1
|
Akman TC, Kadioglu Y, Senol O, Erkayman B, Aydin İC. Understanding the side effects of chronic silodosin administration via untargeted metabolomics approach. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:1150-1162. [PMID: 39127320 DOI: 10.1016/j.pharma.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/17/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Precision medicine, which looks for high efficacy and low toxicity in therapies, has increased in popularity with omics technology. This work aims to discover novel and low-toxicity therapy options by examining the complex relationship between silodosin-induced side effects and the metabolomic profiles associated with its administration. MATERIALS AND METHODS The plasma samples of the control group and silodosin-treated rats were analyzed by LC-Q-TOF-MS/MS. Employing XCMS and MetaboAnalyst software, MS/MS data processed to detect compounds and investigate metabolic pathways. MATLAB 2019b was used for data categorization and multivariate analysis. A thorough comparison of METLIN and HMDB databases revealed 41m/z values with significant differences between the drug-treated and control groups (p <0.01 and fold analysis≥1.5). RESULTS According to multivariate data analysis, 17-β-estradiol, taurocholic acid, L-kynurenine, N-formylkynurenine, D-glutamine, L-arginine, prostaglandin H2, prostaglandine G2, 15-keto-prostaglandin E2, calcidiol, thromboxane A2, 5'-methylthioadenosine, L-methionine and S-adenosylmethionine levels changed significantly compared to the control group. Differences in the metabolisms of glycerophospholipid, tyrosine, phenylalanine, arachidonic acid, cysteine and methionine, and biosynthesis of phenylalanine, tyrosine, and tryptophan, and aminoacyl-tRNA have been successfully demonstrated by metabolic pathway analysis. According to this study, vitamin D, D-glutamine, and L-arginine supplements can be recommended to prevent side effects such as fatigue, intraoperative floppy iris syndrome, blurred vision, and dizziness in the treatment of silodosin. Silodosin treatment negatively affected the immune system by affecting the kynurenine and tryptophan metabolism pathways. CONCLUSIONS The study is a guide for silodosin treatments that offer low side effects and high therapeutic effect within the scope of precision medicine.
Collapse
Affiliation(s)
- Tugrul Cagri Akman
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan 24100, Turkey.
| | - Yucel Kadioglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Onur Senol
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Beyzagul Erkayman
- Department of Pharmacology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - İsmail Cagri Aydin
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| |
Collapse
|
2
|
Zhang L, Mao H, Zhou R, Zhu J, Wang H, Miao Z, Chen X, Yan J, Jiang H. Low blood S-methyl-5-thioadenosine is associated with postoperative delayed neurocognitive recovery. Commun Biol 2024; 7:1356. [PMID: 39428444 PMCID: PMC11491466 DOI: 10.1038/s42003-024-07086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024] Open
Abstract
Elderly individuals display metabolite alterations that may contribute to development of cognitive impairment following surgery and anesthesia. However, these relationships remain largely unexplored. The study aims to assess the S-methyl-5-thioadenosine (MTA) is associated with postoperative delayed neurocognitive recovery (dNCR). We assess altered metabolites following anesthesia/surgery in both mice and patients to identify blood biomarkers of dNCR. Preoperative and postoperative plasma metabolites are determined by widely targeted metabolomics. The brains of mice with anesthesia/surgery show decreased MTA and activated MTA phosphorylase. Mice also show that preoperative administration of MTA can prevent inflammation and cognitive decline. In clinical patients, we detect lower preoperative serum MTA levels in those who developed dNCR. Both low preoperative and postoperative blood MTA levels are associated with increased risk of postoperative dNCR. These results suggest that anesthesia/surgery induces cognitive decline through methionine synthesis pathways and that MTA could be a perioperative predictor of dNCR.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Haoli Mao
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ren Zhou
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao Zhu
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Wang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengjie Miao
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Chen
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Li X, Kuchinski LM, Park A, Murphy GS, Soto KC, Schuster BS. Enzyme purification and sustained enzyme activity for pharmaceutical biocatalysis by fusion with phase-separating intrinsically disordered protein. Biotechnol Bioeng 2024; 121:3155-3168. [PMID: 38951956 DOI: 10.1002/bit.28787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/03/2024]
Abstract
In recent decades, biocatalysis has emerged as an important alternative to chemical catalysis in pharmaceutical manufacturing. Biocatalysis is attractive because enzymatic cascades can synthesize complex molecules with incredible selectivity, yield, and in an environmentally benign manner. Enzymes for pharmaceutical biocatalysis are typically used in their unpurified state, since it is time-consuming and cost-prohibitive to purify enzymes using conventional chromatographic processes at scale. However, impurities present in crude enzyme preparations can consume substrate, generate unwanted byproducts, as well as make the isolation of desired products more cumbersome. Hence, a facile, nonchromatographic purification method would greatly benefit pharmaceutical biocatalysis. To address this issue, here we have captured enzymes into membraneless compartments by fusing enzymes with an intrinsically disordered protein region, the RGG domain from LAF-1. The RGG domain can undergo liquid-liquid phase separation, forming liquid condensates triggered by changes in temperature or salt concentration. By centrifuging these liquid condensates, we have successfully purified enzyme-RGG fusions, resulting in significantly enhanced purity compared to cell lysate. Furthermore, we performed enzymatic reactions utilizing purified fusion proteins to assay enzyme activity. Results from the enzyme assays indicate that enzyme-RGG fusions purified by the centrifugation method retain enzymatic activity, with greatly reduced background activity compared to crude enzyme preparations. Our work focused on three different enzymes-a kinase, a phosphorylase, and an ATP-dependent ligase. The kinase and phosphorylase are components of the biocatalytic cascade for manufacturing molnupiravir, and we demonstrated facile co-purification of these two enzymes by co-phase separation. To conclude, enzyme capture by RGG tagging promises to overcome difficulties in bioseparations and biocatalysis for pharmaceutical synthesis.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Liam M Kuchinski
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Augene Park
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Grant S Murphy
- Department of Process Research and Development, Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Karla Camacho Soto
- Department of Process Research and Development, Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Benjamin S Schuster
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
4
|
Brune MM, Savic Prince S, Vlajnic T, Chijioke O, Roma L, König D, Bubendorf L. MTAP as an emerging biomarker in thoracic malignancies. Lung Cancer 2024; 197:107963. [PMID: 39357262 DOI: 10.1016/j.lungcan.2024.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
S-methyl-5'-thioadenosine phosphorylase (MTAP) deficiency is an emerging biomarker in non-small cell lung cancer (NSCLC) and beyond. The MTAP gene is located in the chromosomal region 9p21.3, which shows one of the most common homozygous deletions across all human cancers (9p21 loss). Loss of 9p21 is found in the majority of pleural mesotheliomas, where it serves as an established diagnostic marker. Until recently, fluorescence in situ hybridization (FISH) was the gold standard for the detection of 9p21 losses, but loss of MTAP expression by immunohistochemistry (IHC) gains increasing importance as an easy to apply and cost-effective diagnostic surrogate marker. Besides, MTAP loss, which has been reported in 13% of NSCLC, is becoming an emerging predictive biomarker in two different scenarios in NSCLC and other cancer types: 1) MTAP loss seems to negatively predict the response to immune checkpoint inhibitor (ICI) treatment via silencing of the tumor microenvironment, and 2) MTAP loss serves as a predictive biomarker for novel targeted treatment strategies. MTAP deficiency leads to an impaired function of the protein arginine methyltransferase 5 (PRMT5) due to its partial inhibition by MTAP's accumulating substrate methylthioadenosine (MTA). This process leaves MTAP deficient tumor cells heavily dependent on the remaining function of PRMT5, making it a perfect target for synthetic lethality. Indeed, MTA-cooperative PRMT5-inhibitors are now tested in several clinical trials with promising early results in solid malignancies. With its emergence as a predictive biomarker, the implementation of MTAP IHC into diagnostic routine for NSCLC and other tumors is likely to take place soon. In this review article, we summarize the current literature on the role of MTAP in thoracic tumors and evaluate different testing methods, including IHC, FISH and next generation sequencing.
Collapse
Affiliation(s)
- Magdalena M Brune
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Schönbeinstrasse 40, CH-4031 Basel, Switzerland
| | - Spasenija Savic Prince
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Schönbeinstrasse 40, CH-4031 Basel, Switzerland
| | - Tatjana Vlajnic
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Schönbeinstrasse 40, CH-4031 Basel, Switzerland
| | - Obinna Chijioke
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Schönbeinstrasse 40, CH-4031 Basel, Switzerland
| | - Luca Roma
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Schönbeinstrasse 40, CH-4031 Basel, Switzerland
| | - David König
- Division of Medical Oncology, University Hospital Basel, Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Lukas Bubendorf
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Schönbeinstrasse 40, CH-4031 Basel, Switzerland.
| |
Collapse
|
5
|
Aboelez MO, Ezelarab HAA, Alotaibi G, Abouzed DEE. Inflammatory setting, therapeutic strategies targeting some pro-inflammatory cytokines and pathways in mitigating ischemia/reperfusion-induced hepatic injury: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6299-6315. [PMID: 38643452 DOI: 10.1007/s00210-024-03074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/28/2024] [Indexed: 04/22/2024]
Abstract
Ischemia/reperfusion injury (IRI) is a key determining agent in the pathophysiology of clinical organ dysfunction. It is characterized by an aseptic local inflammatory reaction due to a decrease in blood supply, hence deprivation of dependent oxygen and nutrients. In instances of liver transplantation, this injury may have irreversible implications, resulting in eventual organ rejection. The deterioration associated with IRI is affected by the hepatic health status and various factors such as alterations in metabolism, oxidative stress, and pro-inflammatory cytokines. The primary cause of inflammation is the initial immune response of pro-inflammatory cytokines, while Kupffer cells (KFCs) and neutrophil-produced chemokines also play a significant role. Upon reperfusion, the activation of inflammatory responses can elicit further cellular damage and organ dysfunction. This review discusses the interplay between chemokines, pro-inflammatory cytokines, and other inflammatory mediators that contribute to the damage to hepatocytes and liver failure in rats following IR. Furthermore, it delves into the impact of anti-inflammatory therapies in safeguarding against liver failure and hepatocellular damage in rats following IR. This review investigates the correlation between cytokine factors and liver dysfunction via examining databases, such as PubMed, Google Scholar, Science Direct, Egyptian Knowledge Bank (EKB), and Research Gate.
Collapse
Affiliation(s)
- Moustafa O Aboelez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt.
| | - Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minya, 61519, Egypt.
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, 11961, Al-Dawadmi, Saudi Arabia
| | - Deiaa E Elsayed Abouzed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
6
|
Bernasocchi T, Mostoslavsky R. Subcellular one carbon metabolism in cancer, aging and epigenetics. FRONTIERS IN EPIGENETICS AND EPIGENOMICS 2024; 2:1451971. [PMID: 39239102 PMCID: PMC11375787 DOI: 10.3389/freae.2024.1451971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The crosstalk between metabolism and epigenetics is an emerging field that is gaining importance in different areas such as cancer and aging, where changes in metabolism significantly impacts the cellular epigenome, in turn dictating changes in chromatin as an adaptive mechanism to bring back metabolic homeostasis. A key metabolic pathway influencing an organism's epigenetic state is one-carbon metabolism (OCM), which includes the folate and methionine cycles. Together, these cycles generate S-adenosylmethionine (SAM), the universal methyl donor essential for DNA and histone methylation. SAM serves as the sole methyl group donor for DNA and histone methyltransferases, making it a crucial metabolite for chromatin modifications. In this review, we will discuss how SAM and its byproduct, S-adenosylhomocysteine (SAH), along with the enzymes and cofactors involved in OCM, may function in the different cellular compartments, particularly in the nucleus, to directly regulate the epigenome in aging and cancer.
Collapse
Affiliation(s)
- Tiziano Bernasocchi
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
- The Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Raul Mostoslavsky
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
- The Broad Institute of Harvard and MIT, Cambridge, MA, United States
| |
Collapse
|
7
|
Ye L, Zhang B, Yang X, Huang Y, Luo J, Zhang X, Tan W, Song C, Ao Z, Shen C, Li X. Metabolomic profiling reveals biomarkers for diverse flesh colors in jelly fungi (Auricularia cornea). Food Chem 2024; 446:138906. [PMID: 38460278 DOI: 10.1016/j.foodchem.2024.138906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/07/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Auricularia cornea has garnered attention due to its nutrition, culinary applications, and promising commercial prospects. However, there is little information available regarding the metabolic profiling of various colors strains. In this study, 642 metabolites across 64 classes were identified by LC-MS/MS to understand the metabolic variations between white, pink and dark brown strains. Notably, prenol lipids, carboxylic acids and fatty acyls accounted for 46.8 % of the total. Comparative analysis revealed 17 shared differential metabolites (DMs) among them. ACP vs ACW exhibited 17 unique metabolites, including d-arginine and maleic acid, etc. ACP vs ACB showed 5 unique metabolites, with only PS(18:1(9Z)/0:0) demonstrating up-regulation. ACB vs ACW showed 8 unique metabolites, including 4-hydroxymandelic acid and 5'-methylthioadenosine, etc. KEGG enrichment analysis highlighted pathway variations, and MetPA analysis identified key-pathways influencing DMs accumulation in A. cornea. This pioneering metabolomics study offers insights into A. cornea metabolic profiling, potential applications, and guides further research.
Collapse
Affiliation(s)
- Lei Ye
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611134, China; Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China
| | - Bo Zhang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China
| | - Xuezhen Yang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China
| | - Yu Huang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China
| | - Jianhua Luo
- Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611134, China
| | - Wei Tan
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China.
| | - Chuan Song
- Luzhou Laojiao Co., Ltd, Luzhou 646000, China
| | - Zonghua Ao
- Luzhou Laojiao Co., Ltd, Luzhou 646000, China
| | | | - Xiaolin Li
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China; Luzhou Laojiao Co., Ltd, Luzhou 646000, China.
| |
Collapse
|
8
|
Frentzel H, Kraemer M, Kelner-Burgos Y, Uelze L, Bodi D. Cereulide production capacities and genetic properties of 31 emetic Bacillus cereus group strains. Int J Food Microbiol 2024; 417:110694. [PMID: 38614024 DOI: 10.1016/j.ijfoodmicro.2024.110694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
The highly potent toxin cereulide is a frequent cause of foodborne intoxications. This extremely resistant toxin is produced by Bacillus cereus group strains carrying the plasmid encoded cesHPTABCD gene cluster. It is known that the capacities to produce cereulide vary greatly between different strains but the genetic background of these variations is not clear. In this study, cereulide production capacities were associated with genetic characteristics. For this, cereulide levels in cultures of 31 strains were determined after incubation in tryptic soy broth for 24 h at 24 °C, 30 °C and 37 °C. Whole genome sequencing based data were used for an in-depth characterization of gene sequences related to cereulide production. The taxonomy, population structure and phylogenetic relationships of the strains were evaluated based on average nucleotide identity, multi-locus sequence typing (MLST), core genome MLST and single nucleotide polymorphism analyses. Despite a limited strain number, the approach of a genome wide association study (GWAS) was tested to link genetic variation with cereulide quantities. Our study confirms strain-dependent differences in cereulide production. For most strains, these differences were not explainable by sequence variations in the cesHPTABCD gene cluster or the regulatory genes abrB, spo0A, codY and pagRBc. Likewise, the population structure and phylogeny of the tested strains did not comprehensively reflect the cereulide production capacities. GWAS yielded first hints for associated proteins, while their possible effect on cereulide synthesis remains to be further investigated.
Collapse
Affiliation(s)
- Hendrik Frentzel
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Marco Kraemer
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Ylanna Kelner-Burgos
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Laura Uelze
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Sequencing and Genotyping Service Unit, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Dorina Bodi
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
9
|
Vlajnic T, Chijioke O, Roma L, Savic Prince S, Zellweger T, Rentsch CA, Bubendorf L. Loss of MTAP Expression by Immunohistochemistry Is a Surrogate Marker for Homozygous 9p21.3 Deletion in Urothelial Carcinoma. Mod Pathol 2024; 37:100495. [PMID: 38641323 DOI: 10.1016/j.modpat.2024.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/13/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Homozygous deletion of the chromosomal region 9p21.3 is common in urothelial carcinoma (UC) and leads to loss of several genes, including CDKN2A and MTAP, resulting in loss of MTAP protein expression. Here, we aimed to explore the diagnostic potential of MTAP immunohistochemistry (IHC) as a surrogate marker for homozygous 9p21.3 deletion (9p21 homozygous deletion [HD]) in UC. MTAP status was determined by IHC on 27 UC tissue specimens with known 9p21.3 status as defined by fluorescence in situ hybridization in matched cytological specimens, by IHC and fluorescence in situ hybridization on a tissue microarray (TMA) containing 359 UC at different stages, and by IHC on 729 consecutive UC from routine practice. Moreover, we analyzed a longitudinal series of matched specimens from 38 patients with MTAP-negative recurrent UC. MTAP loss by IHC was found in all 17 patients with 9p21 HD and in 2/8 cases without 9p21 HD. In the TMA, MTAP loss was more common in metastases (53%) than in muscle-invasive (33%) and non-muscle-invasive UC (29%) (P = .03). In the consecutive series, 164/729 (22%) cases showed loss of MTAP expression. In 41 of these 164 cases (25%), loss of MTAP expression was heterogenous. We also discovered loss of MTAP expression in flat urothelium adjacent to MTAP-negative low-grade UC, suggesting true flat low-grade neoplasia that could not be diagnosed by morphology alone. Longitudinal analysis of recurrences showed persistent negative MTAP status over time in 37/38 (97%) patients. MTAP IHC can serve as a surrogate marker for 9p21 HD in UC and as a diagnostic tool to differentiate reactive urothelium from urothelial neoplasia. It also provides a unique opportunity to study clinicopathological associations and the heterogeneity of 9p21 HD across the whole spectrum of UC manifestations.
Collapse
Affiliation(s)
- Tatjana Vlajnic
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Obinna Chijioke
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Luca Roma
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Spasenija Savic Prince
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Cyrill A Rentsch
- Department of Urology, University Hospital Basel, Basel, Switzerland
| | - Lukas Bubendorf
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Guo Z, Ma XS, Ni SQ. Journey of the swift nitrogen transformation: Unveiling comammox from discovery to deep understanding. CHEMOSPHERE 2024; 358:142093. [PMID: 38679176 DOI: 10.1016/j.chemosphere.2024.142093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
COMplete AMMonia OXidizer (comammox) refers to microorganisms that have the function of oxidizing NH4+ to NO3- alone. The discovery of comammox overturned the two-step theory of nitrification in the past century and triggered many important scientific questions about the nitrogen cycle in nature. This comprehensive review delves into the origin and discovery of comammox, providing a detailed account of its detection primers, clades metabolic variations, and environmental factors. An in-depth analysis of the ecological niche differentiation among ammonia oxidizers was also discussed. The intricate role of comammox in anammox systems and the relationship between comammox and nitrogen compound emissions are also discussed. Finally, the relationship between comammox and anammox is displayed, and the future research direction of comammox is prospected. This review reveals the metabolic characteristics and distribution patterns of comammox in ecosystems, providing new perspectives for understanding nitrogen cycling and microbial ecology. Additionally, it offers insights into the potential application value and prospects of comammox.
Collapse
Affiliation(s)
- Zheng Guo
- School of Environmental Science and Engineering, Shandong University, Shandong, 266237, China
| | - Xue Song Ma
- School of Environmental Science and Engineering, Shandong University, Shandong, 266237, China
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Shandong, 266237, China.
| |
Collapse
|
11
|
Robeyns R, Sisto A, Iturrospe E, da Silva KM, van de Lavoir M, Timmerman V, Covaci A, Stroobants S, van Nuijs ALN. The Metabolic and Lipidomic Fingerprint of Torin1 Exposure in Mouse Embryonic Fibroblasts Using Untargeted Metabolomics. Metabolites 2024; 14:248. [PMID: 38786725 PMCID: PMC11123261 DOI: 10.3390/metabo14050248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Torin1, a selective kinase inhibitor targeting the mammalian target of rapamycin (mTOR), remains widely used in autophagy research due to its potent autophagy-inducing abilities, regardless of its unspecific properties. Recognizing the impact of mTOR inhibition on metabolism, our objective was to develop a reliable and thorough untargeted metabolomics workflow to study torin1-induced metabolic changes in mouse embryonic fibroblast (MEF) cells. Crucially, our quality assurance and quality control (QA/QC) protocols were designed to increase confidence in the reported findings by reducing the likelihood of false positives, including a validation experiment replicating all experimental steps from sample preparation to data analysis. This study investigated the metabolic fingerprint of torin1 exposure by using liquid chromatography-high resolution mass spectrometry (LC-HRMS)-based untargeted metabolomics platforms. Our workflow identified 67 altered metabolites after torin1 exposure, combining univariate and multivariate statistics and the implementation of a validation experiment. In particular, intracellular ceramides, diglycerides, phosphatidylcholines, phosphatidylethanolamines, glutathione, and 5'-methylthioadenosine were downregulated. Lyso-phosphatidylcholines, lyso-phosphatidylethanolamines, glycerophosphocholine, triglycerides, inosine, and hypoxanthine were upregulated. Further biochemical pathway analyses provided deeper insights into the reported changes. Ultimately, our study provides a valuable workflow that can be implemented for future investigations into the effects of other compounds, including more specific autophagy modulators.
Collapse
Affiliation(s)
- Rani Robeyns
- Toxicological Centre, University of Antwerp, 2610 Antwerp, Belgium; (E.I.); (A.C.)
| | - Angela Sisto
- Peripheral Neuropathy Research Group, University of Antwerp, 2610 Antwerp, Belgium
| | - Elias Iturrospe
- Toxicological Centre, University of Antwerp, 2610 Antwerp, Belgium; (E.I.); (A.C.)
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | | | - Maria van de Lavoir
- Toxicological Centre, University of Antwerp, 2610 Antwerp, Belgium; (E.I.); (A.C.)
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, University of Antwerp, 2610 Antwerp, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, 2610 Antwerp, Belgium; (E.I.); (A.C.)
| | - Sigrid Stroobants
- Department of Nuclear Medicine, Antwerp University Hospital, 2650 Antwerp, Belgium
| | | |
Collapse
|
12
|
Huening KA, Groves JT, Wildenthal JA, Tabita FR, North JA. Escherichia coli possessing the dihydroxyacetone phosphate shunt utilize 5'-deoxynucleosides for growth. Microbiol Spectr 2024; 12:e0308623. [PMID: 38441472 PMCID: PMC10986504 DOI: 10.1128/spectrum.03086-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/17/2024] [Indexed: 03/08/2024] Open
Abstract
All organisms utilize S-adenosyl-l-methionine (SAM) as a key co-substrate for the methylation of biological molecules, the synthesis of polyamines, and radical SAM reactions. When these processes occur, 5'-deoxy-nucleosides are formed as byproducts such as S-adenosyl-l-homocysteine, 5'-methylthioadenosine (MTA), and 5'-deoxyadenosine (5dAdo). A prevalent pathway found in bacteria for the metabolism of MTA and 5dAdo is the dihydroxyacetone phosphate (DHAP) shunt, which converts these compounds into dihydroxyacetone phosphate and 2-methylthioacetaldehyde or acetaldehyde, respectively. Previous work in other organisms has shown that the DHAP shunt can enable methionine synthesis from MTA or serve as an MTA and 5dAdo detoxification pathway. Rather, the DHAP shunt in Escherichia coli ATCC 25922, when introduced into E. coli K-12, enables the use of 5dAdo and MTA as a carbon source for growth. When MTA is the substrate, the sulfur component is not significantly recycled back to methionine but rather accumulates as 2-methylthioethanol, which is slowly oxidized non-enzymatically under aerobic conditions. The DHAP shunt in ATCC 25922 is active under oxic and anoxic conditions. Growth using 5-deoxy-d-ribose was observed during aerobic respiration and anaerobic respiration with Trimethylamine N-oxide (TMAO), but not during fermentation or respiration with nitrate. This suggests the DHAP shunt may only be relevant for extraintestinal pathogenic E. coli lineages with the DHAP shunt that inhabit oxic or TMAO-rich extraintestinal environments. This reveals a heretofore overlooked role of the DHAP shunt in carbon and energy metabolism from ubiquitous SAM utilization byproducts and suggests a similar role may occur in other pathogenic and non-pathogenic bacteria with the DHAP shunt. IMPORTANCE The acquisition and utilization of organic compounds that serve as growth substrates are essential for Escherichia coli to grow and multiply. Ubiquitous enzymatic reactions involving S-adenosyl-l-methionine as a co-substrate by all organisms result in the formation of the 5'-deoxy-nucleoside byproducts, 5'-methylthioadenosine and 5'-deoxyadenosine. All E. coli possess a conserved nucleosidase that cleaves these 5'-deoxy-nucleosides into 5-deoxy-pentose sugars for adenine salvage. The DHAP shunt pathway is found in some extraintestinal pathogenic E. coli, but its function in E. coli possessing it has remained unknown. This study reveals that the DHAP shunt enables the utilization of 5'-deoxy-nucleosides and 5-deoxy-pentose sugars as growth substrates in E. coli strains with the pathway during aerobic respiration and anaerobic respiration with TMAO, but not fermentative growth. This provides an insight into the diversity of sugar compounds accessible by E. coli with the DHAP shunt and suggests that the DHAP shunt is primarily relevant in oxic or TMAO-rich extraintestinal environments.
Collapse
Affiliation(s)
| | - Joshua T. Groves
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - John A. Wildenthal
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - F. Robert Tabita
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Justin A. North
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
13
|
Shibata Y, Yamada T, Ikeda Y, Kanai M, Fujii T, Akao T, Goshima T, Isogai A, Takahashi T. Effect of S-adenosyl-methionine accumulation on hineka odor in sake brewed with a non-Kyokai yeast. J Biosci Bioeng 2024; 137:268-273. [PMID: 38310037 DOI: 10.1016/j.jbiosc.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
Hineka is a type of off-flavor of sake and is attributed to the presence of several compounds, including a major one called dimethyl trisulfide (DMTS). The production of the main precursor of DMTS involves yeast methionine salvage pathway. The DMTS-producing potential (DMTS-pp) of sake brewed using the Km67 strain, a non-Kyokai sake yeast, is lower than that of sake brewed using Kyokai yeast; however, the detailed mechanism is unclear. We focused on S-adenosyl-methionine (SAM) and aimed to elucidate the mechanism that prevents DMTS production in sake brewed using the Km67 strain. We revealed that SAM is involved in DMTS production in sake, and that the conversion of SAM to the DMTS precursor occurs through an enzymatic reaction rather than a chemical reaction. Based on previous reports on ADO1 and MDE1 genes, sake brewing tests were performed using the Km67 Δmde1, Δado1, and Δmde1Δado1 strains. A comparison of the SAM content of pressed sake cakes and DMTS-pp of sake produced using the Km67 Δado1 strain showed an increase in both SAM content and DMTS-pp compared to those produced using the parent strain. However, the Km67 Δmde1Δado1 strain showed little increase in DMTS-pp compared to the Km67 Δmde1 strain, despite an increase in SAM content. These results suggest that SAM accumulation in yeast plays a role in the production of DMTS in sake through the methionine salvage pathway. Moreover, the low SAM-accumulation characteristic of the Km67 strain contributes to low DMTS production in sake.
Collapse
Affiliation(s)
- Yusuke Shibata
- General Research Laboratory, Kiku-Masamune Sake Brewing Co. Ltd., 1-8-6 Uozaki-nishimachi, Higashinada-ku, Kobe, Hyogo 658-0026, Japan.
| | - Tasuku Yamada
- General Research Laboratory, Kiku-Masamune Sake Brewing Co. Ltd., 1-8-6 Uozaki-nishimachi, Higashinada-ku, Kobe, Hyogo 658-0026, Japan
| | - Yuriko Ikeda
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Muneyoshi Kanai
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Tsutomu Fujii
- Faculty of Food and Agricultural Sciences, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| | - Takeshi Akao
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Tetsuya Goshima
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Atsuko Isogai
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Toshinari Takahashi
- General Research Laboratory, Kiku-Masamune Sake Brewing Co. Ltd., 1-8-6 Uozaki-nishimachi, Higashinada-ku, Kobe, Hyogo 658-0026, Japan
| |
Collapse
|
14
|
Matayoshi CL, Jiménez Guaman OM, Esteso ML, Pavoni M, Arán M, Pena LB, Gallego SM. Cadmium and copper-induced metabolic and proteomic changes in the root tip during early maize growth. Biometals 2024; 37:405-419. [PMID: 37987956 DOI: 10.1007/s10534-023-00557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
In this study, the metabolic adjustments performed by maize (Zea mays L.) seminal roots exposed to 25 µM Cd2+ or 25 µM Cu2+ at pre-emergence are compared, focusing on the proteomic changes after metal exposure. Root width was increased, and root length was decreased after 72 h of metal treatment. Both metals induced H2O2 accumulation and lipid peroxidation in the root tip. These changes were accompanied by increases in lipoxygenase activity and 4-hydroxy-2-nonenal content. NMR spectroscopy revealed that the abundance of 38 water-soluble metabolites was significantly modified by Cd and Cu exposure; this set of metabolites comprised carboxylic acids, amino acids, carbohydrates, and unidentified phenolic compounds. Linoleic acid content significantly decreased in Cu-treated samples. The total amount of proteins detected in maize root apexes was 2,171. Gene ontology enrichment analysis of the differentially accumulated proteins was performed to detect pathways probably affected by metal additions. Both metals altered redox homeostasis, up-regulated oxylipins biosynthetic process, and shifted metabolism towards the oxidative pentose-phosphate in the root apexes. However, the methionine salvage pathway appears as a key metabolic module only under Cd stress. The integrative analysis carried out in this study suggests that most molecular features behind the reprogramming of maize root tips to cope with cadmium and copper toxicity are common, but some are not.
Collapse
Affiliation(s)
- Carolina Lucila Matayoshi
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1º Piso, C1113AAD, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Odalis Maholi Jiménez Guaman
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1º Piso, C1113AAD, Buenos Aires, Argentina
| | - Marcos Leopoldo Esteso
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1º Piso, C1113AAD, Buenos Aires, Argentina
| | - Micaela Pavoni
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1º Piso, C1113AAD, Buenos Aires, Argentina
| | - Martín Arán
- Laboratorio de Resonancia Magnética Nuclear, Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Liliana Beatriz Pena
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1º Piso, C1113AAD, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Susana Mabel Gallego
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1º Piso, C1113AAD, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Atkinson SJ, Bagal SK, Argyrou A, Askin S, Cheung T, Chiarparin E, Coen M, Collie IT, Dale IL, De Fusco C, Dillman K, Evans L, Feron LJ, Foster AJ, Grondine M, Kantae V, Lamont GM, Lamont S, Lynch JT, Nilsson Lill S, Robb GR, Saeh J, Schimpl M, Scott JS, Smith J, Srinivasan B, Tentarelli S, Vazquez-Chantada M, Wagner D, Walsh JJ, Watson D, Williamson B. Development of a Series of Pyrrolopyridone MAT2A Inhibitors. J Med Chem 2024. [PMID: 38466661 DOI: 10.1021/acs.jmedchem.3c01860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The optimization of an allosteric fragment, discovered by differential scanning fluorimetry, to an in vivo MAT2a tool inhibitor is discussed. The structure-based drug discovery approach, aided by relative binding free energy calculations, resulted in AZ'9567 (21), a potent inhibitor in vitro with excellent preclinical pharmacokinetic properties. This tool showed a selective antiproliferative effect on methylthioadenosine phosphorylase (MTAP) KO cells, both in vitro and in vivo, providing further evidence to support the utility of MAT2a inhibitors as potential anticancer therapies for MTAP-deficient tumors.
Collapse
Affiliation(s)
- Stephen J Atkinson
- Oncology R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Sharan K Bagal
- Oncology R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Argyrides Argyrou
- Discovery Sciences R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Sean Askin
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Tony Cheung
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Elisabetta Chiarparin
- Oncology R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Muireann Coen
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Iain T Collie
- Discovery Sciences R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Ian L Dale
- Discovery Sciences R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Claudia De Fusco
- Discovery Sciences R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Keith Dillman
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Laura Evans
- Oncology R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Lyman J Feron
- Oncology R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Alison J Foster
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Michael Grondine
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Vasudev Kantae
- Discovery Sciences R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Gillian M Lamont
- Oncology R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Scott Lamont
- Oncology R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - James T Lynch
- Oncology R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Sten Nilsson Lill
- Data Sciences & Modelling, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Graeme R Robb
- Oncology R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Jamal Saeh
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Marianne Schimpl
- Discovery Sciences R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - James S Scott
- Oncology R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - James Smith
- Oncology R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Bharath Srinivasan
- Discovery Sciences R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Sharon Tentarelli
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Mercedes Vazquez-Chantada
- Discovery Sciences R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - David Wagner
- Oncology R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Jarrod J Walsh
- Discovery Sciences R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - David Watson
- Oncology R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Beth Williamson
- Oncology R&D, AstraZeneca, The Discovery Centre, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| |
Collapse
|
16
|
Dumigan CR, Deyholos MK. Soil and seed both influence bacterial diversity in the microbiome of the Cannabis sativa seedling endosphere. FRONTIERS IN PLANT SCIENCE 2024; 15:1326294. [PMID: 38450399 PMCID: PMC10914941 DOI: 10.3389/fpls.2024.1326294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Introduction Phytobiomes have a significant impact on plant health. The microbiome of Cannabis sativa is particularly interesting both because of renewed interest in this crop and because it is commercially propagated in two different ways (i.e. clonally and by seed). Angiosperms obtain a founding population of seed-borne endophytes from their seed-bearing parent. This study examines the influence of both seed and soil-derived bacteria on the endospheres of cannabis seedlings of both hemp- and drug-types. Methods A multi-factorial metagenomic study was conducted with three cannabis genotypes and two soil sources, which were tested both before and after autoclave sterilization. Seedlings were grown on soil, then rinsed and surface-sterilized, and 16S rDNA amplicons from seedling endophytes were sequenced, taxonomically classified, and used to estimate alpha- and beta-diversity in Qiime2. The statistical significance of differences in seedling microbiomes across treatments was tested, and PiCRUST2 was used to infer the functional relevance of these differences. Results Soil was found to have a profound effect on the alpha-diversity, beta-diversity, relative abundance, and functional genes of endophytic bacteria in germinating cannabis seedlings. Additionally, there was a significant effect of cannabis genotype on beta diversity, especially when genotypes were grown in sterilized soil. Gammaproteobacteria and Bacilli were the two most abundant taxa and were found in all genotypes and soil types, including sterilized soil. Discussion The results indicated that a component of cannabis seedling endosphere microbiomes is seed-derived and conserved across the environments tested. Functional prediction of seedling endophytes using piCRUST suggested a number of important functions of seed-borne endophytes in cannabis including nutrient and amino acid cycling, hormone regulation, and as precursors to antibiotics. This study suggested both seed and soil play a critical role in shaping the microbiome of germinating cannabis seedlings.
Collapse
Affiliation(s)
| | - Michael K. Deyholos
- Department of Biology, Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
17
|
Hara T, Sakanaka A, Lamont RJ, Amano A, Kuboniwa M. Interspecies metabolite transfer fuels the methionine metabolism of Fusobacterium nucleatum to stimulate volatile methyl mercaptan production. mSystems 2024; 9:e0076423. [PMID: 38289043 PMCID: PMC10878106 DOI: 10.1128/msystems.00764-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024] Open
Abstract
The major oral odor compound methyl mercaptan (CH3SH) is strongly associated with halitosis and periodontitis. CH3SH production stems from the metabolism of polymicrobial communities in periodontal pockets and on the tongue dorsum. However, understanding of CH3SH-producing oral bacteria and their interactions is limited. This study aimed to investigate CH3SH production by major oral bacteria and the impact of interspecies interactions on its generation. Using a newly constructed large-volume anaerobic noncontact coculture system, Fusobacterium nucleatum was found to be a potent producer of CH3SH, with that production stimulated by metabolic interactions with Streptococcus gordonii, an early dental plaque colonizer. Furthermore, analysis of extracellular amino acids using an S. gordonii arginine-ornithine antiporter (ArcD) mutant demonstrated that ornithine excreted from S. gordonii is a key contributor to increased CH3SH production by F. nucleatum. Further study with 13C, 15N-methionine, as well as gene expression analysis, revealed that ornithine secreted by S. gordonii increased the demand for methionine through accelerated polyamine synthesis by F. nucleatum, leading to elevated methionine pathway activity and CH3SH production. Collectively, these findings suggest that interaction between S. gordonii and F. nucleatum plays a key role in CH3SH production, providing a new insight into the mechanism of CH3SH generation in oral microbial communities. A better understanding of the underlying interactions among oral bacteria involved in CH3SH generation can lead to the development of more appropriate prophylactic approaches to treat halitosis and periodontitis. An intervention approach like selectively disrupting this interspecies network could also offer a powerful therapeutic strategy.IMPORTANCEHalitosis can have a significant impact on the social life of affected individuals. Among oral odor compounds, CH3SH has a low olfactory threshold and halitosis is a result of its production. Recently, there has been a growing interest in the collective properties of oral polymicrobial communities, regarded as important for the development of oral diseases, which are shaped by physical and metabolic interactions among community participants. However, it has yet to be investigated whether interspecies interactions have an impact on the production of volatile compounds, leading to the development of halitosis. The present findings provide mechanistic insights indicating that ornithine, a metabolite excreted by Streptococcus gordonii, promotes polyamine synthesis by Fusobacterium nucleatum, resulting in a compensatory increase in demand for methionine, which results in elevated methionine pathway activity and CH3SH production. Elucidation of the mechanisms related to CH3SH production is expected to lead to the development of new strategies for managing halitosis.
Collapse
Affiliation(s)
- Takeshi Hara
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Advanced Technology Institute, Mandom Corporation, Osaka, Japan
| | - Akito Sakanaka
- Department of Preventive Density, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - Atsuo Amano
- Department of Preventive Density, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masae Kuboniwa
- Department of Preventive Density, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
18
|
Jankowski G, Sawicki R, Truszkiewicz W, Wolan N, Ziomek M, Hryć B, Sieniawska E. Molecular insight into thymoquinone mechanism of action against Mycobacterium tuberculosis. Front Microbiol 2024; 15:1353875. [PMID: 38414774 PMCID: PMC10896893 DOI: 10.3389/fmicb.2024.1353875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024] Open
Abstract
Natural products are promising antimicrobials, usually having multiple and different cellular targets than synthetic antibiotics. Their influence on bacteria at various metabolic and functional levels contributes to higher efficacy even against drug-resistant strains. One such compound is a naturally occurring p-benzoquinone - thymoquinone. It is effective against different bacteria, including multidrug-resistant and extremely drug-resistant Mycobacterium tuberculosis. Its antibacterial mechanism of action was studied in several bacterial species except mycobacteria. To get an insight into the antimycobacterial activity of thymoquinone at the molecular level, we performed metabolomic and transcriptomic analyzes of bacteria exposed to this compound. The expression of genes coding stress-responsive sigma factors revealed that thymoquinone rapidly induces the production of sigE transcripts. At the same time, prolonged influence results in the overexpression of all sigma factor genes and significantly upregulates sigF. The metabolomic analysis confirmed that the antimycobacterial activity of thymoquinone was related to the depletion of NAD and ATP pools and the downregulation of plasma membrane lipids. This state was observed after 24 h and was persistent the next day, suggesting that bacteria could not activate catabolic mechanisms and produce energy. Additionally, the presence of a thymoquinone nitrogen derivative in the bacterial broth and the culture was reported.
Collapse
Affiliation(s)
- Grzegorz Jankowski
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Lublin, Poland
| | - Rafał Sawicki
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Lublin, Poland
| | - Wiesław Truszkiewicz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Lublin, Poland
| | - Natalia Wolan
- Student Research Group, Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Lublin, Poland
| | - Marcin Ziomek
- Student Research Group, Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Lublin, Poland
| | - Benita Hryć
- Department of Natural Products Chemistry, Medical University of Lublin, Lublin, Poland
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
19
|
Liu G, Sharma MK, Tompkins YH, Teng PY, Kim WK. Impacts of varying methionine to cysteine supplementation ratios on growth performance, oxidative status, intestinal health, and gene expression of immune response and methionine metabolism in broilers under Eimeria spp. challenge. Poult Sci 2024; 103:103300. [PMID: 38100947 PMCID: PMC10762478 DOI: 10.1016/j.psj.2023.103300] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
A study was conducted to investigate effects of different methionine (Met) to cysteine (Cys) supplementation ratios (MCR) on growth performance, oxidative status, intestinal health, immune responses, and methionine metabolism in broilers under Eimeria challenge. A total of 720 male Cobb500 broilers (14-day-old) were allocated in a 2 × 5 factorial arrangement (5 diets, with or without challenge) with 6 replicates per treatment. The total sulfur amino acid concentrations were consistent across treatments meeting the breeder's recommendation, only MCR varied. The diets were labeled as MET100; MET75; MET50; MET25; and MET0, representing MCR of 100:0; 75:25; 50:50; 25:75; and 0:100, respectively. Data were analyzed by 2-way ANOVA and orthogonal polynomial contrast. Growth performance declined linearly or quadratically as MCR decreased (P < 0.01). On 6-day postinoculation (DPI), interaction effects (P < 0.01) were found; BW and body weight gain were lower in MET0 compared to the other treatments in the nonchallenged groups, whereas not in the challenged groups. On 6 and 9 DPI, serum total antioxidant capacity linearly decreased as MCR decreased (P < 0.05). Hepatic activities of glutathione peroxidase on 6 DPI and superoxide dismutase on 9 DPI changed quadratically as MCR decreased (P < 0.05). The digestibility of Met linearly decreased whereas the digestibility of Cys linearly increased as MCR decreased. The ileal crypt depth linearly decreased as MCR decreased (P < 0.01) on 6 DPI. The expression of transforming growth factor beta on 6 and 9 DPI, tumor necrotic factor alpha and interleukin 10 on 9 DPI changed quadratically as MCR decreased (P < 0.05). Eimeria challenge increased expression of Met adenosyltransferase and cystathionine gamma-lyase, whereas decreasing the expression of other Met metabolism genes (P < 0.01) on 6 DPI. Expression of Met metabolism genes linearly increased as MCR decreased (P < 0.05). In conclusion, different Met to Cys supplementation ratios exerted linearly or quadratically effects on the growth performance, oxidative status, intestinal health, and metabolism of Met in broiler chickens under Eimeria infection.
Collapse
Affiliation(s)
- Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Milan K Sharma
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Yuguo H Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
20
|
Kang J, Benjamin DI, Kim S, Salvi JS, Dhaliwal G, Lam R, Goshayeshi A, Brett JO, Liu L, Rando TA. Depletion of SAM leading to loss of heterochromatin drives muscle stem cell ageing. Nat Metab 2024; 6:153-168. [PMID: 38243132 PMCID: PMC10976122 DOI: 10.1038/s42255-023-00955-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/30/2023] [Indexed: 01/21/2024]
Abstract
The global loss of heterochromatin during ageing has been observed in eukaryotes from yeast to humans, and this has been proposed as one of the causes of ageing. However, the cause of this age-associated loss of heterochromatin has remained enigmatic. Here we show that heterochromatin markers, including histone H3K9 di/tri-methylation and HP1, decrease with age in muscle stem cells (MuSCs) as a consequence of the depletion of the methyl donor S-adenosylmethionine (SAM). We find that restoration of intracellular SAM in aged MuSCs restores heterochromatin content to youthful levels and rejuvenates age-associated features, including DNA damage accumulation, increased cell death, and defective muscle regeneration. SAM is not only a methyl group donor for transmethylation, but it is also an aminopropyl donor for polyamine synthesis. Excessive consumption of SAM in polyamine synthesis may reduce its availability for transmethylation. Consistent with this premise, we observe that perturbation of increased polyamine synthesis by inhibiting spermidine synthase restores intracellular SAM content and heterochromatin formation, leading to improvements in aged MuSC function and regenerative capacity in male and female mice. Together, our studies demonstrate a direct causal link between polyamine metabolism and epigenetic dysregulation during murine MuSC ageing.
Collapse
Affiliation(s)
- Jengmin Kang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel I Benjamin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Soochi Kim
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Jayesh S Salvi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Gurkamal Dhaliwal
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Richard Lam
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Armon Goshayeshi
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Jamie O Brett
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling Liu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology and Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Neurology Service, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
- Department of Neurology and Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Verma S, Paliwal S. Recent Developments and Applications of Biocatalytic and Chemoenzymatic Synthesis for the Generation of Diverse Classes of Drugs. Curr Pharm Biotechnol 2024; 25:448-467. [PMID: 37885105 DOI: 10.2174/0113892010238984231019085154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/26/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Biocatalytic and chemoenzymatic biosynthesis are powerful methods of organic chemistry that use enzymes to execute selective reactions and allow the efficient production of organic compounds. The advantages of these approaches include high selectivity, mild reaction conditions, and the ability to work with complex substrates. The utilization of chemoenzymatic techniques for the synthesis of complicated compounds has lately increased dramatically in the area of organic chemistry. Biocatalytic technologies and modern synthetic methods are utilized synergistically in a multi-step approach to a target molecule under this paradigm. Chemoenzymatic techniques are promising for simplifying access to essential bioactive compounds because of the remarkable regio- and stereoselectivity of enzymatic transformations and the reaction diversity of modern organic chemistry. Enzyme kits may include ready-to-use, reproducible biocatalysts. Its use opens up new avenues for the synthesis of active therapeutic compounds and aids in drug development by synthesizing active components to construct scaffolds in a targeted and preparative manner. This study summarizes current breakthroughs as well as notable instances of biocatalytic and chemoenzymatic synthesis. To assist organic chemists in the use of enzymes for synthetic applications, it also provides some basic guidelines for selecting the most appropriate enzyme for a targeted reaction while keeping aspects like cofactor requirement, solvent tolerance, use of whole cell or isolated enzymes, and commercial availability in mind.
Collapse
Affiliation(s)
- Swati Verma
- Department of Pharmacy, ITS College of Pharmacy, Muradnagar, Ghaziabad, India
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| |
Collapse
|
22
|
Salvail H, Balaji A, Roth A, Breaker RR. A spermidine riboswitch class in bacteria exploits a close variant of an aptamer for the enzyme cofactor S-adenosylmethionine. Cell Rep 2023; 42:113571. [PMID: 38096053 PMCID: PMC10853860 DOI: 10.1016/j.celrep.2023.113571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
Natural polyamines such as spermidine and spermine cations have characteristics that make them highly likely to be sensed by riboswitches, such as their general affinity to polyanionic RNA and their broad contributions to cell physiology. Despite previous claims that polyamine riboswitches exist, evidence of their biological functions has remained unconvincing. Here, we report that rare variants of bacterial S-adenosylmethionine-I (SAM-I) riboswitches reject SAM and have adapted to selectively sense spermidine. These spermidine-sensing riboswitch variants are associated with genes whose protein products are directly involved in the production of spermidine and other polyamines. Biochemical and genetic assays demonstrate that representatives of this riboswitch class robustly function as genetic "off" switches, wherein spermidine binding causes premature transcription termination to suppress the expression of polyamine biosynthetic genes. These findings confirm the existence of natural spermidine-sensing riboswitches in bacteria and expand the list of variant riboswitch classes that have adapted to bind different ligands.
Collapse
Affiliation(s)
- Hubert Salvail
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Aparaajita Balaji
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Adam Roth
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8103, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8103, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103, USA.
| |
Collapse
|
23
|
Valera PS, Plou J, García I, Astobiza I, Viera C, M. Aransay A, Martin JE, Sasselli IR, Carracedo A, Liz-Marzán LM. SERS analysis of cancer cell-secreted purines reveals a unique paracrine crosstalk in MTAP-deficient tumors. Proc Natl Acad Sci U S A 2023; 120:e2311674120. [PMID: 38109528 PMCID: PMC10756296 DOI: 10.1073/pnas.2311674120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023] Open
Abstract
The tumor microenvironment (TME) is a dynamic pseudoorgan that shapes the development and progression of cancers. It is a complex ecosystem shaped by interactions between tumor and stromal cells. Although the traditional focus has been on the paracrine communication mediated by protein messengers, recent attention has turned to the metabolic secretome in tumors. Metabolic enzymes, together with exchanged substrates and products, have emerged as potential biomarkers and therapeutic targets. However, traditional techniques for profiling secreted metabolites in complex cellular contexts are limited. Surface-enhanced Raman scattering (SERS) has emerged as a promising alternative due to its nontargeted nature and simplicity of operation. Although SERS has demonstrated its potential for detecting metabolites in biological settings, its application in deciphering metabolic interactions within multicellular systems like the TME remains underexplored. In this study, we introduce a SERS-based strategy to investigate the secreted purine metabolites of tumor cells lacking methylthioadenosine phosphorylase (MTAP), a common genetic event associated with poor prognosis in various cancers. Our SERS analysis reveals that MTAP-deficient cancer cells selectively produce methylthioadenosine (MTA), which is taken up and metabolized by fibroblasts. Fibroblasts exposed to MTA exhibit: i) molecular reprogramming compatible with cancer aggressiveness, ii) a significant production of purine derivatives that could be readily recycled by cancer cells, and iii) the capacity to secrete purine derivatives that induce macrophage polarization. Our study supports the potential of SERS for cancer metabolism research and reveals an unprecedented paracrine crosstalk that explains TME reprogramming in MTAP-deleted cancers.
Collapse
Affiliation(s)
- Pablo S. Valera
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián20014, Spain
- Centro de Investigación Biomédica En Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián20014, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio48160, Spain
- Departamento de Química Aplicada, Universidad del País Vasco/Euskal Herriko Universitatea (UPV/EHU), Donostia-San Sebastián20018, Spain
| | - Javier Plou
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián20014, Spain
- Centro de Investigación Biomédica En Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián20014, Spain
- Center for Cooperative Research in Nanoscience (CIC nanoGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián20018, Spain
| | - Isabel García
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián20014, Spain
- Centro de Investigación Biomédica En Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián20014, Spain
| | - Ianire Astobiza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio48160, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC),Madrid28029, Spain
| | - Cristina Viera
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio48160, Spain
| | - Ana M. Aransay
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio48160, Spain
- Biomedical Research Networking Center in hepatic diseases, Derio48160, Spain
| | - José E. Martin
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio48160, Spain
| | - Ivan R. Sasselli
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián20014, Spain
- Centro de Fisica de Materiales, Consejo Superior de Investigaciones Cientificas-Universidad del País Vasco/Euskal Herriko Universitatea (CSIC-UPV)/EHU), Donostiarra-San Sebastián20018, Spain
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio48160, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC),Madrid28029, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao48009, Spain
- Translational Prostate Cancer Research Lab, Center for Cooperative Research in Biosciences-Basurto, Biocruces Bizkaia Health Research Institute, Derio48160, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco/Euskal Herriko Universitatea (UPV/EHU), Leioa48940, Spain
| | - Luis M. Liz-Marzán
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián20014, Spain
- Centro de Investigación Biomédica En Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián20014, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao48009, Spain
- Cinbio, Universidade de Vigo, Vigo36310, Spain
| |
Collapse
|
24
|
Xi H, Nie X, Gao F, Liang X, Li H, Zhou H, Cai Y, Yang C. A bacterial spermidine biosynthetic pathway via carboxyaminopropylagmatine. SCIENCE ADVANCES 2023; 9:eadj9075. [PMID: 37878710 PMCID: PMC10599626 DOI: 10.1126/sciadv.adj9075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Spermidine, a ubiquitous polyamine, is known to be required for critical physiological functions in bacteria. Two principal pathways are known for spermidine biosynthesis, both of which involve aminopropylation of putrescine. Here, we identified a spermidine biosynthetic pathway via a previously unknown metabolite, carboxyaminopropylagmatine (CAPA), in a model cyanobacterium Synechocystis sp. PCC 6803 through an approach combining 13C and 15N tracers, metabolomics, and genetic and biochemical characterization. The CAPA pathway starts with reductive condensation of agmatine and l-aspartate-β-semialdehyde into CAPA by a previously unknown CAPA dehydrogenase, followed by decarboxylation of CAPA to form aminopropylagmatine, and ends with conversion of aminopropylagmatine to spermidine by an aminopropylagmatine ureohydrolase. Thus, the pathway does not involve putrescine and depends on l-aspartate-β-semialdehyde as the aminopropyl group donor. Genomic, biochemical, and metagenomic analyses showed that the CAPA-pathway genes are widespread in 15 different phyla of bacteria distributed in marine, freshwater, and other ecosystems.
Collapse
Affiliation(s)
- Huachao Xi
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqun Nie
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Fang Gao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xinxin Liang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Hu Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
25
|
Laubach K, Turan T, Mathew R, Wilsbacher J, Engelhardt J, Samayoa J. Tumor-intrinsic metabolic reprogramming and how it drives resistance to anti-PD-1/PD-L1 treatment. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:611-641. [PMID: 37842241 PMCID: PMC10571065 DOI: 10.20517/cdr.2023.60] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 10/17/2023]
Abstract
The development of immune checkpoint blockade (ICB) therapies has been instrumental in advancing the field of immunotherapy. Despite the prominence of these treatments, many patients exhibit primary or acquired resistance, rendering them ineffective. For example, anti-programmed cell death protein 1 (anti-PD-1)/anti-programmed cell death ligand 1 (anti-PD-L1) treatments are widely utilized across a range of cancer indications, but the response rate is only 10%-30%. As such, it is necessary for researchers to identify targets and develop drugs that can be used in combination with existing ICB therapies to overcome resistance. The intersection of cancer, metabolism, and the immune system has gained considerable traction in recent years as a way to comprehensively study the mechanisms that drive oncogenesis, immune evasion, and immunotherapy resistance. As a result, new research is continuously emerging in support of targeting metabolic pathways as an adjuvant to ICB to boost patient response and overcome resistance. Due to the plethora of studies in recent years highlighting this notion, this review will integrate the relevant articles that demonstrate how tumor-derived alterations in energy, amino acid, and lipid metabolism dysregulate anti-tumor immune responses and drive resistance to anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Kyra Laubach
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
- Immuno-Oncology, AbbVie, South San Francisco, CA 94080, USA
| | - Tolga Turan
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
| | - Rebecca Mathew
- Immuno-Oncology, AbbVie, South San Francisco, CA 94080, USA
| | | | | | - Josue Samayoa
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
| |
Collapse
|
26
|
Cooper AJL, Dorai T, Pinto JT, Denton TT. Metabolic Heterogeneity, Plasticity, and Adaptation to "Glutamine Addiction" in Cancer Cells: The Role of Glutaminase and the GTωA [Glutamine Transaminase-ω-Amidase (Glutaminase II)] Pathway. BIOLOGY 2023; 12:1131. [PMID: 37627015 PMCID: PMC10452834 DOI: 10.3390/biology12081131] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Many cancers utilize l-glutamine as a major energy source. Often cited in the literature as "l-glutamine addiction", this well-characterized pathway involves hydrolysis of l-glutamine by a glutaminase to l-glutamate, followed by oxidative deamination, or transamination, to α-ketoglutarate, which enters the tricarboxylic acid cycle. However, mammalian tissues/cancers possess a rarely mentioned, alternative pathway (the glutaminase II pathway): l-glutamine is transaminated to α-ketoglutaramate (KGM), followed by ω-amidase (ωA)-catalyzed hydrolysis of KGM to α-ketoglutarate. The name glutaminase II may be confused with the glutaminase 2 (GLS2) isozyme. Thus, we recently renamed the glutaminase II pathway the "glutamine transaminase-ω-amidase (GTωA)" pathway. Herein, we summarize the metabolic importance of the GTωA pathway, including its role in closing the methionine salvage pathway, and as a source of anaplerotic α-ketoglutarate. An advantage of the GTωA pathway is that there is no net change in redox status, permitting α-ketoglutarate production during hypoxia, diminishing cellular energy demands. We suggest that the ability to coordinate control of both pathways bestows a metabolic advantage to cancer cells. Finally, we discuss possible benefits of GTωA pathway inhibitors, not only as aids to studying the normal biological roles of the pathway but also as possible useful anticancer agents.
Collapse
Affiliation(s)
- Arthur J. L. Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
| | - Thambi Dorai
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
- Department of Urology, New York Medical College, Valhalla, NY 10595, USA
| | - John T. Pinto
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
| | - Travis T. Denton
- Department Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA 99202, USA
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University Health Sciences Spokane, Spokane, WA 99164, USA
- Steve Gleason Institute for Neuroscience, Washington State University Health Sciences Spokane, Spokane, WA 99164, USA
| |
Collapse
|
27
|
Huening KA, Groves JT, Wildenthal JA, Tabita FR, North JA. Utilization of 5'-deoxy-nucleosides as Growth Substrates by Extraintestinal Pathogenic E. coli via the Dihydroxyacetone Phosphate Shunt. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552779. [PMID: 37609188 PMCID: PMC10441430 DOI: 10.1101/2023.08.10.552779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
All organisms utilize S-adenosyl-l-methionine (SAM) as a key co-substrate for methylation of biological molecules, synthesis of polyamines, and radical SAM reactions. When these processes occur, 5'-deoxy-nucleosides are formed as byproducts such as S-adenosyl-l-homocysteine (SAH), 5'-methylthioadenosine (MTA), and 5'-deoxyadenosine (5dAdo). One of the most prevalent pathways found in bacteria for the metabolism of MTA and 5dAdo is the DHAP shunt, which converts these compounds into dihydroxyacetone phosphate (DHAP) and 2-methylthioacetaldehyde or acetaldehyde, respectively. Previous work has shown that the DHAP shunt can enable methionine synthesis from MTA or serve as an MTA and 5dAdo detoxification pathway. Here we show that in Extraintestinal Pathogenic E. coil (ExPEC), the DHAP shunt serves none of these roles in any significant capacity, but rather physiologically functions as an assimilation pathway for use of MTA and 5dAdo as growth substrates. This is further supported by the observation that when MTA is the substrate for the ExPEC DHAP shunt, the sulfur components is not significantly recycled back to methionine, but rather accumulates as 2-methylthioethanol, which is slowly oxidized non-enzymatically under aerobic conditions. While the pathway is active both aerobically and anaerobically, it only supports aerobic ExPEC growth, suggesting that it primarily functions in oxygenic extraintestinal environments like blood and urine versus the predominantly anoxic gut. This reveals a heretofore overlooked role of the DHAP shunt in carbon assimilation and energy metabolism from ubiquitous SAM utilization byproducts and suggests a similar role may occur in other pathogenic and non-pathogenic bacteria with the DHAP shunt.
Collapse
Affiliation(s)
| | - Joshua T. Groves
- The Ohio State University Department of Microbiology, Columbus, OH, 43210
| | - John A. Wildenthal
- The Ohio State University Department of Microbiology, Columbus, OH, 43210
| | - F. Robert Tabita
- The Ohio State University Department of Microbiology, Columbus, OH, 43210
| | - Justin A. North
- The Ohio State University Department of Microbiology, Columbus, OH, 43210
| |
Collapse
|
28
|
Cortellino S, Longo VD. Metabolites and Immune Response in Tumor Microenvironments. Cancers (Basel) 2023; 15:3898. [PMID: 37568713 PMCID: PMC10417674 DOI: 10.3390/cancers15153898] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The remodeled cancer cell metabolism affects the tumor microenvironment and promotes an immunosuppressive state by changing the levels of macro- and micronutrients and by releasing hormones and cytokines that recruit immunosuppressive immune cells. Novel dietary interventions such as amino acid restriction and periodic fasting mimicking diets can prevent or dampen the formation of an immunosuppressive microenvironment by acting systemically on the release of hormones and growth factors, inhibiting the release of proinflammatory cytokines, and remodeling the tumor vasculature and extracellular matrix. Here, we discuss the latest research on the effects of these therapeutic interventions on immunometabolism and tumor immune response and future scenarios pertaining to how dietary interventions could contribute to cancer therapy.
Collapse
Affiliation(s)
- Salvatore Cortellino
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy;
| | - Valter D. Longo
- IFOM, The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
- Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
29
|
Waller D, Putnam J, Steiner JN, Fisher B, Burcham GN, Oliver J, Smith SB, Erickson R, Remek A, Bodoeker N. Targeted metabolomics characterizes metabolite occurrence and variability in stable freshwater mussel populations. CONSERVATION PHYSIOLOGY 2023; 11:coad040. [PMID: 37701372 PMCID: PMC10494281 DOI: 10.1093/conphys/coad040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 09/14/2023]
Abstract
Freshwater mussels (order Unionida) play a key role in freshwater systems as ecosystem engineers and indicators of aquatic ecosystem health. The fauna is globally imperilled due to a diversity of suspected factors; however, causes for many population declines and mortality events remain unconfirmed due partly to limited health assessment tools. Mussel-monitoring activities often rely on population-level measurements, such as abundance and age structure, which reflect delayed responses to environmental conditions. Measures of organismal health would enable preemptive detection of declining condition before population-level effects manifest. Metabolomic analysis can identify shifts in biochemical pathways in response to stressors and changing environmental conditions; however, interpretation of the results requires information on inherent variability of metabolite concentrations in mussel populations. We targeted metabolites in the haemolymph of two common mussels, Lampsilis cardium and Lampsilis siliquoidea, from three Indiana streams (USA) using ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectroscopy. The influence of species, stream and sex on metabolite variability was examined with distance-based redundancy analysis. Metabolite variability was most influenced by species, followed by site and sex. Inter- and intraspecies metabolite variability among sexes was less distinct than differences among locations. We further categorized metabolites by occurrence and variability in mussel populations. Metabolites with high occurrence (Categories 1 and 2) included those indicative of energy status (catabolism versus anabolism; arginine, proline, carnitine, nicotinic acid, pantothenic acid), oxidative stress (proline, glutamine, glutamate) and protein metabolism (thymidine, cytidine, inosine). Metabolites with lower occurrence (Category 3) are constituents of assorted metabolic pathways and can be important biomarkers with additional temporal sampling to characterize their variability. These data provide a reference for future temporal (before/after) monitoring and for studies of stressor-metabolite linkages in freshwater mussels.
Collapse
Affiliation(s)
- Diane Waller
- United States Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI 54603, USA
| | - Joel Putnam
- Conagen, Inc., 15 Deangelo Dr, Bedford, MA 01730, USA
| | - J Nolan Steiner
- United States Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI 54603, USA
| | - Brant Fisher
- Indiana Department of Natural Resources – Division of Fish & Wildlife, Atterbury Fish & Wildlife Area, 7970 South Rowe Street, Edinburgh, IN 46124, USA
| | - Grant N Burcham
- Heeke Animal Disease Diagnostic Laboratory, 11367 East Purdue Farm Road, Dubois, IN 47527 and Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - John Oliver
- United States Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI 54603, USA
| | - Stephen B Smith
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843, USA
| | - Richard Erickson
- United States Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI 54603, USA
| | - Anne Remek
- 200 W Washington St, Indianapolis, IN 46204, USA
| | - Nancy Bodoeker
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, 625 Harrison St. West Lafayette, IN 47907, USA
| |
Collapse
|
30
|
Carrión O, Zhu XY, Williams BT, Wang J, Zhang XH, Todd JD. Molecular discoveries in microbial DMSP synthesis. Adv Microb Physiol 2023; 83:59-116. [PMID: 37507162 DOI: 10.1016/bs.ampbs.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Dimethylsulfoniopropionate (DMSP) is one of the Earth's most abundant organosulfur compounds because many marine algae, bacteria, corals and some plants produce it to high mM intracellular concentrations. In these organisms, DMSP acts an anti-stress molecule with purported roles to protect against salinity, temperature, oxidative stress and hydrostatic pressure, amongst many other reported functions. However, DMSP is best known for being a major precursor of the climate-active gases and signalling molecules dimethylsulfide (DMS), methanethiol (MeSH) and, potentially, methane, through microbial DMSP catabolism. DMSP catabolism has been extensively studied and the microbes, pathways and enzymes involved have largely been elucidated through the application of molecular research over the last 17 years. In contrast, the molecular biology of DMSP synthesis is a much newer field, with the first DMSP synthesis enzymes only being identified in the last 5 years. In this review, we discuss how the elucidation of key DMSP synthesis enzymes has greatly expanded our knowledge of the diversity of DMSP-producing organisms, the pathways used, and what environmental factors regulate production, as well as to inform on the physiological roles of DMSP. Importantly, the identification of key DMSP synthesis enzymes in the major groups of DMSP producers has allowed scientists to study the distribution and predict the importance of different DMSP-producing organisms to global DMSP production in diverse marine and sediment environments. Finally, we highlight key challenges for future molecular research into DMSP synthesis that need addressing to better understand the cycling of this important marine organosulfur compound, and its magnitude in the environment.
Collapse
Affiliation(s)
- Ornella Carrión
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.
| | - Xiao-Yu Zhu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Beth T Williams
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jinyan Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.
| |
Collapse
|
31
|
Fan N, Zhang Y, Zou S. Methylthioadenosine phosphorylase deficiency in tumors: A compelling therapeutic target. Front Cell Dev Biol 2023; 11:1173356. [PMID: 37091983 PMCID: PMC10113547 DOI: 10.3389/fcell.2023.1173356] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
The methionine salvage pathway is responsible for recycling sulfur-containing metabolites to methionine. This salvage pathway has been found to be implicated in cell apoptosis, proliferation, differentiation and inflammatory response. Methylthioadenosine phosphorylase (MTAP) catalyzes the reversible phosphorolysis of 5′-methylthioadenosine, a by-product produced from polyamine biosynthesis. The MTAP gene is located adjacent to the cyclin-dependent kinase inhibitor 2A gene and co-deletes with CDKN2A in nearly 15% of tumors. Moreover, MTAP-deleted tumor cells exhibit greater sensitivity to methionine depletion and to the inhibitors of purine synthesis. In this review, we first summarized the molecular structure and expression of MTAP in tumors. Furthermore, we discussed PRMT5 and MAT2A as a potential vulnerability for MTAP-deleted tumors. The complex and dynamic role of MTAP in diverse malignancies has also been discussed. Finally, we demonstrated the implications for the treatment of MTAP-deleted tumors.
Collapse
Affiliation(s)
- Na Fan
- Department of Stomatology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Suyun Zou
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Suyun Zou,
| |
Collapse
|
32
|
Asher G, Zhu B. Beyond circadian rhythms: emerging roles of ultradian rhythms in control of liver functions. Hepatology 2023; 77:1022-1035. [PMID: 35591797 PMCID: PMC9674798 DOI: 10.1002/hep.32580] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/08/2022]
Abstract
The mammalian liver must cope with various metabolic and physiological changes that normally recur every day and primarily stem from daily cycles of rest-activity and fasting-feeding. Although a large body of evidence supports the reciprocal regulation of circadian rhythms and liver function, the research on the hepatic ultradian rhythms have largely been lagging behind. However, with the advent of more cost-effective high-throughput omics technologies, high-resolution time-lapse imaging, and more robust and powerful mathematical tools, several recent studies have shed new light on the presence and functions of hepatic ultradian rhythms. In this review, we will first very briefly discuss the basic principles of circadian rhythms, and then cover in greater details the recent literature related to ultradian rhythms. Specifically, we will highlight the prevalence and mechanisms of hepatic 12-h rhythms, and 8-h rhythms, which cycle at the second and third harmonics of circadian frequency. Finally, we also refer to ultradian rhythms with other frequencies and examine the limitations of the current approaches as well as the challenges related to identifying ultradian rhythm and addressing their molecular underpinnings.
Collapse
Affiliation(s)
- Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pennsylvania, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
Kanchanapiboon J, Maiuthed A, Rukthong P, Thunyaharn S, Tuntoaw S, Poonsatha S, Santimaleeworagun W. Metabolomics profiling of culture medium reveals association of methionine and vitamin B metabolisms with virulent phenotypes of clinical bloodstream-isolated Candida albicans. Res Microbiol 2023; 174:104009. [PMID: 36403754 DOI: 10.1016/j.resmic.2022.104009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
Candida albicans is a predominant species causing candidemia in hospitalized patients. This study aimed to investigate the association of culture medium metabolomic profiles with biofilm formation and invasion properties of clinical bloodstream-isolated C. albicans. A total of twelve isolates and two reference strains were identified by virulent phenotypes. Their susceptibility was determined by the microdilution method, following EUCAST guidelines. Biofilm formation was evaluated with metabolic activity, morphology and agglutinin-like sequence 3 (ALS3) mRNA expression. Invasion into the vascular endothelial EA.hy926 cells was determined by lactate dehydrogenase release and internalization assay. Their metabolomic profiles were assessed by high-resolution accurate-mass spectrometry (HRAMS). The results showed four different phenotypes of C. albicans: high-biofilm/invasive (50%), high-biofilm/non-invasive (7%), low-biofilm/invasive (36%) and low-biofilm/non-invasive (7%). The metabolomic profiles of the culture medium determined strong correlation of the virulent phenotypes and the alteration of metabolites in the methionine metabolism pathway, such as homocysteine, 5-methyltetrahydrofolate and S-adenosylmethioninamine. Moreover, thiamine and biotin levels were significantly increased in Isolate03, representative of a high-biofilm/invasive phenotype. These results suggest that methionine and vitamin B metabolism pathways might be influenced by their virulent phenotypes and pathogenic traits. Therefore, their metabolism pathways might be a potential target for reducing virulence of C. albicans bloodstream infections.
Collapse
Affiliation(s)
- Jamras Kanchanapiboon
- Medicinal Plant Research Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand.
| | - Arnatchai Maiuthed
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| | - Pattarawit Rukthong
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Srinakharinwirot University, Nakornnayok 26120, Thailand; Center for Excellence in Plant and Herbal Innovation Research, Strategic Wisdom and Research Institute, Srinakharinwirot University, Nakornnayok 26120, Thailand.
| | - Sudaluck Thunyaharn
- Department of Medical Technology, Faculty of Allied Health Sciences, Nakhonratchasima College, Nakhon Ratchasima 30000, Thailand.
| | - Sasiwan Tuntoaw
- Medicinal Plant Research Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand.
| | - Subhadhcha Poonsatha
- Medicinal Plant Research Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand.
| | - Wichai Santimaleeworagun
- Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
34
|
Teng PY, Liu G, Choi J, Yadav S, Wei F, Kim WK. Effects of levels of methionine supplementations in forms of L or DL-methionine on the performance, intestinal development, immune response, and antioxidant system in broilers challenged with Eimeria spp. Poult Sci 2023; 102:102586. [PMID: 36966644 PMCID: PMC10064433 DOI: 10.1016/j.psj.2023.102586] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
The study was conducted to investigate the effects of 2 isoforms of methionine on growth performance and intestinal health induced by methionine (Met) deficiency and Eimeria infection in broilers. A total of 720 one-day old male chicks (Cobb500) were randomly allocated to 10 groups in a 2 × 5 factorial arrangement (6 reps/group, 12 birds/cage) with diets and Eimeria challenge as the main factors. Hundred percent DL-Met, 100% L-Met, 80% DL-Met, and 80% L-Met diets were formulated to meet approximately 100 or 80% of the total sulfur amino acid (TSAA) requirement with DL-Met or L-Met as Met supplementation sources. The 60% TSAA basal diet (60% Met) was formulated without Met supplementation. At d14, the challenge groups were gavaged with mixed Eimeria spp. Growth performance was recorded on d7, 14, 20 (6-day postinfection [DPI]), and 26 (12 DPI). The gut permeability was measured on 5 and 11 DPI. Antioxidant status and gene expression of immune cytokines and tight junction proteins were measured on 6 and 12 DPI. Data were analyzed by 1-way and 2-way ANOVA before and after the challenge, respectively. Orthogonal polynomial contrasts were used for post hoc comparison. Overall, the Eimeria challenge and 60% Met diet significantly reduced growth performance, antioxidant status, and mRNA expression of tight junction genes and immune cytokines. For other Met treatments, the L-Met groups had significantly higher BWG and lower FCR than the DL-Met group from d 1 to 20. The L-Met groups had less gut permeability than the DL-Met groups on 5 DPI. Compared to the 80% Met groups, the 100% Met groups reduced gut permeability. At 6 DPI, the 80% Met groups showed higher ZO1 expression than the 100% Met groups. The challenge groups had higher Muc2 expression and GSH/GSSG compared to the nonchallenge groups, and SOD activity was lower in the L-Met groups compared to the DL-Met groups at 6 DPI. The 100% Met groups had higher GPx activity than the 80% Met groups at 12 DPI. In conclusion, during coccidiosis, the 100% Met groups had better gut integrity and antioxidant status. Met supplementation in the form of L-Met improved growth performance in the starter phase and gut permeability in the challenge phase.
Collapse
Affiliation(s)
- Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Sudhir Yadav
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Fengxian Wei
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
35
|
Kasthuri T, Barath S, Nandhakumar M, Karutha Pandian S. Proteomic profiling spotlights the molecular targets and the impact of the natural antivirulent umbelliferone on stress response, virulence factors, and the quorum sensing network of Pseudomonas aeruginosa. Front Cell Infect Microbiol 2022; 12:998540. [PMID: 36530435 PMCID: PMC9748083 DOI: 10.3389/fcimb.2022.998540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Pseudomonas aeruginosa easily adapts to newer environments and acquires several genome flexibilities to overcome the effect of antibiotics during therapeutics, especially in cystic fibrosis patients. During adaptation to the host system, the bacteria employ various tactics including virulence factor production and biofilm formation to escape from the host immune system and resist antibiotics. Hence, identifying alternative strategies to combat recalcitrant pathogens is imperative for the successful elimination of drug-resistant microbes. In this context, this study portrays the anti-virulence efficacy of umbelliferone (UMB) against P. aeruginosa. UMB (7-hydroxy coumarin) is pervasively found among the plant family of Umbelliferae and Asteraceae. The UMB impeded biofilm formation in the P. aeruginosa reference strain and clinical isolates on polystyrene and glass surfaces at the concentration of 125 µg/ml. Global proteomic analysis of UMB-treated cells revealed the downregulation of major virulence-associated proteins such as RhlR, LasA, AlgL, FliD, Tpx, HtpG, KatA, FusA1, Tsf, PhzM, PhzB2, CarB, DctP, MtnA, and MscL. A functional interaction study, gene ontology, and KEGG pathway analysis revealed that UMB could modulate the global regulators, enzymes, co-factors, and transcription factors related to quorum sensing (QS), stress tolerance, siderophore production, motility, and microcolony formation. In vitro biochemical assays further affirmed the anti-virulence efficacy of UMB by reducing pyocyanin, protease, elastase, and catalase production in various strains of P. aeruginosa. Besides the antibiofilm activity, UMB-treated cells exhibited enhanced antibiotic susceptibility to various antibiotics including amikacin, kanamycin, tobramycin, ciprofloxacin, and cefotaxime. Furthermore, in vitro cytotoxicity analysis revealed the biocompatibility of UMB, and the IC50 value was determined to be 249.85 µg/ml on the HepG2 cell line. Altogether, the study substantiates the anti-virulence efficacy of UMB against P. aeruginosa, and the proteomic analysis reveals the differential expression of the regulators related to QS, stress response, and motility factors.
Collapse
|
36
|
Lee BS, Ryoo R, Park JS, Choi SU, Jeong SY, Ko YJ, Kim JK, Kim JC, Kim KH. Meyeroguilline E, a New Isoindolinone Alkaloid from the Poisonous Mushroom Chlorophyllum molybdites, and Identification of Compounds with Multidrug Resistance (MDR) Reversal Activities. ACS OMEGA 2022; 7:39456-39462. [PMID: 36340132 PMCID: PMC9631746 DOI: 10.1021/acsomega.2c06155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Three isoindolinone alkaloids (1-3), including one new isoindolinone-type alkaloid, meyeroguilline E (1), and six other known compounds (4-9) were isolated from the poisonous mushroom Chlorophyllum molybdites (Agaricaceae). The structure of the new compound was determined using extensive spectroscopic analyses via one-dimensional (1D) and two-dimensional (2D) NMR data interpretation and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). To the best of our knowledge, compound 1 is the first example of a natural isoindolinone with a butanoic acid moiety, and this study is the first to detect the other known compounds (2-9) in C. molybdites. The isolated compounds (1-9) were examined for their multidrug resistance (MDR) reversal activity against MES-SA, MES-SA/DX5, HCT15, and HCT15/CL02 human cancer cells. Based on the results, 20 μM of compounds 3 and 6 slightly potentiated paclitaxel (TAX)-induced cytotoxicity in MES-SA/DX5, HCT15, and HCT15/CL02 cells; however, the compounds had no effect on the cytotoxicity against MES-SA and nonMDR cells.
Collapse
Affiliation(s)
- Bum Soo Lee
- School
of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Rhim Ryoo
- Special
Forest Products Division, Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Jin Song Park
- Korea
Research Institute of Chemical Technology, Deajeon 34114, Republic of Korea
| | - Sang Un Choi
- Korea
Research Institute of Chemical Technology, Deajeon 34114, Republic of Korea
| | - Se Yun Jeong
- School
of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Yoon-Joo Ko
- Laboratory
of Nuclear Magnetic Resonance, National Center for Inter-University
Research Facilities (NCIRF), Seoul National
University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jung Kyu Kim
- School
of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jin-Chul Kim
- KIST Gangneung
Institute of Natural Products, Natural Product
Research Center, Gangneung 25451, Republic of Korea
| | - Ki Hyun Kim
- School
of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
37
|
Abstract
INTRODUCTION In methylthioadenosine phosphorylase (MTAP)-deficient tumor cells, reduced S-adenosylmethionine (SAM) levels in the context of elevated methylthioadenosine (MTA) has been hypothesized to lead to inhibition of protein arginine methyltransferase 5 (PRMT5) and tumor growth inhibition. Inhibitors of methionine adenosyltransferase 2A (MAT2a) prevent the synthesis of SAM from methionine and have therefore attracted increasing attention as potential chemotherapeutic agents in cancers characterized by MTAP-loss. AREAS COVERED This review covers patent applications between January 2018 and December 2021. 18 patent applications from 5 different applicants are evaluated. EXPERT OPINION Recent advances in the field show a significant interest in the MAT2a therapeutic hypothesis. Agios and Ideaya in particular have capitalized on an allosteric binding mode first published by Pfizer in at least two of the filings during this time period, leading to potent, selective inhibitors. They have advanced MAT2a inhibitors to phase I clinical studies to explore their benefit to patients suffering with MTAP-deficient solid tumors or lymphoma. Whilst the other patent disclosures during this time frame have not led to disclosed candidates, the trials initiated by Agios and Ideaya studies will clearly inform on the potential for such inhibitors as viable therapeutic agents either as single agent or in combination.
Collapse
|
38
|
Bacillus amyloliquefaciens 40 regulates piglet performance, antioxidant capacity, immune status and gut microbiota. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:116-127. [PMID: 36632621 PMCID: PMC9826887 DOI: 10.1016/j.aninu.2022.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 01/06/2023]
Abstract
Probiotics can improve animal growth performance and intestinal health. Bacillus species, Lactobacillus species, Bifidobacterium species, yeast etc. are the common types of probiotics. However, understanding the effects of probiotics on the immune status and gut microbiota of weaning piglets and how the probiotics exert their impact are still limited. This study aimed to investigate the effects of Bacillus amyloliquefaciens 40 (BA40) on the performance, immune status and gut microbiota of piglets. A total of 12 litters of newborn piglets were randomly divided into 3 groups. Piglets in control group were orally dosed with phosphate buffered saline; BA40 group and probiotics group were orally gavaged with resuspension BA40 and a probiotics product, respectively. The results showed that BA40 treatment significantly decreased (P < 0.05) the diarrhea incidence (from d 5 to 40), diamine oxidase, D-lactate, interleukin (IL)-1β and interferon-γ concentrations compared with control group and probiotics group. Meanwhile BA40 dramatically increased the total antioxidant capacity, IL-10 and secretory immunoglobulin-A concentrations in contrast to control group. For the microbial composition, BA40 modulated the microbiota by improving the abundance of Bacteroides, Phascolarctobacterium (producing short-chain fatty acids) and Desulfovibrio and reducing the proliferation of pathogens (Streptococcus, Tyzzerella, Vellionella and paraeggerthella). Meanwhile, a metabolic function prediction explained that carbohydrate metabolism and amino acid metabolism enriched in BA40 group in contrast to control group and probiotics group. For correlation analysis, the results demonstrated that BA40-enriched Phascolarctobacterium and Desulfovibrio provide insights into strategies for elevating the health status and performance of weaned piglets. Altogether, BA40 exerted stronger ability in decreasing diarrhea incidence and improved antioxidant activity, gut barrier function and immune status of piglets than the other treatments. Our study provided the experimental and theoretical basis for the application of BA40 in pig production.
Collapse
|
39
|
Vaghela P, Das AK, Trivedi K, Anand KV, Shinde P, Ghosh A. Characterization and metabolomics profiling of Kappaphycus alvarezii seaweed extract. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
Schachterle JK, Gdanetz K, Pandya I, Sundin GW. Identification of novel virulence factors in Erwinia amylovora through temporal transcriptomic analysis of infected apple flowers under field conditions. MOLECULAR PLANT PATHOLOGY 2022; 23:855-869. [PMID: 35246928 PMCID: PMC9104256 DOI: 10.1111/mpp.13199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The enterobacterial pathogen Erwinia amylovora uses multiple virulence-associated traits to cause fire blight, a devastating disease of apple and pear trees. Many virulence-associated phenotypes have been studied that are critical for virulence and pathogenicity. Despite the in vitro testing that has revealed how these systems are transcriptionally regulated, information on when and where in infected tissues these genes are being expressed is lacking. Here, we used a high-throughput sequencing approach to characterize the transcriptome of E. amylovora during disease progression on apple flowers under field infection conditions. We report that type III secretion system genes and flagellar genes are strongly co-expressed. Likewise, genes involved in biosynthesis of the exopolysaccharide amylovoran and sorbitol utilization had similar expression patterns. We further identified a group of 16 genes whose expression is increased and maintained at high levels throughout disease progression across time and tissues. We chose five of these genes for mutational analysis and observed that deletion mutants lacking these genes all display reduced symptom development on apple shoots. Furthermore, these induced genes were over-represented for genes involved in sulphur metabolism and cycling, suggesting the possibility of an important role for maintenance of oxidative homeostasis during apple flower infection.
Collapse
Affiliation(s)
- Jeffrey K. Schachterle
- Genetics and Genome Sciences ProgramMichigan State UniversityEast LansingMIUSA
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMIUSA
- Present address:
USDAARS, Cereal Crops Research UnitFargoNDUSA
| | - Kristi Gdanetz
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMIUSA
| | - Ishani Pandya
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMIUSA
| | - George W. Sundin
- Genetics and Genome Sciences ProgramMichigan State UniversityEast LansingMIUSA
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMIUSA
| |
Collapse
|
41
|
Alhalabi O, Chen J, Zhang Y, Lu Y, Wang Q, Ramachandran S, Tidwell RS, Han G, Yan X, Meng J, Wang R, Hoang AG, Wang WL, Song J, Lopez L, Andreev-Drakhlin A, Siefker-Radtke A, Zhang X, Benedict WF, Shah AY, Wang J, Msaouel P, Zhang M, Guo CC, Czerniak B, Behrens C, Soto L, Papadimitrakopoulou V, Lewis J, Rinsurongkawong W, Rinsurongkawong V, Lee J, Roth J, Swisher S, Wistuba I, Heymach J, Wang J, Campbell MT, Efstathiou E, Titus M, Logothetis CJ, Ho TH, Zhang J, Wang L, Gao J. MTAP deficiency creates an exploitable target for antifolate therapy in 9p21-loss cancers. Nat Commun 2022; 13:1797. [PMID: 35379845 PMCID: PMC8980015 DOI: 10.1038/s41467-022-29397-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/10/2022] [Indexed: 12/14/2022] Open
Abstract
Methylthioadenosine phosphorylase, an essential enzyme for the adenine salvage pathway, is often deficient (MTAPdef) in tumors with 9p21 loss and hypothetically renders tumors susceptible to synthetic lethality by antifolates targeting de novo purine synthesis. Here we report our single arm phase II trial (NCT02693717) that assesses pemetrexed in MTAPdef urothelial carcinoma (UC) with the primary endpoint of overall response rate (ORR). Three of 7 enrolled MTAPdef patients show response to pemetrexed (ORR 43%). Furthermore, a historic cohort shows 4 of 4 MTAPdef patients respond to pemetrexed as compared to 1 of 10 MTAP-proficient patients. In vitro and in vivo preclinical data using UC cell lines demonstrate increased sensitivity to pemetrexed by inducing DNA damage, and distorting nucleotide pools. In addition, MTAP-knockdown increases sensitivity to pemetrexed. Furthermore, in a lung adenocarcinoma retrospective cohort (N = 72) from the published BATTLE2 clinical trial (NCT01248247), MTAPdef associates with an improved response rate to pemetrexed. Our data demonstrate a synthetic lethal interaction between MTAPdef and de novo purine inhibition, which represents a promising therapeutic strategy for larger prospective trials.
Collapse
Affiliation(s)
- Omar Alhalabi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianfeng Chen
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuxue Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yang Lu
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sumankalai Ramachandran
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rebecca Slack Tidwell
- Department of Biostatistics,, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xinmiao Yan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jieru Meng
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ruiping Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Anh G Hoang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei-Lien Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jian Song
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lidia Lopez
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Alex Andreev-Drakhlin
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Arlene Siefker-Radtke
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xinqiao Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - William F Benedict
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Amishi Y Shah
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jennifer Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Miao Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Charles C Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Carmen Behrens
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Luisa Soto
- Department of Translational molecular pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vassiliki Papadimitrakopoulou
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jeff Lewis
- Department of Biostatistics,, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Waree Rinsurongkawong
- Department of Biostatistics,, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vadeerat Rinsurongkawong
- Department of Biostatistics,, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jack Lee
- Department of Biostatistics,, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jack Roth
- Department of Thoracic and Cardiovascular surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Stephen Swisher
- Department of Thoracic and Cardiovascular surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ignacio Wistuba
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John Heymach
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Matthew T Campbell
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Eleni Efstathiou
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark Titus
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Thai H Ho
- Division of Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Jianjun Zhang
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA.
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
42
|
Cosgrove SC, Miller GJ. Advances in biocatalytic and chemoenzymatic synthesis of nucleoside analogues. Expert Opin Drug Discov 2022; 17:355-364. [PMID: 35133222 DOI: 10.1080/17460441.2022.2039620] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Nucleoside analogues represent a cornerstone of achievement in drug discovery, rising to prominence particularly in the fields of antiviral and anticancer discovery over the last 60 years. Traditionally accessed using chemical synthesis, a paradigm shift to include the use of biocatalytic synthesis is now apparent. AREAS COVERED Herein, the authors discuss the recent advances using this technology to access nucleoside analogues. Two key aspects are covered, the first surrounding methodology concepts, effectively using enzymes to access diverse nucleoside analogue space and also for producing key building blocks. The second focuses on the use of biocatalytic cascades for de novo syntheses of nucleoside analogue drugs. Finally, recent advances in technologies for effecting enzymatic nucleoside synthesis are considered, chiefly immobilization and flow. EXPERT OPINION Enzymatic synthesis of nucleoside analogues is maturing but has yet to usurp chemical synthesis as a first-hand synthesis technology, with scalability and substrate modification primary issues. Moving forward, tandem approaches that harness expertise across molecular microbiology and chemical synthesis will be vital to unlocking the potential of next generation nucleoside analogue drug discovery.
Collapse
Affiliation(s)
- Sebastian C Cosgrove
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, UK.,Centre for Glycoscience Research, Keele University, Keele, Staffordshire, UK
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, UK.,Centre for Glycoscience Research, Keele University, Keele, Staffordshire, UK
| |
Collapse
|
43
|
Kaushik S, Yadav J, Das S, Singh S, Jyoti A, Srivastava VK, Sharma V, Kumar S, Kumar S. Deciphering the Role of S-adenosyl Homocysteine Nucleosidase in Quorum
Sensing Mediated Biofilm Formation. Curr Protein Pept Sci 2022; 23:211-225. [DOI: 10.2174/1389203723666220519152507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/21/2022] [Accepted: 03/11/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
S-adenosylhomocysteine nucleosidase (MTAN) is a protein that plays a crucial role in several
pathways of bacteria that are essential for its survival and pathogenesis. In addition to the role of
MTAN in methyl-transfer reactions, methionine biosynthesis, and polyamine synthesis, MTAN is also
involved in bacterial quorum sensing (QS). In QS, chemical signaling autoinducer (AI) secreted by
bacteria assists cell to cell communication and is regulated in a cell density-dependent manner. They
play a significant role in the formation of bacterial biofilm. MTAN plays a major role in the synthesis
of these autoinducers. Signaling molecules secreted by bacteria, i.e., AI-1 are recognized as acylated
homoserine lactones (AHL) that function as signaling molecules within bacteria. QS enables bacteria
to establish physical interactions leading to biofilm formation. The formation of biofilm is a primary
reason for the development of multidrug-resistant properties in pathogenic bacteria like Enterococcus
faecalis (E. faecalis). In this regard, inhibition of E. faecalis MTAN (EfMTAN) will block the QS and
alter the bacterial biofilm formation. In addition to this, it will also block methionine biosynthesis and
many other critical metabolic processes. It should also be noted that inhibition of EfMTAN will not
have any effect on human beings as this enzyme is not present in humans. This review provides a comprehensive
overview of the structural-functional relationship of MTAN. We have also highlighted the
current status, enigmas that warrant further studies, and the prospects for identifying potential inhibitors
of EfMTAN for the treatment of E. faecalis infections. In addition to this, we have also reported
structural studies of EfMTAN using homology modeling and highlighted the putative binding sites of
the protein.
Collapse
Affiliation(s)
- Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Jyoti Yadav
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Satyajeet Das
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
- Structural Biology Lab, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Suraj Singh
- Centre for Bioseparation Technology, VIT University, Vellore-632014, Tamil Nadu, India
| | - Anupam Jyoti
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Chandigarh, India
| | | | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Sanjit Kumar
- Centre for Bioseparation Technology, VIT University, Vellore-632014, Tamil Nadu, India
| | - Sujeet Kumar
- Centre for Proteomics and Drug Discovery, Amity Institute of Biotechnology, Amity University, Maharashtra, India
| |
Collapse
|
44
|
Sun W, Zhou XJ, Chen C, Zhang X, Tian X, Xiao K, Liu C, Chen R, Chen S. Maize Interveinal Chlorosis 1 links the Yang Cycle and Fe homeostasis through Nicotianamine biosynthesis. PLANT PHYSIOLOGY 2022; 188:2131-2145. [PMID: 35099564 PMCID: PMC8968279 DOI: 10.1093/plphys/kiac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 05/15/2023]
Abstract
The Yang cycle is involved in many essential metabolic pathways in plant growth and development. As extended products of the Yang cycle, the function and regulation network of ethylene and polyamines are well characterized. Nicotianamine (NA) is also a product of this cycle and works as a key metal chelator for iron (Fe) homeostasis in plants. However, interactions between the Yang cycle and NA biosynthesis remain unclear. Here, we cloned maize interveinal chlorosis 1 (mic1), encoding a 5'-methylthioadenosine nucleosidase (MTN), that is essential for 5'-methylthioadenosine (MTA) salvage and NA biosynthesis in maize (Zea mays). A single base G-A transition in the fourth exon of mic1 causes a Gly to Asp change, resulting in increased MTA, reduced Fe distribution, and growth retardation of seedlings. Knockout of ZmMIC1 but not its paralog ZmMTN2 by CRISPR/Cas9 causes interveinal chlorosis, indicating ZmMIC1 is mainly responsible for MTN activity in maize. Transcriptome analysis showed a typical response of Fe deficiency. However, metabolic analysis revealed dramatically reduced NA content in mic1, suggesting NA biosynthesis was impaired in the mutant. Exogenous application of NA transiently reversed the interveinal chlorosis phenotype of mic1 seedlings. Moreover, the mic1 mutant overexpressing a NA synthase gene not only recovered from interveinal chlorosis and growth retardation but was also fertile. These findings provide a link between the Yang cycle and NA biosynthesis, which highlights an aspect of Fe homeostasis regulation in maize.
Collapse
Affiliation(s)
| | | | - Chen Chen
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100194, China
| | - Xin Zhang
- Crop Functional Genomics Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaolong Tian
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100194, China
| | - Ke Xiao
- Crop Functional Genomics Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chenxu Liu
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100194, China
| | | | | |
Collapse
|
45
|
McIntosh JA, Benkovics T, Silverman SM, Huffman MA, Kong J, Maligres PE, Itoh T, Yang H, Verma D, Pan W, Ho HI, Vroom J, Knight AM, Hurtak JA, Klapars A, Fryszkowska A, Morris WJ, Strotman NA, Murphy GS, Maloney KM, Fier PS. Engineered Ribosyl-1-Kinase Enables Concise Synthesis of Molnupiravir, an Antiviral for COVID-19. ACS CENTRAL SCIENCE 2021; 7:1980-1985. [PMID: 34963891 PMCID: PMC8704035 DOI: 10.1021/acscentsci.1c00608] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 05/04/2023]
Abstract
Molnupiravir (MK-4482) is an investigational antiviral agent that is under development for the treatment of COVID-19. Given the potential high demand and urgency for this compound, it was critical to develop a short and sustainable synthesis from simple raw materials that would minimize the time needed to manufacture and supply molnupiravir. The route reported here is enabled through the invention of a novel biocatalytic cascade featuring an engineered ribosyl-1-kinase and uridine phosphorylase. These engineered enzymes were deployed with a pyruvate-oxidase-enabled phosphate recycling strategy. Compared to the initial route, this synthesis of molnupiravir is 70% shorter and approximately 7-fold higher yielding. Looking forward, the biocatalytic approach to molnupiravir outlined here is anticipated to have broad applications for streamlining the synthesis of nucleosides in general.
Collapse
Affiliation(s)
- John A. McIntosh
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Tamas Benkovics
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Steven M. Silverman
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Mark A. Huffman
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Jongrock Kong
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Peter E. Maligres
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Tetsuji Itoh
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Hao Yang
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Deeptak Verma
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Weilan Pan
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Hsing-I Ho
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Jonathan Vroom
- Codexis,
Inc., 200 Penobscot Drive, Redwood City, California 94063, United States
| | - Anders M. Knight
- Codexis,
Inc., 200 Penobscot Drive, Redwood City, California 94063, United States
| | - Jessica A. Hurtak
- Codexis,
Inc., 200 Penobscot Drive, Redwood City, California 94063, United States
| | - Artis Klapars
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Anna Fryszkowska
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - William J. Morris
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Neil A. Strotman
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Grant S. Murphy
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Kevin M. Maloney
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Patrick S. Fier
- Department
of Process Research and Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
46
|
Schmitz W, Ries E, Koderer C, Völter MF, Wünsch AC, El-Mesery M, Frackmann K, Kübler AC, Linz C, Seher A. Cysteine Restriction in Murine L929 Fibroblasts as an Alternative Strategy to Methionine Restriction in Cancer Therapy. Int J Mol Sci 2021; 22:ijms222111630. [PMID: 34769059 PMCID: PMC8583874 DOI: 10.3390/ijms222111630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Methionine restriction (MetR) is an efficient method of amino acid restriction (AR) in cells and organisms that induces low energy metabolism (LEM) similar to caloric restriction (CR). The implementation of MetR as a therapy for cancer or other diseases is not simple since the elimination of a single amino acid in the diet is difficult. However, the in vivo turnover rate of cysteine is usually higher than the rate of intake through food. For this reason, every cell can enzymatically synthesize cysteine from methionine, which enables the use of specific enzymatic inhibitors. In this work, we analysed the potential of cysteine restriction (CysR) in the murine cell line L929. This study determined metabolic fingerprints using mass spectrometry (LC/MS). The profiles were compared with profiles created in an earlier work under MetR. The study was supplemented by proliferation studies using D-amino acid analogues and inhibitors of intracellular cysteine synthesis. CysR showed a proliferation inhibition potential comparable to that of MetR. However, the metabolic footprints differed significantly and showed that CysR does not induce classic LEM at the metabolic level. Nevertheless, CysR offers great potential as an alternative for decisive interventions in general and tumour metabolism at the metabolic level.
Collapse
Affiliation(s)
- Werner Schmitz
- Department of Biochemistry and Molecular Biology, Biocenter, D-97074 Wuerzburg, Germany;
| | - Elena Ries
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany; (E.R.); (C.K.); (M.F.V.); (A.C.W.); (K.F.); (A.C.K.); (C.L.)
| | - Corinna Koderer
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany; (E.R.); (C.K.); (M.F.V.); (A.C.W.); (K.F.); (A.C.K.); (C.L.)
| | - Maximilian Friedrich Völter
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany; (E.R.); (C.K.); (M.F.V.); (A.C.W.); (K.F.); (A.C.K.); (C.L.)
| | - Anna Chiara Wünsch
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany; (E.R.); (C.K.); (M.F.V.); (A.C.W.); (K.F.); (A.C.K.); (C.L.)
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Kyra Frackmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany; (E.R.); (C.K.); (M.F.V.); (A.C.W.); (K.F.); (A.C.K.); (C.L.)
| | - Alexander Christian Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany; (E.R.); (C.K.); (M.F.V.); (A.C.W.); (K.F.); (A.C.K.); (C.L.)
| | - Christian Linz
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany; (E.R.); (C.K.); (M.F.V.); (A.C.W.); (K.F.); (A.C.K.); (C.L.)
| | - Axel Seher
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany; (E.R.); (C.K.); (M.F.V.); (A.C.W.); (K.F.); (A.C.K.); (C.L.)
- Correspondence: ; Tel.: +49-931-201-74841
| |
Collapse
|
47
|
Liu H, Zhu J, Li Q, Wang D, Wan K, Yuan Z, Zhang J, Zou L, He X, Miao J. Untargeted metabolomic analysis of urine samples for diagnosis of inherited metabolic disorders. Funct Integr Genomics 2021; 21:645-653. [PMID: 34585279 DOI: 10.1007/s10142-021-00804-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/07/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022]
Abstract
Metabolomics has become an important tool for clinical research, especially for analyzing inherited metabolic disorders (IMDs). The purpose of this study was to explore the performance of metabolomics in diagnosing IMDs using an untargeted metabolomic approach. A total of 40 urine samples were collected: 20 samples from healthy children and 20 from pediatric patients, of whom 13 had confirmed IMDs and seven had suspected IMDs. Samples were analyzed by Orbitrap mass spectrometry in positive and negative mode alternately, coupled with ultra-high liquid chromatography. Raw data were processed using Compound Discovery 2.0 ™ and then exported for partial least squares discriminant analysis (PLS-DA) by SIMCA-P 14.1. After comparing with m/zCloud and chemSpider libraries, compounds with similarity above 80% were selected and normalized for subsequent relative quantification analysis. The uncommon compounds discovered were analyzed based on the Kyoto Encyclopedia of Genes and Genomes to explore their possible metabolic pathways. All IMDs patients were successfully distinguished from controls in the PLS-DA. Untargeted metabolomics revealed a broader metabolic spectrum in patients than what is observed using routine chromatographic methods for detecting IMDs. Higher levels of certain compounds were found in all 13 confirmed IMD patients and 5 of 7 suspected IMD patients. Several potential novel markers emerged after relative quantification. Untargeted metabolomics may be able to diagnose IMDs from urine and may deepen insights into the disease by revealing changes in various compounds such as amino acids, acylcarnitines, organic acids, and nucleosides. Such analyses may identify biomarkers to improve the study and treatment of IMDs.
Collapse
Affiliation(s)
- Hao Liu
- Newborn Screening Center, Chongqing Health Center for Women and Children, Longshan Road 120th, Yubei District, Chongqing, 401147, People's Republic of China.,Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Zhongshan Road 2nd, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Jiang Zhu
- Chongqing Key Laboratory of Child Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Qiu Li
- Chongqing Key Laboratory of Child Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Dongjuan Wang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Zhongshan Road 2nd, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Kexing Wan
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Zhongshan Road 2nd, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Zhaojian Yuan
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Zhongshan Road 2nd, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Juan Zhang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Zhongshan Road 2nd, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Lin Zou
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Zhongshan Road 2nd, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Xiaoyan He
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Zhongshan Road 2nd, Yuzhong District, Chongqing, 400014, People's Republic of China.
| | - Jingkun Miao
- Newborn Screening Center, Chongqing Health Center for Women and Children, Longshan Road 120th, Yubei District, Chongqing, 401147, People's Republic of China.
| |
Collapse
|
48
|
Cheng J, Pan Y, Yang S, Wei Y, Lv Q, Xing Q, Zhang R, Sun L, Qin G, Shi D, Deng Y. Integration of transcriptomics and non-targeted metabolomics reveals the underlying mechanism of follicular atresia in Chinese buffalo. J Steroid Biochem Mol Biol 2021; 212:105944. [PMID: 34144152 DOI: 10.1016/j.jsbmb.2021.105944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/17/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022]
Abstract
Follicular atresia is a complex physiological process, which results in the waste of follicles and oocytes from the ovary. Elucidating the physiological mechanism of follicular atresia will hopefully reverse the fate of follicles, thereby improve the reproductive efficiency of female animals. However, there are still many gaps to be filled during the follicular atresia process. In this study, we first comprehensively summarized and compared a variety of methods to classify Chinese buffalo follicles with different extent of atresia. Then follicular fluid and granulosa cells from the corresponding follicles with different extent of atresia were collected for non-targeted metabolomics and transcriptomics analysis, respectively. After the detection and analysis of 129 follicles, a reasonable classification standard was formed: on the basis of morphological classification, the relative concentrations of estradiol (E2) and progesterone (PROG) in the follicular fluid were determined, follicles with an estradiol-to-progesterone (E2/PROG) ratio >5 were classified as healthy follicles (HF), 1≤ E2/PROG ≤5 as early atretic follicles (EF) and E2/PROG <1 as late atretic follicles (LF). Correspondingly, follicles with granulosa cells apoptosis rate less than 15 % were divided into HF, 15%-25% were classified as EF and more than 25 % were classified as LF. The integration analysis of non-targeted metabolomics and transcriptomics highlights the following three aspects: (1) Atresia seriously damaged the lipid metabolism homeostasis of follicle, in which PPARγ play important roles. (2) Energy metabolism and nucleotide metabolism of atretic follicles were inhibited. (3) Bilirubin is involved in follicular atresia, and it may be the main force to prevent lipid peroxidation in follicular cells. In summary, results of this study provide new understanding of the molecular mechanisms of Chinese buffalo follicular atresia.
Collapse
Affiliation(s)
- Juanru Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China; Guangxi Key Laboratory of Buffalo Genetics, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Science, Ministry of Agriculture, Nanning, PR China
| | - Yu Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Sufang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Yaochang Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Qiao Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Qinghua Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Ruimen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Le Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Guangsheng Qin
- Guangxi Key Laboratory of Buffalo Genetics, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Science, Ministry of Agriculture, Nanning, PR China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China.
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China.
| |
Collapse
|
49
|
Matthiesen I, Voulgaris D, Nikolakopoulou P, Winkler TE, Herland A. Continuous Monitoring Reveals Protective Effects of N-Acetylcysteine Amide on an Isogenic Microphysiological Model of the Neurovascular Unit. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101785. [PMID: 34174140 DOI: 10.1002/smll.202101785] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/21/2021] [Indexed: 05/20/2023]
Abstract
Microphysiological systems mimic the in vivo cellular ensemble and microenvironment with the goal of providing more human-like models for biopharmaceutical research. In this study, the first such model of the blood-brain barrier (BBB-on-chip) featuring both isogenic human induced pluripotent stem cell (hiPSC)-derived cells and continuous barrier integrity monitoring with <2 min temporal resolution is reported. Its capabilities are showcased in the first microphysiological study of nitrosative stress and antioxidant prophylaxis. Relying on off-stoichiometry thiol-ene-epoxy (OSTE+) for fabrication greatly facilitates assembly and sensor integration compared to the prevalent polydimethylsiloxane devices. The integrated cell-substrate endothelial resistance monitoring allows for capturing the formation and breakdown of the BBB model, which consists of cocultured hiPSC-derived endothelial-like and astrocyte-like cells. Clear cellular disruption is observed when exposing the BBB-on-chip to the nitrosative stressor linsidomine, and the barrier permeability and barrier-protective effects of the antioxidant N-acetylcysteine amide are reported. Using metabolomic network analysis reveals further drug-induced changes consistent with prior literature regarding, e.g., cysteine and glutathione involvement. A model like this opens new possibilities for drug screening studies and personalized medicine, relying solely on isogenic human-derived cells and providing high-resolution temporal readouts that can help in pharmacodynamic studies.
Collapse
Affiliation(s)
- Isabelle Matthiesen
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
| | - Dimitrios Voulgaris
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
- AIMES, Center for Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
| | - Polyxeni Nikolakopoulou
- AIMES, Center for Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
| | - Thomas E Winkler
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
| | - Anna Herland
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
- AIMES, Center for Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
| |
Collapse
|
50
|
Methionine Protects Mammary Cells against Oxidative Stress through Producing S-Adenosylmethionine to Maintain mTORC1 Signaling Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5550196. [PMID: 34336098 PMCID: PMC8315855 DOI: 10.1155/2021/5550196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/19/2021] [Indexed: 11/26/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) signaling plays pivotal roles in cell growth and diseases. However, it remains mechanistically unclear about how to maintain mTORC1 activity during mammary glands development. Here we showed that mammary glands suffered from aggravated oxidative stress as pregnancy advanced and was accompanied by an increase in H2O2 levels, while the consumption for methionine and S-adenosylmethionine (SAM) rather than S-adenosylhomocysteine (SAH) were promoted in vivo. Likewise, H2O2 promoted SAM synthesis and reduced SAM utilization for methylation depending on H2O2 levels and treatment time in vitro. H2O2 inhibited phosphorylation of S6 kinase Thr 389 (p-S6K1 (T389)), 4E-BP1 Thr 37/46 and ULK1 Ser 757, the downstream of mTORC1, in mammary epithelial cells. However, methionine and SAM were shown to activate mTORC1 under H2O2-exposed condition. Moreover, this effect was not disabled by SGI-1027 which inhibits SAM transmethylation. In conclusion, methionine appeared to protect mammary cells against oxidative stress through producing SAM to maintain mTORC1 signaling activity.
Collapse
|