, Como, Italy
| | - Frédéric Clerc
- National Institute for Research and Safety (INRS), Pollutants Metrology Division, Nancy, France
| | - Christiaan Delmaar
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Antonio Di Guardo
- Department of Science and High Technology, University of Insubria, 22100, Como, Italy
| | - Tatsiana Dudzina
- Exxon Mobil Petroleum and Chemical B.V., Hermeslaan 2, 1831, Machelen, Belgium
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs, Lyngby, Denmark
| | - Wouter Fransman
- TNO, Department Risk Analysis for Products in Development, P.O. Box 80015, 3508 TA, Utrecht, The Netherlands
| | - Stefan Hahn
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Henri Heussen
- Cosanta BV, Stationsplein Noord-Oost 202, 1117 CJ, Schiphol-Oost, The Netherlands
| | - Christian Jung
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, D-10589, Berlin, Germany
| | - Joonas Koivisto
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, PL 64, FI-00014, UHEL, Helsinki, Finland
| | - Dorothea Koppisch
- Section 1.3 Exposure Monitoring-MGU, Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), Alte Heerstr. 111, 53757, Sankt Augustin, Germany
| | - Alicia Paini
- European Commission Joint Research Centre (JRC), Ispra, Italy
| | - Nenad Savic
- Center for Primary Care and Public Health, Unisanté, Route de la Corniche 2, 1066, Epalinges, Switzerland
| | - Andrea Spinazzè
- Department of Science and High Technology, University of Insubria, 22100, Como, Italy
| | - Maryam Zare Jeddi
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Natalie von Goetz
- Swiss Federal Institute of Technology (ETH Zurich), Rämistrasse 101, 8092, Zurich, Switzerland.
- Swiss Federal Office of Public Health (FOPH), Schwarzenburgstrasse 157, 3003, Bern, Switzerland.
| |
Collapse
|
8
|
Cravo A, Silva S, Rodrigues J, Cardoso VV, Benoliel MJ, Correia C, Coelho MR, Rosa MJ, Almeida CMM. Understanding the bioaccumulation of pharmaceutical active compounds by clams Ruditapes decussatus exposed to a UWWTP discharge. ENVIRONMENTAL RESEARCH 2022; 208:112632. [PMID: 35074358 DOI: 10.1016/j.envres.2021.112632] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Twenty-four pharmaceutical active compounds (PhACs) were evaluated in the soft tissues of clams Ruditappes decussatus exposed along a 1.5-km dispersal gradient of the treated effluent from an urban wastewater treatment plant discharging in Ria Formosa, and compared with those in the marine waters and discharged effluents. The clams were exposed for 1 month, in June-July 2016, 2017 and 2018. PhACs were quantified by high performance liquid chromatography coupled to tandem mass spectrometry after the quick, easy, cheap, effective, rugged and safe (QuEChERS) method (clams) or solid-phase extraction (water samples). The most representative PhACs in the effluents and receiving waters (regardless of the tidal dilution effect) were diclofenac, carbamazepine and caffeine (on average ≤ 2 μg/L) and only caffeine exhibited significant inter-annual differences, with higher values in 2017. In turn, the most bioaccumulated PhACs in clams were caffeine (0.54-27 ng/g wet weight, significantly higher in 2016) and acetaminophen (0.37-3.7 ng/g wet weight, significant lower in 2016). A multivariate principal component analysis showed (i) PhAC bioaccumulation primarily depended on biotic factors (clams length and weight), (ii) PhAC physicochemical properties Log Kow, pKa and water solubility interplaying with water abiotic variables were more relevant for explaining data variability in water than the physical dilution/tidal mixing, (iii) this process, reflected by the salinity gradient, had a tertiary role in data variation, responsible for spatial discrimination of marine waters. This study provides a better understanding of PhACs bioaccumulation by clams Ruditapes decussatus in real environmental conditions, under the influence of urban treated effluent dispersal in Ria Formosa coastal lagoon, a major producer of bivalves, ultimately disentangling key factors of PhAC bioaccumulation.
Collapse
Affiliation(s)
- Alexandra Cravo
- Centro de Investigação Marinha e Ambiental (CIMA), FCT, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Sofia Silva
- iMed.UL (Institute for Medicines and Pharmaceutical Sciences, Portugal), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João Rodrigues
- Empresa Portuguesa Das Águas Livres, S.A., Direção de Controlo de Qualidade da Água, Av. Berlim 15, 1800-031, Lisboa, Portugal
| | - Vítor Vale Cardoso
- Empresa Portuguesa Das Águas Livres, S.A., Direção de Controlo de Qualidade da Água, Av. Berlim 15, 1800-031, Lisboa, Portugal
| | - Maria João Benoliel
- Empresa Portuguesa Das Águas Livres, S.A., Direção de Controlo de Qualidade da Água, Av. Berlim 15, 1800-031, Lisboa, Portugal
| | - Cátia Correia
- Centro de Investigação Marinha e Ambiental (CIMA), FCT, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | | | - Maria João Rosa
- National Civil Engineering Laboratory (LNEC), Urban Water Unit, Water Quality and Treatment Laboratory, Av. Brasil 101, 1700-066, Lisboa, Portugal
| | - Cristina M M Almeida
- iMed.UL (Institute for Medicines and Pharmaceutical Sciences, Portugal), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Laboratory of Bromatology and Water Quality, Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
9
|
Falakdin P, Terzaghi E, Di Guardo A. Spatially resolved environmental fate models: A review. CHEMOSPHERE 2022; 290:133394. [PMID: 34953876 DOI: 10.1016/j.chemosphere.2021.133394] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Spatially resolved environmental models are important tools to introduce and highlight the spatial variability of the real world into modeling. Although various spatial models have been developed so far, yet the development and evaluation of these models remain a challenging task due to several difficulties related to model setup, computational cost, and obtaining high-resolution input data (e.g., monitoring and emission data). For example, atmospheric transport models can be used when high resolution predicted concentrations in atmospheric compartments are required, while spatial multimedia fate models may be preferred for regulatory risk assessment, life cycle impact assessment of chemicals, or when the partitioning of chemical substances in a multimedia environment is considered. The goal of this paper is to review and compare different spatially resolved environmental models, according to their spatial, temporal and chemical domains, with a closer insight into spatial multimedia fate models, to achieve a better understanding of their strengths and limitations. This review also points out several requirements for further improvement of existing models as well as for their integration.
Collapse
Affiliation(s)
- Parisa Falakdin
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, CO, Italy.
| | - Elisa Terzaghi
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, CO, Italy.
| | - Antonio Di Guardo
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, CO, Italy.
| |
Collapse
|
10
|
Palladini J, Bagnati R, Passoni A, Davoli E, Lanno A, Terzaghi E, Falakdin P, Di Guardo A. Bioaccumulation of PCBs and their hydroxy and sulfonated metabolites in earthworms: Comparing lab and field results. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118507. [PMID: 34800589 DOI: 10.1016/j.envpol.2021.118507] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Sulfonated and hydroxy-sulfonated PCBs were recently discovered by our group as new PCB soil contaminants, constituting about 1% of their parent compounds in soil. Here we investigate for the first time the bioaccumulation of these metabolites as well as hydroxy-PCBs and native PCBs in earthworms. A sequence of three experiments, at increasing complexity and ecological realism, were performed with four different earthworm species (Eisenia foetida Savigny, Lumbricus terrestris L, Allolobophora chlorotica Savigny and Aporrectodea caliginosa Savigny) exposed to contaminated soils. The first experiment confirmed that when exposing earthworms to soil contaminated with a single hexa-chlorinated congener (PCB 155), no formation of polar metabolites in earthworms could be detected. This allowed to plan the following two experiments, using a soil from a PCB contaminated site and rich in relatively high levels (10-130 μg kg-1) of hydroxy-, sulfonated-, and hydroxy-sulfonated-PCBs. Bioaccumulation factors (BAFs) and bioconcentration factors (BCFs) were then obtained in the second and third experiments, to compare the accumulation behavior of these chemicals in laboratory and natural conditions. Regressions between BAF/BCF and Log Kow/Log D, produced a variety of results, being generally significant between BCF and PCBs and not significant in the other cases. In general, the metabolites accumulated in earthworms with detectable concentrations in their tissues (8-115 μg kg-1), although sulfonated and hydroxy-sulfonated PCBs showed BAF and BCF values lower (up to two orders of magnitude) than those calculated for the parent PCBs, given their lower lipophilicity.
Collapse
Affiliation(s)
- Jessica Palladini
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, 21100, Como, Italy
| | - Renzo Bagnati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Alice Passoni
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Enrico Davoli
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Alessia Lanno
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Elisa Terzaghi
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, 21100, Como, Italy
| | - Parisa Falakdin
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, 21100, Como, Italy
| | - Antonio Di Guardo
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, 21100, Como, Italy.
| |
Collapse
|
11
|
Terzaghi E, Raspa G, Zanardini E, Morosini C, Anelli S, Armiraglio S, Di Guardo A. Life cycle exposure of plants considerably affects root uptake of PCBs: Role of growth strategies and dissolved/particulate organic carbon variability. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126826. [PMID: 34396963 DOI: 10.1016/j.jhazmat.2021.126826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Plant roots can accumulate organic chemicals, including PCBs, and this could be relevant in spreading chemicals through the food chain. To estimate such uptake, several equations are available in the literature, mostly developed in lab conditions, to obtain the root concentration factor (RCF). Here, a long-term (18 months) greenhouse experiment, using an aged, contaminated soil, was performed to reproduce root uptake in field-like conditions and to account for the ecological variability of exposure during the entire life cycle. Specific growth strategies (i.e., annual vs. perennial), root development (e.g., timing of root production and decaying), and soil parameters (e.g., dissolved organic carbon (DOC), and the particulate organic carbon (POC)) may interfere with the uptake of contaminants into the roots of plants. In this study, we investigate the effects of these factors on the RCF, obtained for 79 PCBs. New predictive equations were calculated for 5 different plants species at four different growth times (from few months to 1.5 years) and stages (growing vs maturity). The relationships highlighted a species-specific and time-dependent accumulation of PCB in plants roots, with higher RCFs in summer than in fall for some species, and the relevant influence of DOC and POC in affecting root uptake.
Collapse
Affiliation(s)
- Elisa Terzaghi
- DiSAT, University of Insubria, Via Valleggio 11, Como, Italy
| | - Giuseppe Raspa
- DICMA, Sapienza University of Rome, Via Eudossiana 18, Rome, Italy
| | | | | | | | - Stefano Armiraglio
- Municipality of Brescia - Museum of Natural Sciences, Via Ozanam 4, Brescia, Italy
| | | |
Collapse
|
12
|
Lalyer CR, Sigsgaard L, Giese B. Ecological vulnerability analysis for suppression of Drosophila suzukii by gene drives. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Terzaghi E, Falakdin P, Fattore E, Di Guardo A. Estimating temporal and spatial levels of PAHs in air using rain samples and SPME analysis: Feasibility evaluation in an urban scenario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144184. [PMID: 33360473 DOI: 10.1016/j.scitotenv.2020.144184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
There is a growing interest in evaluating the role of concentration changes of contaminants in temporal and spatial gradients. This is often relevant for fast moving environmental phases such as air and water. In this paper, small volumes of rainwater were sampled as proxy for air concentrations of Polycyclic Aromatic Hydrocarbons (PAHs): rain was collected in three sampling sites (high traffic, restricted traffic and a low traffic zone) in Como. Solid phase micro extraction (SPME) was used for the extraction to reduce required sample volumes, allowing the acquisition of more samples in time. Rain samples highlighted a spatial and temporal variability along a traffic gradient in the Como city, especially for the most abundant PAH, e.g. phenanthrene. Air concentrations were then estimated from rain concentrations. The results show that this is a cheap and promising method, although requiring rainfall/snowfall conditions, that can be used to perform monitoring campaign of air concentrations at a higher temporal and spatial resolution than the adopted standard methods (e.g. high-volume air samplers). The results could be employed for evaluation of the exposure, emission profiles and calibration of fate models.
Collapse
Affiliation(s)
- Elisa Terzaghi
- Department of Science and High Technology (DiSAT), University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - Parisa Falakdin
- Department of Science and High Technology (DiSAT), University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - Elena Fattore
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Antonio Di Guardo
- Department of Science and High Technology (DiSAT), University of Insubria, via Valleggio 11, 22100 Como, Italy.
| |
Collapse
|
14
|
Di Guardo A, Raspa G, Terzaghi E, Vergani L, Mapelli F, Borin S, Zanardini E, Morosini C, Anelli S, Nastasio P, Sale VM, Armiraglio S. PCB vertical and horizontal movement in agricultural soils of a highly contaminated site: Role of soil properties, cultivation history and PCB physico-chemical parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141477. [PMID: 33076211 DOI: 10.1016/j.scitotenv.2020.141477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
The agricultural areas of a historically contaminated National Relevance Site (SIN Brescia Caffaro) in Italy are an ideal case for studying the long term vertical and horizontal movement of polychlorinated biphenyls (PCBs) in soil. Here, a former large producer of PCBs (Caffaro S.p.A.) discharged its wastewaters, contaminated by PCBs and other chemicals, to a ditch used for about 80 years as source of irrigation waters for the adjacent agricultural areas. This caused a spread of contamination along both a vertical and a horizontal soil gradient. PCB concentrations of about 80 congeners, including PCB 209, peculiar of Caffaro production, were measured in three areas, selected for their different soil properties and cultivation history. The contamination levels with depth ranged from about 30 mg/kg dry weight (d.w.) of soil in the top (plow) layer to less than 0.1 mg/kg d.w. at the depth of 1 m. The concentrations varied also horizontally, since each field was surface irrigated from the short edge of each field, showing that PCBs could spread with length halving the initial concentrations in the topsoil only after about 30-35 m. The concentration gradients detected were explained considering the historic soil use and its change with time, the pedological properties as well as PCB physico-chemical parameters and halflives, developing equations which could be employed as guidance tools for evaluating PCBs (and similar chemicals) movement and direct further studies.
Collapse
Affiliation(s)
| | - Giuseppe Raspa
- DICMA, Sapienza University of Rome, Via Eudossiana 18, Rome, Italy
| | - Elisa Terzaghi
- DiSAT, University of Insubria, Via Valleggio 11, Como, Italy
| | | | | | - Sara Borin
- DeFENS, University of Milan, Via Celoria 2, Milan, Italy
| | | | | | | | | | | | - Stefano Armiraglio
- Municipality of Brescia - Museum of Natural Sciences, Via Ozanam 4, Brescia, Italy
| |
Collapse
|
15
|
Li CH, Shi YL, Li M, Guo LH, Cai YQ. Receptor-Bound Perfluoroalkyl Carboxylic Acids Dictate Their Activity on Human and Mouse Peroxisome Proliferator-Activated Receptor γ. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9529-9536. [PMID: 32639727 DOI: 10.1021/acs.est.0c02386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In in vitro cell assays, nominal concentrations of a test chemical are most frequently used in the description of its dose-response curves. Although the biologically effective concentration (BEC) is considered as the most relevant dose metric, in practice, it is very difficult to measure. In this work, we attempted to determine the BEC of long-chain perfluoroalkyl carboxylic acids (PFCAs) in peroxisome proliferator-activated receptor γ (PPARγ) activity assays. In both adipogenesis and transcriptional activity assays with human and mouse cells, PPARγ activity of 7 PFCAs first increased and then decreased with their carbon chain length. The binding affinity of these PFCAs with the ligand-binding domain of PPARγ was measured by fluorescence competitive binding assay and showed very poor correlation with their receptor activity (r2 = 0.002-0.047). Internal concentrations of the PFCAs in the cells were measured by LC-MS/MS. Although their correlation with the receptor activity increased significantly, it is still low (r2 = 0.41-0.82). Using the binding affinity constant, internal concentration, and PPARγ concentration measured by immunoassays, concentrations of receptor-bound PFCAs in cells were calculated, which exhibited excellent correlation with PPARγ activity in both adipogenesis and transcriptional activity assays (r2 = 0.91-0.93). These results demonstrate that the concentration of receptor-bound PFCA is the BEC that dictates its activity on human and mouse PPARγ in cell assays. In the absence of any direct detection method, our approach can be used to calculate the target-site concentration of other ligands.
Collapse
Affiliation(s)
- Chuan-Hai Li
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- School of Public Health, Qingdao University, 308 Ningxia Street, Qingdao, Shandong 266071, China
| | - Ya-Li Shi
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Minjie Li
- College of Quality & Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China
- Institute of Environmental and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Ya-Qi Cai
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| |
Collapse
|
16
|
Terzaghi E, Vitale CM, Salina G, Di Guardo A. Plants radically change the mobility of PCBs in soil: Role of different species and soil conditions. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121786. [PMID: 31836368 DOI: 10.1016/j.jhazmat.2019.121786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/23/2019] [Accepted: 11/28/2019] [Indexed: 05/18/2023]
Abstract
The mobility of Polychlorinated Biphenyls (PCBs) in soil cultivated with different plant species was evaluated by means of a column experiment to investigate the specific plant influence on PCB environmental fate and the potential for leaching. The soil was collected at a National Relevance Site for remediation located in Northern Italy (SIN Brescia-Caffaro) and underwent a rhizoremediation treatment for 18 months with different plant species (Festuca arundinacea, Cucurbita pepo ssp pepo and Medicago sativa). The same but unplanted soil was also considered as control for comparison. The columns were leached with tap water and PCB concentrations were measured in the leachate after 7 days of soil/water contact. Soil previously cultivated with different plant species exhibited statistically different behavior in terms of chemical leaching among the different fractions. Total PCB bulk concentrations ranged from 24 to 219 ng/L. Leachate samples were enriched in tetra- to hepta-PCBs. While PCB concentrations in the dissolved phases varied within a factor of 2 between controls and treatments, PCB associated to particulate organic carbon (POC) differed by more than one order of magnitude. More specifically, Medicago sativa enriched the soil with POC doubling PCB leaching with respect to the other plant species and the unplanted controls.
Collapse
Affiliation(s)
- Elisa Terzaghi
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, Como, Italy
| | - Chiara Maria Vitale
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, Como, Italy
| | - Georgia Salina
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, Como, Italy
| | - Antonio Di Guardo
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 11, Como, Italy.
| |
Collapse
|
17
|
Terzaghi E, Vitale CM, Di Guardo A. Modelling peak exposure of pesticides in terrestrial and aquatic ecosystems: importance of dissolved organic carbon and vertical particle movement in soil. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:19-32. [PMID: 31718305 DOI: 10.1080/1062936x.2019.1686715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/27/2019] [Indexed: 05/18/2023]
Abstract
In the present work, an existing vegetation/air/litter/soil model (SoilPlusVeg) was modified to improve organic chemical fate description in terrestrial/aquatic ecosystems accounting for horizontal and vertical particulate organic carbon (POC) transport in soil. The model was applied to simulate the fate of three pesticides (terbuthylazine, chlorpyrifos and etofenprox), characterized by increasing hydrophobicity (log KOW from about 3 to 7), in the soil compartment and more specifically, their movement towards surface and groundwater through infiltration and runoff processes. The aim was to evaluate the role of dissolved organic carbon (DOC) and POC in the soil in influencing the peak exposure of pesticides in terrestrial/aquatic ecosystems. Simulation results showed that while terbuthylazine and chlorpyrifos dominated the free water phase (CW-FREE) of soil, etofenprox was mainly present in soil porewater as POC associated chemical. This resulted in an increase of this highly hydrophobic chemical movement towards groundwater and surface water, up to a factor of 40. The present work highlighted the importance of DOC and POC as an enhancer of mobility in the water of poor or very little mobile chemicals. Further studies are necessary to evaluate the bioavailability change with time and parameterize this process in multimedia fate models.
Collapse
Affiliation(s)
- E Terzaghi
- Department of Science and High Technology (DiSAT), University of Insubria, Como, Italy
| | - C M Vitale
- Department of Science and High Technology (DiSAT), University of Insubria, Como, Italy
| | - A Di Guardo
- Department of Science and High Technology (DiSAT), University of Insubria, Como, Italy
| |
Collapse
|
18
|
Jolliet O, Wannaz C, Kilgallon J, Speirs L, Franco A, Lehner B, Veltman K, Hodges J. Spatial variability of ecosystem exposure to home and personal care chemicals in Asia. ENVIRONMENT INTERNATIONAL 2020; 134:105260. [PMID: 31765864 DOI: 10.1016/j.envint.2019.105260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
It is well recognized that there are currently limitations in the spatial and temporal resolution of environmental exposure models due to significant variabilities and uncertainties in model inputs and parameters. Here we present the updated Pangea multi-scale multimedia model based on the more spatially resolved, catchment-based hydrological HydroBASINS dataset covering the entire globe. We apply it to predict spatially-explicit exposure concentrations of linear alkylbenzene sulphonate (LAS) and triclosan (TCS) as two chemicals found in homecare (HC) and personal care (PC) products in river catchments across Asia, and test its potential for identifying/prioritizing catchments with higher exposure concentrations. In addition, we also identify the key parameters in the model framework driving higher concentrations and perform uncertainty analyses by applying Monte Carlo simulations on emissions and other non-spatial model inputs. The updated combination of Pangea with the HydroBASINS hydrological data represents a substantial improvement from the previous model with the gridded hydrological dataset (WWDRII) for modelling substance fate, with higher resolution and improved coverage in regions with lower flows, with the results demonstrating good agreement with monitored concentrations for TCS in both the freshwater (R2 = 0.55) and sediment (R2 = 0.81) compartments. The ranking of water basins by Predicted Environmental Concentrations (PECs) was similar for both TCS and LAS, with highest concentrations (Indus, Huang He, Cauvery, Huai He and Ganges) being one to two orders of magnitude greater than the water basins with lowest predicted PECs (Mekong and Brahmaputra). Emissions per unit volume of each catchment, chemical persistence, and river discharge were deemed to be the most influential factors on the variation of predicted PECs. Focusing on the Huang He (Yellow River) water basin, uncertainty confidence intervals (factor 31 for LAS and 6 for TCS) are much lower than the variability of predicted PECs across the Huang He catchments (factors 90,700 for LAS and 13,500 for TCS).
Collapse
Affiliation(s)
- Olivier Jolliet
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Cedric Wannaz
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States; Eurisko Research, 3107 Village Circle, Ann Arbor, 48108 MI, United States
| | - John Kilgallon
- Unilever, Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook, MK441LQ, United Kingdom
| | - Lucy Speirs
- Unilever, Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook, MK441LQ, United Kingdom
| | - Antonio Franco
- Eurisko Research, 3107 Village Circle, Ann Arbor, 48108 MI, United States
| | - Bernhard Lehner
- Department of Geography, McGill University, Montreal, Quebec H3A 0B9, Canada
| | - Karin Veltman
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States
| | - Juliet Hodges
- Unilever, Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook, MK441LQ, United Kingdom
| |
Collapse
|
19
|
Su C, Zhang H, Cridge C, Liang R. A review of multimedia transport and fate models for chemicals: Principles, features and applicability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:881-892. [PMID: 31018472 DOI: 10.1016/j.scitotenv.2019.02.456] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
The frequent use of chemicals has caused ecosystems and humans to be threatened due to their discharge into the environment. Multimedia environmental fate models could provide a comprehensive picture of transport behaviour and fate for organic chemicals in multiple environmental media. They have been designed and widely used for chemical risk assessment, chemical ranking and management support, and determination of chemical bioaccumulation. This study reviewed the principles, features and applicability of recent commonly used multimedia fate models from peer-reviewed literature. Fugacity-based and concentration-based models are now widely adopted for use in chemical fate evaluation, while they are more appropriate for volatile and semi-volatile chemicals. Or the fugacity-based models can use aquivalence equilibrium criterion to cations, anions and involatile chemicals. The MAMI and SESAMe models based on activity approach are applicable to neutral and ionizable molecules. However, interactions of ionic species with other water solutes are not taken into account in these models. Additionally, they could not directionally simulate how chemicals transported form one grid to another. Future attention should be focused on the reliability of transfer behaviour and fate of ionizable chemicals, as integrating the advantages of these two kinds of models into a reconstructed one may be a better choice. In a word, environmental multimedia models have been beneficial tools for chemical control and management, risk and effect estimation, and decision supporting.
Collapse
Affiliation(s)
- Chao Su
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Hong Zhang
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China.
| | - Claudia Cridge
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Ruoyu Liang
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
20
|
Morselli M, Terzaghi E, Galimberti F, Di Guardo A. Pesticide fate in cultivated mountain basins: The improved DynAPlus model for predicting peak exposure and directing sustainable monitoring campaigns to protect aquatic ecosystems. CHEMOSPHERE 2018; 210:204-214. [PMID: 30005341 DOI: 10.1016/j.chemosphere.2018.06.181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/25/2018] [Accepted: 06/30/2018] [Indexed: 05/18/2023]
Abstract
Agricultural activities can involve the use of plant protection products (PPPs) and the use of such chemicals can occur near surface waters bodies, thus creating a potential for adverse effects on aquatic ecosystems. In mountain watersheds, where runoff fluxes are particularly rapid due to side slopes, exposure is generally characterized by short but intense concentration peaks. Monitoring campaigns are often inadequate or too expensive to be carried out and modelling tools are therefore vital for exposure assessment and their use is encouraged by current legislation. However, currently adopted models and scenarios (e.g., FOCUS for PPPs) are often too conservative and/or "static" to accurately capture exposure variability, and the need for more realistic and dynamic tools is now one of the major challenges for risk assessment. In a previous work, the new fate model DynAPlus was developed to improve pesticide fate predictions in cultivated mountain basins and was successfully evaluated against chlorpyrifos water concentrations measured in a mountain stream in Northern Italy. However, the need for some model improvements (e.g., the inclusion of dissolved organic matter and macrophytes in water) was highlighted. In this work, DynAPlus was improved by replacing the water-sediment unit with ChimERA fate, a recently-published model capable of predicting bioavailable chemical concentrations in shallow water environments accounting for the presence and temporal variations of particulate/dissolved organic carbon and primary producers. The model was applied to preliminarily characterize the risk associated to the use of four PPPs (two insecticides and two fungicides) in a sub-basin of the Adda River (Valtellina Valley, Northern Italy), surrounded by apple orchards. Results revealed the potential magnitude of exposure peaks for the four PPPs and suggested that monitoring campaigns should prioritize, in the selected case study, chlorpyrifos, etofenprox and fluazinam. The potential role of DynAPlus in providing more realistic exposure predictions for ecological risk assessment, as well as for planning efficient monitoring campaigns and help pesticide management practices, was also stressed.
Collapse
Affiliation(s)
- Melissa Morselli
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, CO, Italy
| | - Elisa Terzaghi
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, CO, Italy
| | - Filippo Galimberti
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, CO, Italy
| | - Antonio Di Guardo
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, CO, Italy.
| |
Collapse
|
21
|
Morselli M, Vitale CM, Ippolito A, Villa S, Giacchini R, Vighi M, Di Guardo A. Predicting pesticide fate in small cultivated mountain watersheds using the DynAPlus model: Toward improved assessment of peak exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:307-318. [PMID: 28982080 DOI: 10.1016/j.scitotenv.2017.09.287] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
The use of plant protection products (PPPs) in agricultural areas implies potential chemical loadings to surface waters, which can pose a risk to aquatic ecosystems and human health. Due to the spatio-temporal variability of PPP applications and of the processes regulating their transport to surface waters, aquatic organisms are typically exposed to pulses of contaminants. In small mountain watersheds, where runoff fluxes are more rapid due to the steep slopes, such exposure peaks are particularly likely to occur. In this work, a spatially explicit, dynamic model for predicting pesticide exposure in surface waters of cultivated mountain basins (DynAPlus) has been developed. The model has been applied to a small mountain watershed (133km2) located in the Italian Eastern Alps and characterized by intensive agriculture (apple orchards) around the main river and its tributaries. DynAPlus performance was evaluated for chlorpyrifos through experimental monitoring, using samples collected during the 2011 and 2012 productive seasons. The comparison between predictions and measurements resulted in a good agreement (R2=0.49, efficiency factor 0.60), although a more accurate spatial information in the input scenario (e.g., field-specific applications, rainfall amount, soil properties) would dramatically improve model performance. A set of illustrative simulations performed for three PPPs highlighted the potential role of DynAPlus in improving exposure predictions for ecological risk assessment and pesticide management practices (e.g., for active ingredient and application rate selection), as well as for planning efficient monitoring campaigns and/or interpreting monitoring data. However, some model improvements (e.g., solid erosion and transport) and a more thorough model validation are desirable to enlarge the applicability domain.
Collapse
Affiliation(s)
- Melissa Morselli
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, CO, Italy
| | - Chiara Maria Vitale
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, CO, Italy
| | - Alessio Ippolito
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, MI, Italy
| | - Sara Villa
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, MI, Italy
| | - Roberto Giacchini
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, MI, Italy
| | - Marco Vighi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, MI, Italy
| | - Antonio Di Guardo
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, CO, Italy.
| |
Collapse
|
22
|
Di Guardo A, Gouin T, MacLeod M, Scheringer M. Environmental fate and exposure models: advances and challenges in 21 st century chemical risk assessment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:58-71. [PMID: 29318251 DOI: 10.1039/c7em00568g] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Environmental fate and exposure models are a powerful means to integrate information on chemicals, their partitioning and degradation behaviour, the environmental scenario and the emissions in order to compile a picture of chemical distribution and fluxes in the multimedia environment. A 1995 pioneering book, resulting from a series of workshops among model developers and users, reported the main advantages and identified needs for research in the field of multimedia fate models. Considerable efforts were devoted to their improvement in the past 25 years and many aspects were refined; notably the inclusion of nanomaterials among the modelled substances, the development of models at different spatial and temporal scales, the estimation of chemical properties and emission data, the incorporation of additional environmental media and processes, the integration of sensitivity and uncertainty analysis in the simulations. However, some challenging issues remain and require research efforts and attention: the need of methods to estimate partition coefficients for polar and ionizable chemical in the environment, a better description of bioavailability in different environments as well as the requirement of injecting more ecological realism in exposure predictions to account for the diversity of ecosystem structures and functions in risk assessment. Finally, to transfer new scientific developments into the realm of regulatory risk assessment, we propose the formation of expert groups that compare, discuss and recommend model modifications and updates and help develop practical tools for risk assessment.
Collapse
Affiliation(s)
- Antonio Di Guardo
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Todd Gouin
- TG Environmental Research, Sharnbrook, MK44 1PL, UK
| | - Matthew MacLeod
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Svante Arrhenius väg 8, SE-11418 Stockholm, Sweden
| | - Martin Scheringer
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland. and RECETOX, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
23
|
Morselli M, Terzaghi E, Di Guardo A. Do environmental dynamics matter in fate models? Exploring scenario dynamics for a terrestrial and an aquatic system. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:145-156. [PMID: 29313860 DOI: 10.1039/c7em00530j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nowadays, there is growing interest in inserting more ecological realism into risk assessment of chemicals. On the exposure evaluation side, this can be done by studying the complexity of exposure in the ecosystem, niche partitioning, e.g. variation of the exposure scenario. Current regulatory predictive approaches, to ensure simplicity and predictive ability, generally keep the scenario as static as possible. This could lead to under or overprediction of chemical exposure depending on the chemical and scenario simulated. To account for more realistic exposure conditions, varying temporally and spatially, additional scenario complexity should be included in currently used models to improve their predictive ability. This study presents two case studies (a terrestrial and an aquatic one) in which some polychlorinated biphenyls (PCBs) were simulated with the SoilPlusVeg and ChimERA models to show the importance of scenario variation in time (biotic and abiotic compartments). The results outlined the importance of accounting for planetary boundary layer variation and vegetation dynamics to accurately predict air concentration changes and the timing of chemical dispersion from the source in terrestrial systems. For the aquatic exercise, the results indicated the need to account for organic carbon forms (particulate and dissolved organic carbon) and vegetation biomass dynamics. In both cases the range of variation was up to two orders of magnitude depending on the congener and scenario, reinforcing the need for incorporating such knowledge into exposure assessment.
Collapse
Affiliation(s)
- Melissa Morselli
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy.
| | | | | |
Collapse
|
24
|
Factors Affecting Spatial and Temporal Concentration Variability of Pharmaceuticals: Comparison between Two WWTPs. SUSTAINABILITY 2017. [DOI: 10.3390/su9081466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Bach M, Diesner M, Großmann D, Guerniche D, Hommen U, Klein M, Kubiak R, Müller A, Preuss TG, Priegnitz J, Reichenberger S, Thomas K, Trapp M. Pesticide exposure assessment for surface waters in the EU. Part 2: Determination of statistically based run-off and drainage scenarios for Germany. PEST MANAGEMENT SCIENCE 2017; 73:852-861. [PMID: 28058804 PMCID: PMC5396381 DOI: 10.1002/ps.4519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/08/2016] [Accepted: 12/23/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND In order to assess surface water exposure to active substances of plant protection products (PPPs) in the European Union (EU), the FOCUS (FOrum for the Co-ordination of pesticide fate models and their USe) surface water workgroup introduced four run-off and six drainage scenarios for Step 3 of the tiered FOCUSsw approach. These scenarios may not necessarily represent realistic worst-case situations for the different Member States of the EU. Hence, the suitability of the scenarios for risk assessment in the national authorisation procedures is not known. RESULTS Using Germany as an example, the paper illustrates how national soil-climate scenarios can be developed to model entries of active substances into surface waters from run-off and erosion (using the model PRZM) and from drainage (using the model MACRO). In the authorisation procedure for PPPs on Member State level, such soil-climate scenarios can be used to determine exposure endpoints with a defined overall percentile. CONCLUSION The approach allows the development of national specific soil-climate scenarios and to calculate percentile-based exposure endpoints. The scenarios have been integrated into a software tool analogous to FOCUS-SWASH which can be used in the future to assess surface water exposure in authorisation procedures of PPPs in Germany. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Martin Bach
- Institute of Landscape Ecology and Resources ManagementGiessen UniversityGermany
| | | | | | - Djamal Guerniche
- Institute of AgroEcology, RLP AgroScienceNeustadt/WeinstraßeGermany
| | - Udo Hommen
- Fraunhofer Institute of Molecular Biology and Applied EcologySchmallenbergGermany
| | - Michael Klein
- Fraunhofer Institute of Molecular Biology and Applied EcologySchmallenbergGermany
| | - Roland Kubiak
- Institute of AgroEcology, RLP AgroScienceNeustadt/WeinstraßeGermany
| | | | | | - Jan Priegnitz
- German Federal Environment Agency (UBA)DessauGermany
| | | | - Kai Thomas
- Institute of AgroEcology, RLP AgroScienceNeustadt/WeinstraßeGermany
| | - Matthias Trapp
- Institute of AgroEcology, RLP AgroScienceNeustadt/WeinstraßeGermany
| |
Collapse
|
26
|
Di Guardo A, Morselli M, Morabito G, Semplice M, Van den Brink PJ, De Laender F. European environmental scenarios of chemical bioavailability in freshwater systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:1237-1246. [PMID: 27998653 DOI: 10.1016/j.scitotenv.2016.12.084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
In exposure prediction for environmental risk assessment, the transition to more dynamic and realistic modelling approaches and scenarios has been recently identified as a major challenge, since it would allow a more accurate prediction of bioavailable concentrations and their variations in space and time. In this work, an improved version of the multimedia model ChimERA fate, including a phytoplankton compartment and equations to calculate phytoplankton, detritus and dissolved organic matter variations in time, was developed. The model was parameterized to simulate five dynamic scenarios for shallow meso-eutrophic water bodies based on a latitudinal gradient (in Europe); such scenarios include seasonal profiles of water temperature, phytoplankton biomass, detritus, and dissolved organic matter. Model runs were performed for each scenario for 8 hydrophobic chemicals (PCB congeners), with the aim of investigating the influence of scenario characteristics and compound properties on bioavailable concentrations. The key processes were adsorption/uptake by phytoplankton and deposition to sediment of detritus-bound chemicals. The northern scenarios ("Scandinavia" and "UK") showed the highest bioavailable concentrations, with annual maximum/minimum concentration up to 25; in contrast, for example, maximum concentrations in the "Mediterranean" scenario were lower by a factor of 2 to 9 with respect to the northern ones (depending on chemical hydrophobicity), due to the generally higher biomass and carbon levels, and showed only limited seasonal variability (up to a factor of 4). These results highlight the importance of including biomass and organic carbon dynamics in both modelling approaches and scenarios for the evaluation of exposure concentrations in aquatic environments.
Collapse
Affiliation(s)
- Antonio Di Guardo
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, CO, Italy.
| | - Melissa Morselli
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, CO, Italy
| | - Giuseppe Morabito
- National Research Council, Institute for Ecosystem Study, Largo Tonolli 50, 28922 Verbania-Pallanza, Italy
| | - Matteo Semplice
- Dipartimento di Matematica, Università degli Studi di Torino, Via C. Alberto 10, 10123 Torino, TO, Italy
| | - Paul J Van den Brink
- Wageningen Environmental Research (Alterra), P.O. Box 47, 6700 AA Wageningen, The Netherlands; Department of Aquatic Ecology and Water Quality Management, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Frederik De Laender
- University of Namur, Research Unit in Environmental and Evolutionary Ecology, Rue de Bruxelles 61, 5000 Namur, Belgium
| |
Collapse
|
27
|
Diepens NJ, Koelmans AA, Baveco H, van den Brink PJ, van den Heuvel-Greve MJ, Brock TCM. Prospective Environmental Risk Assessment for Sediment-Bound Organic Chemicals: A Proposal for Tiered Effect Assessment. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 239:1-77. [PMID: 26684744 DOI: 10.1007/398_2015_5004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A broadly accepted framework for prospective environmental risk assessment (ERA) of sediment-bound organic chemicals is currently lacking. Such a framework requires clear protection goals, evidence-based concepts that link exposure to effects and a transparent tiered-effect assessment. In this paper, we provide a tiered prospective sediment ERA procedure for organic chemicals in sediment, with a focus on the applicable European regulations and the underlying data requirements. Using the ecosystem services concept, we derived specific protection goals for ecosystem service providing units: microorganisms, benthic algae, sediment-rooted macrophytes, benthic invertebrates and benthic vertebrates. Triggers for sediment toxicity testing are discussed.We recommend a tiered approach (Tier 0 through Tier 3). Tier-0 is a cost-effective screening based on chronic water-exposure toxicity data for pelagic species and equilibrium partitioning. Tier-1 is based on spiked sediment laboratory toxicity tests with standard benthic test species and standardised test methods. If comparable chronic toxicity data for both standard and additional benthic test species are available, the Species Sensitivity Distribution (SSD) approach is a more viable Tier-2 option than the geometric mean approach. This paper includes criteria for accepting results of sediment-spiked single species toxicity tests in prospective ERA, and for the application of the SSD approach. We propose micro/mesocosm experiments with spiked sediment, to study colonisation success by benthic organisms, as a Tier-3 option. Ecological effect models can be used to supplement the experimental tiers. A strategy for unifying information from various tiers by experimental work and exposure-and effect modelling is provided.
Collapse
Affiliation(s)
- Noël J Diepens
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, 47, 6700 AA, Wageningen, The Netherlands.
| | - Albert A Koelmans
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, 47, 6700 AA, Wageningen, The Netherlands
- IMARES, Institute for Marine Resources & Ecosystem Studies, Wageningen UR, 68, 1970 AB, IJmuiden, The Netherlands
| | - Hans Baveco
- Environmental Risk Assessment Team, Alterra, 47, 6700 AA, Wageningen, The Netherlands
| | - Paul J van den Brink
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, 47, 6700 AA, Wageningen, The Netherlands
- Environmental Risk Assessment Team, Alterra, 47, 6700 AA, Wageningen, The Netherlands
| | | | - Theo C M Brock
- Environmental Risk Assessment Team, Alterra, 47, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
28
|
Rico A, Van den Brink PJ, Gylstra R, Focks A, Brock TC. Developing ecological scenarios for the prospective aquatic risk assessment of pesticides. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2016; 12:510-21. [PMID: 26437690 DOI: 10.1002/ieam.1718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/04/2015] [Accepted: 09/29/2015] [Indexed: 05/03/2023]
Abstract
The prospective aquatic environmental risk assessment (ERA) of pesticides is generally based on the comparison of predicted environmental concentrations in edge-of-field surface waters with regulatory acceptable concentrations derived from laboratory and/or model ecosystem experiments with aquatic organisms. New improvements in mechanistic effect modeling have allowed a better characterization of the ecological risks of pesticides through the incorporation of biological trait information and landscape parameters to assess individual, population and/or community-level effects and recovery. Similarly to exposure models, ecological models require scenarios that describe the environmental context in which they are applied. In this article, we propose a conceptual framework for the development of ecological scenarios that, when merged with exposure scenarios, will constitute environmental scenarios for prospective aquatic ERA. These "unified" environmental scenarios are defined as the combination of the biotic and abiotic parameters that are required to characterize exposure, (direct and indirect) effects, and recovery of aquatic nontarget species under realistic worst-case conditions. Ideally, environmental scenarios aim to avoid a potential mismatch between the parameter values and the spatial-temporal scales currently used in aquatic exposure and effect modeling. This requires a deeper understanding of the ecological entities we intend to protect, which can be preliminarily addressed by the formulation of ecological scenarios. In this article we present a methodological approach for the development of ecological scenarios and illustrate this approach by a case-study for Dutch agricultural ditches and the example focal species Sialis lutaria. Finally, we discuss the applicability of ecological scenarios in ERA and propose research needs and recommendations for their development and integration with exposure scenarios. Integr Environ Assess Manag 2016;12:510-521. © 2015 SETAC.
Collapse
Affiliation(s)
- Andreu Rico
- Alterra, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Paul J Van den Brink
- Alterra, Wageningen University and Research Centre, Wageningen, the Netherlands
- Department of Aquatic Ecology and Water Quality Management, Wageningen University and Research Centre, Wageningen, the Netherlands
| | | | - Andreas Focks
- Alterra, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Theo Cm Brock
- Alterra, Wageningen University and Research Centre, Wageningen, the Netherlands
| |
Collapse
|
29
|
Knäbel A, Scheringer M, Stehle S, Schulz R. Aquatic Exposure Predictions of Insecticide Field Concentrations Using a Multimedia Mass-Balance Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3721-3728. [PMID: 26889709 DOI: 10.1021/acs.est.5b05721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Highly complex process-driven mechanistic fate and transport models and multimedia mass balance models can be used for the exposure prediction of pesticides in different environmental compartments. Generally, both types of models differ in spatial and temporal resolution. Process-driven mechanistic fate models are very complex, and calculations are time-intensive. This type of model is currently used within the European regulatory pesticide registration (FOCUS). Multimedia mass-balance models require fewer input parameters to calculate concentration ranges and the partitioning between different environmental media. In this study, we used the fugacity-based small-region model (SRM) to calculate predicted environmental concentrations (PEC) for 466 cases of insecticide field concentrations measured in European surface waters. We were able to show that the PECs of the multimedia model are more protective in comparison to FOCUS. In addition, our results show that the multimedia model results have a higher predictive power to simulate varying field concentrations at a higher level of field relevance. The adaptation of the model scenario to actual field conditions suggests that the performance of the SRM increases when worst-case conditions are replaced by real field data. Therefore, this study shows that a less complex modeling approach than that used in the regulatory risk assessment exhibits a higher level of protectiveness and predictiveness and that there is a need to develop and evaluate new ecologically relevant scenarios in the context of pesticide exposure modeling.
Collapse
Affiliation(s)
- Anja Knäbel
- Institute for Environmental Sciences, University of Koblenz-Landau , Fortstrasse 7, D-76829 Landau, Germany
| | - Martin Scheringer
- Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg , Scharnhorststrasse 1, D-21335 Lüneburg, Germany
- Institute for Chemical and Bioengineering, ETH Zürich , CH-8093 Zürich, Switzerland
| | - Sebastian Stehle
- Institute for Environmental Sciences, University of Koblenz-Landau , Fortstrasse 7, D-76829 Landau, Germany
| | - Ralf Schulz
- Institute for Environmental Sciences, University of Koblenz-Landau , Fortstrasse 7, D-76829 Landau, Germany
| |
Collapse
|
30
|
Morselli M, Semplice M, De Laender F, Van den Brink PJ, Di Guardo A. Importance of environmental and biomass dynamics in predicting chemical exposure in ecological risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 526:338-345. [PMID: 25967479 DOI: 10.1016/j.scitotenv.2015.04.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 06/04/2023]
Abstract
In ecological risk assessment, exposure is generally modelled assuming static conditions, herewith neglecting the potential role of emission, environmental and biomass dynamics in affecting bioavailable concentrations. In order to investigate the influence of such dynamics on predicted bioavailable concentrations, the spatially-resolved dynamic model "ChimERA fate" was developed, incorporating macrophyte and particulate/dissolved organic carbon (POC/DOC) dynamics into a water-sediment system. An evaluation against three case studies revealed a satisfying model performance. Illustrative simulations then highlighted the potential spatio-temporal variability of bioavailable concentrations after a pulsed emission of four chemicals in a system composed of a pond connected to its inflow and outflow streams. Changes in macrophyte biomass and POC/DOC levels caused exposure variations which were up to a factor of 4.5 in time and even more significant (several orders of magnitude) in space, especially for highly hydrophobic chemicals. ChimERA fate thus revealed to be a useful tool to investigate such variations and to identify those environmental and ecological conditions in which risk is expected to be highest.
Collapse
Affiliation(s)
- Melissa Morselli
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, CO, Italy
| | - Matteo Semplice
- Dipartimento di Matematica, Università degli Studi di Torino, Via C. Alberto 10, 10123 Torino, TO, Italy
| | - Frederik De Laender
- University of Namur, Research Unit in Environmental and Evolutionary Ecology, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Paul J Van den Brink
- Alterra, Wageningen University and Research Centre, P.O. box 47, 6700 AA Wageningen, The Netherlands; Department of Aquatic Ecology and Water Quality Management, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Antonio Di Guardo
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, CO, Italy.
| |
Collapse
|
31
|
Terzaghi E, Scacchi M, Cerabolini B, Jones KC, Di Guardo A. Estimation of polycyclic aromatic hydrocarbon variability in air using high volume, film, and vegetation as samplers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5520-8. [PMID: 25844662 DOI: 10.1021/es5056929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Organic films and leaves provide a medium into which organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs), can accumulate, resulting in a useful passive air sampler. In the present work, the temporal variability (weekly) in PAH concentrations and the fingerprint of films developed on window surfaces were investigated. Moreover, films and leaves of two tree species (Acer pseudoplatanus and Cornus mas) collected at the same time were used to derive PAH air concentrations and investigate their short-term variability. In general, the most abundant chemicals found in films were phenanthrene and pyrene (22%), followed by perylene (21%) and fluoranthene (16%), but the fingerprint (in contrast to leaves and air) changed over time. Leaf derived air concentrations were within a factor of 2 to 9 from measured values, while air concentrations back-calculated from films were within a factor of 2 to 53. This happened because predicted air concentrations using films and vegetation samplers (especially for low KOA chemicals) generally reflect only the last few hours (due to the fast equilibrium) of the weekly integrated samples obtained employing the high-volume sampler. This means that films and leaves can be usefully employed for predicting the short-term variability of low KOA organic contaminant air concentrations.
Collapse
Affiliation(s)
- Elisa Terzaghi
- †Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
- ‡Department of Theoretical and Applied Sciences, University of Insubria, Via J. H. Dunant 3, 21100 Varese, Italy
| | - Marco Scacchi
- †Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Bruno Cerabolini
- ‡Department of Theoretical and Applied Sciences, University of Insubria, Via J. H. Dunant 3, 21100 Varese, Italy
| | - Kevin C Jones
- §Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Antonio Di Guardo
- †Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| |
Collapse
|
32
|
Terzaghi E, Zacchello G, Scacchi M, Raspa G, Jones KC, Cerabolini B, Di Guardo A. Towards more ecologically realistic scenarios of plant uptake modelling for chemicals: PAHs in a small forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 505:329-37. [PMID: 25461034 DOI: 10.1016/j.scitotenv.2014.09.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/24/2014] [Accepted: 09/30/2014] [Indexed: 05/18/2023]
Abstract
The importance of plants in the accumulation of organic contaminants from air and soil was recognized to the point that even regulatory predictive approaches now include a vegetation compartment or sub-compartment. However, it has recently been shown that many of such approaches lack ecological realism to properly evaluate the dynamic of air/plant/soil exchange, especially when environmental conditions are subject to sudden variations of meteorological or ecological parameters. This paper focuses on the development of a fully dynamic scenario in which the variability of concentrations of selected chemicals in air and plant leaves was studied weekly and related to the corresponding meteorological and ecological parameters, to the evaluate their influence. To develop scenarios for modelling purposes, two different sampling campaigns were performed to measure temporal variability of: 1) polycyclic aromatic hydrocarbon (PAH) concentrations in air of a clearing and a forest site, as well as in leaves of two broadleaf species and 2) two important leaf and canopy traits, specific leaf area (SLA) and leaf area index (LAI). The aim was to evaluate in detail how the variability of meteorological and ecological parameters (SLA and LAI) can influence the uptake/release of organic contaminants by plants and therefore air concentrations. A principal component analysis demonstrated how both meteorological and ecological parameters jointly influence PAH air concentrations. SLA, LAI, as well as leaf density were showed to change over time and among species and to be directly proportional to leaf/canopy uptake rate. While hazelnut had the higher leaf uptake rate, maple became the most important species when considering the canopy uptake rate due to its higher LAI. Other species specific traits, such as the seasonal variation in production of new leaves and the timing of bud burst, were also shown to influence the uptake rate of PAHs by vegetation.
Collapse
Affiliation(s)
- Elisa Terzaghi
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; Department of Theoretical and Applied Sciences, University of Insubria, Via J. H. Dunant 3, 21100 Varese, Italy.
| | - Gabriele Zacchello
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Marco Scacchi
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Giuseppe Raspa
- Department of Chemical Engineering, Materials, and Environment, "La Sapienza" University, Via Eudossiana 18, 00184 Rome, Italy.
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Bruno Cerabolini
- Department of Theoretical and Applied Sciences, University of Insubria, Via J. H. Dunant 3, 21100 Varese, Italy.
| | - Antonio Di Guardo
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy.
| |
Collapse
|
33
|
De Laender F, Morselli M, Baveco H, Van den Brink PJ, Di Guardo A. Theoretically exploring direct and indirect chemical effects across ecological and exposure scenarios using mechanistic fate and effects modelling. ENVIRONMENT INTERNATIONAL 2015; 74:181-90. [PMID: 25454235 DOI: 10.1016/j.envint.2014.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/23/2014] [Accepted: 10/14/2014] [Indexed: 05/03/2023]
Abstract
Predicting ecosystem response to chemicals is a complex problem in ecotoxicology and a challenge for risk assessors. The variables potentially influencing chemical fate and exposure define the exposure scenario while the variables determining effects at the ecosystem level define the ecological scenario. In absence of any empirical data, the objective of this paper is to present simulations by a fugacity-based fate model and a differential equation-based ecosystem model to theoretically explore how direct and indirect effects on invertebrate shallow pond communities vary with changing ecological and exposure scenarios. These simulations suggest that direct and indirect effects are larger in mesotrophic systems than in oligotrophic systems. In both trophic states, interaction strength (quantified using grazing rates) was suggested a more important driver for the size and recovery from direct and indirect effects than immigration rate. In general, weak interactions led to smaller direct and indirect effects. For chemicals targeting mesozooplankton only, indirect effects were common in (simple) food-chains but rare in (complex) food-webs. For chemicals directly affecting microzooplankton, the dominant zooplankton group in the modelled community, indirect effects occurred both in food-chains and food-webs. We conclude that the choice of the ecological and exposure scenarios in ecotoxicological modelling efforts needs to be justified because of its influence on the prevalence and magnitude of the predicted effects. Overall, more work needs to be done to empirically test the theoretical expectations formulated here.
Collapse
Affiliation(s)
- F De Laender
- Namur University, Research Unit in Environmental and Evolutionary Ecology, Rue de Bruxelles 61, 5000 Namur, Belgium.
| | - M Morselli
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy.
| | - H Baveco
- Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - P J Van den Brink
- Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, The Netherlands; Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, The Netherlands.
| | - A Di Guardo
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy.
| |
Collapse
|
34
|
Morselli M, Semplice M, Villa S, Di Guardo A. Evaluating the temporal variability of concentrations of POPs in a glacier-fed stream food chain using a combined modeling approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 493:571-579. [PMID: 24982022 DOI: 10.1016/j.scitotenv.2014.05.150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 06/03/2023]
Abstract
Falling snow acts as an efficient scavenger of contaminants from the atmosphere and, accumulating on the ground surface, behaves as a temporary storage reservoir; during snow aging and metamorphosis, contaminants may concentrate and be subject to pulsed release during intense snow melt events. In high-mountain areas, firn and ice play a similar role. The consequent concentration peaks in surface waters can pose a risk to high-altitude ecosystems, since snow and ice melt often coincide with periods of intense biological activity. In such situations, the role of dynamic models can be crucial when assessing environmental behavior of contaminants and their accumulation patterns in aquatic organisms. In the present work, a dynamic fate modeling approach was combined to a hydrological module capable of estimating water discharge and snow/ice melt contributions on an hourly basis, starting from hourly air temperatures. The model was applied to the case study of the Frodolfo glacier-fed stream (Italian Alps), for which concentrations of a number of persistent organic pollutants (POPs), such as polychlorinated biphenyl (PCBs) and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) in stream water and four macroinvertebrate groups were available. Considering the uncertainties in input data, results showed a satisfying agreement for both water and organism concentrations. This study showed the model adequacy for the estimation of pollutant concentrations in surface waters and bioaccumulation in aquatic organisms, as well as its possible role in assessing the consequences of climate change on the cycle of POPs.
Collapse
Affiliation(s)
- Melissa Morselli
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como CO, Italy
| | - Matteo Semplice
- Dipartimento di Matematica, Università degli Studi di Torino, Via C. Alberto 10, 10123 Torino TO, Italy
| | - Sara Villa
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano MI, Italy
| | - Antonio Di Guardo
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como CO, Italy
| |
Collapse
|
35
|
De Laender F, van den Brink PJ, Janssen CR, Di Guardo A. The ChimERA project: coupling mechanistic exposure and effect models into an integrated platform for ecological risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:6263-6267. [PMID: 24532207 DOI: 10.1007/s11356-014-2605-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 01/26/2014] [Indexed: 06/03/2023]
Abstract
Current techniques for the ecological risk assessment of chemical substances are often criticised for their lack of environmental realism, ecological relevance and methodological accuracy. ChimERA is a 3-year project (2013-2016), funded by Cefic's Long Range Initiative (LRI) that aims to address some of these concerns by developing and testing mechanistic fate and effect models, and coupling of these models into one integrated platform for risk assessment. This paper discusses the backdrop against which this project was initiated and lists its objectives and planned methodology.
Collapse
Affiliation(s)
- F De Laender
- GhenToxLab, Ghent University, 9000, Ghent, Belgium,
| | | | | | | |
Collapse
|
36
|
Ghirardello D, Morselli M, Otto S, Zanin G, Di Guardo A. Investigating the need for complex vs. simple scenarios to improve predictions of aquatic ecosystem exposure with the SoilPlus model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 184:502-510. [PMID: 24172657 DOI: 10.1016/j.envpol.2013.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 08/19/2013] [Accepted: 10/04/2013] [Indexed: 06/02/2023]
Abstract
A spatially-explicit version of the recent multimedia fate model SoilPlus was developed and applied to predict the runoff of three pesticides in a small agricultural watershed in north-eastern Italy. In order to evaluate model response to increasing spatial resolution, a tiered simulation approach was adopted, also using a dynamic model for surface water (DynA model), to predict the fate of pesticides in runoff water and sediment, and concentrations in river water. Simulation outputs were compared to water concentrations measured in the basin. Results showed that a high spatial resolution and scenario complexity improved model predictions of metolachlor and terbuthylazine in runoff to an acceptable performance (R(2) = 0.64-0.70). The importance was also shown of a field-based database of properties (i.e. soil texture and organic carbon, rainfall and water flow, pesticides half-life in soil) in reducing the distance between predicted and measured surface water concentrations and its relevance for risk assessment.
Collapse
Affiliation(s)
- Davide Ghirardello
- Environmental Modelling Group, Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, CO, Italy
| | | | | | | | | |
Collapse
|
37
|
|
38
|
Vighi M. New challenges in ecological risk assessment. Foreword. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2013; 9:e1-e3. [PMID: 23572334 DOI: 10.1002/ieam.1422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/18/2013] [Accepted: 04/02/2013] [Indexed: 06/02/2023]
Affiliation(s)
- Marco Vighi
- University of Milano Bicocca, Department of Earth and Environmental Sciences, Milan, Italy.
| |
Collapse
|