1
|
Anh NK, Thu NQ, Tien NTN, Long NP, Nguyen HT. Advancements in Mass Spectrometry-Based Targeted Metabolomics and Lipidomics: Implications for Clinical Research. Molecules 2024; 29:5934. [PMID: 39770023 PMCID: PMC11677340 DOI: 10.3390/molecules29245934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Targeted metabolomics and lipidomics are increasingly utilized in clinical research, providing quantitative and comprehensive assessments of metabolic profiles that underlie physiological and pathological mechanisms. These approaches enable the identification of critical metabolites and metabolic alterations essential for accurate diagnosis and precision treatment. Mass spectrometry, in combination with various separation techniques, offers a highly sensitive and specific platform for implementing targeted metabolomics and lipidomics in clinical settings. Nevertheless, challenges persist in areas such as sample collection, quantification, quality control, and data interpretation. This review summarizes recent advances in targeted metabolomics and lipidomics, emphasizing their applications in clinical research. Advancements, including microsampling, dynamic multiple reaction monitoring, and integration of ion mobility mass spectrometry, are highlighted. Additionally, the review discusses the critical importance of data standardization and harmonization for successful clinical implementation.
Collapse
Affiliation(s)
- Nguyen Ky Anh
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Nguyen Quang Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Nguyen Tran Nam Tien
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| |
Collapse
|
2
|
Al-Amodi HS, Kamel HF. Altered Metabolites in Hepatocellular Carcinoma (HCC) Paving the Road for Metabolomics Signature and Biomarkers for Early Diagnosis of HCC. Cureus 2024; 16:e71968. [PMID: 39569240 PMCID: PMC11576499 DOI: 10.7759/cureus.71968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 11/22/2024] Open
Abstract
Globally, hepatocellular carcinoma (HCC) is one of the most commonly encountered cancers. Because the current early diagnostic tests for HCC are not very sensitive, most cases of the disease are discovered late when it is in its terminal stage. Cellular metabolism changes during carcinogenesis to enable cancer cells to adapt to the hypoxic milieu, boost anabolic synthesis, promote survival, and evade apoptotic death signals. Omic techniques represent a breakthrough in the field of diagnostic technology. For example, Metabolomics analysis could be used to identify these metabolite alterations. Understanding the metabolic alterations linked to HCC is crucial for improving high-risk patients' surveillance and understanding the illness's biology. This review highlights the metabolic alterations linked to energy production in cancer cells, as well as the significantly altered metabolites and pathways associated with hepatocarcinogenesis, including acylcarnitines (ACs), amino acids, proteins, lipids, carbohydrates, glucose, and lactate, which reflect the anabolic and catabolic changes occurring in these cells. Additionally, it discusses the clinical implications of recent metabolomics that may serve as potential biomarkers for early diagnosis and monitoring of the progression of HCC.
Collapse
Affiliation(s)
| | - Hala F Kamel
- Biochemistry, Umm Al-Qura University, Makkah, SAU
- Medical Biochemistry and Molecular Biology, Ain Shams University, Cairo, EGY
| |
Collapse
|
3
|
Miwa T, Utakata Y, Hanai T, Aiba M, Unome S, Imai K, Takai K, Shiraki M, Katsumura N, Shimizu M. Acute kidney injury development is associated with mortality in Japanese patients with cirrhosis: impact of amino acid imbalance. J Gastroenterol 2024; 59:849-857. [PMID: 38861012 PMCID: PMC11338968 DOI: 10.1007/s00535-024-02126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Acute kidney injury (AKI) is a serious complication of cirrhosis. This study analyzed the prognostic effect of AKI in patients with cirrhosis and its risk factors, particularly in relation to amino acid imbalance. METHODS This retrospective study reviewed 808 inpatients with cirrhosis at two institutes in Gifu, Japan. AKI was diagnosed according to the recommendations of the International Club of Ascites. Amino acid imbalance was assessed by measuring serum branched-chain amino acid (BCAA) levels, tyrosine levels, and the BCAA-to-tyrosine ratio (BTR). Factors associated with mortality and AKI development were assessed using the Cox proportional hazards regression model with AKI as a time-dependent covariate and the Fine-Gray competing risk regression model, respectively. RESULTS Of the 567 eligible patients without AKI at baseline, 27% developed AKI and 25% died during a median follow-up period of 4.7 years. Using a time-dependent covariate, AKI development (hazard ratio [HR], 6.25; 95% confidence interval [CI], 3.98-9.80; p < 0.001) was associated with mortality in patients with cirrhosis independent of potential covariates. In addition, alcohol-associated/-related liver disease, metabolic dysfunction-associated steatohepatitis, Child-Pugh score, and BTR (subdistribution HR 0.78; 95% CI 0.63-0.96; p = 0.022) were independently associated with AKI development in patients with cirrhosis. Similar results were obtained in the multivariate model that included BCAA and tyrosine levels instead of BTR. CONCLUSIONS AKI is common and associated with mortality in Japanese patients with cirrhosis. An amino acid imbalance is strongly associated with the development of AKI in patients with cirrhosis.
Collapse
Affiliation(s)
- Takao Miwa
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Yuki Utakata
- Department of Gastroenterology, Chuno Kosei Hospital, Gifu, Japan
| | - Tatsunori Hanai
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Masashi Aiba
- Department of Gastroenterology, Chuno Kosei Hospital, Gifu, Japan
| | - Shinji Unome
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Kenji Imai
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Koji Takai
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Makoto Shiraki
- Department of Gastroenterology, Chuno Kosei Hospital, Gifu, Japan
| | - Naoki Katsumura
- Department of Gastroenterology, Chuno Kosei Hospital, Gifu, Japan
| | - Masahito Shimizu
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
4
|
Wang S, Huang H, Hu X, Xiao M, Yang K, Bu H, Jiang Y, Huang Z. A Novel Amino Acid-Related Gene Signature Predicts Overall Survival in Patients With Hepatocellular Carcinoma. Cancer Rep (Hoboken) 2024; 7:e2131. [PMID: 39041652 PMCID: PMC11264112 DOI: 10.1002/cnr2.2131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is an extremely harmful malignant tumor in the world. Since the energy metabolism and biosynthesis of HCC cells are closely related to amino acids, it is necessary to further explore the relationship between amino acid-related genes and the prognosis of HCC to achieve individualized treatment. We herein aimed to develop a prognostic model for HCC based on amino acid genes. METHODS In this study, RNA-sequencing data of HCC patients were downloaded from the TCGA-LIHC cohort as the training cohort and the GSE14520 cohort as the validation cohort. Amino acid-related genes were derived from the Molecular Signatures Database. Univariate Cox and Lasso regression analysis were used to construct an amino acid-related signature (AARS). The predictive value of this risk score was evaluated by Kaplan-Meier (K-M) curve, receiver operating characteristic (ROC) curve, univariate and multivariate Cox regression analysis. Gene set variation analysis (GSVA) and immune characteristics evaluation were used to explore the underlying mechanisms. Finally, a nomogram was established to help the personalized prognosis assessment of patients with HCC. RESULTS The AARS comprises 14 amino acid-related genes to predict overall survival (OS) in HCC patients. HCC patients were divided into AARS-high group and AARS-low group according to the AARS scores. The K-M curve, ROC curve, and univariate and multivariate Cox regression analysis verified the good prediction efficiency of the risk score. Using GSVA, we found that AARS variants were concentrated in four pathways, including cholesterol metabolism, delayed estrogen response, fatty acid metabolism, and myogenesis metabolism. CONCLUSION Our results suggest that the AARS as a prognostic model based on amino acid-related genes is of great value in the prediction of survival of HCC, and can help improve the individualized treatment of patients with HCC.
Collapse
Affiliation(s)
- Shuyi Wang
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Nation Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | | | - Xingwang Hu
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Nation Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Meifang Xiao
- Department of Health Management CenterXiangya Hospital, Central South UniversityChangshaChina
| | - Kaili Yang
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Nation Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Haiyan Bu
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Nation Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Yupeng Jiang
- Department of OncologyThe Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Zebing Huang
- Hunan Key Laboratory of Viral Hepatitis, Department of Infectious Diseases, Nation Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
5
|
Breeur M, Stepaniants G, Keski-Rahkonen P, Rigollet P, Viallon V. Optimal transport for automatic alignment of untargeted metabolomic data. eLife 2024; 12:RP91597. [PMID: 38896449 PMCID: PMC11186628 DOI: 10.7554/elife.91597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Untargeted metabolomic profiling through liquid chromatography-mass spectrometry (LC-MS) measures a vast array of metabolites within biospecimens, advancing drug development, disease diagnosis, and risk prediction. However, the low throughput of LC-MS poses a major challenge for biomarker discovery, annotation, and experimental comparison, necessitating the merging of multiple datasets. Current data pooling methods encounter practical limitations due to their vulnerability to data variations and hyperparameter dependence. Here, we introduce GromovMatcher, a flexible and user-friendly algorithm that automatically combines LC-MS datasets using optimal transport. By capitalizing on feature intensity correlation structures, GromovMatcher delivers superior alignment accuracy and robustness compared to existing approaches. This algorithm scales to thousands of features requiring minimal hyperparameter tuning. Manually curated datasets for validating alignment algorithms are limited in the field of untargeted metabolomics, and hence we develop a dataset split procedure to generate pairs of validation datasets to test the alignments produced by GromovMatcher and other methods. Applying our method to experimental patient studies of liver and pancreatic cancer, we discover shared metabolic features related to patient alcohol intake, demonstrating how GromovMatcher facilitates the search for biomarkers associated with lifestyle risk factors linked to several cancer types.
Collapse
Affiliation(s)
- Marie Breeur
- Nutrition and Metabolism Branch, International Agency for Research on CancerLyonFrance
| | - George Stepaniants
- Massachusetts Institute of Technology, Department of MathematicsBostonUnited States
| | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on CancerLyonFrance
| | - Philippe Rigollet
- Massachusetts Institute of Technology, Department of MathematicsBostonUnited States
| | - Vivian Viallon
- Nutrition and Metabolism Branch, International Agency for Research on CancerLyonFrance
| |
Collapse
|
6
|
Kamel RM, Abdel-aal FA, Mohamed FA, Abdeltawab A, Abdel-Malek MO, Othman AA, Mohamed AMI. Copper @ eggshell nanocomposite/chitosan gelified carbon paste electrode as an electrochemical biosensor for l-tyrosine analysis as a biomarker in the serum of normal and liver disease patients. Microchem J 2024; 201:110703. [DOI: 10.1016/j.microc.2024.110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Yang T, Li X, Wang X, Meng X, Zhang Z, Zhao M, Su R. Combination of histological and metabolomic assessments to evaluate the potential pharmacological efficacy of saikosaponin D. J Pharm Biomed Anal 2024; 242:116001. [PMID: 38354536 DOI: 10.1016/j.jpba.2024.116001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Saikosaponin D (SsD), a natural triterpenoid saponin compound, exhibits notable potential in suppressing tumor growth and inhibiting metastasis, particularly in breast cancer. However, its underlying mechanism of action for SsD remains unclear. In this study, a combination strategy to reveal the metabolism modulation of SsD on breast cancer was performed by integration of histopathological assessments and untargeted metabolomics analysis. Pathological evaluation of the efficacy of SsD from a visual and intuitive perspective. Accordingly, a non-targeted metabolomics study was used to investigate the pharmacological efficacy using a set of serum samples from mice before and after (0-30 days) modulated with SsD based on ultra-high performance liquid chromatography tandem orbitrap mass spectrometry to discover metabolite biomarkers for finding the key metabolic mechanism in a molecular perspective. As a result, 20 metabolites were selected as potential biomarkers for SsD efficacy evaluation with high sensitivity and specificity. These metabolites changes were involved in sphingolipid metabolism, glycerophospholipid metabolism, phenylalanine and tryptophan metabolism, and phenylalanine, tyrosine and tryptophan biosynthesis pathways, suggesting that SsD exerted anti-breast cancer effects through the regulation of the underlying metabolism. In conclusion, we developed a new analysis strategy that effectively discovers tumor-progressing related metabolite biomarkers in serum for pharmacological efficacy evaluation.
Collapse
Affiliation(s)
- Tongtong Yang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Xuanzhu Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Xiaowen Wang
- Chinese Society for Measurement, No. 22, Maizidian Street, Chaoyang District, Beijing, China
| | - Xiangzhe Meng
- Hydrology and Water Resources Bureau of Jilin Province, Changchun 130028, China
| | - Zhe Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Mingyue Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Rui Su
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China; State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
8
|
Wada K, Hattori A, Maruyama Y, Mori T, Sugino M, Nakashima Y, Yamakawa M, Yamamoto M, Hori A, Seishima M, Tanabashi S, Matsushita S, Nagata C. Dietary melatonin and liver cancer incidence in Japan: From the Takayama study. Cancer Sci 2024; 115:1688-1694. [PMID: 38356184 DOI: 10.1111/cas.16103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
There is some biological plausibility that exogenous melatonin plays a role in preventing liver carcinogenesis. There has been little research on the association between melatonin intake in a normal diet and health outcomes. We evaluated the association between dietary melatonin intake and the incidence of liver cancer in a population-based prospective study in Japan. This study included 30,824 residents of Takayama city who were 35 years of age or older in 1992 and had participated in the Takayama study, Japan. Dietary intake was assessed using a validated food frequency questionnaire at the baseline. Melatonin content in foods was measured by liquid chromatography-tandem mass spectrometry. Cancer incidence was confirmed through regional population-based cancer registries in Gifu. Liver cancer was defined as code C22 according to the International Classification of Diseases and Related Health Problems, 10th Revision. Hazard ratios for liver cancer were estimated for the tertile groups of melatonin intake using a Cox proportional hazards model. During the mean follow-up period of 13.6 years, 189 individuals developed liver cancer. Compared with subjects in the lowest tertile of melatonin intake, those in the middle and highest tertiles had decreased risks of liver cancer, with a significant linear trend after multivariate adjustments (hazard ratios: 0.64 and 0.65, respectively, trend p = 0.023). There was no significant interaction by sex (interaction p = 0.54). This initial finding, which needs to be confirmed by further studies, suggests that consuming melatonin-containing foods might play a role in the prevention of liver cancer.
Collapse
Affiliation(s)
- Keiko Wada
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Chiba, Japan
| | - Yusuke Maruyama
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Chiba, Japan
| | - Tomoka Mori
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masaaki Sugino
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuma Nakashima
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Michiyo Yamakawa
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | - Mitsuru Seishima
- Department of Internal Medicine, Takayama Red Cross Hospital, Gifu, Japan
| | - Shinobu Tanabashi
- Department of Internal Medicine, Takayama Red Cross Hospital, Gifu, Japan
| | | | - Chisato Nagata
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
9
|
Yu L, Lu J, Du W. Tryptophan metabolism in digestive system tumors: unraveling the pathways and implications. Cell Commun Signal 2024; 22:174. [PMID: 38462620 PMCID: PMC10926624 DOI: 10.1186/s12964-024-01552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/01/2024] [Indexed: 03/12/2024] Open
Abstract
Tryptophan (Trp) metabolism plays a crucial role in influencing the development of digestive system tumors. Dysregulation of Trp and its metabolites has been identified in various digestive system cancers, including esophageal, gastric, liver, colorectal, and pancreatic cancers. Aberrantly expressed Trp metabolites are associated with diverse clinical features in digestive system tumors. Moreover, the levels of these metabolites can serve as prognostic indicators and predictors of recurrence risk in patients with digestive system tumors. Trp metabolites exert their influence on tumor growth and metastasis through multiple mechanisms, including immune evasion, angiogenesis promotion, and drug resistance enhancement. Suppressing the expression of key enzymes in Trp metabolism can reduce the accumulation of these metabolites, effectively impacting their role in the promotion of tumor progression and metastasis. Strategies targeting Trp metabolism through specific enzyme inhibitors or tailored drugs exhibit considerable promise in enhancing therapeutic outcomes for digestive system tumors. In addition, integrating these approaches with immunotherapy holds the potential to further enhance treatment efficacy.
Collapse
Affiliation(s)
- Liang Yu
- State Key Laboratory for Diagnosis, Treatment of Infectious Diseases,, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis, Treatment of Infectious Diseases,, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China.
| | - Weibo Du
- State Key Laboratory for Diagnosis, Treatment of Infectious Diseases,, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
10
|
Li ZY, Shen QM, Wang J, Tuo JY, Tan YT, Li HL, Xiang YB. Prediagnostic plasma metabolite concentrations and liver cancer risk: a population-based study of Chinese men. EBioMedicine 2024; 100:104990. [PMID: 38306896 PMCID: PMC10847612 DOI: 10.1016/j.ebiom.2024.104990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Previous metabolic profiling of liver cancer has mostly used untargeted metabolomic approaches and was unable to quantitate the absolute concentrations of metabolites. In this study, we examined the association between the concentrations of 186 targeted metabolites and liver cancer risk using prediagnostic plasma samples collected up to 14 years prior to the clinical diagnosis of liver cancer. METHODS We conducted a nested case-control study (n = 322 liver cancer cases, n = 322 matched controls) within the Shanghai Men's Health Study. Conditional logistic regression models adjusted for demographics, lifestyle factors, dietary habits, and related medical histories were used to estimate the odds ratios. Restricted cubic spline functions were used to characterise the dose-response relationships between metabolite concentrations and liver cancer risk. FINDINGS After adjusting for potential confounders and correcting for multiple testing, 28 metabolites were associated with liver cancer risk. Significant non-linear relationships were observed for 22 metabolites. The primary bile acid biosynthesis and phenylalanine, tyrosine and tryptophan biosynthesis were found to be important pathways involved in the aetiology of liver cancer. A metabolic score consisting of 10 metabolites significantly improved the predictive ability of traditional epidemiological risk factors for liver cancer, with an optimism-corrected AUC increased from 0.84 (95% CI: 0.81-0.87) to 0.89 (95% CI: 0.86-0.91). INTERPRETATION This study characterised the dose-response relationships between metabolites and liver cancer risk, providing insights into the complex metabolic perturbations prior to the clinical diagnosis of liver cancer. The metabolic score may serve as a candidate risk predictor for liver cancer. FUNDING National Key Project of Research and Development Program of China [2021YFC2500404, 2021YFC2500405]; US National Institutes of Health [subcontract of UM1 CA173640].
Collapse
Affiliation(s)
- Zhuo-Ying Li
- School of Public Health, Fudan University, Shanghai, 200032, China; State Key Laboratory of System Medicine for Cancer & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Qiu-Ming Shen
- State Key Laboratory of System Medicine for Cancer & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Jing Wang
- State Key Laboratory of System Medicine for Cancer & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Jia-Yi Tuo
- State Key Laboratory of System Medicine for Cancer & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China; School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yu-Ting Tan
- State Key Laboratory of System Medicine for Cancer & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Hong-Lan Li
- State Key Laboratory of System Medicine for Cancer & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yong-Bing Xiang
- School of Public Health, Fudan University, Shanghai, 200032, China; State Key Laboratory of System Medicine for Cancer & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China; School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
11
|
Aboud O, Liu Y, Dahabiyeh L, Abuaisheh A, Li F, Aboubechara JP, Riess J, Bloch O, Hodeify R, Tagkopoulos I, Fiehn O. Profile Characterization of Biogenic Amines in Glioblastoma Patients Undergoing Standard-of-Care Treatment. Biomedicines 2023; 11:2261. [PMID: 37626757 PMCID: PMC10452138 DOI: 10.3390/biomedicines11082261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION Biogenic amines play important roles throughout cellular metabolism. This study explores a role of biogenic amines in glioblastoma pathogenesis. Here, we characterize the plasma levels of biogenic amines in glioblastoma patients undergoing standard-of-care treatment. METHODS We examined 138 plasma samples from 36 patients with isocitrate dehydrogenase (IDH) wild-type glioblastoma at multiple stages of treatment. Untargeted gas chromatography-time of flight mass spectrometry (GC-TOF MS) was used to measure metabolite levels. Machine learning approaches were then used to develop a predictive tool based on these datasets. RESULTS Surgery was associated with increased levels of 12 metabolites and decreased levels of 11 metabolites. Chemoradiation was associated with increased levels of three metabolites and decreased levels of three other metabolites. Ensemble learning models, specifically random forest (RF) and AdaBoost (AB), accurately classified treatment phases with high accuracy (RF: 0.81 ± 0.04, AB: 0.78 ± 0.05). The metabolites sorbitol and N-methylisoleucine were identified as important predictive features and confirmed via SHAP. CONCLUSION To our knowledge, this is the first study to describe plasma biogenic amine signatures throughout the treatment of patients with glioblastoma. A larger study is needed to confirm these results with hopes of developing a diagnostic algorithm.
Collapse
Affiliation(s)
- Orwa Aboud
- Department of Neurology, University of California, Davis, Sacramento, CA 95817, USA
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA 95817, USA
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Yin Liu
- Department of Neurology, University of California, Davis, Sacramento, CA 95817, USA
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA 95817, USA
- Department of Ophthalmology, University of California, Davis, Sacramento, CA 95817, USA
| | - Lina Dahabiyeh
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Ahmad Abuaisheh
- School of Medicine, Al Balqa Applied University, Al-Salt 19117, Jordan
| | - Fangzhou Li
- Department of Computer Science, University of California, Davis, Sacramento, CA 95616, USA
- Genome Center, University of California, Davis, Sacramento, CA 95616, USA
- USDA/NSF AI Institute for Next Generation Food Systems (AIFS), Davis, CA 95616, USA
| | | | - Jonathan Riess
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
- Department of Internal Medicine, Division of Hematology and Oncology, University of California, Davis, Sacramento, CA 95817, USA
| | - Orin Bloch
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA 95817, USA
| | - Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al-Khaimah 10021, United Arab Emirates
| | - Ilias Tagkopoulos
- Department of Computer Science, University of California, Davis, Sacramento, CA 95616, USA
- Genome Center, University of California, Davis, Sacramento, CA 95616, USA
- USDA/NSF AI Institute for Next Generation Food Systems (AIFS), Davis, CA 95616, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
12
|
Rothwell JA, Bešević J, Dimou N, Breeur M, Murphy N, Jenab M, Wedekind R, Viallon V, Ferrari P, Achaintre D, Gicquiau A, Rinaldi S, Scalbert A, Huybrechts I, Prehn C, Adamski J, Cross AJ, Keun H, Chadeau-Hyam M, Boutron-Ruault MC, Overvad K, Dahm CC, Nøst TH, Sandanger TM, Skeie G, Zamora-Ros R, Tsilidis KK, Eichelmann F, Schulze MB, van Guelpen B, Vidman L, Sánchez MJ, Amiano P, Ardanaz E, Smith-Byrne K, Travis R, Katzke V, Kaaks R, Derksen JWG, Colorado-Yohar S, Tumino R, Bueno-de-Mesquita B, Vineis P, Palli D, Pasanisi F, Eriksen AK, Tjønneland A, Severi G, Gunter MJ. Circulating amino acid levels and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition and UK Biobank cohorts. BMC Med 2023; 21:80. [PMID: 36855092 PMCID: PMC9976469 DOI: 10.1186/s12916-023-02739-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/16/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Amino acid metabolism is dysregulated in colorectal cancer patients; however, it is not clear whether pre-diagnostic levels of amino acids are associated with subsequent risk of colorectal cancer. We investigated circulating levels of amino acids in relation to colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) and UK Biobank cohorts. METHODS Concentrations of 13-21 amino acids were determined in baseline fasting plasma or serum samples in 654 incident colorectal cancer cases and 654 matched controls in EPIC. Amino acids associated with colorectal cancer risk following adjustment for the false discovery rate (FDR) were then tested for associations in the UK Biobank, for which measurements of 9 amino acids were available in 111,323 participants, of which 1221 were incident colorectal cancer cases. RESULTS Histidine levels were inversely associated with colorectal cancer risk in EPIC (odds ratio [OR] 0.80 per standard deviation [SD], 95% confidence interval [CI] 0.69-0.92, FDR P-value=0.03) and in UK Biobank (HR 0.93 per SD, 95% CI 0.87-0.99, P-value=0.03). Glutamine levels were borderline inversely associated with colorectal cancer risk in EPIC (OR 0.85 per SD, 95% CI 0.75-0.97, FDR P-value=0.08) and similarly in UK Biobank (HR 0.95, 95% CI 0.89-1.01, P=0.09) In both cohorts, associations changed only minimally when cases diagnosed within 2 or 5 years of follow-up were excluded. CONCLUSIONS Higher circulating levels of histidine were associated with a lower risk of colorectal cancer in two large prospective cohorts. Further research to ascertain the role of histidine metabolism and potentially that of glutamine in colorectal cancer development is warranted.
Collapse
Affiliation(s)
- Joseph A Rothwell
- Centre for Epidemiology and Population Health (Inserm U1018), Exposome and Heredity team, Faculté de Médecine, Université Paris-Saclay, UVSQ, Gustave Roussy, F-94805, Villejuif, France.
| | - Jelena Bešević
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Niki Dimou
- International Agency for Research on Cancer (IARC), 150 cours Albert Thomas, 69008, Lyon, France
| | - Marie Breeur
- International Agency for Research on Cancer (IARC), 150 cours Albert Thomas, 69008, Lyon, France
| | - Neil Murphy
- International Agency for Research on Cancer (IARC), 150 cours Albert Thomas, 69008, Lyon, France
| | - Mazda Jenab
- International Agency for Research on Cancer (IARC), 150 cours Albert Thomas, 69008, Lyon, France
| | - Roland Wedekind
- International Agency for Research on Cancer (IARC), 150 cours Albert Thomas, 69008, Lyon, France
| | - Vivian Viallon
- International Agency for Research on Cancer (IARC), 150 cours Albert Thomas, 69008, Lyon, France
| | - Pietro Ferrari
- International Agency for Research on Cancer (IARC), 150 cours Albert Thomas, 69008, Lyon, France
| | - David Achaintre
- International Agency for Research on Cancer (IARC), 150 cours Albert Thomas, 69008, Lyon, France
| | - Audrey Gicquiau
- International Agency for Research on Cancer (IARC), 150 cours Albert Thomas, 69008, Lyon, France
| | - Sabina Rinaldi
- International Agency for Research on Cancer (IARC), 150 cours Albert Thomas, 69008, Lyon, France
| | - Augustin Scalbert
- International Agency for Research on Cancer (IARC), 150 cours Albert Thomas, 69008, Lyon, France
| | - Inge Huybrechts
- International Agency for Research on Cancer (IARC), 150 cours Albert Thomas, 69008, Lyon, France
| | - Cornelia Prehn
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Jerzy Adamski
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Amanda J Cross
- School of Public Health, Imperial College London, London, UK
| | - Hector Keun
- Department of Surgery & Cancer, Imperial College London, London, UK
| | | | - Marie-Christine Boutron-Ruault
- Centre for Epidemiology and Population Health (Inserm U1018), Exposome and Heredity team, Faculté de Médecine, Université Paris-Saclay, UVSQ, Gustave Roussy, F-94805, Villejuif, France
| | - Kim Overvad
- Department of Public Health, Aarhus University, Bartholins Allé 2, DK-8000, Aarhus, Denmark
| | - Christina C Dahm
- Department of Public Health, Aarhus University, Bartholins Allé 2, DK-8000, Aarhus, Denmark
| | - Therese Haugdahl Nøst
- Faculty of Health Sciences, Department of Community Medicine, UiT the Arctic University of Norway, N-9037, Tromsø, Norway
| | - Torkjel M Sandanger
- Faculty of Health Sciences, Department of Community Medicine, UiT the Arctic University of Norway, N-9037, Tromsø, Norway
| | - Guri Skeie
- Faculty of Health Sciences, Department of Community Medicine, UiT the Arctic University of Norway, N-9037, Tromsø, Norway
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Kostas K Tsilidis
- School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Fabian Eichelmann
- German Center for Diabetes Research (DZD), Munchen-Neuherberg, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Bethany van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Linda Vidman
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Maria-José Sánchez
- Escuela Andaluza de Salud Pública (EASP), 18011, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, 18071, Granada, Spain
| | - Pilar Amiano
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastián, Spain
- Biodonostia Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, San Sebastián, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Ardanaz
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Navarra Public Health Institute, Leyre 15, 31003, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- International Agency for Research on Cancer (IARC), 150 cours Albert Thomas, 69008, Lyon, France
| | - Ruth Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Verena Katzke
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Rudolf Kaaks
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Jeroen W G Derksen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sandra Colorado-Yohar
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP), Ragusa, Italy
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720, BA, Bilthoven, The Netherlands
| | - Paolo Vineis
- School of Public Health, Imperial College London, London, UK
- Italian Institute of Technology, Genova, Italy
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Fabrizio Pasanisi
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Anne Kirstine Eriksen
- Danish Cancer Society Research Center, Diet, Genes and Environment, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Diet, Genes and Environment, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Gianluca Severi
- Centre for Epidemiology and Population Health (Inserm U1018), Exposome and Heredity team, Faculté de Médecine, Université Paris-Saclay, UVSQ, Gustave Roussy, F-94805, Villejuif, France
- Department of Statistics, Computer Science, Applications "G. Parenti" University of Florence, Florence, Italy
| | - Marc J Gunter
- International Agency for Research on Cancer (IARC), 150 cours Albert Thomas, 69008, Lyon, France
- School of Public Health, Imperial College London, London, UK
| |
Collapse
|
13
|
Metabolism as a New Avenue for Hepatocellular Carcinoma Therapy. Int J Mol Sci 2023; 24:ijms24043710. [PMID: 36835122 PMCID: PMC9964410 DOI: 10.3390/ijms24043710] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Hepatocellular carcinoma is today the sixth leading cause of cancer-related death worldwide, despite the decreased incidence of chronic hepatitis infections. This is due to the increased diffusion of metabolic diseases such as the metabolic syndrome, diabetes, obesity, and nonalcoholic steatohepatitis (NASH). The current protein kinase inhibitor therapies in HCC are very aggressive and not curative. From this perspective, a shift in strategy toward metabolic therapies may represent a promising option. Here, we review current knowledge on metabolic dysregulation in HCC and therapeutic approaches targeting metabolic pathways. We also propose a multi-target metabolic approach as a possible new option in HCC pharmacology.
Collapse
|
14
|
Ultrasensitive quantification of trace amines based on N-phosphorylation labeling chip 2D LC-QQQ/MS. J Pharm Anal 2023; 13:315-322. [PMID: 37102107 PMCID: PMC10123937 DOI: 10.1016/j.jpha.2023.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 01/29/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Trace amines (TAs) are metabolically related to catecholamine and associated with cancer and neurological disorders. Comprehensive measurement of TAs is essential for understanding pathological processes and providing proper drug intervention. However, the trace amounts and chemical instability of TAs challenge quantification. Here, diisopropyl phosphite coupled with chip two-dimensional (2D) liquid chromatography tandem triple-quadrupole mass spectrometry (LC-QQQ/MS) was developed to simultaneously determine TAs and associated metabolites. The results showed that the sensitivities of TAs increased up to 5520 times compared with those using nonderivatized LC-QQQ/MS. This sensitive method was utilized to investigate their alterations in hepatoma cells after treatment with sorafenib. The significantly altered TAs and associated metabolites suggested that phenylalanine and tyrosine metabolic pathways were related to sorafenib treatment in Hep3B cells. This sensitive method has great potential to elucidate the mechanism and diagnose diseases considering that an increasing number of physiological functions of TAs have been discovered in recent decades.
Collapse
|
15
|
Gao Y, Gong Y, Liu Y, Xue Y, Zheng K, Guo Y, Hao L, Peng Q, Shi X. Integrated analysis of transcriptomics and metabolomics in human hepatocellular carcinoma HepG2215 cells after YAP1 knockdown. Acta Histochem 2023; 125:151987. [PMID: 36473310 DOI: 10.1016/j.acthis.2022.151987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022]
Abstract
Yes-associated protein 1 (YAP1) plays a critical role in hepatocellular carcinoma (HCC). Inhibition of YAP1 expression suppresses HCC progression, but the underlying mechanism is still unclear. In this study, we studied the effects and molecular mechanisms of YAP1 knockdown on the growth and metabolism in human HCC HepG2215 cells. Inhibition of YAP1 expression inhibits the proliferation and metastasis in HepG2215 cells, and differentially expressed genes (DEGs) and metabolites were identified in shYAP1-HepG2215 cells. Further, 805 DEGs, mainly associated with metabolism and particularly lipid metabolism, were identified by transcriptome sequencing analyses in shYAP1-HepG2215 cells. YAP1 knockdown increased albumin (ALB) levels by Protein-protein interaction (PPI) network analyses in HepG2215 cells. Metabolomic profiling identified 37 metabolites with significant differences in the shYAP1 group, and amino acid metabolism generally decreased in the shYAP1 group. Comprehensive analysis of transcriptomics and metabolomics revealed that the ATP-binding cassette (ABC) transporters play a central role after YAP1 knockdown in HepG2215 cells. Therefore, YAP1 knockdown inhibited HCC growth, which affected the metabolism of lipids and amino acids by regulating the expression of ALB and ABC transporters in HepG2215 cells.
Collapse
Affiliation(s)
- Yuting Gao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Yi Gong
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yiwei Liu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yu Xue
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Kangning Zheng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yinglin Guo
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Liyuan Hao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Qing Peng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xinli Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| |
Collapse
|
16
|
Xie D, Zhang G, Ma Y, Wu D, Jiang S, Zhou S, Jiang X. Circulating Metabolic Markers Related to the Diagnosis of Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:7840606. [PMID: 36532884 PMCID: PMC9757943 DOI: 10.1155/2022/7840606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 01/04/2025]
Abstract
Primary liver carcinoma is the sixth most common cancer worldwide, while hepatocellular carcinoma (HCC) is the most dominant cancer type. Chronic hepatitis B and C virus infections and aflatoxin exposure are the main risk factors, while nonalcoholic fatty liver disease caused by obesity, diabetes, and metabolic syndrome are the more common risk factors for HCC. Metabolic disorders caused by these high-risk factors are closely related to the tumor microenvironment of HCC, revealing a possible cause-and-effect relationship between the two. These metabolic disorders involve many complex metabolic pathways, such as carbohydrate, lipid, lipid derivative, amino acid, and amino acid derivative metabolic processes. The resulting metabolites with significant abnormal changes in the concentration level in circulating blood may be used as biomarkers to guide the diagnosis, treatment, or prognosis of HCC. At present, there are high-throughput technologies that can quickly detect small molecular metabolites in many samples. Compared to tissue biopsy, blood samples are easier to obtain, and patients' willingness to participate is higher, which makes it possible to study blood HCC biomarkers. Over the past few years, a substantial body of research has been performed worldwide, and other potential biomarkers have been identified. Unfortunately, due to the limitations of each study, only a few markers have been widely verified and are suitable for clinical use. This review briefly summarizes the potential blood metabolic markers related to the diagnosis of HCC, mainly focusing on amino acids and their derivative metabolism, lipids and their derivative metabolism, and other possible related metabolisms.
Collapse
Affiliation(s)
- Da Xie
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570100, China
| | - Guangcong Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
| | - Yanan Ma
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570100, China
| | - Dongyu Wu
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570100, China
| | - Shuang Jiang
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570100, China
| | - Songke Zhou
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570100, China
| | - Xuemei Jiang
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570100, China
| |
Collapse
|
17
|
Breeur M, Ferrari P, Dossus L, Jenab M, Johansson M, Rinaldi S, Travis RC, His M, Key TJ, Schmidt JA, Overvad K, Tjønneland A, Kyrø C, Rothwell JA, Laouali N, Severi G, Kaaks R, Katzke V, Schulze MB, Eichelmann F, Palli D, Grioni S, Panico S, Tumino R, Sacerdote C, Bueno-de-Mesquita B, Olsen KS, Sandanger TM, Nøst TH, Quirós JR, Bonet C, Barranco MR, Chirlaque MD, Ardanaz E, Sandsveden M, Manjer J, Vidman L, Rentoft M, Muller D, Tsilidis K, Heath AK, Keun H, Adamski J, Keski-Rahkonen P, Scalbert A, Gunter MJ, Viallon V. Pan-cancer analysis of pre-diagnostic blood metabolite concentrations in the European Prospective Investigation into Cancer and Nutrition. BMC Med 2022; 20:351. [PMID: 36258205 PMCID: PMC9580145 DOI: 10.1186/s12916-022-02553-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epidemiological studies of associations between metabolites and cancer risk have typically focused on specific cancer types separately. Here, we designed a multivariate pan-cancer analysis to identify metabolites potentially associated with multiple cancer types, while also allowing the investigation of cancer type-specific associations. METHODS We analysed targeted metabolomics data available for 5828 matched case-control pairs from cancer-specific case-control studies on breast, colorectal, endometrial, gallbladder, kidney, localized and advanced prostate cancer, and hepatocellular carcinoma nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. From pre-diagnostic blood levels of an initial set of 117 metabolites, 33 cluster representatives of strongly correlated metabolites and 17 single metabolites were derived by hierarchical clustering. The mutually adjusted associations of the resulting 50 metabolites with cancer risk were examined in penalized conditional logistic regression models adjusted for body mass index, using the data-shared lasso penalty. RESULTS Out of the 50 studied metabolites, (i) six were inversely associated with the risk of most cancer types: glutamine, butyrylcarnitine, lysophosphatidylcholine a C18:2, and three clusters of phosphatidylcholines (PCs); (ii) three were positively associated with most cancer types: proline, decanoylcarnitine, and one cluster of PCs; and (iii) 10 were specifically associated with particular cancer types, including histidine that was inversely associated with colorectal cancer risk and one cluster of sphingomyelins that was inversely associated with risk of hepatocellular carcinoma and positively with endometrial cancer risk. CONCLUSIONS These results could provide novel insights for the identification of pathways for cancer development, in particular those shared across different cancer types.
Collapse
Affiliation(s)
- Marie Breeur
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, NME Branch, 69372 CEDEX 08, Lyon, France
| | - Pietro Ferrari
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, NME Branch, 69372 CEDEX 08, Lyon, France
| | - Laure Dossus
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, NME Branch, 69372 CEDEX 08, Lyon, France
| | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, NME Branch, 69372 CEDEX 08, Lyon, France
| | - Mattias Johansson
- Genetics Branch, International Agency for Research on Cancer, 69372 CEDEX 08, Lyon, France
| | - Sabina Rinaldi
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, NME Branch, 69372 CEDEX 08, Lyon, France
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Mathilde His
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, NME Branch, 69372 CEDEX 08, Lyon, France
| | - Tim J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital and Aarhus University, DK-8200, Aarhus N, Denmark
| | - Kim Overvad
- Department of Public Health, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center Diet, Genes and Environment Nutrition and Biomarkers, DK-2100, Copenhagen, Denmark
| | - Cecilie Kyrø
- Danish Cancer Society Research Center Diet, Genes and Environment Nutrition and Biomarkers, DK-2100, Copenhagen, Denmark
| | - Joseph A Rothwell
- Université Paris-Saclay, UVSQ, Inserm, CESP U1018, "Exposome and Heredity" team, Gustave Roussy, 94800, Villejuif, France
| | - Nasser Laouali
- Université Paris-Saclay, UVSQ, Inserm, CESP U1018, "Exposome and Heredity" team, Gustave Roussy, 94800, Villejuif, France
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, CESP U1018, "Exposome and Heredity" team, Gustave Roussy, 94800, Villejuif, France
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition, 14558, Nuthetal, Germany
| | - Fabian Eichelmann
- Department of Molecular Epidemiology, German Institute of Human Nutrition, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Domenico Palli
- Institute of Cancer Research, Prevention and Clinical Network (ISPRO), 50139, Florence, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133, Milan, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131, Naples, Italy
| | - Rosario Tumino
- Hyblean Association for Epidemiological Research, AIRE-ONLUS, 97100, Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology Città della Salute e della Scienza University-Hospital, 10126, Turin, Italy
| | - Bas Bueno-de-Mesquita
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720, BA, Bilthoven, The Netherlands
| | - Karina Standahl Olsen
- Department of Community Medicine, UiT The Arctic University of Norway, N-9037, Tromsø, Norway
| | | | - Therese Haugdahl Nøst
- Department of Community Medicine, UiT The Arctic University of Norway, N-9037, Tromsø, Norway
| | - J Ramón Quirós
- Public Health Directorate, 33006, Oviedo, Asturias, Spain
| | - Catalina Bonet
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Miguel Rodríguez Barranco
- Escuela Andaluza de Salud Pública (EASP), 18011, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
| | - María-Dolores Chirlaque
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, 30003, Murcia, Spain
| | - Eva Ardanaz
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Navarra Public Health Institute, 31003, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Malte Sandsveden
- Department of Clinical Sciences Malmö Lund University, SE-214 28, Malmö, Sweden
| | - Jonas Manjer
- Departement of Surgery, Skåne University Hospital Malmö, Lund University, SE-214 28, Malmö, Sweden
| | - Linda Vidman
- Department of Radiation Sciences, Oncology Umeå University, SE-901 87, Umeå, Sweden
| | - Matilda Rentoft
- Department of Radiation Sciences, Oncology Umeå University, SE-901 87, Umeå, Sweden
| | - David Muller
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Kostas Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Hector Keun
- Department of Surgery and Cancer, Cancer Metabolism and Systems Toxicology Group, Division of Cancer, Imperial College London, London, SW7 2AZ, UK
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, NME Branch, 69372 CEDEX 08, Lyon, France
| | - Augustin Scalbert
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, NME Branch, 69372 CEDEX 08, Lyon, France
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, NME Branch, 69372 CEDEX 08, Lyon, France
| | - Vivian Viallon
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, NME Branch, 69372 CEDEX 08, Lyon, France.
| |
Collapse
|
18
|
Di Carlo P, Serra N, Alduina R, Guarino R, Craxì A, Giammanco A, Fasciana T, Cascio A, Sergi CM. A systematic review on omics data (metagenomics, metatranscriptomics, and metabolomics) in the role of microbiome in gallbladder disease. Front Physiol 2022; 13:888233. [PMID: 36111147 PMCID: PMC9468903 DOI: 10.3389/fphys.2022.888233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Microbiotas are the range of microorganisms (mainly bacteria and fungi) colonizing multicellular, macroscopic organisms. They are crucial for several metabolic functions affecting the health of the host. However, difficulties hamper the investigation of microbiota composition in cultivating microorganisms in standard growth media. For this reason, our knowledge of microbiota can benefit from the analysis of microbial macromolecules (DNA, transcripts, proteins, or by-products) present in various samples collected from the host. Various omics technologies are used to obtain different data. Metagenomics provides a taxonomical profile of the sample. It can also be used to obtain potential functional information. At the same time, metatranscriptomics can characterize members of a microbiome responsible for specific functions and elucidate genes that drive the microbiotas relationship with its host. Thus, while microbiota refers to microorganisms living in a determined environment (taxonomy of microorganisms identified), microbiome refers to the microorganisms and their genes living in a determined environment and, of course, metagenomics focuses on the genes and collective functions of identified microorganisms. Metabolomics completes this framework by determining the metabolite fluxes and the products released into the environment. The gallbladder is a sac localized under the liver in the human body and is difficult to access for bile and tissue sampling. It concentrates the bile produced in the hepatocytes, which drains into bile canaliculi. Bile promotes fat digestion and is released from the gallbladder into the upper small intestine in response to food. Considered sterile originally, recent data indicate that bile microbiota is associated with the biliary tract’s inflammation and carcinogenesis. The sample size is relevant for omic studies of rare diseases, such as gallbladder carcinoma. Although in its infancy, the study of the biliary microbiota has begun taking advantage of several omics strategies, mainly based on metagenomics, metabolomics, and mouse models. Here, we show that omics analyses from the literature may provide a more comprehensive image of the biliary microbiota. We review studies performed in this environmental niche and focus on network-based approaches for integrative studies.
Collapse
Affiliation(s)
- Paola Di Carlo
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence G. D’Alessandro, Section of Infectious Disease, University of Palermo, Palermo, Italy
| | - Nicola Serra
- Department of Public Health, University “Federico II”, Naples, Italy
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Riccardo Guarino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Antonio Craxì
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence G. D’Alessandro, Section of Gastroenterology, University of Palermo, Palermo, Italy
| | - Anna Giammanco
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence G. D’Alessandro, Section of Microbiology, University of Palermo, Palermo, Italy
| | - Teresa Fasciana
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence G. D’Alessandro, Section of Microbiology, University of Palermo, Palermo, Italy
| | - Antonio Cascio
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence G. D’Alessandro, Section of Infectious Disease, University of Palermo, Palermo, Italy
| | - Consolato M. Sergi
- Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, Stollery Children’s Hospital, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Consolato M. Sergi,
| |
Collapse
|
19
|
Grenville ZS, Noor U, His M, Viallon V, Rinaldi S, Aglago EK, Amiano P, Brunkwall L, Chirlaque MD, Drake I, Eichelmann F, Freisling H, Grioni S, Heath AK, Kaaks R, Katzke V, Mayén-Chacon AL, Milani L, Moreno-Iribas C, Pala V, Olsen A, Sánchez MJ, Schulze MB, Tjønneland A, Tsilidis KK, Weiderpass E, Winkvist A, Zamora-Ros R, Key TJ, Smith-Byrne K, Travis RC, Schmidt JA. Diet and BMI Correlate with Metabolite Patterns Associated with Aggressive Prostate Cancer. Nutrients 2022; 14:3306. [PMID: 36014812 PMCID: PMC9415102 DOI: 10.3390/nu14163306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Three metabolite patterns have previously shown prospective inverse associations with the risk of aggressive prostate cancer within the European Prospective Investigation into Cancer and Nutrition (EPIC). Here, we investigated dietary and lifestyle correlates of these three prostate cancer-related metabolite patterns, which included: 64 phosphatidylcholines and three hydroxysphingomyelins (Pattern 1), acylcarnitines C18:1 and C18:2, glutamate, ornithine, and taurine (Pattern 2), and 8 lysophosphatidylcholines (Pattern 3). In a two-stage cross-sectional discovery (n = 2524) and validation (n = 518) design containing 3042 men free of cancer in EPIC, we estimated the associations of 24 dietary and lifestyle variables with each pattern and the contributing individual metabolites. Associations statistically significant after both correction for multiple testing (False Discovery Rate = 0.05) in the discovery set and at p < 0.05 in the validation set were considered robust. Intakes of alcohol, total fish products, and its subsets total fish and lean fish were positively associated with Pattern 1. Body mass index (BMI) was positively associated with Pattern 2, which appeared to be driven by a strong positive BMI-glutamate association. Finally, both BMI and fatty fish were inversely associated with Pattern 3. In conclusion, these results indicate associations of fish and its subtypes, alcohol, and BMI with metabolite patterns that are inversely associated with risk of aggressive prostate cancer.
Collapse
Affiliation(s)
- Zoe S. Grenville
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Urwah Noor
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Mathilde His
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Vivian Viallon
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Sabina Rinaldi
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Elom K. Aglago
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Pilar Amiano
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, 20013 San Sebastian, Spain
- Biodonostia Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, 20014 San Sebastián, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Louise Brunkwall
- Department of Clinical Sciences, Lund University, 221 84 Malmö, Sweden
| | - María Dolores Chirlaque
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, 30008 Murcia, Spain
| | - Isabel Drake
- Department of Clinical Sciences, Lund University, 221 84 Malmö, Sweden
- Skåne University Hospital, 214 28 Malmö, Sweden
| | - Fabian Eichelmann
- Department of Molecular Epidemiology, German Institute of Human Nutrition, 14558 Nuthetal, Germany
| | - Heinz Freisling
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Alicia K. Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Rudolf Kaaks
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Verena Katzke
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ana-Lucia Mayén-Chacon
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Lorenzo Milani
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | - Conchi Moreno-Iribas
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Navarra Public Health Institute, 31003 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Valeria Pala
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Anja Olsen
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
- Department of Public Health, Aarhus University, DK-8000 Aarhus, Denmark
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, 18071 Granada, Spain
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition, 14558 Nuthetal, Germany
| | - Anne Tjønneland
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | - Konstantinos K. Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Anna Winkvist
- Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden
- Department of Internal Medicine and Clinical Nutrition, The Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Timothy J. Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Julie A. Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Department of Clinical Epidemiology, Department of Clinical Medicine, University Hospital, Aarhus University and Aarhus, DK-8200 Aarhus N, Denmark
| |
Collapse
|
20
|
Wedekind R, Rothwell JA, Viallon V, Keski-Rahkonen P, Schmidt JA, Chajes V, Katzke V, Johnson T, Santucci de Magistris M, Krogh V, Amiano P, Sacerdote C, Redondo-Sánchez D, Huerta JM, Tjønneland A, Pokharel P, Jakszyn P, Tumino R, Ardanaz E, Sandanger TM, Winkvist A, Hultdin J, Schulze MB, Weiderpass E, Gunter MJ, Huybrechts I, Scalbert A. Determinants of blood acylcarnitine concentrations in healthy individuals of the European Prospective Investigation into Cancer and Nutrition. Clin Nutr 2022; 41:1735-1745. [PMID: 35779425 PMCID: PMC9358353 DOI: 10.1016/j.clnu.2022.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/07/2022] [Accepted: 05/28/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND & AIMS Circulating levels of acylcarnitines (ACs) have been associated with the risk of various diseases such as cancer and type 2 diabetes. Diet and lifestyle factors have been shown to influence AC concentrations but a better understanding of their biological, lifestyle and metabolic determinants is needed. METHODS Circulating ACs were measured in blood by targeted (15 ACs) and untargeted metabolomics (50 ACs) in 7770 and 395 healthy participants of the European Prospective Investigation into Cancer and Nutrition (EPIC), respectively. Associations with biological and lifestyle characteristics, dietary patterns, self-reported intake of individual foods, estimated intake of carnitine and fatty acids, and fatty acids in plasma phospholipid fraction and amino acids in blood were assessed. RESULTS Age, sex and fasting status were associated with the largest proportion of AC variability (partial-r up to 0.19, 0.18 and 0.16, respectively). Some AC species of medium or long-chain fatty acid moiety were associated with the corresponding fatty acids in plasma (partial-r = 0.24) or with intake of specific foods such as dairy foods containing the same fatty acid. ACs of short-chain fatty acid moiety (propionylcarnitine and valerylcarnitine) were moderately associated with concentrations of branched-chain amino acids (partial-r = 0.5). Intake of most other foods and of carnitine showed little association with AC levels. CONCLUSIONS Our results show that determinants of ACs in blood vary according to their fatty acid moiety, and that their concentrations are related to age, sex, diet, and fasting status. Knowledge on their potential determinants may help interpret associations of ACs with disease risk and inform on potential dietary and lifestyle factors that might be modified for disease prevention.
Collapse
Affiliation(s)
- Roland Wedekind
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 Cours Albert Thomas, Lyon, France.
| | - Joseph A Rothwell
- (CESP), Faculté de Medicine, Université Paris-Saclay, Inserm, Villejuif, France; Institut Gustave Roussy, Villejuif, France
| | - Vivian Viallon
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 Cours Albert Thomas, Lyon, France
| | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 Cours Albert Thomas, Lyon, France
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, UK
| | - Veronique Chajes
- International Agency for Research on Cancer, 150 Cours Albert Thomas, Lyon, France
| | - Vna Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori di Milano, Milan, Italy
| | - Pilar Amiano
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain; Biodonostia Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, San Sebastián, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città Della Salute e Della Scienza University-Hospital, Via Santena 7, 10126 Turin, Italy
| | - Daniel Redondo-Sánchez
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, 18012 Granada, Spain
| | - José María Huerta
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Pratik Pokharel
- Danish Cancer Society Research Center, Copenhagen, Denmark; Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Paula Jakszyn
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain; Blanquerna School of Health Sciences, Ramon Llull University, Barcelona, Spain
| | - Rosario Tumino
- Hyblean Association for Epidemiological Research AIRE - ONLUS, Ragusa, Italy
| | - Eva Ardanaz
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Navarra Public Health Institute, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Torkjel M Sandanger
- Department of Community Medicine, UiT - the Arctic University of Norway, Langnes, Tromsø, Norway
| | - Anna Winkvist
- Sustainable Health, Dept Epidemiology and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Johan Hultdin
- Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; University of Potsdam, Institute of Nutritional Science, Potsdam, Germany
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, 150 Cours Albert Thomas, Lyon, France
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 Cours Albert Thomas, Lyon, France
| | - Inge Huybrechts
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 Cours Albert Thomas, Lyon, France
| | - Augustin Scalbert
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 Cours Albert Thomas, Lyon, France
| |
Collapse
|
21
|
Sensitive and Rapid Detection of Glutamic Acid in Colloidal Solution by Surfactant Mediated Silver Nanoparticles. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
U MRA, Shen EYL, Cartlidge C, Alkhatib A, Thursz MR, Waked I, Gomaa AI, Holmes E, Sharma R, Taylor-Robinson SD. Optimized Systematic Review Tool: Application to Candidate Biomarkers for the Diagnosis of Hepatocellular Carcinoma. Cancer Epidemiol Biomarkers Prev 2022; 31:1261-1274. [PMID: 35545293 DOI: 10.1158/1055-9965.epi-21-0687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/17/2021] [Accepted: 05/09/2022] [Indexed: 12/24/2022] Open
Abstract
This review aims to develop an appropriate review tool for systematically collating metabolites that are dysregulated in disease and applies the method to identify novel diagnostic biomarkers for hepatocellular carcinoma (HCC). Studies that analyzed metabolites in blood or urine samples where HCC was compared with comparison groups (healthy, precirrhotic liver disease, cirrhosis) were eligible. Tumor tissue was included to help differentiate primary and secondary biomarkers. Searches were conducted on Medline and EMBASE. A bespoke "risk of bias" tool for metabolomic studies was developed adjusting for analytic quality. Discriminant metabolites for each sample type were ranked using a weighted score accounting for the direction and extent of change and the risk of bias of the reporting publication. A total of 84 eligible studies were included in the review (54 blood, 9 urine, and 15 tissue), with six studying multiple sample types. High-ranking metabolites, based on their weighted score, comprised energy metabolites, bile acids, acylcarnitines, and lysophosphocholines. This new review tool addresses an unmet need for incorporating quality of study design and analysis to overcome the gaps in standardization of reporting of metabolomic data. Validation studies, standardized study designs, and publications meeting minimal reporting standards are crucial for advancing the field beyond exploratory studies.
Collapse
Affiliation(s)
- Mei Ran Abellona U
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Eric Yi-Liang Shen
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Department of Radiation Oncology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | | | - Alzhraa Alkhatib
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- National Liver Unit, Menoufiya University, Shbeen El Kom, Egypt
| | - Mark R Thursz
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Imam Waked
- National Liver Unit, Menoufiya University, Shbeen El Kom, Egypt
| | - Asmaa I Gomaa
- National Liver Unit, Menoufiya University, Shbeen El Kom, Egypt
| | - Elaine Holmes
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Health Futures Institute, Murdoch University, Perth WA, Australia
| | - Rohini Sharma
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Simon D Taylor-Robinson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
Wu T, Zheng X, Yang M, Zhao A, Xiang H, Chen T, Jia W, Ji G. Serum Amino Acid Profiles Predict the Development of Hepatocellular Carcinoma in Patients with Chronic HBV Infection. ACS OMEGA 2022; 7:15795-15808. [PMID: 35571782 PMCID: PMC9097210 DOI: 10.1021/acsomega.2c00885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/12/2022] [Indexed: 05/04/2023]
Abstract
Background: The study aimed to find out the alterations in serum amino acid (AA) profiles and to detect their relationship with carcinoma formation. Methods: Targeted metabolomics based on ultraperformance liquid chromatography triple quadrupole mass spectrometry to quantitatively analyze serum AA levels in 136 hepatitis B (CHB) patients and 93 hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) patients. Results: It was shown that decreased serum levels of leucine, lysine, threonine, tryptophan, valine, serotonin, and taurine were observed in more HCC patients than CHB patients, but the serum phenylalanine level was increased. Serum valine and serotonin were lower in Class C than Class A and Class B in HCC patients. Accompanied with the higher score of Model for End-Stage Liver Disease, serum phenylalanine was increased not only in CHB patients but also in HCC patients. The serum level of phenylalanine increased in the decompensated stage more than in the compensated stage, while serum leucine and serotonin significantly decreased. Serum serotonin still had significant differences between CHB and HCC both in the HBV desoxyribonucleic acid (HBV-DNA) negative group and in the HBV-DNA positive group. Furthermore, it was shown that the tryptophan ratio, branched-chain amino acids (BCAA)/aromatic amino acids ratio, BCAAs/tyrosine ratio, Fischer's ratio, and serotonin-to-tryptophan ratio significantly decreased, while the tyrosine ratio and the kynurenine-to-tryptophan ratio increased in HCC patients more than those in CHB. Conclusions: A distinct metabolite signature of some specific serum amino acids was found between CHB and HCC patients, which may help predict the development of HCC at an early stage.
Collapse
Affiliation(s)
- Tao Wu
- Institute
of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Institute
of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaojiao Zheng
- Shanghai
Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s
Hospital, Shanghai 200233, China
| | - Ming Yang
- Institute
of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Aihua Zhao
- Shanghai
Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s
Hospital, Shanghai 200233, China
| | - Hongjiao Xiang
- Institute
of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tianlu Chen
- Shanghai
Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s
Hospital, Shanghai 200233, China
| | - Wei Jia
- Shanghai
Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s
Hospital, Shanghai 200233, China
- School
of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong HKSAR, Hong Kong, China
| | - Guang Ji
- Institute
of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- or
| |
Collapse
|
24
|
Rothwell JA, Murphy N, Bešević J, Kliemann N, Jenab M, Ferrari P, Achaintre D, Gicquiau A, Vozar B, Scalbert A, Huybrechts I, Freisling H, Prehn C, Adamski J, Cross AJ, Pala VM, Boutron-Ruault MC, Dahm CC, Overvad K, Gram IT, Sandanger TM, Skeie G, Jakszyn P, Tsilidis KK, Aleksandrova K, Schulze MB, Hughes DJ, van Guelpen B, Bodén S, Sánchez MJ, Schmidt JA, Katzke V, Kühn T, Colorado-Yohar S, Tumino R, Bueno-de-Mesquita B, Vineis P, Masala G, Panico S, Eriksen AK, Tjønneland A, Aune D, Weiderpass E, Severi G, Chajès V, Gunter MJ. Metabolic Signatures of Healthy Lifestyle Patterns and Colorectal Cancer Risk in a European Cohort. Clin Gastroenterol Hepatol 2022; 20:e1061-e1082. [PMID: 33279777 PMCID: PMC9049188 DOI: 10.1016/j.cgh.2020.11.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Colorectal cancer risk can be lowered by adherence to the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) guidelines. We derived metabolic signatures of adherence to these guidelines and tested their associations with colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. METHODS Scores reflecting adherence to the WCRF/AICR recommendations (scale, 1-5) were calculated from participant data on weight maintenance, physical activity, diet, and alcohol among a discovery set of 5738 cancer-free European Prospective Investigation into Cancer and Nutrition participants with metabolomics data. Partial least-squares regression was used to derive fatty acid and endogenous metabolite signatures of the WCRF/AICR score in this group. In an independent set of 1608 colorectal cancer cases and matched controls, odds ratios (ORs) and 95% CIs were calculated for colorectal cancer risk per unit increase in WCRF/AICR score and per the corresponding change in metabolic signatures using multivariable conditional logistic regression. RESULTS Higher WCRF/AICR scores were characterized by metabolic signatures of increased odd-chain fatty acids, serine, glycine, and specific phosphatidylcholines. Signatures were inversely associated more strongly with colorectal cancer risk (fatty acids: OR, 0.51 per unit increase; 95% CI, 0.29-0.90; endogenous metabolites: OR, 0.62 per unit change; 95% CI, 0.50-0.78) than the WCRF/AICR score (OR, 0.93 per unit change; 95% CI, 0.86-1.00) overall. Signature associations were stronger in male compared with female participants. CONCLUSIONS Metabolite profiles reflecting adherence to WCRF/AICR guidelines and additional lifestyle or biological risk factors were associated with colorectal cancer. Measuring a specific panel of metabolites representative of a healthy or unhealthy lifestyle may identify strata of the population at higher risk of colorectal cancer.
Collapse
Affiliation(s)
- Joseph A Rothwell
- Centre for Epidemiology and Population Health, U1018, Generations and Health Team, Faculté de Médecine, Université Paris-Saclay, INSERM, Villejuif, France; Gustave Roussy, Villejuif, France; International Agency for Research on Cancer, Lyon, France.
| | - Neil Murphy
- International Agency for Research on Cancer, Lyon, France
| | - Jelena Bešević
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Mazda Jenab
- International Agency for Research on Cancer, Lyon, France
| | - Pietro Ferrari
- International Agency for Research on Cancer, Lyon, France
| | | | | | - Béatrice Vozar
- International Agency for Research on Cancer, Lyon, France
| | | | | | | | - Cornelia Prehn
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Jerzy Adamski
- Research Unit, Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Neuherberg, Germany
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Valeria Maria Pala
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Marie-Christine Boutron-Ruault
- Centre for Epidemiology and Population Health, U1018, Generations and Health Team, Faculté de Médecine, Université Paris-Saclay, INSERM, Villejuif, France; Gustave Roussy, Villejuif, France
| | - Christina C Dahm
- Department of Public Health, Aarhus University, Aarhus C, Denmark
| | - Kim Overvad
- Department of Public Health, Aarhus University, Aarhus C, Denmark
| | - Inger Torhild Gram
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Torkjel M Sandanger
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Guri Skeie
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Paula Jakszyn
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology, Barcelona, Spain; Blanquerna School of Health Sciences, Ramon Llull University, Barcelona, Spain
| | - Kostas K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom; Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Krasimira Aleksandrova
- Nutrition, Immunity and Metabolism Group, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Matthias B Schulze
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany; Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - David J Hughes
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Bethany van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umea University, Umea, Sweden
| | - Stina Bodén
- Department of Radiation Sciences, Oncology Unit, Umea University, Umea, Sweden
| | - Maria-José Sánchez
- CIBER Epidemiología y Salud Pública, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Verena Katzke
- Division of Cancer Epidemiology, Deutsches Krebsforschungszentrum, Stiftung des Öffentlichen Rechts, Heidelberg, Germany
| | - Tilman Kühn
- Division of Cancer Epidemiology, Deutsches Krebsforschungszentrum, Stiftung des Öffentlichen Rechts, Heidelberg, Germany
| | - Sandra Colorado-Yohar
- Department of Epidemiology, Murcia Regional Health Council, Instituto Murciano de Investigatión Biomédica (IMIB)-Arrixaca, Murcia, Spain; CIBER Epidemiología y Salud Pública, Spain; Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority, Ragusa, Italy
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases, National Institute for Public Health and the Environment, BA Bilthoven, The Netherlands
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom; Italian Institute of Technology, Genova, Italy
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network-Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Anne Kirstine Eriksen
- Danish Cancer Society Research Center, Diet, Genes and Environment, Copenhagen, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Diet, Genes and Environment, Copenhagen, Denmark
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom; Department of Nutrition, Bjørknes University College, Oslo, Norway; Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Gianluca Severi
- Centre for Epidemiology and Population Health, U1018, Generations and Health Team, Faculté de Médecine, Université Paris-Saclay, INSERM, Villejuif, France; Gustave Roussy, Villejuif, France
| | | | - Marc J Gunter
- International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
25
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
26
|
Feng N, Yu F, Yu F, Feng Y, Zhu X, Xie Z, Zhai Y. Metabolomic biomarkers for hepatocellular carcinoma: A systematic review. Medicine (Baltimore) 2022; 101:e28510. [PMID: 35060504 PMCID: PMC8772637 DOI: 10.1097/md.0000000000028510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 12/16/2021] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant cancer which lack of effective diagnosis and prognosis biomarkers, therefore surging studies focused on the metabolite candidates for HCC. The current study was designed to systematically review the metabolic studies for HCC, summarize the current available evidence and provide implication for further studies within this area. By systematically screening Pubmed and Embase, and eligibility assessment, we eventually included 55 pieces of studies. After summarized their characteristics, we reviewed them by 3 parts, regarding to the different biofluid they carried out the experiments. By collecting the candidates from all the included studies, we carried out pathway enrichment to see the representative of the reported candidates, as expected the pathway consistent with the current knowledge of HCC. Next, we conduct quality assessment on the included studies. Only 36% of the current evidence grouped as high quality, indicating the quality of metabolic studies needs further improvement.
Collapse
Affiliation(s)
- Ningning Feng
- Department of Infection Disease & Hepatology Ward, Zibo Central Hospital, Shandong, China
| | - Fatao Yu
- Department of Infection Disease & Hepatology Ward, Zibo Central Hospital, Shandong, China
| | - Feng Yu
- Oncology Department, Zibo Central Hospital, Shandong, China
| | - Yuling Feng
- Department of Infection Disease & Hepatology Ward, Zibo Central Hospital, Shandong, China
| | - Xiaolin Zhu
- Department of Infection Disease & Hepatology Ward, Zibo Central Hospital, Shandong, China
| | - Zhihui Xie
- Department of Infection Disease & Hepatology Ward, Zibo Central Hospital, Shandong, China
| | - Yi Zhai
- Oncology Department, Zibo Central Hospital, Shandong, China
| |
Collapse
|
27
|
His M, Viallon V, Dossus L, Schmidt JA, Travis RC, Gunter MJ, Overvad K, Kyrø C, Tjønneland A, Lécuyer L, Rothwell JA, Severi G, Johnson T, Katzke V, Schulze MB, Masala G, Sieri S, Panico S, Tumino R, Macciotta A, Boer JMA, Monninkhof EM, Olsen KS, Nøst TH, Sandanger TM, Agudo A, Sánchez MJ, Amiano P, Colorado-Yohar SM, Ardanaz E, Vidman L, Winkvist A, Heath AK, Weiderpass E, Huybrechts I, Rinaldi S. Lifestyle correlates of eight breast cancer-related metabolites: a cross-sectional study within the EPIC cohort. BMC Med 2021; 19:312. [PMID: 34886862 PMCID: PMC8662901 DOI: 10.1186/s12916-021-02183-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/09/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Metabolomics is a promising molecular tool for identifying novel etiological pathways leading to cancer. In an earlier prospective study among pre- and postmenopausal women not using exogenous hormones, we observed a higher risk of breast cancer associated with higher blood concentrations of one metabolite (acetylcarnitine) and a lower risk associated with higher blood concentrations of seven others (arginine, asparagine, phosphatidylcholines (PCs) aa C36:3, ae C34:2, ae C36:2, ae C36:3, and ae C38:2). METHODS To identify determinants of these breast cancer-related metabolites, we conducted a cross-sectional analysis to identify their lifestyle and anthropometric correlates in 2358 women, who were previously included as controls in case-control studies nested within the European Prospective Investigation into Cancer and Nutrition cohort and not using exogenous hormones at blood collection. Associations of each metabolite concentration with 42 variables were assessed using linear regression models in a discovery set of 1572 participants. Significant associations were evaluated in a validation set (n = 786). RESULTS For the metabolites previously associated with a lower risk of breast cancer, concentrations of PCs ae C34:2, C36:2, C36:3, and C38:2 were negatively associated with adiposity and positively associated with total and saturated fat intakes. PC ae C36:2 was also negatively associated with alcohol consumption and positively associated with two scores reflecting adherence to a healthy lifestyle. Asparagine concentration was negatively associated with adiposity. Arginine and PC aa C36:3 concentrations were not associated to any of the factors examined. For the metabolite previously associated with a higher risk of breast cancer, acetylcarnitine, a positive association with age was observed. CONCLUSIONS These associations may indicate possible mechanisms underlying associations between lifestyle and anthropometric factors, and risk of breast cancer. Further research is needed to identify potential non-lifestyle correlates of the metabolites investigated.
Collapse
Affiliation(s)
- Mathilde His
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, 150 cours Albert Thomas, 69372, CEDEX 08, Lyon, France
| | - Vivian Viallon
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, 150 cours Albert Thomas, 69372, CEDEX 08, Lyon, France
| | - Laure Dossus
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, 150 cours Albert Thomas, 69372, CEDEX 08, Lyon, France
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Marc J Gunter
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, 150 cours Albert Thomas, 69372, CEDEX 08, Lyon, France
| | - Kim Overvad
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Cecilie Kyrø
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, Section of Environmental Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lucie Lécuyer
- Université Paris-Saclay, UVSQ, Inserm, CESP U1018, "Exposome and Heredity" team, Gustave Roussy, Villejuif, France
| | - Joseph A Rothwell
- Université Paris-Saclay, UVSQ, Inserm, CESP U1018, "Exposome and Heredity" team, Gustave Roussy, Villejuif, France
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, CESP U1018, "Exposome and Heredity" team, Gustave Roussy, Villejuif, France
- Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence, Florence, Italy
| | - Theron Johnson
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena Katzke
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Giovanna Masala
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Instituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Salvatore Panico
- Dipartimento Di Medicina Clinica E Chirurgia, Federico Ii University, Naples, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP 7) Ragusa, Ragusa, Italy
| | - Alessandra Macciotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Jolanda M A Boer
- Center for Nutrition, Prevention, and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3720, BA, the Netherlands
| | - Evelyn M Monninkhof
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Karina Standahl Olsen
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037, Tromsø, Norway
| | - Therese H Nøst
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037, Tromsø, Norway
| | - Torkjel M Sandanger
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037, Tromsø, Norway
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
- Nutrition and Cancer Group; Epidemiology, Public Health, Cancer Prevention and Palliative Care Program; Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Pilar Amiano
- Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, San Sebastián, Spain
- Biodonostia Health Research Institute, Group of Epidemiology of Chronic and Communicable Diseases, San Sebastián, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Sandra M Colorado-Yohar
- CIBER Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Eva Ardanaz
- CIBER Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Linda Vidman
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Anna Winkvist
- Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Elisabete Weiderpass
- International Agency for Research on Cancer (IARC/WHO), Office of the Director, Lyon, France
| | - Inge Huybrechts
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, 150 cours Albert Thomas, 69372, CEDEX 08, Lyon, France
| | - Sabina Rinaldi
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, 150 cours Albert Thomas, 69372, CEDEX 08, Lyon, France.
| |
Collapse
|
28
|
Loftfield E, Stepien M, Viallon V, Trijsburg L, Rothwell JA, Robinot N, Biessy C, Bergdahl IA, Bodén S, Schulze MB, Bergman M, Weiderpass E, Schmidt JA, Zamora-Ros R, Nøst TH, Sandanger TM, Sonestedt E, Ohlsson B, Katzke V, Kaaks R, Ricceri F, Tjønneland A, Dahm CC, Sánchez MJ, Trichopoulou A, Tumino R, Chirlaque MD, Masala G, Ardanaz E, Vermeulen R, Brennan P, Albanes D, Weinstein SJ, Scalbert A, Freedman ND, Gunter MJ, Jenab M, Sinha R, Keski-Rahkonen P, Ferrari P. Novel Biomarkers of Habitual Alcohol Intake and Associations With Risk of Pancreatic and Liver Cancers and Liver Disease Mortality. J Natl Cancer Inst 2021; 113:1542-1550. [PMID: 34010397 PMCID: PMC8562969 DOI: 10.1093/jnci/djab078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/24/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Alcohol is an established risk factor for several cancers, but modest alcohol-cancer associations may be missed because of measurement error in self-reported assessments. Biomarkers of habitual alcohol intake may provide novel insight into the relationship between alcohol and cancer risk. METHODS Untargeted metabolomics was used to identify metabolites correlated with self-reported habitual alcohol intake in a discovery dataset from the European Prospective Investigation into Cancer and Nutrition (EPIC; n = 454). Statistically significant correlations were tested in independent datasets of controls from case-control studies nested within EPIC (n = 280) and the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC; n = 438) study. Conditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations of alcohol-associated metabolites and self-reported alcohol intake with risk of pancreatic cancer, hepatocellular carcinoma (HCC), liver cancer, and liver disease mortality in the contributing studies. RESULTS Two metabolites displayed a dose-response association with self-reported alcohol intake: 2-hydroxy-3-methylbutyric acid and an unidentified compound. A 1-SD (log2) increase in levels of 2-hydroxy-3-methylbutyric acid was associated with risk of HCC (OR = 2.54, 95% CI = 1.51 to 4.27) and pancreatic cancer (OR = 1.43, 95% CI = 1.03 to 1.99) in EPIC and liver cancer (OR = 2.00, 95% CI = 1.44 to 2.77) and liver disease mortality (OR = 2.16, 95% CI = 1.63 to 2.86) in ATBC. Conversely, a 1-SD (log2) increase in questionnaire-derived alcohol intake was not associated with HCC or pancreatic cancer in EPIC or liver cancer in ATBC but was associated with liver disease mortality (OR = 2.19, 95% CI = 1.60 to 2.98) in ATBC. CONCLUSIONS 2-hydroxy-3-methylbutyric acid is a candidate biomarker of habitual alcohol intake that may advance the study of alcohol and cancer risk in population-based studies.
Collapse
Affiliation(s)
- Erikka Loftfield
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute,National Institutes of Health, Bethesda, MD, USA
| | - Magdalena Stepien
- Nutritional Epidemiology Group, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Vivian Viallon
- Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Laura Trijsburg
- Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Joseph A Rothwell
- Nutritional Epidemiology Group, International Agency for Research on Cancer (IARC-WHO), Lyon, France
- Gustave Roussy, F-94805, Villejuif, France
- Biomarkers Group, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Nivonirina Robinot
- Centre for Epidemiology and Population Health (U1018), Generations and Health team, Faculté de Médecine, Université Paris-Saclay, UVSQ, INSERM, Villejuif, France
| | - Carine Biessy
- Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | | | - Stina Bodén
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Manuela Bergman
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | | | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Therese H Nøst
- Department of Community Medicine, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Torkjel M Sandanger
- Department of Community Medicine, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Emily Sonestedt
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Bodil Ohlsson
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fulvio Ricceri
- Department of Clinical and Biological Sciences, University of Turin, Italy; Unit of Epidemiology, Regional Health Service ASL TO3, Grugliasco, TO, Italy
| | - Anne Tjønneland
- Danish Cancer Society Research Center; University of Copenhagen, Department of Public Health
| | | | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | | | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP 7), Ragusa, Italy
| | - María-Dolores Chirlaque
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network—ISPRO, Florence, Italy
| | - Eva Ardanaz
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Demetrius Albanes
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute,National Institutes of Health, Bethesda, MD, USA
| | - Stephanie J Weinstein
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute,National Institutes of Health, Bethesda, MD, USA
| | - Augustin Scalbert
- Centre for Epidemiology and Population Health (U1018), Generations and Health team, Faculté de Médecine, Université Paris-Saclay, UVSQ, INSERM, Villejuif, France
| | - Neal D Freedman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute,National Institutes of Health, Bethesda, MD, USA
| | - Marc J Gunter
- Nutritional Epidemiology Group, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Mazda Jenab
- Nutritional Epidemiology Group, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Rashmi Sinha
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute,National Institutes of Health, Bethesda, MD, USA
| | - Pekka Keski-Rahkonen
- Centre for Epidemiology and Population Health (U1018), Generations and Health team, Faculté de Médecine, Université Paris-Saclay, UVSQ, INSERM, Villejuif, France
| | - Pietro Ferrari
- Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| |
Collapse
|
29
|
Fan C, Kam S, Ramadori P. Metabolism-Associated Epigenetic and Immunoepigenetic Reprogramming in Liver Cancer. Cancers (Basel) 2021; 13:cancers13205250. [PMID: 34680398 PMCID: PMC8534280 DOI: 10.3390/cancers13205250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/28/2022] Open
Abstract
Metabolic reprogramming and epigenetic changes have been characterized as hallmarks of liver cancer. Independently of etiology, oncogenic pathways as well as the availability of different energetic substrates critically influence cellular metabolism, and the resulting perturbations often cause aberrant epigenetic alterations, not only in cancer cells but also in the hepatic tumor microenvironment. Metabolic intermediates serve as crucial substrates for various epigenetic modulations, from post-translational modification of histones to DNA methylation. In turn, epigenetic changes can alter the expression of metabolic genes supporting on the one hand, the increased energetic demand of cancer cells and, on the other hand, influence the activity of tumor-associated immune cell populations. In this review, we will illustrate the most recent findings about metabolic reprogramming in liver cancer. We will focus on the metabolic changes characterizing the tumor microenvironment and on how these alterations impact on epigenetic mechanisms involved in the malignant progression. Furthermore, we will report our current knowledge about the influence of cancer-specific metabolites on epigenetic reprogramming of immune cells and we will highlight how this favors a tumor-permissive immune environment. Finally, we will review the current strategies to target metabolic and epigenetic pathways and their therapeutic potential in liver cancer, alone or in combinatorial approaches.
Collapse
|
30
|
Biliotti E, Giampaoli O, Sciubba F, Marini F, Tomassini A, Palazzo D, Capuani G, Esvan R, Spaziante M, Taliani G, Miccheli A. Urinary metabolomics of HCV patients with severe liver fibrosis before and during the sustained virologic response achieved by direct acting antiviral treatment. Biomed Pharmacother 2021; 143:112217. [PMID: 34560544 DOI: 10.1016/j.biopha.2021.112217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection induces a long-term inflammatory response and oxidative-stress in the liver microenvironment, leading to hepatic fibrosis and metabolic alterations. Direct-acting-antiviral-agents (DAAs) induce HCV-clearance, even though liver damage is only partially restored. In this context, understanding the impact of viral-eradication on liver metabolic activities could allow optimizing the metabolic care of the patient. The present prospective longitudinal study aims at characterizing the urinary metabolic profile of HCV-induced severe liver fibrosis and the metabolic changes induced by DAAs and HCV-clearance by nuclear magnetic resonance-based metabolomics. The urinary metabolic profile of 23 HCV males with severe liver fibrosis and 20 age-matched healthy-controls was analyzed by NMR-based-metabolomics before starting DAAs, at the end-of-therapy, after one and three months of follow-up. The urinary metabolic profile of patients with severe liver fibrosis was associated to pseudouridine, hypoxanthine, methylguanidine and dimethylamine, highlighting a profile related to oxidative damage, and to tyrosine and glutamine, related to a decreased breakdown of aromatic aminoacids and ammonia detoxification, respectively. 1-methylnicotinamide, a catabolic intermediate of nicotinamide-adenine-dinucleotide, was significantly increased in HCV-patients and restored after HCV-clearance, probably due to the reduced hepatic inflammation. 3-hydroxy-3-methylbutyrate, an intermediate of leucine-catabolism which was permanently restored after HCV-clearance, suggested an improvement of skeletal muscle protein synthesis. Finally, 3-hydroxyisobutyrate and 2,3-dihydroxy-2-methylbutyrate, intermediates of valine-catabolism, glycine and choline increased temporarily during therapy, resulting as potential biomarkers of DAAs systemic effects.
Collapse
Affiliation(s)
- Elisa Biliotti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ottavia Giampaoli
- Department of Chemistry, Sapienza University of Rome, Rome, Italy; NMR-based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Fabio Sciubba
- Department of Chemistry, Sapienza University of Rome, Rome, Italy; NMR-based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza University of Rome, Rome, Italy; NMR-based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Alberta Tomassini
- Department of Chemistry, Sapienza University of Rome, Rome, Italy; NMR-based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Donatella Palazzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giorgio Capuani
- Department of Chemistry, Sapienza University of Rome, Rome, Italy; NMR-based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Rozenn Esvan
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Martina Spaziante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Gloria Taliani
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Alfredo Miccheli
- NMR-based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy; Department of Environmental Biology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
31
|
Viallon V, His M, Rinaldi S, Breeur M, Gicquiau A, Hemon B, Overvad K, Tjønneland A, Rostgaard-Hansen AL, Rothwell JA, Lecuyer L, Severi G, Kaaks R, Johnson T, Schulze MB, Palli D, Agnoli C, Panico S, Tumino R, Ricceri F, Verschuren WMM, Engelfriet P, Onland-Moret C, Vermeulen R, Nøst TH, Urbarova I, Zamora-Ros R, Rodriguez-Barranco M, Amiano P, Huerta JM, Ardanaz E, Melander O, Ottoson F, Vidman L, Rentoft M, Schmidt JA, Travis RC, Weiderpass E, Johansson M, Dossus L, Jenab M, Gunter MJ, Lorenzo Bermejo J, Scherer D, Salek RM, Keski-Rahkonen P, Ferrari P. A New Pipeline for the Normalization and Pooling of Metabolomics Data. Metabolites 2021; 11:631. [PMID: 34564446 PMCID: PMC8467830 DOI: 10.3390/metabo11090631] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/10/2023] Open
Abstract
Pooling metabolomics data across studies is often desirable to increase the statistical power of the analysis. However, this can raise methodological challenges as several preanalytical and analytical factors could introduce differences in measured concentrations and variability between datasets. Specifically, different studies may use variable sample types (e.g., serum versus plasma) collected, treated, and stored according to different protocols, and assayed in different laboratories using different instruments. To address these issues, a new pipeline was developed to normalize and pool metabolomics data through a set of sequential steps: (i) exclusions of the least informative observations and metabolites and removal of outliers; imputation of missing data; (ii) identification of the main sources of variability through principal component partial R-square (PC-PR2) analysis; (iii) application of linear mixed models to remove unwanted variability, including samples' originating study and batch, and preserve biological variations while accounting for potential differences in the residual variances across studies. This pipeline was applied to targeted metabolomics data acquired using Biocrates AbsoluteIDQ kits in eight case-control studies nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Comprehensive examination of metabolomics measurements indicated that the pipeline improved the comparability of data across the studies. Our pipeline can be adapted to normalize other molecular data, including biomarkers as well as proteomics data, and could be used for pooling molecular datasets, for example in international consortia, to limit biases introduced by inter-study variability. This versatility of the pipeline makes our work of potential interest to molecular epidemiologists.
Collapse
Affiliation(s)
- Vivian Viallon
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69008 Lyon, France; (M.H.); (S.R.); (M.B.); (A.G.); (B.H.); (L.D.); (M.J.); (M.J.G.); (R.M.S.); (P.K.-R.); (P.F.)
| | - Mathilde His
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69008 Lyon, France; (M.H.); (S.R.); (M.B.); (A.G.); (B.H.); (L.D.); (M.J.); (M.J.G.); (R.M.S.); (P.K.-R.); (P.F.)
| | - Sabina Rinaldi
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69008 Lyon, France; (M.H.); (S.R.); (M.B.); (A.G.); (B.H.); (L.D.); (M.J.); (M.J.G.); (R.M.S.); (P.K.-R.); (P.F.)
| | - Marie Breeur
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69008 Lyon, France; (M.H.); (S.R.); (M.B.); (A.G.); (B.H.); (L.D.); (M.J.); (M.J.G.); (R.M.S.); (P.K.-R.); (P.F.)
| | - Audrey Gicquiau
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69008 Lyon, France; (M.H.); (S.R.); (M.B.); (A.G.); (B.H.); (L.D.); (M.J.); (M.J.G.); (R.M.S.); (P.K.-R.); (P.F.)
| | - Bertrand Hemon
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69008 Lyon, France; (M.H.); (S.R.); (M.B.); (A.G.); (B.H.); (L.D.); (M.J.); (M.J.G.); (R.M.S.); (P.K.-R.); (P.F.)
| | - Kim Overvad
- Department of Public Health, Aarhus University Bartholins Alle 2, DK-8000 Aarhus, Denmark;
| | - Anne Tjønneland
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark; (A.T.); (A.L.R.-H.)
| | | | - Joseph A. Rothwell
- UVSQ, Inserm, CESP U1018, “Exposome and Heredity” Team, Université Paris-Saclay, Gustave Roussy, 94800 Villejuif, France; (J.A.R.); (L.L.); (G.S.)
| | - Lucie Lecuyer
- UVSQ, Inserm, CESP U1018, “Exposome and Heredity” Team, Université Paris-Saclay, Gustave Roussy, 94800 Villejuif, France; (J.A.R.); (L.L.); (G.S.)
| | - Gianluca Severi
- UVSQ, Inserm, CESP U1018, “Exposome and Heredity” Team, Université Paris-Saclay, Gustave Roussy, 94800 Villejuif, France; (J.A.R.); (L.L.); (G.S.)
- Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, 50134 Florence, Italy
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (R.K.); (T.J.)
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (R.K.); (T.J.)
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany;
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy;
| | - Claudia Agnoli
- Epidemiology and Prevention Unit Department of Research, Fondazione IRCCS—Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131 Naples, Italy;
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP 7), 97100 Ragusa, Italy;
| | - Fulvio Ricceri
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy;
- Unit of Epidemiology, Regional Health Service ASL TO3, 10095 Grugliasco, Italy
| | - W. M. Monique Verschuren
- National Institute for Public Health and the Environment, Centre for Nutrition, Prevention and Health Services, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands; (W.M.M.V.); (P.E.)
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; (C.O.-M.); (R.V.)
| | - Peter Engelfriet
- National Institute for Public Health and the Environment, Centre for Nutrition, Prevention and Health Services, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands; (W.M.M.V.); (P.E.)
| | - Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; (C.O.-M.); (R.V.)
| | - Roel Vermeulen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; (C.O.-M.); (R.V.)
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Therese Haugdahl Nøst
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050, 9037 Tromsø, Norway; (T.H.N.); (I.U.)
| | - Ilona Urbarova
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050, 9037 Tromsø, Norway; (T.H.N.); (I.U.)
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain;
| | - Miguel Rodriguez-Barranco
- Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (P.A.); (J.M.H.); (E.A.)
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (P.A.); (J.M.H.); (E.A.)
- Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, 20013 San Sebastián, Spain
- Biodonostia Health Research Institute, Group of Epidemiology of Chronic and Communicable Diseases, 20014 San Sebastián, Spain
| | - José Maria Huerta
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (P.A.); (J.M.H.); (E.A.)
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, 30007 Murcia, Spain
| | - Eva Ardanaz
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (P.A.); (J.M.H.); (E.A.)
- Navarra Public Health Institute, 31003 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Olle Melander
- Department of Clincal Sciences, Lund University, SE-21 428 Malmö, Sweden;
- Department of Emergency and Internal Medicine, Skåne University Hospital, SE-20 502 Malmö, Sweden
| | - Filip Ottoson
- Department of Immunotechnology, Lund University, SE-22 100 Lund, Sweden;
| | - Linda Vidman
- Department of Radiation Sciences, Oncology, Umeå University, SE-901 87 Umeå, Sweden; (L.V.); (M.R.)
| | - Matilda Rentoft
- Department of Radiation Sciences, Oncology, Umeå University, SE-901 87 Umeå, Sweden; (L.V.); (M.R.)
| | - Julie A. Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK; (J.A.S.); (R.C.T.)
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK; (J.A.S.); (R.C.T.)
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France;
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), 69008 Lyon, France;
| | - Laure Dossus
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69008 Lyon, France; (M.H.); (S.R.); (M.B.); (A.G.); (B.H.); (L.D.); (M.J.); (M.J.G.); (R.M.S.); (P.K.-R.); (P.F.)
| | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69008 Lyon, France; (M.H.); (S.R.); (M.B.); (A.G.); (B.H.); (L.D.); (M.J.); (M.J.G.); (R.M.S.); (P.K.-R.); (P.F.)
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69008 Lyon, France; (M.H.); (S.R.); (M.B.); (A.G.); (B.H.); (L.D.); (M.J.); (M.J.G.); (R.M.S.); (P.K.-R.); (P.F.)
| | - Justo Lorenzo Bermejo
- Statistical Genetics Group, Institute of Medical Biometry, University of Heidelberg, 69120 Heidelberg, Germany; (J.L.B.); (D.S.)
| | - Dominique Scherer
- Statistical Genetics Group, Institute of Medical Biometry, University of Heidelberg, 69120 Heidelberg, Germany; (J.L.B.); (D.S.)
| | - Reza M. Salek
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69008 Lyon, France; (M.H.); (S.R.); (M.B.); (A.G.); (B.H.); (L.D.); (M.J.); (M.J.G.); (R.M.S.); (P.K.-R.); (P.F.)
| | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69008 Lyon, France; (M.H.); (S.R.); (M.B.); (A.G.); (B.H.); (L.D.); (M.J.); (M.J.G.); (R.M.S.); (P.K.-R.); (P.F.)
| | - Pietro Ferrari
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69008 Lyon, France; (M.H.); (S.R.); (M.B.); (A.G.); (B.H.); (L.D.); (M.J.); (M.J.G.); (R.M.S.); (P.K.-R.); (P.F.)
| |
Collapse
|
32
|
Dossus L, Kouloura E, Biessy C, Viallon V, Siskos AP, Dimou N, Rinaldi S, Merritt MA, Allen N, Fortner R, Kaaks R, Weiderpass E, Gram IT, Rothwell JA, Lécuyer L, Severi G, Schulze MB, Nøst TH, Crous-Bou M, Sánchez MJ, Amiano P, Colorado-Yohar SM, Gurrea AB, Schmidt JA, Palli D, Agnoli C, Tumino R, Sacerdote C, Mattiello A, Vermeulen R, Heath AK, Christakoudi S, Tsilidis KK, Travis RC, Gunter MJ, Keun HC. Prospective analysis of circulating metabolites and endometrial cancer risk. Gynecol Oncol 2021; 162:475-481. [PMID: 34099314 PMCID: PMC8336647 DOI: 10.1016/j.ygyno.2021.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Endometrial cancer is strongly associated with obesity and dysregulation of metabolic factors such as estrogen and insulin signaling are causal risk factors for this malignancy. To identify additional novel metabolic pathways associated with endometrial cancer we performed metabolomic analyses on pre-diagnostic plasma samples from 853 case-control pairs from the European Prospective Investigation into Cancer and Nutrition (EPIC). METHODS A total of 129 metabolites (acylcarnitines, amino acids, biogenic amines, glycerophospholipids, hexoses, and sphingolipids) were measured by liquid chromatography-mass spectrometry. Conditional logistic regression estimated the associations of metabolites with endometrial cancer risk. An analysis focusing on clusters of metabolites using the bootstrap lasso method was also employed. RESULTS After adjustment for body mass index, sphingomyelin [SM] C18:0 was positively (OR1SD: 1.18, 95% CI: 1.05-1.33), and glycine, serine, and free carnitine (C0) were inversely (OR1SD: 0.89, 95% CI: 0.80-0.99; OR1SD: 0.89, 95% CI: 0.79-1.00 and OR1SD: 0.91, 95% CI: 0.81-1.00, respectively) associated with endometrial cancer risk. Serine, C0 and two sphingomyelins were selected by the lasso method in >90% of the bootstrap samples. The ratio of esterified to free carnitine (OR1SD: 1.14, 95% CI: 1.02-1.28) and that of short chain to free acylcarnitines (OR1SD: 1.12, 95% CI: 1.00-1.25) were positively associated with endometrial cancer risk. Further adjustment for C-peptide or other endometrial cancer risk factors only minimally altered the results. CONCLUSION These findings suggest that variation in levels of glycine, serine, SM C18:0 and free carnitine may represent specific pathways linked to endometrial cancer development. If causal, these pathways may offer novel targets for endometrial cancer prevention.
Collapse
Affiliation(s)
- Laure Dossus
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France.
| | - Eirini Kouloura
- Cancer Metabolism and Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College, London, UK; European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Carine Biessy
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Vivian Viallon
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Alexandros P Siskos
- Cancer Metabolism and Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College, London, UK
| | - Niki Dimou
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Sabina Rinaldi
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Melissa A Merritt
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Naomi Allen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Renee Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elisabete Weiderpass
- Office of the Director, International Agency for Research on Cancer, Lyon, France
| | - Inger T Gram
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Troms, Norway
| | - Joseph A Rothwell
- Centre for Research in Epidemiology and Population Health, CESP, Université Paris-Saclay, UVSQ, Inserm U1018, Villejuif, France; Gustave Roussy, Villejuif, France
| | - Lucie Lécuyer
- Centre for Research in Epidemiology and Population Health, CESP, Université Paris-Saclay, UVSQ, Inserm U1018, Villejuif, France; Gustave Roussy, Villejuif, France
| | - Gianluca Severi
- Centre for Research in Epidemiology and Population Health, CESP, Université Paris-Saclay, UVSQ, Inserm U1018, Villejuif, France; Gustave Roussy, Villejuif, France; Department of Statistics, Computer Science and Applications "G. Parenti" (DISIA), University of Florence, Italy
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Therese Haugdahl Nøst
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Troms, Norway
| | - Marta Crous-Bou
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Barcelona, Spain; Nutrition and Cancer Group, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston,USA
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Public Health Division of Gipuzkoa, BioDonostia Research Institute, Donostia-San Sebastian, Spain
| | - Sandra M Colorado-Yohar
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain; Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Aurelio Barricarte Gurrea
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Navarra Public Health Institute, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA) Pamplona, Spain
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Domenico Palli
- Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Cancer Risk Factors and Life-Style Epidemiology Unit, Florence, Italy
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP) Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | - Amalia Mattiello
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Sofia Christakoudi
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK; MRC Centre for Transplantation, King's College London, London, UK
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK; Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Hector C Keun
- Cancer Metabolism and Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College, London, UK
| |
Collapse
|
33
|
Iguacel I, Schmidt JA, Perez-Cornago A, Van Puyvelde H, Travis R, Stepien M, Scalbert A, Casagrande C, Weiderpass E, Riboli E, Schulze MB, Skeie G, Bodén S, Boeing H, Cross AJ, Harlid S, Jensen TE, Huerta JM, Katzke V, Kühn T, Lujan-Barroso L, Masala G, Rodriguez-Barranco M, Rostgaard-Hansen AL, van der Schouw YT, Vermeulen R, Tagliabue G, Tjønneland A, Trevisan M, Ferrari P, Gunter MJ, Huybrechts I. Associations between dietary amino acid intakes and blood concentration levels. Clin Nutr 2021; 40:3772-3779. [PMID: 34130023 DOI: 10.1016/j.clnu.2021.04.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/28/2020] [Accepted: 04/20/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Emerging evidence suggests a role of amino acids (AAs) in the development of various diseases including renal failure, liver cirrhosis, diabetes and cancer. However, mechanistic pathways and the effects of dietary AA intakes on circulating levels and disease outcomes are unclear. We aimed to compare protein and AA intakes, with their respective blood concentrations in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. METHODS Dietary protein and AA intakes were assessed via the EPIC dietary questionnaires (DQ) and 24-h dietary recalls (24-HDR). A subsample of 3768 EPIC participants who were free of cancer had blood AA concentrations measured. To investigate how circulating levels relate to their respective intakes, dietary AA intake was examined in quintiles and ANOVA tests were run. Pearson correlations were examined for continous associations between intakes and blood concentrations. RESULTS Dietary AA intakes (assessed with the DQ) and blood AA concentrations were not strongly correlated (-0.15 ≤ r ≤ 0.17) and the direction of the correlations depended on AA class: weak positive correlations were found for most essential AAs (isoleucine, leucine, lysine, methionine, threonine, tryptophan, and valine) and conditionally essential AAs (arginine and tyrosine), while negative associations were found for non-essential AAs. Similar results were found when using the 24-HDR. When conducting ANOVA tests for essential AAs, higher intake quintiles were linked to higher blood AA concentrations, except for histidine and phenylalanine. For non-essential AAs and glycine, an inverse relationship was observed. Conditionally-essential AAs showed mixed results. CONCLUSIONS Weak positive correlations and dose responses were found between most essential and conditionally essential AA intakes, and blood concentrations, but not for the non-essential AAs. These results suggest that intake of dietary AA might be related to physiological AA status, particularly for the essential AAs. However, these results should be further evaluated and confirmed in large-scale prospective studies.
Collapse
Affiliation(s)
- Isabel Iguacel
- International Agency for Research on Cancer, Nutrition and Metabolism Section, 69372, Lyon CEDEX 08, France; Department of Physiatry and Nursing, Faculty of Health Sciences, University of Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón, Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Zaragoza, Spain
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Heleen Van Puyvelde
- International Agency for Research on Cancer, Nutrition and Metabolism Section, 69372, Lyon CEDEX 08, France; Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, 9000, Ghent, Belgium
| | - Ruth Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Magdalena Stepien
- International Agency for Research on Cancer, Nutrition and Metabolism Section, 69372, Lyon CEDEX 08, France
| | - Augustin Scalbert
- International Agency for Research on Cancer, Nutrition and Metabolism Section, 69372, Lyon CEDEX 08, France
| | - Corinne Casagrande
- International Agency for Research on Cancer, Nutrition and Metabolism Section, 69372, Lyon CEDEX 08, France
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, Nutrition and Metabolism Section, 69372, Lyon CEDEX 08, France
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Guri Skeie
- Department of Community Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Stina Bodén
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Heiner Boeing
- Department of Epidemiology, German Institute for Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Torill Enget Jensen
- Department of Community Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - José M Huerta
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leila Lujan-Barroso
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, Nutrition and Cancer Group, Bellvitge Biomedical Research Institute -IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Miguel Rodriguez-Barranco
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Agnetha Linn Rostgaard-Hansen
- Department of Public Health, Danish Cancer Society Research Center Diet, Genes and Environment, Strandboulevarden 49, DK-2100, University of Copenhagen, Copenhagen, Denmark
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, 9000, Ghent, Belgium; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Giovanna Tagliabue
- Lombardy Cancer Registry Unit Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Anne Tjønneland
- Department of Public Health, Danish Cancer Society Research Center Diet, Genes and Environment, Strandboulevarden 49, DK-2100, University of Copenhagen, Copenhagen, Denmark
| | - Morena Trevisan
- Unit of Cancer Epidemiology- CeRMS, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Pietro Ferrari
- International Agency for Research on Cancer, Nutrition and Metabolism Section, 69372, Lyon CEDEX 08, France
| | - Marc J Gunter
- International Agency for Research on Cancer, Nutrition and Metabolism Section, 69372, Lyon CEDEX 08, France
| | - Inge Huybrechts
- International Agency for Research on Cancer, Nutrition and Metabolism Section, 69372, Lyon CEDEX 08, France.
| |
Collapse
|
34
|
Khalil A, Elfert A, Ghanem S, Helal M, Abdelsattar S, Elgedawy G, Obada M, Abdel-Samiee M, El-Said H. The role of metabolomics in hepatocellular carcinoma. EGYPTIAN LIVER JOURNAL 2021. [DOI: 10.1186/s43066-021-00085-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Hepatocellular carcinoma is the most common primary liver malignancy, with the highest incidence in the developing world, including Egypt. Hepatocellular carcinoma is usually diagnosed in the terminal stage of the disease because of the low sensitivity of the available screening tests. During the process of carcinogenesis, the cellular metabolism is altered to allow cancer cells to adapt to the hypoxic environment and therefore increase anabolic synthesis and survival and avoid the apoptotic death signals. These changes in metabolic status can be tracked by metabolomics analysis.
Main body
Metabolomics is a comprehensive approach for identifying metabolic signatures towards the screening, prediction, and earlier diagnosis of hepatocellular carcinoma with greater efficiency than the conventional diagnostic biomarker. The identification of metabolic changes associated with hepatocellular carcinoma is essential to the understanding of disease pathophysiology and enables better monitoring of high-risk individuals. However, due to the complexity of the metabolic pathways associated with hepatocellular carcinoma, the details of these perturbations are still not adequately characterized. The current status of biomarkers for hepatocellular carcinoma and their insufficiencies and metabolic pathways linked to hepatocellular carcinogenesis are briefly addressed in this mini-review. The review focused on the significantly changed metabolites and pathways associated with hepatocellular carcinoma such as phospholipids, bile acids, amino acids, reactive oxygen species metabolism, and the metabolic changes related to energy production in a cancer cell. The review briefly discusses the sensitivity of metabolomics in the prediction and prognosis of hepatocellular carcinoma and the effect of coexisting multiple etiologies of the disease.
Conclusions
Metabolomics profiling is a potentially promising tool for better predicting, diagnosis, and prognosis of hepatocellular carcinoma.
Collapse
|
35
|
Akyol O, Tessier K, Akyol S. Accuracy and uniformity of the nomenclature of biogenic amines and polyamines in metabolomics studies: A preliminary study. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 49:441-445. [PMID: 33682332 DOI: 10.1002/bmb.21497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/09/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Metabolomics is one of the newest areas in biochemistry dedicated to investigating small biomolecules in biofluids, tissues, and cells. Cutting edge instruments used in metabolomics studies make it possible to identify thousands of biomolecules and determine their interactions with biological networks. This tremendous area has increased the significance of accurate chemical nomenclature of compounds. Therefore, the classification of the organic molecules has become one of the most important issues in the field. Biogenic amines are nitrogenous compounds of low molecular weight formed by the decarboxylation of amino acids or by the amination and the transamination of aldehydes and ketones during normal metabolic processes. This letter covers the topic of nomenclature with respect to the current usage of biogenic amines in scientific literature. We use metabolomics as an example of field reporting data on trace levels of molecules that may be miscategorized in primary literature. We suggest that the incorrect classification of molecules will influence science education adversely because resources used for teaching are drawn from primary literature references that may contain errors.
Collapse
Affiliation(s)
- Omer Akyol
- Department of Anatomy and Molecular Medicine, Alabama College of Osteopathic Medicine, Dothan, Alabama, USA
| | - Kylie Tessier
- Michigan Math and Science Academy, Warren, Michigan, USA
| | - Sumeyya Akyol
- Beaumont Health System-Beaumont Research Institute, Royal Oak, Michigan, USA
| |
Collapse
|
36
|
Ghassemi Nejad J, Lee BH, Kim JY, Chemere B, Park KH, Sung KI, Lee HG. Thermal-humidity exposure and water deprivation alter the immune response, and hair but not plasma mineral profiles, in Holstein dairy cows. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2021.1922822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jalil Ghassemi Nejad
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Bae-Hun Lee
- National Institute of Animal Science, RDA, Cheonan, Republic of Korea
| | - Ji-Yung Kim
- College of Animal Life Sciences, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Befekadu Chemere
- Department of Animal Science, College of Agriculture and Environmental Sciences, Arsi University, Arsi, Oromia, Ethiopia
| | - Kyu-Hyun Park
- National Institute of Animal Science, RDA, Cheonan, Republic of Korea
| | - Kyung-Il Sung
- National Institute of Animal Science, RDA, Cheonan, Republic of Korea
| | - Hong-Gu Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Lécuyer L, Victor Bala A, Demidem A, Rossary A, Bouchemal N, Triba MN, Galan P, Hercberg S, Partula V, Srour B, Latino-Martel P, Kesse-Guyot E, Druesne-Pecollo N, Vasson MP, Deschasaux-Tanguy M, Savarin P, Touvier M. NMR metabolomic profiles associated with long-term risk of prostate cancer. Metabolomics 2021; 17:32. [PMID: 33704614 DOI: 10.1007/s11306-021-01780-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/24/2021] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Prostate cancer is a multifactorial disease whose aetiology is still not fully understood. Metabolomics, by measuring several hundred metabolites simultaneously, could enhance knowledge on the metabolic changes involved and the potential impact of external factors. OBJECTIVES The aim of the present study was to investigate whether pre-diagnostic plasma metabolomic profiles were associated with the risk of developing a prostate cancer within the following decade. METHODS A prospective nested case-control study was set up among the 5141 men participant of the SU.VI.MAX cohort, including 171 prostate cancer cases, diagnosed between 1994 and 2007, and 171 matched controls. Nuclear magnetic resonance (NMR) metabolomic profiles were established from baseline plasma samples using NOESY1D and CPMG sequences. Multivariable conditional logistic regression models were computed for each individual NMR signal and for metabolomic patterns derived using principal component analysis. RESULTS Men with higher fasting plasma levels of valine (odds ratio (OR) = 1.37 [1.07-1.76], p = .01), glutamine (OR = 1.30 [1.00-1.70], p = .047), creatine (OR = 1.37 [1.04-1.80], p = .02), albumin lysyl (OR = 1.48 [1.12-1.95], p = .006 and OR = 1.51 [1.13-2.02], p = .005), tyrosine (OR = 1.40 [1.06-1.85], p = .02), phenylalanine (OR = 1.39 [1.08-1.79], p = .01), histidine (OR = 1.46 [1.12-1.88], p = .004), 3-methylhistidine (OR = 1.37 [1.05-1.80], p = .02) and lower plasma level of urea (OR = .70 [.54-.92], p = .009) had a higher risk of developing a prostate cancer during the 13 years of follow-up. CONCLUSIONS This exploratory study highlighted associations between baseline plasma metabolomic profiles and long-term risk of developing prostate cancer. If replicated in independent cohort studies, such signatures may improve the identification of men at risk for prostate cancer well before diagnosis and the understanding of this disease.
Collapse
Affiliation(s)
- Lucie Lécuyer
- Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Sorbonne Paris Nord University, SMBH Paris 13, 74 rue Marcel Cachin, 93017, Bobigny Cedex, France
| | - Agnès Victor Bala
- Chemistry Structures Properties of Biomaterials and Therapeutic Agents (CSPBAT), Nanomédecine Biomarqueurs Détection (NBD), The National Center for Scientific Research (CNRS) 7244, Sorbonne Paris Nord University, 93017, Bobigny Cedex, France
| | - Aicha Demidem
- INRAE, UMR 1019, Human Nutrition Unit (UNH), Cellular Micro-Environment, Immunomodulation and Nutrition (ECREIN), Clermont Auvergne University, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Adrien Rossary
- INRAE, UMR 1019, Human Nutrition Unit (UNH), Cellular Micro-Environment, Immunomodulation and Nutrition (ECREIN), Clermont Auvergne University, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Nadia Bouchemal
- Chemistry Structures Properties of Biomaterials and Therapeutic Agents (CSPBAT), Nanomédecine Biomarqueurs Détection (NBD), The National Center for Scientific Research (CNRS) 7244, Sorbonne Paris Nord University, 93017, Bobigny Cedex, France
| | - Mohamed Nawfal Triba
- Chemistry Structures Properties of Biomaterials and Therapeutic Agents (CSPBAT), Nanomédecine Biomarqueurs Détection (NBD), The National Center for Scientific Research (CNRS) 7244, Sorbonne Paris Nord University, 93017, Bobigny Cedex, France
| | - Pilar Galan
- Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Sorbonne Paris Nord University, SMBH Paris 13, 74 rue Marcel Cachin, 93017, Bobigny Cedex, France
| | - Serge Hercberg
- Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Sorbonne Paris Nord University, SMBH Paris 13, 74 rue Marcel Cachin, 93017, Bobigny Cedex, France
- Public Health Department, Avicenne Hospital, 93000, Bobigny, France
| | - Valentin Partula
- Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Sorbonne Paris Nord University, SMBH Paris 13, 74 rue Marcel Cachin, 93017, Bobigny Cedex, France
| | - Bernard Srour
- Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Sorbonne Paris Nord University, SMBH Paris 13, 74 rue Marcel Cachin, 93017, Bobigny Cedex, France
| | - Paule Latino-Martel
- Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Sorbonne Paris Nord University, SMBH Paris 13, 74 rue Marcel Cachin, 93017, Bobigny Cedex, France
| | - Emmanuelle Kesse-Guyot
- Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Sorbonne Paris Nord University, SMBH Paris 13, 74 rue Marcel Cachin, 93017, Bobigny Cedex, France
| | - Nathalie Druesne-Pecollo
- Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Sorbonne Paris Nord University, SMBH Paris 13, 74 rue Marcel Cachin, 93017, Bobigny Cedex, France
| | - Marie-Paule Vasson
- INRAE, UMR 1019, Human Nutrition Unit (UNH), Cellular Micro-Environment, Immunomodulation and Nutrition (ECREIN), Clermont Auvergne University, CRNH Auvergne, 63000, Clermont-Ferrand, France
- Anticancer Center Jean-Perrin, CHU Clermont-Ferrand, 63011, Clermont-Ferrand Cedex, France
| | - Mélanie Deschasaux-Tanguy
- Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Sorbonne Paris Nord University, SMBH Paris 13, 74 rue Marcel Cachin, 93017, Bobigny Cedex, France.
| | - Philippe Savarin
- Chemistry Structures Properties of Biomaterials and Therapeutic Agents (CSPBAT), Nanomédecine Biomarqueurs Détection (NBD), The National Center for Scientific Research (CNRS) 7244, Sorbonne Paris Nord University, 93017, Bobigny Cedex, France
| | - Mathilde Touvier
- Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Sorbonne Paris Nord University, SMBH Paris 13, 74 rue Marcel Cachin, 93017, Bobigny Cedex, France
| |
Collapse
|
38
|
Lin Z, Huang W, He Q, Li D, Wang Z, Feng Y, Liu D, Zhang T, Wang Y, Xie M, Ji X, Sun M, Tian D, Xia L. FOXC1 promotes HCC proliferation and metastasis by Upregulating DNMT3B to induce DNA Hypermethylation of CTH promoter. J Exp Clin Cancer Res 2021; 40:50. [PMID: 33522955 PMCID: PMC7852227 DOI: 10.1186/s13046-021-01829-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Forkhead box C1 (FOXC1), as a member of the FOX family, is important for promote HCC invasion and metastasis. FOX family protein lays a pivotal role in metabolism. ROS is involved in tumor progression and is associated with the expression of lots of transcription factors. We next explored the mechanism underlying FOXC1 modulating the metabolism and ROS hemostasis in HCC. METHODS We used amino acids arrays to verify which metabolism is involved in FOXC1-induced HCC. The kits were used to detect the ROS levels in HCC cells with over-expression or down-expression of FOXC1. After identified the downstream target genes and candidate pathway which regulated by FOXC1 during HCC progression in vitro and in vivo, we used western blot, immunohistochemistry, bisulfite genomic sequencing, methylation-specific PCR, chromatin immunoprecipitation analysis and luciferase reporter assays to explore the relationship of FOXC1 and downstream genes. Moreover, the correlation between FOXC1 and target genes and the correlation between target genes and the recurrence and overall survival were analyzed in two independent human HCC cohorts. RESULTS Here, we reported that FOXC1 could inhibit the cysteine metabolism and increase reactive oxygen species (ROS) levels by regulating cysteine metabolism-related genes, cystathionine γ-lyase (CTH). Overexpression of CTH significantly suppressed FOXC1-induced HCC proliferation, invasion and metastasis, while the reduction in cell proliferation, invasion and metastasis caused by the inhibition of FOXC1 could be reversed by knockdown of CTH. Meanwhile, FOXC1 upregulated de novo DNA methylase 3B (DNMT3B) expression to induce DNA hypermethylation of CTH promoter, which resulted in low expression of CTH in HCC cells. Moreover, low levels of ROS induced by N-acetylcysteine (NAC) which is an antioxidant inhibited the cell proliferation, migration, and invasion abilities mediated by FOXC1 overexpression, whereas high levels of ROS induced by L-Buthionine-sulfoximine (BSO) rescued the suppression results mediated by FOXC1 knockdown. Our study demonstrated that the overexpression of FOXC1 that was induced by the ROS dependent on the extracellular regulated protein kinases 1 and 2 (ERK1/2)- phospho-ETS Transcription Factor 1 (p-ELK1) pathway. In human HCC tissues, FOXC1 expression was positively correlated with oxidative damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG), p-ELK1 and DNMT3B expression, but negatively correlated with CTH expression. HCC patients with positive co-expression of 8-OHdG/FOXC1 or p-ELK1/FOXC1 or FOXC1/DNMT3B had the worst prognosis, whereas HCC patients who had positive FOXC1 and negative CTH expression exhibited the worst prognosis. CONCLUSION In a word, we clarify that the positive feedback loop of ROS-FOXC1-cysteine metabolism-ROS is important for promoting liver cancer proliferation and metastasis, and this pathway may provide a prospective clinical treatment approach for HCC.
Collapse
Affiliation(s)
- Zhuoying Lin
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Wenjie Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Qin He
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Dongxiao Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zhihui Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yangyang Feng
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Danfei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Tongyue Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Meng Xie
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiaoyu Ji
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Dean Tian
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
39
|
Stepien M, Keski-Rahkonen P, Kiss A, Robinot N, Duarte-Salles T, Murphy N, Perlemuter G, Viallon V, Tjønneland A, Rostgaard-Hansen AL, Dahm CC, Overvad K, Boutron-Ruault MC, Mancini FR, Mahamat-Saleh Y, Aleksandrova K, Kaaks R, Kühn T, Trichopoulou A, Karakatsani A, Panico S, Tumino R, Palli D, Tagliabue G, Naccarati A, Vermeulen RCH, Bueno-de-Mesquita HB, Weiderpass E, Skeie G, Ramón Quirós J, Ardanaz E, Mokoroa O, Sala N, Sánchez MJ, Huerta JM, Winkvist A, Harlid S, Ohlsson B, Sjöberg K, Schmidt JA, Wareham N, Khaw KT, Ferrari P, Rothwell JA, Gunter M, Riboli E, Scalbert A, Jenab M. Metabolic perturbations prior to hepatocellular carcinoma diagnosis: Findings from a prospective observational cohort study. Int J Cancer 2021; 148:609-625. [PMID: 32734650 DOI: 10.1002/ijc.33236] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) development entails changes in liver metabolism. Current knowledge on metabolic perturbations in HCC is derived mostly from case-control designs, with sparse information from prospective cohorts. Our objective was to apply comprehensive metabolite profiling to detect metabolites whose serum concentrations are associated with HCC development, using biological samples from within the prospective European Prospective Investigation into Cancer and Nutrition (EPIC) cohort (>520 000 participants), where we identified 129 HCC cases matched 1:1 to controls. We conducted high-resolution untargeted liquid chromatography-mass spectrometry-based metabolomics on serum samples collected at recruitment prior to cancer diagnosis. Multivariable conditional logistic regression was applied controlling for dietary habits, alcohol consumption, smoking, body size, hepatitis infection and liver dysfunction. Corrections for multiple comparisons were applied. Of 9206 molecular features detected, 220 discriminated HCC cases from controls. Detailed feature annotation revealed 92 metabolites associated with HCC risk, of which 14 were unambiguously identified using pure reference standards. Positive HCC-risk associations were observed for N1-acetylspermidine, isatin, p-hydroxyphenyllactic acid, tyrosine, sphingosine, l,l-cyclo(leucylprolyl), glycochenodeoxycholic acid, glycocholic acid and 7-methylguanine. Inverse risk associations were observed for retinol, dehydroepiandrosterone sulfate, glycerophosphocholine, γ-carboxyethyl hydroxychroman and creatine. Discernible differences for these metabolites were observed between cases and controls up to 10 years prior to diagnosis. Our observations highlight the diversity of metabolic perturbations involved in HCC development and replicate previous observations (metabolism of bile acids, amino acids and phospholipids) made in Asian and Scandinavian populations. These findings emphasize the role of metabolic pathways associated with steroid metabolism and immunity and specific dietary and environmental exposures in HCC development.
Collapse
Affiliation(s)
- Magdalena Stepien
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Pekka Keski-Rahkonen
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Agneta Kiss
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Nivonirina Robinot
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Talita Duarte-Salles
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Barcelona, Spain
| | - Neil Murphy
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Gabriel Perlemuter
- INSERM UMRS U996 - Intestinal Microbiota, Macrophages and Liver Inflammation, Clamart, France
- Université Paris-Sud, Clamart, France
- AP-HP, Hepato-gastroenterology and Nutrition, Antoine-Béclère Hospital, Clamart, France
| | - Vivian Viallon
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Anne Tjønneland
- Diet, Genes and Environment Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Christina C Dahm
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Kim Overvad
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Marie-Christine Boutron-Ruault
- CESP, Faculté de médecine-Université Paris-Sud, Faculté de médecine-UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Francesca Romana Mancini
- CESP, Faculté de médecine-Université Paris-Sud, Faculté de médecine-UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Yahya Mahamat-Saleh
- CESP, Faculté de médecine-Université Paris-Sud, Faculté de médecine-UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Krasimira Aleksandrova
- Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Dept. of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Karakatsani
- Hellenic Health Foundation, Athens, Greece
- Second Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, "ATTIKON" University Hospital, Haidari, Greece
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP) Ragusa, Ragusa, Italy
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Giovanna Tagliabue
- Lombardy Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessio Naccarati
- Molecular and Genetic Epidemiology Unit, Italian Institute for Genomic Medicine (IIGM) Torino, Torino, Italy
| | - Roel C H Vermeulen
- Institute of Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Hendrik Bastiaan Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Elisabete Weiderpass
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Guri Skeie
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | | | - Eva Ardanaz
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Olatz Mokoroa
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Public Health Division of Gipuzkoa, Biodonostia Research Institute, San Sebastian, Spain
| | - Núria Sala
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program and Translational Research Laboratory, Catalan Institute of Oncology (IDIBELL), Barcelona, Spain
| | - Maria-Jose Sánchez
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs. Granada. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
| | - José María Huerta
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, Murcia, Spain
| | - Anna Winkvist
- The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Department of Public Health and Clinical Medicine, Nutrition Research, Umeå University, Umeå, Sweden
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Bodil Ohlsson
- Skåne University Hospital, Department of Internal Medicine, Lund University, Malmö, Sweden
| | - Klas Sjöberg
- Skåne University Hospital, Department of Gastroenterology and Nutrition, Lund University, Malmö, Sweden
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Kay-Tee Khaw
- University of Cambridge, School of Clinical Medicine, Clinical Gerontology Unit, Addenbrooke's Hospital, Cambridge, UK
| | - Pietro Ferrari
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Joseph A Rothwell
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
- Institut Gustave Roussy, Villejuif, France
| | - Marc Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Augustin Scalbert
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Mazda Jenab
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| |
Collapse
|
40
|
Recent Advances of Microbiome-Associated Metabolomics Profiling in Liver Disease: Principles, Mechanisms, and Applications. Int J Mol Sci 2021; 22:ijms22031160. [PMID: 33503844 PMCID: PMC7865944 DOI: 10.3390/ijms22031160] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in high-throughput screening of metabolic stability in liver and gut microbiota are able to identify and quantify small-molecule metabolites (metabolome) in different cellular microenvironments that are closest to their phenotypes. Metagenomics and metabolomics are largely recognized to be the “-omics” disciplines for clinical therapeutic screening. Here, metabolomics activity screening in liver disease (LD) and gut microbiomes has significantly delivered the integration of metabolomics data (i.e., a set of endogenous metabolites) with metabolic pathways in cellular environments that can be tested for biological functions (i.e., phenotypes). A growing literature in LD and gut microbiomes reports the use of metabolites as therapeutic targets or biomarkers. Although growing evidence connects liver fibrosis, cirrhosis, and hepatocellular carcinoma, the genetic and metabolic factors are still mainly unknown. Herein, we reviewed proof-of-concept mechanisms for metabolomics-based LD and gut microbiotas’ role from several studies (nuclear magnetic resonance, gas/lipid chromatography, spectroscopy coupled with mass spectrometry, and capillary electrophoresis). A deeper understanding of these axes is a prerequisite for optimizing therapeutic strategies to improve liver health.
Collapse
|
41
|
Delort L, Cholet J, Decombat C, Vermerie M, Dumontet C, Castelli FA, Fenaille F, Auxenfans C, Rossary A, Caldefie-Chezet F. The Adipose Microenvironment Dysregulates the Mammary Myoepithelial Cells and Could Participate to the Progression of Breast Cancer. Front Cell Dev Biol 2021; 8:571948. [PMID: 33505957 PMCID: PMC7829501 DOI: 10.3389/fcell.2020.571948] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most common cancer among women worldwide. Overweight and obesity are now recognized as established risk factors for this pathology in postmenopausal women. These conditions are also believed to be responsible for higher recurrence and mortality rates. Reciprocal interactions have been described between adipose and cancer cells. An adipose microenvironment favors a greater proliferation of cancer cells, their invasion and even resistance to anti-cancer treatments. In addition, the chronic low-grade inflammation observed in obese individuals is believed to amplify these processes. Among the cell types present in the breast, myoepithelial cells (MECs), located at the interface of the epithelial cells and the stroma, are considered "tumor suppressor" cells. During the transition from ductal carcinoma in situ to invasive cancer, disorganization or even the disappearance of MECs is observed, thereby enhancing the ability of the cancer cells to migrate. As the adipose microenvironment is now considered as a central actor in the progression of breast cancer, our objective was to evaluate if it could be involved in MEC functional modifications, leading to the transition of in situ to invasive carcinoma, particularly in obese patients. Through a co-culture model, we investigated the impact of human adipose stem cells from women of normal weight and obese women, differentiated or not into mature adipocytes, on the functionality of the MECs by measuring changes in viability, apoptosis, gene, and miRNA expressions. We found that adipose cells (precursors and differentiated adipocytes) could decrease the viability of the MECs, regardless of the original BMI. The adipose cells could also disrupt the expression of the genes involved in the maintenance of the extracellular matrix and to amplify the expression of leptin and inflammatory markers. miR-122-5p and miR-132-3p could also be considered as targets for adipose cells. The metabolite analyses revealed specific profiles that may be involved in the growth of neoplastic cells. All of these perturbations could thus be responsible for the loss of tumor suppressor status of MECs and promote the transition from in situ to invasive carcinoma.
Collapse
Affiliation(s)
- Laetitia Delort
- Université Clermont Auvergne, INRAE, UNH, ECREIN, Clermont-Ferrand, France
| | - Juliette Cholet
- Université Clermont Auvergne, INRAE, UNH, ECREIN, Clermont-Ferrand, France
| | - Caroline Decombat
- Université Clermont Auvergne, INRAE, UNH, ECREIN, Clermont-Ferrand, France
| | - Marion Vermerie
- Université Clermont Auvergne, INRAE, UNH, ECREIN, Clermont-Ferrand, France
| | - Charles Dumontet
- Université Lyon 1, INSERM U1052, CNRS 5286, Cancer Research Center of Lyon, Lyon, France
| | - Florence A Castelli
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Gif-sur-Yvette, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Gif-sur-Yvette, France
| | - Céline Auxenfans
- Banque de Tissus et de Cellules, Hôpital Edouard-Herriot, Lyon, France
| | - Adrien Rossary
- Université Clermont Auvergne, INRAE, UNH, ECREIN, Clermont-Ferrand, France
| | | |
Collapse
|
42
|
Saigusa D, Matsukawa N, Hishinuma E, Koshiba S. Identification of biomarkers to diagnose diseases and find adverse drug reactions by metabolomics. Drug Metab Pharmacokinet 2020; 37:100373. [PMID: 33631535 DOI: 10.1016/j.dmpk.2020.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Metabolomics has been widely used for investigating the biological functions of disease expression and has the potential to discover biomarkers in circulating biofluids or tissue extracts that reflect in phenotypic changes. Metabolic profiling has advantages because of the use of unbiased techniques, including multivariate analysis, and has been applied in pharmacological studies to predict therapeutic and adverse reactions of drugs, which is called pharmacometabolomics (PMx). Nuclear magnetic resonance (NMR)- and mass spectrometry (MS)-based metabolomics has contributed to the discovery of recent disease biomarkers; however, the optimal strategy for the study purpose must be selected from many established protocols, methodologies and analytical platforms. Additionally, information on molecular localization in tissue is essential for further functional analyses related to therapeutic and adverse effects of drugs in the process of drug development. MS imaging (MSI) is a promising technology that can visualize molecules on tissue surfaces without labeling and thus provide localized information. This review summarizes recent uses of MS-based global and wide-targeted metabolomics technologies and the advantages of the MSI approach for PMx and highlights the PMx technique for the biomarker discovery of adverse drug effects.
Collapse
Affiliation(s)
- Daisuke Saigusa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Naomi Matsukawa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Eiji Hishinuma
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan.
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan.
| |
Collapse
|
43
|
Bekki S, Hashimoto S, Yamasaki K, Komori A, Abiru S, Nagaoka S, Saeki A, Suehiro T, Kugiyama Y, Beppu A, Kuroki T, Nakamura M, Ito M, Yatsuhashi H. Serum kynurenine levels are a novel biomarker to predict the prognosis of patients with hepatocellular carcinoma. PLoS One 2020; 15:e0241002. [PMID: 33085694 PMCID: PMC7577466 DOI: 10.1371/journal.pone.0241002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We examined serum kynurenine levels in patients with chronic hepatitis C virus infection, and the relationship between serum kynurenine and prognosis in patients with hepatocellular carcinoma (HCC) and chronic hepatitis C. METHODS We retrospectively analyzed 604 patients with HCC diagnosed between January 1999 and December 2015, and 288 patients without HCC who were seen at the National Hospital Organization Nagasaki Medical Center between October 2014 and November 2017. The association between serum kynurenine and prognosis was evaluated using the Cox's proportional hazards regression analysis. RESULTS Patients with HCC had significantly higher values of serum kynurenine than patients without HCC (median: 557.1 vs. 464.2 ng/mL, p<0.001). Five-year survival rates of HCC patients with serum kynurenine ≥900 (n = 65), 600-899 (n = 194), and <600 ng/mL (n = 345) were 30.6%, 47.4%, and 61.4%, respectively (p = 0.001, log-rank test). Multivariate analysis identified serum kynurenine as an independent predictor for prognosis of HCC patients. The hazard ratio of serum kynurenine ≥900, and 600-899 compared with serum kynurenine <600 ng/mL were 1.91 (p<0.001) and 1.37 (p = 0.015), respectively. CONCLUSIONS A high level of serum kynurenine correlated with poor prognosis of HCC. Serum kynurenine levels may be a novel biomarker to predict the prognosis of patients with HCC. The development of drugs that inhibit kynurenine production is expected to help improve the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Shigemune Bekki
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Nagasaki, Japan
- Department of Viral Hepatitis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
| | - Satoru Hashimoto
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Kazumi Yamasaki
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Atsumasa Komori
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Seigo Abiru
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Shinya Nagaoka
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Akira Saeki
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Tomoyuki Suehiro
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Yuki Kugiyama
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Asami Beppu
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Nagasaki, Japan
| | - Tamotsu Kuroki
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Nagasaki, Japan
- Department of Viral Hepatitis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
| | - Minoru Nakamura
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Nagasaki, Japan
- Department of Viral Hepatitis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
| | - Masahiro Ito
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Nagasaki, Japan
- Department of Viral Hepatitis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
| | - Hiroshi Yatsuhashi
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Nagasaki, Japan
- Department of Viral Hepatitis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
44
|
Huang BY, Tsai MR, Hsu JK, Lin CY, Lin CL, Hu JT, Huang YW, Liu CJ, Wu WJ, Wu CF, Sung FY, Chen PJ, Liang HJ, Lin SM, Yu MW. Longitudinal change of metabolite profile and its relation to multiple risk factors for the risk of developing hepatitis B-related hepatocellular carcinoma. Mol Carcinog 2020; 59:1269-1279. [PMID: 32914490 DOI: 10.1002/mc.23255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/03/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Despite considerable knowledge of viral pathogenesis, the pathophysiological changes related to the multifactorial, multistep process of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) development remains unclear. Longitudinal metabolomics study can reveal biological process for disease progression. We performed metabolite profiling with longitudinal prediagnostic plasma samples from two nested case-control studies of hepatitis B surface antigen carriers participating in ultrasound screening for HCC, one within a government employee cohort (870 samples from 109 HCC cases and 107 controls) and the other within a hospital-based cohort (266 samples from 63 HCC cases and 114 controls). Of the 34 measured metabolites, tyrosine, isoleucine, and glutamine were consistently associated with HCC. In analyses combining longitudinal data, a high metabolic risk score based on the three amino acids was robustly associated with increased risk of HCC (OR = 3.71, 95% confidence interval: 2.53-5.42), even after adjustment for clinical factors, or when assessed for different times up to ≥8 years before diagnosis. Similar association was observed in an independent, prospective analysis comprising 633 randomly selected individuals of the government employee cohort. More importantly, this metabolite signature was longitudinally influenced by HBV-infection phase and involved in gradual progression to liver fibrosis and cirrhosis. Furthermore, mediation analysis showed that the score mediated substantial proportions of the associations of key viral factors, insulin resistance, and diabetes status with HCC risk. Our results suggest that an amino-acid dysregulation metabotype may play a role in HBV-related HCC development, and may also be linked to common pathways that mediate increased HCC risks.
Collapse
Affiliation(s)
- Bo-Yuan Huang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Min-Ru Tsai
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Jia-Kai Hsu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chih-Lin Lin
- Department of Gastroenterology, Ren-Ai Branch, Taipei City Hospital, Taipei, Taiwan
| | - Jui-Ting Hu
- Liver Center, Cathay General Hospital Medical Center, School of Medicine, Fu-Jen Catholic University College of Medicine, Taipei, Taiwan
| | - Yi-Wen Huang
- Department of Internal Medicine, Division of Gastroenterology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, Division of Gastroenterology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Jen Liu
- Department of Internal Medicine, Division of Gastroenterology, National Taiwan University Hospital and Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wan-Jung Wu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chih-Feng Wu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Feng-Yu Sung
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Pei-Jer Chen
- Department of Internal Medicine, Division of Gastroenterology, National Taiwan University Hospital and Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hao-Jan Liang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Shi-Ming Lin
- Division of Hepatology, Liver Research Unit, Department of Gastroenterology and Hepatology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Ming-Whei Yu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
45
|
Wang T, Sun Z, Wang Y, Li F, Zhou X, Tian X, Wang S. Diagnosis of papillary thyroid carcinoma by 1H NMR spectroscopy-based metabolomic analysis of whole blood. Drug Discov Ther 2020; 14:187-196. [PMID: 32848112 DOI: 10.5582/ddt.2020.03062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The incidence rate of thyroid carcinoma, especially papillary thyroid carcinoma (PTC), has increased significantly over time. As a primary pathway for metastasis, the lymphatic system is an important prognostic factor for PTC patients. Although the metabolic changes in PTC patients have been investigated in extensive studies, few studies focused on the whole blood metabolic profiling of PTC patients. In this study, we investigated the 1H NMR-based metabolic profiles of whole blood samples that were obtained from healthy individuals and PTC patients, with or without lymph node metastasis. The estimation of the predictive potential of metabolites was evaluated using multivariate statistical analyses, which revealed that the whole blood carries information that is sufficient for distinguishing between PTC patients and healthy individuals. However, PTC patients were not well classified as positive or negative according to the lymph nodes. We did not find a metabolite that could discriminate the presence of lymph node metastasis. Further studies with larger sample sizes are needed to elucidate significant metabolites to indicate the presence of lymph node metastasis in patients with PTC.
Collapse
Affiliation(s)
- Tiantian Wang
- School of Pharmaceutical Sciences, Shandong University, Ji'nan, Shandong, China.,Department of Thyroid and Breast Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China
| | - Zhigang Sun
- Department of Thyroid and Breast Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China.,Department of Colorectal Surgery and State Key Lab of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Wang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Feifei Li
- School of Pharmaceutical Sciences, Shandong University, Ji'nan, Shandong, China
| | - Xiaoming Zhou
- Department of Thyroid and Breast Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China
| | - Xingsong Tian
- Department of Thyroid and Breast Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China
| | - Shuqi Wang
- School of Pharmaceutical Sciences, Shandong University, Ji'nan, Shandong, China
| |
Collapse
|
46
|
Loftfield E, Rothwell JA, Sinha R, Keski-Rahkonen P, Robinot N, Albanes D, Weinstein SJ, Derkach A, Sampson J, Scalbert A, Freedman ND. Prospective Investigation of Serum Metabolites, Coffee Drinking, Liver Cancer Incidence, and Liver Disease Mortality. J Natl Cancer Inst 2020; 112:286-294. [PMID: 31168595 PMCID: PMC7073908 DOI: 10.1093/jnci/djz122] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/06/2019] [Accepted: 05/31/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Coffee has been consistently associated with lower risk of liver cancer and chronic liver disease, suggesting that coffee affects mechanisms underlying disease development. METHODS We measured serum metabolites using untargeted metabolomics in 1:1 matched nested case-control studies of liver cancer (n = 221 cases) and fatal liver disease (n = 242 cases) in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention cohort (n = 29 133). Associations between baseline coffee drinking and metabolites were identified using linear regression; conditional logistic regression models were used to identify associations with subsequent outcomes. RESULTS Overall, 21 metabolites were associated with coffee drinking and also each subsequent endpoint; nine metabolites and trigonelline, a known coffee biomarker, were identified. Tyrosine and two bile acids, glycochenodeoxycholic acid (GCDCA) and glycocholic acid (GCA), were inversely associated with coffee but positively associated with both outcomes; odds ratios (ORs) comparing the 90th to 10th percentile (modeled on a continuous basis) ranged from 3.93 (95% confidence interval [CI] = 2.00 to 7.74) for tyrosine to 4.95 (95% CI = 2.64 to 9.29) for GCA and from 4.00 (95% CI = 2.42 to 6.62) for GCA to 6.77 (95% CI = 3.62 to 12.65) for GCDCA for liver cancer and fatal liver disease, respectively. The remaining six metabolites and trigonelline were positively associated with coffee drinking but inversely associated with both outcomes; odds ratio ranged from 0.16 to 0.37. Associations persisted following diet adjustment and for outcomes occurring greater than 10 years after blood collection. CONCLUSIONS A broad range of compounds were associated with coffee drinking, incident liver cancer, and liver disease death over 27 years of follow-up. These associations provide novel insight into chronic liver disease and liver cancer etiology and support a possible hepatoprotective effect of coffee.
Collapse
Affiliation(s)
- Erikka Loftfield
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Joseph A Rothwell
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
- Nutrition and Metabolism Section, Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| | - Rashmi Sinha
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Pekka Keski-Rahkonen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
- Nutrition and Metabolism Section, Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| | - Nivonirina Robinot
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
- Nutrition and Metabolism Section, Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| | - Demetrius Albanes
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Stephanie J Weinstein
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Andriy Derkach
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Joshua Sampson
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Augustin Scalbert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
- Nutrition and Metabolism Section, Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| | - Neal D Freedman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| |
Collapse
|
47
|
Kowalczyk T, Ciborowski M, Kisluk J, Kretowski A, Barbas C. Mass spectrometry based proteomics and metabolomics in personalized oncology. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165690. [PMID: 31962175 DOI: 10.1016/j.bbadis.2020.165690] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
Precision medicine (PM) means the customization of healthcare with decisions and practices adjusted to the individual patient. It includes personalized diagnostics, patients' sub-classification, individual treatment selection and the monitoring of its effectiveness. Currently, in oncology, PM is based on the molecular and cellular features of a tumor, its microenvironment and the patient's genetics and lifestyle. Surprisingly, the available targeted therapies were found effective only in a subset of patients. An in-depth understanding of tumor biology is crucial to improve their effectiveness and develop new therapeutic targets. Completion of genetic information with proteomics and metabolomics can give broader knowledge about tumor biology which consequently provides novel biomarkers and indicates new therapeutic targets. Recently, metabolomics and proteomics have extensively been applied in the field of oncology. In the context of PM, human studies, with the use of mass spectrometry (MS) which allows the detection of thousands of molecules in a large number of samples, are the most valuable. Such studies, focused on cancer biomarkers discovery or patients' stratification, are presented in this review. Moreover, the technical aspects of MS-based clinical proteomics and metabolomics are described.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Kisluk
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain.
| |
Collapse
|
48
|
Liu X, Zhou L, Shi X, Xu G. New advances in analytical methods for mass spectrometry-based large-scale metabolomics study. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115665] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Léveillé M, Estall JL. Mitochondrial Dysfunction in the Transition from NASH to HCC. Metabolites 2019; 9:E233. [PMID: 31623280 PMCID: PMC6836234 DOI: 10.3390/metabo9100233] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
The liver constantly adapts to meet energy requirements of the whole body. Despite its remarkable adaptative capacity, prolonged exposure of liver cells to harmful environmental cues (such as diets rich in fat, sugar, and cholesterol) results in the development of chronic liver diseases (including non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH)) that can progress to hepatocellular carcinoma (HCC). The pathogenesis of these diseases is extremely complex, multifactorial, and poorly understood. Emerging evidence suggests that mitochondrial dysfunction or maladaptation contributes to detrimental effects on hepatocyte bioenergetics, reactive oxygen species (ROS) homeostasis, endoplasmic reticulum (ER) stress, inflammation, and cell death leading to NASH and HCC. The present review highlights the potential contribution of altered mitochondria function to NASH-related HCC and discusses how agents targeting this organelle could provide interesting treatment strategies for these diseases.
Collapse
Affiliation(s)
- Mélissa Léveillé
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, QC H2W 1R7, Canada.
- Faculty of Medicine, University of Montreal, Montreal, Quebec, QC H3G 2M1, Canada.
| | - Jennifer L Estall
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, QC H2W 1R7, Canada.
- Faculty of Medicine, University of Montreal, Montreal, Quebec, QC H3G 2M1, Canada.
- Division of Experimental Medicine, McGill University, Montreal, Quebec, QC H4A 3J1, Canada.
| |
Collapse
|
50
|
Lécuyer L, Dalle C, Lyan B, Demidem A, Rossary A, Vasson MP, Petera M, Lagree M, Ferreira T, Centeno D, Galan P, Hercberg S, Deschasaux M, Partula V, Srour B, Latino-Martel P, Kesse-Guyot E, Druesne-Pecollo N, Durand S, Pujos-Guillot E, Touvier M. Plasma Metabolomic Signatures Associated with Long-term Breast Cancer Risk in the SU.VI.MAX Prospective Cohort. Cancer Epidemiol Biomarkers Prev 2019; 28:1300-1307. [PMID: 31164347 DOI: 10.1158/1055-9965.epi-19-0154] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/12/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast cancer is a major cause of death in occidental women. The role of metabolism in breast cancer etiology remains unclear. Metabolomics may help to elucidate novel biological pathways and identify new biomarkers to predict breast cancer long before symptoms appear. The aim of this study was to investigate whether untargeted metabolomic signatures from blood draws of healthy women could contribute to better understand and predict the long-term risk of developing breast cancer. METHODS A nested case-control study was conducted within the SU.VI.MAX prospective cohort (13 years of follow-up) to analyze baseline plasma samples of 211 incident breast cancer cases and 211 matched controls by LC/MS. Multivariable conditional logistic regression models were computed. RESULTS A total of 3,565 ions were detected and 1,221 were retained for statistical analysis. A total of 73 ions were associated with breast cancer risk (P < 0.01; FDR ≤ 0.2). Notably, we observed that a lower plasma level of O-succinyl-homoserine (OR = 0.70, 95%CI = [0.55-0.89]) and higher plasma levels of valine/norvaline [1.45 (1.15-1.83)], glutamine/isoglutamine [1.33 (1.07-1.66)], 5-aminovaleric acid [1.46 (1.14-1.87)], phenylalanine [1.43 (1.14-1.78)], tryptophan [1.40 (1.10-1.79)], γ-glutamyl-threonine [1.39 (1.09-1.77)], ATBC [1.41 (1.10-1.79)], and pregnene-triol sulfate [1.38 (1.08-1.77)] were associated with an increased risk of developing breast cancer during follow-up.Conclusion: Several prediagnostic plasmatic metabolites were associated with long-term breast cancer risk and suggested a role of microbiota metabolism and environmental exposure. IMPACT After confirmation in other independent cohort studies, these results could help to identify healthy women at higher risk of developing breast cancer in the subsequent decade and to propose a better understanding of the complex mechanisms involved in its etiology.
Collapse
Affiliation(s)
- Lucie Lécuyer
- Sorbonne Paris Cité Epidemiology and Statistics Research Center (CRESS), French National Institute of Health and Medical Research (Inserm) U1153, French National Institute for Agricultural Research (Inra) U1125, French National Conservatory of Arts and Crafts (Cnam), Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobigny, France.
| | - Céline Dalle
- Clermont Auvergne University, INRA, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Bernard Lyan
- Clermont Auvergne University, INRA, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Aicha Demidem
- Clermont Auvergne University, INRA, UMR 1019, Human Nutrition Unit (UNH), CRNH Auvergne, Cellular Micro-Environment, Immunomodulation and Nutrition (ECREIN), Clermont-Ferrand, France
| | - Adrien Rossary
- Clermont Auvergne University, INRA, UMR 1019, Human Nutrition Unit (UNH), CRNH Auvergne, Cellular Micro-Environment, Immunomodulation and Nutrition (ECREIN), Clermont-Ferrand, France
| | - Marie-Paule Vasson
- Clermont Auvergne University, INRA, UMR 1019, Human Nutrition Unit (UNH), CRNH Auvergne, Cellular Micro-Environment, Immunomodulation and Nutrition (ECREIN), Clermont-Ferrand, France.,Anticancer Center Jean-Perrin, CHU Clermont-Ferrand, France
| | - Mélanie Petera
- Clermont Auvergne University, INRA, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Marie Lagree
- Clermont Auvergne University, Institut de Chimie de Clermont-Ferrand, Plateforme d'Exploration du Métabolisme, MetaboHUB-Clermont, BP 80026, Aubière, France
| | - Thomas Ferreira
- Clermont Auvergne University, INRA, UMR 1019, Human Nutrition Unit (UNH), CRNH Auvergne, Cellular Micro-Environment, Immunomodulation and Nutrition (ECREIN), Clermont-Ferrand, France
| | - Delphine Centeno
- Clermont Auvergne University, INRA, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Pilar Galan
- Sorbonne Paris Cité Epidemiology and Statistics Research Center (CRESS), French National Institute of Health and Medical Research (Inserm) U1153, French National Institute for Agricultural Research (Inra) U1125, French National Conservatory of Arts and Crafts (Cnam), Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobigny, France
| | - Serge Hercberg
- Sorbonne Paris Cité Epidemiology and Statistics Research Center (CRESS), French National Institute of Health and Medical Research (Inserm) U1153, French National Institute for Agricultural Research (Inra) U1125, French National Conservatory of Arts and Crafts (Cnam), Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobigny, France.,Public Health Department, Avicenne Hospital, Bobigny, France
| | - Mélanie Deschasaux
- Sorbonne Paris Cité Epidemiology and Statistics Research Center (CRESS), French National Institute of Health and Medical Research (Inserm) U1153, French National Institute for Agricultural Research (Inra) U1125, French National Conservatory of Arts and Crafts (Cnam), Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobigny, France
| | - Valentin Partula
- Sorbonne Paris Cité Epidemiology and Statistics Research Center (CRESS), French National Institute of Health and Medical Research (Inserm) U1153, French National Institute for Agricultural Research (Inra) U1125, French National Conservatory of Arts and Crafts (Cnam), Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobigny, France
| | - Bernard Srour
- Sorbonne Paris Cité Epidemiology and Statistics Research Center (CRESS), French National Institute of Health and Medical Research (Inserm) U1153, French National Institute for Agricultural Research (Inra) U1125, French National Conservatory of Arts and Crafts (Cnam), Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobigny, France
| | - Paule Latino-Martel
- Sorbonne Paris Cité Epidemiology and Statistics Research Center (CRESS), French National Institute of Health and Medical Research (Inserm) U1153, French National Institute for Agricultural Research (Inra) U1125, French National Conservatory of Arts and Crafts (Cnam), Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobigny, France
| | - Emmanuelle Kesse-Guyot
- Sorbonne Paris Cité Epidemiology and Statistics Research Center (CRESS), French National Institute of Health and Medical Research (Inserm) U1153, French National Institute for Agricultural Research (Inra) U1125, French National Conservatory of Arts and Crafts (Cnam), Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobigny, France
| | - Nathalie Druesne-Pecollo
- Sorbonne Paris Cité Epidemiology and Statistics Research Center (CRESS), French National Institute of Health and Medical Research (Inserm) U1153, French National Institute for Agricultural Research (Inra) U1125, French National Conservatory of Arts and Crafts (Cnam), Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobigny, France
| | - Stéphanie Durand
- Clermont Auvergne University, INRA, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Estelle Pujos-Guillot
- Clermont Auvergne University, INRA, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Mathilde Touvier
- Sorbonne Paris Cité Epidemiology and Statistics Research Center (CRESS), French National Institute of Health and Medical Research (Inserm) U1153, French National Institute for Agricultural Research (Inra) U1125, French National Conservatory of Arts and Crafts (Cnam), Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobigny, France
| |
Collapse
|