1
|
Wang X, Liu G, Huan T, Wang Y, Jiang B, Liu W, Dai A, Zhang X, Yu F. Synergistic effect of chimeric antigen receptor modified with Bcl-2 on enhanced solid tumour targeting. Hum Cell 2024; 37:1421-1433. [PMID: 38878230 DOI: 10.1007/s13577-024-01088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/30/2024] [Indexed: 08/23/2024]
Abstract
Engineered T cells expressing chimeric antigen receptors (CARs) have shown remarkable therapeutic effects on haematological malignancies. However, CART cells are less effective on solid tumours mainly due to their weak persistence, which might be caused by activation-induced cell death (AICD). To overcome this limitation, CART cell with the antigen, Epidermal growth factor receptor variant III (EGFRvIII), targeting was modified to carry the anti-apoptotic molecule B cell lymphoma 2 (Bcl-2), and the final construct was named as EGFRvIII·CART-Bcl2 cells. Compared with the EGFRvIII·CART cells, EGFRvIII·CART-Bcl2 cells revealed higher capacities of proliferation, anti-apoptosis and tumour cell killing in vitro. Moreover, EGFRvIII·CART-Bcl2 cells had a longer persistence rate and exerted better anti-tumour effects than EGFRvIII·CART cells in cervical carcinoma xenograft model. Taken together, our findings suggest that incorporating anti-apoptotic molecules into CART cells may enhance its therapeutic effects against solid tumours.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Guodong Liu
- Department of General Surgery, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Tian Huan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Yuxing Wang
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Bo Jiang
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Wei Liu
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Anran Dai
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xiangzhi Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Feng Yu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
2
|
Kucukoduk A, Durmus Bilgiseven IM, Aksoy M, Karakurt S. Comparison of cytotoxic, apoptotic and oxidative properties of Akacid plus and chlorhexidine in corneal epithelial cell culture. Eur J Ophthalmol 2024; 34:1053-1062. [PMID: 37908085 DOI: 10.1177/11206721231210748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
PURPOSE This study aims to compare the cytotoxic, apoptotic, and oxidative effects of a new cationic disinfectant, Akacid Plus, with chlorhexidine, on the human corneal epithelial cell line. METHODS Time-dependent cytotoxicity studies were performed with the Alamar Blue method. Apoptotic activity was investigated by flow cytometric methods. Reactive oxygen species levels were measured with the ROS cellular test kit. BAX, BCL2 and caspase 3, 9, 12 mRNA expressions were evaluated by PCR, as well as BAX and BCL2 protein expressions by Western-Blot. RESULTS At the fifth minute of the treatment, the viability was 68.15% with Akacid Plus and 43.95% with chlorhexidine. At the 15th minute, no significant difference was observed with both solutions. In the apoptotic evaluation, Akacid Plus significantly increased the early and late apoptotic activity in the cell line (p < 0.0001), while a significant increase was observed in late apoptosis and necrosis levels with chlorhexidine (p < 0.001). Chlorhexidine also induced gene expression of BAX, BCL2, caspase 3, 9 and BAX proteins (p < 0.05), while reducing protein expression of BCL2 (p < 0.001). Akacid Plus induced the gene expressions of BCL2, CASP3 and caspase 9, reduced gene expressions of BAX and caspase 12 and protein expression of BCL2 (p < 0.05). No significant difference was observed in the ROS level with both solutions (p > 0.05). CONCLUSION Due to the widespread use of cationic polymers in ophthalmology, this new molecule with high antimicrobial activity and relatively low cytotoxicity may be of interest for clinical use. Further investigations are necessary to fully understand the ophthalmologic potential of this solution.
Collapse
Affiliation(s)
- Ali Kucukoduk
- Department of Ophthalmology, Faculty of Medicine, Karamanoglu Mehmetbey University, Karaman, Turkey
| | | | - Mustafa Aksoy
- Opticianry, Izmir Kavram Vocational School, Izmir, Turkey
- Dunyagoz Hospital, Izmir, Turkey
| | - Serdar Karakurt
- Department of Biochemistry, Faculty of Science, Selcuk University, Konya, Turkey
| |
Collapse
|
3
|
Deng Z, Zhu H, Yuan Z, Zhang R, Wang Z, Li H, Yin L, Ruan X, Cheng Z, Li R, Peng H. Enhancing multiple myeloma staging: a novel cell death risk model approach. Clin Exp Med 2024; 24:95. [PMID: 38717497 PMCID: PMC11078818 DOI: 10.1007/s10238-024-01337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/21/2024] [Indexed: 05/12/2024]
Abstract
The prognostication of survival trajectories in multiple myeloma (MM) patients presents a substantial clinical challenge. Leveraging transcriptomic and clinical profiles from an expansive cohort of 2,088 MM patients, sourced from the Gene Expression Omnibus and The Cancer Genome Atlas repositories, we applied a sophisticated nested lasso regression technique to construct a prognostic model predicated on 28 gene pairings intrinsic to cell death pathways, thereby deriving a quantifiable risk stratification metric. Employing a threshold of 0.15, we dichotomized the MM samples into discrete high-risk and low-risk categories. Notably, the delineated high-risk cohort exhibited a statistically significant diminution in survival duration, a finding which consistently replicated across both training and external validation datasets. The prognostic acumen of our cell death signature was further corroborated by TIME ROC analyses, with the model demonstrating robust performance, evidenced by AUC metrics consistently surpassing the 0.6 benchmark across the evaluated arrays. Further analytical rigor was applied through multivariate COX regression analyses, which ratified the cell death risk model as an independent prognostic determinant. In an innovative stratagem, we amalgamated this risk stratification with the established International Staging System (ISS), culminating in the genesis of a novel, refined ISS categorization. This tripartite classification system was subjected to comparative analysis against extant prognostic models, whereupon it manifested superior predictive precision, as reflected by an elevated C-index. In summation, our endeavors have yielded a clinically viable gene pairing model predicated on cellular mortality, which, when synthesized with the ISS, engenders an augmented prognostic tool that exhibits pronounced predictive prowess in the context of multiple myeloma.
Collapse
Affiliation(s)
- Zeyu Deng
- Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Institute of Hematology, Central South University, Changsha, Hunan, People's Republic of China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, People's Republic of China
| | - Hongkai Zhu
- Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Institute of Hematology, Central South University, Changsha, Hunan, People's Republic of China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, People's Republic of China
| | - Zhaoshun Yuan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Rong Zhang
- National Cancer Center Exploratory Oncology Research & Clinical Trial Center, Kashiwa, Japan
| | - Zhihua Wang
- Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Institute of Hematology, Central South University, Changsha, Hunan, People's Republic of China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, People's Republic of China
| | - Heng Li
- Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Institute of Hematology, Central South University, Changsha, Hunan, People's Republic of China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, People's Republic of China
| | - Le Yin
- Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Institute of Hematology, Central South University, Changsha, Hunan, People's Republic of China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, People's Republic of China
| | - Xueqin Ruan
- Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Institute of Hematology, Central South University, Changsha, Hunan, People's Republic of China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, People's Republic of China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
- Institute of Hematology, Central South University, Changsha, Hunan, People's Republic of China.
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, People's Republic of China.
| | - Ruijuan Li
- Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
- Institute of Hematology, Central South University, Changsha, Hunan, People's Republic of China.
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, People's Republic of China.
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
- Institute of Hematology, Central South University, Changsha, Hunan, People's Republic of China.
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, People's Republic of China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
4
|
Yu T, Cheng W, Zhang J, Wang T, Liu Y, Duan Y, Hu A, Feng J, Li M, Li Y, Zhang H, Rong Z, Shang Y, Shakila SS, Ma F, Guo B. Identification of a PANoptosis-related Gene Signature for Predicting the Prognosis, Tumor Microenvironment and Therapy Response in Breast Cancer. J Cancer 2024; 15:428-443. [PMID: 38169571 PMCID: PMC10758028 DOI: 10.7150/jca.90113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Breast cancer (BC) is the most prevalent malignancy among women worldwide. Mounting evidence suggests that PANoptosis participates in cancer development and therapy. However, the role of PANoptosis in BC remains unclear. In this study, we identified ten PANoptosis-related genes using Cox regression analysis, random forest (RF) algorithm and least absolute shrinkage and selection operator (LASSO) algorithm. A PANoptosis-related score (PRS) was calculated based on the coefficient of LASSO. Notably, we divided the patients into high- and low-risk groups according to the PRS and revealed a negative correlation between PRS and overall survival. Next, a nomogram model was constructed and validated to improve the clinical application of PRS. Functional enrichment analyses and the Bayesian network demonstrated that differentially expressed genes between high- and low-risk groups were mainly enriched in immune-related pathways. Besides, we found significant differences in tumor mutation burden and tumor immune microenvironment between patients in these two groups using bulk-RNA and single-cell RNA sequencing data. Furthermore, charged multivesicular body protein 2B (CHMP2B) was identified as the hub gene by combining LASSO, weighted gene co-expression network analysis, RF and eXtreme Gradient Boosting. Importantly, using immunohistochemistry analysis based on our tissue microarray, we found that CHMP2B was highly expressed in tumor tissue, and CD4 and CD8 were more likely to be positive in the CHMP2B-negative group. Survival analyses revealed that CHMP2B adversely impacted the survival of BC patients. In conclusion, we not only constructed a highly accurate predictive model based on PRS, but also revealed the importance of PANoptosis-related gene signature in the modulation of the tumor microenvironment and drug sensitivity in BC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Fei Ma
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Baoliang Guo
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| |
Collapse
|
5
|
Dehghan S, Kheshtchin N, Hassannezhad S, Soleimani M. Cell death classification: A new insight based on molecular mechanisms. Exp Cell Res 2023; 433:113860. [PMID: 38013091 DOI: 10.1016/j.yexcr.2023.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Cells tend to disintegrate themselves or are forced to undergo such destructive processes in critical circumstances. This complex cellular function necessitates various mechanisms and molecular pathways in order to be executed. The very nature of cell death is essentially important and vital for maintaining homeostasis, thus any type of disturbing occurrence might lead to different sorts of diseases and dysfunctions. Cell death has various modalities and yet, every now and then, a new type of this elegant procedure gets to be discovered. The diversity of cell death compels the need for a universal organizing system in order to facilitate further studies, therapeutic strategies and the invention of new methods of research. Considering all that, we attempted to review most of the known cell death mechanisms and sort them all into one arranging system that operates under a simple but subtle decision-making (If \ Else) order as a sorting algorithm, in which it decides to place and sort an input data (a type of cell death) into its proper set, then a subset and finally a group of cell death. By proposing this algorithm, the authors hope it may solve the problems regarding newer and/or undiscovered types of cell death and facilitate research and therapeutic applications of cell death.
Collapse
Affiliation(s)
- Sepehr Dehghan
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nasim Kheshtchin
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Soleimani
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Kuo CS, Chen SY, Tsai JC. Effects of the Supercritical Fluid Extract of Magnolia figo on Inducing the Apoptosis of Human Non-Small-Cell Lung Cancer Cells. Molecules 2023; 28:7445. [PMID: 37959865 PMCID: PMC10648894 DOI: 10.3390/molecules28217445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Lung cancer has a high incidence rate worldwide, necessitating the development of new drugs. Although Magnolia figo (Lour.) DC. is known for its medicinal properties, studies on its efficacy against lung cancer are lacking. This study investigated whether the supercritical fluid extract of M. figo (FMO) can induce apoptosis in A549, a human non-small-cell lung cancer cell line. The cell viability was assessed using an MTT assay. A terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis and flow cytometry analysis were conducted. The expression of factors was assessed through Western blotting analyses. Gas chromatography-mass spectrometry (GC-MS) was performed. The results revealed that FMO treatment exhibited cytotoxicity, demonstrating dose-dependent effects. The TUNEL analysis and flow cytometry analysis revealed that FMO induced apoptosis in A549 cells. The Western blotting analysis revealed that FMO upregulated the expression of p53 and Bax protein, and downregulated the expression of Bcl-2 protein. The GC-MS analysis revealed eight components identified in FMO. These findings indicate that FMO can induce A549 apoptosis through the p53/Bcl-2/Bax pathways, confirming the apoptotic effects of M. figo on lung cancer cells. These results highlight the potential, for the first time, of M. figo as a source for developing novel drugs for lung cancer treatment.
Collapse
Affiliation(s)
- Chun-Sheng Kuo
- Fethiann Molecule Applied Co., Ltd., Yilan 260011, Taiwan;
| | - Shih-Yun Chen
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515006, Taiwan;
| | - Jen-Chieh Tsai
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515006, Taiwan;
| |
Collapse
|
7
|
Lee E, Song CH, Bae SJ, Ha KT, Karki R. Regulated cell death pathways and their roles in homeostasis, infection, inflammation, and tumorigenesis. Exp Mol Med 2023; 55:1632-1643. [PMID: 37612410 PMCID: PMC10474065 DOI: 10.1038/s12276-023-01069-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 08/25/2023] Open
Abstract
Pyroptosis, apoptosis, necroptosis, and ferroptosis, which are the most well-studied regulated cell death (RCD) pathways, contribute to the clearance of infected or potentially neoplastic cells, highlighting their importance in homeostasis, host defense against pathogens, cancer, and a wide range of other pathologies. Although these four RCD pathways employ distinct molecular and cellular processes, emerging genetic and biochemical studies have suggested remarkable flexibility and crosstalk among them. The crosstalk among pyroptosis, apoptosis and necroptosis pathways is more evident in cellular responses to infection, which has led to the conceptualization of PANoptosis. In this review, we provide a brief overview of the molecular mechanisms of pyroptosis, apoptosis, necroptosis, and ferroptosis and their importance in maintaining homeostasis. We discuss the intricate crosstalk among these RCD pathways and the current evidence supporting PANoptosis, focusing on infectious diseases and cancer. Understanding the fundamental processes of various cell death pathways is crucial to inform the development of new therapeutics against many diseases, including infection, sterile inflammation, and cancer.
Collapse
Affiliation(s)
- Ein Lee
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Chang-Hyun Song
- Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul, 08826, South Korea
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, College of Medicine, Kosin University, Busan, 49267, South Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, 50612, South Korea
| | - Rajendra Karki
- Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul, 08826, South Korea.
- Nexus Institute of Research and Innovation (NIRI), Kathmandu, Nepal.
| |
Collapse
|
8
|
Vitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, Agostini M, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Aqeilan RI, Arama E, Baehrecke EH, Balachandran S, Bano D, Barlev NA, Bartek J, Bazan NG, Becker C, Bernassola F, Bertrand MJM, Bianchi ME, Blagosklonny MV, Blander JM, Blandino G, Blomgren K, Borner C, Bortner CD, Bove P, Boya P, Brenner C, Broz P, Brunner T, Damgaard RB, Calin GA, Campanella M, Candi E, Carbone M, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chen GQ, Chen Q, Chen YH, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Ciliberto G, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Daugaard M, Dawson TM, Dawson VL, De Maria R, De Strooper B, Debatin KM, Deberardinis RJ, Degterev A, Del Sal G, Deshmukh M, Di Virgilio F, Diederich M, Dixon SJ, Dynlacht BD, El-Deiry WS, Elrod JW, Engeland K, Fimia GM, Galassi C, Ganini C, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Gerlic M, Ghosh S, Green DR, Greene LA, Gronemeyer H, Häcker G, Hajnóczky G, Hardwick JM, Haupt Y, He S, Heery DM, Hengartner MO, Hetz C, Hildeman DA, Ichijo H, Inoue S, Jäättelä M, Janic A, Joseph B, Jost PJ, Kanneganti TD, Karin M, Kashkar H, Kaufmann T, Kelly GL, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Kluck R, Krysko DV, Kulms D, Kumar S, Lavandero S, Lavrik IN, Lemasters JJ, Liccardi G, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Luedde T, MacFarlane M, Madeo F, Malorni W, Manic G, Mantovani R, Marchi S, Marine JC, Martin SJ, Martinou JC, Mastroberardino PG, Medema JP, Mehlen P, Meier P, Melino G, Melino S, Miao EA, Moll UM, Muñoz-Pinedo C, Murphy DJ, Niklison-Chirou MV, Novelli F, Núñez G, Oberst A, Ofengeim D, Opferman JT, Oren M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pentimalli F, Pereira DM, Pervaiz S, Peter ME, Pinton P, Porta G, Prehn JHM, Puthalakath H, Rabinovich GA, Rajalingam K, Ravichandran KS, Rehm M, Ricci JE, Rizzuto R, Robinson N, Rodrigues CMP, Rotblat B, Rothlin CV, Rubinsztein DC, Rudel T, Rufini A, Ryan KM, Sarosiek KA, Sawa A, Sayan E, Schroder K, Scorrano L, Sesti F, Shao F, Shi Y, Sica GS, Silke J, Simon HU, Sistigu A, Stephanou A, Stockwell BR, Strapazzon F, Strasser A, Sun L, Sun E, Sun Q, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Troy CM, Turk B, Urbano N, Vandenabeele P, Vanden Berghe T, Vander Heiden MG, Vanderluit JL, Verkhratsky A, Villunger A, von Karstedt S, Voss AK, Vousden KH, Vucic D, Vuri D, Wagner EF, Walczak H, Wallach D, Wang R, Wang Y, Weber A, Wood W, Yamazaki T, Yang HT, Zakeri Z, Zawacka-Pankau JE, Zhang L, Zhang H, Zhivotovsky B, Zhou W, Piacentini M, Kroemer G, Galluzzi L. Apoptotic cell death in disease-Current understanding of the NCCD 2023. Cell Death Differ 2023; 30:1097-1154. [PMID: 37100955 PMCID: PMC10130819 DOI: 10.1038/s41418-023-01153-w] [Citation(s) in RCA: 112] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/28/2023] Open
Abstract
Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.
Collapse
Affiliation(s)
- Ilio Vitale
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy.
- Candiolo Cancer Institute, FPO -IRCCS, Candiolo, Italy.
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institut für Immunologie, Kiel University, Kiel, Germany
| | - Massimiliano Agostini
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Patrizia Agostinis
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- BIOGEM, Avellino, Italy
| | - Ivano Amelio
- Division of Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - David W Andrews
- Sunnybrook Research Institute, Toronto, ON, Canada
- Departments of Biochemistry and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Rami I Aqeilan
- Hebrew University of Jerusalem, Lautenberg Center for Immunology & Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniele Bano
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Nickolai A Barlev
- Department of Biomedicine, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Jiri Bartek
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Francesca Bernassola
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Mathieu J M Bertrand
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marco E Bianchi
- Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy and Ospedale San Raffaele IRCSS, Milan, Italy
| | | | - J Magarian Blander
- Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Medical Faculty, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Carl D Bortner
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Pierluigi Bove
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Patricia Boya
- Centro de Investigaciones Biologicas Margarita Salas, CSIC, Madrid, Spain
| | - Catherine Brenner
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l'oncogénèse pour de nouvelles approches thérapeutiques, Villejuif, France
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Thomas Brunner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- UCL Consortium for Mitochondrial Research, London, UK
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Michele Carbone
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Francesco Cecconi
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francis K-M Chan
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Guo-Qiang Chen
- State Key Lab of Oncogene and its related gene, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Youhai H Chen
- Shenzhen Institute of Advanced Technology (SIAT), Shenzhen, Guangdong, China
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Aaron Ciechanover
- The Technion-Integrated Cancer Center, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Marcus Conrad
- Helmholtz Munich, Institute of Metabolism and Cell Death, Neuherberg, Germany
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Mads Daugaard
- Department of Urologic Sciences, Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Ted M Dawson
- Institute for Cell Engineering and the Departments of Neurology, Neuroscience and Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Institute for Cell Engineering and the Departments of Neurology, Neuroscience and Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruggero De Maria
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bart De Strooper
- VIB Centre for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J Deberardinis
- Howard Hughes Medical Institute and Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Marc Diederich
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Division of Hematology/Oncology, Brown University and the Lifespan Cancer Institute, Providence, RI, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - John W Elrod
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Kurt Engeland
- Molecular Oncology, University of Leipzig, Leipzig, Germany
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Carlo Ganini
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
| | - Ana J Garcia-Saez
- CECAD, Institute of Genetics, University of Cologne, Cologne, Germany
| | - Abhishek D Garg
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM, UMR, 1231, Dijon, France
- Faculty of Medicine, Université de Bourgogne Franche-Comté, Dijon, France
- Anti-cancer Center Georges-François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Sackler school of Medicine, Tel Aviv university, Tel Aviv, Israel
| | - Sourav Ghosh
- Department of Neurology and Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Hinrich Gronemeyer
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Georg Häcker
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Departments of Molecular Microbiology and Immunology, Pharmacology, Oncology and Neurology, Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Ygal Haupt
- VITTAIL Ltd, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sudan He
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, The University of Tokyo, Tokyo, Japan
| | - Satoshi Inoue
- National Cancer Center Research Institute, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ana Janic
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Bertrand Joseph
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Philipp J Jost
- Clinical Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Michael Karin
- Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Hamid Kashkar
- CECAD Research Center, Institute for Molecular Immunology, University of Cologne, Cologne, Germany
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY, USA
| | | | - Ruth Kluck
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Dagmar Kulms
- Department of Dermatology, Experimental Dermatology, TU-Dresden, Dresden, Germany
- National Center for Tumor Diseases Dresden, TU-Dresden, Dresden, Germany
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Sergio Lavandero
- Universidad de Chile, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - John J Lemasters
- Departments of Drug Discovery & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Gianmaria Liccardi
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Richard A Lockshin
- Department of Biology, Queens College of the City University of New York, Flushing, NY, USA
- St. John's University, Jamaica, NY, USA
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Marion MacFarlane
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Walter Malorni
- Center for Global Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gwenola Manic
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO -IRCCS, Candiolo, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Jean-Christophe Marine
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Pier G Mastroberardino
- Department of Molecular Genetics, Rotterdam, the Netherlands
- IFOM-ETS The AIRC Institute for Molecular Oncology, Milan, Italy
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer, and Development Laboratory, Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Ute M Moll
- Department of Pathology and Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Daniel J Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Flavia Novelli
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Dimitry Ofengeim
- Rare and Neuroscience Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine and Howard Hughes Medical Institute, New York, NY, USA
| | - Theocharis Panaretakis
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, YLL School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
- National University Cancer Institute, NUHS, Singapore, Singapore
- ISEP, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Marcus E Peter
- Department of Medicine, Division Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Porta
- Center of Genomic Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina. Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Kodi S Ravichandran
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Cell Clearance, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Barak Rotblat
- Department of Life sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- The NIBN, Beer Sheva, Israel
| | - Carla V Rothlin
- Department of Immunobiology and Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Thomas Rudel
- Microbiology Biocentre, University of Würzburg, Würzburg, Germany
| | - Alessandro Rufini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- University of Leicester, Leicester Cancer Research Centre, Leicester, UK
| | - Kevin M Ryan
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA, USA
- Department of Systems Biology, Lab of Systems Pharmacology, Harvard Program in Therapeutics Science, Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, USA
| | - Akira Sawa
- Johns Hopkins Schizophrenia Center, Johns Hopkins University, Baltimore, MD, USA
| | - Emre Sayan
- Faculty of Medicine, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, NJ, USA
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, PR China
| | - Yufang Shi
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Giuseppe S Sica
- Department of Surgical Science, University Tor Vergata, Rome, Italy
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Flavie Strapazzon
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Univ Lyon, Univ Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyogène CNRS, INSERM, Lyon, France
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Liming Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK
| | - Stephen W G Tait
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Daolin Tang
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Carol M Troy
- Departments of Pathology & Cell Biology and Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Nicoletta Urbano
- Department of Oncohaematology, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Methusalem Program, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
- School of Forensic Medicine, China Medical University, Shenyang, China
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences (OeAW), Vienna, Austria
- The Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Silvia von Karstedt
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Daniela Vuri
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Erwin F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Henning Walczak
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Achim Weber
- University of Zurich and University Hospital Zurich, Department of Pathology and Molecular Pathology, Zurich, Switzerland
- University of Zurich, Institute of Molecular Cancer Research, Zurich, Switzerland
| | - Will Wood
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Huang-Tian Yang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Queens College and Graduate Center, City University of New York, Flushing, NY, USA
| | - Joanna E Zawacka-Pankau
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Department of Biochemistry, Laboratory of Biophysics and p53 protein biology, Medical University of Warsaw, Warsaw, Poland
| | - Lin Zhang
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Wenzhao Zhou
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Getawa S, Bayleyegn B. Platelet, Neutrophil and Lymphocyte Quantitative Abnormalities in Patients with Heart Failure: A Retrospective Study. Vasc Health Risk Manag 2023; 19:69-78. [PMID: 36776273 PMCID: PMC9911900 DOI: 10.2147/vhrm.s394765] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Background Heart failure pathophysiology and its clinical symptoms are characterized by inflammation. Elevated levels of leukocyte subpopulations are a well-known indicator of inflammation and play a predictive role in determining the prognosis of patients with cardiovascular diseases. Besides, platelets are essential mediators of inflammation, especially when they interact with leukocytes. Platelet synthesis, activation, and function are all impacted by heart failure. Thus, the study was aimed at determining the magnitude of platelet, neutrophil, and lymphocyte abnormalities in patients with heart failure. Methods A retrospective cross-sectional study was conducted from June to July 2022 at the University of Gondar comprehensive specialized hospital. A total of 245 medical records of heart failure patients were included. Data regarding socio-demographic, clinical, and some hematological and biochemical parameters were collected from medical records. Data was entered into Epi-Data 4.6.0.2 and then exported to Stata 11.0 statistical software for analysis. A binary logistic regression analysis with its odds ratio was calculated to identify factors associated with the outcome variables. P-value <0.05 was considered statistically significant. Results The most frequent leukocyte abnormality among adults with heart failure was neutrophilia, which was detected in 17.55% (95% CI: 13.26-22.87). Besides, lymphocytosis was observed in 10.20% (95% CI: 6.97-14.70) of patients. The magnitude of thrombocytopenia and thrombocytosis among patients with heart failure was 12.24% (95% CI: 8.67-17.01%) and 2.86% (95% CI: 1.36-5.90%), respectively. Only being female was significantly associated with neutrophilia in patients with heart failure (AOR = 2.33; 95% CI: 1.05-5.16). However, none of the variables were significantly associated with platelet and lymphocyte abnormalities. Conclusion Neutrophilia, lymphocytosis, and thrombocytopenia are the common leukocyte and platelet abnormalities in heart failure patients. Therefore, early detection and management of the underlying causes of those abnormalities may be important to improve patients' outcomes and prevent further complications.
Collapse
Affiliation(s)
- Solomon Getawa
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia,Correspondence: Solomon Getawa, Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, P.O.Box: 196, Gondar, Ethiopia, Tel +251-914-665-736, Email
| | - Biruk Bayleyegn
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
10
|
Kaloni D, Diepstraten ST, Strasser A, Kelly GL. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis 2023; 28:20-38. [PMID: 36342579 PMCID: PMC9950219 DOI: 10.1007/s10495-022-01780-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Acquired resistance to cell death is a hallmark of cancer. The BCL-2 protein family members play important roles in controlling apoptotic cell death. Abnormal over-expression of pro-survival BCL-2 family members or abnormal reduction of pro-apoptotic BCL-2 family proteins, both resulting in the inhibition of apoptosis, are frequently detected in diverse malignancies. The critical role of the pro-survival and pro-apoptotic BCL-2 family proteins in the regulation of apoptosis makes them attractive targets for the development of agents for the treatment of cancer. This review describes the roles of the various pro-survival and pro-apoptotic members of the BCL-2 protein family in normal development and organismal function and how defects in the control of apoptosis promote the development and therapy resistance of cancer. Finally, we discuss the development of inhibitors of pro-survival BCL-2 proteins, termed BH3-mimetic drugs, as novel agents for cancer therapy.
Collapse
Affiliation(s)
- Deeksha Kaloni
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Sarah T Diepstraten
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Andreas Strasser
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Gemma L Kelly
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Endoplasmic Reticulum Stress Signaling and Neuronal Cell Death. Int J Mol Sci 2022; 23:ijms232315186. [PMID: 36499512 PMCID: PMC9740965 DOI: 10.3390/ijms232315186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Besides protein processing, the endoplasmic reticulum (ER) has several other functions such as lipid synthesis, the transfer of molecules to other cellular compartments, and the regulation of Ca2+ homeostasis. Before leaving the organelle, proteins must be folded and post-translationally modified. Protein folding and revision require molecular chaperones and a favorable ER environment. When in stressful situations, ER luminal conditions or chaperone capacity are altered, and the cell activates signaling cascades to restore a favorable folding environment triggering the so-called unfolded protein response (UPR) that can lead to autophagy to preserve cell integrity. However, when the UPR is disrupted or insufficient, cell death occurs. This review examines the links between UPR signaling, cell-protective responses, and death following ER stress with a particular focus on those mechanisms that operate in neurons.
Collapse
|
12
|
Patil MR, Bihari A. A comprehensive study of p53 protein. J Cell Biochem 2022; 123:1891-1937. [PMID: 36183376 DOI: 10.1002/jcb.30331] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 01/10/2023]
Abstract
The protein p53 has been extensively investigated since it was found 43 years ago and has become a "guardian of the genome" that regulates the division of cells by preventing the growth of cells and dividing them, that is, inhibits the development of tumors. Initial proof of protein existence by researchers in the mid-1970s was found by altering and regulating the SV40 big T antigen termed the A protein. Researchers demonstrated how viruses play a role in cancer by employing viruses' ability to create T-antigens complex with viral tumors, which was discovered in 1979 following a viral analysis and cancer analog research. Researchers later in the year 1989 explained that in Murine Friend, a virus-caused erythroleukemia, commonly found that p53 was inactivated to suggest that p53 could be a "tumor suppressor gene." The TP53 gene, encoding p53, is one of human cancer's most frequently altered genes. The protein-regulated biological functions of all p53s include cell cycles, apoptosis, senescence, metabolism of the DNA, angiogenesis, cell differentiation, and immunological response. We tried to unfold the history of the p53 protein, which was discovered long back in 1979, that is, 43 years of research on p53, and how p53's function has been developed through time in this article.
Collapse
Affiliation(s)
- Manisha R Patil
- Department of Computer-Applications, School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anand Bihari
- Department of Computational Intelligence, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
13
|
Differential photosynthetic responses in Riccia gangetica under heat, cold, salinity, submergence, and UV-B stresses. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
14
|
Zhang L, Jin GZ, Li D. Tat-hspb1 Suppresses Clear Cell Renal Cell Carcinoma (ccRCC) Growth via Lysosomal Membrane Permeabilization. Cancers (Basel) 2022; 14:cancers14225710. [PMID: 36428802 PMCID: PMC9688814 DOI: 10.3390/cancers14225710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer, of which the incidence is increasing worldwide with a high mortality rate. Bioactive peptides are considered a significant class of natural medicines. We applied mass spectrometry-based peptidomic analysis to explore the peptide profile of human renal clear cell carcinoma and adjacent normal tissues. A total of 18,031 peptides were identified, of which 105 unique peptides were differentially expressed (44 were up-regulated and 61 were down-regulated in ccRCC tissues). Through bioinformatic analysis, we finally selected one peptide derived from the HSPB1 protein (amino acids 12-35 of the N-terminal region of HSPB1). Next, we fused this peptide to the HIV-Tat, generated a novel peptide named Tat-hspb1, and found that Tat-hspb1 inhibited ccRCC cells' viability while being less cytotoxic to normal epithelial cells. Furthermore, Tat-hspb1 induced apoptosis and inhibited the proliferation and migration of ccRCC cells. Furthermore, we demonstrated that Tat-hspb1 was predominantly localized in lysosomes after entering the ccRCC cell and induced lysosomal membrane permeabilization (LMP) and the release of cathepsin D from lysosomes. Taken together, Tat-hspb1 has the potential to serve as a new anticancer drug candidate.
Collapse
Affiliation(s)
- Lin Zhang
- Departments of Urology, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Guang-Zhi Jin
- Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
- Correspondence: (G.-Z.J.); (D.L.)
| | - Dong Li
- Departments of Urology, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
- Correspondence: (G.-Z.J.); (D.L.)
| |
Collapse
|
15
|
Deng Y, Diepstraten ST, Potts MA, Giner G, Trezise S, Ng AP, Healey G, Kane SR, Cooray A, Behrens K, Heidersbach A, Kueh AJ, Pal M, Wilcox S, Tai L, Alexander WS, Visvader JE, Nutt SL, Strasser A, Haley B, Zhao Q, Kelly GL, Herold MJ. Generation of a CRISPR activation mouse that enables modelling of aggressive lymphoma and interrogation of venetoclax resistance. Nat Commun 2022; 13:4739. [PMID: 35961968 PMCID: PMC9374748 DOI: 10.1038/s41467-022-32485-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
CRISPR technologies have advanced cancer modelling in mice, but CRISPR activation (CRISPRa) methods have not been exploited in this context. We establish a CRISPRa mouse (dCas9a-SAMKI) for inducing gene expression in vivo and in vitro. Using dCas9a-SAMKI primary lymphocytes, we induce B cell restricted genes in T cells and vice versa, demonstrating the power of this system. There are limited models of aggressive double hit lymphoma. Therefore, we transactivate pro-survival BCL-2 in Eµ-MycT/+;dCas9a-SAMKI/+ haematopoietic stem and progenitor cells. Mice transplanted with these cells rapidly develop lymphomas expressing high BCL-2 and MYC. Unlike standard Eµ-Myc lymphomas, BCL-2 expressing lymphomas are highly sensitive to the BCL-2 inhibitor venetoclax. We perform genome-wide activation screens in these lymphoma cells and find a dominant role for the BCL-2 protein A1 in venetoclax resistance. Here we show the potential of our CRISPRa model for mimicking disease and providing insights into resistance mechanisms towards targeted therapies. Modelling of aggressive lymphomas, such as double hit lymphoma, has been challenging. Here the authors engineer a CRISPR activation mouse to enable the generation of these aggressive lymphomas and identify the pro-survival BCL-2 protein A1 as a venetoclax resistance factor.
Collapse
Affiliation(s)
- Yexuan Deng
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.,The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Sarah T Diepstraten
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Margaret A Potts
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Göknur Giner
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Stephanie Trezise
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Ashley P Ng
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Gerry Healey
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Serena R Kane
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Amali Cooray
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Kira Behrens
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Amy Heidersbach
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Andrew J Kueh
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Martin Pal
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Stephen Wilcox
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Lin Tai
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Jane E Visvader
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Laka K, Mbita Z. P53-Related Anticancer Activities of Drimia calcarata Bulb Extracts Against Lung Cancer. Front Mol Biosci 2022; 9:876213. [PMID: 35769912 PMCID: PMC9235921 DOI: 10.3389/fmolb.2022.876213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/02/2022] [Indexed: 01/18/2023] Open
Abstract
Current lung cancer treatment strategies are ineffective, and lung cancer cases continue to soar; thus, novel anticancer drugs and targets are needed, and medicinal plants are promising to offer better alternatives. This study was aimed at analysing two p53 splice variants during the potential anticancer activities of Drimia calcarata (Dc) methanol and water extracts against different human lung cancer cell lines of varying p53 mutation status, and these included mutant H1573 and mutant H1437 and p53-wild type (A549) cells. The anticancer activities of the Dc extracts were assessed by establishing the cytotoxic effect and the apoptosis-inducing capacity of these extracts, using the MTT assay and Annexin V analysis, respectively, with the latter confirmed using fluorescence microscopy. The molecular mechanisms induced by these extracts were further evaluated using cell cycle analysis and RT-PCR. Both extracts demonstrated safety against noncancerous lung MRC-5 fibroblasts and exhibited significant anticancer potency (p < 0.001) against the H1437 (IC50 values: 62.50 μg/ml methanol extract and 125 μg/ml WE), H1573 (IC50 value: 125 μg/ml for both extracts) and A549 (IC50 value: 500 μg/ml ME). The water extract had no effect on the viability of A549 cells. Treated H1437 cells underwent p53-dependent apoptosis and S-phase cell cycle arrest while H1573 treated cells underwent p53-independed apoptosis and G0/G1 cell cycle arrest through upregulation of p21 mRNA expression levels. The expression levels of STAT1, STAT3, STAT5A and STAT5B genes increased significantly (p < 0.001) following the treatment of H1573 cells with ME and WE. Treatment of H1437 cells with ME upregulated the STAT1, STAT3, STAT5A and STAT5B mRNAs. Our results indicate that the proliferative inhibitory effect of D. calcarata extracts on A549 and H1573 cells is correlated with the suppression of Bcl-2, STAT3 and STAT5B while that is not the case in H1437 cells. Thus, our results suggest that the dysregulation of anti-apoptotic molecules Bcl-2, STAT3, STAT5A and STAT5B in H1437 may play a role in cancer cell survival, which may consequently contribute to the development of p53-mutated non-small human lung cancer. Our results indicate that D. calcarata is a promising source of anticancer agents for the treatment of p53-mutant human non-small lung cancer cells than the p53-wild type human non-small lung cancer cells.
Collapse
|
17
|
Harbauer AB, Schneider A, Wohlleber D. Analysis of Mitochondria by Single-Organelle Resolution. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:1-16. [PMID: 35303775 DOI: 10.1146/annurev-anchem-061020-111722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cellular organelles are highly specialized compartments with distinct functions. With the increasing resolution of detection methods, it is becoming clearer that same organelles may have different functions or properties not only within different cell populations of a tissue but also within the same cell. Dysfunction or altered function affects the organelle itself and may also lead to malignancies or undesirable cell death. To understand cellular function or dysfunction, it is therefore necessary to analyze cellular components at the single-organelle level. Here, we review the recent advances in analyzing cellular function at single-organelle resolution using high-parameter flow cytometry or multicolor confocal microscopy. We focus on the analysis of mitochondria, as they are organelles at the crossroads of various cellular signaling pathways and functions. However, most of the applied methods/technologies are transferable to any other organelle, such as the endoplasmic reticulum, lysosomes, or peroxisomes.
Collapse
Affiliation(s)
- Angelika B Harbauer
- Max Planck Institute of Neurobiology, Martinsried, Germany;
- Institute of Neuronal Cell Biology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Annika Schneider
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany; ,
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany; ,
| |
Collapse
|
18
|
Christgen S, Tweedell RE, Kanneganti TD. Programming inflammatory cell death for therapy. Pharmacol Ther 2022; 232:108010. [PMID: 34619283 PMCID: PMC8930427 DOI: 10.1016/j.pharmthera.2021.108010] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023]
Abstract
Programmed cell death (PCD) is an essential part of organismal development and plays fundamental roles in host defense against pathogens and the maintenance of homeostasis. However, excess activation of PCD pathways has proven to be detrimental and can drive disease. Additionally, resistance to PCD can also contribute to disease development. Modulation of PCD, therefore, has great therapeutic potential in a wide range of diseases, including infectious, neurodegenerative, autoinflammatory, and metabolic diseases and cancer. Nevertheless, manipulation of cell death and inflammation for therapeutic intervention is a delicate process, highly specific to the context of the disease of interest, making the selection of the appropriate target molecule crucially important. Several PCD pathways are associated with innate immunity, including pyroptosis, apoptosis, necroptosis, and PANoptosis, which is defined as an inflammatory PCD pathway with key features of pyroptosis, apoptosis, and/or necroptosis that cannot be accounted for by any of these three PCD pathways alone. All of these PCD pathways are regulated by upstream sensors and signaling cascades that assemble multimeric complexes to serve as activation platforms for downstream molecules; these sensors and signaling molecules provide attractive target points for therapeutic intervention. Here, we discuss the molecular mechanisms of innate immune-mediated cell death in health and disease, with a particular focus on the molecules putatively involved in the formation of the PANoptosome and the induction of inflammatory cell death. Further, we discuss the implications and feasibility of targeting these molecules to improve disease outcomes, as well as current clinical approaches.
Collapse
Affiliation(s)
- Shelbi Christgen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rebecca E Tweedell
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
19
|
Heib M, Weiß J, Saggau C, Hoyer J, Fuchslocher Chico J, Voigt S, Adam D. Ars moriendi: Proteases as sculptors of cellular suicide. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119191. [PMID: 34973300 DOI: 10.1016/j.bbamcr.2021.119191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The Ars moriendi, which translates to "The Art of Dying," encompasses two Latin texts that gave advice on how to die well and without fear according to the Christian precepts of the late Middle Ages. Given that ten to hundred billion cells die in our bodies every day, it is obvious that the concept of a well and orderly ("regulated") death is also paramount at the cellular level. In apoptosis, as the most well-studied form of regulated cell death, proteases of the caspase family are the central mediators. However, caspases are not the only proteases that act as sculptors of cellular suicide, and therefore, we here provide an overview of the impact of proteases in apoptosis and other forms of regulated cell death.
Collapse
Affiliation(s)
- Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Jonas Weiß
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Carina Saggau
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Justus Hoyer
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | | | - Susann Voigt
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany.
| |
Collapse
|
20
|
Some mice lacking intrinsic, as well as death receptor induced apoptosis and necroptosis, can survive to adulthood. Cell Death Dis 2022; 13:317. [PMID: 35393408 PMCID: PMC8991225 DOI: 10.1038/s41419-022-04731-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 01/18/2023]
|
21
|
The concept of intrinsic versus extrinsic apoptosis. Biochem J 2022; 479:357-384. [PMID: 35147165 DOI: 10.1042/bcj20210854] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
Regulated cell death is a vital and dynamic process in multicellular organisms that maintains tissue homeostasis and eliminates potentially dangerous cells. Apoptosis, one of the better-known forms of regulated cell death, is activated when cell-surface death receptors like Fas are engaged by their ligands (the extrinsic pathway) or when BCL-2-family pro-apoptotic proteins cause the permeabilization of the mitochondrial outer membrane (the intrinsic pathway). Both the intrinsic and extrinsic pathways of apoptosis lead to the activation of a family of proteases, the caspases, which are responsible for the final cell demise in the so-called execution phase of apoptosis. In this review, I will first discuss the most common types of regulated cell death on a morphological basis. I will then consider in detail the molecular pathways of intrinsic and extrinsic apoptosis, discussing how they are activated in response to specific stimuli and are sometimes overlapping. In-depth knowledge of the cellular mechanisms of apoptosis is becoming more and more important not only in the field of cellular and molecular biology but also for its translational potential in several pathologies, including neurodegeneration and cancer.
Collapse
|
22
|
Ansari B, Aschner M, Hussain Y, Efferth T, Khan H. Suppression of colorectal carcinogenesis by naringin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153897. [PMID: 35026507 DOI: 10.1016/j.phymed.2021.153897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Colorectal cancer is the third most malignant cancer worldwide. Despite novel treatment options, the incidence and mortality rates of colon cancer continue to increase in most countries, especially in US, European and Asian countries. Colorectal carcinogenesis is multifactorial, including dietary and genetic factors, as well as lacking physical activity. Vegetables and fruits contain high amounts of secondary metabolites, which might reduce the risk for colorectal carcinogenesis. Flavonoids are important bioactive polyphenolic compounds. There are more than 4,000 different flavonoids, including flavanones, flavonoids, isoflavonoids, flavones, and catechins in a large variety of plant. HYPOTHESIS Among various other flavonoids, naringin in Citrus fruits has been a subject of intense scrutiny for its activity against many types of cancer, including colorectal cancer. We hypothesize that naringin is capable to inhibit the growth of transformed colonocytes and to induce programmed cell death in colon cancer cells. RESULTS We comprehensively review the inhibitory effects of naringin on colorectal cancers and address the underlying mechanistic pathways such as NF-κB/IL-6/STAT3, PI3K/AKT/mTOR, apoptosis, NF-κB-COX-2-iNOS, and β-catenin pathways. CONCLUSION Naringin suppresses colorectal inflammation and carcinogenesis by various signaling pathways. Randomized clinical trials are needed to determine their effectiveness in combating colorectal cancer.
Collapse
Affiliation(s)
- Bushra Ansari
- Department of Pharmacy, Abdul Wali Khan University Mardan 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Jiangsu, 221400, P R China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Staudinger Weg 5, 55128 Mainz, Germany
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan 23200, Pakistan
| |
Collapse
|
23
|
Umeno K, Sasaki A, Kimura N. The impact of oocyte death on mouse primordial follicle formation and ovarian reserve. Reprod Med Biol 2022; 21:e12489. [PMID: 36329711 PMCID: PMC9623396 DOI: 10.1002/rmb2.12489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Background Ovaries, the source of oocytes, maintain the numbers of primordial follicles, develop oocytes for fertilization and embryonic development. Although it is well known that about two-thirds of oocytes are lost during the formation of primordial follicles through cyst fragmentation and the aggregation of oocytes within the cyst, the mechanism responsible for this remains unclear. Methods We provide an overview of cell death that is associated with the oocyte cyst breakdown and primordial follicle assembly along with our recent findings for mice that had been treated with a TNFα ligand inhibitor. Main Findings It is generally accepted that apoptosis is the major mechanism responsible for the depletion of germ cells. In fact, a gene deficiency or the overexpression of apoptosis regulators can have a great effect on follicle numbers and/or fertility. Apoptosis, however, may not be the only cause of the large-scale oocyte attrition during oocyte cyst breakdown, and other mechanisms, such as aggregation, may also be involved in this process. Conclusion The continued study of oocyte death during primordial follicle formation could lead to the development of novel strategies for manipulating the primordial follicle pool, leading to improved fertility by enhancing the ovarian reserve.
Collapse
Affiliation(s)
- Ken Umeno
- Laboratory of Animal Reproduction, Graduate School of Agricultural ScienceYamagata UniversityTsuruokaJapan
| | - Ayana Sasaki
- Laboratory of Animal Reproduction, Graduate School of Agricultural ScienceYamagata UniversityTsuruokaJapan
| | - Naoko Kimura
- Laboratory of Animal Reproduction, Graduate School of Agricultural ScienceYamagata UniversityTsuruokaJapan
| |
Collapse
|
24
|
Westaby D, Jimenez-Vacas JM, Padilha A, Varkaris A, Balk SP, de Bono JS, Sharp A. Targeting the Intrinsic Apoptosis Pathway: A Window of Opportunity for Prostate Cancer. Cancers (Basel) 2021; 14:51. [PMID: 35008216 PMCID: PMC8750516 DOI: 10.3390/cancers14010051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Despite major improvements in the management of advanced prostate cancer over the last 20 years, the disease remains invariably fatal, and new effective therapies are required. The development of novel hormonal agents and taxane chemotherapy has improved outcomes, although primary and acquired resistance remains problematic. Inducing cancer cell death via apoptosis has long been an attractive goal in the treatment of cancer. Apoptosis, a form of regulated cell death, is a highly controlled process, split into two main pathways (intrinsic and extrinsic), and is stimulated by a multitude of factors, including cellular and genotoxic stress. Numerous therapeutic strategies targeting the intrinsic apoptosis pathway are in clinical development, and BH3 mimetics have shown promising efficacy for hematological malignancies. Utilizing these agents for solid malignancies has proved more challenging, though efforts are ongoing. Molecular characterization and the development of predictive biomarkers is likely to be critical for patient selection, by identifying tumors with a vulnerability in the intrinsic apoptosis pathway. This review provides an up-to-date overview of cell death and apoptosis, specifically focusing on the intrinsic pathway. It summarizes the latest approaches for targeting the intrinsic apoptosis pathway with BH3 mimetics and discusses how these strategies may be leveraged to treat prostate cancer.
Collapse
Affiliation(s)
- Daniel Westaby
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| | - Juan M. Jimenez-Vacas
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
| | - Ana Padilha
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
| | - Andreas Varkaris
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (A.V.); (S.P.B.)
| | - Steven P. Balk
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (A.V.); (S.P.B.)
| | - Johann S. de Bono
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| | - Adam Sharp
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| |
Collapse
|
25
|
Wu B, Zhang Y, Yu Y, Zhong C, Lang Q, Liang Z, Lv C, Xu F, Tian Y. Long Noncoding RNA H19: A Novel Therapeutic Target Emerging in Oncology Via Regulating Oncogenic Signaling Pathways. Front Cell Dev Biol 2021; 9:796740. [PMID: 34977037 PMCID: PMC8716783 DOI: 10.3389/fcell.2021.796740] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNA H19 (H19) is an imprinting gene with only maternal expression that is involved in regulating different processes in various types of cells. Previous studies have shown that abnormal H19 expression is involved in many pathological processes, such as cancer, mainly through sponging miRNAs, interacting with proteins, or regulating epigenetic modifications. Accumulating evidence has shown that several oncogenic signaling pathways lead to carcinogenesis. Recently, the regulatory relationship between H19 and oncogenic signaling pathways in various types of cancer has been of great interest to many researchers. In this review, we discussed the key roles of H19 in cancer development and progression via its regulatory function in several oncogenic signaling pathways, such as PI3K/Akt, canonical Wnt/β-catenin, canonical NF-κB, MAPK, JAK/STAT and apoptosis. These oncogenic signaling pathways regulated by H19 are involved in cell proliferation, proliferation, migration and invasion, angiogenesis, and apoptosis of various cancer cells. This review suggests that H19 may be a novel therapeutic target for cancers treatment by regulating oncogenic signaling pathways.
Collapse
Affiliation(s)
- Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yizhou Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Yu
- Department of Surgery, Jinzhou Medical University, Jinzhou, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Lang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiyun Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Speir M, Chan AH, Simpson DS, Khan T, Saunders TL, Poon IK, Atkin-Smith GK. The Australasian Cell Death Society (ACDS): celebrating 50 years of Australasian cell death research. Immunol Cell Biol 2021; 100:9-14. [PMID: 34761822 DOI: 10.1111/imcb.12510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Mary Speir
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Amy H Chan
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, QLD, Australia
| | - Daniel S Simpson
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Tashbib Khan
- Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | - Tahnee L Saunders
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ivan Kh Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Georgia K Atkin-Smith
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
27
|
Martens MD, Karch J, Gordon JW. The molecular mosaic of regulated cell death in the cardiovascular system. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166297. [PMID: 34718119 DOI: 10.1016/j.bbadis.2021.166297] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/07/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Cell death is now understood to be a highly regulated process that contributes to normal development and tissue homeostasis, alongside its role in the etiology of various pathological conditions. Through detailed molecular analysis, we have come to know that all cells do not always die in the same way, and that there are at least 7 processes involved, including: apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, and autophagy-mediated cell death. These processes act as pieces in the mosaic of cardiomyocyte cell death, which come together depending on context and stimulus. This review details each individual process, as well as highlights how they come together to produce various cardiac pathologies. By knowing how the pieces go together we can aim towards the development of efficacious therapeutics, which will enable us to prevent cardiomyocyte loss in the face of stress, both reducing mortality and improving quality of life.
Collapse
Affiliation(s)
- Matthew D Martens
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada; The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Canada
| | - Jason Karch
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada; College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada; The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Canada.
| |
Collapse
|
28
|
Arulraj T, Binder SC, Robert PA, Meyer-Hermann M. Germinal Centre Shutdown. Front Immunol 2021; 12:705240. [PMID: 34305944 PMCID: PMC8293096 DOI: 10.3389/fimmu.2021.705240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Germinal Centres (GCs) are transient structures in secondary lymphoid organs, where affinity maturation of B cells takes place following an infection. While GCs are responsible for protective antibody responses, dysregulated GC reactions are associated with autoimmune disease and B cell lymphoma. Typically, ‘normal’ GCs persist for a limited period of time and eventually undergo shutdown. In this review, we focus on an important but unanswered question – what causes the natural termination of the GC reaction? In murine experiments, lack of antigen, absence or constitutive T cell help leads to premature termination of the GC reaction. Consequently, our present understanding is limited to the idea that GCs are terminated due to a decrease in antigen access or changes in the nature of T cell help. However, there is no direct evidence on which biological signals are primarily responsible for natural termination of GCs and a mechanistic understanding is clearly lacking. We discuss the present understanding of the GC shutdown, from factors impacting GC dynamics to changes in cellular interactions/dynamics during the GC lifetime. We also address potential missing links and remaining questions in GC biology, to facilitate further studies to promote a better understanding of GC shutdown in infection and immune dysregulation.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sebastian C Binder
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Philippe A Robert
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Immunology, University of Oslo, Oslo, Norway
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
29
|
Zimecki M, Kaczmarek K. Effects of Modifications on the Immunosuppressive Properties of Cyclolinopeptide A and Its Analogs in Animal Experimental Models. Molecules 2021; 26:molecules26092538. [PMID: 33925288 PMCID: PMC8123640 DOI: 10.3390/molecules26092538] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/15/2021] [Accepted: 04/24/2021] [Indexed: 11/16/2022] Open
Abstract
The consequences of manipulations in structure and amino acid composition of native cyclolinopeptide A (CLA) from linen seeds, and its linear precursor on their biological activities and mechanisms of action, are reviewed. The modifications included truncation of the peptide chain, replacement of amino acid residues with proteinogenic or non-proteinogenic ones, modifications of peptide bond, and others. The studies revealed changes in the immunosuppressive potency of these analogs investigated in a number of in vitro and in vivo experimental models, predominantly in rodents, as well as differences in their postulated mechanism of action. The modified peptides were compared with cyclosporine A and parent CLA. Some of the synthesized and investigated peptides show potential therapeutic usefulness.
Collapse
Affiliation(s)
- Michał Zimecki
- Laboratory of Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla Str. 12, 53-114 Wrocław, Poland
- Correspondence: (M.Z.); (K.K.); Tel.: +48-713-709-953 (M.Z.); +48-426-313-156 (K.K.)
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Lodz University of Technology, S. Żeromskiego Str. 116, 90-924 Łódź, Poland
- Correspondence: (M.Z.); (K.K.); Tel.: +48-713-709-953 (M.Z.); +48-426-313-156 (K.K.)
| |
Collapse
|
30
|
Li M. The role of P53 up-regulated modulator of apoptosis (PUMA) in ovarian development, cardiovascular and neurodegenerative diseases. Apoptosis 2021; 26:235-247. [PMID: 33783663 PMCID: PMC8197724 DOI: 10.1007/s10495-021-01667-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/14/2022]
Abstract
P53 up-regulated modulator of apoptosis (PUMA), a pro-apoptotic BCL-2 homology 3 (BH3)-only member of the BCL-2 family, is a direct transcriptional target of P53 that elicits mitochondrial apoptosis under treatment with radiation and chemotherapy. It also induces excessive apoptosis in cardiovascular and/or neurodegenerative diseases. PUMA has been found to play a critical role in ovarian apoptosis. In the present paper, we review the progress of the study in PUMA over the past two decades in terms of its inducement and/or amplification of programmed cell death and describe recent updates to the understanding of both P53-dependent and P53-independent PUMA-mediated apoptotic pathways that are implicated in physiology and pathology, including the development of the ovary and cardiovascular and neurodegenerative diseases. We propose that PUMA may be a key regulator during ovary development, provide a model for PUMA-mediated apoptotic pathways, including intrinsic and extrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Mei Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
31
|
Alak G, Ucar A, Parlak V, Yeltekin AÇ, Özgeriş FB, Atamanalp M, Türkez H. Antioxidant Potential of Ulexite in Zebrafish Brain: Assessment of Oxidative DNA Damage, Apoptosis, and Response of Antioxidant Defense System. Biol Trace Elem Res 2021; 199:1092-1099. [PMID: 32557103 DOI: 10.1007/s12011-020-02231-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
Abstract
In recent years, because of its significant biological roles, the usage of boron has been started in animal feeding. In this research, it was aimed to investigate the ulexite's action mechanism on the zebrafish brain with an evaluation of the oxidative parameters. The adult zebrafish were exposed to four ulexite doses (5, 10, 20, and 40 mg/l) in a static test apparatus for 96 h. For assessing the oxidative responses, multiple biochemical analyses were performed in brain tissues. The results indicated the supporting potential of low ulexite doses on the antioxidant system (< 40 mg/l) and that low-dose ulexite does not lead to oxidative stress in the zebrafish brain. Again, our results showed that low ulexite concentrations did not cause DNA damage or apoptosis. As a final result, in aquatic environments, ulexite (a boron compound) can be used in a safe manner, but it would be useful at higher concentrations to consider the damages of the cells that are probable to develop because of the oxidative stress.
Collapse
Affiliation(s)
- Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, TR-25030, Erzurum, Turkey.
| | - Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, TR-25030, Erzurum, Turkey
| | - Veysel Parlak
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, TR-25030, Erzurum, Turkey
| | - Aslı Çilingir Yeltekin
- Department of Chemistry, Faculty of Science, University of Yuzuncu Yıl, TR-65080, Van, Turkey
| | - Fatma Betül Özgeriş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Atatürk University, TR-25030, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, TR-25030, Erzurum, Turkey.
| | - Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Ataturk University, TR-25240, Erzurum, Turkey
| |
Collapse
|
32
|
Mayer F, Kemnitz I, Fitze G, Haase MG. Dynamics of caspase activation upon UV induced genotoxic injury. Int J Radiat Biol 2021; 97:394-400. [PMID: 33320756 DOI: 10.1080/09553002.2021.1864501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE Caspases are common mediators of cell death. Evasion of cell death including apoptosis are considered to be hallmarks of cancer. A deeper understanding of the apoptotic cascade may aid improving cancer therapies. Our aim was to characterize the progression of cell death following UV-induced genotoxic injury in a defined cell culture model. MATERIALS AND METHODS Hela cells were UV-irradiated with doses ranging from 0.1 to 60 mJ/cm2. Cells were counted and colony forming assays were performed with caspase inhibitors. RESULTS In our model of HeLa cells, cells remain >90% viable until 6 hrs after UV radiation (UVR), but more than half of the cells are dead after 12 - 72 hrs after UVR. Within a dose range between 0.1 and 50 mJ/cm2, viability ranges roughly between 20 and 30%. The difference between the lowest dose applied (0.1 mJ/cm2) and the other doses applied is significant, with the exception of the next higher dose of 1 mJ/cm2. The activation of caspases precedes the cell death induction by several hrs. Caspase-9 starts to be activated at 1 hr after UVR followed by caspases 3, 6 and 7 which are fully active at 2 hrs after UVR while caspase-8 is fully active only 3 hrs after UVR. Most caspases are only weakly or not active at 0.1 mJ/cm2 after 3 hrs, but fully active at the same time point with increased radiation doses. PARP-1, a caspase substrate, is cleaved immediately after activation of the caspases. Colony formation activity of the tumor cells decreases exponentially after UVR dropping down to < 0.01% plating efficiency at a dose of 60 mJ/cm2. Interestingly, this drop in plating efficiency cannot be rescued by any of the two caspase inhibitors tested. CONCLUSIONS UV-induced cell death in this model involves the activation of apoptosis-related caspases, but this activation seems to be dispensable for the execution of cell death. Further experiments should clarify which mechanisms of cell death are really necessary for the execution of this type of cell death.
Collapse
Affiliation(s)
- Felicitas Mayer
- Department of Pediatric Surgery, Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Ivonne Kemnitz
- Department of Pediatric Surgery, Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Guido Fitze
- Department of Pediatric Surgery, Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Michael G Haase
- Department of Pediatric Surgery, Medical Faculty Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
33
|
Meltendorf S, Fu H, Pierau M, Lindquist JA, Finzel S, Mertens PR, Gieseler-Halbach S, Ambach A, Thomas U, Lingel H, Voll RE, Brunner-Weinzierl MC. Cell Survival Failure in Effector T Cells From Patients With Systemic Lupus Erythematosus Following Insufficient Up-Regulation of Cold-Shock Y-Box Binding Protein 1. Arthritis Rheumatol 2020; 72:1721-1733. [PMID: 32475063 DOI: 10.1002/art.41382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/23/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The importance of cold-shock Y-box binding protein 1 (YB-1) for cell homeostasis is well-documented based on prior observations of its association with certain cancer entities. This study was undertaken to explore the role of YB-1 in T cell homeostasis and survival and the potential contribution of YB-1 to the pathogenesis of systemic lupus erythematosus (SLE). METHODS In the peripheral blood from 25 SLE patients and 25 healthy donors, the expression of YB-1 and frequency of T cell apoptosis was analyzed by quantitative polymerase chain reaction (qPCR) and fluorescence-activated cell sorting of CD4+ T cells ex vivo and also analyzed in T cells in vitro after 6 days of stimulation with anti-CD3-coupled or anti-CD3/anti-CD28-coupled microspheres. YB-1 was overexpressed using lentiviral transduction with wild-type green fluorescent protein (wtGFP) YB-1, and knockdown of YB-1 was achieved using specific short hairpin RNA (shRNA) (3-fold reduction; P < 0.0001). RESULTS YB-1 expression was significantly lower in apoptosis-prone T cells and in activated T cells from SLE patients compared to YB-1 expression in nonapoptotic T cells and activated T cells from healthy donors (P = 0.001). Knockdown of YB-1 in T cells consequently led to expression of proapoptotic molecules and caspase 3 activation (1.6-fold), and subsequently, to apoptosis. Furthermore, YB-1 promoted survival pathways involving enhanced protein expression of the kinase Akt (2-fold) and Bcl-2 (3-fold), even when Fas/CD95 was triggered. YB-1-mediated T cell survival was reversed by Akt and phosphatidylinositol 3-kinase (PI3K) inactivation. In SLE patients, rescue of YB-1 expression strongly promoted survival of T cells and even prevented cell death in T cells that were extremely apoptosis-prone. CONCLUSION Our data show that failure of YB-1 up-regulation in T cells from SLE patients led to enhanced apoptosis. These findings imply that YB-1 plays a crucial role in the disturbed homeostasis of activated T cells leading to hematopoietic alterations in SLE. These insights may help facilitate the development of new treatment strategies for SLE.
Collapse
Affiliation(s)
- Stefan Meltendorf
- Department of Experimental Pediatrics, Otto von uericke University, Magdeburg, Germany
| | - Hang Fu
- Department of Experimental Pediatrics, Otto von uericke University, Magdeburg, Germany
| | - Mandy Pierau
- Department of Experimental Pediatrics, Otto von uericke University, Magdeburg, Germany
| | - Jonathan A Lindquist
- Clinic of Nephrology, Hypertension, Diabetes, and Endocrinology, Otto von Guericke University, Magdeburg, Germany
| | - Stephanie Finzel
- Department of Rheumatology and Clinical Immunology, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Peter R Mertens
- Clinic of Nephrology, Hypertension, Diabetes, and Endocrinology, Otto von Guericke University, Magdeburg, Germany
| | | | - Andreas Ambach
- Department of Dermatology, Otto von Guericke University, Magdeburg, Germany
| | - Ulrich Thomas
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Holger Lingel
- Department of Experimental Pediatrics, Otto von uericke University, Magdeburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Albert Ludwig University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
34
|
Renema P, Kozhukhar N, Pastukh V, Spadafora D, Paudel SS, Tambe DT, Alexeyev M, Frank DW, Stevens T. Exoenzyme Y induces extracellular active caspase-7 accumulation independent from apoptosis: modulation of transmissible cytotoxicity. Am J Physiol Lung Cell Mol Physiol 2020; 319:L380-L390. [PMID: 32579398 DOI: 10.1152/ajplung.00508.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Caspase-3 and -7 are executioner caspases whose enzymatic activity is necessary to complete apoptotic cell death. Here, we questioned whether endothelial cell infection leads to caspase-3/7-mediated cell death. Pulmonary microvascular endothelial cells (PMVECs) were infected with Pseudomonas aeruginosa (PA103). PA103 caused cell swelling with a granular appearance, paralleled by intracellular caspase-3/7 activation and cell death. In contrast, PMVEC infection with ExoY+ (PA103 ΔexoUexoT::Tc pUCPexoY) caused cell rounding, but it did not activate intracellular caspase-3/7 and it did not cause cell death. However, ExoY+ led to a time-dependent accumulation of active caspase-7, but not caspase-3, in the supernatant, independent of apoptosis. To study the function of extracellular caspase-7, caspase-7- and caspase-3-deficient PMVECs were generated using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology. Caspase-7 activity was significantly reduced in supernatants from infected caspase-7-deficient cells but was unchanged in supernatants from infected caspase-3 deficient cells, indicating an uncoupling in the mechanism of activation of these two enzymes. Because ExoY+ leads to the release of heat stable amyloid cytotoxins that are responsible for transmissible cytotoxicity, we next questioned whether caspase-7 contributes to the severity of this process. Supernatants obtained from infected caspase-7-deficient cells displayed significantly reduced transmissible cytotoxicity when compared with supernatants from infected wild-type controls, illustrating an essential role for caspase-7 in promoting the potency of transmissible cytotoxicity. Thus, we report a mechanism whereby ExoY+ infection induces active caspase-7 accumulation in the extracellular space, independent of both caspase-3 and cell death, where it modulates ExoY+-induced transmissible cytotoxicity.
Collapse
Affiliation(s)
- Phoibe Renema
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Natalya Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Viktoriya Pastukh
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | | | - Sunita Subedi Paudel
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Dhananjay T Tambe
- Department of Pharmacology, University of South Alabama, Mobile, Alabama.,Department of Mechanical Engineering, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Mikhail Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Dara W Frank
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Department of Internal Medicine, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
35
|
Strasser A, Vaux DL. Cell Death in the Origin and Treatment of Cancer. Mol Cell 2020; 78:1045-1054. [PMID: 32516599 DOI: 10.1016/j.molcel.2020.05.014] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Cell death, or, more specifically, cell suicide, is a process of fundamental importance to human health. Throughout our lives, over a million cells are produced every second. When organismal growth has stopped, to balance cell division, a similar number of cells must be removed. This is achieved by activation of molecular mechanisms that have evolved so that cells can destroy themselves. The first clues regarding the nature of one of these mechanisms came from studying genes associated with cancer, in particular the gene for BCL-2. Subsequent studies revealed that mutations or other defects that inhibit cell death allow cells to accumulate, prevent removal of cells with damaged DNA, and increase the resistance of malignant cells to chemotherapy. Knowledge of this mechanism has allowed development of drugs that kill cancer cells by directly activating the cell death machinery and by synergizing with conventional chemotherapy as well as targeted agents to achieve improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia.
| | - David L Vaux
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia.
| |
Collapse
|
36
|
miR-155 indicates the fate of CD4 + T cells. Immunol Lett 2020; 224:40-49. [PMID: 32485191 DOI: 10.1016/j.imlet.2020.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are a class of short noncoding RNAs that regulate the translation of target messenger RNA (mRNA) and consequently participate in a variety of biological processes at the posttranscriptional level. miR-155, encoded within a region known as the B cell integration cluster (BIC), plays multifunctional roles in shaping lymphocytes ranging from biological development to adaptive immunity. It has been revealed that miR-155 plays a key role in fine-tuning the regulation of lymphocyte subsets, including dendritic cells (DCs), macrophages, B cells, and CD8+ and CD4+ T cells. Antigen-specific CD4+ T lymphocytes are critical for host defense against pathogens and prevention of damage resulting from excessive inflammation. Over the past years, various studies have shown that miR-155 plays a critical role in CD4+ T cells function. Therefore, we summarize multiple target genes of miR-155 that regulate aspects of CD4+ T cells immunity, particularly CD4+ T cells differentiation, in this review. In addition, we also focus on the role of miR-155 in the regulation of immunological diseases, suggesting it as a potential disease biomarker and therapeutic target.
Collapse
|
37
|
Takada E, Okubo K, Yano Y, Iida K, Someda M, Hirasawa A, Yonehara S, Matsuzaki K. Molecular Mechanism of Apoptosis by Amyloid β-Protein Fibrils Formed on Neuronal Cells. ACS Chem Neurosci 2020; 11:796-805. [PMID: 32056421 DOI: 10.1021/acschemneuro.0c00011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aggregational states of amyloid β-protein (Aβ) are critical for its neurotoxicity, although they are not well-characterized, particularly after binding to the cell membranes. This is one reason why the mechanisms of Aβ neurotoxicity are controversial and elusive. In this study, the effects of toxic Aβ-(1-42) fibrils formed in the membrane on cellular processes were investigated using human neuroblastoma SH-SY5Y cells. Consistent with previous observations, fibrillar Aβs formed on the membranes induced activation of caspase-3, the effector caspase for apoptosis. Knockdown analyses of the initiator caspases, caspase-8 and caspase-9, indicated that the apoptosis was induced via activation of caspase-8, followed by activation of caspase-9 and caspase-3. We also found that inflammation signaling pathways including Toll-like receptors and inflammasomes NOD-, LRR-, and pyrin domain-containing protein 3 are involved in the initiation of apoptosis by the Aβ fibrils. These inflammation-related molecules are promising targets for the prevention of apoptotic cell death induced by Aβ.
Collapse
Affiliation(s)
- Eri Takada
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Kaori Okubo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Keiko Iida
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Masataka Someda
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Akira Hirasawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Shin Yonehara
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
38
|
Abstract
Apoptotic cells are commonly observed in a broad range of tissues during mammalian embryonic and fetal development. Specific requirements and functions of programmed cell death were inferred from early observations. These inferences did not hold up to functional proof for a requirement of apoptosis for normal tissue development in all cases. In this review, we summarize how the appraisal of the importance of developmental apoptosis has changed over the years, in particular with detailed functional assessment, such as by using gene-targeted mice lacking essential initiators or mediators of apoptosis. In recent years, the essentials of developmental apoptosis have emerged. We hypothesize that apoptosis is predominantly required to balance cell proliferation. The two interdependent processes—cell proliferation and apoptosis—together more powerfully regulate tissue growth than does each process alone. We proposed that this ensures that tissues and cell populations attain the appropriate size that allows fusion in the body midline and retain the size of cavities once formed. In addition, a limited number of tissues, albeit not all previously proposed, rely on apoptosis for remodeling, chiefly aortic arch remodeling, elimination of supernumerary neurons, removal of vaginal septa, and removal of interdigital webs in the formation of hands and feet.
Collapse
Affiliation(s)
- Anne K Voss
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Zhou X, Cao C, Li N, Yuan S. SYL3C aptamer-anchored microemulsion co-loading β-elemene and PTX enhances the treatment of colorectal cancer. Drug Deliv 2020; 26:886-897. [PMID: 31524012 PMCID: PMC6758640 DOI: 10.1080/10717544.2019.1660733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aim of this study is to construct a SYL3C aptamer-anchored microemulsion based on β-elemene and PTX (SYL3C/EP-MEs) for enhancement on colorectal cancer therapy. Such microemulsion is consist of encapsulated drugs (β-elemene and PTX), tumor targeting ligand (3’-end thiolated SYL3C aptamer), thiol conjugated site (maleimide-modified PEGylated 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, mal-DOPE-PEG), pH-sensitive component (DOPE) and other necessary excipients. SYL3C/EP-MEs showed a spherical particle with an average particle size around 30 nm and a high encapsulation efficiency (>80%) for both drugs. β-elemene and PTX could be released controllably from SYL3C/EP-MEs as pH values changed. SYL3C/EP-MEs displayed a selective affinity to HT-29 cells, leading to an obvious increase in cellular uptake, cell apoptosis and cytotoxicity. In the HT-29 tumor xenograft-bearing nude mice model studies, SYL3C/EP-MEs showed an overwhelming tumor growth inhibition, the longest survival time and the lowest systemic toxicity among all the treatments. The potential mechanism of enhanced anti-cancer ability was probably associated with the induction of M1 macrophage polarization, the downregulation of mutant p53 protein and the reduction of bcl-2 protein expression. Collectively, the microemulsion codelivery of β-elemene and PTX using functionalization with SYL3C aptamer provides a novel approach for combinational colorectal cancer-targeted treatment.
Collapse
Affiliation(s)
- Xiaorong Zhou
- Department of Medicine, Jiangsu Cancer Hospital , Nanjing , People's Republic of China
| | - Chuanpei Cao
- Gastrointestinal Surgery, Affiliated Hospital of Jiujiang University , Jiujiang , People's Republic of China
| | - Nan Li
- Department of Medicine, Jiangsu Cancer Hospital , Nanjing , People's Republic of China
| | - Shaofei Yuan
- Department of Medicine, Jiangsu Cancer Hospital , Nanjing , People's Republic of China.,Department of Medical Oncology, The Third Affiliated Hospital of Wenzhou Medical University , Wenzhou , People's Republic of China
| |
Collapse
|
40
|
Rha MS, Kim SW, Chang DY, Lee JK, Kim J, Park SH, Khalmuratova R, Lim HS, Eun KM, Hong SN, Kim DW, Shin EC. Superantigen-related T H2 CD4 + T cells in nonasthmatic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2020; 145:1378-1388.e10. [PMID: 31987845 DOI: 10.1016/j.jaci.2019.12.915] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/20/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Staphylococcus aureus enterotoxin (SAE) superantigens are detected in nasal polyps (NPs), and SAE-specific IgE predicts asthma comorbidity in patients with NPs. However, roles of SAE superantigens and superantigen-related T-cell responses remain to be elucidated in nonasthmatic patients. OBJECTIVE We investigated the presence of SAEs and SAE-related T-cell receptor (TCR) Vβ (TCRVβ) in nonasthmatic NPs, the phenotypes and functions of SAE-related T cells, and the clinical implication of SAE-related T-cell expansion. METHODS Sinonasal tissue samples were obtained from patients with nonasthmatic chronic rhinosinusitis (CRS) with NPs (CRSwNP), patients with CRS without NPs (CRSsNP), and control subjects. SAE genes were detected by PCR, and the TCRVβ distribution and T-cell phenotypes were examined by flow cytometry. RESULTS Various SAE genes were detected not only in NPs but also in sinonasal mucosa from patients with CRSsNP and from controls. The S aureus enterotoxin I (SEI) gene was detected in all NPs. The fraction of SEI-responsive TCRVβ+ (TCRVβ1+ and Vβ5.1+) CD4+ T cells was significantly increased only in NPs and the ethmoidal mucosa of patients with CRSwNP, indicating superantigen-induced expansion. The expanded TCRVβ5.1+ CD4+ T cells expressed proliferation marker Ki-67 and the TH2 transcription factor GATA3. Furthermore, TCRVβ5.1+ CD4+ T cells in NPs highly expressed TH2 markers, including IL-17RB, thymic stromal lymphoprotein receptor, and chemoattractant receptor-homologous molecule expressed on TH2 cells, with a potent TH2 cytokine-producing ability. Moreover, the expansion of TCRVβ1+ or Vβ5.1+ CD4+ T cells was associated with the Lund-Mackay computed tomography score, indicating disease extent. CONCLUSION In nonasthmatic patients with CRSwNP, superantigen-related expansion of CD4+ T cells with TH2 differentiation was associated with the disease extent.
Collapse
Affiliation(s)
- Min-Seok Rha
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Sang-Wook Kim
- Institute of Health Sciences, Gyeongsang National University, Jinju, Korea; Department of Otorhinolaryngology, Gyeongsang National University, Jinju, Korea
| | - Dong-Yeop Chang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea; Institute of Health Sciences, Gyeongsang National University, Jinju, Korea; Department of Otorhinolaryngology, Gyeongsang National University, Jinju, Korea
| | - Jin-Ku Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
| | - Jihye Kim
- BioMedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea; BioMedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Roza Khalmuratova
- Obstructive Upper Airway Research Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
| | - Hee-Suk Lim
- Department of Otorhinolaryngology-Head & Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung Mi Eun
- Department of Otorhinolaryngology-Head & Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-No Hong
- Department of Otorhinolaryngology-Head & Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Woo Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea.
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea; BioMedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
| |
Collapse
|
41
|
Noonan JJ, Jarzabek M, Lincoln FA, Cavanagh BL, Pariag AR, Juric V, Young LS, Ligon KL, Jahns H, Zheleva D, Prehn JHM, Rehm M, Byrne AT, Murphy BM. Implementing Patient-Derived Xenografts to Assess the Effectiveness of Cyclin-Dependent Kinase Inhibitors in Glioblastoma. Cancers (Basel) 2019; 11:cancers11122005. [PMID: 31842413 PMCID: PMC6966586 DOI: 10.3390/cancers11122005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor with no available cure. As previously described, seliciclib, a first-generation cyclin-dependent kinase (CDK) inhibitor, down-regulates the anti-apoptotic protein, Mcl-1, in GBM, thereby sensitizing GBM cells to the apoptosis-inducing effects of the death receptor ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Here, we have assessed the efficacy of seliciclib when delivered in combination with the antibody against human death receptor 5, drozitumab, in clinically relevant patient-derived xenograft (PDX) models of GBM. A reduction in viability and significant levels of apoptosis were observed in vitro in human GBM neurospheres following treatment with seliciclib plus drozitumab. While the co-treatment strategy induced a similar effect in PDX models, the dosing regimen required to observe seliciclib-targeted responses in the brain, resulted in lethal toxicity in 45% of animals. Additional studies showed that the second-generation CDK inhibitor, CYC065, with improved potency in comparison to seliciclib, induced a significant decrease in the size of human GBM neurospheres in vitro and was well tolerated in vivo, upon administration at clinically relevant doses. This study highlights the continued need for robust pre-clinical assessment of promising treatment approaches using clinically relevant models.
Collapse
Affiliation(s)
- Janis J. Noonan
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland; (J.J.N.); (M.J.); (F.A.L.); (A.R.P.); (V.J.); (J.H.M.P.); (A.T.B.)
| | - Monika Jarzabek
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland; (J.J.N.); (M.J.); (F.A.L.); (A.R.P.); (V.J.); (J.H.M.P.); (A.T.B.)
| | - Frank A. Lincoln
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland; (J.J.N.); (M.J.); (F.A.L.); (A.R.P.); (V.J.); (J.H.M.P.); (A.T.B.)
| | - Brenton L. Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland;
| | - Arhona R. Pariag
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland; (J.J.N.); (M.J.); (F.A.L.); (A.R.P.); (V.J.); (J.H.M.P.); (A.T.B.)
| | - Viktorija Juric
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland; (J.J.N.); (M.J.); (F.A.L.); (A.R.P.); (V.J.); (J.H.M.P.); (A.T.B.)
| | - Leonie S. Young
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland;
| | - Keith L. Ligon
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA;
| | - Hanne Jahns
- Pathobiology Section, School of Veterinary Medicine, University College Dublin, D02 YN77 Dublin 4, Ireland;
| | - Daniella Zheleva
- Cyclacel Ltd., 1 James Lindsay Place, Dundee, Scotland DD1 5JJ, UK;
| | - Jochen H. M. Prehn
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland; (J.J.N.); (M.J.); (F.A.L.); (A.R.P.); (V.J.); (J.H.M.P.); (A.T.B.)
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany;
- Stuttgart Research Center Systems Biology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Annette T. Byrne
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland; (J.J.N.); (M.J.); (F.A.L.); (A.R.P.); (V.J.); (J.H.M.P.); (A.T.B.)
| | - Brona M. Murphy
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland; (J.J.N.); (M.J.); (F.A.L.); (A.R.P.); (V.J.); (J.H.M.P.); (A.T.B.)
- Correspondence: ; Tel.: +35-31-402-2119
| |
Collapse
|
42
|
He D, Zheng J, Hu J, Chen J, Wei X. Long non-coding RNAs and pyroptosis. Clin Chim Acta 2019; 504:201-208. [PMID: 31794769 DOI: 10.1016/j.cca.2019.11.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/23/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs (lncRNAs) are defined as transcripts longer than 200 nucleotides that have no or only a low coding potential. They are involved in the progression of multiple diseases by the regulation of mechanisms related to epigenetic modifications and transcriptional and posttranscriptional processing. Recent studies have revealed an important function of lncRNAs in the regulation of pyroptosis, a type of programmed cell death associated with inflammatory responses that plays a critical role in many diseases. Through direct or indirect action on proteins related to the pyroptosis signaling pathway, lncRNAs are involved in the pathological processes related to cardiovascular diseases, kidney diseases, immune diseases and other diseases. Based on the expression characteristics of lncRNAs, this paper reviews the role of lncRNAs in regulating pyroptosis, aiming to provide new ideas for the research of lncRNAs regulating pyroptosis and treating pyroptosis-related diseases.
Collapse
Affiliation(s)
- Dong He
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China; School of Nursing, Xiangnan University, Chenzhou, Hunan 423000, China
| | - Jun Zheng
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421002, China
| | - Jia Hu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Juan Chen
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Xing Wei
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
43
|
Leo R, Therachiyil L, Siveen SK, Uddin S, Kulinski M, Buddenkotte J, Steinhoff M, Krishnankutty AR. Protein Expression Profiling Identifies Key Proteins and Pathways Involved in Growth Inhibitory Effects Exerted by Guggulsterone in Human Colorectal Cancer Cells. Cancers (Basel) 2019; 11:E1478. [PMID: 31581454 PMCID: PMC6826505 DOI: 10.3390/cancers11101478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is a leading killer cancer worldwide and one of the most common malignancies with increasing incidences of mortality. Guggulsterone (GS) is a plant sterol used for treatment of various ailments such as obesity, hyperlipidemia, diabetes, and arthritis. In the current study, anti-cancer effects of GS in human colorectal cancer cell line HCT 116 was tested, potential targets identified using mass spectrometry-based label-free shotgun proteomics approach and key pathways validated by proteome profiler antibody arrays. Comprehensive proteomic profiling identified 14 proteins as significantly dysregulated. Proteins involved in cell proliferation/migration, tumorigenesis, cell growth, metabolism, and DNA replication were downregulated while the protein with functional role in exocytosis/tumor suppression was found to be upregulated. Our study evidenced that GS treatment altered expression of Bcl-2 mediated the mitochondrial release of cytochrome c which triggered the formation of apoptosome as well as activation of caspase-3/7 leading to death of HCT 116 cells via intrinsic apoptosis pathway. GS treatment also induced expression of p53 protein while p21 expression was unaltered with no cell cycle arrest. In addition, GS was found to inhibit NF-kB signaling in colon cancer cells by quelling the expression of its regulated gene products Bcl-2, cIAP-1, and survivin.
Collapse
Affiliation(s)
- Rari Leo
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
- Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha 2713, Qatar.
| | - Sivaraman K Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha 3050, Qatar.
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, Doha 24144, Qatar.
- Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
- College of Medicine, Qatar University, Doha 2713, Qatar.
| | - And Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
| |
Collapse
|
44
|
B-cell lymphoma 2 ovarian killer suppresses testicular cancer cell malignant behavior, but plays a role in platinum resistance. Anticancer Drugs 2019; 29:839-846. [PMID: 29985192 DOI: 10.1097/cad.0000000000000666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Testicular cancer (TC) is the most common malignancy in men. Although the 5-year survival rate of TC patients exceeds 95%, the prognosis of patients with platinum-resistant tumors remains poor because of limited therapeutic options. Overcoming chemoresistance is the key to improving survival in poor-prognosis patients. However, the mechanism remains poorly understood. B-cell lymphoma 2 ovarian killer (BOK) is a proapoptotic protein and functions as a tumor suppressor in malignancy tumors. In this study, we found that BOK was frequently downregulated in TC tissues compared with paratumor tissues. BOK overexpression inhibited TC cell proliferation and invasion. In contrast, BOK knockdown promoted TC cell proliferation and invasion. Surprisingly, either BOK overexpression or knockdown rendered TC cells resistant to Cisplatin (DDP). In conclusion, BOK downregulation may be associated with tumorigenesis of TC. BOK had the potency to suppress TC cell proliferation and invasion, and may function as a tumor suppressor in TC. However, BOK also contributes to Cisplatin resistance. These data may provide a wider perspective on TC research and treatment.
Collapse
|
45
|
Giesbrecht K, Förmer S, Sähr A, Heeg K, Hildebrand D. Streptococcal Pyrogenic Exotoxin A-Stimulated Monocytes Mediate Regulatory T-Cell Accumulation through PD-L1 and Kynurenine. Int J Mol Sci 2019; 20:ijms20163933. [PMID: 31412561 PMCID: PMC6719222 DOI: 10.3390/ijms20163933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 01/20/2023] Open
Abstract
Bacterial superantigens (SAgs) are exotoxins that promote a fulminant activation of the immune system. The subsequent intense release of inflammatory cytokines often results in hypotension, shock, and organ failure with high mortality rates. In the current paradigm, the direct and simultaneous binding of SAgs with T-cell receptor (TCR)-bearing Vβ regions and conserved structures on major histocompatibility complex class II (MHC class II) on antigen-presenting cells (APCs) induces the activation of both cell types. However, by crosslinking MHC class II molecules, APCs can be activated by SAgs independently of T lymphocytes. Recently, we showed that streptococcal pyrogenic exotoxin A (SPEA) of Streptococcus pyogenes stimulates an immunogenic APC phenotype with upregulated costimulatory molecules and inflammatory cytokines. Additionally, we revealed that SPEA triggers immunosuppressive programs in monocytes that facilitate the accumulation of regulatory T cells (Tregs) in in vitro monocyte/CD4+ T-cell cocultures. Immunosuppressive factors include anti-inflammatory interleukin 10 (IL-10), co-inhibitory surface molecule programmed cell death 1 ligand 1 (PD-L1), and the inhibitory indoleamine 2,3-dioxygenase (IDO)/kynurenine effector system. In the present study, we investigated the underlying mechanism of SPEA-stimulated monocyte-mediated accumulation of Tregs. Blood-derived monocytes from healthy donors were stimulated with SPEA for 48 h (SPEA-monocytes). For the evaluation of SPEA-monocyte-mediated modulation of CD4+ T lymphocytes, SPEA was removed from the culture through extensive washing of cells before adding allogeneic CD3/CD28-activated T cells. Results: In coculture with allogeneic CD4+ T cells, SPEA-monocytes mediate apoptosis of CD4+Foxp3− lymphocytes and accumulation of CD4+Foxp3+ Tregs. PD-L1 and kynurenine are critically involved in the mediated cell death because blocking both factors diminished apoptosis and decreased the proportion of the CD25+/Foxp3+ Treg subpopulation significantly. Upregulation of PD-L1 and kynurenine as well as SPEA-monocyte-mediated effects on T cells depend on inflammatory IL-1β. Our study shows that monocytes activated by SPEA mediate apoptosis of CD4+Foxp3− T effector cells through PD-L1 and kynurenine. CD4+Foxp3+ T cells are resistant to apoptosis and accumulate in SPEA-monocyte/CD4+ T-cell coculture.
Collapse
Affiliation(s)
- Katharina Giesbrecht
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZIF German Center for Infection Research, 38124 Brunswick, Germany
| | - Sandra Förmer
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Aline Sähr
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Klaus Heeg
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZIF German Center for Infection Research, 38124 Brunswick, Germany
| | - Dagmar Hildebrand
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany.
- DZIF German Center for Infection Research, 38124 Brunswick, Germany.
| |
Collapse
|
46
|
Wallach D, Kang TB. Programmed Cell Death in Immune Defense: Knowledge and Presumptions. Immunity 2019; 49:19-32. [PMID: 30021143 DOI: 10.1016/j.immuni.2018.06.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/14/2018] [Accepted: 06/29/2018] [Indexed: 01/06/2023]
Abstract
Cell-culture studies are our main source of knowledge of the various forms of programmed cell death. Yet genetic perturbations of death-protein function in animal models are almost the only source of our knowledge of the physiological roles of these programs. Shortcomings in the state of knowledge acquired by these two experimental approaches are exemplified in this Perspective by reference to research on the contribution of apoptosis to lymphocyte development, a subject on which there is already much knowledge, and on the role of necroptosis in inflammation, about which information is just beginning to emerge. To address these shortcomings, there is need to find ways to verify the notions obtained through the current experimental approaches by directly monitoring death programs within specific cells in vivo.
Collapse
Affiliation(s)
- David Wallach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Tae-Bong Kang
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chung-Ju 27478, Republic of Korea
| |
Collapse
|
47
|
Jangalwe S, Kapoor VN, Xu J, Girnius N, Kennedy NJ, Edwards YJK, Welsh RM, Davis RJ, Brehm MA. Cutting Edge: Early Attrition of Memory T Cells during Inflammation and Costimulation Blockade Is Regulated Concurrently by Proapoptotic Proteins Fas and Bim. THE JOURNAL OF IMMUNOLOGY 2019; 202:647-651. [PMID: 30610162 DOI: 10.4049/jimmunol.1800278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 12/06/2018] [Indexed: 11/19/2022]
Abstract
Apoptosis of CD8 T cells is an essential mechanism that maintains immune system homeostasis, prevents autoimmunity, and reduces immunopathology. CD8 T cell death also occurs early during the response to both inflammation and costimulation blockade (CoB). In this article, we studied the effects of a combined deficiency of Fas (extrinsic pathway) and Bim (intrinsic pathway) on early T cell attrition in response to lymphocytic choriomeningitis virus infection and during CoB during transplantation. Loss of Fas and Bim function in Bcl2l11-/-Faslpr/lpr mice inhibited apoptosis of T cells and prevented the early T cell attrition resulting from lymphocytic choriomeningitis virus infection. Bcl2l11-/-Faslpr/lpr mice were also resistant to prolonged allograft survival induced by CoB targeting the CD40-CD154 pathway. These results demonstrate that both extrinsic and intrinsic apoptosis pathways function concurrently to regulate T cell homeostasis during the early stages of immune responses and allograft survival during CoB.
Collapse
Affiliation(s)
- Sonal Jangalwe
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Varun N Kapoor
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Jia Xu
- IBM Watson Health, Cambridge, MA 02142
| | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115; and.,Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115
| | - Norman J Kennedy
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Yvonne J K Edwards
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Raymond M Welsh
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Michael A Brehm
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
48
|
VDAC2 enables BAX to mediate apoptosis and limit tumor development. Nat Commun 2018; 9:4976. [PMID: 30478310 PMCID: PMC6255874 DOI: 10.1038/s41467-018-07309-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Intrinsic apoptosis is critical to prevent tumor formation and is engaged by many anti-cancer agents to eliminate tumor cells. BAX and BAK, the two essential mediators of apoptosis, are thought to be regulated through similar mechanisms and act redundantly to drive apoptotic cell death. From an unbiased genome-wide CRISPR/Cas9 screen, we identified VDAC2 (voltage-dependent anion channel 2) as important for BAX, but not BAK, to function. Genetic deletion of VDAC2 abrogated the association of BAX and BAK with mitochondrial complexes containing VDAC1, VDAC2, and VDAC3, but only inhibited BAX apoptotic function. Deleting VDAC2 phenocopied the loss of BAX in impairing both the killing of tumor cells by anti-cancer agents and the ability to suppress tumor formation. Together, our studies show that efficient BAX-mediated apoptosis depends on VDAC2, and reveal a striking difference in how BAX and BAK are functionally impacted by their interactions with VDAC2.
Collapse
|
49
|
Heckmann BL, Tummers B, Green DR. Crashing the computer: apoptosis vs. necroptosis in neuroinflammation. Cell Death Differ 2018; 26:41-52. [PMID: 30341422 DOI: 10.1038/s41418-018-0195-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
Programmed cell death (PCD) plays critical roles in development, homeostasis, and both control and progression of a plethora of diseases, including cancer and neurodegenerative pathologies. Besides classical apoptosis, several different forms of PCD have now been recognized, including necroptosis. The way a cell dies determines the reaction of the surrounding environment, and immune activation in response to cell death proceeds in a manner dependent on which death pathways are activated. Apoptosis and necroptosis are major mechanisms of cell death that typically result in opposing immune responses. Apoptotic death usually leads to immunologically silent responses whereas necroptotic death releases molecules that promote inflammation, a process referred to as necroinflammation. Diseases of the nervous system, in particular neurodegenerative diseases, are characterized by neuronal death and progressive neuroinflammation. The mechanisms of neuronal death are not well defined and significant cross-talk between pathways has been suggested. Moreover, it has been proposed that the dying of neurons is a catalyst for activating immune cells in the brain and sustaining inflammatory output. In the current review we discuss the effects of apoptotis and necroptosis on inflammatory immune activation, and evaluate the roles of each cell death pathway in a variety of pathologies with specific focus on neurodegeneration. A putative model is proposed for the regulation of neuronal death and neuroinflammation that features a role for both the apoptotic and necroptotic pathways in disease establishment and progression.
Collapse
Affiliation(s)
- Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
50
|
Comparing the effects of different cell death programs in tumor progression and immunotherapy. Cell Death Differ 2018; 26:115-129. [PMID: 30341424 DOI: 10.1038/s41418-018-0214-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 12/18/2022] Open
Abstract
Our conception of programmed cell death has expanded beyond apoptosis to encompass additional forms of cell suicide, including necroptosis and pyroptosis; these cell death modalities are notable for their diverse and emerging roles in engaging the immune system. Concurrently, treatments that activate the immune system to combat cancer have achieved remarkable success in the clinic. These two scientific narratives converge to provide new perspectives on the role of programmed cell death in cancer therapy. This review focuses on our current understanding of the relationship between apoptosis and antitumor immune responses and the emerging evidence that induction of alternate death pathways such as necroptosis could improve therapeutic outcomes.
Collapse
|