1
|
Mercado-Perez A, Hernandez JP, Fedyshyn Y, Treichel AJ, Joshi V, Kossick K, Betageri KR, Farrugia G, Druliner B, Beyder A. Piezo2 interacts with E-cadherin in specialized gastrointestinal epithelial mechanoreceptors. J Gen Physiol 2024; 156:e202213324. [PMID: 39495178 DOI: 10.1085/jgp.202213324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2024] [Accepted: 09/19/2024] [Indexed: 11/05/2024] Open
Abstract
Piezo2 is a mechanically gated ion channel most commonly expressed by specialized mechanoreceptors, such as the enteroendocrine cells (EECs) of the gastrointestinal epithelium. A subpopulation of EECs expresses Piezo2 and functionally resembles the skin's touch sensors, called Merkel cells. Low-magnitude mechanical stimuli delivered to the mucosal layer are primarily sensed by mechanosensitive EECs in a process we term "gut touch." Piezo2 transduces cellular forces into ionic currents, a process that is sensitive to bilayer tension and cytoskeletal depolymerization. E-cadherin is a widely expressed protein that mediates cell-cell adhesion in epithelia and interacts with scaffold proteins that anchor it to actin fibers. E-cadherin was shown to interact with Piezo2 in immortalized cell models. We hypothesized that the Piezo2-E-cadherin interaction is important for EEC mechanosensitivity. To test this, we used super-resolution imaging, co-immunoprecipitation, and functional assays in primary tissues from mice and gut organoids. In tissue EECs and intestinal organoids, we observed multiple Piezo2 cellular pools, including one that overlaps with actin and E-cadherin at the cells' lateral walls. Further, E-cadherin co-immunoprecipitated with Piezo2 in the primary colonic epithelium. We found that E-cadherin knockdown decreases mechanosensitive calcium responses in mechanically stimulated primary EECs. In all, our results demonstrate that Piezo2 localizes to the lateral wall of EECs, where it physically interacts with E-cadherin and actin. They suggest that the Piezo2-E-cadherin-actin interaction is important for mechanosensitivity in the gut epithelium and possibly in tissues where E-cadherin and Piezo2 are co-expressed in epithelial mechanoreceptors, such as skin, lung, and bladder.
Collapse
Affiliation(s)
- Arnaldo Mercado-Perez
- Enteric NeuroScience Program (ENSP), Mayo Clinic , Rochester, MN, USA
- Medical Scientist Training Program (MSTP), Mayo Clinic , Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jeric P Hernandez
- Enteric NeuroScience Program (ENSP), Mayo Clinic , Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yaroslav Fedyshyn
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | - Vikram Joshi
- Enteric NeuroScience Program (ENSP), Mayo Clinic , Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kimberlee Kossick
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kalpana R Betageri
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Gianrico Farrugia
- Enteric NeuroScience Program (ENSP), Mayo Clinic , Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Brooke Druliner
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Arthur Beyder
- Enteric NeuroScience Program (ENSP), Mayo Clinic , Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Deng J, Zhou J, Jiang B. Advances in the role of membrane-bound transcription factors in carcinogenesis and therapy. Discov Oncol 2024; 15:559. [PMID: 39404930 PMCID: PMC11480308 DOI: 10.1007/s12672-024-01414-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Protein shuttling between the cytoplasm and nucleus is a unique phenomenon in eukaryotic organisms, integral to various cellular functions. Membrane-bound transcription factors (MTFs), a specialized class of nucleocytoplasmic shuttling proteins, are anchored to the cell membrane and enter the nucleus upon ligand binding to exert their transcriptional regulatory functions. MTFs are crucial in cellular signal transduction, and aberrant nucleocytoplasmic shuttling of MTFs is closely associated with tumor initiation, progression, and resistance to anticancer therapies. Studies have demonstrated that MTFs, such as human epidermal growth factor receptor (HER), fibroblast growth factor receptor (FGFR), β-catenin, Notch, insulin-like growth factor 1 receptor (IGF-1R), and insulin receptor (IR), play critical roles in tumorigenesis and cancer progression. Targeted therapies developed against HERs and FGFRs, among these MTFs, have yielded significant success in cancer treatment. However, the development of drug resistance remains a major challenge. As research on MTFs progress, it is anticipated that additional MTF-targeted therapies will be developed to enhance cancer treatment. In this review, we summarized recent advancements in the study of MTFs and their roles in carcinogenesis and therapy, aiming to provide valuable insights into the potential of targeting MTF pathways for the reseach of therapeutic strategies.
Collapse
Affiliation(s)
- JiaLi Deng
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
| | - Jie Zhou
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
| | - BinYuan Jiang
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China.
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China.
| |
Collapse
|
3
|
Sato M, Inada E, Kubota N, Ozawa M. Loss of Cell-Cell Contact Inhibits Cellular Differentiation of α-Catenin Knock Out P19 Embryonal Carcinoma Cells and Their Colonization into the Developing Mouse Embryos. BIOTECH 2024; 13:41. [PMID: 39449371 DOI: 10.3390/biotech13040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Cadherin-catenin cell-cell adhesion complexes, composed of cadherin, β-catenin or plakoglobin, and α-catenin (α-cat) molecules, are crucial for maintaining cell-cell contact and are commonly referred to as "adherens junctions (AJs)." Inactivating this system leads to loss of cell-cell contact and developmental arrest in early embryos. However, it remains unclear whether the loss of cell-cell contact affects the differentiation of embryonic cells. In this study, we explored the use of a murine embryonal carcinoma cell line, P19, as an in vitro model for early embryogenesis. P19 cells easily form embryoid bodies (EBs) and are susceptible to cellular differentiation in response to retinoic acid (RA) and teratoma formation. Using CRISPR/Cas9 technology to disrupt the endogenous α-cat gene in P19 cells, we generated α-cat knockout (KO) cells that exhibited a loss of cell-cell contact. When cultivated on non-coated dishes, these α-cat KO cells formed EBs, but their structures were labile. In the RA-containing medium, the α-cat KO EBs failed to produce differentiated cells on their outer layer and continued to express SSEA-1, an antigen specific to pluripotent cells. Teratoma formation assays revealed an absence of overt differentiated cells in tumors derived from α-cat KO P19 cells. Aggregation assays revealed the inability of the KO cells to colonize into the zona pellucida-denuded 8-cell embryos. These findings suggest that the AJs are essential for promoting the early stages of cellular differentiation and for the colonization of early-developing embryos.
Collapse
Affiliation(s)
- Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Naoko Kubota
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Masayuki Ozawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|
4
|
Skory RM. Revisiting trophectoderm-inner cell mass lineage segregation in the mammalian preimplantation embryo. Hum Reprod 2024; 39:1889-1898. [PMID: 38926157 DOI: 10.1093/humrep/deae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In the first days of life, cells of the mammalian embryo segregate into two distinct lineages, trophectoderm and inner cell mass. Unlike nonmammalian species, mammalian development does not proceed from predetermined factors in the oocyte. Rather, asymmetries arise de novo in the early embryo incorporating cues from cell position, contractility, polarity, and cell-cell contacts. Molecular heterogeneities, including transcripts and non-coding RNAs, have now been characterized as early as the 2-cell stage. However, it's debated whether these early heterogeneities bias cells toward one fate or the other or whether lineage identity arises stochastically at the 16-cell stage. This review summarizes what is known about early blastomere asymmetries and our understanding of lineage allocation in the context of historical models. Preimplantation development is reviewed coupled with what is known about changes in morphology, contractility, and transcription factor networks. The addition of single-cell atlases of human embryos has begun to reveal key differences between human and mouse, including the timing of events and core transcription factors. Furthermore, the recent generation of blastoid models will provide valuable tools to test and understand fate determinants. Lastly, new techniques are reviewed, which may better synthesize existing knowledge with emerging data sets and reconcile models with the regulative capacity unique to the mammalian embryo.
Collapse
Affiliation(s)
- Robin M Skory
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Li H, Li X, Du W. Interplay between Wnt signaling molecules and exosomal miRNAs in breast cancer (Review). Oncol Rep 2024; 52:107. [PMID: 38940326 PMCID: PMC11234250 DOI: 10.3892/or.2024.8766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Breast cancer (BC) is the most common malignancy in women worldwide. Wnt signaling is involved in tumorigenesis and cancer progression, and is closely associated with the characteristics of BC. Variation in the expression of exosomal microRNAs (miRNAs) modulates key cancer phenotypes, such as cellular proliferation, epithelial‑mesenchymal transition, metastatic potential, immune evasion and treatment resistance. The present review aimed to discuss the importance of Wnt signaling and exosomal miRNAs in regulating the occurrence and development of BC. In addition, the present review determined the crosstalk between Wnt signaling and exosomal miRNAs, and highlighted potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hailong Li
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan 415003, P.R. China
| | - Xia Li
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan 415003, P.R. China
| | - Wei Du
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan 415003, P.R. China
| |
Collapse
|
6
|
Lagoudaki ED, Koutsopoulos AV, Sfakianaki M, Papadaki C, Manikis GC, Voutsina A, Trypaki M, Tsakalaki E, Fiolitaki G, Hatzidaki D, Yiachnakis E, Koumaki D, Mavroudis D, Tzardi M, Stathopoulos EN, Marias K, Georgoulias V, Souglakos J. LKB1 Loss Correlates with STING Loss and, in Cooperation with β-Catenin Membranous Loss, Indicates Poor Prognosis in Patients with Operable Non-Small Cell Lung Cancer. Cancers (Basel) 2024; 16:1818. [PMID: 38791897 PMCID: PMC11120022 DOI: 10.3390/cancers16101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
To investigate the incidence and prognostically significant correlations and cooperations of LKB1 loss of expression in non-small cell lung cancer (NSCLC), surgical specimens from 188 metastatic and 60 non-metastatic operable stage I-IIIA NSCLC patients were analyzed to evaluate their expression of LKB1 and pAMPK proteins in relation to various processes. The investigated factors included antitumor immunity response regulators STING and PD-L1; pro-angiogenic, EMT and cell cycle targets, as well as metastasis-related (VEGFC, PDGFRα, PDGFRβ, p53, p16, Cyclin D1, ZEB1, CD24) targets; and cell adhesion (β-catenin) molecules. The protein expression levels were evaluated via immunohistochemistry; the RNA levels of LKB1 and NEDD9 were evaluated via PCR, while KRAS exon 2 and BRAFV600E mutations were evaluated by Sanger sequencing. Overall, loss of LKB1 protein expression was observed in 21% (51/248) patients and correlated significantly with histotype (p < 0.001), KRAS mutations (p < 0.001), KC status (concomitant KRAS mutation and p16 downregulation) (p < 0.001), STING loss (p < 0.001), and high CD24 expression (p < 0.001). STING loss also correlated significantly with loss of LKB1 expression in the metastatic setting both overall (p = 0.014) and in lung adenocarcinomas (LUACs) (p = 0.005). Additionally, LKB1 loss correlated significantly with a lack of or low β-catenin membranous expression exclusively in LUACs, both independently of the metastatic status (p = 0.019) and in the metastatic setting (p = 0.007). Patients with tumors yielding LKB1 loss and concomitant nonexistent or low β-catenin membrane expression experienced significantly inferior median overall survival of 20.50 vs. 52.99 months; p < 0.001 as well as significantly greater risk of death (HR: 3.32, 95% c.i.: 1.71-6.43; p <0.001). Our findings underscore the impact of the synergy of LKB1 with STING and β-catenin in NSCLC, in prognosis.
Collapse
Affiliation(s)
- Eleni D. Lagoudaki
- Department of Pathology, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.V.K.); (M.T.); (E.N.S.)
- School of Medicine, University of Crete, 70013 Heraklion, Greece; (D.M.); (V.G.); (J.S.)
| | - Anastasios V. Koutsopoulos
- Department of Pathology, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.V.K.); (M.T.); (E.N.S.)
- School of Medicine, University of Crete, 70013 Heraklion, Greece; (D.M.); (V.G.); (J.S.)
| | - Maria Sfakianaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.S.); (C.P.); (A.V.); (M.T.); (E.T.); (G.F.); (D.H.)
| | - Chara Papadaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.S.); (C.P.); (A.V.); (M.T.); (E.T.); (G.F.); (D.H.)
| | - Georgios C. Manikis
- Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece; (G.C.M.); (K.M.)
| | - Alexandra Voutsina
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.S.); (C.P.); (A.V.); (M.T.); (E.T.); (G.F.); (D.H.)
| | - Maria Trypaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.S.); (C.P.); (A.V.); (M.T.); (E.T.); (G.F.); (D.H.)
| | - Eleftheria Tsakalaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.S.); (C.P.); (A.V.); (M.T.); (E.T.); (G.F.); (D.H.)
| | - Georgia Fiolitaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.S.); (C.P.); (A.V.); (M.T.); (E.T.); (G.F.); (D.H.)
| | - Dora Hatzidaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.S.); (C.P.); (A.V.); (M.T.); (E.T.); (G.F.); (D.H.)
| | - Emmanuel Yiachnakis
- Laboratory of Bio-Medical Data Analysis Digital Applications and Interdisciplinary Approaches, University of Crete, 71003 Heraklion, Greece;
| | - Dimitra Koumaki
- Department of Dermatology, University General Hospital of Heraklion, Voutes, 71500 Heraklion, Greece;
| | - Dimitrios Mavroudis
- School of Medicine, University of Crete, 70013 Heraklion, Greece; (D.M.); (V.G.); (J.S.)
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.S.); (C.P.); (A.V.); (M.T.); (E.T.); (G.F.); (D.H.)
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion, Greece
| | - Maria Tzardi
- Department of Pathology, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.V.K.); (M.T.); (E.N.S.)
- School of Medicine, University of Crete, 70013 Heraklion, Greece; (D.M.); (V.G.); (J.S.)
| | - Efstathios N. Stathopoulos
- Department of Pathology, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.V.K.); (M.T.); (E.N.S.)
- School of Medicine, University of Crete, 70013 Heraklion, Greece; (D.M.); (V.G.); (J.S.)
| | - Kostas Marias
- Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece; (G.C.M.); (K.M.)
| | - Vassilis Georgoulias
- School of Medicine, University of Crete, 70013 Heraklion, Greece; (D.M.); (V.G.); (J.S.)
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.S.); (C.P.); (A.V.); (M.T.); (E.T.); (G.F.); (D.H.)
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion, Greece
| | - John Souglakos
- School of Medicine, University of Crete, 70013 Heraklion, Greece; (D.M.); (V.G.); (J.S.)
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (M.S.); (C.P.); (A.V.); (M.T.); (E.T.); (G.F.); (D.H.)
- Department of Medical Oncology, University General Hospital of Heraklion, 71500 Heraklion, Greece
| |
Collapse
|
7
|
Macheroni C, Leite GGF, Souza DS, Vicente CM, Lacerda JT, Moraes MN, Juliano MA, Porto CS. Activation of estrogen receptor induces differential proteomic responses mainly involving migration, invasion, and tumor development pathways in human testicular embryonal carcinoma NT2/D1 cells. J Steroid Biochem Mol Biol 2024; 237:106443. [PMID: 38092129 DOI: 10.1016/j.jsbmb.2023.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/27/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The aims of the present study were to investigate the global changes on proteome of human testicular embryonal carcinoma NT2/D1 cells treated with 17β-estradiol (E2), and the effects of this hormone on migration, invasion, and colony formation of these cells. A quantitative proteomic analysis identified the presence of 1230 proteins in both E2-treated and control cells. The analysis revealed 75 differentially abundant proteins (DAPs), out of which 43 proteins displayed a higher abundance and, 30 proteins showed a lower abundance in E2-treated NT2/D1 cancer cells. Functional analysis using IPA highlighted some activation processes such as migration, invasion, metastasis, and tumor growth. Interestingly, the treatment with E2 and ERβ-selective agonist DPN increased the migration of NT2/D1 cells. On the other hand, ERα-selective agonist PPT did not modify cell migration, indicating that ERβ is the upstream receptor involved in this process. The activation of ERβ increased the invasion and anchorage‑independent growth of NT2/D1 cells more intensely than ERα. ERα and ERβ may play overlapping roles on invasion and colony formation of these cells. Further studies are required to clarify the mechanism underlying these effects. The molecular mechanisms revealed by proteomic and functional studies might also guide the development of potential targets for a better understanding of the biology of these cells and novel treatments for non-seminoma in the future.
Collapse
Affiliation(s)
- Carla Macheroni
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - Giuseppe Gianini Figueirêdo Leite
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - Deborah Simão Souza
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - Carolina Meloni Vicente
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - José Thalles Lacerda
- Department of Physiology, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Butantã, São Paulo, SP 05508-090, Brazil
| | - Maria Nathália Moraes
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Av. Conceição 515, Diadema, São Paulo, SP, 09920-000, Brazil
| | - Maria Aparecida Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, Vila Clementino, São Paulo, SP 04044-020, Brazil
| | - Catarina Segreti Porto
- Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP 04039-032, Brazil.
| |
Collapse
|
8
|
Mangeol P, Massey-Harroche D, Sebbagh M, Richard F, Le Bivic A, Lenne PF. The zonula adherens matura redefines the apical junction of intestinal epithelia. Proc Natl Acad Sci U S A 2024; 121:e2316722121. [PMID: 38377188 PMCID: PMC10907237 DOI: 10.1073/pnas.2316722121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Cell-cell apical junctions of epithelia consist of multiprotein complexes that organize as belts regulating cell-cell adhesion, permeability, and mechanical tension: the tight junction (zonula occludens), the zonula adherens (ZA), and the macula adherens. The prevailing dogma is that at the ZA, E-cadherin and catenins are lined with F-actin bundles that support and transmit mechanical tension between cells. Using super-resolution microscopy on human intestinal biopsies and Caco-2 cells, we show that two distinct multiprotein belts are basal of the tight junctions as the intestinal epithelia mature. The most apical is populated with nectins/afadin and lined with F-actin; the second is populated with E-cad/catenins. We name this dual-belt architecture the zonula adherens matura. We find that the apical contraction apparatus and the dual-belt organization rely on afadin expression. Our study provides a revised description of epithelial cell-cell junctions and identifies a module regulating the mechanics of epithelia.
Collapse
Affiliation(s)
- Pierre Mangeol
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM–UMR7288, Marseille13009, France
| | - Dominique Massey-Harroche
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM–UMR7288, Marseille13009, France
| | - Michael Sebbagh
- Aix Marseille Université, INSERM, Dynamics and Nanoenvironment of Biological Membrane, DyNaMo, Turing Center for Living Systems, Marseille 13009, France
| | - Fabrice Richard
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM–UMR7288, Marseille13009, France
| | - André Le Bivic
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM–UMR7288, Marseille13009, France
| | - Pierre-François Lenne
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM–UMR7288, Turing Center for Living Systems, Marseille13009, France
| |
Collapse
|
9
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Dev A, Vachher M, Prasad CP. β-catenin inhibitors in cancer therapeutics: intricacies and way forward. Bioengineered 2023; 14:2251696. [PMID: 37655825 PMCID: PMC10478749 DOI: 10.1080/21655979.2023.2251696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
β-catenin is an evolutionary conserved, quintessential, multifaceted protein that plays vital roles in cellular homeostasis, embryonic development, organogenesis, stem cell maintenance, cell proliferation, migration, differentiation, apoptosis, and pathogenesis of various human diseases including cancer. β-catenin manifests both signaling and adhesive features. It acts as a pivotal player in intracellular signaling as a component of versatile WNT signaling cascade involved in embryonic development, homeostasis as well as in carcinogenesis. It is also involved in Ca2+ dependent cell adhesion via interaction with E-cadherin at the adherens junctions. Aberrant β-catenin expression and its nuclear accumulation promote the transcription of various oncogenes including c-Myc and cyclinD1, thereby contributing to tumor initiation, development, and progression. β-catenin's expression is closely regulated at various levels including its stability, sub-cellular localization, as well as transcriptional activity. Understanding the molecular mechanisms of regulation of β-catenin and its atypical expression will provide researchers not only the novel insights into the pathogenesis and progression of cancer but also will help in deciphering new therapeutic avenues. In the present review, we have summarized the dual functions of β-catenin, its role in signaling, associated mutations as well as its role in carcinogenesis and tumor progression of various cancers. Additionally, we have discussed the challenges associated with targeting β-catenin molecule with the presently available drugs and suggested the possible way forward in designing new therapeutic alternatives against this oncogene.
Collapse
Affiliation(s)
- Arundhathi Dev
- Department of Medical Oncology (Laboratory), DR BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Meenakshi Vachher
- Department of Biochemistry, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Chandra Prakash Prasad
- Department of Medical Oncology (Laboratory), DR BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
LaGuardia JS, Shariati K, Bedar M, Ren X, Moghadam S, Huang KX, Chen W, Kang Y, Yamaguchi DT, Lee JC. Convergence of Calcium Channel Regulation and Mechanotransduction in Skeletal Regenerative Biomaterial Design. Adv Healthc Mater 2023; 12:e2301081. [PMID: 37380172 PMCID: PMC10615747 DOI: 10.1002/adhm.202301081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Cells are known to perceive their microenvironment through extracellular and intracellular mechanical signals. Upon sensing mechanical stimuli, cells can initiate various downstream signaling pathways that are vital to regulating proliferation, growth, and homeostasis. One such physiologic activity modulated by mechanical stimuli is osteogenic differentiation. The process of osteogenic mechanotransduction is regulated by numerous calcium ion channels-including channels coupled to cilia, mechanosensitive and voltage-sensitive channels, and channels associated with the endoplasmic reticulum. Evidence suggests these channels are implicated in osteogenic pathways such as the YAP/TAZ and canonical Wnt pathways. This review aims to describe the involvement of calcium channels in regulating osteogenic differentiation in response to mechanical loading and characterize the fashion in which those channels directly or indirectly mediate this process. The mechanotransduction pathway is a promising target for the development of regenerative materials for clinical applications due to its independence from exogenous growth factor supplementation. As such, also described are examples of osteogenic biomaterial strategies that involve the discussed calcium ion channels, calcium-dependent cellular structures, or calcium ion-regulating cellular features. Understanding the distinct ways calcium channels and signaling regulate these processes may uncover potential targets for advancing biomaterials with regenerative osteogenic capabilities.
Collapse
Affiliation(s)
- Jonnby S. LaGuardia
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Kaavian Shariati
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Meiwand Bedar
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Xiaoyan Ren
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Shahrzad Moghadam
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Kelly X. Huang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Wei Chen
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Youngnam Kang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Dean T. Yamaguchi
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Justine C. Lee
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
- Department of Orthopaedic Surgery, Los Angeles, CA, 90095, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| |
Collapse
|
12
|
Shukla N, Vemula H, Raval I, Kumar S, Shrivastava V, Chaudhari A, Patel AK, Joshi CG. Integrative miRNA-mRNA network analysis to identify crucial pathways of salinity adaptation in brain transcriptome of Labeo rohita. Front Genet 2023; 14:1209843. [PMID: 37719712 PMCID: PMC10500595 DOI: 10.3389/fgene.2023.1209843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction: Brain being the master regulator of the physiology of animal, the current study focuses on the gene expression pattern of the brain tissue with special emphasis on regulation of growth, developmental process of an organism and cellular adaptation of Labeo rohita against unfavourable environmental conditions. Methods: RNA-seq study was performed on collected brain samples at 8ppt salt concentration and analyzed for differential gene expression, functional annotation and miRNA-mRNA regulatory network. Results: We found that 2450 genes were having significant differential up and down regulation. The study identified 20 hub genes based on maximal clique centrality algorithm. These hub genes were mainly involved in various signaling pathways, energy metabolism and ion transportation. Further, 326 up and 1214 down regulated genes were found to be targeted by 7 differentially expressed miRNAs i.e., oni-miR-10712, oni-miR-10736, ssa-miR-221-3p, ssa-miR-130d-1-5p, ssa-miR-144-5p and oni-miR-10628. Gene ontology analysis of these differentially expressed genes led to the finding that these genes were involved in signal transduction i.e., calcium, FOXO, PI3K-AKT, TGF-β, Wnt and p53 signalling pathways. Differentially expressed genes were also involved in regulation of immune response, environmental adaptation i.e., neuroactive ligand-receptor interaction, ECM-receptor interaction, cell adhesion molecules and circadian entrainment, osmoregulation and energy metabolism, which are critical for salinity adaptation. Discussion: The findings of whole transcriptomic study on brain deciphered the miRNA-mRNA interaction patterns and pathways associated with salinity adaptation of L. rohita.
Collapse
Affiliation(s)
- Nitin Shukla
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Harshini Vemula
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Ishan Raval
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Sujit Kumar
- Postgraduate Institute of Fisheries Education and Research, Kamdhenu University, Gandhinagar, Gujarat, India
| | - Vivek Shrivastava
- Postgraduate Institute of Fisheries Education and Research, Kamdhenu University, Gandhinagar, Gujarat, India
| | - Aparna Chaudhari
- Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | | | | |
Collapse
|
13
|
Sørtvedt X, Nielsen R, Praetorius J, Christensen BM. Absence of E-Cadherin and β-Catenin in the Basal Plasma Membrane of Collecting Duct Cells During NDI Development and Recovery. J Histochem Cytochem 2023; 71:357-375. [PMID: 37439659 PMCID: PMC10363910 DOI: 10.1369/00221554231185809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023] Open
Abstract
Lithium (Li) induces severe polyuria and polydipsia in up to 40% of patients undergoing Li treatment. In rats, Li treatment induces a reversible cellular remodeling of the collecting duct (CD), decreasing the fraction of principal-to-intercalated cells. To investigate the potential role of adherens junction proteins, we performed immunohistochemistry on kidney cross-sections from rats treated with Li as well as rats undergoing recovery on a normal diet following 4 weeks of Li-treatment. We performed immunoelectron microscopy on cryosections to determine the ultrastructural localizations. Immunohistochemistry showed that E-cadherin and β-catenin were present in both the lateral and basal plasma membrane domains of CD cells. Immunoelectron microscopy confirmed that β-catenin was localized both to the lateral and the basal plasma membrane. The basal localization of both proteins was absent from a fraction of mainly principal cells after 10 and 15 days of Li-treatment. After 4 weeks of Li-treatment few to no cells were absent of E-cadherin and β-catenin at the basal plasma membrane. After 12 and 19 days of recovery some cells exhibited an absence of basal localization of both proteins. Thus, the observed localizational changes of E-cadherin and β-catenin appear before the cellular remodeling during both development and recovery from Li-NDI.
Collapse
Affiliation(s)
- Xabier Sørtvedt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
14
|
Yu Z, Zhang Y, Kong R, Xiao Y, Li B, Liu C, Yu L. Tris(1,3-dichloro-2-propyl) Phosphate Inhibits Early Embryonic Development by Binding to Gsk-3β Protein in Zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106588. [PMID: 37267805 DOI: 10.1016/j.aquatox.2023.106588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Recently, several studies have reported that exposure to tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) results in abnormal development of zebrafish embryos in blastocyst and gastrula stages, but molecular mechanisms are still not clear. This lacking strongly affects the interspecific extrapolation of embryonic toxicity induced by TDCIPP and hazard evaluation. In this study, zebrafish embryos were exposed to 100, 500 or 1000 μg/L TDCIPP, and 6-bromoindirubin-3'-oxime (BIO, 35.62 μg/L) was used as a positive control. Results demonstrated that treatment with TDCIPP or BIO caused an abnormal stacking of blastomere cells in mid blastula transition (MBT) stage, and subsequently resulted in epiboly delay of zebrafish embryos. TDCIPP and BIO up-regulated the expression of β-catenin protein and increased its accumulation in nuclei of embryonic cells. This accumulation was considered as a driver for early embryonic developmental toxicity of TDCIPP. Furthermore, TDCIPP and BIO partly shared the same modes of action, and both of them could bind to Gsk-3β protein, and then decreased the phosphorylation level of Gsk-3β in TYR·216 site and lastly inhibited the activity of Gsk-3β kinase, which was responsible for the increased concentrations of β-catenin protein in embryonic cells and accumulation in nuclei. Our findings provide new mechanisms for clarifying the early embryonic developmental toxicity of TDCIPP in zebrafish.
Collapse
Affiliation(s)
- Zichen Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongkang Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ren Kong
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yongjie Xiao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Boqun Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
15
|
Lin WH, Cooper LM, Anastasiadis PZ. Cadherins and catenins in cancer: connecting cancer pathways and tumor microenvironment. Front Cell Dev Biol 2023; 11:1137013. [PMID: 37255594 PMCID: PMC10225604 DOI: 10.3389/fcell.2023.1137013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Cadherin-catenin complexes are integral components of the adherens junctions crucial for cell-cell adhesion and tissue homeostasis. Dysregulation of these complexes is linked to cancer development via alteration of cell-autonomous oncogenic signaling pathways and extrinsic tumor microenvironment. Advances in multiomics have uncovered key signaling events in multiple cancer types, creating a need for a better understanding of the crosstalk between cadherin-catenin complexes and oncogenic pathways. In this review, we focus on the biological functions of classical cadherins and associated catenins, describe how their dysregulation influences major cancer pathways, and discuss feedback regulation mechanisms between cadherin complexes and cellular signaling. We discuss evidence of cross regulation in the following contexts: Hippo-Yap/Taz and receptor tyrosine kinase signaling, key pathways involved in cell proliferation and growth; Wnt, Notch, and hedgehog signaling, key developmental pathways involved in human cancer; as well as TGFβ and the epithelial-to-mesenchymal transition program, an important process for cancer cell plasticity. Moreover, we briefly explore the role of cadherins and catenins in mechanotransduction and the immune tumor microenvironment.
Collapse
|
16
|
Splitt RL, DeMali KA. Metabolic reprogramming in response to cell mechanics. Biol Cell 2023; 115:e202200108. [PMID: 36807920 PMCID: PMC10192020 DOI: 10.1111/boc.202200108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/20/2023]
Abstract
Much attention has been dedicated to understanding how cells sense and respond to mechanical forces. The types of forces cells experience as well as the repertoire of cell surface receptors that sense these forces have been identified. Key mechanisms for transmitting that force to the cell interior have also emerged. Yet, how cells process mechanical information and integrate it with other cellular events remains largely unexplored. Here we review the mechanisms underlying mechanotransduction at cell-cell and cell-matrix adhesions, and we summarize the current understanding of how cells integrate information from the distinct adhesion complexes with cell metabolism.
Collapse
Affiliation(s)
- Rebecca L. Splitt
- Department of Biochemistry and Molecular Biology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242
| | - Kris A. DeMali
- Department of Biochemistry and Molecular Biology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242
| |
Collapse
|
17
|
Yui A, Kuroda D, Maruno T, Nakakido M, Nagatoishi S, Uchiyama S, Tsumoto K. Molecular mechanism underlying the increased risk of colorectal cancer metastasis caused by single nucleotide polymorphisms in LI-cadherin gene. Sci Rep 2023; 13:6493. [PMID: 37081068 PMCID: PMC10117238 DOI: 10.1038/s41598-023-32444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/28/2023] [Indexed: 04/22/2023] Open
Abstract
LI-cadherin is a member of the cadherin superfamily. LI-cadherin mediates Ca2+-dependent cell-cell adhesion through homodimerization. A previous study reported two single nucleotide polymorphisms (SNPs) in the LI-cadherin-coding gene (CDH17). These SNPs correspond to the amino acid changes of Lys115 to Glu and Glu739 to Ala. Patients with colorectal cancer carrying these SNPs are reported to have a higher risk of lymph node metastasis than patients without the SNPs. Although proteins associated with metastasis have been identified, the molecular mechanisms underlying the functions of these proteins remain unclear, making it difficult to develop effective strategies to prevent metastasis. In this study, we employed biochemical assays and molecular dynamics (MD) simulations to elucidate the molecular mechanisms by which the amino acid changes caused by the SNPs in the LI-cadherin-coding gene increase the risk of metastasis. Cell aggregation assays showed that the amino acid changes weakened the LI-cadherin-dependent cell-cell adhesion. In vitro assays demonstrated a decrease in homodimerization tendency and MD simulations suggested an alteration in the intramolecular hydrogen bond network by the mutation of Lys115. Taken together, our results indicate that the increased risk of lymph node metastasis is due to weakened cell-cell adhesion caused by the decrease in homodimerization tendency.
Collapse
Affiliation(s)
- Anna Yui
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Daisuke Kuroda
- Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takahiro Maruno
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
- U-Medico Inc., Osaka, Japan
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
18
|
Wang J, Cui K, Hua G, Han D, Yang Z, Li T, Yang X, Zhang Y, Cai G, Deng X, Deng X. Skin-specific transgenic overexpression of ovine β-catenin in mice. Front Genet 2023; 13:1059913. [PMID: 36685951 PMCID: PMC9847499 DOI: 10.3389/fgene.2022.1059913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
β-catenin is a conserved molecule that plays an important role in hair follicle development. In this study, we generated skin-specific overexpression of ovine β-catenin in transgenic mice by pronuclear microinjection. Results of polymerase chain reaction (PCR) testing and Southern blot showed that the ovine β-catenin gene was successfully transferred into mice, and the exogenous β-catenin gene was passed down from the first to sixth generations. Furthermore, real-time fluorescent quantitative PCR (qRT-PCR) and western blot analysis showed that β-catenin mRNA was specifically expressed in the skin of transgenic mice. The analysis of F6 phenotypes showed that overexpression of β-catenin could increase hair follicle density by prematurely promoting the catagen-to-anagen transition. The results showed that ovine β-catenin could also promote hair follicle development in mice. We, therefore, demonstrate domestication traits in animals.
Collapse
Affiliation(s)
- Jiankui Wang
- Key laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Kai Cui
- Key laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China,Key Laboratory of Feed Biotechnology, Ministry of Agriculture/Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guoying Hua
- Key laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Deping Han
- Key laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Zu Yang
- Key laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Tun Li
- Key laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Xue Yang
- Key laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Yuanyuan Zhang
- Key laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Ganxian Cai
- Key laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Xiaotian Deng
- Key laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Xuemei Deng
- Key laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China,*Correspondence: Xuemei Deng,
| |
Collapse
|
19
|
Gregory GL, Copple IM. Modulating the expression of tumor suppressor genes using activating oligonucleotide technologies as a therapeutic approach in cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 31:211-223. [PMID: 36700046 PMCID: PMC9840112 DOI: 10.1016/j.omtn.2022.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tumor suppressor genes (TSGs) are frequently downregulated in cancer, leading to dysregulation of the pathways that they control. The continuum model of tumor suppression suggests that even subtle changes in TSG expression, for example, driven by epigenetic modifications or copy number alterations, can lead to a loss of gene function and a phenotypic effect. This approach to exploring tumor suppression provides opportunities for alternative therapies that may be able to restore TSG expression toward normal levels, such as oligonucleotide therapies. Oligonucleotide therapies involve the administration of exogenous nucleic acids to modulate the expression of specific endogenous genes. This review focuses on two types of activating oligonucleotide therapies, small-activating RNAs and synthetic mRNAs, as novel methods to increase the expression of TSGs in cancer.
Collapse
Affiliation(s)
- Georgina L. Gregory
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Ian M. Copple
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
- Corresponding author: Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK.
| |
Collapse
|
20
|
Liu HL, Li YX, Liu XY, Cheng NL, Niu B, Yan SQ, Feng HM, Liu HL. β-Catenin-treated peptides effectively inhibit the proliferation of colorectal cancer. Biotechnol Appl Biochem 2022. [PMID: 36480009 DOI: 10.1002/bab.2424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/15/2022] [Indexed: 12/13/2022]
Abstract
To verify the inhibitory mechanism of β-catenin-designed peptides in colorectal cancer(CRC) tumors, the following experiments were performed. In vitro colony formation, Transwell assays, and flow cytometry were performed to assess the biological effects of designed peptides (F18KD, F20A4-7k, F20A4-10k, and F20A3-9k + F20A4-10k + F20A5-9k) in HT-29 cells. In vivo xenograft experiments were performed and treated with peptides. Next, tumors were subjected to Hematoxylin and eosin staining (HE), immunohistochemical, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining assays to evaluate the inhibitory effect of peptides on tumors. β-Catenin levels were quantified via western blotting (WB) and quantitative real-time polymerase chain reaction, and β-catenin was located using confocal laser scanning microscopy. T-cell factor-4 (TCF-4), C-myc, and CCND1 levels were quantified via WB. Results were obtained as following. First, the peptides reduced viability, migration, and invasion; promoted apoptosis; and stabilized the S phase of HT-29 cells. Second, peptides suppressed tumor growth and downregulated the expression of CD34, vascular endothelial growth factor, and β-catenin in tumors. Furthermore, we found that peptides downregulated β-catenin expression in both the cytoplasm and nucleus; TCF-4, C-myc, and CCND1 expression was also downregulated. Notably, β-catenin-targeting peptides had a better inhibitory effect on CRC than non-β-catenin-target peptides, and a combination of peptides exerted a more potent inhibitory effect on CRC than single peptides. It suggested that β-Catenin-targeting peptides promote apoptosis in CRC tumors by inhibiting activation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Hong-Lin Liu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yue-Xi Li
- Department of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Xing-Yun Liu
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Niu-Liang Cheng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Bo Niu
- Department of Biotechnology, Capital Institute of Pediatrics, Beijing, China
| | - Shao-Qi Yan
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hui-Min Feng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hai-Lin Liu
- Department of Medical Oncology, The Third People's Hospital of Datong, Datong, Shanxi Province, China
| |
Collapse
|
21
|
Yepes M. The uPA/uPAR system in astrocytic wound healing. Neural Regen Res 2022; 17:2404-2406. [PMID: 35535878 PMCID: PMC9120704 DOI: 10.4103/1673-5374.338991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/22/2021] [Accepted: 12/20/2021] [Indexed: 11/11/2022] Open
Abstract
The repair of injured tissue is a highly complex process that involves cell proliferation, differentiation, and migration. Cell migration requires the dismantling of intercellular contacts in the injured zone and their subsequent reconstitution in the wounded area. Urokinase-type plasminogen activator (uPA) is a serine proteinase found in multiple cell types including endothelial cells, smooth muscle cells, monocytes, and macrophages. A substantial body of experimental evidence with different cell types outside the central nervous system indicates that the binding of uPA to its receptor (uPAR) on the cell surface prompts cell migration by inducing plasmin-mediated degradation of the extracellular matrix. In contrast, although uPA and uPAR are abundantly found in astrocytes and uPA binding to uPAR triggers astrocytic activation, it is unknown if uPA also plays a role in astrocytic migration. Neuronal cadherin is a member of cell adhesion proteins pivotal for the formation of cell-cell contacts between astrocytes. More specifically, while the extracellular domain of neuronal cadherin interacts with the extracellular domain of neuronal cadherin in neighboring cells, its intracellular domain binds to β-catenin, which in turn links the complex to the actin cytoskeleton. Glycogen synthase kinase 3β is a serine-threonine kinase that prevents the cytoplasmic accumulation of β-catenin by inducing its phosphorylation at Ser33, Ser37, and Ser41, thus activating a sequence of events that lead to its proteasomal degradation. The data discussed in this perspective indicate that astrocytes release uPA following a mechanical injury, and that binding of this uPA to uPAR on the cell membrane induces the detachment of β-catenin from the intracellular domain of neuronal cadherin by triggering its extracellular signal-regulated kinase 1/2-mediated phosphorylation at Tyr650. Remarkably, this is followed by the cytoplasmic accumulation of β-catenin because uPA-induced extracellular signal-regulated kinase 1/2 activation also phosphorylates lipoprotein receptor-related protein 6 at Ser1490, which in turn, by recruiting glycogen synthase kinase 3β to its intracellular domain abrogates its effect on β-catenin. The cytoplasmic accumulation of β-catenin is followed by its nuclear translocation, where it induces the expression of uPAR, which is required for the migration of astrocytes from the injured edge into the wounded area.
Collapse
Affiliation(s)
- Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
| |
Collapse
|
22
|
Yu S, Han R, Gan R. The Wnt/β-catenin signalling pathway in Haematological Neoplasms. Biomark Res 2022; 10:74. [PMID: 36224652 PMCID: PMC9558365 DOI: 10.1186/s40364-022-00418-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
Leukaemia and lymphoma are common malignancies. The Wnt pathway is a complex network of proteins regulating cell proliferation and differentiation, as well as cancer development, and is divided into the Wnt/β-catenin signalling pathway (the canonical Wnt signalling pathway) and the noncanonical Wnt signalling pathway. The Wnt/β-catenin signalling pathway is highly conserved evolutionarily, and activation or inhibition of either of the pathways may lead to cancer development and progression. The aim of this review is to analyse the mechanisms of action of related molecules in the Wnt/β-catenin pathway in haematologic malignancies and their feasibility as therapeutic targets.
Collapse
Affiliation(s)
- Siwei Yu
- Cancer Research Institute, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P. R. China
| | - Ruyue Han
- Cancer Research Institute, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P. R. China
| | - Runliang Gan
- Cancer Research Institute, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P. R. China.
| |
Collapse
|
23
|
Differential Intracellular Protein Distribution in Cancer and Normal Cells-Beta-Catenin and CapG in Gynecologic Malignancies. Cancers (Basel) 2022; 14:cancers14194788. [PMID: 36230711 PMCID: PMC9561979 DOI: 10.3390/cancers14194788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary The distribution and mobility of proteins inside the living cell can be used to differentiate cancer from normal cells. This review highlights differential protein distribution of two exemplary proteins, beta-catenin and CapG, and their role in gynecologic cancers. Recognizing differential protein distribution in cancer cells may have diagnostic and therapeutic implications. Abstract It is well-established that cancer and normal cells can be differentiated based on the altered sequence and expression of specific proteins. There are only a few examples, however, showing that cancer and normal cells can be differentiated based on the altered distribution of proteins within intracellular compartments. Here, we review available data on shifts in the intracellular distribution of two proteins, the membrane associated beta-catenin and the actin-binding protein CapG. Both proteins show altered distributions in cancer cells compared to normal cells. These changes are noted (i) in steady state and thus can be visualized by immunohistochemistry—beta-catenin shifts from the plasma membrane to the cell nucleus in cancer cells; and (ii) in the dynamic distribution that can only be revealed using the tools of quantitative live cell microscopy—CapG shuttles faster into the cell nucleus of cancer cells. Both proteins may play a role as prognosticators in gynecologic malignancies: beta-catenin in endometrial cancer and CapG in breast and ovarian cancer. Thus, both proteins may serve as examples of altered intracellular protein distribution in cancer and normal cells.
Collapse
|
24
|
Parrish ML, Broaddus RR, Gladden AB. Mechanisms of mutant β-catenin in endometrial cancer progression. Front Oncol 2022; 12:1009345. [PMID: 36248967 PMCID: PMC9556987 DOI: 10.3389/fonc.2022.1009345] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Endometrial carcinoma (EC) is the most diagnosed gynecological malignancy in Western countries. Both incidence and mortality rates of EC have steadily risen in recent years. Despite generally favorable prognoses for patients with the endometrioid type of EC, a subset of patients has been identified with decreased progression-free survival. Patients in this group are distinguished from other endometrioid EC patients by the presence of exon 3 hotspot mutations in CTNNB1, the gene encoding for the β-catenin protein. β-catenin is an evolutionarily conserved protein with critical functions in both adherens junctions and Wnt-signaling. The exact mechanism by which exon 3 CTNNB1 mutations drive EC progression is not well understood. Further, the potential contribution of mutant β-catenin to adherens junctions' integrity is not known. Additionally, the magnitude of worsened progression-free survival in patients with CTNNB1 mutations is context dependent, and therefore the importance of this subset of patients can be obscured by improper categorization. This review will examine the history and functions of β-catenin, how these functions may change and drive EC progression in CTNNB1 mutant patients, and the importance of this patient group in the broader context of the disease.
Collapse
Affiliation(s)
- Molly L. Parrish
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Pathobiology and Translational Science Graduate Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Russell R. Broaddus
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Pathobiology and Translational Science Graduate Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Andrew B. Gladden
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Pathobiology and Translational Science Graduate Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
25
|
Hale C, Moulton JK, Otis Y, Ganter G. ARMADILLO REGULATES NOCICEPTIVE SENSITIVITY IN THE ABSENCE OF INJURY. Mol Pain 2022; 18:17448069221111155. [PMID: 35712882 PMCID: PMC9500252 DOI: 10.1177/17448069221111155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abnormal pain has recently been estimated to affect ∼50 million adults each year within the United States. With many treatment options for abnormal pain, such as opioid analgesics, carrying numerous deleterious side effects, research into safer and more effective treatment options is crucial. To help elucidate the mechanisms controlling nociceptive sensitivity, the Drosophila melanogaster larval nociception model has been used to characterize well-conserved pathways through the use of genetic modification and/or injury to alter the sensitivity of experimental animals. Mammalian models have provided evidence of β-catenin signaling involvement in neuropathic pain development. By capitalizing on the conserved nature of β-catenin functions in the fruit fly, here we describe a role for Armadillo, the fly homolog to mammalian β-catenin, in regulating baseline sensitivity in the primary nociceptor of the fly, in the absence of injury, using under- and over-expression of Armadillo in a cell-specific manner. Underexpression of Armadillo resulted in hyposensitivity, while overexpression of wild-type Armadillo or expression of a degradation-resistant Armadillo resulted in hypersensitivity. Neither underexpression nor overexpression of Armadillo resulted in observed dendritic morphological changes that could contribute to behavioral phenotypes observed. These results showed that focused manipulation of Armadillo expression within the nociceptors is sufficient to modulate baseline response in the nociceptors to a noxious stimulus and that these changes are not shown to be associated with a morphogenetic effect.
Collapse
Affiliation(s)
- Christine Hale
- Graduate School of Biomedical Science and Engineering6251University of Maine System
| | | | - Yvonne Otis
- School of Biological Sciences172741University of New England College of Arts and Sciences
| | | |
Collapse
|
26
|
Holstein TW. The role of cnidarian developmental biology in unraveling axis formation and Wnt signaling. Dev Biol 2022; 487:74-98. [DOI: 10.1016/j.ydbio.2022.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
|
27
|
Yu Z, Li H, Zhu J, Wang H, Jin X. The roles of E3 ligases in Hepatocellular carcinoma. Am J Cancer Res 2022; 12:1179-1214. [PMID: 35411231 PMCID: PMC8984888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023] Open
Abstract
Hepatocarcinogenesis is a complex multistep biological process involving genetic and epigenetic alterations that are accompanied by activation of oncoproteins and inactivation of tumor suppressors, which in turn results in Hepatocellular carcinoma (HCC), one of the common tumors with high morbidity and mortality worldwide. The ubiquitin-proteasome system (UPS) is the key to protein degradation and regulation of physiological and pathological processes, and E3 ligases are key enzymes in the UPS that contain a variety of subfamily proteins involved in the regulation of some common signal pathways in HCC. There is growing evidence that many structural or functional dysfunctions of E3 are engaged in the development and progression of HCC. Herein, we review recent research advances in HCC-associated E3 ligases, describe their structure, classification, functional roles, and discuss some mechanisms of the abnormal activation or inactivation of the HCC-associated signal pathway due to the binding of E3 to known substrates. In addition, given the success of proteasome inhibitors in the treatment of malignant cancers, we characterize the current knowledge and future prospects for targeted therapies against aberrant E3 in HCC.
Collapse
Affiliation(s)
- Zongdong Yu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Hong Li
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Jie Zhu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Haibiao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| |
Collapse
|
28
|
Vuong LT, Mlodzik M. Different strategies by distinct Wnt-signaling pathways in activating a nuclear transcriptional response. Curr Top Dev Biol 2022; 149:59-89. [PMID: 35606062 PMCID: PMC9870056 DOI: 10.1016/bs.ctdb.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Wnt family of secreted glycolipo-proteins signals through multiple signal transduction pathways and is essential for embryonic development and organ development and homeostasis. The Wnt-pathways are conserved and critical in all metazoans. Wnt signaling pathways comprise the canonical Wnt/β-catenin pathway and several non-canonical signaling branches, of which Wnt-Planar Cell Polarity (PCP) signaling and the Wnt/Calcium pathway have received the most attention and are best understood. nterestingly, all Wnt-pathways have a nuclear signaling branch and also can affect many cellular processes independent of its nuclear transcriptional regulation. Canonical Wnt/β-catenin signaling is the most critical for a nuclear transcriptional response, in both development and disease, yet the mechanism(s) on how the "business end" of the pathway, β-catenin, translocates to the nucleus to act as co-activator to the TCF/Lef transcription factor family still remains obscure. Here we discuss and compare the very different strategies on how the respective Wnt signaling pathways activate a nuclear transcriptional response. We also highlight some recent new insights into how β-catenin is translocated to the nucleus via an IFT-A, Kinesin-2, and microtubule dependent mechanism and how this aspect of canonical Wnt-signaling uses ciliary proteins in a cilium independent manner, conserved between Drosophila and mammalian cells.
Collapse
Affiliation(s)
| | - Marek Mlodzik
- Department of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
29
|
Ilyas U, Naaz S, Muhammad SA, Nadeem H, Altaf R, Shahiq Uz Zaman, Faheem M, Shah F. Cytotoxic Evaluation and Molecular Docking studies of Aminopyridine derivatives as Potential Anticancer Agents. Anticancer Agents Med Chem 2021; 22:2599-2606. [PMID: 34963435 DOI: 10.2174/1871520622666211228105556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The development of resistance to available anticancer drugs is increasingly becoming a major challenge and new chemical entities could be unveiled to compensate for this therapeutic failure. OBJECTIVES The current study demonstrated whether N-protected and deprotected amino acid derivatives of 2-aminopyridine could attenuate tumor development using colorectal cancer cell lines. METHODS Biological assays were performed to investigate the anticancer potential of synthesized compounds. The in silico ADME profiling and docking studies were also performed by docking the designed compounds against the active binding site of beta-catenin (CTNNB1) to analyze the binding mode of these compounds. Four derivatives 4a, 4b, 4c, and 4d were selected for investigation of in vitro anticancer potential using colorectal cancer cell line HCT 116. The anti-tumor activities of synthesized compounds were further validated by evaluating the inhibitory effects of these compounds on the target protein beta-catenin through in vitro enzyme inhibitory assay. RESULTS The docking analysis revealed favorable binding energies and interactions with the target proteins. The in vitro MTT assay on colorectal cancer cell line HCT 116 and HT29 revealed potential anti-tumor activities with an IC50 range of 3.7-8.1µM and 3.27-7.7 µM, respectively. The inhibitory properties of these compounds on the concentration of beta-catenin by ELISA revealed significant percent inhibition of target protein at 100 µg/ml. CONCLUSION In conclusion, the synthesized compounds showed significant anti-tumor activities both in silico and in vitro, having potential for further investigating its role in colorectal cancer.
Collapse
Affiliation(s)
- Umair Ilyas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad- 44000, Pakistan
| | - Shagufta Naaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad- 44000, Pakistan
| | - Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan-66000, Pakistan
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad- 44000, Pakistan
| | - Reem Altaf
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad- 44000, Pakistan
| | - Shahiq Uz Zaman
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad- 44000, Pakistan
| | - Muhammad Faheem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad- 44000, Pakistan
| | - Fawad Shah
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad- 44000, Pakistan
| |
Collapse
|
30
|
Duong CN, Brückner R, Schmitt M, Nottebaum AF, Braun LJ, Meyer Zu Brickwedde M, Ipe U, Vom Bruch H, Schöler HR, Trapani G, Trappmann B, Ebrahimkutty MP, Huveneers S, de Rooij J, Ishiyama N, Ikura M, Vestweber D. Force-induced changes of α-catenin conformation stabilize vascular junctions independently of vinculin. J Cell Sci 2021; 134:273834. [PMID: 34851405 PMCID: PMC8729784 DOI: 10.1242/jcs.259012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
Cadherin-mediated cell adhesion requires anchoring via the β-catenin–α-catenin complex to the actin cytoskeleton, yet, α-catenin only binds F-actin weakly. A covalent fusion of VE-cadherin to α-catenin enhances actin anchorage in endothelial cells and strongly stabilizes endothelial junctions in vivo, blocking inflammatory responses. Here, we have analyzed the underlying mechanism. We found that VE-cadherin–α-catenin constitutively recruits the actin adaptor vinculin. However, removal of the vinculin-binding region of α-catenin did not impair the ability of VE-cadherin–α-catenin to enhance junction integrity. Searching for an alternative explanation for the junction-stabilizing mechanism, we found that an antibody-defined epitope, normally buried in a short α1-helix of the actin-binding domain (ABD) of α-catenin, is openly displayed in junctional VE-cadherin–α-catenin chimera. We found that this epitope became exposed in normal α-catenin upon triggering thrombin-induced tension across the VE-cadherin complex. These results suggest that the VE-cadherin–α-catenin chimera stabilizes endothelial junctions due to conformational changes in the ABD of α-catenin that support constitutive strong binding to actin. Summary: There are novel antibody epitopes at the actin-binding domain of α-catenin that correlate with high affinity binding and are exposed in junction-stabilizing VE-cadherin–α-catenin fusion proteins.
Collapse
Affiliation(s)
- Cao Nguyen Duong
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Randy Brückner
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Martina Schmitt
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Astrid F Nottebaum
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Laura J Braun
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Marika Meyer Zu Brickwedde
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Ute Ipe
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Hermann Vom Bruch
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Giuseppe Trapani
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Mirsana P Ebrahimkutty
- Institute of Medical Physics and Biophysics, University of Muenster, Muenster 48149, Germany
| | - Stephan Huveneers
- Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Johan de Rooij
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Noboru Ishiyama
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| |
Collapse
|
31
|
Yu JE, Kim S, Hwang J, Hong JT, Hwang J, Soung N, Cha‐Molstad H, Kwon YT, Kim BY, Lee KH. Phosphorylation of β-catenin Ser60 by polo-like kinase 1 drives the completion of cytokinesis. EMBO Rep 2021; 22:e51503. [PMID: 34585824 PMCID: PMC8647012 DOI: 10.15252/embr.202051503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
β-Catenin is a multifunctional protein and participates in numerous processes required for embryonic development, cell proliferation, and homeostasis through various molecular interactions and signaling pathways. To date, however, there is no direct evidence that β-catenin contributes to cytokinesis. Here, we identify a novel p-S60 epitope on β-catenin generated by Plk1 kinase activity, which can be found at the actomyosin contractile ring of early telophase cells and at the midbody of late telophase cells. Depletion of β-catenin leads to cytokinesis-defective phenotypes, which eventually result in apoptotic cell death. In addition, phosphorylation of β-catenin Ser60 by Plk1 is essential for the recruitment of Ect2 to the midbody, activation of RhoA, and interaction between β-catenin, Plk1, and Ect2. Time-lapse image analysis confirmed the importance of β-catenin phospho-Ser60 in furrow ingression and the completion of cytokinesis. Taken together, we propose that phosphorylation of β-catenin Ser60 by Plk1 in cooperation with Ect2 is essential for the completion of cytokinesis. These findings may provide fundamental knowledge for the research of cytokinesis failure-derived human diseases.
Collapse
Affiliation(s)
- Ji Eun Yu
- Anticancer Agent Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)OchangChungbukKorea
- Department of Drug Discovery and DevelopmentCollege of PharmacyChungbuk National UniversityCheongjuKorea
| | - Sun‐Ok Kim
- Anticancer Agent Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)OchangChungbukKorea
| | - Jeong‐Ah Hwang
- Department of PhysiologyResearch Institute of Medical SciencesCollege of MedicineChungnam National UniversityDaejeonKorea
| | - Jin Tae Hong
- Department of Drug Discovery and DevelopmentCollege of PharmacyChungbuk National UniversityCheongjuKorea
| | - Joonsung Hwang
- Anticancer Agent Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)OchangChungbukKorea
| | - Nak‐Kyun Soung
- Anticancer Agent Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)OchangChungbukKorea
| | - Hyunjoo Cha‐Molstad
- Anticancer Agent Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)OchangChungbukKorea
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical SciencesCollege of MedicineSeoul National UniversitySeoulKorea
| | - Bo Yeon Kim
- Anticancer Agent Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)OchangChungbukKorea
- Department of Biomolecular ScienceUniversity of Science and TechnologyDaejeonKorea
| | - Kyung Ho Lee
- Anticancer Agent Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)OchangChungbukKorea
| |
Collapse
|
32
|
Crosstalk between E-Cadherin/β-Catenin and NF-κB Signaling Pathways: The Regulation of Host-Pathogen Interaction during Leptospirosis. Int J Mol Sci 2021; 22:ijms222313132. [PMID: 34884937 PMCID: PMC8658460 DOI: 10.3390/ijms222313132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Approximately 1 million cases of leptospirosis, an emerging infectious zoonotic disease, are reported each year. Pathogenic Leptospira species express leucine-rich repeat (LRR) proteins that are rarely expressed in non-pathogenic Leptospira species. The LRR domain-containing protein family is vital for the virulence of pathogenic Leptospira species. In this study, the biological mechanisms of an essential LRR domain protein from pathogenic Leptospira were examined. The effects of Leptospira and recombinant LRR20 (rLRR20) on the expression levels of factors involved in signal transduction were examined using microarray, quantitative real-time polymerase chain reaction, and western blotting. The secreted biomarkers were measured using an enzyme-linked immunosorbent assay. rLRR20 colocalized with E-cadherin on the cell surface and activated the downstream transcription factor β-catenin, which subsequently promoted the expression of MMP7, a kidney injury biomarker. Additionally, MMP7 inhibitors were used to demonstrate that the secreted MMP7 degrades surface E-cadherin. This feedback inhibition mechanism downregulated surface E-cadherin expression and inhibited the colonization of Leptospira. The degradation of surface E-cadherin activated the NF-κB signal transduction pathway. Leptospirosis-associated acute kidney injury is associated with the secretion of NGAL, a downstream upregulated biomarker of the NF-κB signal transduction pathway. A working model was proposed to illustrate the crosstalk between E-cadherin/β-catenin and NF-κB signal transduction pathways during Leptospira infection. Thus, rLRR20 of Leptospira induces kidney injury in host cells and inhibits the adhesion and invasion of Leptospira through the upregulation of MMP7 and NGAL.
Collapse
|
33
|
Wijesena N, Sun H, Kumburegama S, Wikramanayake AH. Distinct Frizzled receptors independently mediate endomesoderm specification and primary archenteron invagination during gastrulation in Nematostella. Dev Biol 2021; 481:215-225. [PMID: 34767794 DOI: 10.1016/j.ydbio.2021.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/03/2022]
Abstract
Endomesodermal cell fate specification and archenteron formation during gastrulation are tightly linked developmental processes in most metazoans. However, studies have shown that in the anthozoan cnidarian Nematostella vectensis, Wnt/β-catenin (cWnt) signalling-mediated endomesodermal cell fate specification can be experimentally uncoupled from Wnt/Planar Cell Polarity (PCP) signalling-mediated primary archenteron invagination. The upstream signalling mechanisms regulating cWnt signalling-dependent endomesoderm cell fate specification and Wnt/PCP signalling-mediated primary archenteron invagination in Nematostella embryos are not well understood. By screening for potential upstream mediators of cWnt and Wnt/PCP signalling, we identified two Nematostella Frizzled homologs that are expressed early in development. NvFzd1 is expressed maternally and in a broad pattern during early development while NvFzd10 is zygotically expressed at the animal pole in blastula stage embryos and is restricted to the invaginating cells of the presumptive endomesoderm. Molecular and morphological characterization of NvFzd1 and NvFzd10 knock-down phenotypes provide evidence for distinct regulatory roles for the two receptors in endomesoderm cell fate specification and primary archenteron invagination. These results provide further experimental evidence for the independent regulation of endomesodermal cell fate specification and primary archenteron invagination during gastrulation in Nematostella. Moreover, these results provide additional support for the previously proposed two-step model for the independent evolution of cWnt-mediated cell fate specification and Wnt/PCP-mediated primary archenteron invagination.
Collapse
Affiliation(s)
- Naveen Wijesena
- Department of Biology, University of Miami, Coral Gables, FL33146, USA; Department of Biology, University of Bergen, Bergen, Norway
| | - Hongyan Sun
- Department of Biology, University of Miami, Coral Gables, FL33146, USA
| | - Shalika Kumburegama
- Department of Biology, University of Miami, Coral Gables, FL33146, USA; Department of Zoology, University of Peradeniya, Peradeniya, Sri Lanka
| | | |
Collapse
|
34
|
Kasthuriarachchi TDW, Harasgama JC, Lee S, Kwon H, Wan Q, Lee J. Cytosolic β-catenin is involved in macrophage M2 activation and antiviral defense in teleosts: Delineation through molecular characterization of β-catenin homolog from redlip mullet (Planiliza haematocheila). FISH & SHELLFISH IMMUNOLOGY 2021; 118:228-240. [PMID: 34284111 DOI: 10.1016/j.fsi.2021.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
β-catenin is a structural protein that makes the cell-cell connection in adherence junctions. Besides the structural functions, it also plays a role as a central transducer of the canonical Wnt signaling cascade, regulating nearly four hundred genes related to various cellular processes. Recently the immune functions of β-catenin during pathogenic invasion have gained more attention. In the present study, we elucidated the immune function of fish β-catenin by identifying and characterizing the β-catenin homolog (PhCatβ) from redlip mullet, Planiliza haematocheila. The complete open reading frame of PhCatβ consists of 2352 bp, which encodes a putative β-catenin homolog (molecular weight: 85.7 kDa). Multiple sequence alignment analysis revealed that β-catenin is highly conserved in vertebrates. Phylogenetic reconstruction demonstrated the close evolutionary relationship between PhCatβ and other fish β-catenin counterparts. The tissue distribution analysis showed the highest mRNA expression of PhCatβ in heart tissues of the redlip mullet under normal physiological conditions. While in response to pathogenic stress, the PhCatβ transcription level was dramatically increased in the spleen and gill tissues. The overexpression of PhCatβ stimulated M2 polarization and cell proliferation of murine RAW 264.7 macrophage. In fish cells, the overexpression of PhCatβ resulted in a significant upregulation of antiviral gene transcription and vice versa. Moreover, the overexpression of PhCatβ could inhibit the replication of VHSV in FHM cells. Our results strongly suggest that PhCatβ plays a role in macrophage activation and antiviral immune response in redlip mullet.
Collapse
Affiliation(s)
- T D W Kasthuriarachchi
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - J C Harasgama
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Seongdo Lee
- National Fishery Product Quality Management Service, Busan, 49111, Republic of Korea
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
35
|
Sarı Kılıçaslan SM, İncesu Z. Effects of integrin-linked kinase on protein kinase b, glycogen synthase kinase-3β, and β-catenin molecules in ovarian cancer cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1500-1508. [PMID: 35317111 PMCID: PMC8917846 DOI: 10.22038/ijbms.2021.58716.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/06/2021] [Indexed: 12/02/2022]
Abstract
OBJECTIVES This study examines the impact of integrin-linked kinase (ILK), protein kinase B (AKT), glycogen synthase kinase-3β (GSK-3β), and β-catenin signal molecules in SKOV-3 ovarian cancer cells adhered to fibronectin. MATERIALS AND METHODS Expression levels of α4, αv, β1, and β6 integrin subunits known as the fibronectin ligand were investigated with the flow cytometry technique. The effects of ILK, AKT, GSK-3β, and β-catenin on the binding of SKOV-3 cells to fibronectin were examined by using the Real-Time Cellular Analysis (RTCA) method. Additionally, the interaction of these proteins was investigated by using Western blot analysis. RESULTS The results show that the expression levels of integrin subunits were ranked as αv (67.8%), followed by α4 (48.55%), β6 (32.05%), and β1 (31%) on SKOV-3 cells. RTCA results showed that ILK (10 µM Cpd22), GSK-3β (50 μM GSK-3β inhibitor-XI), AKT (35 µM FPA 124), and β-catenin (50 μM cardamonin) inhibitors decreased significantly (P<0.01) binding to fibronectin at 24 hr. Western studies in SKOV-3 cells adhered to fibronectin have shown that in inhibition of ILK, AKT expression was strongly inhibited, whereas, in the inhibition of AKT, ILK expression was strongly inhibited. Furthermore, the expression of β-catenin is partially reduced in inhibition of these two molecules. In β-catenin inhibition, AKT and ILK expressions are also strongly inhibited. CONCLUSION ILK, AKT, GSK-3β, and β-catenin were found to be fundamental molecules in binding of SKOV-3 cells to fibronectin. ILK and AKT affect strongly the level of expression of each other, and both also affect the signal path of β-catenin.
Collapse
Affiliation(s)
- Seda Mehtap Sarı Kılıçaslan
- Anadolu University, Faculty of Education, 26470, Eskişehir, Turkey,Corresponding author: Seda Mehtap Sarı Kılıçaslan. Faculty of Education, Anadolu University, 26470, Eskisehir, Turkey. Tel: +90 (222) 335 0580; Fax: +90 (222) 335 0579;
| | - Zerrin İncesu
- Anadolu University, Faculty of Pharmacy, Department of Biochemistry Science, 26470, Eskişehir, Turkey
| |
Collapse
|
36
|
Wolff LI, Houben A, Fabritius C, Angus-Hill M, Basler K, Hartmann C. Only the Co-Transcriptional Activity of β-Catenin Is Required for the Local Regulatory Effects in Hypertrophic Chondrocytes on Developmental Bone Modeling. J Bone Miner Res 2021; 36:2039-2052. [PMID: 34155688 DOI: 10.1002/jbmr.4396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022]
Abstract
In hypertrophic chondrocytes, β-catenin has two roles. First, it locally suppresses the differentiation of osteoclasts at the chondro-osseous junction by maintaining the pro-osteoclastic factor receptor activator of NF-κB ligand (RANKL) at low levels. Second, it promotes the differentiation of osteoblast-precursors from chondrocytes. Yet, β-catenin is a dual-function protein, which can either participate in cell-cell adherens junctions or serve as a transcriptional co-activator in canonical Wnt signaling interacting with T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcription factors. Hence, whenever studying tissue-specific requirements of β-catenin using a conventional conditional knockout approach, the functional mechanisms underlying the defects in the conditional mutants remain ambiguous. To decipher mechanistically which of the two molecular functions of β-catenin is required in hypertrophic chondrocytes, we used different approaches. We analyzed the long bones of newborn mice carrying either the null-alleles of Lef1 or Tcf7, or mice in which Tcf7l2 was conditionally deleted in the hypertrophic chondrocytes, as well as double mutants for Lef1 and Tcf7l2, and Tcf7 and Tcf7l2. Furthermore, we analyzed Ctnnb1 mutant newborns expressing a signaling-defective allele that retains the cell adhesion function in hypertrophic chondrocytes. None of the analyzed Tcf/Lef single or double mutants recapitulated the previously published phenotype upon loss of β-catenin in hypertrophic chondrocytes. However, using this particular Ctnnb1 allele, maintaining cell adhesion function, we show that it is the co-transcriptional activity of β-catenin, which is required in hypertrophic chondrocytes to suppress osteoclastogenesis and to promote chondrocyte-derived osteoblast differentiation. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lena I Wolff
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University, Münster, Germany
| | - Astrid Houben
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University, Münster, Germany
| | - Christine Fabritius
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University, Münster, Germany
| | | | - Konrad Basler
- Department of Molecular Life Science, University of Zurich, Zurich, Switzerland
| | - Christine Hartmann
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University, Münster, Germany
| |
Collapse
|
37
|
Abstract
Flexibility in complexes between intrinsically disordered proteins and folded ligands is widespread in nature. However, timescales and spatial amplitudes of such dynamics remained unexplored for most systems. Our results show that the disordered cytoplasmic tail of the cell adhesion protein E-cadherin diffuses across the entire surface of its folded binding partner β-catenin at fast submillisecond timescales. The nanometer amplitude of these motions could allow kinases to access their recognition motifs without requiring a dissociation of the complex. We expect that the rugged energy landscape found in the E-cadherin/β-catenin complex is a defining feature of dynamic and partially disordered protein complexes. Intrinsically disordered proteins often form dynamic complexes with their ligands. Yet, the speed and amplitude of these motions are hidden in classical binding kinetics. Here, we directly measure the dynamics in an exceptionally mobile, high-affinity complex. We show that the disordered tail of the cell adhesion protein E-cadherin dynamically samples a large surface area of the protooncogene β-catenin. Single-molecule experiments and molecular simulations resolve these motions with high resolution in space and time. Contacts break and form within hundreds of microseconds without a dissociation of the complex. The energy landscape of this complex is rugged with many small barriers (3 to 4 kBT) and reconciles specificity, high affinity, and extreme disorder. A few persistent contacts provide specificity, whereas unspecific interactions boost affinity.
Collapse
|
38
|
Smyth T, Georas SN. Effects of ozone and particulate matter on airway epithelial barrier structure and function: a review of in vitro and in vivo studies. Inhal Toxicol 2021; 33:177-192. [PMID: 34346824 DOI: 10.1080/08958378.2021.1956021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The airway epithelium represents a crucial line of defense against the spread of inhaled pathogens. As the epithelium is the first part of the body to be exposed to the inhaled environment, it must act as both a barrier to and sentinel against any inhaled agents. Despite its vital role in limiting the spread of inhaled pathogens, the airway epithelium is also regularly exposed to air pollutants which disrupt its normal function. Here we review the current understanding of the structure and composition of the airway epithelial barrier, as well as the impact of inhaled pollutants, including the reactive gas ozone and particulate matter, on epithelial function. We discuss the current in vitro, rodent model, and human exposure findings surrounding the impact of various inhaled pollutants on epithelial barrier function, mucus production, and mucociliary clearance. Detailed information on how inhaled pollutants impact epithelial structure and function will further our understanding of the adverse health effects of air pollution exposure.
Collapse
Affiliation(s)
- Timothy Smyth
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Steve N Georas
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
39
|
Diaz A, Martin-Jimenez C, Xu Y, Merino P, Woo Y, Torre E, Yepes M. Urokinase-type plasminogen activator-mediated crosstalk between N-cadherin and β-catenin promotes wound healing. J Cell Sci 2021; 134:jcs255919. [PMID: 34085693 PMCID: PMC8214757 DOI: 10.1242/jcs.255919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/26/2021] [Indexed: 11/20/2022] Open
Abstract
Urokinase-type plasminogen activator (uPA; encoded by Plau) is a serine proteinase that, in the central nervous system, induces astrocytic activation. β-Catenin is a protein that links the cytoplasmic tail of cadherins to the actin cytoskeleton, thus securing the formation of cadherin-mediated cell adhesion complexes. Disruption of cell-cell contacts leads to the detachment of β-catenin from cadherins, and β-catenin is then degraded by the proteasome following its phosphorylation by GSK3β. Here, we show that astrocytes release uPA following a scratch injury, and that this uPA promotes wound healing via a plasminogen-independent mechanism. We found that uPA induces the detachment of β-catenin from the cytoplasmic tail of N-cadherin (NCAD; also known as CDH2) by triggering its phosphorylation at Tyr654. Surprisingly, this is not followed by degradation of β-catenin because uPA also induces the phosphorylation of the low density lipoprotein receptor-related protein 6 (LRP6) at Ser1490, which then blocks the kinase activity of GSK3β. Our work indicates that the ensuing cytoplasmic accumulation of β-catenin is followed by its nuclear translocation and β-catenin-triggered transcription of the receptor for uPA (Plaur), which in turn is required for uPA to induce astrocytic wound healing.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Cynthia Martin-Jimenez
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Yang Xu
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Yena Woo
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Enrique Torre
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA 30033, USA
| |
Collapse
|
40
|
Specific substrates composed of collagen and fibronectin support the formation of epithelial cell sheets by MDCK cells lacking α-catenin or classical cadherins. Cell Tissue Res 2021; 385:127-148. [PMID: 33864500 DOI: 10.1007/s00441-021-03448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
The effect of the extracellular matrix substrates on the formation of epithelial cell sheets was studied using MDCK cells in which the α-catenin gene was disrupted. Although the mutant cells did not form an epithelial cell sheet in conventional cell culture, the cells formed an epithelial cell sheet when they were cultured on or in a collagen gel; the same results were not observed when cells were cultured on collagen-coated cover glasses or culture dishes. Moreover, the cells cultured on the cell culture inserts coated with fibronectin, Matrigel, or vitronectin formed epithelial cell sheets, whereas the cells cultured on cover glasses coated with these proteins did not form the structure, implying that the physical and chemical features of the substrates exert a profound effect on the formation of epithelial cell sheets. MDCK cells lacking the expression of E- and K-cadherins displayed similar properties. When the mutant MDCK cells were cultured in the presence of blebbistatin, they formed epithelial cell sheets, suggesting that myosin II was involved in the formation of these sheets. These cell sheets showed intimate cell-cell adhesion, and electron microscopy confirmed the formation of cell junctions. We propose that specific ECM substrates organize the formation of basic epithelial cell sheets, whereas classical cadherins stabilize cell-cell contacts and promote the formation of structures.
Collapse
|
41
|
A localized adaptor protein performs distinct functions at the Caulobacter cell poles. Proc Natl Acad Sci U S A 2021; 118:2024705118. [PMID: 33753507 PMCID: PMC8020655 DOI: 10.1073/pnas.2024705118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Asymmetric cell division yields two distinct daughter cells by mechanisms that underlie stem cell behavior and cellular diversity in all organisms. The bacterium Caulobacter crescentus is able to orchestrate this complex process with less than 4,000 genes. This article describes a strategy deployed by Caulobacter where a regulatory protein, PopA, is programed to perform distinct roles based on its subcellular address. We demonstrate that, depending on the availability of a second messenger molecule, PopA adopts either a monomer or dimer form. The two oligomeric forms interact with different partners at the two cell poles, playing a critical role in the degradation of a master transcription factor at one pole and flagellar assembly at the other pole. Asymmetric cell division generates two daughter cells with distinct characteristics and fates. Positioning different regulatory and signaling proteins at the opposing ends of the predivisional cell produces molecularly distinct daughter cells. Here, we report a strategy deployed by the asymmetrically dividing bacterium Caulobacter crescentus where a regulatory protein is programmed to perform distinct functions at the opposing cell poles. We find that the CtrA proteolysis adaptor protein PopA assumes distinct oligomeric states at the two cell poles through asymmetrically distributed c-di-GMP: dimeric at the stalked pole and monomeric at the swarmer pole. Different polar organizing proteins at each cell pole recruit PopA where it interacts with and mediates the function of two molecular machines: the ClpXP degradation machinery at the stalked pole and the flagellar basal body at the swarmer pole. We discovered a binding partner of PopA at the swarmer cell pole that together with PopA regulates the length of the flagella filament. Our work demonstrates how a second messenger provides spatiotemporal cues to change the physical behavior of an effector protein, thereby facilitating asymmetry.
Collapse
|
42
|
Kyun ML, Kim SO, Lee HG, Hwang JA, Hwang J, Soung NK, Cha-Molstad H, Lee S, Kwon YT, Kim BY, Lee KH. Wnt3a Stimulation Promotes Primary Ciliogenesis through β-Catenin Phosphorylation-Induced Reorganization of Centriolar Satellites. Cell Rep 2021; 30:1447-1462.e5. [PMID: 32023461 DOI: 10.1016/j.celrep.2020.01.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/22/2019] [Accepted: 01/06/2020] [Indexed: 01/10/2023] Open
Abstract
Primary cilium is an antenna-like microtubule-based cellular sensing structure. Abnormal regulation of the dynamic assembly and disassembly cycle of primary cilia is closely related to ciliopathy and cancer. The Wnt signaling pathway plays a major role in embryonic development and tissue homeostasis, and defects in Wnt signaling are associated with a variety of human diseases, including cancer. In this study, we provide direct evidence of Wnt3a-induced primary ciliogenesis, which includes a continuous pathway showing that the stimulation of Wnt3a, a canonical Wnt ligand, promotes the generation of β-catenin p-S47 epitope by CK1δ, and these events lead to the reorganization of centriolar satellites resulting in primary ciliogenesis. We have also confirmed the application of our findings in MCF-7/ADR cells, a multidrug-resistant tumor cell model. Thus, our data provide a Wnt3a-induced primary ciliogenesis pathway and may provide a clue on how to overcome multidrug resistance in cancer treatment.
Collapse
Affiliation(s)
- Mi-Lang Kyun
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea; Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea
| | - Sun-Ok Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea
| | - Jeong-Ah Hwang
- Research Institute of Medical Sciences, Department of Physiology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Joonsung Hwang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea
| | - Nak-Kyun Soung
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea
| | - Hyunjoo Cha-Molstad
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea
| | - Sangku Lee
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea.
| | - Bo Yeon Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea; Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea.
| | - Kyung Ho Lee
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang, Cheongwon, Chungbuk 28116, Republic of Korea.
| |
Collapse
|
43
|
Barcelona‐Estaje E, Dalby MJ, Cantini M, Salmeron‐Sanchez M. You Talking to Me? Cadherin and Integrin Crosstalk in Biomaterial Design. Adv Healthc Mater 2021; 10:e2002048. [PMID: 33586353 DOI: 10.1002/adhm.202002048] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Indexed: 12/21/2022]
Abstract
While much work has been done in the design of biomaterials to control integrin-mediated adhesion, less emphasis has been put on functionalization of materials with cadherin ligands. Yet, cell-cell contacts in combination with cell-matrix interactions are key in driving embryonic development, collective cell migration, epithelial to mesenchymal transition, and cancer metastatic processes, among others. This review focuses on the incorporation of both cadherin and integrin ligands in biomaterial design, to promote what is called the "adhesive crosstalk." First, the structure and function of cadherins and their role in eliciting mechanotransductive processes, by themselves or in combination with integrin mechanosensing, are introduced. Then, biomaterials that mimic cell-cell interactions, and recent applications to get insights in fundamental biology and tissue engineering, are critically discussed.
Collapse
Affiliation(s)
- Eva Barcelona‐Estaje
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | - Matthew J. Dalby
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | | |
Collapse
|
44
|
Liu X, Zhang T, Zhou J, Xiao Z, Li Y, Zhang Y, Yue H, Li Z, Tian J. β-Catenin/Lin28/let-7 regulatory network determines type II alveolar epithelial stem cell differentiation phenotypes following thoracic irradiation. JOURNAL OF RADIATION RESEARCH 2021; 62:119-132. [PMID: 33302295 PMCID: PMC7779353 DOI: 10.1093/jrr/rraa119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/14/2020] [Indexed: 06/12/2023]
Abstract
The contribution of type II alveolar epithelial stem cells (AEC II) to radiation-induced lung fibrosis (RILF) is largely unknown. Cell differentiation phenotypes are determined by the balance between Lin28 and lethal-7 microRNA (let-7 miRNA). Lin28 is activated by β-catenin. The aim of this study was to track AEC II phenotypes at different phases of injury following thoracic irradiation and examine the expression of β-catenin, Lin28 and let-7 to identify their role in AEC II differentiation. Results showed that coexpression of prosurfactant protein C (proSP-C, an AEC II biomarker) and HOPX (homeobox only protein X, an AEC I biomarker) or vimentin (a differentiation marker) was detected in AEC II post-irradiation. The protein expression levels of HOPX and proSP-C were significantly downregulated, but vimentin was significantly upregulated following irradiation. The expression of E-cadherin, which prevents β-catenin from translocating to the nucleus, was downregulated, and the expression of β-catenin and Lin28 was upregulated after irradiation (P < 0.05 to P < 0.001). Four let-7 miRNA members (a, b, c and d) were upregulated in irradiated lungs (P < 0.05 to P < 0.001), but let-7d was significantly downregulated at 5 and 6 months (P < 0.001). The ratios of Lin28 to four let-7 members were low during the early phase of injury and were slightly higher after 2 months. Intriguingly, the Lin28/let-7d ratio was strikingly increased after 4 months. We concluded that β-catenin contributed to RILF by promoting Lin28 expression, which increased the number of AEC II and the transcription of profibrotic molecules. In this study, the downregulation of let-7d miRNA by Lin28 resulted in the inability of AEC II to differentiate into type I alveolar epithelial cells (AEC I).
Collapse
Affiliation(s)
- Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People’s Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China
| | - Tingting Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People’s Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China
| | - Jianwei Zhou
- Department of Oncology, Henan Provincial People’s Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China
| | - Ziting Xiao
- Department of Oncology, Henan Provincial People’s Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China
| | - Yanjun Li
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People’s Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China
| | - Yuwei Zhang
- Department of Science Research and Discipline Construction, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| | - Haodi Yue
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People’s Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China
| | - Zhitao Li
- Department of Immunology, Medical College of Henan University of Science and Technology, Luoyang, Henan, China, 471023
| | - Jian Tian
- Department of Oncology, Henan Provincial People’s Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China
| |
Collapse
|
45
|
Chi Q, Xu H, Song D, Wang Z, Wang Z, Ma G. α-E-Catenin (CTNNA1) Inhibits Cell Proliferation, Invasion and EMT of Bladder Cancer. Cancer Manag Res 2020; 12:12747-12758. [PMID: 33364826 PMCID: PMC7751797 DOI: 10.2147/cmar.s259269] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
Aim Bladder cancer (BLCA) is an urogenital system tumor with a high morbidity. We aimed to explore the function and potential mechanism of α-E-catenin (CTNNA1) in BLCA. Methods The CTNNA1 expression in BLCA tissues was detected using qRT-PCR and immunohistochemistry. QRT-PCR and Western blot were performed to measure the CTNNA1 expression in BLCA cell lines. CTNNA1 expression was up-regulated in T24 and UMUC-2 cells by CTNNA1 overexpression plasmid transfection. Cell proliferation, apoptosis, migration and invasion were respectively assessed by CCK-8 assay, flow cytometry, wound healing assay and transwell assay. The expression levels of epithelial–mesenchymal transition (EMT)-related factors were tested by qRT-PCR and Western blot. BLCA nude mice models were constructed to explore the effects of CTNNA1 on BLCA in vivo. Gene set enrichment analysis (GSEA) was proceeded to identify the CTNNA1-related pathways in BLCA. Results The expressions of CTNNA1 were down-regulated in BLCA tissues and cell lines, and its low expression indicated poor prognosis of BLCA patients. CTNNA1 inhibited cell proliferation, migration, invasion and EMT and promoted cell apoptosis in BLCA cells. CTNNA1 enhanced E-cadherin expression and suppressed N-cadherin, snail, MMP2 and MMP9 expressions in BLCA cells, which suggested that CTNNA1 repressed EMT in BLCA cells. Moreover, CTNNA1 could inhibit tumor growth in vivo. CTNNA1 was positively associated with P53 and apoptosis pathways in BLCA cells. Conclusion CTNNA1 inhibited cell proliferation, migration, invasion and EMT and promoted cell apoptosis in BLCA via activating P53 and apoptosis pathways. CTNNA1 might be a novel target in BLCA therapy.
Collapse
Affiliation(s)
- Qiang Chi
- Department of Urology, Affiliated Hospital of Chengde Medical University, Chengde 067000, People's Republic of China
| | - Hui Xu
- Department of Urology, Affiliated Hospital of Chengde Medical University, Chengde 067000, People's Republic of China
| | - Dianbin Song
- Department of Urology, Affiliated Hospital of Chengde Medical University, Chengde 067000, People's Republic of China
| | - Zhiyong Wang
- Department of Urology, Affiliated Hospital of Chengde Medical University, Chengde 067000, People's Republic of China
| | - Zemin Wang
- Department of Urology, Affiliated Hospital of Chengde Medical University, Chengde 067000, People's Republic of China
| | - Guang Ma
- Department of Urology, Affiliated Hospital of Chengde Medical University, Chengde 067000, People's Republic of China
| |
Collapse
|
46
|
Gonda Y, Namba T, Hanashima C. Beyond Axon Guidance: Roles of Slit-Robo Signaling in Neocortical Formation. Front Cell Dev Biol 2020; 8:607415. [PMID: 33425915 PMCID: PMC7785817 DOI: 10.3389/fcell.2020.607415] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
The formation of the neocortex relies on intracellular and extracellular signaling molecules that are involved in the sequential steps of corticogenesis, ranging from the proliferation and differentiation of neural progenitor cells to the migration and dendrite formation of neocortical neurons. Abnormalities in these steps lead to disruption of the cortical structure and circuit, and underly various neurodevelopmental diseases, including dyslexia and autism spectrum disorder (ASD). In this review, we focus on the axon guidance signaling Slit-Robo, and address the multifaceted roles of Slit-Robo signaling in neocortical development. Recent studies have clarified the roles of Slit-Robo signaling not only in axon guidance but also in progenitor cell proliferation and migration, and the maturation of neocortical neurons. We further discuss the etiology of neurodevelopmental diseases, which are caused by defects in Slit-Robo signaling during neocortical formation.
Collapse
Affiliation(s)
- Yuko Gonda
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Neuroscience Center, HiLIFE – Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Carina Hanashima
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
47
|
Khan A, Singh P, Srivastava A. Iron: Key player in cancer and cell cycle? J Trace Elem Med Biol 2020; 62:126582. [PMID: 32673942 DOI: 10.1016/j.jtemb.2020.126582] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/31/2019] [Accepted: 06/09/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Iron is an essential element for growth and metabolic activities of all living organisms but remains in its oxyhydroxide ferric ion form in the surrounding. Unavailability of iron in soluble ferrous form led to development of specific pathways and machinery in different organisms to make it available for use and maintain its homeostasis. Iron homeostasis is essential as under different circumstances iron in excess as well as deprivation leads to different pathological conditions in human. OBJECTIVE This review highlights the current findings related to iron excess as well as deprivation with regards to cellular proliferation. CONCLUSIONS Iron excess is extensively associated with different types of cancers viz. colorectal cancer, breast cancer etc. by producing an oxidative stressed condition and alteration of immune system. Ironically its deprivation also results in anaemic conditions and leads to cell cycle arrest at different phases with mechanism yet to be explored. Iron deprivation arrests cell cycle at G1/S and in some cases at G2/M checkpoints resulting in growth arrest. However, in some cases iron overload arrests cell cycle at G1 phase by blocking certain signalling pathways. Certain natural and synthetic iron chelators are being explored from few decades to combat diseases caused by alteration in iron homeostasis.
Collapse
Affiliation(s)
- Azmi Khan
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Pratika Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Amrita Srivastava
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India.
| |
Collapse
|
48
|
Faux MC, King LE, Kane SR, Love C, Sieber OM, Burgess AW. APC regulation of ESRP1 and p120-catenin isoforms in colorectal cancer cells. Mol Biol Cell 2020; 32:120-130. [PMID: 33237836 PMCID: PMC8120691 DOI: 10.1091/mbc.e20-05-0321] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The adenomatous polyposis coli (APC) tumor suppressor protein is associated with the regulation of Wnt signaling; however, APC also controls other cellular processes including the regulation of cell adhesion and migration. The expression of full-length APC in SW480 colorectal cancer cells (SW480+APC) not only reduces Wnt signaling, but increases membrane E-cadherin and restores cell–cell adhesion. This report describes the effects of full-length, wild-type APC (fl-APC) on cell–cell adhesion genes and p120-catenin isoform switching in SW480 colon cancer cells: fl-APC increased the expression of genes implicated in cell–cell adhesion, whereas the expression of negative regulators of E-cadherin was decreased. Analysis of cell–cell adhesion-related proteins in SW480+APC cells revealed an increase in p120-catenin isoform 3A; similarly, depletion of APC altered the p120-catenin protein isoform profile. Expression of ESRP1 (epithelial splice regulatory protein 1) is increased in SW480+APC cells, and its depletion results in reversion to the p120-catenin isoform 1A phenotype and reduced cell–cell adhesion. The ESRP1 transcript is reduced in primary colorectal cancer, and its expression correlates with the level of APC. Pyrvinium pamoate, which inhibits Wnt signaling, promotes ESRP1 expression. We conclude that re-expression of APC restores the cell–cell adhesion gene and posttranscriptional regulatory programs leading to p120-catenin isoform switching and associated changes in cell–cell adhesion.
Collapse
Affiliation(s)
- Maree C Faux
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Lauren E King
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Serena R Kane
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Christopher Love
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Oliver M Sieber
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia.,Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Antony W Burgess
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia.,Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
49
|
Xu X, Zhang M, Xu F, Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol Cancer 2020; 19:165. [PMID: 33234169 PMCID: PMC7686704 DOI: 10.1186/s12943-020-01276-5] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling is a highly conserved signaling pathway that plays a critical role in controlling embryonic and organ development, as well as cancer progression. Genome-wide sequencing and gene expression profile analyses have demonstrated that Wnt signaling is involved mainly in the processes of breast cancer proliferation and metastasis. The most recent studies have indicated that Wnt signaling is also crucial in breast cancer immune microenvironment regulation, stemness maintenance, therapeutic resistance, phenotype shaping, etc. Wnt/β-Catenin, Wnt-planar cell polarity (PCP), and Wnt-Ca2+ signaling are three well-established Wnt signaling pathways that share overlapping components and play different roles in breast cancer progression. In this review, we summarize the main findings concerning the relationship between Wnt signaling and breast cancer and provide an overview of existing mechanisms, challenges, and potential opportunities for advancing the therapy and diagnosis of breast cancer.
Collapse
Affiliation(s)
- Xiufang Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Miaofeng Zhang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Faying Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Shaojie Jiang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| |
Collapse
|
50
|
Rubio C, Luna R, Rosiles A, Rubio-Osornio M. Caloric Restriction and Ketogenic Diet Therapy for Epilepsy: A Molecular Approach Involving Wnt Pathway and K ATP Channels. Front Neurol 2020; 11:584298. [PMID: 33250850 PMCID: PMC7676225 DOI: 10.3389/fneur.2020.584298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/28/2020] [Indexed: 12/30/2022] Open
Abstract
Epilepsy is a neurological disorder in which, in many cases, there is poor pharmacological control of seizures. Nevertheless, it may respond beneficially to alternative treatments such as dietary therapy, like the ketogenic diet or caloric restriction. One of the mechanisms of these diets is to produce a hyperpolarization mediated by the adenosine triphosphate (ATP)-sensitive potassium (KATP) channels (KATP channels). An extracellular increase of K+ prevents the release of Ca2+ by inhibiting the signaling of the Wnt pathway and the translocation of β-catenin to the cell nucleus. Wnt ligands hyperpolarize the cells by activating K+ current by Ca2+. Each of the diets described in this paper has in common a lower use of carbohydrates, which leads to biochemical, genetic processes presumed to be involved in the reduction of epileptic seizures. Currently, there is not much information about the genetic processes implicated as well as the possible beneficial effects of diet therapy on epilepsy. In this review, we aim to describe some of the possible genes involved in Wnt pathways, their regulation through the KATP channels which are implicated in each one of the diets, and how they can reduce epileptic seizures at the molecular level.
Collapse
Affiliation(s)
- Carmen Rubio
- Neurophysiology Department, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Rudy Luna
- Neurophysiology Department, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Artemio Rosiles
- Experimental Laboratory of Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Moisés Rubio-Osornio
- Experimental Laboratory of Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| |
Collapse
|