1
|
Liu C, Li Q, Ma JX, Lu B, Criswell T, Zhang Y. Exosome-mediated renal protection: Halting the progression of fibrosis. Genes Dis 2024; 11:101117. [PMID: 39263535 PMCID: PMC11388648 DOI: 10.1016/j.gendis.2023.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 09/13/2024] Open
Abstract
Renal fibrosis is a complex and multifactorial process that involves inflammation, cell proliferation, collagen, and fibronectin deposition in the kidney, ultimately leading to chronic kidney disease and even end-stage renal disease. The main goal of treatment is to slow down or halt the progression of fibrosis and to improve or preserve kidney function. Despite significant progress made in understanding the underlying mechanisms of renal fibrosis, current therapies have limited renal protection as the disease progresses. Exosomes derived from stem cells are a newer area of research for the treatment of renal fibrosis. Exosomes as nano-sized extracellular vesicles carry proteins, lipids, and nucleic acids, which can be taken up by local or distant cells, serving as mediators of intercellular communication and as drug delivery vehicles. Exosomes deliver molecules that reduce inflammation, renal fibrosis and extracellular matrix protein production, and promote tissue regeneration in animal models of kidney disease. Additionally, they have several advantages over stem cells, such as being non-immunogenic, having low risk of tumor formation, and being easier to produce and store. This review describes the use of natural and engineered exosomes containing therapeutic agents capable of mediating anti-inflammatory and anti-fibrotic processes during both acute kidney injury and chronic kidney disease. Exosome-based therapies will be compared with stem cell-based treatments for tissue regeneration, with a focus on renal protection. Finally, future directions and strategies for improving the therapeutic efficacy of exosomes are discussed.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
| | - Baisong Lu
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Tracy Criswell
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
2
|
Choi JY, Park S, Shim JS, Park HJ, Kuh SU, Jeong Y, Park MG, Noh TI, Yoon SG, Park YM, Lee SJ, Kim H, Kang SH, Lee KH. Explainable artificial intelligence-driven prostate cancer screening using exosomal multi-marker based dual-gate FET biosensor. Biosens Bioelectron 2024; 267:116773. [PMID: 39277920 DOI: 10.1016/j.bios.2024.116773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Prostate Imaging Reporting and Data System (PI-RADS) score, a reporting system of prostate MRI cases, has become a standard prostate cancer (PCa) screening method due to exceptional diagnosis performance. However, PI-RADS 3 lesions are an unmet medical need because PI-RADS provides diagnosis accuracy of only 30-40% at most, accompanied by a high false-positive rate. Here, we propose an explainable artificial intelligence (XAI) based PCa screening system integrating a highly sensitive dual-gate field-effect transistor (DGFET) based multi-marker biosensor for ambiguous lesions identification. This system produces interpretable results by analyzing sensing patterns of three urinary exosomal biomarkers, providing a possibility of an evidence-based prediction from clinicians. In our results, XAI-based PCa screening system showed a high accuracy with an AUC of 0.93 using 102 blinded samples with the non-invasive method. Remarkably, the PCa diagnosis accuracy of patients with PI-RADS 3 was more than twice that of conventional PI-RADS scoring. Our system also provided a reasonable explanation of its decision that TMEM256 biomarker is the leading factor for screening those with PI-RADS 3. Our study implies that XAI can facilitate informed decisions, guided by insights into the significance of visualized multi-biomarkers and clinical factors. The XAI-based sensor system can assist healthcare professionals in providing practical and evidence-based PCa diagnoses.
Collapse
Affiliation(s)
- Jae Yi Choi
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of Medical Device Engineering and Management, College of Medicine, Yonsei University, Seoul, 06229, Republic of Korea
| | - Sungwook Park
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Ji Sung Shim
- Department of Urology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Hyung Joon Park
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02481, Republic of Korea
| | - Sung Uk Kuh
- Department of Medical Device Engineering and Management, College of Medicine, Yonsei University, Seoul, 06229, Republic of Korea; Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Youngdo Jeong
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of HY-KIST Bio-convergence, Hanyang University, Seoul, 04763, Republic of Korea
| | - Min Gu Park
- Department of Urology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Tae Il Noh
- Department of Urology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Sung Goo Yoon
- Department of Urology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Yoo Min Park
- Center for Nano Bio Development, National Nanofab Center (NNFC), Daejeon, 34141, Republic of Korea
| | - Seok Jae Lee
- Center for Nano Bio Development, National Nanofab Center (NNFC), Daejeon, 34141, Republic of Korea
| | - Hojun Kim
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Seok Ho Kang
- Department of Urology, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Kwan Hyi Lee
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02481, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
3
|
González Á, López-Borrego S, Sandúa A, Vales-Gomez M, Alegre E. Extracellular vesicles in cancer: challenges and opportunities for clinical laboratories. Crit Rev Clin Lab Sci 2024; 61:435-457. [PMID: 38361287 DOI: 10.1080/10408363.2024.2309935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Extracellular vesicles (EVs) are nano-sized particles secreted by most cells. They transport different types of biomolecules (nucleic acids, proteins, and lipids) characteristic of their tissue or cellular origin that can mediate long-distance intercellular communication. In the case of cancer, EVs participate in tumor progression by modifying the tumor microenvironment, favoring immune tolerance and metastasis development. Consequently, EVs have great potential in liquid biopsy for cancer diagnosis, prognosis and follow-up. In addition, EVs could have a role in cancer treatment as a targeted drug delivery system. The intense research in the EV field has resulted in hundreds of patents and the creation of biomedical companies. However, methodological issues and heterogeneity in EV composition have hampered the advancement of EV validation trials and the development of EV-based diagnostic and therapeutic products. Consequently, only a few EV biomarkers have moved from research to clinical laboratories, such as the ExoDx Prostate IntelliScore (EPI) test, a CLIA/FDA-approved EV prostate cancer diagnostic test. In addition, the number of large-scale multicenter studies that would clearly define biomarker performance is limited. In this review, we will critically describe the different types of EVs, the methods for their enrichment and characterization, and their biological role in cancer. Then, we will specially focus on the parameters to be considered for the translation of EV biology to the clinic laboratory, the advances already made in the field of EVs related to cancer diagnosis and treatment, and the issues still pending to be solved before EVs could be used as a routine tool in oncology.
Collapse
Affiliation(s)
- Álvaro González
- Service of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Silvia López-Borrego
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Amaia Sandúa
- Service of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
| | - Mar Vales-Gomez
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Estibaliz Alegre
- Service of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
4
|
Fathi-Karkan S, Sargazi S, Shojaei S, Farasati Far B, Mirinejad S, Cordani M, Khosravi A, Zarrabi A, Ghavami S. Biotin-functionalized nanoparticles: an overview of recent trends in cancer detection. NANOSCALE 2024; 16:12750-12792. [PMID: 38899396 DOI: 10.1039/d4nr00634h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Electrochemical bio-sensing is a potent and efficient method for converting various biological recognition events into voltage, current, and impedance electrical signals. Biochemical sensors are now a common part of medical applications, such as detecting blood glucose levels, detecting food pathogens, and detecting specific cancers. As an exciting feature, bio-affinity couples, such as proteins with aptamers, ligands, paired nucleotides, and antibodies with antigens, are commonly used as bio-sensitive elements in electrochemical biosensors. Biotin-avidin interactions have been utilized for various purposes in recent years, such as targeting drugs, diagnosing clinically, labeling immunologically, biotechnology, biomedical engineering, and separating or purifying biomolecular compounds. The interaction between biotin and avidin is widely regarded as one of the most robust and reliable noncovalent interactions due to its high bi-affinity and ability to remain selective and accurate under various reaction conditions and bio-molecular attachments. More recently, there have been numerous attempts to develop electrochemical sensors to sense circulating cancer cells and the measurement of intracellular levels of protein thiols, formaldehyde, vitamin-targeted polymers, huwentoxin-I, anti-human antibodies, and a variety of tumor markers (including alpha-fetoprotein, epidermal growth factor receptor, prostate-specific Ag, carcinoembryonic Ag, cancer antigen 125, cancer antigen 15-3, etc.). Still, the non-specific binding of biotin to endogenous biotin-binding proteins present in biological samples can result in false-positive signals and hinder the accurate detection of cancer biomarkers. This review summarizes various categories of biotin-functional nanoparticles designed to detect such biomarkers and highlights some challenges in using them as diagnostic tools.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166 Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shirin Shojaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye.
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
5
|
Smack C, Johnson B, Nyalwidhe JO, Semmes OJ, Yang L. Small extracellular vesicles: Roles and clinical application in prostate cancer. Adv Cancer Res 2024; 161:119-190. [PMID: 39032949 DOI: 10.1016/bs.acr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is a significant health problem in the United States. It is remarkably heterogenous, ranging from slow growing disease amenable to active surveillance to highly aggressive forms requiring active treatments. Therefore, being able to precisely determine the nature of disease and appropriately match patients to available and/or novel therapeutics is crucial to improve patients' overall outcome and quality of life. Recently small extracellular vesicles (sEVs), a subset of nanoscale membranous vesicles secreted by various cells, have emerged as important analytes for liquid biopsy and promising vehicles for drug delivery. sEVs contain various biomolecules such as genetic material, proteins, and lipids that recapitulate the characteristics and state of their donor cells. The application of existing and newly developed technologies has resulted in an increased depth of knowledge about biophysical structures, biogenesis, and functions of sEVs. In prostate cancer patients, tumor-derived sEVs can be isolated from biofluids, commonly urine and blood. They mediate intercellular signaling within the tumor microenvironment and distal organ-specific sites, supporting cancer initiation, progression, and metastasis. A mounting body of evidence suggests that sEV components can be potent biomarkers for prostate cancer diagnosis, prognosis, and prediction of disease progression and treatment response. Due to enhanced circulation stability and bio-barrier permeability, sEVs can be also used as effective drug delivery carriers to improve the efficacy and specificity of anti-tumor therapies. This review discusses recent studies on sEVs in prostate cancer and is focused on their role as biomarkers and drug delivery vehicles in the clinical management of prostate cancer.
Collapse
Affiliation(s)
- Caleb Smack
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Benjamin Johnson
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Julius O Nyalwidhe
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - O John Semmes
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Lifang Yang
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States.
| |
Collapse
|
6
|
Wu L, van Heugten MH, van den Bosch TPP, Duimel H, López-Iglesias C, Hesselink DA, Baan CC, Boer K. Polarized HLA Class I Expression on Renal Tubules Hinders the Detection of Donor-Specific Urinary Extracellular Vesicles. Int J Nanomedicine 2024; 19:3497-3511. [PMID: 38628433 PMCID: PMC11020244 DOI: 10.2147/ijn.s446525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose Kidney transplantation is the optimal treatment for patients with end-stage kidney disease. Donor-specific urinary extracellular vesicles (uEVs) hold potential as biomarkers for assessing allograft status. We aimed to develop a method for identifying donor-specific uEVs based on human leukocyte antigen (HLA) mismatching with the kidney transplant recipients (KTRs). Patients and Methods Urine and plasma were obtained from HLA-A2+ donors and HLA-A2- KTRs pre-transplant. CD9 (tetraspanin, EV marker) and HLA-A2 double-positive (CD9+ HLA-A2+) EVs were quantified using isolation-free imaging flow cytometry (IFCM). Healthy individuals' urine was used to investigate CD9+ HLA-class-I+ uEV quantification using IFCM, time-resolved fluoroimmunoassay (TR-FIA), and immunogold staining cryo-electron microscopy (cryo-EM). Culture-derived CD9+ HLA-class-I+ EVs were spiked into the urine to investigate urine matrix effects on uEV HLA detection. Deceased donor kidneys and peritumoral kidney tissue were used for HLA class I detection with histochemistry. Results The concentrations of CD9+ HLA-A2+ EVs in both donor and recipient urine approached the negative (detergent-treated) control levels for IFCM and were significantly lower than those observed in donor plasma. In parallel, universal HLA class I+ uEVs were similarly undetectable in the urine and uEV isolates compared with plasma, as verified by IFCM, TR-FIA, and cryogenic electron microscopy. Culture supernatant containing HLA class I+ vesicles from B, T, and human proximal tubule cells were spiked into the urine, and these EVs remained stable at 37°C for 8 hours. Immunohistochemistry revealed that HLA class I was predominantly expressed on the basolateral side of renal tubules, with limited expression on their urine/apical side. Conclusion The detection of donor-specific uEVs is hindered by the limited release of HLA class I+ EVs from the kidney into the urine, primarily due to the polarized HLA class I expression on renal tubules. Identifying donor-specific uEVs requires further advancements in recognizing transplant-specific uEVs and urine-associated markers.
Collapse
Affiliation(s)
- Liang Wu
- Department of Nephrology, the First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, People’s Republic of China
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| | - Martijn H van Heugten
- University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| | | | - Hans Duimel
- The Microscopy CORE Laboratory at the Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Carmen López-Iglesias
- The Microscopy CORE Laboratory at the Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Dennis A Hesselink
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| | - Carla C Baan
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| | - Karin Boer
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| |
Collapse
|
7
|
Amin S, Massoumi H, Tewari D, Roy A, Chaudhuri M, Jazayerli C, Krishan A, Singh M, Soleimani M, Karaca EE, Mirzaei A, Guaiquil VH, Rosenblatt MI, Djalilian AR, Jalilian E. Cell Type-Specific Extracellular Vesicles and Their Impact on Health and Disease. Int J Mol Sci 2024; 25:2730. [PMID: 38473976 PMCID: PMC10931654 DOI: 10.3390/ijms25052730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Extracellular vesicles (EVs), a diverse group of cell-derived exocytosed particles, are pivotal in mediating intercellular communication due to their ability to selectively transfer biomolecules to specific cell types. EVs, composed of proteins, nucleic acids, and lipids, are taken up by cells to affect a variety of signaling cascades. Research in the field has primarily focused on stem cell-derived EVs, with a particular focus on mesenchymal stem cells, for their potential therapeutic benefits. Recently, tissue-specific EVs or cell type-specific extracellular vesicles (CTS-EVs), have garnered attention for their unique biogenesis and molecular composition because they enable highly targeted cell-specific communication. Various studies have outlined the roles that CTS-EVs play in the signaling for physiological function and the maintenance of homeostasis, including immune modulation, tissue regeneration, and organ development. These properties are also exploited for disease propagation, such as in cancer, neurological disorders, infectious diseases, autoimmune conditions, and more. The insights gained from analyzing CTS-EVs in different biological roles not only enhance our understanding of intercellular signaling and disease pathogenesis but also open new avenues for innovative diagnostic biomarkers and therapeutic targets for a wide spectrum of medical conditions. This review comprehensively outlines the current understanding of CTS-EV origins, function within normal physiology, and implications in diseased states.
Collapse
Affiliation(s)
- Sohil Amin
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Hamed Massoumi
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Deepshikha Tewari
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Arnab Roy
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Madhurima Chaudhuri
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Cedra Jazayerli
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Abhi Krishan
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Mannat Singh
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Emine E. Karaca
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
- Department of Ophthalmology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara 06800, Turkey
| | - Arash Mirzaei
- Department of Ophthalmology, University of Medical Sciences, Farabi Eye Hospital, Tehran 13366 16351, Iran;
| | - Victor H. Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
8
|
Ko SY, Lee W, Naora H. Harnessing microRNA-enriched extracellular vesicles for liquid biopsy. Front Mol Biosci 2024; 11:1356780. [PMID: 38449696 PMCID: PMC10916008 DOI: 10.3389/fmolb.2024.1356780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
Extracellular microRNAs (miRNAs) can be detected in body fluids and hold great potential as cancer biomarkers. Extracellular miRNAs are protected from degradation by binding various proteins and through their packaging into extracellular vesicles (EVs). There is evidence that the diagnostic performance of cancer-associated extracellular miRNAs can be improved by assaying EV-miRNA instead of total cell-free miRNA, but several challenges have hampered the advancement of EV-miRNA in liquid biopsy. Because almost all types of cells release EVs, cancer cell-derived EVs might constitute only a minor fraction of EVs in body fluids of cancer patients with low volume disease. Furthermore, a given cell type can release several subpopulations of EVs that vary in their cargo, and there is evidence that the majority of EVs contain low copy numbers of miRNAs. In this mini-review, we discuss the potential of several candidate EV membrane proteins such as CD147 to define cancer cell-derived EVs, and approaches by which subpopulations of miRNA-rich EVs in body fluids might be identified. By integrating these insights, we discuss strategies by which EVs that are both cancer cell-derived and miRNA-rich could be isolated to enhance the diagnostic performance of extracellular miRNAs.
Collapse
Affiliation(s)
| | | | - Honami Naora
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
9
|
Welsh JA, Goberdhan DCI, O'Driscoll L, Buzas EI, Blenkiron C, Bussolati B, Cai H, Di Vizio D, Driedonks TAP, Erdbrügger U, Falcon‐Perez JM, Fu Q, Hill AF, Lenassi M, Lim SK, Mahoney MG, Mohanty S, Möller A, Nieuwland R, Ochiya T, Sahoo S, Torrecilhas AC, Zheng L, Zijlstra A, Abuelreich S, Bagabas R, Bergese P, Bridges EM, Brucale M, Burger D, Carney RP, Cocucci E, Colombo F, Crescitelli R, Hanser E, Harris AL, Haughey NJ, Hendrix A, Ivanov AR, Jovanovic‐Talisman T, Kruh‐Garcia NA, Ku'ulei‐Lyn Faustino V, Kyburz D, Lässer C, Lennon KM, Lötvall J, Maddox AL, Martens‐Uzunova ES, Mizenko RR, Newman LA, Ridolfi A, Rohde E, Rojalin T, Rowland A, Saftics A, Sandau US, Saugstad JA, Shekari F, Swift S, Ter‐Ovanesyan D, Tosar JP, Useckaite Z, Valle F, Varga Z, van der Pol E, van Herwijnen MJC, Wauben MHM, Wehman AM, Williams S, Zendrini A, Zimmerman AJ, MISEV Consortium, Théry C, Witwer KW. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles 2024; 13:e12404. [PMID: 38326288 PMCID: PMC10850029 DOI: 10.1002/jev2.12404] [Citation(s) in RCA: 318] [Impact Index Per Article: 318.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024] Open
Abstract
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.
Collapse
Affiliation(s)
- Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of PathologyNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Deborah C. I. Goberdhan
- Nuffield Department of Women's and Reproductive HealthUniversity of Oxford, Women's Centre, John Radcliffe HospitalOxfordUK
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublinIreland
- Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
- Trinity St. James's Cancer InstituteTrinity College DublinDublinIreland
| | - Edit I. Buzas
- Department of Genetics, Cell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- HCEMM‐SU Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
- HUN‐REN‐SU Translational Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
| | - Cherie Blenkiron
- Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | | | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and TherapeuticsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Tom A. P. Driedonks
- Department CDL ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Uta Erdbrügger
- University of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Juan M. Falcon‐Perez
- Exosomes Laboratory, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Metabolomics Platform, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
| | - Qing‐Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Extracellular Vesicle Research and Clinical Translational CenterThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityMelbourneAustralia
| | - Metka Lenassi
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (IMCB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Paracrine Therapeutics Pte. Ltd.SingaporeSingapore
- Department of Surgery, YLL School of MedicineNational University SingaporeSingaporeSingapore
| | - Mỹ G. Mahoney
- Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Sujata Mohanty
- Stem Cell FacilityAll India Institute of Medical SciencesNew DelhiIndia
| | - Andreas Möller
- Chinese University of Hong KongHong KongHong Kong S.A.R.
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Susmita Sahoo
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ana C. Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP) Campus DiademaDiademaBrazil
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Andries Zijlstra
- Department of PathologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- GenentechSouth San FranciscoCaliforniaUSA
| | - Sarah Abuelreich
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Reem Bagabas
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Paolo Bergese
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
- National Center for Gene Therapy and Drugs based on RNA TechnologyPaduaItaly
| | - Esther M. Bridges
- Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Marco Brucale
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Dylan Burger
- Kidney Research CentreOttawa Hopsital Research InstituteOttawaCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaCanada
- School of Pharmaceutical SciencesUniversity of OttawaOttawaCanada
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Federico Colombo
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Edveena Hanser
- Department of BiomedicineUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | | | - Norman J. Haughey
- Departments of Neurology and PsychiatryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Tijana Jovanovic‐Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Nicole A. Kruh‐Garcia
- Bio‐pharmaceutical Manufacturing and Academic Resource Center (BioMARC)Infectious Disease Research Center, Colorado State UniversityFort CollinsColoradoUSA
| | - Vroniqa Ku'ulei‐Lyn Faustino
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Diego Kyburz
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Department of RheumatologyUniversity Hospital BaselBaselSwitzerland
| | - Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine and Clinical NutritionInstitute of Medicine at Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Kathleen M. Lennon
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Adam L. Maddox
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Elena S. Martens‐Uzunova
- Erasmus MC Cancer InstituteUniversity Medical Center Rotterdam, Department of UrologyRotterdamThe Netherlands
| | - Rachel R. Mizenko
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Lauren A. Newman
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andrea Ridolfi
- Department of Physics and Astronomy, and LaserLaB AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Eva Rohde
- Department of Transfusion Medicine, University HospitalSalzburger Landeskliniken GmbH of Paracelsus Medical UniversitySalzburgAustria
- GMP Unit, Paracelsus Medical UniversitySalzburgAustria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies, EV‐TTSalzburgAustria
| | - Tatu Rojalin
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Expansion Therapeutics, Structural Biology and BiophysicsJupiterFloridaUSA
| | - Andrew Rowland
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andras Saftics
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Celer DiagnosticsTorontoCanada
| | - Simon Swift
- Waipapa Taumata Rau University of AucklandAucklandNew Zealand
| | - Dmitry Ter‐Ovanesyan
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Juan P. Tosar
- Universidad de la RepúblicaMontevideoUruguay
- Institut Pasteur de MontevideoMontevideoUruguay
| | - Zivile Useckaite
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Francesco Valle
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Zoltan Varga
- Biological Nanochemistry Research GroupInstitute of Materials and Environmental Chemistry, Research Centre for Natural SciencesBudapestHungary
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Edwin van der Pol
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Biomedical Engineering and Physics, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Martijn J. C. van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marca H. M. Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | | - Andrea Zendrini
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
| | - Alan J. Zimmerman
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | | | - Clotilde Théry
- Institut Curie, INSERM U932PSL UniversityParisFrance
- CurieCoreTech Extracellular Vesicles, Institut CurieParisFrance
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- EV Core Facility “EXCEL”, Institute for Basic Biomedical SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
10
|
Sall IM, Flaviu TA. Plant and mammalian-derived extracellular vesicles: a new therapeutic approach for the future. Front Bioeng Biotechnol 2023; 11:1215650. [PMID: 37781539 PMCID: PMC10534050 DOI: 10.3389/fbioe.2023.1215650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
Background: In recent years, extracellular vesicles have been recognized as important mediators of intercellular communication through the transfer of active biomolecules (proteins, lipids, and nucleic acids) across the plant and animal kingdoms and have considerable roles in several physiological and pathological mechanisms, showing great promise as new therapeutic strategies for a variety of pathologies. Methods: In this study, we carefully reviewed the numerous articles published over the last few decades on the general knowledge of extracellular vesicles, their application in the therapy of various pathologies, and their prospects as an approach for the future. Results: The recent discovery and characterization of extracellular vesicles (EVs) of diverse origins and biogenesis have altered the current paradigm of intercellular communication, opening up new diagnostic and therapeutic perspectives. Research into these EVs released by plant and mammalian cells has revealed their involvement in a number of physiological and pathological mechanisms, such as embryonic development, immune response, tissue regeneration, and cancer. They are also being studied as potential biomarkers for disease diagnosis and vectors for drug delivery. Conclusion: Nanovesicles represent powerful tools for intercellular communication and the transfer of bioactive molecules. Their molecular composition and functions can vary according to their origin (plant and mammalian), so their formation, composition, and biological roles open the way to therapeutic applications in a variety of pathologies, which is arousing growing interest in the scientific community. Clinical Trial Registration: ClinicalTrials.gov identifier: NCT03608631.
Collapse
Affiliation(s)
| | - Tabaran Alexandru Flaviu
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
11
|
Diao Y, Zhu B, Ding T, Li R, Li J, Yang L, Zhou L, Hao X, Liu J. Tumor-derived extracellular vesicle nucleic acids as promising diagnostic biomarkers for prostate cancer. Front Oncol 2023; 13:1201554. [PMID: 37456240 PMCID: PMC10338955 DOI: 10.3389/fonc.2023.1201554] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Liquid biopsy as a non-invasive method has a bright future in cancer diagnosis. Tumor-related extracellular vesicles (EVs) and their components (nucleic acids, proteins, and lipids) in biofluids may exert multiple functions in tumor growth, metastasis, immune escape, and angiogenesis. Among all the components, nucleic acids have attracted the most interest due to their simplicity of extraction and detection. In this review, the biological functions of EVs in prostate cancer (PCa) genesis and progression were summarized. Moreover, the diagnostic value of EV RNA markers found in clinical body fluid samples was reviewed, including their trends, challenging isolation methods, and diagnostic efficacy. Lastly, because relatively much progress has been made in PCa, studies on EV DNA markers are also discussed.
Collapse
|
12
|
Arena GO, Forte S, Abdouh M, Vanier C, Corbeil D, Lorico A. Horizontal Transfer of Malignant Traits and the Involvement of Extracellular Vesicles in Metastasis. Cells 2023; 12:1566. [PMID: 37371036 PMCID: PMC10297028 DOI: 10.3390/cells12121566] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Metastases are responsible for the vast majority of cancer deaths, yet most therapeutic efforts have focused on targeting and interrupting tumor growth rather than impairing the metastatic process. Traditionally, cancer metastasis is attributed to the dissemination of neoplastic cells from the primary tumor to distant organs through blood and lymphatic circulation. A thorough understanding of the metastatic process is essential to develop new therapeutic strategies that improve cancer survival. Since Paget's original description of the "Seed and Soil" hypothesis over a hundred years ago, alternative theories and new players have been proposed. In particular, the role of extracellular vesicles (EVs) released by cancer cells and their uptake by neighboring cells or at distinct anatomical sites has been explored. Here, we will outline and discuss these alternative theories and emphasize the horizontal transfer of EV-associated biomolecules as a possibly major event leading to cell transformation and the induction of metastases. We will also highlight the recently discovered intracellular pathway used by EVs to deliver their cargoes into the nucleus of recipient cells, which is a potential target for novel anti-metastatic strategies.
Collapse
Affiliation(s)
- Goffredo O. Arena
- Department of Surgery, McGill University, Montréal, QC H3A 0G4, Canada;
- Fondazione Istituto G. Giglio, 90015 Cefalù, Italy
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy;
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy;
| | - Mohamed Abdouh
- Cancer Research Program, Research Institute, McGill University Health Centre, Montréal, QC H3A 0G4, Canada;
| | - Cheryl Vanier
- Touro University Nevada College of Medicine, Henderson, NV 89014, USA;
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Aurelio Lorico
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy;
- Touro University Nevada College of Medicine, Henderson, NV 89014, USA;
| |
Collapse
|
13
|
Ko SY, Lee W, Weigert M, Jonasch E, Lengyel E, Naora H. The glycoprotein CD147 defines miRNA-enriched extracellular vesicles that derive from cancer cells. J Extracell Vesicles 2023; 12:e12318. [PMID: 36973758 PMCID: PMC10042814 DOI: 10.1002/jev2.12318] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Extracellular vesicles (EVs) are ideal for liquid biopsy, but distinguishing cancer cell-derived EVs and subpopulations of biomarker-containing EVs in body fluids has been challenging. Here, we identified that the glycoproteins CD147 and CD98 define subpopulations of EVs that are distinct from classical tetraspanin+ EVs in their biogenesis. Notably, we identified that CD147+ EVs have substantially higher microRNA (miRNA) content than tetraspanin+ EVs and are selectively enriched in miRNA through the interaction of CD147 with heterogeneous nuclear ribonucleoprotein A2/B1. Studies using mouse xenograft models showed that CD147+ EVs predominantly derive from cancer cells, whereas the majority of tetraspanin+ EVs are not of cancer cell origin. Circulating CD147+ EVs, but not tetraspanin+ EVs, were significantly increased in prevalence in patients with ovarian and renal cancers as compared to healthy individuals and patients with benign conditions. Furthermore, we found that isolating miRNAs from body fluids by CD147 immunocapture increases the sensitivity of detecting cancer cell-specific miRNAs, and that circulating miRNAs isolated by CD147 immunocapture more closely reflect the tumor miRNA signature than circulating miRNAs isolated by conventional methods. Collectively, our findings reveal that CD147 defines miRNA-enriched, cancer cell-derived EVs, and that CD147 immunocapture could be an effective approach to isolate cancer-derived miRNAs for liquid biopsy.
Collapse
Affiliation(s)
- Song Yi Ko
- Department of Molecular and Cellular OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - WonJae Lee
- Department of Molecular and Cellular OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Melanie Weigert
- Section of Gynecologic OncologyDepartment of Obstetrics and GynecologyUniversity of ChicagoChicagoIllinoisUSA
| | - Eric Jonasch
- Department of Genitourinary Medical OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ernst Lengyel
- Section of Gynecologic OncologyDepartment of Obstetrics and GynecologyUniversity of ChicagoChicagoIllinoisUSA
| | - Honami Naora
- Department of Molecular and Cellular OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
14
|
Irmer B, Chandrabalan S, Maas L, Bleckmann A, Menck K. Extracellular Vesicles in Liquid Biopsies as Biomarkers for Solid Tumors. Cancers (Basel) 2023; 15:cancers15041307. [PMID: 36831648 PMCID: PMC9953862 DOI: 10.3390/cancers15041307] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Extracellular vesicles (EVs) are secreted by all living cells and are ubiquitous in every human body fluid. They are quite heterogeneous with regard to biogenesis, size, and composition, yet always reflect their parental cells with their cell-of-origin specific cargo loading. Since numerous studies have demonstrated that EV-associated proteins, nucleic acids, lipids, and metabolites can represent malignant phenotypes in cancer patients, EVs are increasingly being discussed as valuable carriers of cancer biomarkers in liquid biopsy samples. However, the lack of standardized and clinically feasible protocols for EV purification and characterization still limits the applicability of EV-based cancer biomarker analysis. This review first provides an overview of current EV isolation and characterization techniques that can be used to exploit patient-derived body fluids for biomarker quantification assays. Secondly, it outlines promising tumor-specific EV biomarkers relevant for cancer diagnosis, disease monitoring, and the prediction of cancer progression and therapy resistance. Finally, we summarize the advantages and current limitations of using EVs in liquid biopsy with a prospective view on strategies for the ongoing clinical implementation of EV-based biomarker screenings.
Collapse
Affiliation(s)
- Barnabas Irmer
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Suganja Chandrabalan
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Lukas Maas
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Annalen Bleckmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
- West German Cancer Center, University Hospital Münster, 48149 Munster, Germany
| | - Kerstin Menck
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
- Correspondence:
| |
Collapse
|
15
|
Bajo-Santos C, Brokāne A, Zayakin P, Endzeliņš E, Soboļevska K, Belovs A, Jansons J, Sperga M, Llorente A, Radoviča-Spalviņa I, Lietuvietis V, Linē A. Plasma and urinary extracellular vesicles as a source of RNA biomarkers for prostate cancer in liquid biopsies. Front Mol Biosci 2023; 10:980433. [PMID: 36818049 PMCID: PMC9935579 DOI: 10.3389/fmolb.2023.980433] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Extracellular vesicles (EVs) have emerged as a very attractive source of cancer- derived RNA biomarkers for the early detection, prognosis and monitoring of various cancers, including prostate cancer (PC). However, biofluids contain a mixture of EVs released from a variety of tissues and the fraction of total EVs that are derived from PC tissue is not known. Moreover, the optimal biofluid-plasma or urine-that is more suitable for the detection of EV- enclosed RNA biomarkers is not yet clear. Methodology: In the current study, we performed RNA sequencing analysis of plasma and urinary EVs collected before and after radical prostatectomy, and matched tumor and normal prostate tissues of 10 patients with prostate cancer. Results and Discussion: The most abundant RNA biotypes in EVs were miRNA, piRNA, tRNA, lncRNA, rRNA and mRNA. To identify putative cancer-derived RNA biomarkers, we searched for RNAs that were overexpressed in tumor as compared to normal tissues, present in the pre-operation EVs and decreased in the post-operation EVs in each RNA biotype. The levels of 63 mRNAs, 3 lncRNAs, 2 miRNAs and 1 piRNA were significantly increased in the tumors and decreased in the post-operation urinary EVs, thus suggesting that these RNAs mainly originate from PC tissue. No such RNA biomarkers were identified in plasma EVs. This suggests that the fraction of PC-derived EVs in urine is larger than in plasma and allows the detection and tracking of PC-derived RNAs.
Collapse
Affiliation(s)
| | - Agnese Brokāne
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Pawel Zayakin
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | | | | | | | - Alicia Llorente
- Department Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway,Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway
| | | | | | - Aija Linē
- Latvian Biomedical Research and Study Centre, Riga, Latvia,*Correspondence: Aija Linē,
| |
Collapse
|
16
|
Isolation-free measurement of single urinary extracellular vesicles by imaging flow cytometry. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102638. [PMID: 36549551 DOI: 10.1016/j.nano.2022.102638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Urinary extracellular vesicles (uEVs) are promising biomarkers for various diseases. However, many tools measuring uEVs rely on time-consuming uEV isolation methods, which could induce sample bias. This study demonstrates the detection of single uEVs without isolation using imaging flow cytometry (IFCM). Unstained urine samples contained auto-fluorescent (A-F) particles when characterized with IFCM. Centrifugation successfully removed A-F particles from the unprocessed urine. Based on the disappearance of A-F particles, a gate was defined to distinguish uEVs from A-F particles. The final readouts of IFCM were verified as single EVs based on detergent treatment and serial dilutions. When developing this protocol to measure urine samples with abnormally high protein levels, 25 mg/mL dithiothreitol (DTT) showed improved uEV recovery over 200 mg/mL DTT. This study provides an isolation-free protocol using IFCM to quantify and phenotype single uEVs, eliminating the hindrance and influence of A-F particles, protein aggregates, and coincidence events.
Collapse
|
17
|
Biagiotti S, Abbas F, Montanari M, Barattini C, Rossi L, Magnani M, Papa S, Canonico B. Extracellular Vesicles as New Players in Drug Delivery: A Focus on Red Blood Cells-Derived EVs. Pharmaceutics 2023; 15:365. [PMID: 36839687 PMCID: PMC9961903 DOI: 10.3390/pharmaceutics15020365] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The article is divided into several sections, focusing on extracellular vesicles' (EVs) nature, features, commonly employed methodologies and strategies for their isolation/preparation, and their characterization/visualization. This work aims to give an overview of advances in EVs' extensive nanomedical-drug delivery applications. Furthermore, considerations for EVs translation to clinical application are summarized here, before focusing the review on a special kind of extracellular vesicles, the ones derived from red blood cells (RBCEVs). Generally, employing EVs as drug carriers means managing entities with advantageous properties over synthetic vehicles or nanoparticles. Besides the fact that certain EVs also reveal intrinsic therapeutic characteristics, in regenerative medicine, EVs nanosize, lipidomic and proteomic profiles enable them to pass biologic barriers and display cell/tissue tropisms; indeed, EVs engineering can further optimize their organ targeting. In the second part of the review, we focus our attention on RBCEVs. First, we describe the biogenesis and composition of those naturally produced by red blood cells (RBCs) under physiological and pathological conditions. Afterwards, we discuss the current procedures to isolate and/or produce RBCEVs in the lab and to load a specific cargo for therapeutic exploitation. Finally, we disclose the most recent applications of RBCEVs at the in vitro and preclinical research level and their potential industrial exploitation. In conclusion, RBCEVs can be, in the near future, a very promising and versatile platform for several clinical applications and pharmaceutical exploitations.
Collapse
Affiliation(s)
- Sara Biagiotti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Faiza Abbas
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Chiara Barattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
- AcZon s.r.l., 40050 Monte San Pietro, BO, Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| |
Collapse
|
18
|
Cai R, Wang L, Zhang W, Liu B, Wu Y, Pang J, Ma C. The role of extracellular vesicles in periodontitis: pathogenesis, diagnosis, and therapy. Front Immunol 2023; 14:1151322. [PMID: 37114060 PMCID: PMC10126335 DOI: 10.3389/fimmu.2023.1151322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Periodontitis is a prevalent disease and one of the leading causes of tooth loss. Biofilms are initiating factor of periodontitis, which can destroy periodontal tissue by producing virulence factors. The overactivated host immune response is the primary cause of periodontitis. The clinical examination of periodontal tissues and the patient's medical history are the mainstays of periodontitis diagnosis. However, there is a lack of molecular biomarkers that can be used to identify and predict periodontitis activity precisely. Non-surgical and surgical treatments are currently available for periodontitis, although both have drawbacks. In clinical practice, achieving the ideal therapeutic effect remains a challenge. Studies have revealed that bacteria produce extracellular vesicles (EVs) to export virulence proteins to host cells. Meanwhile, periodontal tissue cells and immune cells produce EVs that have pro- or anti-inflammatory effects. Accordingly, EVs play a critical role in the pathogenesis of periodontitis. Recent studies have also presented that the content and composition of EVs in saliva and gingival crevicular fluid (GCF) can serve as possible periodontitis diagnostic indicators. In addition, studies have indicated that stem cell EVs may encourage periodontal regeneration. In this article, we mainly review the role of EVs in the pathogenesis of periodontitis and discuss their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Rong Cai
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Bing Liu
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Yiqi Wu
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jianliang Pang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| | - Chufan Ma
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| |
Collapse
|
19
|
Datta B, Dutta N, Ashish A, Mandal M, Shukla J, Suresh R, Choudhury P, Chaudhury K, Dutta G. Electrochemical Detection of Cancer Fingerprint: A Systematic Review on Recent Progress in Extracellular Vesicle Research from Lab to Market. NEXT-GENERATION NANOBIOSENSOR DEVICES FOR POINT-OF-CARE DIAGNOSTICS 2023:47-77. [DOI: 10.1007/978-981-19-7130-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
20
|
Srivastava A, Rathore S, Munshi A, Ramesh R. Organically derived exosomes as carriers of anticancer drugs and imaging agents for cancer treatment. Semin Cancer Biol 2022; 86:80-100. [PMID: 35192929 PMCID: PMC9388703 DOI: 10.1016/j.semcancer.2022.02.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs), is the umbrella term used for different types of vesicles produced by the cells, among which exosomes form the largest group. Exosomes perform intercellular communication by carrying several biologics from donor or parental cells and delivering them to recipient cells. Their unique cargo-carrying capacity has recently been explored for use as delivery vehicles of anticancer drugs and imaging agents. Being naturally produced, exosomes have many advantages over synthetic lipid-based nanoparticles currently being used clinically to treat cancer and other diseases. The finding of the role of exosomes in human diseases has led to numerous preclinical and clinical studies exploring their use as an amenable drug delivery vehicle and a theranostic in cancer diagnosis and treatment. However, there are certain limitations associated with exosomes, with the most important being the selection of the biological source for producing highly biocompatible exosomes on a large scale. This review article explores the various sources from which therapeutically viable exosomes can be isolated for use as drug carriers for cancer treatment. The methods of exosome isolation and the process of loading them with cancer therapeutics and imaging agents are also discussed in the follow-up sections. Finally, the article concludes with future directions for exosome-based applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Akhil Srivastava
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shipra Rathore
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
21
|
Sadovska L, Zayakin P, Bajo-Santos C, Endzeliņš E, Auders J, Keiša L, Jansons J, Lietuvietis V, Linē A. Effects of urinary extracellular vesicles from prostate cancer patients on the transcriptomes of cancer-associated and normal fibroblasts. BMC Cancer 2022; 22:1055. [PMID: 36224527 PMCID: PMC9555094 DOI: 10.1186/s12885-022-10107-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 08/26/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing evidence suggests that cancer-derived extracellular vesicles (EVs) alter the phenotype and functions of fibroblasts and trigger the reprogramming of normal fibroblasts into cancer-associated fibroblasts (CAFs). Here, we for the first time studied the effects of urinary EVs from PC patients and healthy males on the transcriptional landscape of prostate CAFs and normal foreskin fibroblasts. METHODS Patient-derived prostate fibroblast primary cultures PCF-54 and PCF-55 were established from two specimens of PC tissues. EVs were isolated from urine samples of 3 patients with PC and 2 healthy males and used for the treatment of prostate fibroblast primary cultures and normal foreskin fibroblasts. The EV-treated fibroblasts were subjected to RNA sequencing analysis. RESULTS RNA sequencing analysis showed that the fibroblast cultures differed significantly in their response to urinary EVs. The transcriptional response of foreskin fibroblasts to the urinary EVs isolated from PC patients and healthy controls was very similar and mostly related to the normal functions of fibroblasts. On the contrary, PCF-54 cells responded very differently - EVs from PC patients elicited transcriptional changes related to the regulation of the cell division and chromosome segregation, whereas EVs from healthy males affected mitochondrial respiration. In PCF-55 cells, EVs from both, PC-patients and controls induced the expression of a number of chemokines such as CCL2, CCL13, CXCL1, CXCL8, whereas pathways related to regulation of apoptotic signaling and production of cell adhesion molecules were triggered specifically by EVs from PC patients. CONCLUSION This study demonstrates that urinary EVs from PC patients and healthy controls elicit distinct transcriptional responses in prostate CAFs and supports the idea that EVs contribute to the generation of functional heterogeneity of CAFs. Moreover, this study suggests that the changes in the gene expression pattern in EV recipient cells might serve as a novel type of functional cancer biomarkers.
Collapse
Affiliation(s)
- Lilite Sadovska
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia
| | - Pawel Zayakin
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia
| | - Cristina Bajo-Santos
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia
| | - Edgars Endzeliņš
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia
| | - Jānis Auders
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia.,Faculty of Medicine, University of Latvia, Raina blvd. 19, 1586, LV, Riga, Latvia
| | - Laura Keiša
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia.,Faculty of Medicine, University of Latvia, Raina blvd. 19, 1586, LV, Riga, Latvia
| | - Juris Jansons
- Riga Stradiņš University, Dzirciema Str 16, LV-1007, Riga, Latvia
| | | | - Aija Linē
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia.
| |
Collapse
|
22
|
Islam MK, Dhondt B, Syed P, Khan M, Gidwani K, Webber J, Hendrix A, Jenster G, Lamminen T, Boström PJ, Pettersson K, Lamminmäki U, Leivo J. Integrins are enriched on aberrantly fucosylated tumour-derived urinary extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e64. [PMID: 38939212 PMCID: PMC11080809 DOI: 10.1002/jex2.64] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 06/29/2024]
Abstract
Urinary extracellular vesicles (uEVs) are enriched with glycosylated proteins which have been extensively studied as putative biomarkers of urological cancers. Here, we characterized the glycosylation and integrin profile of EVs derived from urological cancer cell lines. We used fluorescent europium-doped nanoparticles coated with lectins and antibodies to identify a biomarker combination consisting of integrin subunit alpha 3 (ITGA3) and fucose. In addition, we used the same cancer cell line-derived EVs as analytical standards to assess the sensitivity of the ITGA3-UEA assay. The clinical performance of the ITGA3-UEA assay was analysed using urine samples of various urological pathologies including diagnostically challenging benign prostatic hyperplasia (BPH), prostate cancer (PCa) and bladder cancer (BlCa). The assay can significantly discriminate BlCa from all other patient groups: PCa (9.2-fold; p = 0.00038), BPH (5.5-fold; p = 0.004) and healthy individuals (and 23-fold; p = 0.0001). Our results demonstrate that aberrantly fucosylated uEVs and integrin ITGA3 can be detected with fucose-specific lectin UEA in a simple bioaffinity assay for the detection of BlCa directly from unprocessed urine.
Collapse
Affiliation(s)
- Md. Khirul Islam
- Department of Life TechnologiesDivision of BiotechnologyUniversity of TurkuTurkuFinland
- InFLAMES Research Flagship CenterUniversity of TurkuTurkuFinland
| | - Bert Dhondt
- Department of UrologyGhent University HospitalGhentBelgium
- Laboratory for Experimental Cancer ResearchDepartment of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research InstituteGhent UniversityGhentBelgium
| | | | - Misba Khan
- Department of Life TechnologiesDivision of BiotechnologyUniversity of TurkuTurkuFinland
| | - Kamlesh Gidwani
- Department of Life TechnologiesDivision of BiotechnologyUniversity of TurkuTurkuFinland
| | - Jason Webber
- Institute of Life Science 1Swansea University Medical SchoolSwanseaUK
| | - An Hendrix
- Laboratory for Experimental Cancer ResearchDepartment of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research InstituteGhent UniversityGhentBelgium
| | - Guido Jenster
- Department of UrologyErasmus MCRotterdamThe Netherlands
| | - Tarja Lamminen
- Department of UrologyTurku University Hospital and University of TurkuTurkuFinland
| | - Peter J. Boström
- Department of UrologyTurku University Hospital and University of TurkuTurkuFinland
| | - Kim Pettersson
- Department of Life TechnologiesDivision of BiotechnologyUniversity of TurkuTurkuFinland
| | - Urpo Lamminmäki
- Department of Life TechnologiesDivision of BiotechnologyUniversity of TurkuTurkuFinland
- InFLAMES Research Flagship CenterUniversity of TurkuTurkuFinland
| | - Janne Leivo
- Department of Life TechnologiesDivision of BiotechnologyUniversity of TurkuTurkuFinland
- InFLAMES Research Flagship CenterUniversity of TurkuTurkuFinland
| |
Collapse
|
23
|
Wu A, Wolley MJ, Fenton RA, Stowasser M. Using human urinary extracellular vesicles to study physiological and pathophysiological states and regulation of the sodium chloride cotransporter. Front Endocrinol (Lausanne) 2022; 13:981317. [PMID: 36105401 PMCID: PMC9465297 DOI: 10.3389/fendo.2022.981317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
The thiazide-sensitive sodium chloride cotransporter (NCC), expressed in the renal distal convoluted tubule, plays a major role in Na+, Cl- and K+ homeostasis and blood pressure as exemplified by the symptoms of patients with non-functional NCC and Gitelman syndrome. NCC activity is modulated by a variety of hormones, but is also influenced by the extracellular K+ concentration. The putative "renal-K+ switch" mechanism is a relatively cohesive model that links dietary K+ intake to NCC activity, and may offer new targets for blood pressure control. However, a remaining hurdle for full acceptance of this model is the lack of human data to confirm molecular findings from animal models. Extracellular vesicles (EVs) have attracted attention from the scientific community due to their potential roles in intercellular communication, disease pathogenesis, drug delivery and as possible reservoirs of biomarkers. Urinary EVs (uEVs) are an excellent sample source for the study of physiology and pathology of renal, urothelial and prostate tissues, but the diverse origins of uEVs and their dynamic molecular composition present both methodological and data interpretation challenges. This review provides a brief overview of the state-of-the-art, challenges and knowledge gaps in current uEV-based analyses, with a focus on the application of uEVs to study the "renal-K+ switch" and NCC regulation. We also provide recommendations regarding biospecimen handling, processing and reporting requirements to improve experimental reproducibility and interoperability towards the realisation of the potential of uEV-derived biomarkers in hypertension and clinical practice.
Collapse
Affiliation(s)
- Aihua Wu
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, QLD, Australia
| | - Martin J. Wolley
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, QLD, Australia
- Department of Nephrology, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
| | | | - Michael Stowasser
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, QLD, Australia
| |
Collapse
|
24
|
Fang Z, Ding Y, Xue Z, Li P, Li J, Li F. Roles of exosomes as drug delivery systems in cancer immunotherapy: a mini-review. Discov Oncol 2022; 13:74. [PMID: 35962862 PMCID: PMC9375799 DOI: 10.1007/s12672-022-00539-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 11/04/2022] Open
Abstract
Exosomes can be released by a variety of cells and participate in intercellular communication in many physiological processes in the body. They can be used as carriers of cancer therapeutic drugs and have natural delivery capabilities. Some biologically active substances on exosomes, such as major histocompatibility complex (MHC), have been shown to be involved in exosome-mediated anticancer immune responses and have important regulatory effects on the immune system. Exosome-based drug delivery systems hold great promise in future cancer immunotherapy. However, there are still substantial challenges to be overcome in the clinical application of exosomes as drug carriers. This article reviews the biological characteristics of exosome drug delivery systems and their potential applications and challenges in cancer immunotherapy.
Collapse
Affiliation(s)
- Zhen Fang
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yixuan Ding
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Zhigang Xue
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Peijuan Li
- Dalian Medical University, Dalian, Liaoning, China.
| | - Jia Li
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
25
|
Application of Proteogenomics to Urine Analysis towards the Identification of Novel Biomarkers of Prostate Cancer: An Exploratory Study. Cancers (Basel) 2022; 14:cancers14082001. [PMID: 35454907 PMCID: PMC9031064 DOI: 10.3390/cancers14082001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Prostate cancer (PCa) is one of the most common cancers. Due to the limited and invasive approaches for PCa diagnosis, it is crucial to identify more accurate and non-invasive biomarkers for its detection. The aim of our study was to non-invasively uncover new protein targets for detecting PCa using a proteomics and proteogenomics approach. This work identified several dysregulated mutant protein isoforms in urine from PCa patients, some of them predicted to have a protective or an adverse role in these patients. These results are promising given urine’s non-invasive nature and offers an auspicious opportunity for research and development of PCa biomarkers. Abstract To identify new protein targets for PCa detection, first, a shotgun discovery experiment was performed to characterize the urinary proteome of PCa patients. This revealed 18 differentially abundant urinary proteins in PCa patients. Second, selected targets were clinically tested by immunoblot, and the soluble E-cadherin fragment was detected for the first time in the urine of PCa patients. Third, the proteogenome landscape of these PCa patients was characterized, revealing 1665 mutant protein isoforms. Statistical analysis revealed 6 differentially abundant mutant protein isoforms in PCa patients. Analysis of the likely effects of mutations on protein function and PPIs involving the dysregulated mutant protein isoforms suggests a protective role of mutations HSPG2*Q1062H and VASN*R161Q and an adverse role of AMBP*A286G and CD55*S162L in PCa patients. This work originally characterized the urinary proteome, focusing on the proteogenome profile of PCa patients, which is usually overlooked in the analysis of PCa and body fluids. Combined analysis of mass spectrometry data using two different software packages was performed for the first time in the context of PCa, which increased the robustness of the data analysis. The application of proteogenomics to urine proteomic analysis can be very enriching in mutation-related diseases such as cancer.
Collapse
|
26
|
Functionalized nanomaterials in separation and analysis of extracellular vesicles and their contents. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Ramirez-Garrastacho M, Berge V, Linē A, Llorente A. Potential of miRNAs in urinary extracellular vesicles for management of active surveillance in prostate cancer patients. Br J Cancer 2022; 126:492-501. [PMID: 34811506 PMCID: PMC8810884 DOI: 10.1038/s41416-021-01598-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Active surveillance is an alternative to radical treatment for patients with low-risk prostate cancer, which could also benefit some patients with intermediate risk. We have investigated the use of miRNA in urinary extracellular vesicles to stratify these patients. METHODS NGS was performed to profile the miRNAs from small urinary extracellular vesicles in a cohort of 70 patients with prostate cancer ISUP Grade 1, 2 or 3. The most promising candidates were then analysed by RT-qPCR in a new cohort of 60 patients. RESULTS NGS analysis identified nine miRNAs differentially expressed in at least one of the comparisons. The largest differences were found with miR-1290 (Grade 3 vs. 1), miR-320a-3p (Grade 3 vs. 2) and miR-155-5p (Grade 2 vs. 1). Combinations of 2-3 miRNAs were able to differentiate between two ISUP grades with an AUC 0.79-0.88. RT-qPCR analysis showed a similar trend for miR-186-5p and miR-30e-5p to separate Grade 3 from 2, and miR-320a-3p to separate Grade 2 from 1. CONCLUSIONS Using NGS, we have identified several miRNAs that discriminate between prostate cancer patients with ISUP Grades 1, 2 and 3. Moreover, miR-186-5p, miR-320a-3p and miR-30e-5p showed a similar behaviour in an independent cohort using an alternative analytical method. Our results show that miRNAs from urinary vesicles can be potentially useful as liquid biopsies for active surveillance.
Collapse
Affiliation(s)
- Manuel Ramirez-Garrastacho
- grid.55325.340000 0004 0389 8485Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Viktor Berge
- grid.55325.340000 0004 0389 8485Department of Urology, Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Aija Linē
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway. .,Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
28
|
Ramirez-Garrastacho M, Bajo-Santos C, Line A, Martens-Uzunova ES, de la Fuente JM, Moros M, Soekmadji C, Tasken KA, Llorente A. Extracellular vesicles as a source of prostate cancer biomarkers in liquid biopsies: a decade of research. Br J Cancer 2022; 126:331-350. [PMID: 34811504 PMCID: PMC8810769 DOI: 10.1038/s41416-021-01610-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is a global cancer burden and considerable effort has been made through the years to identify biomarkers for the disease. Approximately a decade ago, the potential of analysing extracellular vesicles in liquid biopsies started to be envisaged. This was the beginning of a new exciting area of research investigating the rich molecular treasure found in extracellular vesicles to identify biomarkers for a variety of diseases. Vesicles released from prostate cancer cells and cells of the tumour microenvironment carry molecular information about the disease that can be analysed in several biological fluids. Numerous studies document the interest of researchers in this field of research. However, methodological issues such as the isolation of vesicles have been challenging. Remarkably, novel technologies, including those based on nanotechnology, show promise for the further development and clinical use of extracellular vesicles as liquid biomarkers. Development of biomarkers is a long and complicated process, and there are still not many biomarkers based on extracellular vesicles in clinical use. However, the knowledge acquired during the last decade constitutes a solid basis for the future development of liquid biopsy tests for prostate cancer. These are urgently needed to bring prostate cancer treatment to the next level in precision medicine.
Collapse
Affiliation(s)
- Manuel Ramirez-Garrastacho
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | - Aija Line
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Elena S Martens-Uzunova
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Urology, Laboratory of Experimental Urology, Erasmus MC, Rotterdam, The Netherlands
| | - Jesus Martinez de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Maria Moros
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Carolina Soekmadji
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Kristin Austlid Tasken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
29
|
Kilic T, Cho YK, Jeong N, Shin IS, Carter BS, Balaj L, Weissleder R, Lee H. Multielectrode Spectroscopy Enables Rapid and Sensitive Molecular Profiling of Extracellular Vesicles. ACS CENTRAL SCIENCE 2022; 8:110-117. [PMID: 35111901 PMCID: PMC8802188 DOI: 10.1021/acscentsci.1c01193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 05/06/2023]
Abstract
Detecting protein markers in extracellular vesicles (EVs) is becoming a useful tool for basic research and clinical diagnoses. Most EV protein assays, however, require lengthy processes-conjugating affinity ligands onto sensing substrates and affixing EVs with additional labels to maximize signal generation. Here, we present an iPEX (impedance profiling of extracellular vesicles) system, an all-electrical strategy toward fast, multiplexed EV profiling. iPEX adopts one-step electropolymerization to rapidly functionalize sensor electrodes with antibodies; it then detects EV proteins in a label-free manner through impedance spectroscopy. The approach streamlines the entire EV assay, from sensor preparation to signal measurements. We achieved (i) fast immobilization of antibodies (<3 min) per electrode; (ii) high sensitivity (500 EVs/mL) without secondary labeling; and (iii) parallel detection (quadruple) in a single chip. A potential clinical utility was demonstrated by directly analyzing plasma samples from glioblastoma multiforme patients.
Collapse
Affiliation(s)
- Tugba Kilic
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Young Kwan Cho
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Chemistry, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Naebong Jeong
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
| | - Ik-Soo Shin
- Department
of Chemistry, Soongsil University, Seoul 06978, South Korea
| | - Bob S. Carter
- Department
of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Leonora Balaj
- Department
of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ralph Weissleder
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hakho Lee
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- E-mail:
| |
Collapse
|
30
|
Folkmanis K, Junk E, Merdane E, Folkmane I, Folkmanis V, Ivanovs I, Eglitis J, Jakubovskis M, Laabs S, Isajevs S, Lietuvietis V. Clinicopathological Significance of Exosomal Proteins CD9 and CD63 and DNA Mismatch Repair Proteins in Prostate Adenocarcinoma and Benign Hyperplasia. Diagnostics (Basel) 2022; 12:diagnostics12020287. [PMID: 35204378 PMCID: PMC8871402 DOI: 10.3390/diagnostics12020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction. Recently, it has been shown that exosomal biomarkers and DNA mismatch repair proteins (MMR) could play an important role in cancer risk stratification and prognosis assessment. The gold standard for prostate carcinoma (PCa) diagnosis is biopsy and histopathological examination. Thus, the complex evaluation of exosomal and MMR proteins could be beneficial for prostate cancer risk stratification and diagnostics. The aim of the current study was to evaluate and compare the expression of exosomal proteins CD9 and CD63 and MMR proteins in the tissue of patients with prostate benign hyperplasia (BPH) and PCa. Methods. The study was retrospective. Altogether, 92 patients with PCa and 20 patients with BPH (control group) were enrolled in the study. Exosomal and MMR protein expression was analyzed by immunohistochemistry (IHC). The follow-up for each PCa patient in our study lasted till disease progression and/or a maximum of 5 years. Results. Low-grade PCa was observed in 56 patients and high-grade PCa in 36 patients. CD63 expression was significantly higher in patients with high-grade PCa compared to those with low-grade PCa. CD9 expression was significantly downregulated in PCa patients compared to the control group. MMR protein expression deficiency was observed in 10 PCa patients. MMR proteins were maintained in all cases of BPH. The study found a negative correlation between MMR protein loss and PCa ISUP grade groups. Progression-free survival (PFS) in patients with MMR deficiency was significantly shorter than in patients with maintained MMR expression. Conclusions. CD9 protein expression was downregulated in PCa, compared to BPH, while CD63 protein expression was upregulated in high-grade PCa but downregulated in low-grade PCa. CD63 protein upregulation, CD9 downregulation, and loss of MMR protein characterized the shorter PFS of high-grade PCa patients. CD9, CD63, and MMR could be the routine immunohistochemical biomarkers for the diagnosis and risk stratification of PCa.
Collapse
Affiliation(s)
- Kristofs Folkmanis
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia; (E.J.); (E.M.); (I.F.); (V.F.); (I.I.); (J.E.); (S.I.)
- Department of Urology, Elbe Hospital in Stade—Teaching Hospital of Hamburg-Eppendorf University Hospital, 20246 Stade, Germany;
- Correspondence: ; Tel.: +49-152-136-57241
| | - Elizabete Junk
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia; (E.J.); (E.M.); (I.F.); (V.F.); (I.I.); (J.E.); (S.I.)
| | - Evelina Merdane
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia; (E.J.); (E.M.); (I.F.); (V.F.); (I.I.); (J.E.); (S.I.)
| | - Inese Folkmane
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia; (E.J.); (E.M.); (I.F.); (V.F.); (I.I.); (J.E.); (S.I.)
| | - Valdis Folkmanis
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia; (E.J.); (E.M.); (I.F.); (V.F.); (I.I.); (J.E.); (S.I.)
| | - Igors Ivanovs
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia; (E.J.); (E.M.); (I.F.); (V.F.); (I.I.); (J.E.); (S.I.)
- Department of Urology, East Clinical University Hospital, LV-1007 Riga, Latvia; (M.J.); (V.L.)
| | - Janis Eglitis
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia; (E.J.); (E.M.); (I.F.); (V.F.); (I.I.); (J.E.); (S.I.)
- Department of Urology, East Clinical University Hospital, LV-1007 Riga, Latvia; (M.J.); (V.L.)
| | - Maris Jakubovskis
- Department of Urology, East Clinical University Hospital, LV-1007 Riga, Latvia; (M.J.); (V.L.)
- Department of Urology, Faculty of Medicine, Riga Stradins University, LV-1007 Riga, Latvia
| | - Sven Laabs
- Department of Urology, Elbe Hospital in Stade—Teaching Hospital of Hamburg-Eppendorf University Hospital, 20246 Stade, Germany;
| | - Sergejs Isajevs
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia; (E.J.); (E.M.); (I.F.); (V.F.); (I.I.); (J.E.); (S.I.)
- Department of Urology, East Clinical University Hospital, LV-1007 Riga, Latvia; (M.J.); (V.L.)
| | - Vilnis Lietuvietis
- Department of Urology, East Clinical University Hospital, LV-1007 Riga, Latvia; (M.J.); (V.L.)
- Department of Urology, Faculty of Medicine, Riga Stradins University, LV-1007 Riga, Latvia
| |
Collapse
|
31
|
Campos-Silva C, López-Borrego S, Felgueres MJ, Esteso G, Vales-Gomez M. NKG2D Ligands in Liquid Biopsy: The Importance of Soluble and Vesicle-Bound Proteins for Immune Modulation. Crit Rev Immunol 2022; 42:21-40. [PMID: 36374819 DOI: 10.1615/critrevimmunol.2022045263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The identification of biomarkers allowing diagnostics, prognostics and patient classification is still a challenge in oncological research for patient management. Improvements in patient survival achieved with immunotherapies substantiate that biomarker studies rely not only on cellular pathways contributing to the pathology, but also on the immune competence of the patient. If these immune molecules can be studied in a non-invasive manner, the benefit for patients and clinicians is obvious. The immune receptor Natural Killer Group 2 Member D (NKG2D) represents one of the main systems involved in direct recognition of tumor cells by effector lymphocytes (T and Natural Killer cells), and in immune evasion. The biology of NKG2D and its ligands comprises a complex network of cellular pathways leading to the expression of these tumor-associated ligands on the cell surface or to their release either as soluble proteins, or in extracellular vesicles that potently inhibit NKG2D-mediated responses. Increased levels of NKG2D-ligands in patient serum correlate with tumor progression and poor prognosis; however, most studies did not test the biochemical form of these molecules. Here we review the biology of the NKG2D receptor and ligands, their role in cancer and in patient response to immunotherapies, as well as the changes provoked in this system by non-immune cancer therapies. Further, we discuss the use of NKG2D-L in liquid biopsy, including methods to analyse vesicle-associated proteins. We propose that the evaluation in cancer patients of the whole NKG2D system can provide crucial information about patient immune competence and risk of tumor progression.
Collapse
Affiliation(s)
- Carmen Campos-Silva
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Silvia López-Borrego
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - María José Felgueres
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Gloria Esteso
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Mar Vales-Gomez
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| |
Collapse
|
32
|
Blijdorp CJ, Hartjes TA, Wei K, van Heugten MH, Bovée DM, Budde RP, van de Wetering J, Hoenderop JG, van Royen ME, Zietse R, Severs D, Hoorn EJ. Nephron mass determines the excretion rate of urinary extracellular vesicles. J Extracell Vesicles 2022; 11:e12181. [PMID: 35064766 PMCID: PMC8783354 DOI: 10.1002/jev2.12181] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/15/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Urinary extracellular vesicles (uEVs) are emerging as non-invasive biomarkers for various kidney diseases, but it is unknown how differences in nephron mass impact uEV excretion. To address this, uEV excretion was measured before and after human kidney donor nephrectomy and rat nephrectomy. In male and female donors, uEVs were quantified in cell-free spot and 24-h urine samples using nanoparticle tracking analysis (NTA), EVQuant, and CD9-time-resolved fluorescence immunoassay. Female donors had significantly lower total kidney volume (TKV) and excreted 49% fewer uEVs than male donors. uEV excretion correlated positively with estimated glomerular filtration rate (eGFR), creatinine clearance, and TKV (R's between 0.6 and 0.7). uEV excretion rate could also be predicted from spot urines after multiplying spot uEV/creatinine by 24-h urine creatinine. Donor nephrectomy reduced eGFR by 36% ± 10%, but the excretion of uEVs by only 16% (CD9+ uEVs -37%, CD9- uEVs no decrease). Donor nephrectomy increased the podocyte marker WT-1 and the proximal tubule markers NHE3, NaPi-IIa, and cubilin in uEVs two- to four-fold when correcting for the nephrectomy. In rats, the changes in GFR and kidney weight correlated with the changes in uEV excretion rate (R = 0.46 and 0.60, P < 0.01). Furthermore, the estimated degree of hypertrophy matched the change in uEV excretion rate (1.4- to 1.5-fold after uninephrectomy and four-fold after 5/6th nephrectomy). Taken together, our data show that uEV excretion depends on nephron mass, and that nephrectomy reduces uEV excretion less than expected based on nephron loss due to compensatory hypertrophy. The major implication of our findings is that a measure for nephron mass or uEV excretion rate should be included when comparing uEV biomarkers between individuals.
Collapse
Affiliation(s)
- Charles J. Blijdorp
- Department of Internal Medicine, Division of Nephrology and TransplantationErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Thomas A. Hartjes
- Department of PathologyErasmus Medical Center, University Medical Center RotterdamRotterdamThe Netherlands
| | - Kuang‐Yu Wei
- Department of Internal Medicine, Division of Nephrology and TransplantationErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Martijn H. van Heugten
- Department of Internal Medicine, Division of Nephrology and TransplantationErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Dominique M. Bovée
- Department of Internal Medicine, Division of Nephrology and TransplantationErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Ricardo P.J. Budde
- Department of Radiology and Nuclear MedicineErasmus Medical Center, University Medical Center RotterdamRotterdamThe Netherlands
| | - Jacqueline van de Wetering
- Department of Internal Medicine, Division of Nephrology and TransplantationErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Joost G.J. Hoenderop
- Department of PhysiologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Martin E. van Royen
- Department of PathologyErasmus Medical Center, University Medical Center RotterdamRotterdamThe Netherlands
| | - Robert Zietse
- Department of Internal Medicine, Division of Nephrology and TransplantationErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - David Severs
- Department of Internal Medicine, Division of Nephrology and TransplantationErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Ewout J. Hoorn
- Department of Internal Medicine, Division of Nephrology and TransplantationErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
33
|
Kamińska A, Roman M, Wróbel A, Gala-Błądzińska A, Małecki MT, Paluszkiewicz C, Stępień EŁ. Raman spectroscopy of urinary extracellular vesicles to stratify patients with chronic kidney disease in type 2 diabetes. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 39:102468. [PMID: 34619362 DOI: 10.1016/j.nano.2021.102468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/31/2021] [Accepted: 08/15/2021] [Indexed: 01/08/2023]
Abstract
In this study, we verified the hypothesis that Raman signature of urinary extracellular vesicles (UEVs) can be used to stratify patients with diabetes at various stages of chronic kidney disease (CKD). Patients with type 2 diabetes diagnosed with different stages of CKD and healthy subjects were enrolled in the study. UEVs were isolated using low-vacuum filtration followed by ultracentrifugation. Correlation analysis, multiple linear regression and principal component analysis were used to find differences between spectral fingerprints of UEVs derived from both groups of patients. Electron microscopy and nanoparticle tracking analysis were applied to characterize the size and morphology of UEVs. We observed significant correlations between selected Raman bands measured for UEVs and clinical parameters. We found significant differences in the area under the specific bands originating mainly from proteins and lipids between the study groups. Based on the tryptophan and amide III bands, we were able to predict the estimated glomerular filtration rate (eGFR). Principal component analysis, partial least squares regression (PLSR) and correlation analysis of the UEV Raman spectra supported the results obtained from the direct analysis of Raman spectra. Our analysis revealed that PLSR and a regression model including tryptophan and amide III bands allows to estimate the value of eGFR.
Collapse
Affiliation(s)
- Agnieszka Kamińska
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland.
| | - Maciej Roman
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland.
| | - Andrzej Wróbel
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland.
| | - Agnieszka Gala-Błądzińska
- Department of Internal Medicine, Nephrology and Endocrinology, Rzeszów, Poland; Medical College of Rzeszow University, Institute of Medical Sciences, Rzeszów, Poland
| | - Maciej T Małecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland; Department of Metabolic Diseases, University Hospital, Kraków, Poland.
| | | | - Ewa Ł Stępień
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
34
|
Perpetuo L, Ferreira R, Thongboonkerd V, Guedes S, Amado F, Vitorino R. Urinary exosomes: Diagnostic impact with a bioinformatic approach. Adv Clin Chem 2022; 111:69-99. [DOI: 10.1016/bs.acc.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Dosing extracellular vesicles. Adv Drug Deliv Rev 2021; 178:113961. [PMID: 34481030 DOI: 10.1016/j.addr.2021.113961] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are natural nanoparticles containing biologically active molecules. They are important mediators of intercellular communication and can be exploited therapeutically by various bioengineering approaches. To accurately determine the therapeutic potential of EVs in pre-clinical and clinical settings, dependable dosing strategies are of utmost importance. However, the field suffers from inconsistencies comprising all areas of EV production and characterisation. Therefore, a standardised and well-defined process in EV quantification, key to reliable therapeutic EV dosing, remains to be established. Here, we examined 64 pre-clinical studies for EV-based therapeutics with respect to their applied EV dosing strategies. We identified variations in effective dosing strategies irrespective of the applied EV purification method and cell source. Moreover, we found dose discrepancies depending on the disease model, where EV doses were selected without accounting for published EV pharmacokinetics or biodistribution patterns. We therefore propose to focus on qualitative aspects when dosing EV-based therapeutics, such as the potency of the therapeutic cargo entity. This will ensure batch-to-batch reliability and enhance reproducibility between applications. Furthermore, it will allow for the successful benchmarking of EV-based therapeutics compared to other nanoparticle drug delivery systems, such as viral vector-based or lipid-based nanoparticle approaches.
Collapse
|
36
|
Identification of DNA Damage Repair-Associated Prognostic Biomarkers for Prostate Cancer Using Transcriptomic Data Analysis. Int J Mol Sci 2021; 22:ijms222111771. [PMID: 34769200 PMCID: PMC8584064 DOI: 10.3390/ijms222111771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
In the recent decade, the importance of DNA damage repair (DDR) and its clinical application have been firmly recognized in prostate cancer (PC). For example, olaparib was just approved in May 2020 to treat metastatic castration-resistant PC with homologous recombination repair-mutated genes; however, not all patients can benefit from olaparib, and the treatment response depends on patient-specific mutations. This highlights the need to understand the detailed DDR biology further and develop DDR-based biomarkers. In this study, we establish a four-gene panel of which the expression is significantly associated with overall survival (OS) and progression-free survival (PFS) in PC patients from the TCGA-PRAD database. This panel includes DNTT, EXO1, NEIL3, and EME2 genes. Patients with higher expression of the four identified genes have significantly worse OS and PFS. This significance also exists in a multivariate Cox regression model adjusting for age, PSA, TNM stages, and Gleason scores. Moreover, the expression of the four-gene panel is highly correlated with aggressiveness based on well-known PAM50 and PCS subtyping classifiers. Using publicly available databases, we successfully validate the four-gene panel as having the potential to serve as a prognostic and predictive biomarker for PC specifically based on DDR biology.
Collapse
|
37
|
Logozzi M, Mizzoni D, Di Raimo R, Giuliani A, Maggi M, Sciarra A, Fais S. Plasmatic Exosome Number and Size Distinguish Prostate Cancer Patients From Healthy Individuals: A Prospective Clinical Study. Front Oncol 2021; 11:727317. [PMID: 34745949 PMCID: PMC8564386 DOI: 10.3389/fonc.2021.727317] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
There is a urgent need for valuable strategy in early and less invasive diagnosis for cancer. Preliminary data have shown that the plasmatic levels of exosomes increase in cancer condition. This study investigates the relevance of plasmatic levels and size distribution of exosomes in 42 individuals with no signs of urological disease (CTR) as compared to 65 prostate cancer patients (PCa). It was used Nanoparticle Tracking Analysis (NTA), a highly reliable and sensitive method for exosomes characterization and quantification. The relation structure among the NTA-derived parameters was assessed by means of Principal Component Analysis, which allowed detecting the global discriminant power of NTA test in terms of Receiver Operating Characteristic (ROC) curve and the selection of cut-off thresholds. The results showed that PCa had significantly higher plasmatic levels of exosomes and that the exosomes were smaller in size as compared to the CTR; the values reached 89% sensitivity and 71% specificity, in distinguishing PCa from CTR. These results propose a new exosome-based non-invasive clinical approach for the clinical follow-up of prostate cancer undergoing surgical treatment; in addition this method may be developed as a new screening test for prostate cancer's early diagnosis. While this clinical study was performed in prostate cancer, it may represent a proof of concept extendable to virtually all cancers, as it is suggested by both pre-clinical evidence and clinical data obtained with different technical approaches.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Martina Maggi
- Department of Urology, Policlinico Umberto I, Università La Sapienza, Rome, Italy
| | - Alessandro Sciarra
- Department of Urology, Policlinico Umberto I, Università La Sapienza, Rome, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
38
|
Shephard AP, Giles P, Mbengue M, Alraies A, Spary LK, Kynaston H, Gurney MJ, Falcón‐Pérez JM, Royo F, Tabi Z, Parthimos D, Errington RJ, Clayton A, Webber JP. Stroma-derived extracellular vesicle mRNA signatures inform histological nature of prostate cancer. J Extracell Vesicles 2021; 10:e12150. [PMID: 34596356 PMCID: PMC8485336 DOI: 10.1002/jev2.12150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/25/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Histological assessment of prostate cancer is the key diagnostic test and can predict disease outcome. This is however an invasive procedure that carries associated risks, hence non-invasive assays to support the diagnostic pathway are much needed. A key feature of disease progression, and subsequent poor prognosis, is the presence of an altered stroma. Here we explored the utility of prostate stromal cell-derived vesicles as indicators of an altered tumour environment. We compared vesicles from six donor-matched pairs of adjacent-normal versus disease-associated primary stromal cultures. We identified 19 differentially expressed transcripts that discriminate disease from normal stromal extracellular vesicles (EVs). EVs isolated from patient serum were investigated for these putative disease-discriminating mRNA. A set of transcripts including Caveolin-1 (CAV1), TMP2, THBS1, and CTGF were found to be successful in discriminating clinically insignificant (Gleason = 6) disease from clinically significant (Gleason > 8) prostate cancer. Furthermore, correlation between transcript expression and progression-free survival suggests that levels of these mRNA may predict disease outcome. Informed by a machine learning approach, combining measures of the five most informative EV-associated mRNAs with PSA was shown to significantly improve assay sensitivity and specificity. An in-silico model was produced, showcasing the superiority of this multi-modal liquid biopsy compared to needle biopsy for predicting disease progression. This proof of concept highlights the utility of serum EV analytics as a companion diagnostic test with prognostic utility, which may obviate the need for biopsy.
Collapse
Affiliation(s)
- Alex P. Shephard
- Tissue Microenvironment GroupDivision of Cancer and GeneticsSchool of MedicineCardiff UniversityCardiffUK
| | - Peter Giles
- Wales Gene ParkHenry Welcome BuildingCardiff UniversityCardiffUK
| | - Mariama Mbengue
- Tissue Microenvironment GroupDivision of Cancer and GeneticsSchool of MedicineCardiff UniversityCardiffUK
| | - Amr Alraies
- Tissue Microenvironment GroupDivision of Cancer and GeneticsSchool of MedicineCardiff UniversityCardiffUK
| | - Lisa K. Spary
- Wales Cancer BankUniversity Hospital of WalesCardiffUK
| | - Howard Kynaston
- Section of Surgery, Division of Cancer and Genetics, School of MedicineCardiff UniversityCardiffUK
- Department of UrologyCardiff and Vale University Health Board, University Hospital of WalesCardiffUK
| | - Mark J. Gurney
- Division of Infection and Immunity, School of MedicineCardiff UniversityCardiffUK
| | - Juan M. Falcón‐Pérez
- Exosomes Lab. CICbioGUNE‐BRTAParque TecnologicoDerioSpain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd)MadridSpain
- IKERBASQUEBasque Foundation for ScienceBilbaoSpain
| | - Félix Royo
- Exosomes Lab. CICbioGUNE‐BRTAParque TecnologicoDerioSpain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd)MadridSpain
| | - Zsuzsanna Tabi
- Tissue Microenvironment GroupDivision of Cancer and GeneticsSchool of MedicineCardiff UniversityCardiffUK
| | - Dimitris Parthimos
- Tissue Microenvironment GroupDivision of Cancer and GeneticsSchool of MedicineCardiff UniversityCardiffUK
| | - Rachel J. Errington
- Tissue Microenvironment GroupDivision of Cancer and GeneticsSchool of MedicineCardiff UniversityCardiffUK
| | - Aled Clayton
- Tissue Microenvironment GroupDivision of Cancer and GeneticsSchool of MedicineCardiff UniversityCardiffUK
| | - Jason P. Webber
- Tissue Microenvironment GroupDivision of Cancer and GeneticsSchool of MedicineCardiff UniversityCardiffUK
- Institute of Life ScienceSwansea University Medical School, Swansea UniversitySwanseaUK
| |
Collapse
|
39
|
Kim CJ, Dong L, Amend SR, Cho YK, Pienta KJ. The role of liquid biopsies in prostate cancer management. LAB ON A CHIP 2021; 21:3263-3288. [PMID: 34346466 DOI: 10.1039/d1lc00485a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid biopsy has emerged as a complement to invasive tissue biopsy to guide cancer diagnosis and treatment. The common liquid biopsy biomarkers are circulating tumor cells (CTCs), extracellular vesicles (EVs), and circulating tumor DNA (ctDNA). Each biomarker provides specific information based on its intrinsic characteristics. Prostate cancer is the second most common cancer in males worldwide. In men with low-grade localized prostate cancer, the disease can often be managed by active surveillance. For men who require treatment, the 5-year survival rate of localized prostate cancer is the highest among all cancer types, but the metastatic disease remains incurable. Metastatic prostate cancer invariably progresses to involve multiple bone sites and develops into a castration-resistant disease that leads to cancer death. The need to appropriately diagnose and guide the serial treatment of men with prostate cancer has led to the implementation of many studies to apply liquid biopsies to prostate cancer management. This review describes recent advancements in isolation and detection technology and the strength and weaknesses of the three circulating biomarkers. The clinical studies based on liquid biopsy results are summarized to depict the future perspective in the role of liquid biopsy on prostate cancer management.
Collapse
Affiliation(s)
- Chi-Ju Kim
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|
40
|
Mizenko RR, Brostoff T, Rojalin T, Koster HJ, Swindell HS, Leiserowitz GS, Wang A, Carney RP. Tetraspanins are unevenly distributed across single extracellular vesicles and bias sensitivity to multiplexed cancer biomarkers. J Nanobiotechnology 2021; 19:250. [PMID: 34419056 PMCID: PMC8379740 DOI: 10.1186/s12951-021-00987-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Background Tetraspanin expression of extracellular vesicles (EVs) is often used as a surrogate for their detection and classification, a practice that typically assumes their consistent expression across EV sources. Results Here we demonstrate that there are distinct patterns in colocalization of tetraspanin expression of EVs enriched from a variety of in vitro and in vivo sources. We report an optimized method for the use of single particle antibody-capture and fluorescence detection to identify subpopulations according to tetraspanin expression and compare our findings with nanoscale flow cytometry. We found that tetraspanin profile is consistent from a given EV source regardless of isolation method, but that tetraspanin profiles are distinct across various sources. Tetraspanin profiles measured by flow cytometry do not totally agree, suggesting that limitations in subpopulation detection significantly impact apparent protein expression. We further analyzed tetraspanin expression of single EVs captured non-specifically, revealing that tetraspanin capture can bias the apparent multiplexed tetraspanin profile. Finally, we demonstrate that this bias can have significant impact on diagnostic sensitivity for tumor-associated EV surface markers. Conclusion Our findings may reveal key insights into protein expression heterogeneity of EVs that better inform EV capture and detection platforms for diagnostic or other downstream use. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00987-1.
Collapse
Affiliation(s)
- Rachel R Mizenko
- Department of Biomedical Engineering, University of California, Davis, USA
| | - Terza Brostoff
- Department of Pathology, University of California, San Diego, USA
| | - Tatu Rojalin
- Department of Biomedical Engineering, University of California, Davis, USA
| | - Hanna J Koster
- Department of Biomedical Engineering, University of California, Davis, USA
| | | | - Gary S Leiserowitz
- Division of Gynecologic Oncology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Aijun Wang
- Department of Biomedical Engineering, University of California, Davis, USA.,Department of Surgery, University of California, Davis, USA
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, USA.
| |
Collapse
|
41
|
Exosomes and prostate cancer management. Semin Cancer Biol 2021; 86:101-111. [PMID: 34384877 DOI: 10.1016/j.semcancer.2021.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/26/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022]
Abstract
Exosomes (and other extracellular vesicles) are now part of the cancer research landscape, involved both as players in pathophysiological mechanisms, as biomarkers of the cancer process and as therapeutic tools. One step they have yet to take is to move into routine clinical practice and management of prostate cancer is an example of this necessary maturation. More than for many other cancers and because a possible alternative is active surveillance (neither removal nor destruction), the diagnosis of prostate cancer does not only involve the detection of cancerous cells but also the determination of its true aggressiveness. By measuring TRMPRSS2:ERG fusion and PCA3 transcripts in urine exosomes, the EPI assay seems able to help prostate biopsy decision. Results from clinical studies showed that it can reduce the proportion of unnecessary biopsies while missing only a minimal proportion of clinically significant cancers. In metastatic prostate cancer, after failure of a first step androgen deprivation therapy, when a choice has to be made between a second-generation androgen receptor (AR) signaling inhibitor and taxane-based chemotherapy, detection of the AR splicing variant AR-V7 in circulating tumor cells (CTCs) has appeared promising. Whether exosomes could be a better material (simpler to isolate from the bloodstream than CTCs?) to detect AR-V7 has been suggested by some studies and remains to be confirmed. At last, a couple of exploratory studies either targeted or used exosomes to treat prostate cancer, by respectively inhibiting their secretion (to prevent exosome-mediated transfer of biologically active oncogenic actors), or loading them with immunogenic cancer-specific proteins (to generate anticancer vaccine) or with pharmacologic agents. Overall efforts are however still needed to confirm these results and generalize exosome-based diagnostic, prognostic or therapeutic strategies in prostate cancer management.
Collapse
|
42
|
Li Q, Wang Y, Ling L, Qiao L, Chen H, Ding C, Yu S. Rapid and specific detection nanoplatform of serum exosomes for prostate cancer diagnosis. Mikrochim Acta 2021; 188:283. [PMID: 34341883 DOI: 10.1007/s00604-021-04934-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/08/2021] [Indexed: 11/30/2022]
Abstract
Tumor exosomes that inherit specific molecules from their parent cells are emerging as ideal biomarkers in cancer diagnostics. Most currently available exosome isolation and detection methods are time-consuming and non-specific; thus, rapid and specific exosome detection methods are needed both clinically and in research. Here, a dual-functional platform is reported composed of reversible conjunction and "off-on" signal responses. Fe3O4@SiO2@TiO2 particles with high affinity were applied to capture exosomes, and model exosomes could be isolated from solution within 20 min with a capture efficiency of 91.5%. An "on-off" fluorescence response PSMA aptasensor was constructed with improved selectivity to detect tumor exosomes by recording the fluorescence intensity with λex/em = 557/580 nm. The standard curve for detecting tumor exosomes with the aptasensor was calculated as y = 371.7x + 66.17, ranging from 0.05 to 1 × 104 particles/μL, with R2 = 0.9737, and a detection limit of 5 × 102 particles/μL in solution. This method was successfully applied to clinical samples, and the results showed better performance in distinguishing prostate cancer patients and healthy samples than the traditional nanoparticle-tracking analysis (NTA) method. This rapid and accurate detection method for prostate cancer may aid in rapid clinical diagnosis. Integrating quickly TiO2-based isolation with sensitive and specific "on-off" detection of PCa exosomes.
Collapse
Affiliation(s)
- Qiaoyu Li
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Yanlin Wang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Ling Ling
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Liang Qiao
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Hui Chen
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Chuanfan Ding
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Shaoning Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
43
|
Heydari R, Abdollahpour-Alitappeh M, Shekari F, Meyfour A. Emerging Role of Extracellular Vesicles in Biomarking the Gastrointestinal Diseases. Expert Rev Mol Diagn 2021; 21:939-962. [PMID: 34308738 DOI: 10.1080/14737159.2021.1954909] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Extracellular vesicles (EVs) play an important role in cell-cell communication and regulation of various cellular functions under physiological and pathophysiological conditions through transferring their cargo to recipient cells. Molecular constituents of EVs are a fingerprinting profile of secreting cells which can be used as promising prognostic, diagnostic, and drug-response biomarkers in clinical settings. AREAS COVERED The present study provides a brief introduction about the biology of EVs and reviews methodologies used for EV isolation and characterization as well as high-throughput strategies to analyze EV contents. Furthermore, this review highlights the importance and unique role of EVs in the development and progression of gastrointestinal (GI) diseases, especially GI cancers, and then discusses their potential use, particularly those isolated from body fluids, in diagnosis and prognosis of GI diseases. EXPERT OPINION In-depth analysis of EV content can lead to the identification of new potential biomarkers for early diagnosis and prognosis prediction of GI diseases. The use of a more targeted approach by establishing more reproducible and standardized methods to decrease variations and obtain desired EV population as well as revisiting large pools of identified biomarkers and their evaluation in larger patient cohorts can result in the introduction of more reliable biomarkers in clinic.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
44
|
Bordanaba-Florit G, Royo F, Kruglik SG, Falcón-Pérez JM. Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles. Nat Protoc 2021; 16:3163-3185. [PMID: 34135505 DOI: 10.1038/s41596-021-00551-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are heterogeneous lipid containers with a complex molecular cargo comprising several populations with unique roles in biological processes. These vesicles are closely associated with specific physiological features, which makes them invaluable in the detection and monitoring of various diseases. EVs play a key role in pathophysiological processes by actively triggering genetic or metabolic responses. However, the heterogeneity of their structure and composition hinders their application in medical diagnosis and therapies. This diversity makes it difficult to establish their exact physiological roles, and the functions and composition of different EV (sub)populations. Ensemble averaging approaches currently employed for EV characterization, such as western blotting or 'omics' technologies, tend to obscure rather than reveal these heterogeneities. Recent developments in single-vesicle analysis have made it possible to overcome these limitations and have facilitated the development of practical clinical applications. In this review, we discuss the benefits and challenges inherent to the current methods for the analysis of single vesicles and review the contribution of these approaches to the understanding of EV biology. We describe the contributions of these recent technological advances to the characterization and phenotyping of EVs, examination of the role of EVs in cell-to-cell communication pathways and the identification and validation of EVs as disease biomarkers. Finally, we discuss the potential of innovative single-vesicle imaging and analysis methodologies using microfluidic devices, which promise to deliver rapid and effective basic and practical applications for minimally invasive prognosis systems.
Collapse
Affiliation(s)
- Guillermo Bordanaba-Florit
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Félix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain
| | - Sergei G Kruglik
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | - Juan M Falcón-Pérez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
45
|
Islam MK, Syed P, Dhondt B, Gidwani K, Pettersson K, Lamminmäki U, Leivo J. Detection of bladder cancer with aberrantly fucosylated ITGA3. Anal Biochem 2021; 628:114283. [PMID: 34102169 DOI: 10.1016/j.ab.2021.114283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/11/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022]
Abstract
We describe a simple, non-invasive assay to identify fucosylated-glycoisoform of integrin alpha-3 (ITGA3) directly from unprocessed urine. ITGA3 was detected directly from the urine of bladder cancer (BlCa) (n = 13) and benign prostatic hyperplasia (BPH) (n = 9) patients with the use of lectins coated on europium-doped-nanoparticles (Eu3+-NPs). Lectin Ulex europaeus agglutinin-I (UEA) showed enhanced binding with BlCa-derived ITGA3. The evaluation with individual samples showed that a glycovariant ITGA3-UEA assay could significantly discriminate BlCa from BPH patients (p = 0.007). The detection of aberrantly fucosylated-isoform of ITGA3 from urine can be used to distinguish BlCa from age-matched benign controls in a simple sandwich assay.
Collapse
Affiliation(s)
- Md Khirul Islam
- Department of Life Technologies, Division of Biotechnology, University of Turku, Turku, Finland.
| | - Parvez Syed
- Inme Oy, Satakunnantie 8C, 20100, Turku, Finland
| | - Bert Dhondt
- Department of Urology, Ghent University Hospital, Ghent, Belgium; Laboratory for Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute, Ghent University, Ghent, Belgium
| | - Kamlesh Gidwani
- Department of Life Technologies, Division of Biotechnology, University of Turku, Turku, Finland
| | - Kim Pettersson
- Department of Life Technologies, Division of Biotechnology, University of Turku, Turku, Finland
| | - Urpo Lamminmäki
- Department of Life Technologies, Division of Biotechnology, University of Turku, Turku, Finland
| | - Janne Leivo
- Department of Life Technologies, Division of Biotechnology, University of Turku, Turku, Finland
| |
Collapse
|
46
|
Moyano A, Serrano-Pertierra E, Duque JM, Ramos V, Teruel-Barandiarán E, Fernández-Sánchez MT, Salvador M, Martínez-García JC, Sánchez L, García-Flórez L, Rivas M, Blanco-López MDC. Magnetic Lateral Flow Immunoassay for Small Extracellular Vesicles Quantification: Application to Colorectal Cancer Biomarker Detection. SENSORS 2021; 21:s21113756. [PMID: 34071520 PMCID: PMC8199047 DOI: 10.3390/s21113756] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/29/2023]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer death and the fourth most common cancer in the world. Colonoscopy is the most sensitive test used for detection of CRC; however, their procedure is invasive and expensive for population mass screening. Currently, the fecal occult blood test has been widely used as a screening tool for CRC but displays low specificity. The lack of rapid and simple methods for mass screening makes the early diagnosis and therapy monitoring difficult. Extracellular vesicles (EVs) have emerged as a novel source of biomarkers due to their contents in proteins and miRNAs. Their detection would not require invasive techniques and could be considered as a liquid biopsy. Specifically, it has been demonstrated that the amount of CD147 expressed in circulating EVs is significant higher for CRC cell lines than for normal colon fibroblast cell lines. Moreover, CD147-containing EVs have been used as a biomarker to monitor response to therapy in patients with CRC. Therefore, this antigen could be used as a non-invasive biomarker for the detection and monitoring of CRC in combination with a Point-of-Care platform as, for example, Lateral Flow Immunoassays (LFIAs). Here, we propose the development of a quantitative lateral flow immunoassay test based on the use of magnetic nanoparticles as labels coupled to inductive sensor for the non-invasive detection of CRC by CD147-positive EVs. The results obtained for quantification of CD147 antigen embedded in EVs isolated from plasma sample have demonstrated that this device could be used as a Point-of-Care tool for CRC screening or therapy monitoring thanks to its rapid response and easy operation.
Collapse
Affiliation(s)
- Amanda Moyano
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.); (E.T.-B.)
| | - Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.); (E.T.-B.)
| | - José María Duque
- Hospital Universitario San Agustín, 33401 Avilés, Spain; (J.M.D.); (V.R.); (L.S.)
- Department of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Virginia Ramos
- Hospital Universitario San Agustín, 33401 Avilés, Spain; (J.M.D.); (V.R.); (L.S.)
| | - Estefanía Teruel-Barandiarán
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.); (E.T.-B.)
| | - María Teresa Fernández-Sánchez
- Department of Biochemistry and Molecular Biology & Institute of Biotechnology of Asturias, University of Oviedo, 33006 Oviedo, Spain;
| | - María Salvador
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - José Carlos Martínez-García
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - Luis Sánchez
- Hospital Universitario San Agustín, 33401 Avilés, Spain; (J.M.D.); (V.R.); (L.S.)
| | - Luis García-Flórez
- Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain;
- Department of Surgery and medical-surgical specialties, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Montserrat Rivas
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - María del Carmen Blanco-López
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.); (E.T.-B.)
- Correspondence:
| |
Collapse
|
47
|
Weng J, Xiang X, Ding L, Wong ALA, Zeng Q, Sethi G, Wang L, Lee SC, Goh BC. Extracellular vesicles, the cornerstone of next-generation cancer diagnosis? Semin Cancer Biol 2021; 74:105-120. [PMID: 33989735 DOI: 10.1016/j.semcancer.2021.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Cancer has risen up to be a major cause of mortality worldwide over the past decades. Despite advancements in cancer screening and diagnostics, a significant number of cancers are still diagnosed at a late stage with poor prognosis. Hence, the discovery of reliable and accurate methods to diagnose cancer early would be of great help in reducing cancer mortality. Extracellular vesicles (EVs) are phospholipid vesicles found in many biofluids and are released by almost all types of cells. In recent years, using EVs as cancer biomarkers has garnered attention as a novel technique of cancer diagnosis. Compared with traditional tissue biopsy, there are many advantages that this novel diagnostic tool presents - it is less invasive, detects early-stage asymptomatic cancers, and allows for monitoring of tumour progression. As such, EV biomarkers have great potential in improving the diagnostic accuracy of cancers and guiding subsequent therapeutic decisions. Efficient isolation and accurate characterization of EVs are essential for reliable outcomes of clinical application. However, these are complicated by the size and biomolecular diversity of EVs. In this review, we present an analysis and evaluation of the current techniques of EV isolation and characterization, as well as discuss the potential EV biomarkers for specific types of cancer. Taken together, EV biomarkers have a lot of potential as a novel method in cancer diagnostics and diagnosis. However, more work is still needed to streamline the purification, characterization and biomarker identification process to ensure optimal outcomes for patients.
Collapse
Affiliation(s)
- Jiayi Weng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 20203, China
| | - Lingwen Ding
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea Li-Ann Wong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore.
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
48
|
Blijdorp CJ, Tutakhel OAZ, Hartjes TA, van den Bosch TPP, van Heugten MH, Rigalli JP, Willemsen R, Musterd-Bhaggoe UM, Barros ER, Carles-Fontana R, Carvajal CA, Arntz OJ, van de Loo FAJ, Jenster G, Clahsen-van Groningen MC, Cuevas CA, Severs D, Fenton RA, van Royen ME, Hoenderop JGJ, Bindels RJM, Hoorn EJ. Comparing Approaches to Normalize, Quantify, and Characterize Urinary Extracellular Vesicles. J Am Soc Nephrol 2021; 32:1210-1226. [PMID: 33782168 PMCID: PMC8259679 DOI: 10.1681/asn.2020081142] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/15/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Urinary extracellular vesicles (uEVs) are a promising source for biomarker discovery, but optimal approaches for normalization, quantification, and characterization in spot urines are unclear. METHODS Urine samples were analyzed in a water-loading study, from healthy subjects and patients with kidney disease. Urine particles were quantified in whole urine using nanoparticle tracking analysis (NTA), time-resolved fluorescence immunoassay (TR-FIA), and EVQuant, a novel method quantifying particles via gel immobilization. RESULTS Urine particle and creatinine concentrations were highly correlated in the water-loading study (R2 0.96) and in random spot urines from healthy subjects (R2 0.47-0.95) and patients (R2 0.41-0.81). Water loading reduced aquaporin-2 but increased Tamm-Horsfall protein (THP) and particle detection by NTA. This finding was attributed to hypotonicity increasing uEV size (more EVs reach the NTA size detection limit) and reducing THP polymerization. Adding THP to urine also significantly increased particle count by NTA. In both fluorescence NTA and EVQuant, adding 0.01% SDS maintained uEV integrity and increased aquaporin-2 detection. Comparison of intracellular- and extracellular-epitope antibodies suggested the presence of reverse topology uEVs. The exosome markers CD9 and CD63 colocalized and immunoprecipitated selectively with distal nephron markers. Conclusions uEV concentration is highly correlated with urine creatinine, potentially replacing the need for uEV quantification to normalize spot urines. Additional findings relevant for future uEV studies in whole urine include the interference of THP with NTA, excretion of larger uEVs in dilute urine, the ability to use detergent to increase intracellular-epitope recognition in uEVs, and CD9 or CD63 capture of nephron segment-specific EVs.
Collapse
Affiliation(s)
- Charles J. Blijdorp
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Omar A. Z. Tutakhel
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands,Department of Translational Metabolic Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas A. Hartjes
- Department of Pathology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thierry P. P. van den Bosch
- Department of Pathology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martijn H. van Heugten
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Juan Pablo Rigalli
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Usha M. Musterd-Bhaggoe
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Eric R. Barros
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands,Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roger Carles-Fontana
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands,Institute of Hepatology, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Cristian A. Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Onno J. Arntz
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fons A. J. van de Loo
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Guido Jenster
- Department of Urology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Cathy A. Cuevas
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - David Severs
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert A. Fenton
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Martin E. van Royen
- Department of Pathology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Joost G. J. Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J. M. Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ewout J. Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
49
|
Erdbrügger U, Blijdorp CJ, Bijnsdorp IV, Borràs FE, Burger D, Bussolati B, Byrd JB, Clayton A, Dear JW, Falcón‐Pérez JM, Grange C, Hill AF, Holthöfer H, Hoorn EJ, Jenster G, Jimenez CR, Junker K, Klein J, Knepper MA, Koritzinsky EH, Luther JM, Lenassi M, Leivo J, Mertens I, Musante L, Oeyen E, Puhka M, van Royen ME, Sánchez C, Soekmadji C, Thongboonkerd V, van Steijn V, Verhaegh G, Webber JP, Witwer K, Yuen PS, Zheng L, Llorente A, Martens‐Uzunova ES. Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. J Extracell Vesicles 2021; 10:e12093. [PMID: 34035881 PMCID: PMC8138533 DOI: 10.1002/jev2.12093] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/26/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Urine is commonly used for clinical diagnosis and biomedical research. The discovery of extracellular vesicles (EV) in urine opened a new fast-growing scientific field. In the last decade urinary extracellular vesicles (uEVs) were shown to mirror molecular processes as well as physiological and pathological conditions in kidney, urothelial and prostate tissue. Therefore, several methods to isolate and characterize uEVs have been developed. However, methodological aspects of EV separation and analysis, including normalization of results, need further optimization and standardization to foster scientific advances in uEV research and a subsequent successful translation into clinical practice. This position paper is written by the Urine Task Force of the Rigor and Standardization Subcommittee of ISEV consisting of nephrologists, urologists, cardiologists and biologists with active experience in uEV research. Our aim is to present the state of the art and identify challenges and gaps in current uEV-based analyses for clinical applications. Finally, recommendations for improved rigor, reproducibility and interoperability in uEV research are provided in order to facilitate advances in the field.
Collapse
|
50
|
Shi S, Wang L, Wang C, Xu J, Niu Z. Serum-derived exosomes function as tumor antigens in patients with advanced hepatocellular carcinoma. Mol Immunol 2021; 134:210-217. [PMID: 33819783 DOI: 10.1016/j.molimm.2021.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
Exosomes are protein-containing vesicles that are secreted into the blood to mediate important biological and pathological processes. The present study enrolled 86 patients with advanced hepatocellular carcinoma (HCC) and 60 healthy controls. Serum exosome levels of the patient group were significantly elevated compared with the healthy control group (P = 0.001). No significant differences were observed between patients with serum alpha-fetoglobulin levels of less than 200 ng/mL and more than 200 ng/mL. In vitro, dendritic cells (DCs) were activated by exosomes and could promote T cell proliferation, exhibiting a killing effect on HepG2 cells. In addition, DCs loaded with tumor exosomes (DC-TEX) showed an antitumor effect in a subcutaneous tumor model. This study shows exosome levels in patients with HCC to be significantly higher than in healthy individuals. Furthermore, exosomes derived from serum of patients with advanced HCC function as tumor antigens.
Collapse
Affiliation(s)
- Shengbin Shi
- Department of Gastroenterology, Ward 2, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, Shandong, 250117, China; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Biomaterial Research, Tianjin, 300192, China
| | - Lei Wang
- Department of Hepatobiliary Surgery, Shan Xian Center Hospital, Heze, Shandong, 274300, China
| | - Cuijuan Wang
- Central Laboratory, Shandong Academy of Occupational Health Medicine, Shandong First Medical University, Jinan, Shandong, 250117, China
| | - Jun Xu
- Department of Gastroenterology, Ward 2, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, Shandong, 250117, China
| | - Zuoxing Niu
- Department of Gastroenterology, Ward 2, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, Shandong, 250117, China.
| |
Collapse
|