1
|
Yang L, Bai X, Liu Y, Zhu S, Li S, Chen Z, Han T, Jin S, Zang M. Angiosome-Guided Perfusion Decellularization of Fasciocutaneous Flaps. J Reconstr Microsurg 2024. [PMID: 39191422 DOI: 10.1055/a-2404-2608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
BACKGROUND Tissue engineering based on whole-organ perfusion decellularization has successfully generated small-animal organs, including the heart and limbs. Herein, we aimed to use angiosome-guided perfusion decellularization to develop an acellular fasciocutaneous flap matrix with an intact vascular network. METHODS Abdominal flaps of rats were harvested, and the vascular pedicle (iliac artery and vein) was dissected and injected with methylene blue to identify the angiosome region and determine the flap dimension for harvesting. To decellularize flaps, the iliac artery was perfused sequentially with 1% sodium dodecyl sulfate (SDS), deionized water, and 1% Triton-X100. Gross morphology, histology, and DNA quantity of flaps were then obtained. Flaps were also subjected to glycosaminoglycan (GAG) and hydroxyproline content assays and computed tomography angiography. RESULTS Histological assessment indicated that cellular content was completely removed in all flap layers following a 10-hour perfusion in SDS. DNA quantification confirmed 81% DNA removal. Based on biochemical assays, decellularized flaps had hydroxyproline content comparable with that of native flaps, although significantly fewer GAGs (p = 0.0019). Histology and computed tomography angiography illustrated the integrity and perfusability of the vascular system. CONCLUSION The proposed angiosome-guided perfusion decellularization protocol could effectively remove cellular content from rat fasciocutaneous flaps and preserve the integrity of innate vascular networks.
Collapse
Affiliation(s)
- Liya Yang
- Division of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xueshan Bai
- Division of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yuanbo Liu
- Division of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Shan Zhu
- Division of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Shanshan Li
- Division of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zixiang Chen
- Division of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Tinglu Han
- Division of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Shengyang Jin
- Division of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Mengqing Zang
- Division of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
2
|
Kakihara N, Sato M, Shirai A, Koguchi M, Yamauchi S, Nakano T, Sasamoto R, Sato H. Green cocoon-derived sericin reduces cellular damage caused by radiation in human keratinocytes. Sci Rep 2024; 14:3068. [PMID: 38321256 PMCID: PMC10847496 DOI: 10.1038/s41598-024-53712-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/04/2024] [Indexed: 02/08/2024] Open
Abstract
Radiation therapy used in the treatment of cancer causes skin damage, and no method of care has been established thus far. Recently, it has become clear that sericin derived from silkworm cocoons has moisturizing and antioxidant functions. In addition, green cocoon-derived sericin, which is rich in flavonoids, may have enhanced functions. However, whether this green cocoon-derived sericin can reduce radiotherapy-induced skin damage is unclear. In the present study, we aimed at establishing care methods to reduce skin cell damage caused by X-irradiation using green cocoon-derived sericin. We investigated its effect on human keratinocytes using lactate dehydrogenase activity to indicate damage reduction. Our results showed that green cocoon-derived sericin reduced cell damage caused by X-irradiation. However, this effect was not observed when cells were treated before X-irradiation or with a sericin derived from white cocoons. In addition, green cocoon-derived sericin decreased the levels of reactive oxygen species and lipid peroxidation. Our results suggest that green cocoon sericin mitigates the damaging effect of X-irradiation on cells, hence presenting potential usefulness in reducing skin damage from radiation therapy and opening new avenues in the care of cancer patients.
Collapse
Affiliation(s)
- Nahoko Kakihara
- Department of Nursing, Graduate School of Health Sciences, Niigata University, Niigata, Japan.
| | - Momoko Sato
- Department of Medical Technology, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Ayaki Shirai
- Department of Medical Technology, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Mizuki Koguchi
- Department of Medical Technology, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Shiori Yamauchi
- Department of Medical Technology, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Toshimichi Nakano
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryuta Sasamoto
- Department of Radiological Technology, Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Hideyo Sato
- Department of Medical Technology, Faculty of Medicine, Niigata University, Niigata, Japan
| |
Collapse
|
3
|
Kamrani A, Nasrabadi MH, Halabian R, Ghorbani M. A biomimetic multi-layer scaffold with collagen and zinc doped bioglass as a skin-regeneration agent in full-thickness injuries and its effects in vitro and in vivo. Int J Biol Macromol 2023; 253:127163. [PMID: 37778589 DOI: 10.1016/j.ijbiomac.2023.127163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Due to the multilayer structure of skin tissue, the fabrication of a 3-layer scaffold could result in planned dermal regeneration. Herein, polyurethane (PU) and polycaprolactone (PCL), as a function of their mechanical stability and collagen due to its arginine-glycine-aspartic acid sequences, zinc ions because of overcoming the common problems of biological factors were employed. The scaffolds' physical, mechanical, and biological properties were examined by SEM, FTIR, contact angle, mechanical tensile, bacteriocidal efficacy, and hemolysis. Also, after L-929 fibroblast seeding, their biological activity was determined by SEM, DAPI, and MTT assays. Then, the cell-seeded scaffolds were implanted in full-thickness wounds of rats and evaluated by wound closure, histological, and molecular techniques. The in vivo studies showed better wound closure with the composite scaffold containing zinc ions. While its dermal re-organization was retarded in the presence of zinc ions compared to the composite scaffold containing non-doped bioglass. Despite this, the doped composite scaffold indicated better observations with the histological evaluations than the nontreated and bare scaffold groups. Real-time PCR confirmed the higher expression of FGF2 and FGFR genes in rats treated with the zinc-doped composite scaffold. In conclusion, PU/PCL-collagen/PCL-collagen containing the doped or non-doped nanoparticles showed better potential to heal dermal injuries.
Collapse
Affiliation(s)
- Asefeh Kamrani
- Department of Biology, Parand Branch, Islamic Azad University, Tehran, Iran
| | | | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoud Ghorbani
- Applied Biotechnoiogy Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Zhang G, Zhang Z, Cao G, Jin Q, Xu L, Li J, Liu Z, Xu C, Le Y, Fu Y, Ju J, Li B, Hou R. Engineered dermis loaded with confining forces promotes full-thickness wound healing by enhancing vascularisation and epithelialisation. Acta Biomater 2023; 170:464-478. [PMID: 37657662 DOI: 10.1016/j.actbio.2023.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Tissue-engineered skin is ideal for clinical wound repair. Restoration of skin tissue defects using tissue-engineered skin remains a challenge owing to insufficient vascularisation. In our previous study, we developed a 3D bioprinted model with confined force loading and demonstrated that the confined force can affect vascular branching, which is regulated by the YAP signalling pathway. The mechanical properties of the model must be optimised to suture the wound edges. In this study, we explored the ability of a GelMA-HAMA-fibrin scaffold to support the confined forces created by 3D bioprinting and promote vascularisation and wound healing. The shape of the GelMA-HAMA-fibrin scaffold containing 3% GelMA was affected by the confined forces produced by the embedded cells. The GelMA-HAMA-fibrin scaffold was easy to print, had optimal mechanical properties, and was biocompatible. The constructs were successfully sutured together after 14 d of culture. Scaffolds seeded with cells were transplanted into skin tissue defects in nude mice, demonstrating that the cell-seeded GelMA-HAMA-fibrin scaffold, under confined force loading, promoted neovascularisation and wound restoration by enhancing blood vessel connections, creating a patterned surface, growth factors, and collagen deposition. These results provide further insights into the production of hydrogel composite materials as tissue-engineered scaffolds under an internal mechanical load that can enhance vascularisation and offer new treatment methods for wound healing. STATEMENT OF SIGNIFICANCE: Tissue-engineered skin is ideal for use in clinical wound repair. However, treatment of tissue defects using synthetic scaffolds remains challenging, mainly due to slow and insufficient vascularization. Our previous study developed a 3D bioprinted model with confined force loading, and demonstrated that confined force can affect vascular branching regulated by the YAP signal pathway. The mechanical properties of the construct need to be optimized for suturing to the edges of wounds. Here, we investigated the ability of a GelMA-HAMA-fibrin scaffold to support the confined forces created by 3D bioprinting and promote vascularization in vitro and wound healing in vivo. Our findings provide new insight into the development of degradable macroporous composite materials with mechanical stimulation as tissue-engineered scaffolds with enhanced vascularization, and also provide new treatment options for wound healing.
Collapse
Affiliation(s)
- Guangliang Zhang
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China.
| | - Zhiqiang Zhang
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China; Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China
| | - Gaobiao Cao
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China
| | - Qianheng Jin
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China; Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China
| | - Lei Xu
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China; Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China
| | - Jiaying Li
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China
| | - Zhe Liu
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China; Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China
| | - Chi Xu
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China; Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Fu
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China
| | - Jihui Ju
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China; Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China; Teaching Hospital of Medical College of Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Bin Li
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China.
| | - Ruixing Hou
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China; Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China; Teaching Hospital of Medical College of Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
5
|
Zhang X, Naz AF, Jiang L, Fu C, Huang J, Liang Y, Zhu L, Zhang F, Chen J, Lei L, Zeng Q. Disease Awareness and Treatment Preferences in Vitiligo: A Cross-sectional Study in China. Acta Derm Venereol 2023; 103:adv11643. [PMID: 37787420 PMCID: PMC10561102 DOI: 10.2340/actadv.v103.11643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/15/2023] [Indexed: 10/04/2023] Open
Abstract
In China, there is a lack of data regarding the awareness and treatment preferences among patients with vitiligo and their families. To address this gap, a cross-sectional questionnaire-based study was conducted to investigate disease awareness and treatment preferences in Chinese patients with vitiligo. The study also evaluated willingness to pay, using 2 standardized items, and assessed quality of life, using the Dermatology Life Quality Index (DLQI) score. Data from 307 patients with vitiligo (59.3% women, mean age 28.98 years, range 2-73 years) were analysed. Of these patients, 44.7% had insufficient knowledge of vitiligo, particularly those from rural areas or with low levels of education. Mean DLQI total score was 4.86 (5.24 for women and 4.30 for men). Among the most accepted treatments were topical drugs, phototherapy, and systemic therapy. Patients were relatively conservative about the duration and cost of treatment, with only 27.7% willing to pay more than 10,000 Chinese yuan renminbi (CNY) for complete disease remission. High level of education, high income, skin lesions in specific areas, and skin transplantation therapy predicted higher willingness to pay. Insufficient knowledge was associated with a higher burden of disease. In order to reduce the disease burden and improve treatment adherence it is crucial to enhance disease awareness and take into account patient preferences.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, P.R. China
| | - Adnan Falak Naz
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, P.R. China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, P.R. China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, P.R. China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, P.R. China
| | - Yixuan Liang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, P.R. China
| | - Lu Zhu
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, P.R. China
| | - Fan Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, P.R. China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, P.R. China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, P.R. China.
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, P.R. China.
| |
Collapse
|
6
|
Luong D, Weisel A, Cohen R, Spector JA, Sapir-Lekhovitser Y. Successful reconstruction of full-thickness skin defects in a swine model using simultaneous split-thickness skin grafting and composite collagen microstructured dermal scaffolds. Wound Repair Regen 2023; 31:576-585. [PMID: 37314212 DOI: 10.1111/wrr.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Reconstitution of normal skin anatomy after full-thickness skin loss may be accomplished using a combination of a dermal regeneration template (DRT) and a split thickness skin graft (STSG). However, because of the relatively low rate of cell infiltration and vascularisation of currently available DRTs, reconstruction is almost always performed in a two-step procedure over the course of several weeks, resulting in multiple dressing changes, prolonged immobilisation and increased chance of infection. To mitigate the potential complications of this prolonged process, the collagen-based dermal template DermiSphere™ was developed and tested in a single-step procedure wherein DermiSphere and STSG were implanted simultaneously. When evaluated in a porcine, full thickness, excisional wound model, DermiSphere successfully supported simultaneous split thickness skin graft take and induced functional neodermal tissue deposition. When compared to a market leading product Integra Bilayer Wound Matrix, which was used in a multistep procedure (STSG placed 14 days after product implantation according to the product IFU), DermiSphere induced a similar moderate and transient inflammatory response that produced similar neodermal tissue maturity, thickness and vascularity, despite being implanted in a single surgical procedure leading to wound closure 2 weeks earlier. These data suggest that DermiSphere may be implanted in a single-step procedure with an STSG, which would significantly shorten the time course required for the reconstruction of both dermal and epidermal components of skin after full thickness loss.
Collapse
Affiliation(s)
- Derek Luong
- FesariusTherapeutics, Inc., New York City, New York, USA
| | - Adam Weisel
- FesariusTherapeutics, Inc., New York City, New York, USA
| | - Rachael Cohen
- FesariusTherapeutics, Inc., New York City, New York, USA
| | - Jason A Spector
- FesariusTherapeutics, Inc., New York City, New York, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medicine, New York City, New York, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
7
|
Saha R, Patkar S, Pillai MM, Tayalia P. Bilayered skin substitute incorporating rutin nanoparticles for antioxidant, anti-inflammatory, and anti-fibrotic effect. BIOMATERIALS ADVANCES 2023; 150:213432. [PMID: 37119696 DOI: 10.1016/j.bioadv.2023.213432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/01/2023]
Abstract
Hypertrophic scarring in large burns and delayed healing in chronic wounds are consequences of prolonged and aggravated inflammation, sustained infiltration of immune cells, free radical generation, and abundance of inflammatory mediators. Therefore, it is imperative to curb hyperinflammation to expedite wound healing. In this study, rutin nanoparticles (RNPs) were synthesized without an encapsulant and incorporated into eggshell membrane powder-crosslinked gelatin-chitosan cryogels to impart antioxidant and anti-inflammatory properties for treating hyperinflammation. The resultant nanoparticles were found to be 17.53 ± 4.03 nm in size and were stable at room temperature for a month with no visible sedimentation. RNPs were found to be non-cytotoxic and exhibited anti-inflammatory (by increasing IL-10 levels) and antioxidant properties (by controlling the generation of reactive oxygen species and enhancing catalase production in human macrophages). Additionally, RNPs were found to reduce α-SMA expression in fibroblasts, thereby demonstrating their anti-scarring effect. In vivo studies with a bilayered skin substitute constituting an RNP-incorporated cryogel proved that it is biocompatible, does not induce renal toxicity, aids wound healing, and induces better re-epithelialization than the control groups at the initial stages. Thus, RNP-incorporated cryogels containing bilayered skin substitutes are an advanced and novel alternative to commercial dermo-epidermal substitutes that lack anti-inflammatory or anti-scarring properties.
Collapse
Affiliation(s)
- Rituparna Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Shivali Patkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Mamatha M Pillai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Prakriti Tayalia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
8
|
Chen Z, Cheng Q, Wang L, Mo Y, Li K, Mo J. Optical coherence tomography for in vivo longitudinal monitoring of artificial dermal scaffold. Lasers Surg Med 2023; 55:316-326. [PMID: 36806261 DOI: 10.1002/lsm.23645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/21/2023]
Abstract
OBJECTIVES Artificial dermal scaffold (ADS) has undergone rapid development and been increasingly used for treating skin wound in clinics due to its good biocompatibility, controllable degradation, and low risk of disease infection. To obtain good treatment efficacy, ADS needs to be monitored longitudinally during the treatment process. For example, scaffold-tissue fit, cell in-growth, vascular regeneration, and scaffold degradation are the key properties to be inspected. However, to date, there are no effective, real-time, and noninvasive techniques to meet the requirement of the scaffold monitoring above. MATERIALS AND METHODS In this study, we propose to use optical coherence tomography (OCT) to monitor ADS in vivo through three-dimensional imaging. A swept source OCT system with a handheld probe was developed for in vivo skin imaging. Moreover, a cell in-growth, vascular regeneration, and scaffold degradation rate (IRDR) was defined with the volume reduction rate of the scaffold's collagen sponge layer. To measure the IRDR, a semiautomatic image segmentation algorithm was designed based on U-Net to segment the collagen sponge layer of the scaffold from OCT images. RESULTS The results show that the scaffold-tissue fit can be clearly visualized under OCT imaging. The IRDR can be computed based on the volume of the segmented collagen sponge layer. It is observed that the IRDR appeared to a linear function of the time and in addition, the IRDR varied among different skin parts. CONCLUSION Overall, it can be concluded that OCT has a good potential to monitor ADS in vivo. This can help guide the clinicians to control the treatment with ADS to improve the therapy.
Collapse
Affiliation(s)
- Ziye Chen
- Department of Electronic Information, Engineering School of Electronics and Information Engineering, Soochow University, Suzhou, China
| | - Qiong Cheng
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lingyun Wang
- Department of Electronic Information, Engineering School of Electronics and Information Engineering, Soochow University, Suzhou, China
| | - Yunfeng Mo
- Department of Electronic Information, Engineering School of Electronics and Information Engineering, Soochow University, Suzhou, China
| | - Ke Li
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianhua Mo
- Department of Electronic Information, Engineering School of Electronics and Information Engineering, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Kim JH, Green DS, Ju YM, Harrison M, Vaughan JW, Atala A, Lee SJ, Jackson JD, Nykiforuk C, Yoo JJ. Identification and characterization of stem cell secretome-based recombinant proteins for wound healing applications. Front Bioeng Biotechnol 2022; 10:954682. [PMID: 35935504 PMCID: PMC9354600 DOI: 10.3389/fbioe.2022.954682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Stem cells have been introduced as a promising therapy for acute and chronic wounds, including burn injuries. The effects of stem cell-based wound therapies are believed to result from the secreted bioactive molecules produced by stem cells. Therefore, treatments using stem cell-derived conditioned medium (CM) (referred to as secretome) have been proposed as an alternative option for wound care. However, safety and regulatory concerns exist due to the uncharacterized biochemical content and variability across different batches of CM samples. This study presents an alternative treatment strategy to mitigate these concerns by using fully characterized recombinant proteins identified by the CM analysis to promote pro-regenerative healing. This study analyzed the secretome profile generated from human placental stem cell (hPSC) cultures and identified nine predominantly expressed proteins (ANG-1, FGF-7, Follistatin, HGF, IL-6, Insulin, TGFβ-1, uPAR, and VEGF) that are known to contribute to wound healing and angiogenesis. These proteins, referred to as s (CMFs), were used in combination to test the effects on human dermal fibroblasts (HDFs). Our results showed that CMF treatment increased the HDF growth and accelerated cell migration and wound closure, similar to stem cell and CM treatments. In addition, the CMF treatment promoted angiogenesis by enhancing new vessel formation. These findings suggest that the defined CMF identified by the CM proteomic analysis could be an effective therapeutic solution for wound healing applications. Our strategy eliminates the regulatory concerns present with stem cell-derived secretomes and could be developed as an off-the-shelf product for immediate wound care and accelerating healing.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
- *Correspondence: Ji Hyun Kim,
| | - Denethia S. Green
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Young Min Ju
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mollie Harrison
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - J. William Vaughan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - John D. Jackson
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
10
|
Safina I, Childress LT, Myneni SR, Vang KB, Biris AS. Cell-Biomaterial Constructs for Wound Healing and Skin Regeneration. Drug Metab Rev 2022; 54:63-94. [PMID: 35129408 DOI: 10.1080/03602532.2021.2025387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Over the years, conventional skin grafts, such as full-thickness, split-thickness, and pre-sterilized grafts from human or animal sources, have been at the forefront of skin wound care. However, these conventional grafts are associated with major challenges, including supply shortage, rejection by the immune system, and disease transmission following transplantation. Due to recent progress in nanotechnology and material sciences, advanced artificial skin grafts-based on the fundamental concepts of tissue engineering-are quickly evolving for wound healing and regeneration applications, mainly because they can be uniquely tailored to meet the requirements of specific injuries. Despite tremendous progress in tissue engineering, many challenges and uncertainties still face skin grafts in vivo, such as how to effectively coordinate the interaction between engineered biomaterials and the immune system to prevent graft rejection. Furthermore, in-depth studies on skin regeneration at the molecular level are lacking; as a consequence, the development of novel biomaterial-based systems that interact with the skin at the core level has also been slow. This review will discuss 1) the biological aspects of wound healing and skin regeneration, 2) important characteristics and functions of biomaterials for skin regeneration applications, and 3) synthesis and applications of common biomaterials for skin regeneration. Finally, the current challenges and future directions of biomaterial-based skin regeneration will be addressed.
Collapse
Affiliation(s)
- Ingrid Safina
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| | - Luke T Childress
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| | - Srinivas R Myneni
- Department of Periodontology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Kieng Bao Vang
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| | - Alexandru S Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S. University Avenue, Little Rock, AR 72204 USA
| |
Collapse
|
11
|
Lu D, Zeng Z, Geng Z, Guo C, Pei D, Zhang J, Yu S. Macroporous methacrylated hyaluronic acid hydrogel with different pore sizes for in vitro and in vivo evaluation of vascularization. Biomed Mater 2022; 17. [PMID: 34996058 DOI: 10.1088/1748-605x/ac494b] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 11/11/2022]
Abstract
Vascularization of thick hydrogel scaffolds is still a big challenge, because the submicron- or nano-sized pores seriously restrict endothelial cells adhesion, proliferation and migration. Therefore, porous hydrogels have been fabricated as a kind of promising hydrous scaffolds for enhancing vascularization during tissue repairing. In order to investigate the effects of pore size on vascularization, macroporous methacrylated hyaluronic acid (HAMA) hydrogels with different pore sizes were fabricated by a gelatin microspheres (GMS) template method. After leaching out GMS templates, uniform and highly interconnected macropores were formed in hydrogels, which provided an ideal physical microenvironment to induce human umbilical vein endothelial cells (HUVECs) migration and tissue vascularization. In vitro results revealed that macroporous hydrogels facilitated cells proliferation and migration compared with non-macroporous hydrogels. Hydrogels with middle pore size of 200-250 μm (HAMA250 hydrogels) supported the best cell proliferation and furthest 3D migration of HUVECs. The influences of pore sizes on vascularization were then evaluated with subcutaneous embedding. In vivo results illustrated that HAMA250 hydrogels exhibited optimum vascularization behavior. Highest number of newly formed blood vessels and expression of CD31 could be found in HAMA250 hydrogels rather than in other hydrogels. In summary, our results concluded that the best pore size for endothelial cells migration and tissue vascularization was 200-250 μm. This research provides a new insight into the engineering vascularized tissues and may find utility in designing regenerative biomaterial scaffolds.
Collapse
Affiliation(s)
- Daohuan Lu
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, guangzhou, 51000, CHINA
| | - Zhiwen Zeng
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, Guangzhou, guangzhou, 51000, CHINA
| | - Zhijie Geng
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, guangzhou, 51000, CHINA
| | - Cuiping Guo
- Institute of Medicine and Health, Guangdong Academy of Sciences, , guangzhou, 51000, CHINA
| | - Dating Pei
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, guangzhou, 51000, CHINA
| | - Jin Zhang
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, guangzhou, 51000, CHINA
| | - Shan Yu
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, guangzhou, 51000, CHINA
| |
Collapse
|
12
|
Ramos-Rodriguez DH, MacNeil S, Claeyssens F, Ortega Asencio I. Delivery of Bioactive Compounds to Improve Skin Cell Responses on Microfabricated Electrospun Microenvironments. Bioengineering (Basel) 2021; 8:105. [PMID: 34436108 PMCID: PMC8389211 DOI: 10.3390/bioengineering8080105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 12/05/2022] Open
Abstract
The introduction of microtopographies within biomaterial devices is a promising approach that allows one to replicate to a degree the complex native environment in which human cells reside. Previously, our group showed that by combining electrospun fibers and additive manufacturing it is possible to replicate to an extent the stem cell microenvironment (rete ridges) located between the epidermal and dermal layers. Our group has also explored the use of novel proangiogenic compounds to improve the vascularization of skin constructs. Here, we combine our previous approaches to fabricate innovative polycaprolactone fibrous microtopographical scaffolds loaded with bioactive compounds (2-deoxy-D-ribose, 17β-estradiol, and aloe vera). Metabolic activity assay showed that microstructured scaffolds can be used to deliver bioactive agents and that the chemical relation between the working compound and the electrospinning solution is critical to replicate as much as possible the targeted morphologies. We also reported that human skin cell lines have a dose-dependent response to the bioactive compounds and that their inclusion has the potential to improve cell activity, induce blood vessel formation and alter the expression of relevant epithelial markers (collagen IV and integrin β1). In summary, we have developed fibrous matrixes containing synthetic rete-ridge-like structures that can deliver key bioactive compounds that can enhance skin regeneration and ultimately aid in the development of a complex wound healing device.
Collapse
Affiliation(s)
- David H. Ramos-Rodriguez
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Sheila MacNeil
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Ilida Ortega Asencio
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
| |
Collapse
|
13
|
Manita PG, Garcia-Orue I, Santos-Vizcaino E, Hernandez RM, Igartua M. 3D Bioprinting of Functional Skin Substitutes: From Current Achievements to Future Goals. Pharmaceuticals (Basel) 2021; 14:ph14040362. [PMID: 33919848 PMCID: PMC8070826 DOI: 10.3390/ph14040362] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to present 3D bioprinting of skin substitutes as an efficient approach of managing skin injuries. From a clinical point of view, classic treatments only provide physical protection from the environment, and existing engineered scaffolds, albeit acting as a physical support for cells, fail to overcome needs, such as neovascularisation. In the present work, the basic principles of bioprinting, together with the most popular approaches and choices of biomaterials for 3D-printed skin construct production, are explained, as well as the main advantages over other production methods. Moreover, the development of this technology is described in a chronological manner through examples of relevant experimental work in the last two decades: from the pioneers Lee et al. to the latest advances and different innovative strategies carried out lately to overcome the well-known challenges in tissue engineering of skin. In general, this technology has a huge potential to offer, although a multidisciplinary effort is required to optimise designs, biomaterials and production processes.
Collapse
Affiliation(s)
- Paula Gabriela Manita
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Itxaso Garcia-Orue
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (R.M.H.); (M.I.)
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (R.M.H.); (M.I.)
| |
Collapse
|
14
|
Analysis of Mechanical Characteristics of Bionic Artificial Skin Using Different Suturing Patterns. Appl Bionics Biomech 2021; 2021:6696612. [PMID: 33824684 PMCID: PMC8007379 DOI: 10.1155/2021/6696612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/26/2021] [Accepted: 03/06/2021] [Indexed: 11/22/2022] Open
Abstract
Artificial bionic skin material is playing an increasingly important role in the field of medicine and bionic engineering and becoming a research hotspot in many disciplines in recent years. In this work, the digital moiré method was used to measure the mechanical field of the bionic skin material under different suturing conditions. Through the digital image process, the deformation characteristics and the stress distribution near the contact area between the bionic skin material and the suture were obtained and discussed. The different healing effects caused by suturing mode were further explored, which can provide mechanical guidance for wound suturing in clinical medicine.
Collapse
|
15
|
Weng T, Zhang W, Xia Y, Wu P, Yang M, Jin R, Xia S, Wang J, You C, Han C, Wang X. 3D bioprinting for skin tissue engineering: Current status and perspectives. J Tissue Eng 2021; 12:20417314211028574. [PMID: 34345398 PMCID: PMC8283073 DOI: 10.1177/20417314211028574] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
Skin and skin appendages are vulnerable to injury, requiring rapidly reliable regeneration methods. In recent years, 3D bioprinting has shown potential for wound repair and regeneration. 3D bioprinting can be customized for skin shape with cells and other materials distributed precisely, achieving rapid and reliable production of bionic skin substitutes, therefore, meeting clinical and industrial requirements. Additionally, it has excellent performance with high resolution, flexibility, reproducibility, and high throughput, showing great potential for the fabrication of tissue-engineered skin. This review introduces the common techniques of 3D bioprinting and their application in skin tissue engineering, focusing on the latest research progress in skin appendages (hair follicles and sweat glands) and vascularization, and summarizes current challenges and future development of 3D skin printing.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Zhang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yilan Xia
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pan Wu
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Yang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Ronghua Jin
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Sizhan Xia
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jialiang Wang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chuangang You
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chunmao Han
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xingang Wang
- Department of Burns & Wound Care Centre, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Trauma and Burns of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Zhang Q, Wen J, Liu C, Ma C, Bai F, Leng X, Chen Z, Xie Z, Mi J, Wu X. Early-stage bilayer tissue-engineered skin substitute formed by adult skin progenitor cells produces an improved skin structure in vivo. Stem Cell Res Ther 2020; 11:407. [PMID: 32948249 PMCID: PMC7501683 DOI: 10.1186/s13287-020-01924-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 09/03/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In recent years, significant progress has been made in developing highly complex tissue-engineered skin substitutes (TESSs) for wound healing. However, the lack of skin appendages, such as hair follicles and sweat glands, and the time required, are two major limitations that hinder its broad application in the clinic. Therefore, it is necessary to develop a competent TESS in a short time to meet the needs for clinical applications. METHODS Adult scalp dermal progenitor cells and epidermal stem cells together with type I collagen as a scaffold material were used to reconstitute bilayer TESSs in vitro. TESSs at 4 different culture times (5, 9, 14, and 21 days) were collected and then grafted onto full-thickness wounds created in the dorsal skin of athymic nude/nude mice. The skin specimens formed from grafted TESSs were collected 4 and 8 weeks later and then evaluated for their structure, cell organization, differentiation status, vascularization, and formation of appendages by histological analysis, immunohistochemistry, and immunofluorescent staining. RESULTS Early-stage bilayer TESSs after transplantation had a better efficiency of grafting. A normal structure of stratified epidermis containing multiple differentiated layers of keratinocytes was formed in all grafts from both early-stage and late-stage TESSs, but higher levels of the proliferation marker Ki-67 and the epidermal progenitor marker p63 were found in the epidermis formed from early-stage TESSs. Interestingly, the transplantation of early-stage TESSs produced a thicker dermis that contained more vimentin- and CD31-positive cells, and importantly, hair follicle formation was only observed in the skin grafted from early-stage TESSs. Finally, early-stage TESSs expressed high levels of p63 but had low expression levels of genes involved in the activation of the apoptotic pathway compared to the late-stage TESSs in vitro. CONCLUSIONS Early-stage bilayer TESSs reconstituted from skin progenitor cells contained more competent cells with less activation of the apoptotic pathway and produced a better skin structure, including hair follicles associated with sebaceous glands, after transplantation, which should potentially provide better wound healing when applied in the clinic in the future.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Jie Wen
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Chang Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Chuan Ma
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Fuxiang Bai
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Xue Leng
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Zhihong Chen
- Qilu Children's Hospital of Shandong University, Jinan, China
| | - Zhiwei Xie
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
- Department of Stomatology, Shengli Oilfield Center Hospital, Dongying, Shandong, China
| | - Jun Mi
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, Shandong, China.
| |
Collapse
|
17
|
Dill V, Mörgelin M. Biological dermal templates with native collagen scaffolds provide guiding ridges for invading cells and may promote structured dermal wound healing. Int Wound J 2020; 17:618-630. [PMID: 32045112 PMCID: PMC7949003 DOI: 10.1111/iwj.13314] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/20/2019] [Accepted: 01/10/2020] [Indexed: 01/14/2023] Open
Abstract
Dermal substitutes are of major importance in treating full thickness skin defects. They come in a variety of materials manufactured into various forms, such as films, hydrocolloids, hydrogels, sponges, membranes, and electrospun micro- and nanofibers. Bioactive dermal substitutes act in wound healing either by delivery of bioactive compounds or by being constructed from materials having endogenous activity. The healing success rate is highly determined by cellular and physiological processes at the host-biomaterial interface during crucial wound healing steps. Hence, it is important to design appropriate wound treatment strategies with the ability to work actively with tissues and cells to enhance healing. Therefore, in this study, we investigated biological dermal templates and their potential to stimulate natural cell adherence, guidance, and morphology. The most pronounced effect was observed in biomaterials with the highest content of native collagen networks. Cell attachment and proliferation were significantly enhanced on native collagen scaffolds. Cell morphology was more asymmetrical on such scaffolds, resembling native in vivo structures. Importantly, considerably lower expression of myofibroblast phenotype was observed on native collagen scaffolds. Our data suggest that this treatment strategy might be beneficial for the wound environment, with the potential to promote improved tissue regeneration and reduce abnormal scar formation.
Collapse
Affiliation(s)
- Veronika Dill
- Department of Clinical Sciences, Division of Infection MedicineLund UniversityLundSweden
| | - Matthias Mörgelin
- Department of Clinical Sciences, Division of Infection MedicineLund UniversityLundSweden
- Colzyx ABLundSweden
| |
Collapse
|
18
|
Liu F, Li X, Wang L, Yan X, Ma D, Liu Z, Liu X. Sesamol incorporated cellulose acetate-zein composite nanofiber membrane: An efficient strategy to accelerate diabetic wound healing. Int J Biol Macromol 2020; 149:627-638. [DOI: 10.1016/j.ijbiomac.2020.01.277] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022]
|
19
|
Li M, Ma J, Gao Y, Dong M, Zheng Z, Li Y, Tan R, She Z, Yang L. Epithelial differentiation of human adipose-derived stem cells (hASCs) undergoing three-dimensional (3D) cultivation with collagen sponge scaffold (CSS) via an indirect co-culture strategy. Stem Cell Res Ther 2020; 11:141. [PMID: 32234069 PMCID: PMC7110797 DOI: 10.1186/s13287-020-01645-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/10/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Three-dimensional (3D) cultivation with biomaterials was proposed to facilitate stem cell epithelial differentiation for wound healing. However, whether human adipose-derived stem cells (hASCs) on collagen sponge scaffold (CSS) better differentiate to keratinocytes remains unclear. METHODS 3D cultivation with CSS on hASC epidermal differentiation co-cultured with HaCaT cells at air-liquid interface (ALI) was compared with two-dimensional (2D) form and cultivation without "co-culture" or "ALI." Cellular morphology, cell adhesion, and growth condition were evaluated, followed by the protein and gene expression of keratin 14 (K14, keratinocyte specific marker). RESULTS Typical cobblestone morphology of keratinocytes was remarkably observed in co-cultured hASCs at ALI, but those seeded on the CSS exhibited more keratinocyte-like cells under an invert microscope and scanning electron microscope. Desired cell adhesion and proliferation were confirmed in 3D differentiation groups by rhodamine-labeled phalloidin staining, consistent with H&E staining. Compared with those cultured in 2D culture system or without "ALI," immunofluorescence staining and gene expression analysis revealed hASCs co-cultured over CSS expressed K14 at higher levels at day 15. CONCLUSIONS CSS is positive to promote epithelial differentiation of hASCs, which will foster a deeper understanding of artificial dermis in skin wound healing and regeneration.
Collapse
Affiliation(s)
- Minxiong Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People's Republic of China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People's Republic of China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People's Republic of China
| | - Mengru Dong
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People's Republic of China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People's Republic of China
| | - Yuchen Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People's Republic of China
| | - Rongwei Tan
- Guangdong Engineering Research Center of Implantable Medical Polymer, Shenzhen Lando Biomaterials Co., Ltd., Shenzhen, 518107, People's Republic of China
| | - Zhending She
- Guangdong Engineering Research Center of Implantable Medical Polymer, Shenzhen Lando Biomaterials Co., Ltd., Shenzhen, 518107, People's Republic of China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
20
|
Weng T, Wu P, Zhang W, Zheng Y, Li Q, Jin R, Chen H, You C, Guo S, Han C, Wang X. Regeneration of skin appendages and nerves: current status and further challenges. J Transl Med 2020; 18:53. [PMID: 32014004 PMCID: PMC6996190 DOI: 10.1186/s12967-020-02248-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Tissue-engineered skin (TES), as an analogue of native skin, is promising for wound repair and regeneration. However, a major drawback of TES products is a lack of skin appendages and nerves to enhance skin healing, structural integrity and skin vitality. Skin appendages and nerves are important constituents for fully functional skin. To date, many studies have yielded remarkable results in the field of skin appendages reconstruction and nerve regeneration. However, patients often complain about a loss of skin sensation and even cutaneous chronic pain. Restoration of pain, temperature, and touch perceptions should now be a major challenge to solve in order to improve patients’ quality of life. Current strategies to create skin appendages and sensory nerve regeneration are mainly based on different types of seeding cells, scaffold materials, bioactive factors and involved signaling pathways. This article provides a comprehensive overview of different strategies for, and advances in, skin appendages and sensory nerve regeneration, which is an important issue in the field of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Pan Wu
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Wei Zhang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Yurong Zheng
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Qiong Li
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Ronghua Jin
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Haojiao Chen
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Chuangang You
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Songxue Guo
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Chunmao Han
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
21
|
Cadaveric Skin Grafts May Greatly Increase the Healing Rate of Recalcitrant Ulcers When Used Both Alone and in Combination With Split-Thickness Skin Grafts. Dermatol Surg 2019; 46:169-179. [PMID: 31274530 DOI: 10.1097/dss.0000000000001990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Leg ulcers that do not heal despite appropriate treatment are defined as recalcitrant ulcers. Large surface area, depth, and long duration represent some of most important factors impeding ulcer healing. After sharp debridement, dermal substitutes including skin from cadaver donors may increase the healing rate of recalcitrant ulcers reducing the risk of scar formation and recurrence. OBJECTIVE Assessing if, after sharp debridement, dermal substitutes including skin from cadaver donors may increase the healing rate of recalcitrant ulcers reducing the risk of scar formation and recurrence. PATIENTS AND METHODS Among patients admitted to our hospital for all types of chronic leg ulcers, we retrospectively reviewed the records of patients affected by recalcitrant ulcers (surface greater than 100 cm, tissue loss involving epidermis, dermis, and subcutaneous tissue, duration longer than 1 year, and showing no healing tendency). After sharp debridement, the ulcers were covered by allografts with strict follow-up after discharge. Multiple allografts were performed when necessary, and a final autograft was applied in case of incomplete healing. RESULTS The records of 414 patients were analyzed. Forty-three patients were lost at follow-up, and the remaining 371 healed after 765 grafting procedures. In 163 patients, the ulcers healed by means of a final autograft. In all the remaining cases, allograft led to ulcer healing. CONCLUSION Allografts represent an effective treatment option in case of recalcitrant, large, deep and long-lasting leg ulcers.
Collapse
|
22
|
Cui H, Chai Y, Yu Y. Progress in developing decellularized bioscaffolds for enhancing skin construction. J Biomed Mater Res A 2019; 107:1849-1859. [PMID: 30942934 DOI: 10.1002/jbm.a.36688] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/22/2019] [Accepted: 03/19/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Haomin Cui
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Yimin Chai
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Yaling Yu
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| |
Collapse
|
23
|
Zhu C, Liu J, He B, Qu X, Peng D. The role of human immortal skin keratinocytes‐acellular dermal matrix scaffold in skin repair and regeneration. J Cell Biochem 2019; 120:12182-12191. [PMID: 30937961 DOI: 10.1002/jcb.28588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Chongtao Zhu
- Laser Medical Center, The First People's Hospital of Yunnan Province The Affiliated Hospital of Kunming University of Science and Technology Kunming Yunnan China
| | - Jiankun Liu
- Department of Gastroenterology 920th Hospital of PLA Joint Logistics Support Force Kunming Yunnan China
| | - Bin He
- Department of Burn Leshan Jiading Hospital Leshan Sichuan China
| | - Xiaowen Qu
- Laser Medical Center, The First People's Hospital of Yunnan Province The Affiliated Hospital of Kunming University of Science and Technology Kunming Yunnan China
| | - Daizhi Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital Third Military Medical University Chongqing China
| |
Collapse
|
24
|
Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, Raeisi Dehkordi S. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther 2019; 10:111. [PMID: 30922387 PMCID: PMC6440165 DOI: 10.1186/s13287-019-1212-2] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Normal wound healing is a dynamic and complex multiple phase process involving coordinated interactions between growth factors, cytokines, chemokines, and various cells. Any failure in these phases may lead wounds to become chronic and have abnormal scar formation. Chronic wounds affect patients' quality of life, since they require repetitive treatments and incur considerable medical costs. Thus, much effort has been focused on developing novel therapeutic approaches for wound treatment. Stem-cell-based therapeutic strategies have been proposed to treat these wounds. They have shown considerable potential for improving the rate and quality of wound healing and regenerating the skin. However, there are many challenges for using stem cells in skin regeneration. In this review, we present some sets of the data published on using embryonic stem cells, induced pluripotent stem cells, and adult stem cells in healing wounds. Additionally, we will discuss the different angles whereby these cells can contribute to their unique features and show the current drawbacks.
Collapse
Affiliation(s)
- Azar Nourian Dehkordi
- Department of Stem Cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Fatemeh Mirahmadi Babaheydari
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | |
Collapse
|
25
|
Jiang Y, Tian F, Wang Z, Niu Y, Yang J, Song F, Jin S, Cao Y, Dong J, Lu S. Exploring nanoscale structure change of dermal tissues suffering injury by small angle X-ray scattering and transmission electron microscopy. Mol Biol Rep 2018; 46:67-76. [DOI: 10.1007/s11033-018-4444-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/16/2018] [Indexed: 11/30/2022]
|
26
|
Shi H, Weng T, Han C, Wang X. Improved Dermal Regeneration Using a Combination of Dermal Substitutes and Dermal Fibroblast Optimization: A Hypothesis. Med Sci Monit 2018; 24:5457-5461. [PMID: 30079896 PMCID: PMC6091181 DOI: 10.12659/msm.909743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In human adults, the repair of cutaneous wounds usually leads to scar formation rather than regeneration. Dermal substitutes have been used as a regenerative template for reducing scar formation and improving the extent of dermal regeneration. However, achievement of complete regeneration is still a long way off. Dermal substitutes are characterized by unusual regenerative activity, appearing to function by acting as temporary configurational guides for cell infiltration and synthesis of new stroma. Fibroblasts are important cells with many vital functions in wound-healing processes. They are heterogeneous with distinct characteristics according to their source location, such as subcutaneous tissue, superficial-layer dermis, and deep-layer dermis. Many studies have shown that superficial dermal fibroblasts possess the potential to form dermis-like tissue. Fibroblasts in deep-layer dermis and subcutaneous tissue may play a critical role in the formation of hypertrophic scars. Fibroblast phenotype affects the newly formed dermal architecture and influences the dermal regeneration effect induced by dermal substitutes. It is hypothesized that better regeneration of the dermis can be achieved using dermal substitutes along with dermal fibroblast optimization.
Collapse
Affiliation(s)
- Haifei Shi
- Department of Hand Surgery, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland).,Department of Burns and Wound Care Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Tingting Weng
- Department of Burns and Wound Care Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Chunmao Han
- Department of Burns and Wound Care Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Xingang Wang
- Department of Burns and Wound Care Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
27
|
Sun L, Gao W, Fu X, Shi M, Xie W, Zhang W, Zhao F, Chen X. Enhanced wound healing in diabetic rats by nanofibrous scaffolds mimicking the basketweave pattern of collagen fibrils in native skin. Biomater Sci 2018; 6:340-349. [PMID: 29265119 DOI: 10.1039/c7bm00545h] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanofibrous scaffolds that offer proper microenvironmental cues to promote the healing process are highly desirable for patients with chronic wounds. Although studies have shown that fiber organization regulates cell behaviors in vitro, little is known about its effects on the wound healing process in vivo. Most of the nanofibrous scaffolds currently used in skin repair are randomly oriented. Herein, inspired by the basketweave-like pattern of collagen fibrils in native skin, we fabricated biomimetic nanofibrous scaffolds with crossed fiber organization via electrospinning. The regulation of crossed nanofibrous scaffolds on fibroblasts was compared with that of aligned and random nanofibrous scaffolds. Unexpectedly, crossed nanofibrous scaffolds induced different cellular responses in fibroblasts, including differences in cellular morphology, migration and wound healing related gene expression, in comparison to either aligned or random nanofibrous scaffolds. More importantly, the regulation of nanofibrous scaffolds with different fiber organizations on wound repair was systematically investigated in diabetic rats. While the healing processes were enhanced by all nanofibrous scaffolds, wounds treated with crossed nanofibrous scaffolds achieved the best healing outcome, which was evidenced by the resolution of inflammation, the accelerated migration of fibroblasts and keratinocytes, and the promotion of angiogenesis. These findings helped reveal the role of fiber organization in regulating the wound healing process in vivo and suggest the potential utility of biomimetic crossed nanofibrous scaffolds for the repair of chronic wounds.
Collapse
Affiliation(s)
- Luyao Sun
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Cogan NG, Mellers AP, Patel BN, Powell BD, Aggarwal M, Harper KM, Blaber M. A mathematical model for the determination of mouse excisional wound healing parameters from photographic data. Wound Repair Regen 2018; 26:136-143. [DOI: 10.1111/wrr.12634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/30/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Nicholas G. Cogan
- Departments of Mathematics; Florida State University; Tallahassee Florida
| | - Alana P. Mellers
- Biomedical Sciences; Florida State University; Tallahassee Florida
| | - Bhavi N. Patel
- Biomedical Sciences; Florida State University; Tallahassee Florida
| | - Brett D. Powell
- Biomedical Sciences; Florida State University; Tallahassee Florida
| | - Manu Aggarwal
- Departments of Mathematics; Florida State University; Tallahassee Florida
| | - Kathleen M. Harper
- Biomedical Research Laboratory Animal Resources; Florida State University; Tallahassee Florida
| | - Michael Blaber
- Biomedical Sciences; Florida State University; Tallahassee Florida
| |
Collapse
|
29
|
Qu Y, Cao C, Wu Q, Huang A, Song Y, Li H, Zuo Y, Chu C, Li J, Man Y. The dual delivery of KGF and bFGF by collagen membrane to promote skin wound healing. J Tissue Eng Regen Med 2018; 12:1508-1518. [PMID: 29706001 DOI: 10.1002/term.2691] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 08/17/2017] [Accepted: 04/16/2018] [Indexed: 02/05/2023]
Abstract
The major challenges associated with skin regeneration can include hindered vascularization and an insufficient degree of epithelization. In view of the complexity of these processes and the control signals on which they depend, one possible solution to these limitations could be simulating normal skin development and wound repair via the exogenous delivery of multiple cytokines. Here, we report the use of keratinocyte growth factor (KGF or FGF-7) and basic fibroblast growth factor (bFGF or FGF-2) released chemically modified collagen membranes to facilitate skin wound healing. The results from in vitro studies confirmed that this system resulted in higher cellular proliferation and faster cell migration. After transplanting the biomaterial onto an excisional wound healing model, the dual growth factor group, compared with the single growth factor groups and empty control group, showed more highly developed vascular networks and organized epidermal regeneration in the wounds. As a consequence, this experimental group showed mature epidermal coverage. Overall, this novel approach of releasing growth factors from a collagen membrane opens new avenues for fulfilling unmet clinical needs for wound care.
Collapse
Affiliation(s)
- Yili Qu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, P. R. China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Cong Cao
- Center of Stomatology, China-Japan Friendship Hospital, Beijing, P. R. China
| | - Qingqing Wu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Ai Huang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, P. R. China
| | - Ying Song
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, P. R. China
| | - Hongling Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, P. R. China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, and Analytical and Testing Center, Sichuan University, Chengdu, P. R. China
| | - Chenyu Chu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, P. R. China
| | - Jidong Li
- Research Center for Nano-Biomaterials, and Analytical and Testing Center, Sichuan University, Chengdu, P. R. China
| | - Yi Man
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, P. R. China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
30
|
Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms. Adv Drug Deliv Rev 2018; 129:95-117. [PMID: 29627369 DOI: 10.1016/j.addr.2018.03.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/16/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022]
Abstract
Skin wound healing aims to repair and restore tissue through a multistage process that involves different cells and signalling molecules that regulate the cellular response and the dynamic remodelling of the extracellular matrix. Nowadays, several therapies that combine biomolecule signals (growth factors and cytokines) and cells are being proposed. However, a lack of reliable evidence of their efficacy, together with associated issues such as high costs, a lack of standardization, no scalable processes, and storage and regulatory issues, are hampering their application. In situ tissue regeneration appears to be a feasible strategy that uses the body's own capacity for regeneration by mobilizing host endogenous stem cells or tissue-specific progenitor cells to the wound site to promote repair and regeneration. The aim is to engineer instructive systems to regulate the spatio-temporal delivery of proper signalling based on the biological mechanisms of the different events that occur in the host microenvironment. This review describes the current state of the different signal cues used in wound healing and skin regeneration, and their combination with biomaterial supports to create instructive microenvironments for wound healing.
Collapse
|
31
|
Hauser-Kawaguchi A, Luyt LG, Turley E. Design of peptide mimetics to block pro-inflammatory functions of HA fragments. Matrix Biol 2018; 78-79:346-356. [PMID: 29408009 DOI: 10.1016/j.matbio.2018.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/22/2018] [Accepted: 01/28/2018] [Indexed: 12/26/2022]
Abstract
Hyaluronan is a simple extracellular matrix polysaccharide that actively regulates inflammation in tissue repair and disease processes. The native HA polymer, which is large (>500 kDa), contributes to the maintenance of homeostasis. In remodeling and diseased tissues, polymer size is strikingly polydisperse, ranging from <10 kDa to >500 kDa. In a diseased or stressed tissue context, both smaller HA fragments and high molecular weight HA polymers can acquire pro-inflammatory functions, which result in the activation of multiple receptors, triggering pro-inflammatory signaling to diverse stimuli. Peptide mimics that bind and scavenge HA fragments have been developed, which show efficacy in animal models of inflammation. These studies indicate both that HA fragments are key to driving inflammation and that scavenging these is a viable therapeutic approach to blunting inflammation in disease processes. This mini-review summarizes the peptide-based methods that have been reported to date for blocking HA signaling events as an anti-inflammatory therapeutic approach.
Collapse
Affiliation(s)
| | - Leonard G Luyt
- Department of Chemistry, Western University, London, ON, Canada; Department of Oncology, Schulich School of Medicine, Western University, London, ON, Canada; Department of Medical Imaging, Schulich School of Medicine, Western University, London, ON, Canada; Cancer Research Laboratories, London Regional Cancer Center, Victoria Hospital, London, ON N6A 4L6, Canada
| | - Eva Turley
- Department of Oncology, Schulich School of Medicine, Western University, London, ON, Canada; Cancer Research Laboratories, London Regional Cancer Center, Victoria Hospital, London, ON N6A 4L6, Canada; Department of Biochemistry, Schulich School of Medicine, Western University, London, ON, Canada; Department of Surgery, Schulich School of Medicine, Western University, London, ON, Canada.
| |
Collapse
|
32
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 484] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
33
|
Chen Y, Yang W, Wang W, Zhang M, Li M. Bombyx mori Silk Fibroin Scaffolds with Antheraea pernyi Silk Fibroin Micro/Nano Fibers for Promoting EA. hy926 Cell Proliferation. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1153. [PMID: 28972553 PMCID: PMC5666959 DOI: 10.3390/ma10101153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/25/2017] [Accepted: 09/30/2017] [Indexed: 10/31/2022]
Abstract
Achieving a high number of inter-pore channels and a nanofibrous structure similar to that of the extracellular matrix remains a challenge in the preparation of Bombyx mori silk fibroin (BSF) scaffolds for tissue engineering. In this study, Antheraea pernyi silk fibroin (ASF) micro/nano fibers with an average diameter of 324 nm were fabricated by electrospinning from an 8 wt % ASF solution in hexafluoroisopropanol. The electrospun fibers were cut into short fibers (~0.5 mm) and then dispersed in BSF solution. Next, BSF scaffolds with ASF micro/nano fibers were prepared by lyophilization. Scanning electron microscope images clearly showed connected channels between macropores after the addition of ASF micro/nano fibers; meanwhile, micro/nano fibers and micropores could be clearly observed on the pore walls. The results of in vitro cultures of human umbilical vein endothelial cells (EA. hy926) on BSF scaffolds showed that fibrous BSF scaffolds containing 150% ASF fibers significantly promoted cell proliferation during the initial stage.
Collapse
Affiliation(s)
- Yongchun Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, Jiangsu, China.
| | - Weichao Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, Jiangsu, China.
| | - Weiwei Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, Jiangsu, China.
| | - Min Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, Jiangsu, China.
| | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
34
|
Transit-Amplifying Cells in the Fast Lane from Stem Cells towards Differentiation. Stem Cells Int 2017; 2017:7602951. [PMID: 28835754 PMCID: PMC5556613 DOI: 10.1155/2017/7602951] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/23/2017] [Accepted: 07/11/2017] [Indexed: 12/13/2022] Open
Abstract
Stem cells have a high potential to impact regenerative medicine. However, stem cells in adult tissues often proliferate at very slow rates. During development, stem cells may change first to a pluripotent and highly proliferative state, known as transit-amplifying cells. Recent advances in the identification and isolation of these undifferentiated and fast-dividing cells could bring new alternatives for cell-based transplants. The skin epidermis has been the target of necessary research about transit-amplifying cells; this work has mainly been performed in mammalian cells, but further work is being pursued in other vertebrate models, such as zebrafish. In this review, we present some insights about the molecular repertoire regulating the transition from stem cells to transit-amplifying cells or playing a role in the transitioning to fully differentiated cells, including gene expression profiles, cell cycle regulation, and cellular asymmetrical events. We also discuss the potential use of this knowledge in effective progenitor cell-based transplants in the treatment of skin injuries and chronic disease.
Collapse
|
35
|
Remuzzi A. Artificial organs: current status and future directions. Int J Artif Organs 2017; 39:587-589. [PMID: 28194748 DOI: 10.5301/ijao.5000563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Andrea Remuzzi
- IRCCS - Mario Negri Institute of Pharmacological Research, Anna Maria Astori Center, Bergamo - Italy
- Department of Management, Information and Production Engineering, University of Bergamo, Dalmine (Bergamo) - Italy
| |
Collapse
|