1
|
Murphy SE, Guillermo C, Thomson NM, Carmella SG, Wittmann M, Aldrich MC, Cai Q, Sullivan SM, Stram DO, Le Marchand L, Hecht SS, Blot WJ, Park SL. Association of Urinary Biomarkers of Tobacco Exposure with Lung Cancer Risk in African American and White Cigarette Smokers in the Southern Community Cohort Study. Cancer Epidemiol Biomarkers Prev 2024; 33:1073-1082. [PMID: 38780906 PMCID: PMC11299762 DOI: 10.1158/1055-9965.epi-23-1362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND After accounting for smoking history, lung cancer incidence is greater in African Americans than Whites. In the multiethnic cohort, total nicotine equivalents (TNE) are higher in African Americans than Whites at similar reported cigarettes per day. Greater toxicant uptake per cigarette may contribute to the greater lung cancer risk of African Americans. METHODS In a nested case-control lung cancer study within the Southern Community Cohort, smoking-related biomarkers were measured in 259 cases and 503 controls (40% White; 56% African American). TNE, the trans-3-hydroxycotinine/cotinine ratio, 4-(methylnitrosamino)-1-3-(pyridyl)-1-butanol (NNAL), mercapturic acid metabolites of volatile organic compounds, phenanthrene metabolites, cadmium (Cd), and (Z)-7-(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopenyl]hept-5-enoic acid were quantified in urine. Unconditional logistic regression was used to estimate the ORs and 95% confidence intervals (CI) for each biomarker and lung cancer risk. RESULTS TNE, NNAL, and Cd were higher in cases than controls (adjusted for age, race, sex, body mass index, and cigarettes per day). Among cases, these levels were higher in African Americans compared with Whites. After accounting for age, sex, body mass index, and pack-years, a one-SD increase in log-TNE (OR = 1.30; 95% CI, 1.10-1.54) and log-NNAL (OR = 1.27; 95% CI, 1.03-1.58 with TNE adjustment) was associated with lung cancer risk. In this study, in which NNAL concentration is relatively high, the association for log-TNE was attenuated after adjustment for log-NNAL. CONCLUSIONS Smoking-related biomarkers provide additional information for lung cancer risk in smokers beyond smoking pack-years. IMPACT Urinary NNAL, TNE, and Cd concentrations in current smokers, particularly African American smokers, may be useful for predicting lung cancer risk.
Collapse
Affiliation(s)
- Sharon E. Murphy
- Department of Biochemistry Molecular Biology and Biophysics and Masonic Cancer Center, University of Minnesota, Minneapolis MN
| | - Cherie Guillermo
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | | | - Milo Wittmann
- Masonic Cancer Center, University of Minnesota, Minneapolis MN, USA
| | - Melinda C. Aldrich
- Division of Genetic Medicine, Department of Medicine. Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Daniel O. Stram
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis MN, USA
| | - William J. Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - S. Lani Park
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| |
Collapse
|
2
|
Antonucci A, Andreoli R, Maccari C, Vitali M, Protano C. Effects of Environmental Tobacco Smoke on Oxidative Stress in Childhood: A Human Biomonitoring Study. TOXICS 2024; 12:557. [PMID: 39195659 PMCID: PMC11359216 DOI: 10.3390/toxics12080557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
Household smoking is one of the main sources of environmental tobacco smoke (ETS) exposure for children, a population considered to be at high risk for associated negative health outcomes. Several studies evidenced the occurrence of early effects related to ETS exposure, including the development of the oxidative stress process. The aim of this study was to evaluate the correlation between urinary levels of 8-oxo-7,8-dihydro-2-deoxyguanosine (8oxodGuo), a nucleic acid oxidation biomarker, and socio-demographic features and lifestyle factors in school children (aged 5-11 years). A cross-sectional study was conducted among 154 healthy children, residing in rural zones of central Italy. For each participant, one urine sample was analyzed by the HPLC-MS/MS technique to simultaneously quantify 8oxodGuo and cotinine (a biomarker of ETS exposure), while information on the children was collected using a questionnaire filled out by the parents. Urinary levels of 8oxodGuo was found to be significantly higher in children exposed to ETS compared to those not exposed (5.53 vs. 4.78 μg/L; p = 0.019). This result was confirmed by the significant association observed between urinary levels of cotinine and 8oxodGuo (r = 0.364, p < 0.0001). Additionally, children exposed to ETS with no smoking ban at home showed a further increased difference than those not exposed (6.35 μg/L vs. 4.78 μg/L; p = 0.008). Considering the great number of adverse effects on human health due to exposure to passive smoking, especially if this exposure begins early in life, it is essential to implement health promotion interventions in this area.
Collapse
Affiliation(s)
- Arianna Antonucci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy; (M.V.); (C.P.)
| | - Roberta Andreoli
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (R.A.); (C.M.)
- Center of Excellence for Toxicological Research (CERT), University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Maccari
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (R.A.); (C.M.)
- Center of Excellence for Toxicological Research (CERT), University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Matteo Vitali
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy; (M.V.); (C.P.)
| | - Carmela Protano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy; (M.V.); (C.P.)
| |
Collapse
|
3
|
Xiao Y, Shen Y, Song H, Gao F, Mao Z, Lv Q, Qin C, Yuan L, Wu D, Chu H, Wang M, Du M, Zheng R, Zhang Z. AKR1C2 genetic variants mediate tobacco carcinogens metabolism involving bladder cancer susceptibility. Arch Toxicol 2024; 98:2269-2279. [PMID: 38662237 DOI: 10.1007/s00204-024-03737-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Tobacco carcinogens metabolism-related genes (TCMGs) could generate reactive metabolites of tobacco carcinogens, which subsequently contributed to multiple diseases. However, the association between genetic variants in TCMGs and bladder cancer susceptibility remains unclear. In this study, we derived TCMGs from metabolic pathways of polycyclic aromatic hydrocarbons and tobacco-specific nitrosamines, and then explored genetic associations between TCMGs and bladder cancer risk in two populations: a Chinese population of 580 cases and 1101 controls, and a European population of 5930 cases and 5468 controls, along with interaction and joint analyses. Expression patterns of TCMGs were sourced from Nanjing Bladder Cancer (NJBC) study and publicly available datasets. Among 43 TCMGs, we observed that rs7087341 T > A in AKR1C2 was associated with a reduced risk of bladder cancer in the Chinese population [odds ratio (OR) = 0.84, 95% confidence interval (CI) = 0.72-0.97, P = 1.86 × 10-2]. Notably, AKR1C2 rs7087341 showed an interaction effect with cigarette smoking on bladder cancer risk (Pinteraction = 5.04 × 10-3), with smokers carrying the T allele increasing the risk up to an OR of 3.96 (Ptrend < 0.001). Genetically, rs7087341 showed an allele-specific transcriptional regulation as located at DNA-sensitive regions of AKR1C2 highlighted by histone markers. Mechanistically, rs7087341 A allele decreased AKR1C2 expression, which was highly expressed in bladder tumors that enhanced metabolism of tobacco carcinogens, and thereby increased DNA adducts and reactive oxygen species formation during bladder tumorigenesis. These findings provided new insights into the genetic mechanisms underlying bladder cancer.
Collapse
Affiliation(s)
- Yanping Xiao
- Departments of Environmental Genomics and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health; Institute of Clinical Research, The Affiliated Taizhou People's Hospital of Nanjing Medical University; Department of Urology, The Yancheng School of Clinical Medicine of Nanjing Medical University (The Third People's Hospital of Yancheng), Nanjing Medical University, Nanjing, 211166, China
| | - Yang Shen
- Department of Urology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Second Chinese Medicine Hospital, Nanjing, 210017, China
| | - Hui Song
- Departments of Environmental Genomics and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Fang Gao
- Departments of Environmental Genomics and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Zhenguang Mao
- Departments of Environmental Genomics and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qiang Lv
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210036, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210036, China
| | - Lin Yuan
- Department of Urology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, 210029, China
| | - Dongmei Wu
- Departments of Environmental Genomics and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Haiyan Chu
- Departments of Environmental Genomics and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Meilin Wang
- Departments of Environmental Genomics and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mulong Du
- Departments of Environmental Genomics and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Rui Zheng
- Departments of Environmental Genomics and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Zhengdong Zhang
- Departments of Environmental Genomics and Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health; Institute of Clinical Research, The Affiliated Taizhou People's Hospital of Nanjing Medical University; Department of Urology, The Yancheng School of Clinical Medicine of Nanjing Medical University (The Third People's Hospital of Yancheng), Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
4
|
Agyeman AS, Bandukwala A, Bouri K, Hawes J, Krainak DM, Lababidi S, Mattes WB, Mishina EV, Turfle P, Wang SJ, Thekkudan T. US FDA public meeting: identification of concepts and terminology for multicomponent biomarkers. Biomark Med 2023; 17:523-531. [PMID: 37713233 DOI: 10.2217/bmm-2023-0351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
The US FDA convened a virtual public workshop with the goals of obtaining feedback on the terminology needed for effective communication of multicomponent biomarkers and discussing the diverse use of biomarkers observed across the FDA and identifying common issues. The workshop included keynote and background presentations addressing the stated goals, followed by a series of case studies highlighting FDA-wide and external experience regarding the use of multicomponent biomarkers, which provided context for panel discussions focused on common themes, challenges and preferred terminology. The final panel discussion integrated the main concepts from the keynote, background presentations and case studies, laying a preliminary foundation to build consensus around the use and terminology of multicomponent biomarkers.
Collapse
Affiliation(s)
- Abena S Agyeman
- Division of Pharmacology & Toxicology-Rare Diseases, Pediatrics, Urologic & Reproductive Medicine, Office of New Drugs (OND), Center for Drug Evaluation & Research (CDER), US FDA, Silver Spring, MD 20993, USA
| | - Abbas Bandukwala
- Division of Biomedical Informatics, Research, & Biomarker Development, OND, CDER, FDA, Silver Spring, MD 20993, USA
| | - Khaled Bouri
- Office of Regulatory Science & Innovation, Office of the Chief Scientist, Office of the Commissioner (OC), FDA, Silver Spring, MD 20993, USA
| | - Jessica Hawes
- Division of Systems Biology, Office of Research, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | - Daniel M Krainak
- Division of Radiological Imaging & Radiation Therapy Devices, Office of Radiological Health, Office of Product Evaluation & Quality, Center for Devices & Radiological Health, FDA, Silver Spring, MD 20993, USA
| | - Samir Lababidi
- Office of Data, Analytics & Research, Office of Digital Transformation, Office of the Commissioner (OC), FDA, Silver Spring, MD 20993, USA
| | - William B Mattes
- Office of the Center Director, Center for Food Safety & Applied Nutrition (CFSAN), FDA, College Park, MD 20740, USA
| | - Elena V Mishina
- Division of Individual Health Science, Office of Science, Center for Tobacco Products (CTP), FDA, Beltsville, MD 20705, USA
| | - Phillip Turfle
- Division of Companion Animal Drugs, Office of New Animal Drug Evaluation, Center for Veterinary Medicine (CVM), FDA, Rockville, MD 20855, USA
| | - Sue-Jane Wang
- Division of Biometrics I, Office of Biostatistics, Office of Translational Sciences, CDER, Silver Spring, MD 20993, USA
| | - Theresa Thekkudan
- Division of Nonclinical Science, Office of Science, Center for Tobacco Products, FDA, Beltsville, MD 20705, USA
| |
Collapse
|
5
|
Cigan SS, Murphy SE, Stram DO, Hecht SS, Le Marchand L, Stepanov I, Park SL. Association of Urinary Biomarkers of Smoking-Related Toxicants with Lung Cancer Incidence in Smokers: The Multiethnic Cohort Study. Cancer Epidemiol Biomarkers Prev 2023; 32:306-314. [PMID: 36350738 PMCID: PMC9992134 DOI: 10.1158/1055-9965.epi-22-0569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/09/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While cigarette smoking is the leading cause of lung cancer, the majority of smokers do not develop the disease over their lifetime. The inter-individual differences in risk among smokers may in part be due to variations in exposure to smoking-related toxicants. METHODS Using data from a subcohort of 2,309 current smokers at the time of urine collection from the Multiethnic Cohort Study, we prospectively evaluated the association of ten urinary biomarkers of smoking-related toxicants [total nicotine equivalents (TNE), a ratio of total trans-3'-hydroxycotinine (3-HCOT)/cotinine (a phenotypic measure of CYP2A6 enzymatic activity), 4-(methylnitrosamino)-1-3-(pyridyl)-1-butanol (NNAL), S-phenylmercapturic acid (SPMA), 3-hydroxypropyl mercapturic acid (3-HPMA), phenanthrene tetraol (PheT), 3-hydroxyphenanthrene (PheOH), the ratio of PheT/PheOH, cadmium (Cd), and (Z)-7-(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopenyl]hept-5-enoic acid (8-iso-PGF2α)] with lung cancer risk (n = 140 incident lung cancer cases over an average of 13.4 years of follow-up). Lung cancer risk was estimated using Cox proportional hazards models. RESULTS After adjusting for decade of birth, sex, race/ethnicity, body mass index, self-reported pack-years, creatinine, and urinary TNE (a biomarker of internal smoking dose), a one SD increase in log total 3-HCOT/cotinine (HR, 1.33; 95% CI, 1.06-1.66), 3-HPMA (HR, 1.41; 95% CI, 1.07-1.85), and Cd (HR, 1.45; 95% CI, 1.18-1.79) were each associated with increased lung cancer risk. CONCLUSIONS Our study demonstrates that urinary total 3-HCOT/cotinine, 3-HPMA, and Cd are positively associated with lung cancer risk. These findings warrant replication and consideration as potential biomarkers for smoking-related lung cancer risk. IMPACT These biomarkers may provide additional information on lung cancer risk that is not captured by self-reported smoking history or TNE. See related commentary by Etemadi et al., p. 289.
Collapse
Affiliation(s)
- Shannon S. Cigan
- Department of Pediatrics, Division of Epidemiology and Clinical Research, University of Minnesota, Minneapolis, MN 55455, United States of America
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis MN 55455, United States of America
| | - Sharon E. Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis MN 55455, United States of America
| | - Daniel O. Stram
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, United States of America
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis MN 55455, United States of America
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, United States of America
| | - Irina Stepanov
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis MN 55455, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis MN 55455, United States of America
| | - Sungshim L. Park
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, United States of America
| |
Collapse
|
6
|
Perez-Paramo YX, Watson CJ, Chen G, Thomas CE, Adams-Haduch J, Wang R, Khor CC, Koh WP, Nelson HH, Yuan JM, Lazarus P. Impact of Genetic Variants in the Nicotine Metabolism Pathway on Nicotine Metabolite Levels in Smokers. Cancer Epidemiol Biomarkers Prev 2023; 32:54-65. [PMID: 36252563 PMCID: PMC9827107 DOI: 10.1158/1055-9965.epi-22-0868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Nicotine metabolism is a major factor in nicotine dependence, with approximately 70% to 80% of nicotine metabolized to cotinine in Caucasians. Cotinine formation is catalyzed primarily by CYP2A6, which also converts cotinine to trans-3'-hydroxycotinine (3HC). The goal of the present study was to examine the effects of CYP2A6 deficiency on nicotine metabolism profiles in vivo and the importance of genetic variants in nicotine-metabolizing enzyme genes on urinary nicotine metabolites levels. METHODS Urine samples from 722 smokers who participated in the Singapore Chinese Health Study were analyzed using UPLC-MS/MS to detect nicotine and eight of its urinary metabolites, and a total of 58 variants in 12 genes involved in nicotine metabolism were investigated in 475 of these subjects with informative genotyping data. RESULTS Urine samples stratified by the ratio of 3HC/cotinine exhibited a 7-fold increase in nicotine-N'-oxide, a 6-fold increase in nicotine-Glucuronide (Gluc), and a 5-fold decrease in 3HC-Gluc when comparing the lower versus upper 3HC/cotinine ventiles. Significant (P < 0.0001) associations were observed between functional metabolizing enzyme genotypes and levels of various urinary nicotine metabolites, including CYP2A6 genotype and levels of nicotine, nicotine-Gluc, nicotine-N'-oxide and 3HC, UGT2B10 genotype and levels of cotinine, nicotine-Gluc and cotinine-Gluc, UGT2B17 genotype and levels of 3HC-Gluc, FMO3 genotype and levels of nicotine-N'-oxide, and CYP2B6 genotype and levels of nicotine-N'-oxide and 4-hydroxy-4-(3-pyridyl)-butanoic acid. CONCLUSIONS These data suggest that several pathways are important in nicotine metabolism. IMPACT Genotype differences in several nicotine-metabolizing enzyme pathways may potentially lead to differences in nicotine dependence and smoking behavior and cessation.
Collapse
Affiliation(s)
- Yadira X. Perez-Paramo
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Christy J.W. Watson
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Gang Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Claire E. Thomas
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer Adams-Haduch
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Renwei Wang
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Eye Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Woon-Puay Koh
- Health Services and Systems Research, Duke-NUS Medical School Singapore, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Heather H. Nelson
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.,Corresponding Authors: Philip Lazarus, College of Pharmacy and Pharmaceutical Sciences, Washington State University, PBS building, Room 431, Spokane, Washington, 99210-1495. E-mail: ; and Jian-Min Yuan, Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, Pennsylvania, 15232. E-mail:
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington.,Corresponding Authors: Philip Lazarus, College of Pharmacy and Pharmaceutical Sciences, Washington State University, PBS building, Room 431, Spokane, Washington, 99210-1495. E-mail: ; and Jian-Min Yuan, Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, Pennsylvania, 15232. E-mail:
| |
Collapse
|
7
|
Effects of Genetic Variants in the Nicotine Metabolism Pathway on Smoking Cessation. Genet Res (Camb) 2022; 2022:2917881. [PMID: 36245555 PMCID: PMC9534651 DOI: 10.1155/2022/2917881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Background We aimed to investigate the associations of various genetic variants in the nicotine metabolism pathway with smoking cessation (SC) in the Chinese Han population. Method A case-control study was conducted where 363 successful smoking quitters were referred to as cases, and 345 failed smoking quitters were referred to as controls. A total of 42 genetic variants in 10 genes were selectedand genotyped. The weighted gene score was applied to analyze the whole gene effect. Logistic regression was used to explore associations of each genetic variant and gene score with smoking cessation. Results Our study found that the variants CYP2A6∗4, rs11726322, rs12233719, and rs3100 were associated with a higher probability of quitting smoking, while rs3760657 was associated with a lower probability of quitting smoking. Moreover, the gene scores of CYP2D6, FMO3, UGT2B10, UGT1A9, UGT2B7, and UGT2B15 were shown to exert a positive effect, while the gene score of CYP2B6 was detected to exert a negative effect on successful smoking cessation. Conclusion This study revealed that genetic variants in the nicotine metabolic pathway were associated with smoking cessation in the Chinese Han population.
Collapse
|
8
|
Li Y, Hecht SS. Metabolism and DNA Adduct Formation of Tobacco-Specific N-Nitrosamines. Int J Mol Sci 2022; 23:5109. [PMID: 35563500 PMCID: PMC9104174 DOI: 10.3390/ijms23095109] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 01/06/2023] Open
Abstract
The tobacco-specific N-nitrosamines 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) always occur together and exclusively in tobacco products or in environments contaminated by tobacco smoke. They have been classified as "carcinogenic to humans" by the International Agency for Research on Cancer. In 1998, we published a review of the biochemistry, biology and carcinogenicity of tobacco-specific nitrosamines. Over the past 20 years, considerable progress has been made in our understanding of the mechanisms of metabolism and DNA adduct formation by these two important carcinogens, along with progress on their carcinogenicity and mutagenicity. In this review, we aim to provide an update on the carcinogenicity and mechanisms of the metabolism and DNA interactions of NNK and NNN.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
9
|
Hecht SS, Hatsukami DK. Smokeless tobacco and cigarette smoking: chemical mechanisms and cancer prevention. Nat Rev Cancer 2022; 22:143-155. [PMID: 34980891 PMCID: PMC9308447 DOI: 10.1038/s41568-021-00423-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
Tobacco products present a deadly combination of nicotine addiction and carcinogen exposure resulting in millions of cancer deaths per year worldwide. A plethora of smokeless tobacco products lead to unacceptable exposure to multiple carcinogens, including the tobacco-specific nitrosamine N'-nitrosonornicotine, a likely cause of the commonly occurring oral cavity cancers observed particularly in South-East Asian countries. Cigarettes continue to deliver a large number of carcinogens, including tobacco-specific nitrosamines, polycyclic aromatic hydrocarbons and volatile organic compounds. The multiple carcinogens in cigarette smoke are responsible for the complex mutations observed in critical cancer genes. The exposure of smokeless tobacco users and smokers to carcinogens and toxicants can now be monitored by urinary and DNA adduct biomarkers that may be able to identify those individuals at highest risk of cancer so that effective cancer prevention interventions can be initiated. Regulation of the levels of carcinogens, toxicants and nicotine in tobacco products and evidence-based tobacco control efforts are now recognized as established pathways to preventing tobacco related cancer.
Collapse
Affiliation(s)
- Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| | | |
Collapse
|
10
|
Yadav VK, Katiyar T, Ruwali M, Yadav S, Singh S, Hadi R, Bhatt MLB, Parmar D. Polymorphism in cytochrome P4502A6 reduces the risk to head and neck cancer and modifies the treatment outcome. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:502-511. [PMID: 34655463 DOI: 10.1002/em.22466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/26/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The present case-control study consisting of 1300 cases of head and neck squamous cell carcinoma (HNSCC) and the equal number of controls aimed to investigate the association of functionally important polymorphisms in cytochrome P4502A6 (CYP2A6*1B, CYP2A6*4C, CYP2A6*9-rs28399433) with HNSCC and the treatment response in cases receiving a combination of chemotherapy/radiotherapy (CT/RT). A significant decrease in risk to HNSCC was observed in the cases with deletion (CYP2A6*4B and CYP2A6*4C) or reduced activity genotypes (CYP2A6*9) of CYP2A6. This risk to HNSCC was further reduced significantly in tobacco users among the cases when compared to nontobacco users among the cases. The risk was also reduced to a slightly greater extent in alcohol users among the cases when compared to nonalcohol users among the cases. In contrast with decreased risk to HNSCC, almost half of the cases with variant genotypes of CYP2A6 (CYP2A6*1A/*4C+*1B/*4C+*4C/*4C and *9/*9) did not respond to the treatment. Likewise, the survival rate in cases receiving the treatment, after 55 months of follow-up was significantly lower in cases with deletion (6.3%) or reduced activity (11.9%) allele than in the cases with common alleles (41%). The present study has shown that CYP2A6 polymorphism significantly reduces the risk to HNSCC. Our data further suggested that CYP2A6 polymorphism may worsen the treatment outcome in the cases receiving CT/RT.
Collapse
Affiliation(s)
- Vinay Kumar Yadav
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Tridiv Katiyar
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Munindra Ruwali
- Faculty of Science, Engineering And Technology, Amity University, Gurgaon, India
| | - Sanjay Yadav
- All India Institute of Medical Sciences, Raebareli, India
| | - Sudhir Singh
- Department of Radiotherapy, King George's Medical University, Lucknow, India
| | - Rahat Hadi
- Department of Radiation Oncology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | | | - Devendra Parmar
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
11
|
Murphy SE. Biochemistry of nicotine metabolism and its relevance to lung cancer. J Biol Chem 2021; 296:100722. [PMID: 33932402 PMCID: PMC8167289 DOI: 10.1016/j.jbc.2021.100722] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022] Open
Abstract
Nicotine is the key addictive constituent of tobacco. It is not a carcinogen, but it drives smoking and the continued exposure to the many carcinogens present in tobacco. The investigation into nicotine biotransformation has been ongoing for more than 60 years. The dominant pathway of nicotine metabolism in humans is the formation of cotinine, which occurs in two steps. The first step is cytochrome P450 (P450, CYP) 2A6–catalyzed 5′-oxidation to an iminium ion, and the second step is oxidation of the iminium ion to cotinine. The half-life of nicotine is longer in individuals with low P450 2A6 activity, and smokers with low activity often decrease either the intensity of their smoking or the number of cigarettes they use compared with those with “normal” activity. The effect of P450 2A6 activity on smoking may influence one's tobacco-related disease risk. This review provides an overview of nicotine metabolism and a summary of the use of nicotine metabolite biomarkers to define smoking dose. Some more recent findings, for example, the identification of uridine 5′-diphosphoglucuronosyltransferase 2B10 as the catalyst of nicotine N-glucuronidation, are discussed. We also describe epidemiology studies that establish the contribution of nicotine metabolism and CYP2A6 genotype to lung cancer risk, particularly with respect to specific racial/ethnic groups, such as those with Japanese, African, or European ancestry. We conclude that a model of nicotine metabolism and smoking dose could be combined with other lung cancer risk variables to more accurately identify former smokers at the highest risk of lung cancer and to intervene accordingly.
Collapse
Affiliation(s)
- Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
12
|
Perez-Paramo YX, Lazarus P. Pharmacogenetics factors influencing smoking cessation success; the importance of nicotine metabolism. Expert Opin Drug Metab Toxicol 2021; 17:333-349. [PMID: 33322962 PMCID: PMC8049967 DOI: 10.1080/17425255.2021.1863948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/10/2020] [Indexed: 01/12/2023]
Abstract
Introduction: Smoking remains a worldwide epidemic, and despite an increase in public acceptance of the harms of tobacco use, it remains the leading cause of preventable death. It is estimated that up to 70% of all smokers express a desire to quit, but only 3-5% of them are successful.Areas covered: The goal of this review was to evaluate the current status of smoking cessation treatments and the feasibility of implementing personalized-medicine approaches to these pharmacotherapies. We evaluated the genetics associated with higher levels of nicotine addiction and follow with an analysis of the genetic variants that affect the nicotine metabolic ratio (NMR) and the FDA approved treatments for smoking cessation. We also highlighted the gaps in the process of translating current laboratory understanding into clinical practice, and the benefits of personalized treatment approaches for a successful smoking cessation strategy.Expert opinion: Evidence supports the use of tailored therapies to ensure that the most efficient treatments are utilized in an individual's smoking cessation efforts. An understanding of the genetic effects on the efficacy of individualized smoking cessation pharmacotherapies is key to smoking cessation, ideally utilizing a polygenetic risk score that considers all genetic variation.
Collapse
Affiliation(s)
- Yadira X. Perez-Paramo
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| |
Collapse
|
13
|
Peterson LA, Balbo S, Fujioka N, Hatsukami DK, Hecht SS, Murphy SE, Stepanov I, Tretyakova NY, Turesky RJ, Villalta PW. Applying Tobacco, Environmental, and Dietary-Related Biomarkers to Understand Cancer Etiology and Evaluate Prevention Strategies. Cancer Epidemiol Biomarkers Prev 2020; 29:1904-1919. [PMID: 32051197 PMCID: PMC7423750 DOI: 10.1158/1055-9965.epi-19-1356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/18/2019] [Accepted: 01/27/2020] [Indexed: 01/20/2023] Open
Abstract
Many human cancers are caused by environmental and lifestyle factors. Biomarkers of exposure and risk developed by our team have provided critical data on internal exposure to toxic and genotoxic chemicals and their connection to cancer in humans. This review highlights our research using biomarkers to identify key factors influencing cancer risk as well as their application to assess the effectiveness of exposure intervention and chemoprevention protocols. The use of these biomarkers to understand individual susceptibility to the harmful effects of tobacco products is a powerful example of the value of this type of research and has provided key data confirming the link between tobacco smoke exposure and cancer risk. Furthermore, this information has led to policy changes that have reduced tobacco use and consequently, the tobacco-related cancer burden. Recent technological advances in mass spectrometry led to the ability to detect DNA damage in human tissues as well as the development of adductomic approaches. These new methods allowed for the detection of DNA adducts in tissues from patients with cancer, providing key evidence that exposure to carcinogens leads to DNA damage in the target tissue. These advances will provide valuable insights into the etiologic causes of cancer that are not tobacco-related.See all articles in this CEBP Focus section, "Environmental Carcinogenesis: Pathways to Prevention."
Collapse
Affiliation(s)
- Lisa A Peterson
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota.
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Silvia Balbo
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Naomi Fujioka
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Dorothy K Hatsukami
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Irina Stepanov
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Natalia Y Tretyakova
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Robert J Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
14
|
Lee KB, Ang L, Yau WP, Seow WJ. Association between Metabolites and the Risk of Lung Cancer: A Systematic Literature Review and Meta-Analysis of Observational Studies. Metabolites 2020; 10:E362. [PMID: 32899527 PMCID: PMC7570231 DOI: 10.3390/metabo10090362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Globally, lung cancer is the most prevalent cancer type. However, screening and early detection is challenging. Previous studies have identified metabolites as promising lung cancer biomarkers. This systematic literature review and meta-analysis aimed to identify metabolites associated with lung cancer risk in observational studies. The literature search was performed in PubMed and EMBASE databases, up to 31 December 2019, for observational studies on the association between metabolites and lung cancer risk. Heterogeneity was assessed using the I2 statistic and Cochran's Q test. Meta-analyses were performed using either a fixed-effects or random-effects model, depending on study heterogeneity. Fifty-three studies with 297 metabolites were included. Most identified metabolites (252 metabolites) were reported in individual studies. Meta-analyses were conducted on 45 metabolites. Five metabolites (cotinine, creatinine riboside, N-acetylneuraminic acid, proline and r-1,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene) and five metabolite groups (total 3-hydroxycotinine, total cotinine, total nicotine, total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (sum of concentrations of the metabolite and its glucuronides), and total nicotine equivalent (sum of total 3-hydroxycotinine, total cotinine and total nicotine)) were associated with higher lung cancer risk, while three others (folate, methionine and tryptophan) were associated with lower lung cancer risk. Significant heterogeneity was detected across most studies. These significant metabolites should be further evaluated as potential biomarkers for lung cancer.
Collapse
Affiliation(s)
- Kian Boon Lee
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; (K.B.L.); (W.-P.Y.)
| | - Lina Ang
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore;
| | - Wai-Ping Yau
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; (K.B.L.); (W.-P.Y.)
| | - Wei Jie Seow
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore;
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore 119228, Singapore
| |
Collapse
|
15
|
Abudushataer M, Sato N, Mieno M, Sawabe M, Muramatsu M, Arai T. Association of CYP2A6 gene deletion with cancers in Japanese elderly: an autopsy study. BMC Cancer 2020; 20:186. [PMID: 32131765 PMCID: PMC7057549 DOI: 10.1186/s12885-020-6663-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/20/2020] [Indexed: 11/26/2022] Open
Abstract
Background CYP2A6 is an enzyme involved in oxidation of a number of environmental chemicals, including nicotine, pro-carcinogenic nitrosamines and polycyclic aromatic hydrocarbons (PAHs). The whole gene deletion of CYP2A6 (CYP2A6*4) is prevalent in East Asian population. Whether or not CYP2A6*4 associates with cancer is still controversial. Methods We undertook an association study to determine whether deletion of CYP2A6 gene associates with total cancer and major cancer types employing data of consecutive autopsy cases registered in the Japanese single-nucleotide polymorphisms for geriatric research (JG-SNP) database. The presence of cancer were inspected at the time of autopsy and pathologically confirmed. Genotyping for CYP2A6 wild type (W) and deletion (D) was done by allele specific RT-PCR method. Results Among 1373 subjects, 826 subjects (60.2%) were cancer positive and 547 subjects (39.8%) were cancer negative. The genotype frequency in the whole study group for WW, WD and DD were 65.0, 30.6 and 4.4%, respectively, which obeyed the Hardy-Weinberg equilibrium (p = 0.20). Total cancer presence, as well as major cancers including gastric, lung, colorectal, and blood cancers did not show any positive association with CYP2A6 deletion. When male and female were separately analyzed, CYP2A6 deletion associated with decreased gastric cancer risk in female (OR = 0.49, 95%CI: 0.25–0.95, p = 0.021, after adjustment for age, smoking and drinking). When smoker and non-smoker were separately analyzed, CYP2A6 deletion associated with decreased total cancer in female nonsmokers (OR = 0.67, 95%CI: 0.45–0.99, p = 0.041 after adjustment). On the other hand, CYP2A6 deletion associated increase blood cancers in smokers (OR = 2.05, 95%CI: 1.19–3.53, p = 0.01 after adjustment). Conclusion The CYP2A6 deletion may not grossly affect total cancer. It may associate with individual cancers in sex and smoking dependent manner. Further studies with larger sample size are warranted to confirm our results.
Collapse
Affiliation(s)
- Maidina Abudushataer
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Noriko Sato
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Makiko Mieno
- Center for Information, Jichi Medical University, Tochigi, Japan
| | - Motoji Sawabe
- Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| |
Collapse
|
16
|
Carroll DM, Murphy SE, Benowitz NL, Strasser AA, Kotlyar M, Hecht SS, Carmella SG, McClernon FJ, Pacek LR, Dermody SS, Vandrey RG, Donny EC, Hatsukami DK. Relationships between the Nicotine Metabolite Ratio and a Panel of Exposure and Effect Biomarkers: Findings from Two Studies of U.S. Commercial Cigarette Smokers. Cancer Epidemiol Biomarkers Prev 2020; 29:871-879. [PMID: 32051195 DOI: 10.1158/1055-9965.epi-19-0644] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/23/2019] [Accepted: 01/24/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND We examined the nicotine metabolite ratio's (NMR) relationship with smoking intensity, nicotine dependence, and a broad array of biomarkers of exposure and biological effect in commercial cigarette smokers. METHODS Secondary analysis was conducted on two cross-sectional samples of adult, daily smokers from Wave 1 (2013-2014) of the Population Assessment of Tobacco Use and Health (PATH) Study and baseline data from a 2014-2017 randomized clinical trial. Data were restricted to participants of non-Hispanic, white race. The lowest quartile of NMR (<0.26) in the nationally representative PATH Study was used to distinguish slow from normal/fast nicotine metabolizers. NMR was modeled continuously in secondary analysis. RESULTS Compared with slow metabolizers, normal/fast metabolizers had greater cigarettes per day and higher levels of total nicotine equivalents, tobacco-specific nitrosamines, volatile organic componds, and polycyclic aromatic hydrocarbons. A novel finding was higher levels of inflammatory biomarkers among normal/fast metabolizers versus slow metabolizers. With NMR modeled as a continuous measure, the associations between NMR and biomarkers of inflammation were not significant. CONCLUSIONS The results are suggestive that normal/fast nicotine metabolizers may be at increased risk for tobacco-related disease due to being heavier smokers, having higher exposure to numerous toxicants and carcinogens, and having higher levels of inflammation when compared with slow metabolizers. IMPACT This is the first documentation that NMR is not only associated with smoking exposure but also biomarkers of biological effects that are integral in the development of tobacco-related disease. Results provide support for NMR as a biomarker for understanding a smoker's exposure and potential risk for tobacco-related disease.
Collapse
Affiliation(s)
- Dana M Carroll
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota. .,Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Neal L Benowitz
- Clinical Pharmacology Program, Division of Cardiology, Department of Medicine, University of California, San Francisco, California
| | - Andrew A Strasser
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Kotlyar
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Steve G Carmella
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Francis J McClernon
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Lauren R Pacek
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Sarah S Dermody
- School of Psychological Science, Oregon State University, Corvallis, Oregon
| | - Ryan G Vandrey
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Eric C Donny
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | |
Collapse
|
17
|
Chang CM, Cheng YC, Cho TM, Mishina EV, Del Valle-Pinero AY, van Bemmel DM, Hatsukami DK. Biomarkers of Potential Harm: Summary of an FDA-Sponsored Public Workshop. Nicotine Tob Res 2020; 21:3-13. [PMID: 29253243 DOI: 10.1093/ntr/ntx273] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022]
Abstract
Introduction Since 2009, the United States (US) Food and Drug Administration (FDA) Center for Tobacco Products (CTP) has had the authority to regulate the manufacture, distribution, and marketing of tobacco products in order to reduce the death and disease caused by tobacco use. Biomarkers could play an important role across a number of FDA regulatory activities, including assessing new and modified risk tobacco products and identifying and evaluating potential product standards. Methods On April 4-5, 2016, FDA/CTP hosted a public workshop focused on biomarkers of potential harm (BOPH) with participants from government, industry, academia, and other organizations. The workshop was divided into five sessions focused on: (1) overview of BOPH; (2) cardiovascular disease (CVD); (3) chronic obstructive pulmonary disease (COPD); (4) cancer; and (5) new areas of research. Results and Conclusions The deliberations from the workshop noted some promising BOPH but also highlighted the lack of systematic effort to identify BOPH that would have utility and validity for evaluating tobacco products. Research areas that could further strengthen the applicability of BOPH to tobacco regulatory science include the exploration of composite biomarkers as predictors of disease risk, "omics" biomarkers, and examining biomarkers using existing cohorts, surveys, and experimental studies. Implications This paper synthesizes the main findings from the 2016 FDA-sponsored workshop focused on BOPH and highlights research areas that could further strengthen the science around BOPH and their applicability to tobacco regulatory science.
Collapse
Affiliation(s)
- Cindy M Chang
- Office of Science, Center for Tobacco Products, Food and Drug Administration, Silver Spring, MD
| | - Yu-Ching Cheng
- Office of Science, Center for Tobacco Products, Food and Drug Administration, Silver Spring, MD
| | - Taehyeon M Cho
- Office of Science, Center for Tobacco Products, Food and Drug Administration, Silver Spring, MD
| | - Elena V Mishina
- Office of Science, Center for Tobacco Products, Food and Drug Administration, Silver Spring, MD
| | | | - Dana M van Bemmel
- Office of Science, Center for Tobacco Products, Food and Drug Administration, Silver Spring, MD
| | - Dorothy K Hatsukami
- Department of Psychiatry, Tobacco Research Programs, University of Minnesota, Minneapolis, MN
| |
Collapse
|
18
|
Thomas CE, Wang R, Adams-Haduch J, Murphy SE, Ueland PM, Midttun Ø, Brennan P, Johansson M, Gao YT, Yuan JM. Urinary Cotinine Is as Good a Biomarker as Serum Cotinine for Cigarette Smoking Exposure and Lung Cancer Risk Prediction. Cancer Epidemiol Biomarkers Prev 2020; 29:127-132. [PMID: 31685561 PMCID: PMC7695222 DOI: 10.1158/1055-9965.epi-19-0653] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/01/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cotinine is a metabolite of nicotine. Serum and urinary cotinine are validated biomarkers for cigarette exposure. Their performance for lung cancer risk prediction has not been simultaneously examined in epidemiologic studies. METHODS A nested case-control study, including 452 incident lung cancer cases and 452 smoking-matched controls in the Shanghai cohort study, was conducted. Mass spectrometry-based methods were used to quantify cotinine in serum and urine samples collected from current smokers at baseline, on average 10 years before cancer diagnosis of cases. Logistic regression was used to estimate ORs, 95% confidence intervals (CI), and AUC ROC for lung cancer associated with higher levels of cotinine. RESULTS Serum and urinary cotinine levels were significantly higher in lung cancer cases than controls. Compared with the lowest quartile serum cotinine (≤0.40 nmol/mL), the OR of lung cancer for smokers in the highest quartiles (>1.39 nmol/mL) was 5.46 (95% CI, 3.38-8.81). Similarly, the OR was 5.49 (95% CI, 3.39-8.87) for highest (>16.38 nmol/mg creatinine) relative to the lowest quartile of urinary total cotinine (≤4.11 nmol/mg creatinine). A risk prediction model yielded an AUC of 0.72 (95% CI, 0.69-0.75) for serum cotinine and 0.72 (95% CI, 0.69-0.75) for urinary total cotinine combined with smoking history. CONCLUSIONS Urinary and serum cotinine have the same performance in prediction of lung cancer risk for current smokers. IMPACT Urinary cotinine is a noninvasive biomarker that can replace serum cotinine in risk prediction of future lung cancer risk for current smokers.
Collapse
Affiliation(s)
- Claire E Thomas
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Renwei Wang
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer Adams-Haduch
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Biochemistry, Molecular Biology and BioPhysics, University of Minnesota, Minneapolis, Minnesota
| | - Per Magne Ueland
- Department of Clinical Sciences, Laboratory of Clinical Biochemistry, University of Bergen, Bergen, Norway
- Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| | | | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Mattias Johansson
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Ryan BM. Lung cancer health disparities. Carcinogenesis 2019; 39:741-751. [PMID: 29547922 DOI: 10.1093/carcin/bgy047] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/13/2018] [Indexed: 12/16/2022] Open
Abstract
Compared with all other racial and ethnic groups in the United States, African Americans are disproportionally affected by lung cancer, both in terms of incidence and survival. It is likely that smoking, as the main etiological factor associated with lung cancer, contributes to these disparities, but the precise mechanism is still unclear. This paper seeks to explore the history of lung cancer disparities and review to the literature regarding the various factors that contribute to them.
Collapse
Affiliation(s)
- Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
20
|
Using Phytochemicals to Investigate the Activation of Nicotine Detoxification via Upregulation of CYP2A6 in Animal Models Exposed Tobacco Smoke Condensate by Intratracheal Instillation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7635197. [PMID: 30662513 PMCID: PMC6313994 DOI: 10.1155/2018/7635197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/22/2018] [Indexed: 01/04/2023]
Abstract
This study examined the efficacy of standardized Smilax china L. root extract (SSCR) containing chlorogenic acid on detoxifying nicotine from tobacco smoke condensate (TSC) in vitro and in vivo. Chlorogenic acid is an identified bioactive component in SSCR by ultraperformance liquid chromatography/photodiode array/electrospray ionization/mass spectroscopy (UPLC/PDA/ESI/MS). HepG2 liver cells and A549 lung cells were carried for measuring ROS and antioxidant enzymes. Sprague-Dawley rats were treated with nicotine by intratracheal instillation (ITI). Cell viabilities by pretreatments of 5, 12.5, and 25, 50 μg SSCR/mL ranged from 41 to 76% in HepG2 and 65 to 95% in A549. Pretreatments of SSCR inhibited TSC-mediated production of reactive oxygen species (ROS) by 8 and 10% in HepG2 and A549 cells, respectively. However, the expression of CAT, SOD1, and AOX1 was downregulated by SSCR in the both cells. The highest conversion of cotinine was observed at 50 μg/mL of SSCR after 120 min of incubation. SSCR upregulated CYP2A6 3-fold in A549 cells regardless of TSC cotreatment. When Sprague-Dawley rats were treated with nicotine by ITI or subjected to SSCR administration for 14 days, the levels of cotinine in urine increased in SSCR treatment only. The cellular level of antioxidant capacity at 10 or 100 mg/kg body weight/day of SSCR treatment was 1.89 and 1.86 times higher than those of nicotine-control. Results suggest that the intake of SSCR can detoxify nicotine by elevating nicotine conversion to cotinine and antioxidant capacity.
Collapse
|
21
|
Target sequencing of cancer-related genes in early esophageal squamous neoplasia resected by endoscopic resection in Japanese patients. Oncotarget 2018; 9:36793-36803. [PMID: 30613367 PMCID: PMC6298401 DOI: 10.18632/oncotarget.26397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/24/2018] [Indexed: 11/25/2022] Open
Abstract
Background and Aims Next generation sequencing (NGS) has revealed a great deal about cancer-related somatic changes in esophageal squamous cell neoplasia; however, the changes in the very early stages remain unclear. Results TP53 (87%) and CDKN2A (20%) hot spot mutations were frequently found in early lesions. TP53 was the most common mutation (LGIN/HGIN, 86%; EP, 83%; LPM, 95%; MM/SM1, 80%), followed by CDKN2A (29%, 28%, 16% and 10%, respectively); the frequency of other mutations increased as the disease advanced (p < 0.01). Copy number variation analysis revealed copy number aberrations in multiple genes, including PIK3CA amplification (48%). NGS was superior to p53 immunostaining for detecting TP53 mutations (74% vs. 87%); in combination, the two tests improved detectability to 94%. Clinically, smoking was associated with the occurrence of TP53 mutations in these early lesions (p = 0.049). Materials and Methods Fifty-four early esophageal neoplasia lesions from 47 patients treated by endoscopic resection (low-grade intraepithelial neoplasia [LGIN], n = 1; high-grade intraepithelial neoplasia [HGIN] n = 7; invasion limited to epithelium [EP/M1], n = 18; lamina propria mucosae [LPM/M2], n = 19; muscularis mucosae [MM/M3], n = 8; and upper third of the SM [SM1], n = 2) were isolated from formalin-fixed paraffin-embedded tissue specimens by laser-capture microdissection. Target sequencing of 50 cancer-related genes was performed with an Ion Proton sequencer; their association with the clinical characteristics was investigated. Conclusions Mutations of TP53 and CDKN2A, and PIK3CA amplification were common in early esophageal squamous neoplasia, while other mutations accumulated with disease progression. An understanding of these molecular events might provide a molecular basis for early lesion treatment.
Collapse
|
22
|
Murphy SE, Park SL, Balbo S, Haiman CA, Hatsukami DK, Patel Y, Peterson LA, Stepanov I, Stram DO, Tretyakova N, Hecht SS, Le Marchand L. Tobacco biomarkers and genetic/epigenetic analysis to investigate ethnic/racial differences in lung cancer risk among smokers. NPJ Precis Oncol 2018; 2:17. [PMID: 30155522 PMCID: PMC6105591 DOI: 10.1038/s41698-018-0057-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
Abstract
The Multiethnic Cohort Study has demonstrated that African Americans and Native Hawaiians have a higher risk for lung cancer due to cigarette smoking than Whites while Latinos and Japanese Americans have a lower risk. These findings are consistent with other epidemiologic studies in the literature. In this review, we summarize tobacco carcinogen and toxicant biomarker studies and genetic analyses which partially explain these differences. As determined by measurement of total nicotine equivalents in urine, which account for about 85% of the nicotine dose, African Americans take up greater amounts of nicotine than Whites per cigarette while Japanese Americans take up less. There are corresponding differences in the uptake of tobacco smoke carcinogens such as tobacco-specific nitrosamines, polycyclic aromatic hydrocarbons, 1,3-butadiene, and other toxic volatiles. The lower nicotine uptake of Japanese Americans is clearly linked to the preponderance of low activity forms of the primary nicotine metabolizing enzyme CYP2A6 in this ethnic group, leading to more unchanged nicotine in the body and thus lower smoking intensity. But the relatively high risk of Native Hawaiians and the low risk of Latino smokers for lung cancer are not explained by these factors. The possible role of epigenetics in modifying lung cancer risk among smokers is also discussed here. The results of these published studies may lead to a better understanding of susceptibility factors for lung cancer in cigarette smokers thus potentially identifying biomarkers that can detect those individuals at highest risk so that preventive approaches can be initiated at an early stage of the lung cancer development process.
Collapse
Affiliation(s)
- Sharon E. Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Sungshim Lani Park
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089 USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Christopher A. Haiman
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089 USA
| | | | - Yesha Patel
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089 USA
| | - Lisa A. Peterson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Daniel O. Stram
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089 USA
| | - Natalia Tretyakova
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Loïc Le Marchand
- Cancer Research Center of Hawaii, University of Hawaii, Honolulu, HI 96813 USA
| |
Collapse
|
23
|
Yuan JM, Carmella SG, Wang R, Tan YT, Adams-Haduch J, Gao YT, Hecht SS. Relationship of the oxidative damage biomarker 8-epi-prostaglandin F2α to risk of lung cancer development in the Shanghai Cohort Study. Carcinogenesis 2018; 39:948-954. [PMID: 29726912 PMCID: PMC7190890 DOI: 10.1093/carcin/bgy060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 05/01/2018] [Indexed: 02/01/2023] Open
Abstract
It has been hypothesized that the pathogenesis of lung cancer induced by cigarette smoking involves oxidative damage by free radicals. Epidemiological data on biomarkers of oxidative damage and risk of lung cancer development are sparse. A nested case-control study of 610 lung cancer cases and 610 matched controls was conducted within a prospective cohort of 18 244 Chinese men in Shanghai, China. The concentrations of 8-epi-prostaglandin F2α (8-epiPGF2α), a biomarker of oxidative stress, were determined in baseline urine samples using a validated mass-spectrometry assay. Current smokers had significantly higher level of 8-epiPGF2α than former smokers or never smokers (P < 0.001). 8-epiPGF2α levels were significantly higher in lung cancer cases than their smoking-matched controls in former and current smokers, but not different in never smokers (P for interaction = 0.019). The relative risks of developing lung cancer for former and current smokers in the highest relative to the lowest quartile of 8-epiPGF2α were 5.25 (Ptrend = 0.035) and 1.99 (Ptrend =0.007), respectively. The effect of 8-epiPGF2α and biomarkers of cigarette smoke exposure on lung cancer risk was additive; the relative risk was 5.33 (95% confidence interval = 2.65-7.51) for current smokers with the highest thirds of 8-epiPGF2α and total cotinine compared with their lowest thirds. Smokers with a heightened state of oxidative stress in response to the insults of cigarette smoking may be more susceptible to smoking-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven G Carmella
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Renwei Wang
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yu-Ting Tan
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jennifer Adams-Haduch
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
24
|
Taghavi T, Novalen M, Lerman C, George TP, Tyndale RF. A Comparison of Direct and Indirect Analytical Approaches to Measuring Total Nicotine Equivalents in Urine. Cancer Epidemiol Biomarkers Prev 2018; 27:882-891. [PMID: 29853480 DOI: 10.1158/1055-9965.epi-18-0018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/15/2018] [Accepted: 05/23/2018] [Indexed: 12/23/2022] Open
Abstract
Background: Total nicotine equivalents (TNE), the sum of nicotine and metabolites in urine, is a valuable tool for evaluating nicotine exposure. Most methods for measuring TNE involve two-step enzymatic hydrolysis for indirect quantification of glucuronide metabolites. Here, we describe a rapid, low-cost direct LC/MS assay.Methods: In 139 smokers' urine samples, Bland-Altman, correlation, and regression analyses were used to investigate differences in quantification of nicotine and metabolites, TNE, and nicotine metabolite ratio (NMR) between direct and indirect LC/MS methods. DNA from a subset (n = 97 smokers) was genotyped for UGT2B10*2 and UGT2B17*2, and the known impact of these variants was evaluated using urinary ratios determined by the direct versus indirect method.Results: The direct method showed high accuracy (0%-9% bias) and precision (3%-14% coefficient of variation) with similar distribution of nicotine metabolites to literary estimates and good agreement between the direct and indirect methods for nicotine, cotinine, and 3-hydroxycotinine (ratios 0.99-1.07), but less agreement for their respective glucuronides (ratios 1.16-4.17). The direct method identified urinary 3HC+3HC-GLUC/COT as having the highest concordance with plasma NMR and provided substantially better estimations of the established genetic impact of glucuronidation variants compared with the indirect method.Conclusions: Direct quantification of nicotine and metabolites is less time-consuming and less costly, and provides accurate estimates of nicotine intake, metabolism rate, and the impact of genetic variation in smokers.Impact: Lower cost and maintenance combined with high accuracy and reproducibility make the direct method ideal for smoking biomarker, NMR, and pharmacogenomics studies. Cancer Epidemiol Biomarkers Prev; 27(8); 882-91. ©2018 AACR.
Collapse
Affiliation(s)
- Taraneh Taghavi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Maria Novalen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Caryn Lerman
- Center for Interdisciplinary Research on Nicotine Addiction, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tony P George
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada. .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Park SL, Murphy SE, Wilkens LR, Stram DO, Hecht SS, Le Marchand L. Association of CYP2A6 activity with lung cancer incidence in smokers: The multiethnic cohort study. PLoS One 2017; 12:e0178435. [PMID: 28542511 PMCID: PMC5444837 DOI: 10.1371/journal.pone.0178435] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/12/2017] [Indexed: 12/21/2022] Open
Abstract
While smoking is the primary cause of lung cancer, only 11-24% of smokers develop the malignancy over their lifetime. The primary addictive agent in tobacco smoke is nicotine and variation in nicotine metabolism may influence the smoking levels of an individual. Therefore, inter-individual variation in lung cancer risk among smokers may be due in part to differences in the activity of enzymes involved in nicotine metabolism. In most smokers, cytochrome P450 2A6 (CYP2A6)-catalyzed C-oxidation accounts for >75% of nicotine metabolism, and the activity of this enzyme has been shown to correlate with the amount of nicotine and carcinogens drawn from cigarettes. We prospectively evaluated the association of urinary biomarkers of nicotine uptake (total nicotine equivalents [TNE]) and CYP2A6 activity (ratio of urinary total trans-3'-hydroxycotinine to cotinine) with lung cancer risk among 2,309 Multiethnic Cohort Study participants who were current smokers at time of urine collection; 92 cases were diagnosed during a mean follow-up of 9.5 years. We found that higher CYP2A6 activity and TNE was associated with increased lung cancer risk after adjusting for age, sex, race/ethnicity, body mass index, smoking duration, and urinary creatinine (p's = 0.002). The association for CYP2A6 activity remained even after adjusting for self-reported cigarettes per day (CPD) (Hazard Ratio [HR] per unit increase in log-CYP2A6 activity = 1.52; p = 0.005) and after adjusting for TNE (HR = 1.46; p = 0.01). In contrast, the association between TNE and lung cancer risk was of borderline statistical significance when adjusted for CPD (HR = 1.53; p = 0.06) and not statistically significant when further adjusted for CYP2A6 activity (HR = 1.30; p = 0.22). These findings suggest that CYP2A6 activity provides information on lung cancer risk that is not captured by smoking history or a (short-term) biomarker of dose. CYP2A6 activity should be further studied as a risk biomarker for smoking-related lung cancer.
Collapse
Affiliation(s)
- Sungshim L. Park
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Sharon E. Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Lynne R. Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Daniel O. Stram
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Stephen S. Hecht
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| |
Collapse
|
26
|
Yuan JM, Nelson HH, Carmella SG, Wang R, Kuriger-Laber J, Jin A, Adams-Haduch J, Hecht SS, Koh WP, Murphy SE. CYP2A6 genetic polymorphisms and biomarkers of tobacco smoke constituents in relation to risk of lung cancer in the Singapore Chinese Health Study. Carcinogenesis 2017; 38:411-418. [PMID: 28182203 PMCID: PMC6248819 DOI: 10.1093/carcin/bgx012] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/16/2017] [Accepted: 01/24/2017] [Indexed: 01/01/2023] Open
Abstract
Cytochrome P450 2A6 (CYP2A6) catalyzes the metabolism of nicotine and the tobacco-specific lung carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Genetic variation in CYP2A6 may affect smoking behavior and contribute to lung cancer risk. A nested case-control study of 197 lung cancer cases and 197 matched controls was conducted within a prospective cohort of 63 257 Chinese men and women in Singapore. Quantified were five genetic variants of CYP2A6 (*1A, *4, *7, *9 and *12) and urinary metabolites of nicotine [total nicotine, total cotinine, total trans-3'-hydroxycotinine (3HC)] and NNK (total NNAL, free NNAL, NNAL-glucuronide, NNAL-N-glucuronide, and NNAL-O-glucuronide). Higher urinary metabolites of nicotine and NNK were significantly associated with a 2- to 3-fold increased risk of lung cancer after adjustment for smoking intensity and duration. Lower CYP2A6-determined nicotine metabolizer status was significantly associated with a lower ratio of total 3HC over total cotinine, lower total nicotine equivalent and reduced risk of developing lung cancer (all Ptrend < 0.001). Compared with normal metabolizers, odds ratios (95% confidence intervals) of developing lung cancer for intermediate, slow and poor metabolizers determined by CYP2A6 genotypes were 0.85 (0.41-1.77), 0.55 (0.28-1.08) and 0.32 (0.15-0.70), respectively, after adjustment for smoking intensity and duration and urinary total nicotine equivalents. Thus the reduced risk of lung cancer in smokers with lower CYP2A6 activity may be explained by lower consumption of cigarettes, less intense smoking and reduced CYP2A6-catalyzed activation of the tobacco-specific lung carcinogen NNK.
Collapse
Affiliation(s)
- Jian-Min Yuan
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heather H Nelson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Steven G Carmella
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Renwei Wang
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | | - Aizhen Jin
- National Registry of Diseases Office, Health Promotion Board, Singapore, Singapore
| | - Jennifer Adams-Haduch
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Woon-Puay Koh
- Duke-NUS Medical School Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore and
| | - Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and BioPhysics, University of Minnesota, MN, USA
| |
Collapse
|
27
|
López-Flores LA, Pérez-Rubio G, Falfán-Valencia R. Distribution of polymorphic variants of CYP2A6 and their involvement in nicotine addiction. EXCLI JOURNAL 2017; 16:174-196. [PMID: 28507465 PMCID: PMC5427481 DOI: 10.17179/excli2016-847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/13/2017] [Indexed: 01/08/2023]
Abstract
Tobacco consumption has become a major public health issue, which has motivated studies to identify and understand the biological processes involved in the smoking behavior for prevention and smoking cessation treatments. CYP2A6 has been identified as the main gene that codifies the enzyme that metabolizes nicotine. Many alleles have been identified after the discovery of CYP2A6, suggesting a wide interethnic variability and a diverse smoking behavior of the allele carrying individuals. The main purpose of this review is to update and highlight the effects of the CYP2A6 gene variability related to tobacco consumption reported from diverse human populations. The review further aims to consider CYP2A6 in future studies as a possible genetic marker for the prevention and treatment of nicotine addiction. Therefore, we analyzed several population studies and their importance at addressing and characterizing a population using specific parameters. Our efforts may contribute to a personalized system for detecting, preventing and treating populations at a higher risk of smoking to avoid diseases related to tobacco consumption.
Collapse
|
28
|
Abstract
Nicotine is the primary addictive agent in tobacco, and P450 2A6 (gene name: CYP2A6) is the primary catalyst of nicotine metabolism. It was proposed more than 20 years ago that individuals who metabolize nicotine poorly would smoke less, either fewer cigarettes per day or less intensely per cigarette, compared to smokers who metabolize nicotine more efficiently. These poor metabolizers would then be less likely to develop lung cancer due to their lower exposure to the many carcinogens delivered with nicotine in each puff of smoke. Numerous studies have reported that smokers who carry reduced activity or null CYP2A6 alleles do smoke less. Yet only in Asian populations, both Japanese and Chinese, which have a high prevalence of genetic variants, has a link between CYP2A6, smoking dose, and lung cancer been established. In other ethnic groups, it has been challenging to confirm a direct link between P450 2A6-mediated nicotine metabolism and the risk of lung cancer. This challenge is due in part to the difficulty in accurately quantifying smoking dose and accurately predicting or measuring P450 2A6-mediated nicotine metabolism. Biomarkers of nicotine metabolism and smoking exposure, including the ratio of trans-3-hydroxycotine to cotinine, a measure of P450 2A6 activity and plasma cotinine, or urinary total nicotine equivalents (the sum of nicotine and six metabolites) as measures of exposure are useful for addressing this challenge. However, to take full advantage of these biomarkers in the study of ethnic/racial differences in the risk of lung cancer requires the complete characterization of nicotine metabolism across ethnic/racial groups. Variation in metabolism pathways, other than those catalyzed by P450 2A6, can impact biomarkers of both nicotine metabolism and dose. This is clearly important for smokers with low levels of UGT2B10-catalyzed nicotine and cotinine glucuronidation because the UGT2B10 genotype influences plasma cotinine levels. Cotinine is not glucuronidated in 15% of African American smokers (compared to 1% of Whites) due to the prevalence of a UGT2B10 splice variant. This variant contributes significantly to the higher plasma cotinine levels per cigarette in this group and may also influence the accuracy of the 3HCOT to cotinine ratio as a measure of P450 2A6 activity.
Collapse
Affiliation(s)
- Sharon E. Murphy
- Department of Biochemistry Molecular Biology and Biophysics and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
29
|
Hecht SS. Oral Cell DNA Adducts as Potential Biomarkers for Lung Cancer Susceptibility in Cigarette Smokers. Chem Res Toxicol 2017; 30:367-375. [PMID: 28092948 PMCID: PMC5310195 DOI: 10.1021/acs.chemrestox.6b00372] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This perspective considers the use of oral cell DNA adducts, together with exposure and genetic information, to potentially identify those cigarette smokers at highest risk for lung cancer, so that appropriate preventive measures could be initiated at a relatively young age before too much damage has been done. There are now well established and validated analytical methods for the quantitation of urinary and serum metabolites of tobacco smoke toxicants and carcinogens. These metabolites provide a profile of exposure and in some cases lung cancer risk, but they do not yield information on the critical DNA damage parameter that leads to mutations in cancer growth control genes such as KRAS and TP53. Studies demonstrate a correlation between changes in the oral cavity and lung in cigarette smokers, due to the field effect of tobacco smoke. Oral cell DNA is readily obtained in contrast to DNA samples from the lung. Studies in which oral cell DNA and salivary DNA have been analyzed for specific DNA adducts are reviewed; some of the adducts identified have also been previously reported in lung DNA from smokers. The multiple challenges of developing a panel of oral cell DNA adducts that could be routinely quantified by mass spectrometry are discussed.
Collapse
Affiliation(s)
- Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
30
|
Patel YM, Park SL, Han Y, Wilkens LR, Bickeböller H, Rosenberger A, Caporaso N, Landi MT, Brüske I, Risch A, Wei Y, Christiani DC, Brennan P, Houlston R, McKay J, McLaughlin J, Hung R, Murphy S, Stram DO, Amos C, Le Marchand L. Novel Association of Genetic Markers Affecting CYP2A6 Activity and Lung Cancer Risk. Cancer Res 2016; 76:5768-5776. [PMID: 27488534 PMCID: PMC5050097 DOI: 10.1158/0008-5472.can-16-0446] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/10/2016] [Indexed: 01/28/2023]
Abstract
Metabolism of nicotine by cytochrome P450 2A6 (CYP2A6) is a suspected determinant of smoking dose and, consequently, lung cancer risk. We conducted a genome-wide association study (GWAS) of CYP2A6 activity, as measured by the urinary ratio of trans-3'-hydroxycotinine and its glucuronide conjugate over cotinine (total 3HCOT/COT), among 2,239 smokers in the Multiethnic Cohort (MEC) study. We identified 248 CYP2A6 variants associated with CYP2A6 activity (P < 5 × 10-8). CYP2A6 activity was correlated (r = 0.32; P < 0.0001) with total nicotine equivalents (a measure of nicotine uptake). When we examined the effect of these variants on lung cancer risk in the Transdisciplinary Research in Cancer of the Lung (TRICL) consortium GWAS dataset (13,479 cases and 43,218 controls), we found that the vast majority of these individual effects were directionally consistent and associated with an increased lung cancer risk. Two hundred and twenty-six of the 248 variants associated with CYP2A6 activity in the MEC were available in TRICL. Of them, 81% had directionally consistent risk estimates, and six were globally significantly associated with lung cancer. When conditioning on nine known functional variants and two deletions, the top two SNPs (rs56113850 in MEC and rs35755165 in TRICL) remained significantly associated with CYP2A6 activity in MEC and lung cancer in TRICL. The present data support the hypothesis that a greater CYP2A6 activity causes smokers to smoke more extensively and be exposed to higher levels of carcinogens, resulting in an increased risk for lung cancer. Although the variants identified in these studies may be used as risk prediction markers, the exact causal variants remain to be identified. Cancer Res; 76(19); 5768-76. ©2016 AACR.
Collapse
Affiliation(s)
- Yesha M Patel
- Department of Preventive Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sunghim L Park
- Department of Preventive Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Younghun Han
- Department of Biomedical Data Science, Dartmouth College, Hanover, New Hampshire
| | - Lynne R Wilkens
- Epidemiology Program, University of Hawai'i Cancer Center, Honolulu, Hawaii
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Irene Brüske
- Helmholtz Centre Munich, German Research Centre for Environmental Health, Institute of Epidemiology I, Neuherberg, Germany
| | - Angela Risch
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Yongyue Wei
- Nanjing Medical University School of Public Health, Nanjing, China
| | - David C Christiani
- Massachusetts General Hospital, Boston, Massachusetts. Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - James McKay
- Genetic Epidemiology Group, International Agency for Research on Cancer (IARC), Lyon, France
| | | | - Rayjean Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Sharon Murphy
- Department of Biochemistry Molecular Biology and Biophysics and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Daniel O Stram
- Department of Preventive Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Christopher Amos
- Department of Biomedical Data Science, Dartmouth College, Hanover, New Hampshire
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawai'i Cancer Center, Honolulu, Hawaii.
| |
Collapse
|
31
|
Associations of cytochrome P450 oxidoreductase genetic polymorphisms with smoking cessation in a Chinese population. Hum Genet 2016; 135:1389-1397. [DOI: 10.1007/s00439-016-1728-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/11/2016] [Indexed: 12/28/2022]
|
32
|
Hecht SS, Stepanov I, Carmella SG. Exposure and Metabolic Activation Biomarkers of Carcinogenic Tobacco-Specific Nitrosamines. Acc Chem Res 2016; 49:106-14. [PMID: 26678241 PMCID: PMC5154679 DOI: 10.1021/acs.accounts.5b00472] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lung cancer is the leading cause of cancer death in the world, and cigarette smoking is its main cause. Oral cavity cancer is another debilitating and often fatal cancer closely linked to tobacco product use. While great strides have been made in decreasing tobacco use in the United States and some other countries, there are still an estimated 1 billion men and 250 million women in the world who are cigarette smokers and there are hundreds of millions of smokeless tobacco users, all at risk for cancer. Worldwide, lung cancer kills about three people per minute. This Account focuses on metabolites and biomarkers of two powerful tobacco-specific nitrosamine carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN), considered to be among the main causes of lung cancer and oral cavity cancer in people who use tobacco products. Three properties of NNK and NNN are critical for successful biomarker studies: they are present in all tobacco products, they are tobacco-specific and are not found in any other product, and they are strong carcinogens. NNK and NNN are converted in humans to urinary metabolites that can be quantified by mass spectrometry as biomarkers of exposure to these carcinogens. They are also metabolized to diazonium ions and related electrophiles that react with DNA to form addition products that can be detected and quantified by mass spectrometry. These urinary metabolites and DNA addition products can serve as biomarkers of exposure and metabolic activation, respectively. The biomarkers of exposure, in particular the urinary NNK metabolites 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its glucuronides, have been extensively applied to document tobacco-specific lung carcinogen uptake in smokers and nonsmokers exposed to secondhand tobacco smoke. Highly sensitive mass spectrometric methods have been developed for quantitative analysis of these NNK metabolites as well as metabolites of NNN in human urine, blood, and toenails. Urinary and serum NNAL have been related to lung cancer risk, and urinary NNN has been related to esophageal cancer risk in prospective epidemiology studies. These results are consistent with carcinogenicity studies of NNK, NNAL, and NNN in rats, which show that NNK and NNAL induce mainly lung tumors, while NNN causes tumors of the esophagus and oral cavity. Biomarkers of metabolic activation of NNK and NNN applied in human studies include the metabolism of deuterium labeled substrates to distinguish NNK and NNN metabolism from that of nicotine and the determination of DNA and hemoglobin adducts in tissues, blood, and oral cells from people exposed to tobacco products. As these methods are continually improved in parallel with the ever increasing sensitivity and selectivity of mass spectrometers, development of a comprehensive biomarker panel for identifying tobacco users at high risk for cancer appears to be a realistic goal. Targeting high risk individuals for smoking cessation and cancer surveillance can potentially decrease the risk of developing fatal cancers.
Collapse
Affiliation(s)
- Stephen S. Hecht
- To whom correspondence should be addressed: Masonic Cancer Center, University of Minnesota, 2231 6 Street SE - 2-148 CCRB, Minneapolis, MN 55455, USA. phone: (612) 624-7604 fax: (612) 624-3869,
| | | | | |
Collapse
|