1
|
Sánchez ML, Coveñas R. The Galaninergic System: A Target for Cancer Treatment. Cancers (Basel) 2022; 14:3755. [PMID: 35954419 PMCID: PMC9367524 DOI: 10.3390/cancers14153755] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to show the involvement of the galaninergic system in neuroendocrine (phaeochromocytomas, insulinomas, neuroblastic tumors, pituitary tumors, small-cell lung cancer) and non-neuroendocrine (gastric cancer, colorectal cancer, head and neck squamous cell carcinoma, glioma) tumors. The galaninergic system is involved in tumorigenesis, invasion/migration of tumor cells and angiogenesis, and this system has been correlated with tumor size/stage/subtypes, metastasis and recurrence rate. In the galaninergic system, epigenetic mechanisms have been related with carcinogenesis and recurrence rate. Galanin (GAL) exerts both proliferative and antiproliferative actions in tumor cells. GAL receptors (GALRs) mediate different signal transduction pathways and actions, depending on the particular G protein involved and the tumor cell type. In general, the activation of GAL1R promoted an antiproliferative effect, whereas the activation of GAL2R induced antiproliferative or proliferative actions. GALRs could be used in certain tumors as therapeutic targets and diagnostic markers for treatment, prognosis and surgical outcome. The current data show the importance of the galaninergic system in the development of certain tumors and suggest future potential clinical antitumor applications using GAL agonists or antagonists.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratorio de Neuroanatomía de los Sistema Peptidérgicos (Lab. 14), Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, c/Pintor Fernando Gallego 1, 37007 Salamanca, Spain;
| | - Rafael Coveñas
- Laboratorio de Neuroanatomía de los Sistema Peptidérgicos (Lab. 14), Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, c/Pintor Fernando Gallego 1, 37007 Salamanca, Spain;
- Grupo GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Garcia SM, Hirschberg PR, Sarkar P, Siegel DM, Teegala SB, Vail GM, Routh VH. Insulin actions on hypothalamic glucose-sensing neurones. J Neuroendocrinol 2021; 33:e12937. [PMID: 33507001 PMCID: PMC10561189 DOI: 10.1111/jne.12937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
Subsequent to the discovery of insulin 100 years ago, great strides have been made in understanding its function, especially in the brain. It is now clear that insulin is a critical regulator of the neuronal circuitry controlling energy balance and glucose homeostasis. This review focuses on the effects of insulin and diabetes on the activity and glucose sensitivity of hypothalamic glucose-sensing neurones. We highlight the role of electrophysiological data in understanding how insulin regulates glucose-sensing neurones. A brief introduction describing the benefits and limitations of the major electrophysiological techniques used to investigate glucose-sensing neurones is provided. The mechanisms by which hypothalamic neurones sense glucose are discussed with an emphasis on those glucose-sensing neurones already shown to be modulated by insulin. Next, the literature pertaining to how insulin alters the activity and glucose sensitivity of these hypothalamic glucose-sensing neurones is described. In addition, the effects of impaired insulin signalling during diabetes and the ramifications of insulin-induced hypoglycaemia on hypothalamic glucose-sensing neurones are covered. To the extent that it is known, we present hypotheses concerning the mechanisms underlying the effects of these insulin-related pathologies. To conclude, electrophysiological data from the hippocampus are evaluated aiming to provide clues regarding how insulin might influence neuronal plasticity in glucose-sensing neurones. Although much has been accomplished subsequent to the discovery of insulin, the work described in our review suggests that the regulation of central glucose sensing by this hormone is both important and understudied.
Collapse
Affiliation(s)
- Stephanie M Garcia
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Pamela R Hirschberg
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Pallabi Sarkar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Dashiel M Siegel
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Suraj B Teegala
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Gwyndolin M Vail
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Vanessa H Routh
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
3
|
Pisarenko O, Timotin A, Sidorova M, Studneva I, Shulzhenko V, Palkeeva M, Serebryakova L, Molokoedov A, Veselova O, Cinato M, Boal F, Tronchere H, Kunduzova O. Cardioprotective properties of N-terminal galanin fragment (2-15) in experimental ischemia/reperfusion injury. Oncotarget 2017; 8:101659-101671. [PMID: 29254194 PMCID: PMC5731904 DOI: 10.18632/oncotarget.21503] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/04/2017] [Indexed: 01/22/2023] Open
Abstract
Background and purpose Galanin is an endogenous peptide involved in diverse physiological functions in the central nervous system including central cardiovascular regulation. The present study was designed to evaluate the potential effects of the short N-terminal galanin fragment 2-15 (G) on cardiac ischemia/reperfusion (I/R) injury. Experimental Approach Peptide G was synthesized by the automatic solid phase method and identified by 1H-NMR spectroscopy and mass spectrometry. Experiments were performed on cultured rat cardiomyoblast (H9C2) cells, isolated perfused working rat hearts and anaesthetized open-chest rats. Key Results Cell viability increased significantly after treatment with 10 and 50 nM of G peptide. In hypoxia and reoxygenation conditions, exposure of H9C2 cells to G peptide decreased cell apoptosis and mitochondrial reactive oxygen species (ROS) production. Postischemic infusion of G peptide reduced cell membrane damage and improved functional recovery in isolated hearts during reperfusion. These effects were accompanied by enhanced restoration of myocardial metabolic state. Treatment with G peptide at the onset of reperfusion induced minor changes in hemodynamic variables but significantly reduced infarct size and plasma levels of necrosis markers. Conclusion and implications These findings suggest that G peptide is effective in mitigating cardiac I/R injury, thereby providing a rationale for promising tool for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Oleg Pisarenko
- Russian Cardiology Research and Production Complex, Moscow, Russian Federation
| | - Andrei Timotin
- National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France.,University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Maria Sidorova
- Russian Cardiology Research and Production Complex, Moscow, Russian Federation
| | - Irina Studneva
- Russian Cardiology Research and Production Complex, Moscow, Russian Federation
| | - Valentin Shulzhenko
- Russian Cardiology Research and Production Complex, Moscow, Russian Federation
| | - Marina Palkeeva
- Russian Cardiology Research and Production Complex, Moscow, Russian Federation
| | - Larisa Serebryakova
- Russian Cardiology Research and Production Complex, Moscow, Russian Federation
| | | | - Oksana Veselova
- Russian Cardiology Research and Production Complex, Moscow, Russian Federation
| | - Mathieu Cinato
- National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France.,University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Frederic Boal
- National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France.,University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Helene Tronchere
- National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France.,University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Oksana Kunduzova
- National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France.,University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| |
Collapse
|
4
|
Goforth PB, Myers MG. Roles for Orexin/Hypocretin in the Control of Energy Balance and Metabolism. Curr Top Behav Neurosci 2017; 33:137-156. [PMID: 27909992 DOI: 10.1007/7854_2016_51] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The neuropeptide hypocretin is also commonly referred to as orexin, since its orexigenic action was recognized early. Orexin/hypocretin (OX) neurons project widely throughout the brain and the physiologic and behavioral functions of OX are much more complex than initially conceived based upon the stimulation of feeding. OX most notably controls functions relevant to attention, alertness, and motivation. OX also plays multiple crucial roles in the control of food intake, metabolism, and overall energy balance in mammals. OX signaling not only promotes food-seeking behavior upon short-term fasting to increase food intake and defend body weight, but, conversely, OX signaling also supports energy expenditure to protect against obesity. Furthermore, OX modulates the autonomic nervous system to control glucose metabolism, including during the response to hypoglycemia. Consistently, a variety of nutritional cues (including the hormones leptin and ghrelin) and metabolites (e.g., glucose, amino acids) control OX neurons. In this chapter, we review the control of OX neurons by nutritional/metabolic cues, along with our current understanding of the mechanisms by which OX and OX neurons contribute to the control of energy balance and metabolism.
Collapse
Affiliation(s)
- Paulette B Goforth
- Department of Pharmacology, University of Michigan, 1000 Wall St, 5131 Brehm Tower, Ann Arbor, MI, 48105, USA
| | - Martin G Myers
- Departments of Internal Medicine, and Molecular and Integrative Physiology, University of Michigan, 1000 Wall St, 6317 Brehm Tower, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
5
|
Roane DS, Bounds JK. ATP-sensitive K+Channels in the Regulation of Feeding Behavior: A Hypothesis. Nutr Neurosci 2016; 2:209-25. [DOI: 10.1080/1028415x.1999.11747278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Freedman JE, Lin YJ. REVIEW ■ : ATP-sensitive Potassium Channels: Diverse Functions in the Central Nervous System. Neuroscientist 2016. [DOI: 10.1177/107385849600200309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
ATP-sensitive potassium channels open when cytoplasmic levels of ATP drop, thus linking membrane potential to the metabolic state of the cell. Cloning studies have suggested that these channels are related structurally to the inward rectifier family of potassium channels, with two putative membrane-spanning regions. Sulfonylurea drugs, which are used in the treatment of diabetes, inhibit these channels by binding to an associated membrane protein. Other drugs, including some vasodilators, activate ATP-sensitive potassium channels. Diverse neurotransmitter and hormone receptors can modulate these channels, in some cases through interactions with guanyl nucleotide binding proteins. There appear to be multiple subtypes of these channels, differing in electrical properties as well as in drug sensitivities. In the brain, these channels appear to play a role in mediating satiety after feeding. They also function in neurons to protect against excitotoxicity, by counteracting the membrane depolarization associated with metabolic stress. Brain dopamine receptors appear to modulate a novel subtype of ATP-sensitive potassium channel. The association of dopamine receptors with a mechanism involved in protection against neurodegeneration may have implications for the causes of diseases in which dopaminergic regions of brain undergo structural changes, possibly including schizophrenia. NEUROSCIENTIST 2:145-152, 1996
Collapse
Affiliation(s)
- Jonathan E. Freedman
- Department of Pharmaceutical Sciences Northeastern University
Boston, Massachusetts
| | - Yong-Jian Lin
- Department of Pharmaceutical Sciences Northeastern University
Boston, Massachusetts
| |
Collapse
|
7
|
Dezaki K, Damdindorj B, Sone H, Dyachok O, Tengholm A, Gylfe E, Kurashina T, Yoshida M, Kakei M, Yada T. Ghrelin attenuates cAMP-PKA signaling to evoke insulinostatic cascade in islet β-cells. Diabetes 2011; 60:2315-24. [PMID: 21788571 PMCID: PMC3161328 DOI: 10.2337/db11-0368] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Ghrelin reportedly restricts insulin release in islet β-cells via the Gα(i2) subtype of G-proteins and thereby regulates glucose homeostasis. This study explored whether ghrelin regulates cAMP signaling and whether this regulation induces insulinostatic cascade in islet β-cells. RESEARCH DESIGN AND METHODS Insulin release was measured in rat perfused pancreas and isolated islets and cAMP production in isolated islets. Cytosolic cAMP concentrations ([cAMP](i)) were monitored in mouse MIN6 cells using evanescent-wave fluorescence imaging. In rat single β-cells, cytosolic protein kinase-A activity ([PKA](i)) and Ca(2+) concentration ([Ca(2+)](i)) were measured by DR-II and fura-2 microfluorometry, respectively, and whole cell currents by patch-clamp technique. RESULTS Ghrelin suppressed glucose (8.3 mmol/L)-induced insulin release in rat perfused pancreas and isolated islets, and these effects of ghrelin were blunted in the presence of cAMP analogs or adenylate cyclase inhibitor. Glucose-induced cAMP production in isolated islets was attenuated by ghrelin and enhanced by ghrelin receptor antagonist and anti-ghrelin antiserum, which counteract endogenous islet-derived ghrelin. Ghrelin inhibited the glucose-induced [cAMP](i) elevation and [PKA](i) activation in MIN6 and rat β-cells, respectively. Furthermore, ghrelin potentiated voltage-dependent K(+) (Kv) channel currents without altering Ca(2+) channel currents and attenuated glucose-induced [Ca(2+)](i) increases in rat β-cells in a PKA-dependent manner. CONCLUSIONS Ghrelin directly interacts with islet β-cells to attenuate glucose-induced cAMP production and PKA activation, which lead to activation of Kv channels and suppression of glucose-induced [Ca(2+)](i) increase and insulin release.
Collapse
Affiliation(s)
- Katsuya Dezaki
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Tochigi, Japan
- Corresponding authors: Katsuya Dezaki, , and Toshihiko Yada,
| | - Boldbaatar Damdindorj
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hideyuki Sone
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Oleg Dyachok
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Erik Gylfe
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Tomoyuki Kurashina
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Masashi Yoshida
- First Department of Comprehensive Medicine, Saitama Medical Center, Jichi Medical University School of Medicine, Saitama, Japan
| | - Masafumi Kakei
- First Department of Comprehensive Medicine, Saitama Medical Center, Jichi Medical University School of Medicine, Saitama, Japan
| | - Toshihiko Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, Tochigi, Japan
- Department of Developmental Physiology, Division of Adaptation Development, National Institute for Physiological Sciences, Aichi, Japan
- Corresponding authors: Katsuya Dezaki, , and Toshihiko Yada,
| |
Collapse
|
8
|
Murray PS, Groves JL, Pettett BJ, Britton SL, Koch LG, Dishman RK, Holmes PV. Locus coeruleus galanin expression is enhanced after exercise in rats selectively bred for high capacity for aerobic activity. Peptides 2010; 31:2264-8. [PMID: 20850488 PMCID: PMC2967655 DOI: 10.1016/j.peptides.2010.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/02/2010] [Accepted: 09/03/2010] [Indexed: 01/29/2023]
Abstract
The neuropeptide galanin extensively coexists with norepinephrine in locus coeruleus (LC) neurons. Previous research in this laboratory has demonstrated that unlimited access to activity wheels in the home cage increases mRNA for galanin (GAL) in the LC, and that GAL mediates some of the beneficial effects of exercise on brain function. To assess whether capacity for aerobic exercise modulates this upregulation in galanin mRNA, three heterogeneous rat models were tested: rats selectively bred for (1) high intrinsic (untrained) aerobic capacity (High Capacity Runners, HCR) and (2) low intrinsic aerobic capacity (Low Capacity Runners, LCR) and (3) unselected Sprague-Dawley (SD) rats with and without free access to running wheels for 3 weeks. Following this exercise protocol, mRNA for tyrosine hydroxylase (TH) and GAL was measured in the LC. The wheel running distances between the three models were significantly different, and age contributed as a significant covariate. Both selection and wheel access condition significantly affected GAL mRNA expression, but not TH mRNA expression. GAL was elevated in exercising HCR and SD rats compared to sedentary rats while LCR rats did not differ between conditions. Overall running distance significantly correlated with GAL mRNA expression, but not with TH mRNA expression. No strain differences in GAL or TH gene expression were observed in sedentary rats. Thus, intrinsic aerobic running capacity influences GAL gene expression in the LC only insofar as actual running behavior is concerned; aerobic capacity does not influence GAL expression in addition to changes associated with running.
Collapse
Affiliation(s)
- Patrick S Murray
- Neuroscience Program, Biomedical and Health Sciences Institute, The University of Georgia, Athens, GA 30602, United States
| | | | | | | | | | | | | |
Collapse
|
9
|
Drews G, Krippeit-Drews P, Düfer M. Electrophysiology of islet cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:115-63. [PMID: 20217497 DOI: 10.1007/978-90-481-3271-3_7] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stimulus-Secretion Coupling (SSC) of pancreatic islet cells comprises electrical activity. Changes of the membrane potential (V(m)) are regulated by metabolism-dependent alterations in ion channel activity. This coupling is best explored in beta-cells. The effect of glucose is directly linked to mitochondrial metabolism as the ATP/ADP ratio determines the open probability of ATP-sensitive K(+) channels (K(ATP) channels). Nucleotide sensitivity and concentration in the direct vicinity of the channels are controlled by several factors including phospholipids, fatty acids, and kinases, e.g., creatine and adenylate kinase. Closure of K(ATP) channels leads to depolarization of beta-cells via a yet unknown depolarizing current. Ca(2+) influx during action potentials (APs) results in an increase of the cytosolic Ca(2+) concentration ([Ca(2+)](c)) that triggers exocytosis. APs are elicited by the opening of voltage-dependent Na(+) and/or Ca(2+) channels and repolarized by voltage- and/or Ca(2+)-dependent K(+) channels. At a constant stimulatory glucose concentration APs are clustered in bursts that are interrupted by hyperpolarized interburst phases. Bursting electrical activity induces parallel fluctuations in [Ca(2+)](c) and insulin secretion. Bursts are terminated by I(Kslow) consisting of currents through Ca(2+)-dependent K(+) channels and K(ATP) channels. This review focuses on structure, characteristics, physiological function, and regulation of ion channels in beta-cells. Information about pharmacological drugs acting on K(ATP) channels, K(ATP) channelopathies, and influence of oxidative stress on K(ATP) channel function is provided. One focus is the outstanding significance of L-type Ca(2+) channels for insulin secretion. The role of less well characterized beta-cell channels including voltage-dependent Na(+) channels, volume sensitive anion channels (VSACs), transient receptor potential (TRP)-related channels, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is discussed. A model of beta-cell oscillations provides insight in the interplay of the different channels to induce and maintain electrical activity. Regulation of beta-cell electrical activity by hormones and the autonomous nervous system is discussed. alpha- and delta-cells are also equipped with K(ATP) channels, voltage-dependent Na(+), K(+), and Ca(2+) channels. Yet the SSC of these cells is less clear and is not necessarily dependent on K(ATP) channel closure. Different ion channels of alpha- and delta-cells are introduced and SSC in alpha-cells is described in special respect of paracrine effects of insulin and GABA secreted from beta-cells.
Collapse
Affiliation(s)
- Gisela Drews
- Institute of Pharmacy, Department of Pharmacology and Clinical Pharmacy, University of Tübingen, 72076 Tübingen, Germany.
| | | | | |
Collapse
|
10
|
Kajioka S, Nakayama S, Asano H, Seki N, Naito S, Brading AF. Levcromakalim and MgGDP activate small conductance ATP-sensitive K+ channels of K+ channel pore 6.1/sulfonylurea receptor 2A in pig detrusor smooth muscle cells: uncoupling of cAMP signal pathways. J Pharmacol Exp Ther 2008; 327:114-23. [PMID: 18596222 DOI: 10.1124/jpet.108.140269] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pharmacological studies have suggested the existence of ATP-sensitive K(+) (K(ATP)) channel as a therapeutic target in urinary bladders; however, electrical properties have not yet been shown. Patch-clamp techniques were applied to investigate the properties of K(ATP) channels in pig detrusor cells. In whole-cell configuration, levcromakalim, a K(ATP) channel opener, induced a long-lasting outward current in a concentration-dependent manner. The current-voltage curve of the levcromakalim-induced membrane current intersected at approximately -80 mV. This current was abolished by glibenclamide. Intracellular application of 0.1 mM GDP significantly enhanced the levcromakalim-induced membrane current, whereas cAMP did not. Furthermore, neurotransmitters related to cAMP signaling, such as calcitonin gene-related peptide, vasointestinal peptide, adenosine, and somatostatin, had little effect on the membrane current. In cell-attached configuration, levcromakalim activated K(+) channels with a unitary conductance of approximately 12 pS. When the patch configuration was changed to inside-out mode, the K(+) channel activity ran down. Subsequent application of 1 mM GDP reactivated the channels. The openings of the approximately 12 pS K(+) channels in the presence of 1 mM GDP was suppressed by ATP and glibenclamide. In reverse transcription-polymerase chain reaction, K(+) channel pore 6.1 and sulfonylurea receptor (SUR)2A were predominant in pig detrusor cells. The 12 pS K(+) channel activated by levcromakalim in pig detrusor smooth muscle cells is a K(ATP) channel. The predominant expression of SUR2A can account for the lack of effect of neurotransmitters related to cAMP.
Collapse
|
11
|
Adrenaline-induced hyperpolarization of mouse pancreatic islet cells is mediated by G protein-gated inwardly rectifying potassium (GIRK) channels. Pflugers Arch 2008; 456:1097-108. [PMID: 18523799 DOI: 10.1007/s00424-008-0479-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 02/14/2008] [Accepted: 02/18/2008] [Indexed: 01/13/2023]
Abstract
Insulin secretion inhibitors (ISI) such as adrenaline and somatostatin act on the pancreatic beta-cell by a number of mechanisms, one of which is plasma membrane hyperpolarization. Despite the ample evidence for this effect, the principal underlying channels have not been identified thus far. The G protein-gated inwardly rectifying potassium (Kir3.x/GIRK) channels, which are responsible for hyperpolarization in other excitable tissues, are likely candidates. In this paper, we show that GIRK channels are expressed and functional in mouse pancreatic islet cells. Reverse transcription polymerase chain reaction analysis revealed all four GIRK gene products in islet tissue. Immunofluorescent labeling of pancreatic sections demonstrated exclusive islet localization of all GIRK subunits, in part within insulin-expressing cells. Using the whole-cell configuration of the patch clamp technique, we found that the application of tertiapin-Q, a selective inhibitor of the GIRK channels, abolishes adrenaline-mediated inward currents and strongly attenuates adrenaline-induced hyperpolarization in a reversible manner. These results imply that GIRK channels are responsible for a major part of the electrical response to adrenaline in islet cells and suggest a role for these channels in pancreatic physiology.
Collapse
|
12
|
Zhao Y, Fang Q, Straub SG, Sharp GWG. Both G i and G o heterotrimeric G proteins are required to exert the full effect of norepinephrine on the beta-cell K ATP channel. J Biol Chem 2007; 283:5306-16. [PMID: 18162464 DOI: 10.1074/jbc.m707695200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effects of norepinephrine (NE), an inhibitor of insulin secretion, were examined on membrane potential and the ATP-sensitive K+ channel (K ATP) in INS 832/13 cells. Membrane potential was monitored under the whole cell current clamp mode. NE hyperpolarized the cell membrane, an effect that was abolished by tolbutamide. The effect of NE on K ATP channels was investigated in parallel using outside-out single channel recording. This revealed that NE enhanced the open activities of the K ATP channels approximately 2-fold without changing the single channel conductance, demonstrating that NE-induced hyperpolarization was mediated by activation of the K ATP channels. The NE effect was abolished in cells preincubated with pertussis toxin, indicating coupling to heterotrimeric G i/G o proteins. To identify the G proteins involved, antisera raised against alpha and beta subunits (anti-G alpha common, anti-G beta, anti-G alpha i1/2/3, and anti-G alpha o) were used. Anti-G alpha common totally blocked the effects of NE on membrane potential and K ATP channels. Individually, anti-G alpha i1/2/3 and anti-G alpha o only partially inhibited the action of NE on K ATP channels. However, the combination of both completely eliminated the action. Antibodies against G beta had no effects. To confirm these results and to further identify the G protein subunits involved, the blocking effects of peptides containing the sequence of 11 amino acids at the C termini of the alpha subunits were used. The data obtained were similar to those derived from the antibody work with the additional information that G alpha i3 and G alpha o1 were not involved. In conclusion, both G i and G o proteins are required for the full effect of norepinephrine to activate the K ATP channel.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853-6401, USA
| | | | | | | |
Collapse
|
13
|
Kozoriz MG, Kuzmiski JB, Hirasawa M, Pittman QJ. Galanin modulates neuronal and synaptic properties in the rat supraoptic nucleus in a use and state dependent manner. J Neurophysiol 2006; 96:154-64. [PMID: 16611841 DOI: 10.1152/jn.01028.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The magnocellular neurons of the hypothalamic supraoptic nucleus (SON) synthesize and secrete oxytocin (OXT) and vasopressin (AVP) from their dendrites. These peptides, and several other neurotransmitters, have been shown to modulate afferent glutamatergic neurotransmission in the SON. The neuropeptide, galanin (GAL) is also localized in SON magnocellular neurons and in afferent fibers in the nucleus. We show that GAL dose-dependently reduces evoked excitatory postsynaptic currents (eEPSCs), alters paired pulse ratio and decreases mEPSC frequency, but not amplitude or decay kinetics in both OXT and AVP neurons. GAL therefore modulates excitatory neurotransmission at a likely presynaptic receptor. Neither OXT/AVP, GABA(B) nor cannabinoid antagonists blocked this effect. A GAL2/3 agonist mimicked GAL's action while GAL1 antagonist did not block GAL's effect, suggesting that GAL2/3 receptors mediate the presynaptic effect. In nondehydrated rats GAL causes a small postsynaptic response, as assessed by input resistance measurements. When the rats were water deprived for 2 days the presynaptic response to GAL was unaltered; however, the postsynaptic decrease in input resistance and hyperpolarization was increased, an effect consistent with a previously described increase in GAL1 receptor expression in dehydration. A GAL1 receptor antagonist blocked the postsynaptic effects. Last, when a train of eEPSCs was elicited, GAL was found to inhibit the earlier events in a train but not the latter. This indicates that GAL may modulate a single synaptic event more effectively than trains of synaptic inputs, thereby acting as a high-pass filter.
Collapse
Affiliation(s)
- Michael G Kozoriz
- Hotchkiss Brain Institute and Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | |
Collapse
|
14
|
Suga S, Takeo T, Nakano K, Sato T, Igarashi T, Yamana D, Wakui M. Pertussis toxin-sensitive pathway inhibits glucose-stimulated Ca2+ signals of rat islet β-cells by affecting L-type Ca2+ channels and voltage-dependent K+ channels. Cell Calcium 2004; 36:469-77. [PMID: 15488596 DOI: 10.1016/j.ceca.2004.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 03/10/2004] [Accepted: 04/20/2004] [Indexed: 11/28/2022]
Abstract
A role of pertussis toxin (PTX)-sensitive pathway in regulation of glucose-stimulated Ca2+ signaling in rat islet beta-cells was investigated by using clonidine as a selective agonist to alpha2-adrenoceptors which link to the pathway. An elevation of extracellular glucose concentration from 5.5 to 22.2 mM (glucose stimulation) increased the levels of [Ca2+]i of beta-cells, and clonidine reversibly reduced the elevated levels of [Ca2+]i. This clonidine effect was antagonized by yohimbine, and abolished in beta-cells pre-treated with PTX. Clonidine showed little effect on membrane currents including those through ATP-sensitive K+ channels induced by voltage ramps from -90 to -50 mV. Clonidine showed little effect on the magnitude of whole-cell currents through L-type Ca2+ channels (ICa(L)), but increased the inactivation process of the currents. Clonidine increased the magnitude of the voltage-dependent K+ currents (IVK). These clonidine effects on ICa(L) and IVK were abolished in beta-cells treated with PTX or GDP-betaS. These results suggest that the PTX-sensitive pathway increases IVK activity and decreases ICa(L) activity of islet beta-cells, resulting in a decrease in the levels of [Ca2+]i elevated by depolarization-induced Ca2+ entry. This mechanism seems responsible at least in part for well-known inhibitory action of PTX-sensitive pathway on glucose-stimulated insulin secretion from islet beta-cells.
Collapse
Affiliation(s)
- Sechiko Suga
- Department of Physiology, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Sieg A, Su J, Muñoz A, Buchenau M, Nakazaki M, Aguilar-Bryan L, Bryan J, Ullrich S. Epinephrine-induced hyperpolarization of islet cells without KATP channels. Am J Physiol Endocrinol Metab 2004; 286:E463-71. [PMID: 14613926 DOI: 10.1152/ajpendo.00365.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examines the effect of epinephrine, a known physiological inhibitor of insulin secretion, on the membrane potential of pancreatic islet cells from sulfonylurea receptor-1 (ABCC8)-null mice (Sur1KO), which lack functional ATP-sensitive K+ (KATP) channels. These channels have been argued to be activated by catecholamines, but epinephrine effectively inhibits insulin secretion in both Sur1KO and wild-type islets and in mice. Isolated Sur1KO beta-cells are depolarized in both low (2.8 mmol/l) and high (16.7 mmol/l) glucose and exhibit Ca(2+)-dependent action potentials. Epinephrine hyperpolarizes Sur1KO beta-cells, inhibiting their spontaneous action potentials. This effect, observed in standard whole cell patches, is abolished by pertussis toxin and blocked by BaCl2. The epinephrine effect is mimicked by clonidine, a selective alpha2-adrenoceptor agonist and inhibited by alpha-yohimbine, an alpha2-antagonist. A selection of K+ channel inhibitors, tetraethylammonium, apamin, dendrotoxin, iberiotoxin, E-4130, chromanol 293B, and tertiapin did not block the epinephrine-induced hyperpolarization. Analysis of whole cell currents revealed an inward conductance of 0.11 +/- 0.04 nS/pF (n = 7) and a TEA-sensitive outward conductance of 0.55 +/- 0.08 nS/pF (n = 7) at -60 and 0 mV, respectively. Guanosine 5'-O-(3-thiotriphosphate) (100 microM) in the patch pipette did not significantly alter these currents or activate novel inward-rectifying K+ currents. We conclude that epinephrine can hyperpolarize beta-cells in the absence of KATP channels via activation of low-conductance BaCl2-sensitive K+ channels that are regulated by pertussis toxin-sensitive G proteins.
Collapse
Affiliation(s)
- Andrea Sieg
- Institut für Neurophysiologie, Universität zu Köln, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Düfer M, Haspel D, Krippeit-Drews P, Aguilar-Bryan L, Bryan J, Drews G. Oscillations of membrane potential and cytosolic Ca(2+) concentration in SUR1(-/-) beta cells. Diabetologia 2004; 47:488-498. [PMID: 14872319 DOI: 10.1007/s00125-004-1348-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 12/05/2003] [Indexed: 10/26/2022]
Abstract
AIMS/HYPOTHESIS SUR1(ABCC8)(-/-) mice lacking functional K(ATP) channels are an appropriate model to test the significance of K(ATP) channels in beta-cell function. We examined how this gene deletion interferes with stimulus-secretion coupling. We tested the influence of metabolic inhibition and galanin, whose mode of action is controversial. METHODS Plasma membrane potential (Vm) and currents were measured with microelectrodes or the patch-clamp technique; cytosolic Ca(2+) concentrations ([Ca(2+)](c)) and mitochondrial membrane potential (DeltaPsi) were measured using fluorescent dyes. RESULTS In contrast to the controls, SUR1(-/-) beta cells showed electrical activity even at a low glucose concentration. Continuous spike activity was measured with the patch-clamp technique, but with microelectrodes slow oscillations in Vm consisting of bursts of Ca(2+)-dependent action potentials were detected. [Ca(2+)](c) showed various patterns of oscillations or a sustained increase. Sodium azide did not hyperpolarize SUR1(-/-) beta cells. The depolarization of DeltaPsi evoked by sodium azide was significantly lower in SUR1(-/-) than SUR1(+/+) cells. Galanin transiently decreased action potential frequency and [Ca(2+)](c) in cells from both SUR1(-/-) and SUR1(+/+) mice. CONCLUSION/INTERPRETATION The strong dependence of Vm and [Ca(2+)](c) on glucose concentration observed in SUR1(+/+) beta cells is disrupted in the knock-out cells. This demonstrates that both parameters oscillate in the absence of functional K(ATP) channels. The lack of effect of metabolic inhibition by sodium azide shows that in SUR1(-/-) beta cells changes in ATP/ADP no longer link glucose metabolism and Vm. The results with galanin suggest that this peptide affects beta cells independently of K(ATP) currents and thus could contribute to the regulation of beta-cell function in SUR1(-/-) animals.
Collapse
Affiliation(s)
- M Düfer
- Institute of Pharmacy, Department of Pharmacology, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - D Haspel
- Institute of Pharmacy, Department of Pharmacology, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - P Krippeit-Drews
- Institute of Pharmacy, Department of Pharmacology, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - L Aguilar-Bryan
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - J Bryan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - G Drews
- Institute of Pharmacy, Department of Pharmacology, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
17
|
Bouret S, Croix D, Mariot M, Loyens A, Prevot V, Jegou S, Vaudry H, Beauvillain JC, Mitchell V. Galanin modulates the activity of proopiomelanocortin neurons in the isolated mediobasal hypothalamus of the male rat. Neuroscience 2002; 112:475-85. [PMID: 12044465 DOI: 10.1016/s0306-4522(02)00040-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has become apparent that galanin as well as proopiomelanocortin-derived peptides, such as beta-endorphin, play an important role in the hypothalamic circuitry that regulates neuroendocrine functions and appetite behavior. We have recently shown that GalR1 and GalR2 galanin receptor mRNAs are expressed in proopiomelanocortin neurons of the arcuate nucleus, suggesting a direct modulatory action of galanin on the proopiomelanocortin neuronal system. In the present study, we investigated the effect of galanin on beta-endorphin release and proopiomelanocortin mRNA expression from male rat mediobasal hypothalamic fragments incubated ex vivo. Galanin induced a decrease of spontaneous beta-endorphin release within the first 30-60 min of incubation and this effect was blocked by the galanin receptor antagonist galantide. Co-incubation of galanin with FK-506 (tacrolimus), a calcineurin inhibitor, suppressed the inhibitory effect of galanin on beta-endorphin release, suggesting that calcineurin is involved in the galanin-evoked decrease in beta-endorphin release. Measurement of beta-endorphin levels in the tissues at the end of the incubation period (120 min) revealed that galanin caused a two-fold increase of beta-endorphin peptide concentration in the mediobasal hypothalamic tissues. Concurrently, galanin induced an increase in the mean density of silver grains overlying proopiomelanocortin neurons after 60 min of incubation, an effect antagonized by galantide. Finally, reverse transcription-polymerase chain reaction analysis revealed that the mRNAs for the three galanin receptor subtypes (i.e. GalR1, GalR2, and GalR3) were expressed in the incubated mediobasal hypothalamic fragments. Taken as a whole, our results indicate that galanin plays a modulatory role on proopiomelanocortin neurons and this interrelation contributes to the elucidation of the neural circuitry that controls, among others, gonadotropin-releasing hormone function.
Collapse
Affiliation(s)
- S Bouret
- INSERM U-422, IFR 22, Neuroendocrinology and Neuronal Physiopathology, IFR 22, Place de Verdun, 59045 Lille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Galanin is a neuroendocrine peptide involved in the regulation of feeding, pain, sexual behavior, learning, and memory. The recent discovery, that galanin antagonized excitatory glutamatergic neurotransmission in the hippocampus, provided a rationale for its possible antiepileptic effects. Here we summarize the data on the effects of galanin on seizure activity in several animal models of epilepsy. Pharmacological and molecular biological evidence suggest potent anticonvulsant effects of galanin. Exogenous administration of galanin receptor agonists attenuated seizures, whereas application of galanin receptor antagonists potentiated seizure expression. Genetically engineered mice, with either deletion or overexpression of galanin gene, showed altered resistance to seizures, which was in direct correlation with galanin gene expression. Possible mechanisms of the anticonvulsant action of galanin include its effects on synaptic potentiation in hippocampal circuits and inhibition of the release of the excitatory neurotransmitter glutamate from principal hippocampal neurons.
Collapse
Affiliation(s)
- A Mazarati
- Department of Neurology, UCLA School of Medicine and West LA VA Medical Center, Los Angeles, CA 90073, USA.
| | | | | |
Collapse
|
19
|
Dunne MJ, Ämmälä C, Straub SG, Sharp GWG. Electrophysiology of the β Cell and Mechanisms of Inhibition of Insulin Release. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Lang R, Berger A, Hermann A, Kofler B. Biphasic response to human galanin of extracellular acidification in human Bowes melanoma cells. Eur J Pharmacol 2001; 423:135-41. [PMID: 11448477 DOI: 10.1016/s0014-2999(01)01135-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The metabolic response of galanin GAL1 receptor subtype, endogenously expressed in human Bowes melanoma (HBM) cells, was investigated. Cytosensor microphysiometry was used to determine the extracellular acidification rate. A biphasic response, consisting of a rapid increase in the extracellular acidification rate followed by a decrease below the basal level, was observed after perfusion with human galanin. The magnitude and the rate of onset of both phases were dependent on the galanin concentration. The increase in the extracellular acidification rate (maximum of 25% of basal level; -log(EC(50))=7.23+/-0.14) was transient, whereas the following decrease (maximum of 40% of basal level; -log(EC(50))=7.77+/-0.23) was sustained. The EC(50) values for the increase and decrease were in a similar range. After consecutive galanin administration, the magnitude of the response was the same as for the unexposed cells, indicating the absence of galanin receptor desensitization or internalization in HBM cells. Responses were blocked by pretreatment with pertussis toxin and phorbol-12-myristate-13-acetate (PMA), indicating a G-protein/protein kinase C signalling pathway. Our microphysiometry results show a biphasic response of the extracellular acidification rate mediated by the galanin receptor expressed in HBM cells which has not been described previously for any other endogenously expressed neuropeptide receptor.
Collapse
Affiliation(s)
- R Lang
- Department of Molecular Neurobiology and Cellular Physiology, Institute of Zoology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | | | | | | |
Collapse
|
21
|
Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev 2000; 80:1523-631. [PMID: 11015620 DOI: 10.1152/physrev.2000.80.4.1523] [Citation(s) in RCA: 1518] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prolactin is a protein hormone of the anterior pituitary gland that was originally named for its ability to promote lactation in response to the suckling stimulus of hungry young mammals. We now know that prolactin is not as simple as originally described. Indeed, chemically, prolactin appears in a multiplicity of posttranslational forms ranging from size variants to chemical modifications such as phosphorylation or glycosylation. It is not only synthesized in the pituitary gland, as originally described, but also within the central nervous system, the immune system, the uterus and its associated tissues of conception, and even the mammary gland itself. Moreover, its biological actions are not limited solely to reproduction because it has been shown to control a variety of behaviors and even play a role in homeostasis. Prolactin-releasing stimuli not only include the nursing stimulus, but light, audition, olfaction, and stress can serve a stimulatory role. Finally, although it is well known that dopamine of hypothalamic origin provides inhibitory control over the secretion of prolactin, other factors within the brain, pituitary gland, and peripheral organs have been shown to inhibit or stimulate prolactin secretion as well. It is the purpose of this review to provide a comprehensive survey of our current understanding of prolactin's function and its regulation and to expose some of the controversies still existing.
Collapse
Affiliation(s)
- M E Freeman
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4340, USA.
| | | | | | | |
Collapse
|
22
|
Mufson EJ, Deecher DC, Basile M, Izenwasse S, Mash DC. Galanin receptor plasticity within the nucleus basalis in early and late Alzheimer's disease: an in vitro autoradiographic analysis. Neuropharmacology 2000; 39:1404-12. [PMID: 10818256 DOI: 10.1016/s0028-3908(00)00011-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hypertrophy of fibers containing galanin (GAL), the inhibitory neurotransmitter of acetylcholine, occur on remaining cholinergic nucleus basalis neurons in late stage Alzheimer's disease (AD). The present investigation evaluated whether changes in the number of GAL receptors (GALR) were detectable within the nucleus basalis in the early or late stage of AD when compared to age-matched controls. Postmortem neuropathological specimens were obtained at autopsy from three groups: late AD, early (possible) AD, and normal (age-matched controls) human subjects. Autoradiography of GALR binding was performed on human brain sections from each of the three groups. Analysis of autoradiographic images show no change in the distribution of ([125])hGAL binding sites in early AD cases throughout the nucleus basalis. In contrast, the number of ([125])hGAL binding sites was increased over the anterior nucleus basalis subfield in late stage AD. A region-of-interest densitometric analysis of the anterior nucleus basalis in the late stage AD cases depict an increase in the number of ([125])hGAL binding sites by approximately two-three-fold when compared to normal (age-matched controls). Quantitative measures of ([125])hGAL binding densities were not significantly different in the anterolateral, intermediate or posterior nucleus basalis subsectors of early or late stage AD when compared to age-matched controls. These observations show that the occurrence of overexpression of GALRs coincide with earlier reports showing galaninergic fibers hyperinnervating surviving cholinergic basal forebrain neurons in late stage AD.
Collapse
Affiliation(s)
- E J Mufson
- Deptartment of Neurological Sciences, Rush Presbyterian St. Luke's Medical Center, Tech 2000, 2242 West Harrison, 60612, Chicago, IL, USA.
| | | | | | | | | |
Collapse
|
23
|
Li GD, Luo RH, Metz SA. Effects of inhibitors of guanine nucleotide synthesis on membrane potential and cytosolic free Ca2+ levels in insulin-secreting cells. Biochem Pharmacol 2000; 59:545-56. [PMID: 10660120 DOI: 10.1016/s0006-2952(99)00356-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Adenine nucleotides play an important role in the control of membrane potential by acting on ATP-sensitive K+ (K(ATP)) channels and, in turn, modulating the open probability of voltage-gated Ca2+ channels in pancreatic islet beta-cells. Here, we provide evidence that guanine nucleotides (GNs) also may be involved in the modulation of these events in vivo. GNs were depleted by treatment of HIT-T15 cells with mycophenolic acid (MPA). Resting membrane potential was more depolarized in cells treated for 3 and 6 hr with MPA than in control cells, and this effect was inhibited by diazoxide. After 6 hr of exposure to MPA, basal cytosolic free Ca2+ concentrations ([Ca2+]i) were elevated by 20%. Increments in [Ca2+]i induced by submaximal concentrations of K+ (10-15 mM) or bombesin were enhanced by > 50%. Opening K(ATP) channels with diazoxide lowered basal [Ca2+]i in MPA-treated cells to normal and abrogated the enhanced [Ca2+]i responses. However, an L-type Ca2+ channel blocker only abolished the enhanced [Ca2+]i response to stimuli and had no effect on the elevated basal [Ca2+]i, in contrast to EGTA, which obliterated both, implying that the latter was due to Ca2+ influx via non-L-type Ca2+ channels. These effects on ion fluxes were attributable specifically to GN depletion, since guanosine, which restores GTP content and the GTP/GDP ratio, but not adenosine, prevented all MPA-induced ion changes; furthermore, the latter were mimicked by mizoribine (a structurally dissimilar GTP synthesis inhibitor). It is concluded that, in addition to adenine nucleotides, GNs might contribute to the modulation of K(ATP) channels in intact beta-cells. In addition, GN depletion appeared to be able to reduce stimulated insulin secretion by a mechanism largely independent of the changes of ion fluxes observed above.
Collapse
Affiliation(s)
- G D Li
- Cardiovascular Research Institute, National University Medical Institutes, National University of Singapore, Singapore.
| | | | | |
Collapse
|
24
|
Holz GG, Leech CA, Habener JF. Insulinotropic toxins as molecular probes for analysis of glucagon-likepeptide-1 receptor-mediated signal transduction in pancreatic beta-cells. Biochimie 2000; 82:915-26. [PMID: 11086221 PMCID: PMC2928854 DOI: 10.1016/s0300-9084(00)01171-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cholera toxin, pertussis toxin, mastoparan, maitotoxin, and alpha-latrotoxin are complex protein or polyether-based toxins of bacterial, insect, or phytoplankton origin that act with high potency at the endocrine pancreas to stimulate secretion of insulin from beta-cells located in the islets of Langerhans. The remarkable insulinotropic properties of these toxins have attracted considerable attention by virtue of their use as selective molecular probes for analyses of beta-cell stimulus-secretion coupling. Targets of the toxins include heptahelical cell surface receptors, GTP-binding proteins, ion channels, Ca(2+) stores, and the exocytotic secretory apparatus. Here we review the value of insulinotropic toxins from the perspective of their established use in the study of signal transduction pathways activated by the blood glucose-lowering hormone glucagon-like peptide-1 (GLP-1). Our analysis of one insulinotropic toxin (alpha-latrotoxin) leads us to conclude that there exists a process of molecular mimicry whereby the 'lock and key'analogy inherent to hormone-receptor interactions is reproduced by a toxin related in structure to GLP-1.
Collapse
Affiliation(s)
- G G Holz
- Department of Physiology and Neuroscience, Medical Sciences Building Room 442, New York University School of Medicine, 550 First Avenue, NY New York 10016, USA.
| | | | | |
Collapse
|
25
|
Xu ZQ, Ma X, Soomets U, Langel U, Hökfelt T. Electrophysiological evidence for a hyperpolarizing, galanin (1-15)-selective receptor on hippocampal CA3 pyramidal neurons. Proc Natl Acad Sci U S A 1999; 96:14583-7. [PMID: 10588748 PMCID: PMC24479 DOI: 10.1073/pnas.96.25.14583] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/1999] [Indexed: 11/18/2022] Open
Abstract
The effects of the 29-amino acid neuropeptide galanin [GAL (1-29)], GAL(1-15), GAL(1-16), and the GAL subtype 2 receptor agonist D-tryptophan(2)-GAL(1-29) were studied in the dorsal hippocampus in vitro with intracellular recording techniques. GAL(1-15) induced, in the presence of tetrodotoxin, a dose-dependent hyperpolarization in hippocampal CA3 neurons. Most of the GAL(1-15)-sensitive neurons did not respond to GAL(1-29), GAL(1-16), or D-tryptophan(2)-GAL(1-29). These results indicate the presence of a distinct, yet-to-be cloned GAL(1-15)-selective receptor on CA3 neurons in the dorsal hippocampus.
Collapse
Affiliation(s)
- Z Q Xu
- Department of Neuroscience, Karolinska Institute, Stockholm University, S-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
26
|
Hein TW, Kuo L. cAMP-independent dilation of coronary arterioles to adenosine : role of nitric oxide, G proteins, and K(ATP) channels. Circ Res 1999; 85:634-42. [PMID: 10506488 DOI: 10.1161/01.res.85.7.634] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adenosine is known to play an important role in the regulation of coronary blood flow during metabolic stress. However, there is sparse information on the mechanism of adenosine-induced dilation at the microcirculatory levels. In the present study, we examined the role of endothelial nitric oxide (NO), G proteins, cyclic nucleotides, and potassium channels in coronary arteriolar dilation to adenosine. Pig subepicardial coronary arterioles (50 to 100 microm in diameter) were isolated, cannulated, and pressurized to 60 cm H(2)O without flow for in vitro study. The arterioles developed basal tone and dilated dose dependently to adenosine. Disruption of endothelium, blocking of endothelial ATP-sensitive potassium (K(ATP)) channels by glibenclamide, and inhibition of NO synthase by N(G)-nitro-L-arginine methyl ester and of soluble guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one produced identical attenuation of vasodilation to adenosine. Combined administration of these inhibitors did not further attenuate the vasodilatory response. Production of NO from coronary arterioles was significantly increased by adenosine. Pertussis toxin, but not cholera toxin, significantly inhibited vasodilation to adenosine, and this inhibitory effect was only evident in vessels with an intact endothelium. Tetraethylammonium, glibenclamide, and a high concentration of extraluminal KCl abolished vasodilation of denuded vessels to adenosine; however, inhibition of calcium-activated potassium channels by iberiotoxin had no effect on this dilation. Rp-8-Br-cAMPS, a cAMP antagonist, inhibited vasodilation to cAMP analog 8-Br-cAMP but failed to block adenosine-induced dilation. Furthermore, vasodilations to 8-Br-cAMP and sodium nitroprusside were not inhibited by glibenclamide, indicating that cAMP- and cGMP-induced dilations are not mediated by the activation of K(ATP) channels. These results suggest that adenosine activates both endothelial and smooth muscle pathways to exert its vasodilatory function. On one hand, adenosine opens endothelial K(ATP) channels through activation of pertussis toxin-sensitive G proteins. This signaling leads to the production and release of NO, which subsequently activates smooth muscle soluble guanylyl cyclase for vasodilation. On the other hand, adenosine activates smooth muscle K(ATP) channels and leads to vasodilation through hyperpolarization. It appears that the latter vasodilatory process is independent of G proteins and of cAMP/cGMP pathways.
Collapse
Affiliation(s)
- T W Hein
- Department of Medical Physiology, Cardiovascular Research Institute, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | |
Collapse
|
27
|
Sui JL, Chan K, Langan MN, Vivaudou M, Logothetis DE. G protein gated potassium channels. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1999; 33:179-201. [PMID: 10218119 DOI: 10.1016/s1040-7952(99)80010-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J L Sui
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, City University of New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
The 29 amino acid neuropeptide galanin is widely distributed in the nervous and endocrine systems; highest levels of galanin synthesis and storage occur within the hypothalamus in the median eminence, but it is also abundantly expressed in the basal forebrain, the peripheral nervous system, and gut. To further define the role played by galanin in the peripheral nervous and endocrine systems, a mouse strain carrying a loss-of-function germ-line mutation of the galanin locus, engineered by targeted mutagenesis in embryonic stem cells, has been generated. The mutation removes the first five exons containing the entire coding region for the galanin peptide. Germ-line transmission of the disrupted galanin locus has been obtained, and the mutation has been bred to homozygosity on the inbred 129O1aHsd background. Phenotypic analysis of mice lacking a functional galanin gene demonstrate that these animals are viable, grow normally, and can reproduce. A marked reduction in both the anterior pituitary prolactin content and in circulating plasma levels of the hormone is evident. Lactation is abolished along with abrogation of the proliferative response of the lactotroph to estrogen. The responses of sensory neurons to injury in the mutants are markedly impaired. Peripheral nerve regeneration is reduced with associated long-term functional deficits. There is a striking reduction in the development of chronic neuropathic pain. These two phenotypic changes may be explained, in part, by the observation that a subset of dorsal root ganglion neurons is lost in the mutant animals, implying a role for galanin as a trophic cell survival factor. These initial findings have important implications for our understanding and potential therapeutic treatment of (a) sensory nerve regeneration and neuropathic pain and (b) disordered pituitary proliferation and the development of prolactinoma.
Collapse
Affiliation(s)
- D Wynick
- Department of Medicine, Bristol University, UK.
| | | | | | | |
Collapse
|
29
|
Abstract
Galanin was first isolated 15 years ago. Diversity of galanin receptors has been suspected from the study of native tissues and functional responses to galanin and galanin-like peptides in vitro and in vivo. The recent application of molecular biologic techniques to clone galanin receptors has extended this diversity. So far, three galanin receptor subtypes, GALR1, GALR2, and GALR3, have been cloned from both human and rat. Their molecular structure, pharmacologic profiles, tissue distribution, and signal transduction properties have been partially elucidated.
Collapse
Affiliation(s)
- T Branchek
- Synaptic Pharmaceutical Corporation, Paramus, New Jersey 07652, USA.
| | | | | |
Collapse
|
30
|
Pieribone VA, Xu ZQ, Zhang X, Hökfelt T. Electrophysiologic effects of galanin on neurons of the central nervous system. Ann N Y Acad Sci 1998; 863:264-73. [PMID: 9928177 DOI: 10.1111/j.1749-6632.1998.tb10701.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The neuropeptide galanin is found in a large number of neurons and nerve terminals throughout the nervous system. In nerve terminals, galanin is contained in large dense-core vesicles and is released upon electrical stimulation. A variety of electrophysiologic studies have examined the effects of galanin application onto neurons of the central nervous system. Overall, galanin appears to have inhibitory effects in the central nervous system, causing in most cases a potassium-mediated hyperpolarization accompanied by a decrease in input resistance. Other actions include a reduction in presynaptic excitatory inputs and an interaction with other applied neurotransmitters. These effects are robust and long lasting in most cases. Differences in the responses mediated by the various receptor subtypes have not been explored electrophysiologically. More complete analysis awaits the availability of more potent and specific receptor anatagonists.
Collapse
Affiliation(s)
- V A Pieribone
- John B. Pierce Laboratory, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | | | | | | |
Collapse
|
31
|
Kocic I. The influence of the neuropeptide galanin on the contractility and the effective refractory period of guinea-pig heart papillary muscle under normoxic and hypoxic conditions. J Pharm Pharmacol 1998; 50:1361-4. [PMID: 10052850 DOI: 10.1111/j.2042-7158.1998.tb03360.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to discover the effects of galanin, a neuropeptide comprising 29 amino acids capable of activating inward-rectifier K+ channels (IK1) in cardiomyocytes, on the force of contraction (Fc), velocity of contraction (+dF/dt), velocity of relaxation (-dF/dt) and effective refractory period (ERP) of guinea-pig heart. The influence of galanin on the time-course of hypoxia-induced disturbances in contractility and ERP was also examined. Experiments were performed on the isolated right ventricle papillary muscle of guinea-pig heart. In the concentration range 0.001-0.01 microM, galanin had no significant effect on the measured parameters. At 0.03 and 0.1 microM, galanin exerted a positive inotropic action and prolonged ERP. Further increasing the concentration led to a negative inotropic action and significant shortening of ERP. Although simulated hypoxia induced a significant drop in Fc, +dF/dt and -dF/dt, and a significant shortening of ERP, recovery of all the measured parameters was complete after 10 min reperfusion. In the presence of 0.03 and 0.1 microM galanin the effect of hypoxia on the contractility of papillary muscle was more profound and reperfusion did not result in complete recovery. In contrast, addition of 1 microM galanin to the hypoxic solution significantly protected the muscle and recovery of the tissues during reperfusion was rapid and complete (in 5 min). One can conclude that galanin at lower concentrations induced a positive inotropic action and a prolongation of ERP, but increased the sensitivity of heart muscle to hypoxia. At higher concentrations however, galanin exerted a negative inotropic action but protected the muscle against hypoxia-induced disturbances in contractility.
Collapse
Affiliation(s)
- I Kocic
- Department of Pharmacology, Medical University of Gdansk, Poland
| |
Collapse
|
32
|
Inagaki N, Seino S. ATP-sensitive potassium channels: structures, functions, and pathophysiology. THE JAPANESE JOURNAL OF PHYSIOLOGY 1998; 48:397-412. [PMID: 10021494 DOI: 10.2170/jjphysiol.48.397] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ATP-sensitive potassium channels (KATP channels) play important roles in various tissues by coupling cell metabolic status to electrical activity. Recently, molecular biological and electrophysiological techniques have revealed the molecular basis of the KATP channels to be a complex of the Kir6.0 subunit, a member of the inwardly rectifying K+ channel subfamily Kir6.0, and the sulfonylurea receptor (SUR) subunit, a member of ATP-binding cassette (ABC) superfamily; the functional diversity of the various KATP channels is being determined by a combination of the Kir6.0 subunit (Kir6.1 or Kir6.2) and the SUR subunit (SUR1 or SUR2) comprising it. Recent studies of the KATP channels have suggested mechanisms of KATP channel regulation and pathophysiology and also a new model in which ABC proteins regulate the functional expression of ion channels.
Collapse
Affiliation(s)
- N Inagaki
- Department of Physiology, Akita University School of Medicine, Akita, 010-8543, Japan
| | | |
Collapse
|
33
|
Stefani MR, Gold PE. Intra-septal injections of glucose and glibenclamide attenuate galanin-induced spontaneous alternation performance deficits in the rat. Brain Res 1998; 813:50-6. [PMID: 9824666 DOI: 10.1016/s0006-8993(98)00876-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Injection of the neuroactive peptide galanin into the rat hippocampus and medial septal area impairs spatial memory and cholinergic system activity. Conversely, injection of glucose into these same brain regions enhances spatial memory and cholinergic system activity. Glucose and galanin may both modulate neuronal activity via opposing actions at ATP-sensitive K+ (K-ATP) channels. The experiments described in this report tested the ability of glucose and the direct K-ATP channel blocker glibenclamide to attenuate galanin-induced impairments in spontaneous alternation performance in the rat. Intra-septal injection of galanin (2.5 microgram), 30 min prior to plus-maze spontaneous alternation performance, significantly decreased alternation scores compared to those of rats receiving injections of vehicle solution. Co-injection of glucose (20 nmol) or the K-ATP channel blocker glibenclamide (5 nmol) attenuated the galanin-induced performance deficits. Glibenclamide produced an inverted-U dose-response curve in its interaction with galanin, with doses of 0.5 and 10 nmol having no effect on galanin-induced spontaneous alternation deficits. Drug treatments did not alter motor activity, as measured by overall number of arm entries during spontaneous alternation testing, relative to vehicle injected controls. These findings support the hypothesis that, in the septal region, galanin and glucose act via K-ATP channels to modulate neural function and behavior.
Collapse
Affiliation(s)
- M R Stefani
- Neuroscience Graduate Program and Department of Psychology, University of Virginia, Charlottesville, VA 22903, USA
| | | |
Collapse
|
34
|
Neumann J, Scholz H. Deferoxamine blocks interactions of fluoride and carbachol in isolated mammalian cardiac preparations. Eur J Pharmacol 1998; 350:189-94. [PMID: 9696407 DOI: 10.1016/s0014-2999(98)00235-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In papillary muscles, carbachol reduced the positive inotropic effects of isoprenaline (10 nmol/l). The negative inotropic effects of carbachol in isoprenaline-stimulated guinea pig papillary muscles were attenuated by additionally applied sodium fluoride (3 mmol/l). These effects of sodium fluoride were blocked by deferoxamine (200 micromol/l). In guinea pig left atria, sodium fluoride alone greatly reduced force of contraction. These effects in atria were blocked by 200 micromol/l deferoxamine, and positive inotropic effects of sodium fluoride were observed. It is suggested that the cardiac effects of muscarinic M2 receptor agonists in the ventricle involve, at least in part, the activation of phosphatases which are blocked by fluoride and reactivated by deferoxamine.
Collapse
Affiliation(s)
- J Neumann
- Abteilung Allgemeine Pharmakologie, Universitäts-Krankenhaus Eppendorf, Hamburg, Germany
| | | |
Collapse
|
35
|
Kinney GA, Emmerson PJ, Miller RJ. Galanin receptor-mediated inhibition of glutamate release in the arcuate nucleus of the hypothalamus. J Neurosci 1998; 18:3489-500. [PMID: 9570780 PMCID: PMC6793144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is thought that galanin, a 29 amino acid neuropeptide, is involved in various neuronal functions, including the regulation of food intake and hormone release. Consistent with this idea, galanin receptors have been demonstrated throughout the brain, with high levels being observed in the hypothalamus. However, little is known about the mechanisms by which galanin elicits its actions in the brain. Therefore, we studied the effects of galanin and its analogs on synaptic transmission using an in vitro slice preparation of rat hypothalamus. In arcuate nucleus neurons, application of galanin resulted in an inhibition of evoked glutamatergic EPSCs and a decrease in paired-pulse depression, indicating a presynaptic action. The fragments galanin 1-16 and 1-15 produced a robust depression of synaptic transmission, whereas the fragment 3-29 produced a lesser degree of depression. The chimeric peptides C7, M15, M32, and M40, which have been reported to antagonize some actions of galanin, all produced varying degrees of depression of evoked EPSCs. In a minority of cases, C7, M15, and M40 antagonized the actions of galanin. Analysis of mEPSCs in the presence of TTX and Cd2+, or after application of alpha-latrotoxin, indicated a site of action for galanin downstream of Ca2+ entry. Thus, our data suggest that galanin acts via several subtypes of presynaptic receptors to depress synaptic transmission in the rat arcuate nucleus.
Collapse
Affiliation(s)
- G A Kinney
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago Illinois, 60637, USA
| | | | | |
Collapse
|
36
|
Korolkiewicz R, Sliwiński W, Konstański Z, Rekowski P, Halama-Borowiec A, Szyk A, Emerich J, Korolkiewicz KZ. Pharmacological characterization of the contractile effects of galanin (1-29)-NH2, galantide and galanin (1-14)-(alpha-aminobutyric acid8)scyliorhinin-I in the rat gastric fundus. Fundam Clin Pharmacol 1998; 11:576-83. [PMID: 9444526 DOI: 10.1111/j.1472-8206.1997.tb00863.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Porcine galanin (1-29)-NH2, galantide (M15) and galanin (1-14)-(alpha-aminobutyric acid8)-scyliorhinin-I used in concentrations of 300, 1,000 and 3,000 nM respectively caused contractions of rat fundus strips. The contractile responses to galanin(1-29)-NH2 were not modified by atropine (10 microM), guanethidine (10 microM), naloxone (1 microM), a mixture of propranolol (10 microM) and phentolamine (10 microM), indomethacin (10 microM), a mixture of mepyramine (10 microM) and cimetidine (10 microM), saralasin (10 microM), and spantide (100 microM). The effects of M15 and galanin(1-14)-(alpha-aminobutyric acid8)-scyliorhinin-I were significantly decreased by atropine for 36 and 18% and by spantide for 37 and 26% respectively. Indomethacin inhibited the muscle response to M15 without influence on the galanin (1-14)-(alpha-aminobutyric acid8)-scyliorhinin-I-induced action. These results support findings that galanin (1-29)-NH2 contracts rat gastric fundus strips by stimulating specific receptors localized on the surface of smooth muscle cells. M15 and galanin(1-14)-(alpha-aminobutyric acid8)-scyliorhinin-I seem to contract smooth muscles not only by acting at galanin receptors, but by interacting with muscarinic or tachykinin receptors or modulating the release of acetylcholine and substance P. Diltiazem (EC50 825 nM), dantrolene (EC50 30.2 microM) and the phospholipase C inhibitors U-73122 (EC50 549 microM) and U-73343 (EC50 751 microM) lowered the contraction to galanin(1-29)-NH2 in a concentration-dependent manner. These observations imply that though the extracellular Ca2+ influx plays a major role in the action of galanin(1-29)-NH2, the release of Ca2+ ions from the intracellular stores contributes to the response of smooth muscles of galanin(1-29) NH2. Norepinephrine (30, 60, 100 and 300 nM) concentration-dependently reduced the Emax to galanin (1-29)-NH2 and reduced the slopes of the concentration-contraction curves, without a notable change in EC50. Pertussis toxin pre-treatment (10 and 30 mg/kg intravenous [i.v.]), 120 h before the experiment, notably increased the maximal response of the rat gastric fundus to galanin(1-29)-NH2, without a significant change in the properties of the concentration-contraction curves (EC50, slopes). The observations may suggest that pertussis toxin-sensitive GTP-binding proteins are involved in the modulation of the excitatory effects of galanin(1-29)-NH2 in the rat gastric fundus.
Collapse
Affiliation(s)
- R Korolkiewicz
- Department of Pharmacology, Medical University of Gdansk, Gdansk-Wrzeszcz, Poland
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Aguilar-Bryan L, Clement JP, Gonzalez G, Kunjilwar K, Babenko A, Bryan J. Toward understanding the assembly and structure of KATP channels. Physiol Rev 1998; 78:227-45. [PMID: 9457174 DOI: 10.1152/physrev.1998.78.1.227] [Citation(s) in RCA: 442] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adenosine 5'-triphosphate-sensitive potassium (KATP) channels couple metabolic events to membrane electrical activity in a variety of cell types. The cloning and reconstitution of the subunits of these channels demonstrate they are heteromultimers of inwardly rectifying potassium channel subunits (KIR6.x) and sulfonylurea receptors (SUR), members of the ATP-binding cassette (ABC) superfamily. Recent studies indicate that SUR and KIR6.x associate with 1:1 stoichiometry to assemble a large tetrameric channel, (SUR/KIR6.x)4. The KIR6.x subunits form the channel pore, whereas SUR is required for activation and regulation. Two KIR6.x genes and two SUR genes have been identified, and combinations of subunits give rise to KATP channel subtypes found in pancreatic beta-cells, neurons, and cardiac, skeletal, and smooth muscle. Mutations in both the SUR1 and KIR6.2 genes have been shown to cause familial hyperinsulinism, indicating the importance of the pancreatic beta-cell channel in the regulation of insulin secretion. The availability of cloned KATP channel genes opens the way for characterization of this family of ion channels and identification of additional genetic defects.
Collapse
Affiliation(s)
- L Aguilar-Bryan
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
38
|
Papas S, Bourque CW. Galanin inhibits continuous and phasic firing in rat hypothalamic magnocellular neurosecretory cells. J Neurosci 1997; 17:6048-56. [PMID: 9236216 PMCID: PMC6568357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The effects of galanin (GAL) on magnocellular neurosecretory cells (MNCs) were examined during microelectrode recordings from supraoptic neurons in superfused hypothalamic explants. Application of the full-length peptide (GAL1-29) or of the N-terminal fragment GAL1-16 produced reversible membrane hyperpolarization with an IC50 near 10 nM. These effects were associated with an increase of membrane conductance, with a reversal potential near -70 mV, and were not blocked by tetrodotoxin, indicating that the receptors mediating these effects are located postsynaptically. Hyperpolarizing responses were also observed in response to the GAL-like chimeric ligands M35 and M40, suggesting that these behave as partial agonists at galanin receptors. The reversal potential of the GAL-mediated effect was unaffected by reducing extracellular chloride or by intracellular chloride injection, indicating that the effects of galanin are not mediated by modulation of chloride conductances. In contrast, reducing the external concentration of potassium ions from 3 to 1 mM shifted the reversal potential of the responses to -85 mV, suggesting the involvement of a potassium conductance. When tested on spontaneously active MNCs, the hyperpolarizing effects of galanin were associated with a suppression of firing in both continuously active and phasically active neurons. Inhibition of phasic bursts was mediated both through the inhibitory effects of the hyperpolarization and through a GAL-mediated inhibition of the depolarizing afterpotential that is responsible for the production of individual bursts. These results suggest that galanin may be a potent endogenous modulator of firing pattern in hypothalamic neuroendocrine cells.
Collapse
Affiliation(s)
- S Papas
- Centre for Research in Neuroscience, Montreal General Hospital Research Institute and McGill University, Montreal, Quebec, Canada H3G 1A3
| | | |
Collapse
|
39
|
Trapp S, Tucker SJ, Ashcroft FM. Activation and inhibition of K-ATP currents by guanine nucleotides is mediated by different channel subunits. Proc Natl Acad Sci U S A 1997; 94:8872-7. [PMID: 9238070 PMCID: PMC23175 DOI: 10.1073/pnas.94.16.8872] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/1997] [Accepted: 06/06/1997] [Indexed: 02/04/2023] Open
Abstract
The ATP-sensitive potassium channel (K-ATP channel) plays a key role in insulin secretion from pancreatic beta-cells. It is closed by glucose metabolism, which stimulates secretion, and opened by the drug diazoxide, which inhibits insulin release. Metabolic regulation is mediated by changes in ATP and MgADP concentration, which inhibit and potentiate channel activity, respectively. The beta-cell K-ATP channel consists of a pore-forming subunit, Kir6.2, and a regulatory subunit, SUR1. The site at which ATP mediates channel inhibition lies on Kir6.2, while the potentiatory action of MgADP involves the nucleotide-binding domains of SUR1. K-ATP channels are also activated by MgGTP and MgGDP. Furthermore, both nucleotides support the stimulatory actions of diazoxide. It is not known, however, whether guanine nucleotides mediate their effects by direct interaction with one or more of the K-ATP channel subunits or indirectly via a GTP-binding protein. We used a truncated form of Kir6.2, which expresses independently of SUR1, to show that GTP blocks K-ATP currents by interaction with Kir6.2 and that the potentiatory effects of GTP are endowed by SUR1. We also showed that mutation of the lysine residue in the Walker A motif of either the first (K719A) or second (K1384M) nucleotide-binding domain of SUR1 abolished both the potentiatory effects of GTP and GDP on K-ATP currents and their ability to support stimulation by diazoxide. This argues that the stimulatory effects of guanine nucleotides require the presence of both Walker A lysines.
Collapse
Affiliation(s)
- S Trapp
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, United Kingdom
| | | | | |
Collapse
|
40
|
Leech CA, Habener JF. Insulinotropic glucagon-like peptide-1-mediated activation of non-selective cation currents in insulinoma cells is mimicked by maitotoxin. J Biol Chem 1997; 272:17987-93. [PMID: 9218425 DOI: 10.1074/jbc.272.29.17987] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Maitotoxin (MTX) activates a Ca2+-dependent non-selective cation current (ICa-NS) in insulinoma cells whose time course is identical to non-selective cation currents activated by incretin hormones such as glucagon-like peptide-1 (GLP-1), which stimulate glucose-dependent insulin secretion by activating cAMP signaling pathways. We investigated the mechanism of activation of ICa-NS in insulinoma cells using specific pharmacological reagents, and these studies further support an identity between MTX- and GLP-1-activated currents. ICa-NS is inhibited by extracellular application of genistein, econazole, and SKF 96365. This inhibition by genistein suggests that tyrosine phophorylation may play a role in the activation of ICa-NS. ICa-NS is not inhibited by incubation of cells in glucose-free solution, by extracellular tetrodotoxin, nimodipine, or tetraethylammonium, or by intracellular dialysis with 4-aminopyridine, ATP, ryanodine, or heparin. ICa-NS is also not significantly inhibited by staurosporine, which does, however, partially inhibit the MTX-induced rise of intracellular Ca2+ concentration. These effects of staurosporine suggest that protein kinase C may not be involved in the activation of ICa-NS but that it may regulate intracellular Ca2+ release. Alternatively, ICa-NS may have a small component that is carried through separate divalent cation-selective channels that are inhibited by staurosporine. ICa-NS is neither activated nor inhibited by dialysis with KF, KF + AlF3 or GTPgammaS (guanosine 5'-O-(3-thiotriphosphate)), suggesting that GTP-binding proteins do not play a major role in the activation of this current.
Collapse
Affiliation(s)
- C A Leech
- Laboratory of Molecular Endocrinology, Howard Hughes Medical Institute, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
41
|
Kask K, Berthold M, Bartfai T. Galanin receptors: involvement in feeding, pain, depression and Alzheimer's disease. Life Sci 1997; 60:1523-33. [PMID: 9126874 DOI: 10.1016/s0024-3205(96)00624-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Galanin, a neuroendocrine peptide with a multitude of functions, binds to and acts on specific G-protein coupled receptors. Only one galanin receptor subtype, GalRI, has been cloned so far, although pharmacological evidence suggests the presence of more than one galanin receptor subtype. These receptors mediate via different Gi/Go-proteins the inhibition of adenylyl cyclase, opening of K+-channels and closure of Ca2+-channels. Galanin inhibits secretion of insulin, acetylcholine, serotonin and noradrenaline, while it stimulates prolactin and growth hormone release. Determination of structural components of galanin receptors required for binding of the peptide ligand as carried out recently will facilitate the screening and design of molecules specifically acting on galaninergic systems with therapeutic potential in Alzheimer's disease, feeding disorders, pain and depression.
Collapse
Affiliation(s)
- K Kask
- Department of Neurochemistry and Neurotoxicology, Stockholm University, Sweden
| | | | | |
Collapse
|
42
|
Sliwiński W, Korolkiewicz R, Rekowski P, Halama A, Korolkiewicz KZ. Actions of galanin and some of its analogues on rat isolated gastric fundus. Fundam Clin Pharmacol 1996; 10:442-9. [PMID: 8902547 DOI: 10.1111/j.1472-8206.1996.tb00599.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The study was undertaken to characterize the effects of porcine galanin (pGal) and some of its analogues on rat gastric fundus muscle strips. pGal, galantide (M15) and pGal(1-14)-[Abu8]SCY-I evoked reproducible concentration-dependent contractions in concentrations of 1-300, 3-1,000 and 100-3,000 nM, respectively, with EC50 values of 13, 70 and 187 nM. Hill's coefficient for pGal is 1.03, indicating an interaction of one pGal molecule with one receptor, fulfilling criteria of classical receptor theory. For M15 and pGal(1-14)-[Abu8]SCY-I, Hill's coefficients are significantly different from 1, namely 0.73 and 1.56, so that one drug molecule may not interact with one receptor. The stimulatory effects of pGal were not modified by dibenamine 10 microM or glybenclamide 1 or 10 microM. Diltiazem 0.1, 1 and 10 microM, papaverine 0.1, 10 microM or dibutyryl cAMP (dib cAMP) 100 and 300 microM, blocked the contraction to pGal in a concentration-dependent manner, indicating an important role for the influx of extracellular calcium ions and regulation by cAMP the pGal-evoked contraction. Diltiazem, dibutyryl cAMP and papaverine were not competitive antagonists of pGal in the stomach smooth muscle.
Collapse
Affiliation(s)
- W Sliwiński
- Department of Pharmacology, Medical University of Gdańsk, Gdańsk-Wrzeszcz, Poland
| | | | | | | | | |
Collapse
|
43
|
Detimary P, Van den Berghe G, Henquin JC. Concentration dependence and time course of the effects of glucose on adenine and guanine nucleotides in mouse pancreatic islets. J Biol Chem 1996; 271:20559-65. [PMID: 8702800 DOI: 10.1074/jbc.271.34.20559] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Changes in the ATP:ADP ratio in pancreatic B cells may participate in the regulation of insulin secretion by glucose. Here, we have investigated the possible role of guanine nucleotides. Mouse islets were incubated in a control medium (when K+-ATP channels are the major site of regulation) or in a high K+ medium (when glucose modulates the effectiveness of cytosolic Ca2+ on exocytosis). Glucose induced a concentration-dependent (0-20 m) increase in GTP and a decrease in GDP in both types of medium, thus causing a progressive rise of the GTP:GDP ratio. ATP and ADP levels were 4-5-fold higher but varied in a similar way as those of guanine nucleotides. Insulin secretion was inversely correlated with ADP and GDP levels and positively correlated with the ATP:ADP and GTP:GDP ratios between 6 and 20 m glucose in control medium and between 0 and 20 m glucose in high K+ medium. The increases in the GTP:GDP and ATP:ADP ratios induced by a rise of glucose were faster than the decreases induced by a fall in glucose, but the changes of both ratios were again parallel. In conclusion, glucose causes large, concentration-dependent changes in guanine as well as in adenine nucleotides in islet cells. This raises the possibility that both participate in the regulation of nutrient-induced insulin secretion.
Collapse
Affiliation(s)
- P Detimary
- Unité d'Endocrinologie et Métabolisme, University of Louvain, Faculty of Medicine, UCL 55.30, Avenue Hippocrate 55, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
44
|
Abel KB, Lehr S, Ullrich S. Adrenaline-, not somatostatin-induced hyperpolarization is accompanied by a sustained inhibition of insulin secretion in INS-1 cells. Activation of sulphonylurea K+ATP channels is not involved. Pflugers Arch 1996; 432:89-96. [PMID: 8662272 DOI: 10.1007/s004240050109] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Adrenaline and somatostatin inhibit insulin secretion via pertussis toxin (PTX)-sensitive mechanisms. Since glucose-stimulated release involves inhibition of ATP-sensitive K+ (K+ATP) channels and activation of Ca2+ influx, we took advantage of the glucose-sensitive, insulin-secreting cell line INS-1 to investigate whether inhibitors of insulin release modulate membrane voltage and K+ATP channel activity in cell-attached patch-clamp experiments. We found that adrenaline, through alpha2-adrenoceptors, and somatostatin counteracted glucose-induced depolarization and action potentials. As expected, these effects were mediated via PTX-sensitive G proteins since PTX pretreatment of the cells eliminated the effects of adrenaline and somatostatin on membrane voltage. When INS-1 cells were activated by adding both the K+ATP channel inhibitor tolbutamide and the adenylyl cyclase activator forskolin, adrenaline and somatostatin still repolarized the plasma membrane. Single-channel measurements in the cell-attached mode revealed that tolbutamide closed a 40 to 70 pS K+ channel which was neither reopened by adrenaline nor by somatostatin. In parallel cell preparations, insulin secretion was measured by radioimmunoassay. Insulin release induced by glucose, forskolin and tolbutamide was abolished by adrenaline. In contrast, somatostatin attenuated insulin secretion by only 30%. After comparing the potency of adrenaline and somatostatin on membrane voltage and on insulin secretion, it is concluded that the repolarizing effect of adrenaline on membrane voltage is not sufficient to explain its potent inhibitory effect on insulin secretion.
Collapse
Affiliation(s)
- K B Abel
- Physiologisches Institut der Albert-Ludwigs-Universität, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
45
|
Abstract
1. Galanin is a 29 (in humans 30) amino acids long neuropeptide with mostly inhibitory, hyperpolarizing actions. 2. Differential structural requirements of truncated forms of galanin and differential agonist/antagonist behaviour of chimeric peptides, high affinity galanin receptor ligands suggest the presence of pharmacologically distinct galanin receptor subtypes. 3. The galanin receptor from human Bowes melanoma cell line--a member of G-protein coupled receptor superfamily--has been cloned. 4. Galanin acts via Gi/G(o) proteins inhibiting cAMP production, inositol phosphate turnover, opening K+ channels or closing Ca2+ channels.
Collapse
Affiliation(s)
- K Kask
- Department of Neurochemistry and Neurotoxicology, Stockholm University, Sweden
| | | | | |
Collapse
|
46
|
Ferrer J, Nichols CG, Makhina EN, Salkoff L, Bernstein J, Gerhard D, Wasson J, Ramanadham S, Permutt A. Pancreatic islet cells express a family of inwardly rectifying K+ channel subunits which interact to form G-protein-activated channels. J Biol Chem 1995; 270:26086-91. [PMID: 7592809 DOI: 10.1074/jbc.270.44.26086] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Insulin secretion is associated with changes in pancreatic beta-cell K+ permeability. A degenerate polymerase chain reaction strategy based on the conserved features of known inwardly rectifying K+ (KIR) channel genes was used to identify members of this family expressed in human pancreatic islets and insulinoma. Three related human KIR transcript sequences were found: CIR (also known as cardiac KATP-1), GIRK1, and GIRK2 (KATP-2). The pancreatic islet CIR and GIRK2 full-length cDNAs were cloned, and their genes were localized to human chromosomes 11q23-ter and 21, respectively. Northern blot analysis detected CIR mRNA at similar levels in human islets and exocrine pancreas, while the abundance of GIRK2 mRNA in the two tissues was insufficient for detection by this method. Using competitive reverse-transcription polymerase chain reaction, CIR was found to be present at higher levels than GIRK2 mRNA in native purified beta-cells. Xenopus oocytes injected with M2 muscarinic receptor (M2) plus either GIRK2 or CIR cRNA expressed only very small carbachol-induced currents, while co-injection of CIR plus GIRK2 along with M2 resulted in expression of carbachol-activated strong inwardly rectifying currents. Activators of KATP channels failed to elicit currents in the presence or absence of co-expressed sulfonylurea receptor. These results show that two components of islet cell KIR channels, CIR and GIRK2, may interact to form heteromeric G-protein-activated inwardly rectifying K+ channels that do not possess the typical properties of KATP channels.
Collapse
Affiliation(s)
- J Ferrer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
BACKGROUND Hyperpolarization of vascular muscle in response to activation of potassium channels is a major mechanism of vasodilatation. In cerebral blood vessels, four different potassium channels have been described: ATP-sensitive potassium channels, calcium-activated potassium channels, delayed rectifier potassium channels, and inward rectifier potassium channels. SUMMARY OF REVIEW Activation of ATP-sensitive and calcium activated potassium channels appears to play a major role in relaxation of cerebral arteries and arterioles in response to diverse stimuli, including receptor-mediated agonists, intracellular second messengers, and hypoxia. Both calcium-activated and delayed rectifier potassium channels may contribute to a negative feedback system that regulates tone in large cerebral arteries. The influence of ATP-sensitive and calcium-activated potassium channels is altered in disease states such as hypertension, diabetes, and atherosclerosis. CONCLUSIONS Activation of potassium channels is a major mechanism of cerebral vasodilatation. Alteration of activity of potassium channels and impairment of vasodilatation may contribute to the development or maintenance of cerebral ischemia or vasospasm.
Collapse
Affiliation(s)
- T Kitazono
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | | | |
Collapse
|
48
|
Philipson LH, Kuznetsov A, Toth PT, Murphy JF, Szabo G, Ma GH, Miller RJ. Functional expression of an epitope-tagged G protein-coupled K+ channel (GIRK1). J Biol Chem 1995; 270:14604-10. [PMID: 7540174 DOI: 10.1074/jbc.270.24.14604] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An epitope-tagged form of an inwardly rectifying and G protein-coupled K+ channel (GIRK1-cp) was expressed at high levels in transfected mammalian cells. Immunoblot analysis of transfected human embryonic kidney cells (HEK293) and mouse insulinoma cells (beta TC3) revealed several GIRK1-cp polypeptides, including the major 59-kDa band, corresponding to the predicted mass of the GIRK1 polypeptide plus the epitope tag. Immunohistochemical staining using two anti-tag antibodies showed abundant immunoreactive material, which was predominantly concentrated in the perinuclear area in both transfected cell types. While functional GIRK1-cp message was present in poly(A)+ RNA prepared from HEK293 cells expressing GIRK1-cp protein, appropriate K+ currents could not be detected. In contrast, whole cell recordings made directly from transfected beta TC3 cells expressing GIRK1-cp revealed inwardly rectifying, pertussis toxin-sensitive currents activated by norepinephrine and galanin. Single channel recordings in excised patches of beta TC3 cells expressing GIRK1-cp showed rectifying K+ currents when activated by 50 microM guanosine 5'-O-(thiotriphosphate), with a slope conductance of 39.1 +/- 1.0 picosiemens. This is the first report of stable heterologous expression of a functional G protein-coupled K+ channel in mammalian cells. The activity of an epitope-tagged channel in insulinoma cells demonstrates the utility of this system for further biochemical and biophysical analyses of G protein-K+ channel interactions.
Collapse
Affiliation(s)
- L H Philipson
- Department of Medicine, University of Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Wagner U, Fehmann HC, Bredenbröker D, Yu F, Barth PJ, von Wichert P. Galanin and somatostatin inhibition of neurokinin A and B induced airway mucus secretion in the rat. Life Sci 1995; 57:283-9. [PMID: 7541102 DOI: 10.1016/0024-3205(95)00271-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Neurokinin A and B are present in neurons situated in lung and NK-1 receptors have been described on tracheal submucosal gland cells. In the present study we compared the ability of substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) to stimulate airway mucus secretion. Furthermore, we characterized the interaction of NKA and NKB with galanin and somatostatin. The rank order of the tachykinins to stimulate airway mucus secretion was SP > NKA > NKB suggesting that NK-1 receptors mediate these effects(EC50:SP: 50 nmol/l, NKA: 200 nmol/l, NKB: 400 nmol/l). Galanin and somatostatin were equally potent to inhibit NK-A and NK-B stimulated airway mucus release. These results suggest that NK-A and NK-B are potent stimulators of airway macromolecule secretion. Galanin and somatostatin potently inhibit these actions of the tachykinins. Therefore, airway mucus secretion is controlled by a complex network of several different mediators.
Collapse
Affiliation(s)
- U Wagner
- Department of Internal Medicine, Philipps-University of Marburg, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Galanin is a 29/30 amino acids long neuropeptide which does not belong to any known peptide family. The N-terminal first 16 amino acids of the molecule are both necessary and sufficient for receptor recognition and receptor activation. The main pharmacophores of galanin in its central and pancreatic actions are Gly1, Trp2, Asn5 and Tyr9, respectively. The neuropeptide galanin has multiple effects in both the central and peripheral nervous systems. Centrally, galanin potently stimulates fat intake and impairs cognitive performance. Anoxic glutamate release in the hippocampus is inhibited by galanin and the noradrenergic tonus in the brain is influenced by a hyperpolarizing action of galanin in the locus coeruleus. In the spinal cord galanin inhibits spinal excitability and potentiates the analgesic effect of morphine. In the neuroendocrine system galanin acts in a stimulatory manner on the release of growth hormone and prolactin, and peripherally galanin inhibits glucose induced insulin release. Galanin also causes contraction of the jejunum. The galanin receptor is a Gi-protein-coupled, membrane-bound glycoprotein with an estimated molecular mass of 53 kDa. Several putative tissue specific galanin receptor subtypes have been proposed on a pharmacological basis. The distribution of galanin receptors and of galanin like immunoreactivity are overlapping in the CNS, both being high in areas such as the locus coeruleus, raphe nucleus and hypothalamus. Galanin receptor activation leads to a reduced intracellular Ca(2+)-concentration, either by direct action on voltage sensitive Ca(2+)-channels or indirectly via opening of K(+)-channels or via inhibition of adenylyl cyclase activity. The lowered intracellular Ca2+ level subsequently leads to a reduced PLC activity. Galanin also inhibits cGMP synthesis induced by depolarization. A number of synthetic high affinity galanin receptor antagonists of the peptide type were developed recently, which have enabled the elucidation of functional roles of endogenous galanin in several systems. Furthermore, putative subtypes of galanin receptors can be distinguished by the use of these new galanin receptor ligands.
Collapse
Affiliation(s)
- K Bedecs
- Department of Neurochemistry and Neurotoxicology, Arrhenius Laboratories of Natural Sciences, Stockholm University, Sweden
| | | | | |
Collapse
|