1
|
Testa AM, Vignozzi L, Corallo D, Aveic S, Viola A, Allegra M, Angioni R. Hypoxic Human Microglia Promote Angiogenesis Through Extracellular Vesicle Release. Int J Mol Sci 2024; 25:12508. [PMID: 39684220 DOI: 10.3390/ijms252312508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Microglia, the brain-resident immune cells, orchestrate neuroinflammatory responses and are crucial in the progression of neurological diseases, including ischemic stroke (IS), which accounts for approximately 85% of all strokes worldwide. Initially deemed detrimental, microglial activation has been shown to perform protective functions in the ischemic brain. Besides their effects on neurons, microglia play a role in promoting post-ischemic angiogenesis, a pivotal step for restoring oxygen and nutrient supply. However, the molecular mechanisms underlying microglia-endothelial cell interactions remain largely unresolved, particularly in humans. Using both in vitro and in vivo models, we investigated the angiogenic signature and properties of extracellular vesicles (EVs) released by human microglia upon hypoxia-reperfusion stimulation. EVs were isolated and characterized in terms of their size, concentration, and protein content. Their angiogenic potential was evaluated using endothelial cell assays and a zebrafish xenograft model. The in vivo effects were further assessed in a mouse model of ischemic stroke. Our findings identified key proteins orchestrating the pro-angiogenic functions of human microglial EVs under hypoxic conditions. In vitro assays demonstrated that hypoxic EVs (hypEVs) promoted endothelial cell migration and tube formation. In vivo, hypEVs induced vessel sprouting in zebrafish and increased microvessel density in the perilesional area of mice following ischemic stroke.
Collapse
Affiliation(s)
- Alessandra Maria Testa
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
- Laboratory of Immunity, Inflammation and Angiogenesis, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padua, Italy
| | - Livia Vignozzi
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Diana Corallo
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padua, Italy
| | - Sanja Aveic
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padua, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Manuela Allegra
- Laboratory of Neuronal Circuits in Developmental Disorders, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padua, Italy
- Neuroscience Institute, National Research Council, 35131 Padua, Italy
| | - Roberta Angioni
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
- Laboratory of Immunity, Inflammation and Angiogenesis, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padua, Italy
| |
Collapse
|
2
|
Pridgeon CS, Airavaara K, Monola J, Jokela A, Palmer D, Yliperttula M, Harjumäki R. Chronic hypoxia for the adaptation of extracellular vesicle phenotype. Sci Rep 2024; 14:25189. [PMID: 39448620 PMCID: PMC11502752 DOI: 10.1038/s41598-024-73453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
Variations in oxygen level affect the phenotype of cells and extracellular vesicles (EVs). Depending on the metabolic oxygen demand of cells, hypoxic cell culture can produce conditions more like those found in vivo, and with appropriate oxygen levels, mimic hypoxic tumours. However, most previous experiments studying both EVs and the effects of hypoxia on cells use periods of 72 h or less of hypoxia. We hypothesised that this was insufficient time for adaptation to hypoxic conditions both for EVs and cells which may skew the results of such studies. In this study, the effects of acute (72 h) and chronic hypoxia (> 2 weeks) on the phenotype of HepG2 and PC3 cells and their EVs were examined. Cells could be cultured normally under chronic hypoxic conditions and cryopreserved and recovered. The effects of hypoxia on EV phenotype are slow to establish and dependent on cell line. In PC3 cells, the greatest change in phenotype and increase in EV production occurred only with chronic hypoxic culture. In HepG2 cells, the number of EVs produced was insensitive to hypoxic culture and the greatest changes in protein expression were observed after acute hypoxic culture. Nonetheless, biphasic changes in EV phenotype were detected in both cell types in response to either acute or chronic hypoxia. These results indicate that for cells which do not induce consumptive oxygen depletion, prolonged hypoxic culture is required for complete adaptation.
Collapse
Affiliation(s)
- Chris S Pridgeon
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Kerttu Airavaara
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Julia Monola
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alisa Jokela
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Daniel Palmer
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, University of Rostock, Rostock, Germany
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Riina Harjumäki
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Peppicelli S, Calorini L, Bianchini F, Papucci L, Magnelli L, Andreucci E. Acidity and hypoxia of tumor microenvironment, a positive interplay in extracellular vesicle release by tumor cells. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00969-z. [PMID: 39023664 DOI: 10.1007/s13402-024-00969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
The complex and continuously evolving features of the tumor microenvironment, varying between tumor histotypes, are characterized by the presence of host cells and tumor cells embedded in a milieu shaped by hypoxia and low pH, resulting from the frequent imbalance between vascularity and tumor cell proliferation. These microenvironmental metabolic stressors play a crucial role in remodeling host cells and tumor cells, contributing to the stimulation of cancer cell heterogeneity, clonal evolution, and multidrug resistance, ultimately leading to progression and metastasis. The extracellular vesicles (EVs), membrane-enclosed structures released into the extracellular milieu by tumor/host cells, are now recognized as critical drivers in the complex intercellular communication between tumor cells and the local cellular components in a hypoxic/acidic microenvironment. Understanding the intricate molecular mechanisms governing the interactions between tumor and host cells within a hypoxic and acidic microenvironment, triggered by the release of EVs, could pave the way for innovative strategies to disrupt the complex interplay of cancer cells with their microenvironment. This approach may contribute to the development of an efficient and safe therapeutic strategy to combat cancer progression. Therefore, we review the major findings on the release of EVs in a hypoxic/acidic tumor microenvironment to appreciate their role in tumor progression toward metastatic disease.
Collapse
Affiliation(s)
- Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy.
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| |
Collapse
|
4
|
Bobis-Wozowicz S, Paw M, Sarna M, Kędracka-Krok S, Nit K, Błażowska N, Dobosz A, Hammad R, Cathomen T, Zuba-Surma E, Tyszka-Czochara M, Madeja Z. Hypoxic extracellular vesicles from hiPSCs protect cardiomyocytes from oxidative damage by transferring antioxidant proteins and enhancing Akt/Erk/NRF2 signaling. Cell Commun Signal 2024; 22:356. [PMID: 38982464 PMCID: PMC11232324 DOI: 10.1186/s12964-024-01722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Stem cell-derived extracellular vesicles (EVs) are an emerging class of therapeutics with excellent biocompatibility, bioactivity and pro-regenerative capacity. One of the potential targets for EV-based medicines are cardiovascular diseases (CVD). In this work we used EVs derived from human induced pluripotent stem cells (hiPSCs; hiPS-EVs) cultured under different oxygen concentrations (21, 5 and 3% O2) to dissect the molecular mechanisms responsible for cardioprotection. METHODS EVs were isolated by ultrafiltration combined with size exclusion chromatography (UF + SEC), followed by characterization by nanoparticle tracking analysis, atomic force microscopy (AFM) and Western blot methods. Liquid chromatography and tandem mass spectrometry coupled with bioinformatic analyses were used to identify differentially enriched proteins in various oxygen conditions. We directly compared the cardioprotective effects of these EVs in an oxygen-glucose deprivation/reoxygenation (OGD/R) model of cardiomyocyte (CM) injury. Using advanced molecular biology, fluorescence microscopy, atomic force spectroscopy and bioinformatics techniques, we investigated intracellular signaling pathways involved in the regulation of cell survival, apoptosis and antioxidant response. The direct effect of EVs on NRF2-regulated signaling was evaluated in CMs following NRF2 inhibition with ML385. RESULTS We demonstrate that hiPS-EVs derived from physiological hypoxia at 5% O2 (EV-H5) exert enhanced cytoprotective function towards damaged CMs compared to EVs derived from other tested oxygen conditions (normoxia; EV-N and hypoxia 3% O2; EV-H3). This resulted from higher phosphorylation rates of Akt kinase in the recipient cells after transfer, modulation of AMPK activity and reduced apoptosis. Furthermore, we provide direct evidence for improved calcium signaling and sustained contractility in CMs treated with EV-H5 using AFM measurements. Mechanistically, our mass spectrometry and bioinformatics analyses revealed differentially enriched proteins in EV-H5 associated with the antioxidant pathway regulated by NRF2. In this regard, EV-H5 increased the nuclear translocation of NRF2 protein and enhanced its transcription in CMs upon OGD/R. In contrast, inhibition of NRF2 with ML385 abolished the protective effect of EVs on CMs. CONCLUSIONS In this work, we demonstrate a superior cardioprotective function of EV-H5 compared to EV-N and EV-H3. Such EVs were most effective in restoring redox balance in stressed CMs, preserving their contractile function and preventing cell death. Our data support the potential use of hiPS-EVs derived from physiological hypoxia, as cell-free therapeutics with regenerative properties for the treatment of cardiac diseases.
Collapse
Affiliation(s)
- Sylwia Bobis-Wozowicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland.
| | - Milena Paw
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Michał Sarna
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Sylwia Kędracka-Krok
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Physical Biochemistry, Jagiellonian University, Krakow, Poland
| | - Kinga Nit
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Natalia Błażowska
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Anna Dobosz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Ruba Hammad
- Freiburg iPS Core Facility, Institute for Transfusion Medicine and Gene Therapy, Medical Center- University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Freiburg iPS Core Facility, Institute for Transfusion Medicine and Gene Therapy, Medical Center- University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Ewa Zuba-Surma
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Małgorzata Tyszka-Czochara
- Faculty of Pharmacy, Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Kraków, Poland
| | - Zbigniew Madeja
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
5
|
Yang M, Mu Y, Yu X, Gao D, Zhang W, Li Y, Liu J, Sun C, Zhuang J. Survival strategies: How tumor hypoxia microenvironment orchestrates angiogenesis. Biomed Pharmacother 2024; 176:116783. [PMID: 38796970 DOI: 10.1016/j.biopha.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
During tumor development, the tumor itself must continuously generate new blood vessels to meet their growth needs while also allowing for tumor invasion and metastasis. One of the most common features of tumors is hypoxia, which drives the process of tumor angiogenesis by regulating the tumor microenvironment, thus adversely affecting the prognosis of patients. In addition, to overcome unsuitable environments for growth, such as hypoxia, nutrient deficiency, hyperacidity, and immunosuppression, the tumor microenvironment (TME) coordinates angiogenesis in several ways to restore the supply of oxygen and nutrients and to remove metabolic wastes. A growing body of research suggests that tumor angiogenesis and hypoxia interact through a complex interplay of crosstalk, which is inextricably linked to the TME. Here, we review the TME's positive contribution to angiogenesis from an angiogenesis-centric perspective while considering the objective impact of hypoxic phenotypes and the status and limitations of current angiogenic therapies.
Collapse
Affiliation(s)
- Mengrui Yang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yufeng Mu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Dandan Gao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Wenfeng Zhang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Ye Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Jingyang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
6
|
Cao Z, Kong F, Ding J, Chen C, He F, Deng W. Promoting Alzheimer's disease research and therapy with stem cell technology. Stem Cell Res Ther 2024; 15:136. [PMID: 38715083 PMCID: PMC11077895 DOI: 10.1186/s13287-024-03737-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent form of dementia leading to memory loss, reduced cognitive and linguistic abilities, and decreased self-care. Current AD treatments aim to relieve symptoms and slow disease progression, but a cure is elusive due to limited understanding of the underlying disease mechanisms. MAIN CONTENT Stem cell technology has the potential to revolutionize AD research. With the ability to self-renew and differentiate into various cell types, stem cells are valuable tools for disease modeling, drug screening, and cell therapy. Recent advances have broadened our understanding beyond the deposition of amyloidβ (Aβ) or tau proteins in AD to encompass risk genes, immune system disorders, and neuron-glia mis-communication, relying heavily on stem cell-derived disease models. These stem cell-based models (e.g., organoids and microfluidic chips) simulate in vivo pathological processes with extraordinary spatial and temporal resolution. Stem cell technologies have the potential to alleviate AD pathology through various pathways, including immunomodulation, replacement of damaged neurons, and neurotrophic support. In recent years, transplantation of glial cells like oligodendrocytes and the infusion of exosomes have become hot research topics. CONCLUSION Although stem cell-based models and therapies for AD face several challenges, such as extended culture time and low differentiation efficiency, they still show considerable potential for AD treatment and are likely to become preferred tools for AD research.
Collapse
Affiliation(s)
- Zimeng Cao
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Fanshu Kong
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaqi Ding
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Chunxia Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Fumei He
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
- School of Pharmaceutical Sciences, Dali University, Dali, 671000, China.
| | - Wenbin Deng
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
7
|
Zhang H, Du Z, Tu C, Zhou X, Menu E, Wang J. Hypoxic Bone Marrow Stromal Cells Secrete miR-140-5p and miR-28-3p That Target SPRED1 to Confer Drug Resistance in Multiple Myeloma. Cancer Res 2024; 84:39-55. [PMID: 37756570 DOI: 10.1158/0008-5472.can-23-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/19/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Bone marrow stromal cell (BMSC)-derived small extracellular vesicles (sEV) promote drug resistance to bortezomib in multiple myeloma cells. Elucidating the components of BMSC sEV that induce drug resistance in multiple myeloma cells could help identify strategies to overcome resistance. Considering the hypoxic nature of the myeloma microenvironment, we explored the role of hypoxia in regulating BMSC sEV cargo and investigated whether hypoxia-driven sEV miRNAs contribute to the drug resistance in multiple myeloma cells. Hypoxia increased the release of sEVs from BMSCs, and these sEVs more strongly attenuated bortezomib sensitivity in multiple myeloma cells than sEVs from BMSCs under normoxic conditions. RNA sequencing revealed that significantly elevated levels of miR-140-5p and miR-28-3p were enclosed in hypoxic BMSC-derived sEVs. Both miR-140-5p and miR-28-3p conferred bortezomib resistance in multiple myeloma cells by synergistically targeting SPRED1, a member of the Sprouty protein family that regulates MAPK activation. SPRED1 inhibition reduced sensitivity to bortezomib in multiple myeloma cells through activating MAPK-related pathways and significantly promoted multiple myeloma bortezomib resistance and tumor growth in a mouse model. These findings shed light on the role of hypoxia-induced miRNAs shuttled in BMSC-derived sEVs to multiple myeloma cells in inducing drug resistance and identify the miR-140-5p/miR-28-3p/SPRED1/MAPK pathway as a potential targetable axis for treating multiple myeloma. SIGNIFICANCE Hypoxia induces stromal cells to secrete extracellular vesicles with increased miR-140-5p and miR-28-3p that are transferred to multiple myeloma cells and drive drug resistance by increasing the MAPK signaling.
Collapse
Affiliation(s)
- Hui Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhimin Du
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- School of Nursing, Guangzhou Medical University, Guangzhou, China
| | - Chenggong Tu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Xinyan Zhou
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jinheng Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Gao P, Yi J, Chen W, Gu J, Miao S, Wang X, Huang Y, Jiang T, Li Q, Zhou W, Zhao S, Wu M, Yin G, Chen J. Pericyte-derived exosomal miR-210 improves mitochondrial function and inhibits lipid peroxidation in vascular endothelial cells after traumatic spinal cord injury by activating JAK1/STAT3 signaling pathway. J Nanobiotechnology 2023; 21:452. [PMID: 38012616 PMCID: PMC10680350 DOI: 10.1186/s12951-023-02110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/15/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) remains a significant health concern, with limited available treatment options. This condition poses significant medical, economic, and social challenges. SCI is typically categorized into primary and secondary injuries. Inflammation, oxidative stress, scar formation, and the immune microenvironment impede axon regeneration and subsequent functional restoration. Numerous studies have shown that the destruction of the blood-brain barrier (BBB) and microvessels is a crucial factor in severe secondary injury. Additionally, reactive oxygen species (ROS)-induced lipid peroxidation significantly contributes to endothelial cell death. Pericytes are essential constituents of the BBB that share the basement membrane with endothelial cells and astrocytes. They play a significant role in the establishment and maintenance of BBB. RESULTS Immunofluorescence staining at different time points revealed a consistent correlation between pericyte coverage and angiogenesis, suggesting that pericytes promote vascular repair via paracrine signaling. Pericytes undergo alterations in cellular morphology and the transcriptome when exposed to hypoxic conditions, potentially promoting angiogenesis. We simulated an early ischemia-hypoxic environment following SCI using glucose and oxygen deprivation and BBB models. Co-culturing pericytes with endothelial cells improved barrier function compared to the control group. However, this enhancement was reduced by the exosome inhibitor, GW4869. In vivo injection of exosomes improved BBB integrity and promoted motor function recovery in mice following SCI. Subsequently, we found that pericyte-derived exosomes exhibited significant miR-210-5p expression based on sequencing analysis. Therefore, we performed a series of gain- and loss-of-function experiments in vitro. CONCLUSION Our findings suggest that miR-210-5p regulates endothelial barrier function by inhibiting JAK1/STAT3 signaling. This process is achieved by regulating lipid peroxidation levels and improving mitochondrial function, suggesting a potential mechanism for restoration of the blood-spinal cord barrier (BSCB) after SCI.
Collapse
Affiliation(s)
- Peng Gao
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Jiang Yi
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Wenjun Chen
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
- Department of Orthopedic, Changzheng Hospital, No. 415 Fengyang Road, Shanghai, 200003, People's Republic of China
| | - Jun Gu
- Department of Orthopedic, Wuxi Xishan People's Hospital, No. 1128 Dacheng Road, Wuxi, 214105, People's Republic of China
| | - Sheng Miao
- Department of Orthopedic, Suqian First People's Hospital, No. 120 Suzhi Road, Suqian, 223812, People's Republic of China
| | - Xiaowei Wang
- Department of Orthopedic, Maanshan People's Hospital, No. 45 Hubei Road, Maanshan, 243000, Anhui, People's Republic of China
| | - Yifan Huang
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Tao Jiang
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Qingqing Li
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Wei Zhou
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Shujie Zhao
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
| | - Mengyuan Wu
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
| | - Guoyong Yin
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
| | - Jian Chen
- Department of Orthopedic, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
9
|
Paw M, Kusiak AA, Nit K, Litewka JJ, Piejko M, Wnuk D, Sarna M, Fic K, Stopa KB, Hammad R, Barczyk-Woznicka O, Cathomen T, Zuba-Surma E, Madeja Z, Ferdek PE, Bobis-Wozowicz S. Hypoxia enhances anti-fibrotic properties of extracellular vesicles derived from hiPSCs via the miR302b-3p/TGFβ/SMAD2 axis. BMC Med 2023; 21:412. [PMID: 37904135 PMCID: PMC10617123 DOI: 10.1186/s12916-023-03117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Cardiac fibrosis is one of the top killers among fibrotic diseases and continues to be a global unaddressed health problem. The lack of effective treatment combined with the considerable socioeconomic burden highlights the urgent need for innovative therapeutic options. Here, we evaluated the anti-fibrotic properties of extracellular vesicles (EVs) derived from human induced pluripotent stem cells (hiPSCs) that were cultured under various oxygen concentrations. METHODS EVs were isolated from three hiPSC lines cultured under normoxia (21% O2; EV-N) or reduced oxygen concentration (hypoxia): 3% O2 (EV-H3) or 5% O2 (EV-H5). The anti-fibrotic activity of EVs was tested in an in vitro model of cardiac fibrosis, followed by a detailed investigation of the underlying molecular mechanisms. Sequencing of EV miRNAs combined with bioinformatics analysis was conducted and a selected miRNA was validated using a miRNA mimic and inhibitor. Finally, EVs were tested in a mouse model of angiotensin II-induced cardiac fibrosis. RESULTS We provide evidence that an oxygen concentration of 5% enhances the anti-fibrotic effects of hiPS-EVs. These EVs were more effective in reducing pro-fibrotic markers in activated human cardiac fibroblasts, when compared to EV-N or EV-H3. We show that EV-H5 act through the canonical TGFβ/SMAD pathway, primarily via miR-302b-3p, which is the most abundant miRNA in EV-H5. Our results show that EV-H5 not only target transcripts of several profibrotic genes, including SMAD2 and TGFBR2, but also reduce the stiffness of activated fibroblasts. In a mouse model of heart fibrosis, EV-H5 outperformed EV-N in suppressing the inflammatory response in the host and by attenuating collagen deposition and reducing pro-fibrotic markers in cardiac tissue. CONCLUSIONS In this work, we provide evidence of superior anti-fibrotic properties of EV-H5 over EV-N or EV-H3. Our study uncovers that fine regulation of oxygen concentration in the cellular environment may enhance the anti-fibrotic effects of hiPS-EVs, which has great potential to be applied for heart regeneration.
Collapse
Affiliation(s)
- Milena Paw
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Agnieszka A Kusiak
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Kinga Nit
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Jacek J Litewka
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Marcin Piejko
- 3Rd Department of General Surgery, Jagiellonian University - Medical College, Kraków, Poland
| | - Dawid Wnuk
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Michał Sarna
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Kraków, Poland
| | - Kinga Fic
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Kinga B Stopa
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Ruba Hammad
- Freiburg iPS Core Facility, Institute for Transfusion Medicine and Gene Therapy, Medical Center, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Olga Barczyk-Woznicka
- Institute of Zoology and Biomedical Research, Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | - Toni Cathomen
- Freiburg iPS Core Facility, Institute for Transfusion Medicine and Gene Therapy, Medical Center, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Ewa Zuba-Surma
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Zbigniew Madeja
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Paweł E Ferdek
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Sylwia Bobis-Wozowicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
10
|
Wang C, Stöckl S, Pattappa G, Schulz D, Hofmann K, Ilic J, Reinders Y, Bauer RJ, Sickmann A, Grässel S. Extracellular Vesicles Derived from Osteogenic-Differentiated Human Bone Marrow-Derived Mesenchymal Cells Rescue Osteogenic Ability of Bone Marrow-Derived Mesenchymal Cells Impaired by Hypoxia. Biomedicines 2023; 11:2804. [PMID: 37893177 PMCID: PMC10604262 DOI: 10.3390/biomedicines11102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
In orthopedics, musculoskeletal disorders, i.e., non-union of bone fractures or osteoporosis, can have common histories and symptoms related to pathological hypoxic conditions induced by aging, trauma or metabolic disorders. Here, we observed that hypoxic conditions (2% O2) suppressed the osteogenic differentiation of human bone marrow-derived mesenchymal cells (hBMSC) in vitro and simultaneously increased reactive oxygen species (ROS) production. We assumed that cellular origin and cargo of extracellular vesicles (EVs) affect the osteogenic differentiation capacity of hBMSCs cultured under different oxygen pressures. Proteomic analysis revealed that EVs isolated from osteogenic differentiated hBMSC cultured under hypoxia (hypo-osteo EVs) or under normoxia (norm-osteo EVs) contained distinct protein profiles. Extracellular matrix (ECM) components, antioxidants and pro-osteogenic proteins were decreased in hypo-osteo EVs. The proteomic analysis in our previous study revealed that under normoxic culture conditions, pro-osteogenic proteins and ECM components have higher concentrations in norm-osteo EVs than in EVs derived from naïve hBMSCs (norm-naïve EVs). When selected for further analysis, five anti-hypoxic proteins were significantly upregulated (response to hypoxia) in norm-osteo EVs. Three of them are characterized as antioxidant proteins. We performed qRT-PCR to verify the corresponding gene expression levels in the norm-osteo EVs' and norm-naïve EVs' parent cells cultured under normoxia. Moreover, we observed that norm-osteo EVs rescued the osteogenic ability of naïve hBMSCs cultured under hypoxia and reduced hypoxia-induced elevation of ROS production in osteogenic differentiated hBMSCs, presumably by inducing expression of anti-hypoxic/ antioxidant and pro-osteogenic genes.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Orthopedic Surgery, Experimental Orthopedics, Center for Medical Biotechnology (ZMB), Biopark 1, University of Regensburg, 93053 Regensburg, Germany (K.H.)
| | - Sabine Stöckl
- Department of Orthopedic Surgery, Experimental Orthopedics, Center for Medical Biotechnology (ZMB), Biopark 1, University of Regensburg, 93053 Regensburg, Germany (K.H.)
| | - Girish Pattappa
- Department of Trauma Surgery, Center for Medical Biotechnology (ZMB), Biopark 1, University of Regensburg, 93053 Regensburg, Germany
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery, Center for Medical Biotechnology (ZMB), Biopark 1, University Hospital Regensburg, 93053 Regensburg, Germany (R.J.B.)
| | - Korbinian Hofmann
- Department of Orthopedic Surgery, Experimental Orthopedics, Center for Medical Biotechnology (ZMB), Biopark 1, University of Regensburg, 93053 Regensburg, Germany (K.H.)
| | - Jovana Ilic
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital & Bernhard-Heine-Centrum for Locomotion Research, University of Würzburg, 97070 Würzburg, Germany;
| | - Yvonne Reinders
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany; (Y.R.); (A.S.)
| | - Richard J. Bauer
- Department of Oral and Maxillofacial Surgery, Center for Medical Biotechnology (ZMB), Biopark 1, University Hospital Regensburg, 93053 Regensburg, Germany (R.J.B.)
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany; (Y.R.); (A.S.)
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Susanne Grässel
- Department of Orthopedic Surgery, Experimental Orthopedics, Center for Medical Biotechnology (ZMB), Biopark 1, University of Regensburg, 93053 Regensburg, Germany (K.H.)
| |
Collapse
|
11
|
Kim SJ, Mesquita FCP, Hochman-Mendez C. New Biomarkers for Cardiovascular Disease. Tex Heart Inst J 2023; 50:e238178. [PMID: 37846107 PMCID: PMC10658139 DOI: 10.14503/thij-23-8178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Cardiovascular disease is the leading cause of death and disability worldwide. Early detection and treatment of cardiovascular disease are crucial for patient survival and long-term health. Despite advances in cardiovascular disease biomarkers, the prevalence of cardiovascular disease continues to increase worldwide as the global population ages. To address this problem, novel biomarkers that are more sensitive and specific to cardiovascular diseases must be developed and incorporated into clinical practice. Exosomes are promising biomarkers for cardiovascular disease. These small vesicles are produced and released into body fluids by all cells and carry specific information that can be correlated with disease progression. This article reviews the advantages and limitations of existing biomarkers for cardiovascular disease, such as cardiac troponin and cytokines, and discusses recent evidence suggesting the promise of exosomes as cardiovascular disease biomarkers.
Collapse
Affiliation(s)
- Stephanie J. Kim
- Department of Regenerative Medicine Research, The Texas Heart Institute, Houston, Texas
- Department of Biosciences, Rice University, Houston, Texas
| | | | - Camila Hochman-Mendez
- Department of Regenerative Medicine Research, The Texas Heart Institute, Houston, Texas
| |
Collapse
|
12
|
Yang R, Li Z, Xu J, Luo J, Qu Z, Chen X, Yu S, Shu H. Role of hypoxic exosomes and the mechanisms of exosome release in the CNS under hypoxic conditions. Front Neurol 2023; 14:1198546. [PMID: 37786863 PMCID: PMC10541965 DOI: 10.3389/fneur.2023.1198546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/09/2023] [Indexed: 10/04/2023] Open
Abstract
Hypoxia is characterized by low oxygen levels in the body or environment, resulting in various physiological and pathological changes. The brain, which has the highest oxygen consumption of any organ, is particularly susceptible to hypoxic injury. Exposure to low-pressure hypoxic environments can cause irreversible brain damage. Hypoxia can occur in healthy individuals at high altitudes or in pathological conditions such as trauma, stroke, inflammation, and autoimmune and neurodegenerative diseases, leading to severe brain damage and impairments in cognitive, learning, and memory functions. Exosomes may play a role in the mechanisms of hypoxic injury and adaptation and are a current focus of research. Investigating changes in exosomes in the central nervous system under hypoxic conditions may aid in preventing secondary damage caused by hypoxia. This paper provides a brief overview of central nervous system injury resulting from hypoxia, and aimed to conduct a comprehensive literature review to assess the pathophysio-logical impact of exosomes on the central nervous system under hypoxic conditions.
Collapse
Affiliation(s)
- Rong Yang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Zheng Li
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Jing Xu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Juan Luo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Zhichuang Qu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Xin Chen
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Sixun Yu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Haifeng Shu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| |
Collapse
|
13
|
Chu Z, Huang Q, Ma K, Liu X, Zhang W, Cui S, Wei Q, Gao H, Hu W, Wang Z, Meng S, Tian L, Li H, Fu X, Zhang C. Novel neutrophil extracellular trap-related mechanisms in diabetic wounds inspire a promising treatment strategy with hypoxia-challenged small extracellular vesicles. Bioact Mater 2023; 27:257-270. [PMID: 37122894 PMCID: PMC10133407 DOI: 10.1016/j.bioactmat.2023.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Neutrophil extracellular traps (NETs) have been considered a significant unfavorable factor for wound healing in diabetes, but the mechanisms remain unclear. The therapeutic application of small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) has received considerable attention for their properties. Hypoxic preconditioning is reported to enhance the therapeutic potential of MSC-derived sEVs in regenerative medicine. Therefore, the aim of this study is to illustrate the detailed mechanism of NETs in impairment of diabetic wound healing and develop a promising NET-targeting treatment based on hypoxic pretreated MSC-derived sEVs (Hypo-sEVs). Excessive NETs were found in diabetic wounds and in high glucose (HG)-induced neutrophils. Further research showed that high concentration of NETs impaired the function of fibroblasts through activating endoplasmic reticulum (ER) stress. Hypo-sEVs efficiently promoted diabetic wound healing and reduced the excessive NET formation by transferring miR-17-5p. Bioinformatic analysis and RNA interference experiment revealed that miR-17-5p in Hypo-sEVs obstructed the NET formation by targeting TLR4/ROS/MAPK pathway. Additionally, miR-17-5p overexpression decreased NET formation and overcame NET-induced impairment in fibroblasts, similar to the effects of Hypo-sEVs. Overall, we identify a previously unrecognized NET-related mechanism in diabetic wounds and provide a promising NET-targeting strategy for wound treatment.
Collapse
Affiliation(s)
- Ziqiang Chu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
- Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, PR China
| | - Qilin Huang
- College of Graduate, Tianjin Medical University, Tianjin, 300070, PR China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Beijing, 100048, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA Hospital and PLA Medical College, 51 Fucheng Road, Beijing, 100048, PR China
| | - Xi Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Beijing, 100048, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA Hospital and PLA Medical College, 51 Fucheng Road, Beijing, 100048, PR China
| | - Wenhua Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Beijing, 100048, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA Hospital and PLA Medical College, 51 Fucheng Road, Beijing, 100048, PR China
| | - Shengnan Cui
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
- Department of Dermatology, China Academy of Chinese Medical Science, Xiyuan Hospital, Beijing, 100091, PR China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
- Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, PR China
| | - Huanhuan Gao
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
- Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, PR China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
| | - Zihao Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
- Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, PR China
| | - Sheng Meng
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
- Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, PR China
| | - Lige Tian
- College of Graduate, Tianjin Medical University, Tianjin, 300070, PR China
| | - Haihong Li
- Department of Wound Repair, Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, Shenzhen, 518055, PR China
- Corresponding author.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
- Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, PR China
- College of Graduate, Tianjin Medical University, Tianjin, 300070, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Beijing, 100048, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA Hospital and PLA Medical College, 51 Fucheng Road, Beijing, 100048, PR China
- Department of Dermatology, China Academy of Chinese Medical Science, Xiyuan Hospital, Beijing, 100091, PR China
- Corresponding author. Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China.
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Beijing, 100048, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA Hospital and PLA Medical College, 51 Fucheng Road, Beijing, 100048, PR China
- Corresponding author. Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China.
| |
Collapse
|
14
|
Korvenlaita N, Gómez‐Budia M, Scoyni F, Pistono C, Giudice L, Eamen S, Loppi S, de Sande AH, Huremagic B, Bouvy‐Liivrand M, Heinäniemi M, Kaikkonen MU, Cheng L, Hill AF, Kanninen KM, Jenster GW, van Royen ME, Ramiro L, Montaner J, Batkova T, Mikulik R, Giugno R, Jolkkonen J, Korhonen P, Malm T. Dynamic release of neuronal extracellular vesicles containing miR-21a-5p is induced by hypoxia. J Extracell Vesicles 2023; 12:e12297. [PMID: 36594832 PMCID: PMC9809533 DOI: 10.1002/jev2.12297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hypoxia induces changes in the secretion of extracellular vesicles (EVs) in several non-neuronal cells and pathological conditions. EVs are packed with biomolecules, such as microRNA(miR)-21-5p, which respond to hypoxia. However, the true EV association of miR-21-5p, and its functional or biomarker relevance, are inadequately characterised. Neurons are extremely sensitive cells, and it is not known whether the secretion of neuronal EVs and miR-21-5p are altered upon hypoxia. Here, we characterised the temporal EV secretion profile and cell viability of neurons under hypoxia. Hypoxia induced a rapid increase of miR-21a-5p secretion in the EVs, which preceded the elevation of hypoxia-induced tissue or cellular miR-21a-5p. Prolonged hypoxia induced cell death and the release of morphologically distinct EVs. The EVs protected miR-21a-5p from enzymatic degradation but a remarkable fraction of miR-21a-5p remained fragile and non-EV associated. The increase in miR-21a-5p secretion may have biomarker potential, as high blood levels of miR-21-5p in stroke patients were associated with significant disability at hospital discharge. Our data provides an understanding of the dynamic regulation of EV secretion from neurons under hypoxia and provides a candidate for the prediction of recovery from ischemic stroke.
Collapse
Affiliation(s)
- Nea Korvenlaita
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Mireia Gómez‐Budia
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Flavia Scoyni
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Cristiana Pistono
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Luca Giudice
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland,Department of Computer ScienceUniversity of VeronaVeronaVenetoItaly
| | - Shaila Eamen
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Sanna Loppi
- Department of ImmunologyUniversity of ArizonaTucsonArizonaUSA
| | - Ana Hernández de Sande
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Benjamin Huremagic
- Department of Computer ScienceUniversity of VeronaVeronaVenetoItaly,Department of Human GeneticsKU LeuvenLeuvenFlandersBelgium
| | | | | | - Minna U. Kaikkonen
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Lesley Cheng
- Department of Biochemistry and ChemistrySchool of Agriculture Biomedicine & EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
| | - Andrew F. Hill
- Department of Biochemistry and ChemistrySchool of Agriculture Biomedicine & EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia,La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia,Institute for Health and SportVictoria UniversityMelbourneVictoriaAustralia
| | - Katja M. Kanninen
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Guido W. Jenster
- Department of UrologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Martin E. van Royen
- Department of PathologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Laura Ramiro
- Neurovascular Research LaboratoryVall d'Hebron Institute of Research (VHIR)Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Joan Montaner
- Neurovascular Research LaboratoryVall d'Hebron Institute of Research (VHIR)Universitat Autònoma de BarcelonaBarcelonaSpain,Institute de Biomedicine of SevilleIBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville & Department of NeurologyHospital Universitario Virgen MacarenaSevilleAndalucíaSpain
| | - Tereza Batkova
- BioVendor‐laboratorni medicina a.s.BrnoCzech Republic,International Clinical Research CenterNeurological DepartmentSt. Anne's University Hospital and Masaryk UniversityBrnoCzech Republic
| | - Robert Mikulik
- International Clinical Research CenterNeurological DepartmentSt. Anne's University Hospital and Masaryk UniversityBrnoCzech Republic
| | - Rosalba Giugno
- Department of Computer ScienceUniversity of VeronaVeronaVenetoItaly
| | - Jukka Jolkkonen
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Paula Korhonen
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| | - Tarja Malm
- University of Eastern FinlandA.I. Virtanen Institute for Molecular SciencesKuopioFinland
| |
Collapse
|
15
|
Proteomics profile of mesenchymal stromal cells and extracellular vesicles in normoxic and hypoxic conditions. Cytotherapy 2022; 24:1211-1224. [PMID: 36192337 DOI: 10.1016/j.jcyt.2022.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/11/2022] [Accepted: 08/27/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND AIMS Although bone marrow-derived mesenchymal stromal cells (MSCs) have demonstrated success in pre-clinical studies, they have shown only mild therapeutic effects in clinical trials. Hypoxia pre-conditioning may optimize the performance of bone marrow-derived MSCs because it better reflects the physiological conditions of their origin. It is not known whether changes in the protein profile caused by hypoxia in MSCs can be extended to the extracellular vesicles (EVs) released from them. The aim of this study was to evaluate the proteomics profile of MSCs and their EVs under normoxic and hypoxic conditions. METHODS Bone marrow-derived MSCs were isolated from six healthy male Wistar rats. After achieving 80% confluence, MSCs were subjected to normoxia (MSC-Norm) (21% oxygen, 5% carbon dioxide, 74% nitrogen) or hypoxia (MSC-Hyp) (1% oxygen, 5% carbon dioxide, 94% nitrogen) for 48 h. Cell viability and oxygen consumption rate were assessed. EVs were extracted from MSCs for each condition (EV-Norm and EV-Hyp) by ultracentrifugation. Total proteins were isolated from MSCs and EVs and prepared for mass spectrometry. EVs were characterized by nanoparticle tracking analysis. Proteomics data were analyzed by PatternLab 4.0, Search Tool for the Retrieval of Interacting Genes/Proteins, Gene Ontology, MetaboAnalyst and Reactome software. RESULTS Cell viability was higher in MSC-Hyp than MSC-Norm (P = 0.007). Basal respiration (P = 0.001), proton leak (P = 0.004) and maximal respiration (P = 0.014) were lower in MSC-Hyp than MSC-Norm, and no changes in adenosine triphosphate-linked and residual respiration were observed. The authors detected 2177 proteins in MSC-Hyp and MSC-Norm, of which 147 were identified in only MSC-Hyp and 512 were identified in only MSC-Norm. Furthermore, 718 proteins were identified in EV-Hyp and EV-Norm, of which 293 were detected in only EV-Hyp and 30 were detected in only EV-Norm. Both MSC-Hyp and EV-Hyp showed enrichment of pathways and biological processes related to glycolysis, the immune system and extracellular matrix organization. CONCLUSIONS MSCs subjected to hypoxia showed changes in their survival and metabolic activity. In addition, MSCs under hypoxia released more EVs, and their content was related to expression of regulatory proteins of the immune system and extracellular matrix organization. Because of the upregulation of proteins involved in glycolysis, gluconeogenesis and glucose uptake during hypoxia, production of reactive oxygen species and expression of immunosuppressive properties may be affected.
Collapse
|
16
|
Jin Y, Ma L, Zhang W, Yang W, Feng Q, Wang H. Extracellular signals regulate the biogenesis of extracellular vesicles. Biol Res 2022; 55:35. [PMID: 36435789 PMCID: PMC9701380 DOI: 10.1186/s40659-022-00405-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/15/2022] [Indexed: 11/28/2022] Open
Abstract
Extracellular vesicles (EVs) are naturally released membrane vesicles that act as carriers of proteins and RNAs for intercellular communication. With various biomolecules and specific ligands, EV has represented a novel form of information transfer, which possesses extremely outstanding efficiency and specificity compared to the classical signal transduction. In addition, EV has extended the concept of signal transduction to intercellular aspect by working as the collection of extracellular information. Therefore, the functions of EVs have been extensively characterized and EVs exhibit an exciting prospect for clinical applications. However, the biogenesis of EVs and, in particular, the regulation of this process by extracellular signals, which are essential to conduct further studies and support optimal utility, remain unclear. Here, we review the current understanding of the biogenesis of EVs, focus on the regulation of this process by extracellular signals and discuss their therapeutic value.
Collapse
Affiliation(s)
- Yong Jin
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, People's Republic of China
| | - Lele Ma
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, People's Republic of China
| | - Wanying Zhang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, People's Republic of China
| | - Wen Yang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, People's Republic of China.,National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital/Institute, The Second Military Medical University, Shanghai, 20815, China
| | - Qiyu Feng
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, People's Republic of China.
| | - Hongyang Wang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, People's Republic of China. .,National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital/Institute, The Second Military Medical University, Shanghai, 20815, China.
| |
Collapse
|
17
|
Mancardi D, Ottolenghi S, Attanasio U, Tocchetti CG, Paroni R, Pagliaro P, Samaja M. Janus, or the Inevitable Battle Between Too Much and Too Little Oxygen. Antioxid Redox Signal 2022; 37:972-989. [PMID: 35412859 DOI: 10.1089/ars.2021.0232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Significance: Oxygen levels are key regulators of virtually every living mammalian cell, under both physiological and pathological conditions. Starting from embryonic and fetal development, through the growth, onset, and progression of diseases, oxygen is a subtle, although pivotal, mediator of key processes such as differentiation, proliferation, autophagy, necrosis, and apoptosis. Hypoxia-driven modifications of cellular physiology are investigated in depth or for their clinical and translational relevance, especially in the ischemic scenario. Recent Advances: The mild or severe lack of oxygen is, undoubtedly, related to cell death, although abundant evidence points at oscillating oxygen levels, instead of permanent low pO2, as the most detrimental factor. Different cell types can consume oxygen at different rates and, most interestingly, some cells can shift from low to high consumption according to the metabolic demand. Hence, we can assume that, in the intracellular compartment, oxygen tension varies from low to high levels depending on both supply and consumption. Critical Issues: The positive balance between supply and consumption leads to a pro-oxidative environment, with some cell types facing hypoxia/hyperoxia cycles, whereas some others are under fairly constant oxygen tension. Future Directions: Within this frame, the alterations of oxygen levels (dysoxia) are critical in two paradigmatic organs, the heart and brain, under physiological and pathological conditions and the interactions of oxygen with other physiologically relevant gases, such as nitric oxide, can alternatively contribute to the worsening or protection of ischemic organs. Further, the effects of dysoxia are of pivotal importance for iron metabolism. Antioxid. Redox Signal. 37, 972-989.
Collapse
Affiliation(s)
- Daniele Mancardi
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Sara Ottolenghi
- Department of Health Sciences, University of Milano, Milan, Italy
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Umberto Attanasio
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Carlo Gabriele Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Federico II University, Naples, Italy
- Interdepartmental Center for Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy
- Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), Federico II University, Naples, Italy
| | - Rita Paroni
- Department of Health Sciences, University of Milano, Milan, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Michele Samaja
- Department of Health Sciences, University of Milano, Milan, Italy
- MAGI GROUP, San Felice del Benaco, Italy
| |
Collapse
|
18
|
Yu S, Zhou L, Fu J, Xu L, Liu B, Zhao Y, Wang J, Yan X, Su J. H-TEX-mediated signaling between hepatocellular carcinoma cells and macrophages and exosome-targeted therapy for hepatocellular carcinoma. Front Immunol 2022; 13:997726. [PMID: 36311698 PMCID: PMC9608495 DOI: 10.3389/fimmu.2022.997726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
There is increasing evidence for the key role of the immune microenvironment in the occurrence and development of hepatocellular carcinoma. As an important component of the immune microenvironment, the polarization state and function of macrophages determine the maintenance of the immunosuppressive tumor microenvironment. Hepatocellular carcinoma tumor-derived exosomes, as information carriers, regulate the physiological state of cells in the microenvironment and control cancer progression. In this review, we focus on the role of the exosome content in disease outcomes at different stages in the progression of hepatitis B virus/hepatitis C virus-induced hepatocellular carcinoma. We also explore the mechanism by which macrophages contribute to the formation of hepatocellular carcinoma and summarize the regulation of macrophage functions by the heterogeneity of exosome loading in liver cancer. Finally, with the rise of exosome modification in immunotherapy research on hepatocellular carcinoma, we summarize the application prospects of exosome-based targeted drug delivery.
Collapse
Affiliation(s)
- Sihang Yu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Lei Zhou
- Department of Pathology, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jiaying Fu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Long Xu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Buhan Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuanxin Zhao
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jian Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoyu Yan
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
- *Correspondence: Xiaoyu Yan, ; Jing Su,
| | - Jing Su
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
- *Correspondence: Xiaoyu Yan, ; Jing Su,
| |
Collapse
|
19
|
Syromiatnikova V, Prokopeva A, Gomzikova M. Methods of the Large-Scale Production of Extracellular Vesicles. Int J Mol Sci 2022; 23:ijms231810522. [PMID: 36142433 PMCID: PMC9506336 DOI: 10.3390/ijms231810522] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
To date, extracellular vesicles (EVs) have been extensively investigated as potential substitutes for cell therapy. Research has suggested their ability to overcome serious risks associated with the application of these cells. Although, the translation of EVs into clinical practice is hampered by the lack of a cheap reasonable way to obtain a clinically relevant number of EVs, an available method for the large-scale production of EVs ensures vesicles’ integrity, preserves their biological activity, and ensures they are well reproducible, providing homogeneity of the product from batch to batch. In this review, advances in the development of methods to increase EVs production are discussed. The existing approaches can be divided into the following: (1) those based on increasing the production of natural EVs by creating and using high capacity “cell factories”, (2) those based on the induction of EVs secretion under various cell stressors, and (3) those based on cell fragmentation with the creation of biomimetic vesicles. The aim of this review is to stimulate the introduction of EVs into clinical practice and to draw attention to the development of new methods of EVs production on a large scale.
Collapse
|
20
|
Oxidative stress-induced endothelial cells-derived exosomes accelerate skin flap survival through Lnc NEAT1-mediated promotion of endothelial progenitor cell function. Stem Cell Res Ther 2022; 13:325. [PMID: 35850692 PMCID: PMC9290268 DOI: 10.1186/s13287-022-03013-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022] Open
Abstract
Background Flap transplantation is commonly used in reconstructive surgery. A prerequisite for skin flap survival is sufficient blood supply. However, such approaches remain unclear. This study aimed to explore the underlying mechanisms of exosomes derived from human umbilical vascular endothelial cells (HUVECs) exposed to oxidative stress on endothelial progenitor cells (EPCs) and their subsequent influence on the survival of skin flaps. Methods HUVECs were treated with various concentrations of H2O2 to establish an oxidative stress model. To investigate the effects of H2O2-HUVEC-Exos and HUVEC-Exos, Cell Counting Kit-8, tube formation, invasion assays, and quantitative real-time polymerase chain reaction (qRT-PCR) were performed in EPCs. Microarray analysis was used to reveal the differentially expressed long non-coding RNAs (lncRNAs) in the H2O2-HUVEC-Exos and HUVEC-Exos. In addition, gene silencing and western blotting were employed to determine the mechanism behind lncRNA nuclear enrichment enriched transcript 1 (Lnc NEAT1) in EPCs. Further, a rat skin flap model was used to determine the role of the exosomes in skin flap survival in vivo. Results HUVECs were stimulated with 100 μmol/L H2O2 for 12 h to establish an oxidative stress model. H2O2-HUVEC-Exos promoted the proliferation, tube formation, and invasion of EPCs and remarkably increased skin flap survival compared to the HUVEC-Exos and control groups. Sequencing of exosome RNAs revealed that the Lnc NEAT1 level was dramatically increased in the H2O2-HUVEC-Exos, leading to activation of the Wnt/β-catenin signaling pathway. Comparatively, knockdown of Lnc NEAT1 in HUVEC-Exos and H2O2-HUVEC-Exos significantly inhibits the angiogenic capacity of EPCs, reduced the survival area of skin flap and downregulated the expression levels of Wnt/β-catenin signaling pathway proteins, whereas Wnt agonist partly reversed the negative effect of NEAT1 downregulation on EPCs through the Wnt/β-catenin signaling pathway. Conclusions Exosomes derived from HUVECs stimulated by oxidative stress significantly promoted the pro-angiogenic ability of EPCs through the Wnt/β-catenin signaling pathway mediated by Lnc NEAT1 and hence enhanced random flap survival in vivo. Therefore, the application of H2O2-HUVEC-Exos may serve as an alternative therapy for improving random skin flap survival. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03013-9.
Collapse
|
21
|
Guo W, Qiao T, Dong B, Li T, Liu Q, Xu X. The Effect of Hypoxia-Induced Exosomes on Anti-Tumor Immunity and Its Implication for Immunotherapy. Front Immunol 2022; 13:915985. [PMID: 35812406 PMCID: PMC9257077 DOI: 10.3389/fimmu.2022.915985] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxia is a critical feature of solid tumors and is considered to be a key factor in promoting tumorigenesis and progression. Beyond inducing metabolic reprogramming of tumor cells to adapt to the hypoxia tumor microenvironment (TME), hypoxia can also promote tumor growth by affecting the secretion of exosomes. Exosomes are nano-sized (30-150 nm in diameter) extracellular vesicles that can carry numerous substances including lipids, proteins, nucleic acids, and metabolites. Notably, hypoxia-induced exosomes alterations not only exist in tumor cells, but also in various TME cells including stromal cells and immune cells. Besides promoting tumor invasion, angiogenesis, and drug resistance, the secretion of these altered exosomes has recently been found to negatively regulate anti-tumor immune responses. In this review, we focus on the hypoxia-induced changes in exosome secretion and found it can contributes to immune evasion and cancer progression by recruiting protumor immune cells into TME, as well as inhibiting antitumor immune cells. Next, we also describe the recent advances of exosomes in immunotherapy and future direction. In conclusion, ongoing discoveries in this field have brought new insights into hypoxia exosome-led immunosuppression, enabling the development of exosome-based therapeutics and elucidating their potential in immunotherapy.
Collapse
Affiliation(s)
- Wenwen Guo
- Clinical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Tianyun Qiao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Bingwei Dong
- Clinical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
- *Correspondence: Xiaofeng Xu, ; Qiang Liu, ; Tian Li,
| | - Qiang Liu
- Clinical Research Center, Xianyang Central Hospital, Xianyang, China
- *Correspondence: Xiaofeng Xu, ; Qiang Liu, ; Tian Li,
| | - Xiaofeng Xu
- Clinical Research Center, Xianyang Central Hospital, Xianyang, China
- *Correspondence: Xiaofeng Xu, ; Qiang Liu, ; Tian Li,
| |
Collapse
|
22
|
D’Alessio S, Cheng H, Eaton L, Kraev I, Pamenter ME, Lange S. Acute Hypoxia Alters Extracellular Vesicle Signatures and the Brain Citrullinome of Naked Mole-Rats (Heterocephalus glaber). Int J Mol Sci 2022; 23:ijms23094683. [PMID: 35563075 PMCID: PMC9100269 DOI: 10.3390/ijms23094683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Peptidylarginine deiminases (PADs) and extracellular vesicles (EVs) may be indicative biomarkers of physiological and pathological status and adaptive responses, including to diseases and disorders of the central nervous system (CNS) and related to hypoxia. While these markers have been studied in hypoxia-intolerant mammals, in vivo investigations in hypoxia-tolerant species are lacking. Naked mole-rats (NMR) are among the most hypoxia-tolerant mammals and are thus a good model organism for understanding natural and beneficial adaptations to hypoxia. Thus, we aimed to reveal CNS related roles for PADs in hypoxia tolerance and identify whether circulating EV signatures may reveal a fingerprint for adaptive whole-body hypoxia responses in this species. We found that following in vivo acute hypoxia, NMR: (1) plasma-EVs were remodelled, (2) whole proteome EV cargo contained more protein hits (including citrullinated proteins) and a higher number of associated KEGG pathways relating to the total proteome of plasma-EVs Also, (3) brains had a trend for elevation in PAD1, PAD3 and PAD6 protein expression, while PAD2 and PAD4 were reduced, while (4) the brain citrullinome had a considerable increase in deiminated protein hits with hypoxia (1222 vs. 852 hits in normoxia). Our findings indicate that circulating EV signatures are modified and proteomic content is reduced in hypoxic conditions in naked mole-rats, including the circulating EV citrullinome, while the brain citrullinome is elevated and modulated in response to hypoxia. This was further reflected in elevation of some PADs in the brain tissue following acute hypoxia treatment. These findings indicate a possible selective role for PAD-isozymes in hypoxia response and tolerance.
Collapse
Affiliation(s)
- Stefania D’Alessio
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6 UW, UK;
| | - Hang Cheng
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.C.); (L.E.); (M.E.P.)
| | - Liam Eaton
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.C.); (L.E.); (M.E.P.)
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Walton Hall, Milton Keynes MK7 6AA, UK;
| | - Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.C.); (L.E.); (M.E.P.)
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6 UW, UK;
- Correspondence: ; Tel.: +44-(0)-20-7911-5000 (ext. 64832)
| |
Collapse
|
23
|
Jiang H, Zhao H, Zhang M, He Y, Li X, Xu Y, Liu X. Hypoxia Induced Changes of Exosome Cargo and Subsequent Biological Effects. Front Immunol 2022; 13:824188. [PMID: 35444652 PMCID: PMC9013908 DOI: 10.3389/fimmu.2022.824188] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
Exosomes are small extracellular vesicles that are secreted by almost all types of cells and exist in almost all extracellular spaces. As an important mediator of intercellular communication, exosomes encapsulate the miRNA, lncRNA, cirRNA, mRNA, cytokine, enzyme, lipid, and other components from the cytoplasm into its closed single membrane structure and transfer them to recipient units in an autocrine, paracrine, or endocrine manner. Hypoxia is a state of low oxygen tension and is involved in many pathological processes. Hypoxia influences the size, quantity, and expression of exosome cargos. Exosomes derived from hypoxic tumor cells transfer genetics, proteins, and lipids to the recipient units to exert pleiotropic effects. Different donor cells produce different cargo contents, target different recipient units and lead to different biological effects. Hypoxic exosomes derived from tumor cells uptaken by normoxic tumor cells lead to promoted proliferation, migration, and invasion; uptaken by extracellular space or liver lead to promoted metastasis; uptaken by endothelial cells lead to promoted angiogenesis; uptaken by immune cells lead to promoted macrophage polarization and changed tumor immune microenvironment. In addition to various types of tumors, hypoxic exosomes also participate in the development of diseases in the cardiovascular system, neuron system, respiratory system, hematology system, endocrine system, urinary system, reproduction system, and skeletomuscular system. Understanding the special characteristics of hypoxic exosomes provide new insight into elaborating the pathogenesis of hypoxia related disease. This review summarizes hypoxia induced cargo changes and the biological effects of hypoxic exosomes in tumors and non-malignant diseases in different systems.
Collapse
Affiliation(s)
- Hongxia Jiang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Hanqiu Zhao
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Mengzhe Zhang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Yuanzhou He
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Xiaochen Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People's Republic of China, Wuhan, China
| |
Collapse
|
24
|
Heras-Romero Y, Morales-Guadarrama A, Santana-Martínez R, Ponce I, Rincón-Heredia R, Poot-Hernández AC, Martínez-Moreno A, Urrieta E, Bernal-Vicente BN, Campero-Romero AN, Moreno-Castilla P, Greig NH, Escobar ML, Concha L, Tovar-Y-Romo LB. Improved post-stroke spontaneous recovery by astrocytic extracellular vesicles. Mol Ther 2022; 30:798-815. [PMID: 34563674 PMCID: PMC8821969 DOI: 10.1016/j.ymthe.2021.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 02/04/2023] Open
Abstract
Spontaneous recovery after a stroke accounts for a significant part of the neurological recovery in patients. However limited, the spontaneous recovery is mechanistically driven by axonal restorative processes for which several molecular cues have been previously described. We report the acceleration of spontaneous recovery in a preclinical model of ischemia/reperfusion in rats via a single intracerebroventricular administration of extracellular vesicles released from primary cortical astrocytes. We used magnetic resonance imaging and confocal and multiphoton microscopy to correlate the structural remodeling of the corpus callosum and striatocortical circuits with neurological performance during 21 days. We also evaluated the functionality of the corpus callosum by repetitive recordings of compound action potentials to show that the recovery facilitated by astrocytic extracellular vesicles was both anatomical and functional. Our data provide compelling evidence that astrocytes can hasten the basal recovery that naturally occurs post-stroke through the release of cellular mediators contained in extracellular vesicles.
Collapse
Affiliation(s)
- Yessica Heras-Romero
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Axayacatl Morales-Guadarrama
- Departmento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico; National Center for Medical Imaging and Instrumentation Research, Mexico City, Mexico
| | - Ricardo Santana-Martínez
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Isaac Ponce
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Microscopy Core Unit, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Augusto César Poot-Hernández
- Bioinformatics Core Unit, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Araceli Martínez-Moreno
- Divisíon de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Esteban Urrieta
- Divisíon de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Berenice N Bernal-Vicente
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aura N Campero-Romero
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Perla Moreno-Castilla
- Laboratory of Neurocognitive Aging, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nigel H Greig
- Drug Design & Development Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Martha L Escobar
- Divisíon de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Concha
- Department of Behavioral and Cognitive Neurobiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Luis B Tovar-Y-Romo
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
25
|
Muñiz-García A, Romero M, Falcόn-Perez JM, Murray P, Zorzano A, Mora S. Hypoxia-induced HIF1α activation regulates small extracellular vesicle release in human embryonic kidney cells. Sci Rep 2022; 12:1443. [PMID: 35087095 PMCID: PMC8795438 DOI: 10.1038/s41598-022-05161-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/24/2021] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosures released by eukaryotic cells that carry bioactive molecules and serve to modulate biological responses in recipient cells. Both increased EV release and altered EV composition are associated with the development and progression of many pathologies including cancer. Hypoxia, a feature of rapidly growing solid tumours, increases the release of EVs. However, the molecular mechanisms remain unknown. The hypoxia inducible factors (HIFs) are transcription factors that act as major regulators of the cellular adaptations to hypoxia. Here, we investigated the requirement of HIF pathway activation for EV release in Human Embryonic Kidney Cells (HEK293). Time course experiments showed that EV release increased concomitantly with sustained HIF1α and HIF2α activation following the onset of hypoxia. shRNA mediated knock-down of HIF1α but not HIF2α abrogated the effect of hypoxia on EV release, suggesting HIF1α is involved in this process. However, stabilization of HIF proteins in normoxic conditions through: (i) heterologous expression of oxygen insensitive HIF1α or HIF2α mutants in normoxic cells or (ii) chemical inhibition of the prolyl hydroxylase 2 (PHD2) repressor protein, did not increase EV release, suggesting HIF activation alone is not sufficient for this process. Our findings suggest HIF1α plays an important role in the regulation of EV release during hypoxia in HEK293 cells, however other hypoxia triggered mechanisms likely contribute as stabilization of HIF1α alone in normoxia is not sufficient for EV release.
Collapse
Affiliation(s)
- Ana Muñiz-García
- Department of Molecular Physiology and Cell Signalling (Formerly Dpt. Cellular and Molecular Physiology), The University of Liverpool, Liverpool, L69 3BX, UK.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 13, 08028, Barcelona, Spain
| | - Montserrat Romero
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 13, 08028, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Manuel Falcόn-Perez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, 48015, Bilbao, Bizkaia, Spain
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling (Formerly Dpt. Cellular and Molecular Physiology), The University of Liverpool, Liverpool, L69 3BX, UK
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 13, 08028, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Mora
- Department of Molecular Physiology and Cell Signalling (Formerly Dpt. Cellular and Molecular Physiology), The University of Liverpool, Liverpool, L69 3BX, UK. .,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain. .,Institute of Biomedicine, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
26
|
Role of Energy Metabolism in the Progression of Neuroblastoma. Int J Mol Sci 2021; 22:ijms222111421. [PMID: 34768850 PMCID: PMC8583976 DOI: 10.3390/ijms222111421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
Neuroblastoma is a common childhood cancer possessing a significant risk of death. This solid tumor manifests variable clinical behaviors ranging from spontaneous regression to widespread metastatic disease. The lack of promising treatments calls for new research approaches which can enhance the understanding of the molecular background of neuroblastoma. The high proliferation of malignant neuroblastoma cells requires efficient energy metabolism. Thus, we focus our attention on energy pathways and their role in neuroblastoma tumorigenesis. Recent studies suggest that neuroblastoma-driven extracellular vesicles stimulate tumorigenesis inside the recipient cells. Furthermore, proteomic studies have demonstrated extracellular vesicles (EVs) to cargo metabolic enzymes needed to build up a fully operative energy metabolism network. The majority of EV-derived enzymes comes from glycolysis, while other metabolic enzymes have a fatty acid β-oxidation and tricarboxylic acid cycle origin. The previously mentioned glycolysis has been shown to play a primary role in neuroblastoma energy metabolism. Therefore, another way to modify the energy metabolism in neuroblastoma is linked with genetic alterations resulting in the decreased activity of some tricarboxylic acid cycle enzymes and enhanced glycolysis. This metabolic shift enables malignant cells to cope with increasing metabolic stress, nutrition breakdown and an upregulated proliferation ratio.
Collapse
|
27
|
Rognes IN, Hellum M, Ottestad W, Bache KG, Eken T, Henriksson CE. Extracellular vesicle-associated procoagulant activity is highest the first 3 hours after trauma and thereafter declines substantially: A prospective observational pilot study. J Trauma Acute Care Surg 2021; 91:681-691. [PMID: 34225342 PMCID: PMC8460081 DOI: 10.1097/ta.0000000000003333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Trauma patients have high concentrations of circulating extracellular vesicles (EVs) following injury, but the functional role of EVs in this setting is only partly deciphered. We aimed to describe in detail EV-associated procoagulant activity in individual trauma patients during the first 12 hours after injury to explore their putative function and relate findings to relevant trauma characteristics and outcome. METHODS In a prospective observational study of 33 convenience recruited trauma patients, citrated plasma samples were obtained at trauma center admission and 2, 4, 6, and 8 hours thereafter. We measured thrombin generation from isolated EVs and the procoagulant activity of phosphatidylserine (PS)-exposing EVs. Correlation and multivariable linear regression analyses were used to explore associations between EV-associated procoagulant activity and trauma characteristics as well as outcome measures. RESULTS EV-associated procoagulant activity was highest in the first 3 hours after injury. EV-associated thrombin generation normalized within 7 to 12 hours of injury, whereas the procoagulant activity of PS-exposing EVs declined to a level right above that of healthy volunteers. Increased EV-associated procoagulant activity at admission was associated with higher New Injury Severity Score, lower admission base excess, higher admission international normalized ratio, prolonged admission activated partial thromboplastin time, higher Sequential Organ Failure Assessment score at day 0, and fewer ventilator-free days. CONCLUSION Our data suggest that EVs have a transient hypercoagulable function and may play a role in the early phase of hemostasis after injury. The role of EVs in trauma-induced coagulopathy and posttraumatic thrombosis should be studied bearing in mind this novel temporal pattern. LEVEL OF EVIDENCE Prognostic/epidemiologic, level V.
Collapse
|
28
|
Heydari R, Abdollahpour-Alitappeh M, Shekari F, Meyfour A. Emerging Role of Extracellular Vesicles in Biomarking the Gastrointestinal Diseases. Expert Rev Mol Diagn 2021; 21:939-962. [PMID: 34308738 DOI: 10.1080/14737159.2021.1954909] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Extracellular vesicles (EVs) play an important role in cell-cell communication and regulation of various cellular functions under physiological and pathophysiological conditions through transferring their cargo to recipient cells. Molecular constituents of EVs are a fingerprinting profile of secreting cells which can be used as promising prognostic, diagnostic, and drug-response biomarkers in clinical settings. AREAS COVERED The present study provides a brief introduction about the biology of EVs and reviews methodologies used for EV isolation and characterization as well as high-throughput strategies to analyze EV contents. Furthermore, this review highlights the importance and unique role of EVs in the development and progression of gastrointestinal (GI) diseases, especially GI cancers, and then discusses their potential use, particularly those isolated from body fluids, in diagnosis and prognosis of GI diseases. EXPERT OPINION In-depth analysis of EV content can lead to the identification of new potential biomarkers for early diagnosis and prognosis prediction of GI diseases. The use of a more targeted approach by establishing more reproducible and standardized methods to decrease variations and obtain desired EV population as well as revisiting large pools of identified biomarkers and their evaluation in larger patient cohorts can result in the introduction of more reliable biomarkers in clinic.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
29
|
Interplay between Hypoxia and Extracellular Vesicles in Cancer and Inflammation. BIOLOGY 2021; 10:biology10070606. [PMID: 34209290 PMCID: PMC8301089 DOI: 10.3390/biology10070606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Mounting evidence suggests a role for extracellular vesicles in cell-to-cell communication, in both physiological and pathological conditions. Moreover, the molecular content of vesicles can be exploited for diagnostic and therapeutic purposes. Inflamed tissues and tumors are often characterized by hypoxic areas, where oxygen levels drop dramatically. Several studies demonstrated that hypoxic stress affects the release of vesicles and their content. This review is intended to provide an exhaustive overview on the relationship between hypoxia and vesicles in inflammatory diseases and cancer. Abstract Hypoxia is a severe stress condition often observed in cancer and chronically inflamed cells and tissues. Extracellular vesicles play pivotal roles in these pathological processes and carry biomolecules that can be detected in many biofluids and may be exploited for diagnostic purposes. Several studies report the effects of hypoxia on extracellular vesicles’ release, molecular content, and biological functions in disease. This review summarizes the most recent findings in this field, highlighting the areas that warrant further investigation.
Collapse
|
30
|
The Influence of a Stressful Microenvironment on Tumor Exosomes: A Focus on the DNA Cargo. Int J Mol Sci 2020; 21:ijms21228728. [PMID: 33227947 PMCID: PMC7699188 DOI: 10.3390/ijms21228728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022] Open
Abstract
Exosomes secreted by tumor cells, through the transport of bioactive molecules, reprogram the surroundings, building a microenvironment to support the development of the tumor. The discovery that exosomes carry genomic DNA reflecting that of the tumor cell of origin has encouraged studies to use them as non-invasive biomarkers. The exosome-mediated transfer of oncogenes suggested a new mechanism of malignant transformation that could play a role in the formation of metastases. Several studies have examined the role of tumor exosomes on the modulation of the tumor microenvironment, but relatively few have been directed to assess how stressful stimuli can influence their production and cargo. Understanding the changes in exosome loads and the production pattern of the stressed tumor cell may uncover actionable mechanisms responsible for tumor progression.
Collapse
|
31
|
Maroufi F, Maali A, Abdollahpour-Alitappeh M, Ahmadi MH, Azad M. CRISPR-mediated modification of DNA methylation pattern in the new era of cancer therapy. Epigenomics 2020; 12:1845-1859. [PMID: 33185489 DOI: 10.2217/epi-2020-0110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the last 2 decades, a wide variety of studies have been conducted on epigenetics and its role in various cancers. A major mechanism of epigenetic regulation is DNA methylation, including aberrant DNA methylation variations such as hypermethylation and hypomethylation in the promoters of critical genes, which are commonly detected in tumors and mark the early stages of cancer development. Therefore, epigenetic therapy has been of special importance in the last decade for cancer treatment. In epigenetic therapy, all efforts are made to modulate gene expression to the normal status. Importantly, recent studies have shown that epigenetic therapy is focusing on the new gene editing technology, CRISPR-Cas9. This tool was found to be able to effectively modulate gene expression and alter almost any sequence in the genome of cells, resulting in events such as a change in acetylation, methylation, or histone modifications. Of note, the CRISPR-Cas9 system can be used for the treatment of cancers caused by epigenetic alterations. The CRISPR-Cas9 system has greater advantages than other available methods, including potent activity, easy design and high velocity as well as the ability to target any DNA or RNA site. In this review, we described epigenetic modulators, which can be used in the CRISPR-Cas9 system, as well as their functions in gene expression alterations that lead to cancer initiation and progression. In addition, we surveyed various species of CRISPR-dead Cas9 (dCas9) systems, a mutant version of Cas9 with no endonuclease activity. Such systems are applicable in epigenetic therapy for gene expression modulation through chemical group editing on nucleosomes and chromatin remodeling, which finally return the cell to the normal status and prevent cancer progression.
Collapse
Affiliation(s)
- Faezeh Maroufi
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amirhosein Maali
- Student Research Committee, Pasteur institute of Iran, Tehran, Iran.,Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Mohammad Hossein Ahmadi
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
32
|
Bister N, Pistono C, Huremagic B, Jolkkonen J, Giugno R, Malm T. Hypoxia and extracellular vesicles: A review on methods, vesicular cargo and functions. J Extracell Vesicles 2020; 10:e12002. [PMID: 33304471 PMCID: PMC7710128 DOI: 10.1002/jev2.12002] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/14/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is an essential hallmark of several serious diseases such as cardiovascular and metabolic disorders and cancer. A decline in the tissue oxygen level induces hypoxic responses in cells which strive to adapt to the changed conditions. A failure to adapt to prolonged or severe hypoxia can trigger cell death. While some cell types, such as neurons, are highly vulnerable to hypoxia, cancer cells take advantage of a hypoxic environment to undergo tumour growth, angiogenesis and metastasis. Hypoxia-induced processes trigger complex intercellular communication and there are now indications that extracellular vesicles (EVs) play a fundamental role in these processes. Recent developments in EV isolation and characterization methodology have increased the awareness of the importance of EV purity in functional and cargo studies. Cell death, a hallmark of severe hypoxia, is a known source of intracellular contaminants in isolated EVs. In this review, methodological aspects of studies investigating hypoxia-induced EVs are critically evaluated. Key concerns and gaps in the current knowledge are highlighted and future directions for studies are set. To accelerate and advance research, an in-depth analysis of the functions and cargo of hypoxic EVs, compared to normoxic EVs, is provided with the focus on the altered microRNA contents of the EVs.
Collapse
Affiliation(s)
- Nea Bister
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Cristiana Pistono
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Benjamin Huremagic
- Department of Human GeneticsKU LeuvenLeuvenBelgium
- Department of Computer ScienceUniversity of VeronaVeronaItaly
| | - Jukka Jolkkonen
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
- Department of NeurologyUniversity of Eastern FinlandInstitute of Clinical MedicineKuopioFinland
| | - Rosalba Giugno
- Department of Computer ScienceUniversity of VeronaVeronaItaly
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
33
|
Hermanowicz JM, Kwiatkowska I, Pawlak D. Important players in carcinogenesis as potential targets in cancer therapy: an update. Oncotarget 2020; 11:3078-3101. [PMID: 32850012 PMCID: PMC7429179 DOI: 10.18632/oncotarget.27689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The development of cancer is a problem that has accompanied mankind for years. The growing number of cases, emerging drug resistance, and the need to reduce the serious side effects of pharmacotherapy are forcing scientists to better understand the complex mechanisms responsible for the initiation, promotion, and progression of the disease. This paper discusses the modulation of the particular stages of carcinogenesis by selected physiological factors, including: acetylcholine (ACh), peroxisome proliferator-activated receptors (PPAR), fatty acid-binding proteins (FABPs), Bruton's tyrosine kinase (Btk), aquaporins (AQPs), insulin-like growth factor-2 (IGF-2), and exosomes. Understanding their role may contribute to the development of more effective and safer therapies based on new binding sites.
Collapse
Affiliation(s)
- Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| | - Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| |
Collapse
|