1
|
Zhu D, Huang MF, Xu A, Gao X, Huang YW, Phan TTT, Lu L, Chi TY, Dai Y, Pang LK, Gingold JA, Tu J, Huo Z, Bazer DA, Shoemaker R, Wang J, Ambrose CG, Shen J, Kameoka J, Zhao Z, Wang LL, Zhang Y, Zhao R, Lee DF. Systematic transcriptome profiling of hPSC-derived osteoblasts unveils CORIN's mastery in governing osteogenesis through CEBPD modulation. J Biol Chem 2024; 300:107494. [PMID: 38925326 PMCID: PMC11301355 DOI: 10.1016/j.jbc.2024.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/21/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
The commitment of stem cells to differentiate into osteoblasts is a highly regulated and complex process that involves the coordination of extrinsic signals and intrinsic transcriptional machinery. While rodent osteoblastic differentiation has been extensively studied, research on human osteogenesis has been limited by cell sources and existing models. Here, we systematically dissect human pluripotent stem cell-derived osteoblasts to identify functional membrane proteins and their downstream transcriptional networks involved in human osteogenesis. Our results reveal an enrichment of type II transmembrane serine protease CORIN in humans but not rodent osteoblasts. Functional analyses demonstrated that CORIN depletion significantly impairs osteogenesis. Genome-wide chromatin immunoprecipitation enrichment and mechanistic studies show that p38 MAPK-mediated CCAAT enhancer binding protein delta (CEBPD) upregulation is required for CORIN-modulated osteogenesis. Contrastingly, the type I transmembrane heparan sulfate proteoglycan SDC1 enriched in mesenchymal stem cells exerts a negative regulatory effect on osteogenesis through a similar mechanism. Chromatin immunoprecipitation-seq, bulk and single-cell transcriptomes, and functional validations indicated that CEBPD plays a critical role in controlling osteogenesis. In summary, our findings uncover previously unrecognized CORIN-mediated CEBPD transcriptomic networks in driving human osteoblast lineage commitment.
Collapse
Affiliation(s)
- Dandan Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - An Xu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xueqin Gao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA; Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Yu-Wen Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Trinh T T Phan
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Linchao Lu
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Ting-Yen Chi
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Lon Kai Pang
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Julian A Gingold
- Department of Obstetrics & Gynecology and Women's Health, Einstein/Montefiore Medical Center, Bronx, New York, USA
| | - Jian Tu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zijun Huo
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Danielle A Bazer
- Department of Neurology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Rachel Shoemaker
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Jun Wang
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA; Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Catherine G Ambrose
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Jun Kameoka
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, College Station, Texas, USA
| | - Zhongming Zhao
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA; Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Lisa L Wang
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Yang Zhang
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China.
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA; Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
2
|
Hu P, Zhang G, Ba H, Ren J, Li J, Wang Z, Li C. Reciprocal negative feedback between Prrx1 and miR-140-3p regulates rapid chondrogenesis in the regenerating antler. Cell Mol Biol Lett 2024; 29:56. [PMID: 38643083 PMCID: PMC11031908 DOI: 10.1186/s11658-024-00573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/05/2024] [Indexed: 04/22/2024] Open
Abstract
During growth phase, antlers exhibit a very rapid rate of chondrogenesis. The antler is formed from its growth center reserve mesenchyme (RM) cells, which have been found to be the derivatives of paired related homeobox 1 (Prrx1)-positive periosteal cells. However, the underlying mechanism that drives rapid chondrogenesis is not known. Herein, the miRNA expression profiles and chromatin states of three tissue layers (RM, precartilage, and cartilage) at different stages of differentiation within the antler growth center were analyzed by RNA-sequencing and ATAC-sequencing. We found that miR-140-3p was the miRNA that exhibited the greatest degree of upregulation in the rapidly growing antler, increasing from the RM to the cartilage layer. We also showed that Prrx1 was a key upstream regulator of miR-140-3p, which firmly confirmed by Prrx1 CUT&Tag sequencing of RM cells. Through multiple approaches (three-dimensional chondrogenic culture and xenogeneic antler model), we demonstrated that Prrx1 and miR-140-3p functioned as reciprocal negative feedback in the antler growth center, and downregulating PRRX1/upregulating miR-140-3p promoted rapid chondrogenesis of RM cells and xenogeneic antler. Thus, we conclude that the reciprocal negative feedback between Prrx1 and miR-140-3p is essential for balancing mesenchymal proliferation and chondrogenic differentiation in the regenerating antler. We further propose that the mechanism underlying chondrogenesis in the regenerating antler would provide a reference for helping understand the regulation of human cartilage regeneration and repair.
Collapse
Affiliation(s)
- Pengfei Hu
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China.
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Guokun Zhang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Hengxing Ba
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Jing Ren
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Jiping Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Zhen Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China.
| |
Collapse
|
3
|
Chen Y, Tan J, Yang C, Ling Z, Xu J, Sun D, Luo F. Dynamic chromatin accessibility landscapes of osteoblast differentiation and mineralization. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166938. [PMID: 37931716 DOI: 10.1016/j.bbadis.2023.166938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Bone acts as a self-healing organ, which undergoes continuous regeneration process that is tightly regulated by the cooperation of osteoclasts with the capability of bone resorption and osteoblasts with the capability of bone formation. Generally, bone marrow derived mesenchymal stem cells (BMSCs) differentiated to final osteoblasts have been considered as critical role in bone remodeling. In this regard, several transcription factors (TFs) whose binding sites are initially hidden deep within accessible chromatin that participate in modulating osteoblast differentiation and bone matrix mineralization. Then, it is necessary to explore further the dynamic changes about the epigenetic transcription machinery during osteoblastogenesis. Here, we performed the chromatin accessibility and transcriptomic landscape of osteoblast differentiation and mineralization by using transposase-accessible chromatin sequencing (ATAC-seq) and RNA sequencing (RNA-Seq). Our data found that global chromatin accessibility during osteoblastogenesis was extensively improved. Above this, it is shown that key target genes including Col6a3, Serpina3n, Ms4a4d, Lyz2, Phf11b and Grin3a were enriched in differential loci RNA-seq and ATAC-Seq peaks with continuous changed tendency during osteoblasts differentiation and mineralization. In addition, Analysis of Motif Enrichment (AME) was used to elucidate TFs which modulated these target genes. In this study, it was shown for the first time that these important TFs including MEF2A, PRRX1, Shox2 and HOXB13 could alter promoter accessibility of target genes during osteoblastogenesis. This helps us understand how TF binding motif accessibility influences osteoblast differentiation. In addition, it also suggests that modulating the chromatin accessibility of osteogenesis could be developed as the promising strategies to regulate bone regeneration.
Collapse
Affiliation(s)
- Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Department of Orthopedics, 76nd Group Army Hospital, Xining, People's Republic of China.
| | - Jiulin Tan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Chuan Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Zhiguo Ling
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Dong Sun
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| |
Collapse
|
4
|
Yu Chen H, Dina C, Small AM, Shaffer CM, Levinson RT, Helgadóttir A, Capoulade R, Munter HM, Martinsson A, Cairns BJ, Trudsø LC, Hoekstra M, Burr HA, Marsh TW, Damrauer SM, Dufresne L, Le Scouarnec S, Messika-Zeitoun D, Ranatunga DK, Whitmer RA, Bonnefond A, Sveinbjornsson G, Daníelsen R, Arnar DO, Thorgeirsson G, Thorsteinsdottir U, Gudbjartsson DF, Hólm H, Ghouse J, Olesen MS, Christensen AH, Mikkelsen S, Jacobsen RL, Dowsett J, Pedersen OBV, Erikstrup C, Ostrowski SR, O’Donnell CJ, Budoff MJ, Gudnason V, Post WS, Rotter JI, Lathrop M, Bundgaard H, Johansson B, Ljungberg J, Näslund U, Le Tourneau T, Smith JG, Wells QS, Söderberg S, Stefánsson K, Schott JJ, Rader DJ, Clarke R, Engert JC, Thanassoulis G. Dyslipidemia, inflammation, calcification, and adiposity in aortic stenosis: a genome-wide study. Eur Heart J 2023; 44:1927-1939. [PMID: 37038246 PMCID: PMC10232274 DOI: 10.1093/eurheartj/ehad142] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/20/2023] [Accepted: 02/21/2023] [Indexed: 04/12/2023] Open
Abstract
AIMS Although highly heritable, the genetic etiology of calcific aortic stenosis (AS) remains incompletely understood. The aim of this study was to discover novel genetic contributors to AS and to integrate functional, expression, and cross-phenotype data to identify mechanisms of AS. METHODS AND RESULTS A genome-wide meta-analysis of 11.6 million variants in 10 cohorts involving 653 867 European ancestry participants (13 765 cases) was performed. Seventeen loci were associated with AS at P ≤ 5 × 10-8, of which 15 replicated in an independent cohort of 90 828 participants (7111 cases), including CELSR2-SORT1, NLRP6, and SMC2. A genetic risk score comprised of the index variants was associated with AS [odds ratio (OR) per standard deviation, 1.31; 95% confidence interval (CI), 1.26-1.35; P = 2.7 × 10-51] and aortic valve calcium (OR per standard deviation, 1.22; 95% CI, 1.08-1.37; P = 1.4 × 10-3), after adjustment for known risk factors. A phenome-wide association study indicated multiple associations with coronary artery disease, apolipoprotein B, and triglycerides. Mendelian randomization supported a causal role for apolipoprotein B-containing lipoprotein particles in AS (OR per g/L of apolipoprotein B, 3.85; 95% CI, 2.90-5.12; P = 2.1 × 10-20) and replicated previous findings of causality for lipoprotein(a) (OR per natural logarithm, 1.20; 95% CI, 1.17-1.23; P = 4.8 × 10-73) and body mass index (OR per kg/m2, 1.07; 95% CI, 1.05-1.9; P = 1.9 × 10-12). Colocalization analyses using the GTEx database identified a role for differential expression of the genes LPA, SORT1, ACTR2, NOTCH4, IL6R, and FADS. CONCLUSION Dyslipidemia, inflammation, calcification, and adiposity play important roles in the etiology of AS, implicating novel treatments and prevention strategies.
Collapse
Affiliation(s)
- Hao Yu Chen
- Division of Experimental Medicine, McGill University, 1001 Decarie Blvd., Room EM1.2218, Montreal, Quebec H4A 3J1, Canada
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, 1001 Decarie Blvd., Room D05.5120, Montreal, Quebec H4A 3J1, Canada
| | - Christian Dina
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 8 Quai Moncousu, Nantes F-44000, France
| | - Aeron M Small
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Christian M Shaffer
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, USA
| | - Rebecca T Levinson
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, USA
| | | | - Romain Capoulade
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 8 Quai Moncousu, Nantes F-44000, France
| | | | - Andreas Martinsson
- Department of Cardiology, Clinical Sciences, Lund University, Sweden and Skåne University Hospital, Lund, Sweden
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and the Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Benjamin J Cairns
- MRC Population Health Research Unit, Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Linea C Trudsø
- Laboratory for Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mary Hoekstra
- Division of Experimental Medicine, McGill University, 1001 Decarie Blvd., Room EM1.2218, Montreal, Quebec H4A 3J1, Canada
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, 1001 Decarie Blvd., Room D05.5120, Montreal, Quebec H4A 3J1, Canada
| | - Hannah A Burr
- Division of Experimental Medicine, McGill University, 1001 Decarie Blvd., Room EM1.2218, Montreal, Quebec H4A 3J1, Canada
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, 1001 Decarie Blvd., Room D05.5120, Montreal, Quebec H4A 3J1, Canada
| | - Thomas W Marsh
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, 1001 Decarie Blvd., Room D05.5120, Montreal, Quebec H4A 3J1, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Line Dufresne
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, 1001 Decarie Blvd., Room D05.5120, Montreal, Quebec H4A 3J1, Canada
| | - Solena Le Scouarnec
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 8 Quai Moncousu, Nantes F-44000, France
| | - David Messika-Zeitoun
- Department of Cardiology, Assistance Publique - Hôpitaux de Paris, Bichat Hospital, Paris, France
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Dilrini K Ranatunga
- Division of Research, Kaiser Permanente of Northern California, Oakland, USA
| | - Rachel A Whitmer
- Department of Public Health Sciences, University of California Davis, Davis, USA
| | - Amélie Bonnefond
- University Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, UMR1283-8199 EGID, Lille, France
- Department of Metabolism, Imperial College London, London, UK
| | | | - Ragnar Daníelsen
- Internal Medicine and Emergency Services, Landspitali—The National University Hospital of Iceland, Reykjavik, Iceland
| | - David O Arnar
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Internal Medicine and Emergency Services, Landspitali—The National University Hospital of Iceland, Reykjavik, Iceland
- School of Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Thorgeirsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Daníel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Hilma Hólm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Jonas Ghouse
- Laboratory for Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Morten Salling Olesen
- Laboratory for Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Alex H Christensen
- Laboratory for Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen, Denmark
| | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Louise Jacobsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Joseph Dowsett
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Christopher J O’Donnell
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Boston, USA
| | - Matthew J Budoff
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, USA
| | | | - Wendy S Post
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, USA
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Bengt Johansson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Johan Ljungberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Ulf Näslund
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Thierry Le Tourneau
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 8 Quai Moncousu, Nantes F-44000, France
| | - J Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University, Sweden and Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund, Sweden
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and the Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Quinn S Wells
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, USA
| | - Stefan Söderberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Kári Stefánsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Jean-Jacques Schott
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, 8 Quai Moncousu, Nantes F-44000, France
| | - Daniel J Rader
- Departments of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Robert Clarke
- MRC Population Health Research Unit, Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - James C Engert
- Division of Experimental Medicine, McGill University, 1001 Decarie Blvd., Room EM1.2218, Montreal, Quebec H4A 3J1, Canada
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, 1001 Decarie Blvd., Room D05.5120, Montreal, Quebec H4A 3J1, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - George Thanassoulis
- Division of Experimental Medicine, McGill University, 1001 Decarie Blvd., Room EM1.2218, Montreal, Quebec H4A 3J1, Canada
- Preventive and Genomic Cardiology, McGill University Health Centre and Research Institute, 1001 Decarie Blvd., Room D05.5120, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
5
|
Solidum JGN, Jeong Y, Heralde F, Park D. Differential regulation of skeletal stem/progenitor cells in distinct skeletal compartments. Front Physiol 2023; 14:1137063. [PMID: 36926193 PMCID: PMC10013690 DOI: 10.3389/fphys.2023.1137063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Skeletal stem/progenitor cells (SSPCs), characterized by self-renewal and multipotency, are essential for skeletal development, bone remodeling, and bone repair. These cells have traditionally been known to reside within the bone marrow, but recent studies have identified the presence of distinct SSPC populations in other skeletal compartments such as the growth plate, periosteum, and calvarial sutures. Differences in the cellular and matrix environment of distinct SSPC populations are believed to regulate their stemness and to direct their roles at different stages of development, homeostasis, and regeneration; differences in embryonic origin and adjacent tissue structures also affect SSPC regulation. As these SSPC niches are dynamic and highly specialized, changes under stress conditions and with aging can alter the cellular composition and molecular mechanisms in place, contributing to the dysregulation of local SSPCs and their activity in bone regeneration. Therefore, a better understanding of the different regulatory mechanisms for the distinct SSPCs in each skeletal compartment, and in different conditions, could provide answers to the existing knowledge gap and the impetus for realizing their potential in this biological and medical space. Here, we summarize the current scientific advances made in the study of the differential regulation pathways for distinct SSPCs in different bone compartments. We also discuss the physical, biological, and molecular factors that affect each skeletal compartment niche. Lastly, we look into how aging influences the regenerative capacity of SSPCs. Understanding these regulatory differences can open new avenues for the discovery of novel treatment approaches for calvarial or long bone repair.
Collapse
Affiliation(s)
- Jea Giezl Niedo Solidum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Youngjae Jeong
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Francisco Heralde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Dongsu Park
- Department of Molecular and Human Genetics, Houston, TX, United States
- Center for Skeletal Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Assadiasl S, Rajabinejad M, Soleimanifar N, Makiyan F, Azizi E, Rezaiemanesh A, Nicknam MH. MicroRNAs-mediated regulation pathways in rheumatic diseases. Inflammopharmacology 2023; 31:129-144. [PMID: 36469219 DOI: 10.1007/s10787-022-01097-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/29/2022] [Indexed: 12/09/2022]
Abstract
Rheumatoid arthritis (RA) and ankylosing spondylitis (AS) are two common rheumatic disorders marked by persistent inflammatory joint disease. Patients with RA have osteodestructive symptoms, but those with AS have osteoproliferative manifestations. Ligaments, joints, tendons, bones, and muscles are all affected by rheumatic disorders. In recent years, many epigenetic factors contributing to the pathogenesis of rheumatoid disorders have been studied. MicroRNAs (miRNAs) are small, non-coding RNA molecules implicated as potential therapeutic targets or biomarkers in rheumatic diseases. MiRNAs play a critical role in the modulation of bone homeostasis and joint remodeling by controlling fibroblast-like synoviocytes (FLSs), chondrocytes, and osteocytes. Several miRNAs have been shown to be dysregulated in rheumatic diseases, including miR-10a, 16, 17, 18a, 19, 20a, 21, 27a, 29a, 34a, 103a, 125b, 132, 137, 143, 145, 146a, 155, 192, 203, 221, 222, 301a, 346, and 548a.The major molecular pathways governed by miRNAs in these cells are Wnt, bone-morphogenic protein (BMP), nuclear factor (NF)-κB, receptor activator of NF-κB (RANK)-RANK ligand (RANKL), and macrophage colony-stimulating factor (M-CSF) receptor pathway. This review aimed to provide an overview of the most important signaling pathways controlled by miRNAs in rheumatic diseases.
Collapse
Affiliation(s)
- Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Misagh Rajabinejad
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narjes Soleimanifar
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Makiyan
- Division of Nanobiotechnology, Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Esfandiar Azizi
- Department of Immunology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Bākhtarān, Iran.
| | | |
Collapse
|
7
|
Nagata M, English JD, Ono N, Ono W. Diverse stem cells for periodontal tissue formation and regeneration. Genesis 2022; 60:e23495. [PMID: 35916433 PMCID: PMC9492631 DOI: 10.1002/dvg.23495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022]
Abstract
The periodontium is comprised of multiple units of mineralized and nonmineralized tissues including the cementum on the root surface, the alveolar bone, periodontal ligament (PDL), and the gingiva. PDL contains a variety of cell populations including mesenchymal stem/progenitor cells (MSCs) termed PDLSCs, which contribute to periodontal regeneration. Recent studies utilizing mouse genetic models shed light on the identities of these mesenchymal progenitors in their native environment, particularly regarding how they contribute to homeostasis and repair of the periodontium. The current concept is that mesenchymal progenitors in the PDL are localized to the perivascular niche. Single-cell RNA sequencing (scRNA-seq) analyses reveal heterogeneity and cell-type specific markers of cells in the periodontium, as well as their developmental relationship with precursor cells in the dental follicle. The characteristics of PDLSCs and their diversity in vivo are now beginning to be unraveled thanks to insights from mouse genetic models and scRNA-seq analyses, which aid to uncover the fundamental properties of stem cells in the human PDL. The new knowledge will be highly important for developing more effective stem cell-based regenerative therapies to repair periodontal tissues in the future.
Collapse
Affiliation(s)
- Mizuki Nagata
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Jeryl D. English
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Noriaki Ono
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| |
Collapse
|
8
|
Rodrigues LM, Zutin EAL, Sartori EM, Rizzante FAP, Mendonça DBS, Krebsbach P, Jepsen K, Cooper L, de Vasconcellos LMR, Mendonça G. Nanoscale hybrid implant surfaces and Osterix-mediated osseointegration. J Biomed Mater Res A 2022; 110:696-707. [PMID: 34672417 PMCID: PMC8805158 DOI: 10.1002/jbm.a.37323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022]
Abstract
Endosseous implant surface topography directly affects adherent cell responses following implantation. The aim of this study was to examine the impact of nanoscale topographic modification of titanium implants on Osterix gene expression since this gene has been reported as key factor for bone formation. Titanium implants with smooth and nanoscale topographies were implanted in the femurs of Osterix-Cherry mice for 1-21 days. Implant integration was evaluated using scanning electron microscopy (SEM) to evaluate cell adhesion on implant surfaces, histology, and nanotomography (NanoCT) to observe and quantify the formed bone-to-implant interface, flow cytometry to quantify of Osterix expressing cells in adjacent tissues, and real-time PCR (qPCR) to quantify the osteoinductive and osteogenic gene expression of the implant-adherent cells. SEM revealed topography-dependent adhesion of cells at early timepoints. NanoCT demonstrated greater bone formation at nanoscale implants and interfacial osteogenesis was confirmed histologically at 7 and 14 days for both smooth and nanosurface implants. Flow cytometry revealed greater numbers of Osterix positive cells in femurs implanted with nanoscale versus smooth implants. Compared to smooth surface implants, nanoscale surface adherent cells expressed higher levels of Osterix (Osx), Alkaline phosphatase (Alp), Paired related homeobox (Prx1), Dentin matrix protein 1 (Dmp1), Bone sialoprotein (Bsp), and Osteocalcin (Ocn). In conclusion, nanoscale surface implants demonstrated greater bone formation associated with higher levels of Osterix expression over the 21-day healing period with direct evidence of surface-associated gene regulation involving a nanoscale-mediated osteoinductive pathway that utilizes Osterix to direct adherent cell osteoinduction.
Collapse
Affiliation(s)
- Laís Morandini Rodrigues
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos
| | - Elis Andrade Lima Zutin
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos
| | - Elisa Matias Sartori
- Department of Oral Surgery and Integrated Clinics, São Paulo State University (Unesp), School of Dentistry, Araçatuba
| | | | | | - Paul Krebsbach
- Section of Periodontics, University of California, School of Dentistry, Los Angeles, CA
| | - Karl Jepsen
- Department of Orthopedic Surgery, University of Michigan, School of Medicine, Ann Arbor, MI
| | - Lyndon Cooper
- Department of Oral Biology, University of Illinois at Chicago College of Dentistry, Chicago, IL
| | - Luana Marotta Reis de Vasconcellos
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos
| | - Gustavo Mendonça
- Department of Biological and Material Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI
| |
Collapse
|
9
|
Huai Y, Zhang WJ, Wang W, Dang K, Jiang SF, Li DM, Li M, Hao Q, Miao ZP, Li Y, Qian AR. Systems pharmacology dissection of action mechanisms for herbs in osteoporosis treatment. CHINESE HERBAL MEDICINES 2021; 13:313-331. [PMID: 36118922 PMCID: PMC9476722 DOI: 10.1016/j.chmed.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Osteoporosis has become the biggest cause of non-fatal health issue. Currently, the limitations of traditional anti-osteoporosis drugs such as long-term ill-effects and drug resistance, have raised concerns toward complementary and alternative therapies, particularly herbal medicines and their natural active compounds. Thus, this study aimed to provide an integrative analysis of active chemicals, drug targets and interacting pathways of the herbs for osteoporosis treatment. Methods Here, we introduced a systematic pharmacology model, combining the absorption, distribution, metabolism, and excretion (ADME) screening model, drug targeting and network pharmacology, to probe into the therapeutic mechanisms of herbs in osteoporosis. Results We obtained 86 natural compounds with favorable pharmacokinetic profiles and their 58 targets from seven osteoporosis-related herbs. Network analysis revealed that they probably synergistically work through multiple mechanisms, such as suppressing inflammatory response, maintaining bone metabolism or improving organism immunity, to benefit patients with osteoporosis. Furthermore, experimental results showed that all the five compounds (calycosin, asperosaponin VI, hederagenin, betulinic acid and luteolin) enhanced osteoblast proliferation and differentiation in vitro, which corroborated the validity of this system pharmacology approach. Notably, gentisin and aureusidin among the identified compounds were first predicted to be associated with osteoporosis. Conclusion Herbs and their natural compounds, being characterized as the classical combination therapies, might be engaged in multiple mechanisms to coordinately improve the osteoporosis symptoms. This work may contribute to offer novel strategies and clues for the therapy and drug discovery of osteoporosis and other complex diseases.
Collapse
|
10
|
Abstract
Intermuscular bones (IBs) are slender linear bones embedded in muscle, which ossify from tendons through a process of intramembranous ossification, and only exist in basal teleosts. IBs are essential for fish swimming, but they present a choking risk during human consumption, especially in children, which can lead to commercial risks that have a negative impact on the aquaculture of these fish. In this review, we discuss the morphogenesis and functions of IBs, including their underlying molecular mechanisms, as well as the advantages and disadvantages of different methods for IB studies and techniques for breeding and generating IB-free fish lines. This review reveals that the many key genes involved in tendon development, osteoblast differentiation, and bone formation, e.g., scxa, msxC, sost, twist, bmps, and osterix, also play roles in IB development. Thus, this paper provides useful information for the breeding of new fish strains without IBs via genome editing and artificial selection.
Collapse
Affiliation(s)
- Bo Li
- Cave Fish Development and Evolution Research Group, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuan-Wei Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Li Ma
- Cave Fish Development and Evolution Research Group, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Jun-Xing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
11
|
Yang R, Liu Y, Wang Y, Wang X, Ci H, Song C, Wu S. Low PRRX1 expression and high ZEB1 expression are significantly correlated with epithelial-mesenchymal transition and tumor angiogenesis in non-small cell lung cancer. Medicine (Baltimore) 2021; 100:e24472. [PMID: 33530259 PMCID: PMC7850718 DOI: 10.1097/md.0000000000024472] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/04/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Paired related homeobox 1 (PRRX1) and zinc finger E-box binding homeobox 1 (ZEB1) have been observed to play a vital role in the epithelial-mesenchymal transition (EMT) process in different types of cancer. The microvessel density (MVD) is the most common indicator used to quantify angiogenesis. This study aimed to investigate expression of PRRX1 and ZEB1 in non-small cell lung cancer (NSCLC) and to explore associations between these factors and tumor prognosis, EMT markers and angiogenesis. METHODS Data for a total of 111 surgically resected NSCLC cases from January 2013 to December 2014 were collected. We used an immunohistochemical method to detect expression levels of PRRX1, ZEB1, and E-cadherin, and to assess MVD (marked by CD34 staining). SPSS 26.0 was employed to evaluate the connection between these factors and clinical and histopathological features, overall survival (OS) and tumor angiogenesis. RESULTS PRRX1 expression was obviously lower in tumor samples than in control samples. Low expression of PRRX1, which was more common in the high-MVD group than in the low-MVD group (P = .009), correlated positively with E-cadherin expression (P < .001). Additionally, we showed that ZEB1 was expressed at higher levels in tumor samples than in normal samples. High expression of ZEB1 was associated negatively with E-cadherin expression (P < .001) and positively associated with high MVD (P = .001). Based on Kaplan-Meier and multivariate survival analyses, we found that PRRX1, ZEB1, E-cadherin and the MVD had predictive value for OS in NSCLC patients. CONCLUSIONS These findings suggest that PRRX1 and ZEB1 may serve as novel prognostic biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Ruixue Yang
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College
- Department of Pathology
| | - Yuanqun Liu
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College
- Department of Pathology
| | - Yufei Wang
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College
- Department of Pathology
| | - Xiaolin Wang
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College
- Department of Pathology
| | - Hongfei Ci
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College
- Department of Pathology
| | - Chao Song
- Department of Thoracic Surgery, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Shiwu Wu
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College
- Department of Pathology
| |
Collapse
|
12
|
Zhao X, Zhang Z, Wang Y, Qian K, Qin H, Wan H, Wang S, Zhu Z, Yang S, Jiang N, Zhang Y, Bai Y, Deng H, Yu B. Association of Antibiotic Alterations in Gut Microbiota With Decreased Osseointegration of an Intramedullary Nail in Mice With and Without Osteomyelitis. Front Endocrinol (Lausanne) 2021; 12:774257. [PMID: 34956085 PMCID: PMC8696274 DOI: 10.3389/fendo.2021.774257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Abstract
Treatment of osteomyelitis requires prolonged antibiotic therapy which significantly alters the gut microbiota. While the influences on bone mass and microstructure have been extensively studied, it is poorly understood what impact the changes in gut microbiota may have on the host response to osseointegration around an intramedullary nail implanted. Here, we explored the influence of gut microbiota on the bone osseointegration process around an implant under two conditions: implantation of an intramedullary nail in the bone marrow cavity and chronic osteomyelitis (CO) induced by Staphylococcus aureus infection. Body weight, hepatorenal functions, serum levels of proinflammatory cytokines were monitored. The composition of gut microbiota was assessed via 16S rRNA sequencing, and the bone condition was analyzed via micro-computed tomography, hematoxylin and eosin staining, Safranin O-fast green and Goldner's trichrome staining. Osteoblastogenesis and osteoclastogenesis were assessed by detecting tartrate-resistant acid phosphatase and osterix expression. We found that perturbation of gut microbiota (increase in Proteobacteria and decrease in Bacteroidetes) associated with delayed osseointegration and increased levels of proinflammatory cytokines in the serum (p<0.05), lower bone mass (p<0.05), deficient endochondral ossification and bone formation, reduced osteoblastogenesis (p<0.05) and enhanced osteoclastogenesis (p<0.001). Survival rates (p=0.002) and bacterial loads (p=0.0363) in bone differed significantly between the CO and antibiotic-treated CO mice, but cytokines levels, bone mineral density, and bone formation did not differ, likely because of the severely damaged bone structure. In summary, antibiotic treatment perturbed the gut microbiota and significantly interfered with the bone osseointegration around the nail by increasing proinflammatory cytokine levels in circulation, inhibiting osteoblastogenesis, enhancing osteoclastogenesis, and thus leading to higher pathogen colonization as well as higher mortality postinfection. This report of ours is the first to demonstrate antibiotic-induced alterations in the gut microbiota affect bone osseointegration, helping us understand the role of gut microbiota disorders in osteoblastogenesis and osteoclastogenesis following implant insertion with or without infection.
Collapse
Affiliation(s)
- Xingqi Zhao
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China & Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaohui Zhang
- Department of Gastroenterology, Huizhou Municipal Central Hospital, Huizhou, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province & Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yiran Wang
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China & Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Huizhou Municipal Central Hospital, Huizhou, China
| | - Kai Qian
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province & Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hanjun Qin
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China & Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haoyang Wan
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China & Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shihao Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province & Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhengwen Zhu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province & Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siqi Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province & Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nan Jiang
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China & Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yifang Zhang
- Editorial Office, Chinese Journal of Orthpopaedic Trauma, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province & Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yang Bai, ; Huimin Deng, ; Bin Yu,
| | - Huimin Deng
- Department of Gastroenterology, Huizhou Municipal Central Hospital, Huizhou, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province & Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yang Bai, ; Huimin Deng, ; Bin Yu,
| | - Bin Yu
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China & Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yang Bai, ; Huimin Deng, ; Bin Yu,
| |
Collapse
|
13
|
Esposito A, Wang L, Li T, Miranda M, Spagnoli A. Role of Prx1-expressing skeletal cells and Prx1-expression in fracture repair. Bone 2020; 139:115521. [PMID: 32629173 PMCID: PMC7484205 DOI: 10.1016/j.bone.2020.115521] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022]
Abstract
The healing capacity of bones after fracture implies the existence of adult regenerative cells. However, information on identification and functional role of fracture-induced progenitors is still lacking. Paired-related homeobox 1 (Prx1) is expressed during skeletogenesis. We hypothesize that fracture recapitulates Prx1's expression, and Prx1 expressing cells are critical to induce repair. To address our hypothesis, we used a combination of in vivo and in vitro approaches, short and long-term cell tracking analyses of progenies and actively expressing cells, cell ablation studies, and rodent animal models for normal and defective fracture healing. We found that fracture elicits a periosteal and endosteal response of perivascular Prx1+ cells that participate in fracture healing and showed that Prx1-expressing cells have a functional role in the repair process. While Prx1-derived cells contribute to the callus, Prx1's expression decreases concurrently with differentiation into cartilaginous and bone cells, similarly to when Prx1+ cells are cultured in differentiating conditions. We determined that bone morphogenic protein 2 (BMP2), through C-X-C motif-ligand-12 (CXCL12) signaling, modulates the downregulation of Prx1. We demonstrated that fracture elicits an early increase in BMP2 expression, followed by a decrease in CXCL12 that in turn down-regulates Prx1, allowing cells to commit to osteochondrogenesis. In vivo and in vitro treatment with CXCR4 antagonist AMD3100 restored Prx1 expression by modulating the BMP2-CXCL12 axis. Our studies represent a shift in the current research that has primarily focused on the identification of markers for postnatal skeletal progenitors, and instead we characterized the function of a specific population (Prx1+ cells) and their expression marker (Prx1) as a crossroad in fracture repair. The identification of fracture-induced perivascular Prx1+ cells and regulation of Prx1's expression by BMP2 and in turn by CXCL12 in the orchestration of fracture repair, highlights a pathway in which to investigate defective mechanisms and therapeutic targets for fracture non-union.
Collapse
Affiliation(s)
- Alessandra Esposito
- Department of Orthopaedic Surgery, Section of Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Lai Wang
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
| | - Tieshi Li
- Department of Pediatrics, University of Nebraska Medical Center, Children's Hospital & Medical Center, Omaha, NE, USA
| | - Mariana Miranda
- Department of Orthopaedic Surgery, Section of Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Anna Spagnoli
- Department of Orthopaedic Surgery, Section of Molecular Medicine, Rush University Medical Center, Chicago, IL, USA; Department of Pediatrics, Division of Pediatric Endocrinology, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
14
|
Nagata M, Ono N, Ono W. Unveiling diversity of stem cells in dental pulp and apical papilla using mouse genetic models: a literature review. Cell Tissue Res 2020; 383:603-616. [PMID: 32803323 DOI: 10.1007/s00441-020-03271-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
The dental pulp, a non-mineralized connective tissue uniquely encased within the cavity of the tooth, provides a niche for diverse arrays of dental mesenchymal stem cells. Stem cells in the dental pulp, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs) and stem cells from apical papilla (SCAPs), have been isolated from human tissues with an emphasis on their potential application to regenerative therapies. Recent studies utilizing mouse genetic models shed light on the identities of these mesenchymal progenitor cells derived from neural crest cells (NCCs) in their native conditions, particularly regarding how they contribute to homeostasis and repair of the dental tissue. The current concept is that at least two distinct niches for stem cells exist in the dental pulp, e.g., the perivascular niche and the perineural niche. The precise identities of these stem cells and their niches are now beginning to be unraveled thanks to sophisticated mouse genetic models, which lead to better understanding of the fundamental properties of stem cells in the dental pulp and the apical papilla in humans. The new knowledge will be highly instrumental for developing more effective stem cell-based regenerative therapies to repair teeth in the future.
Collapse
Affiliation(s)
- Mizuki Nagata
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Noriaki Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Wanida Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
15
|
Di Pietro L, Barba M, Prampolini C, Ceccariglia S, Frassanito P, Vita A, Guadagni E, Bonvissuto D, Massimi L, Tamburrini G, Parolini O, Lattanzi W. GLI1 and AXIN2 Are Distinctive Markers of Human Calvarial Mesenchymal Stromal Cells in Nonsyndromic Craniosynostosis. Int J Mol Sci 2020; 21:E4356. [PMID: 32575385 PMCID: PMC7352200 DOI: 10.3390/ijms21124356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
All skeletal bones house osteogenic stem cell niches, in which mesenchymal stromal cells (MSC) provide progenitors for tissue growth and regeneration. They have been widely studied in long bones formed through endochondral ossification. Limited information is available on the composition of the osteogenic niche in flat bones (i.e., skull vault bones) that develop through direct membranous ossification. Craniosynostosis (CS) is a congenital craniofacial defect due to the excessive and premature ossification of skull vault sutures. This study aimed at analysing the expression of GLI1, AXIN2 and THY1 in the context of the human skull vault, using nonsyndromic forms of CS (NCS) as a model to test their functional implication in the aberrant osteogenic process. The expression of selected markers was studied in NCS patients' calvarial bone specimens, to assess the in vivo location of cells, and in MSC isolated thereof. The marker expression profile was analysed during in vitro osteogenic differentiation to validate the functional implication. Our results show that GLI1 and AXIN2 are expressed in periosteal and endosteal locations within the osteogenic niche of human calvarial bones. Their expression is higher in MSC isolated from calvarial bones than in those isolated from long bones and tends to decrease upon osteogenic commitment and differentiation. In particular, AXIN2 expression was lower in cells isolated from prematurely fused sutures than in those derived from patent sutures of NCS patients. This suggests that AXIN2 could reasonably represent a marker for the stem cell population that undergoes depletion during the premature ossification process occurring in CS.
Collapse
Affiliation(s)
- Lorena Di Pietro
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
| | - Marta Barba
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| | - Chiara Prampolini
- Dipartimento Testa-Collo e Organi di Senso, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Sabrina Ceccariglia
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| | - Paolo Frassanito
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| | - Alessia Vita
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
| | - Enrico Guadagni
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| | - Davide Bonvissuto
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
- Dipartimento Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luca Massimi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
- Dipartimento Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianpiero Tamburrini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
- Dipartimento Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ornella Parolini
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| | - Wanda Lattanzi
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.); (M.B.); (S.C.); (A.V.); (E.G.); (O.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (P.F.); (D.B.); (L.M.); (G.T.)
| |
Collapse
|
16
|
Mahmoud NS, Mohamed MR, Ali MAM, Aglan HA, Amr KS, Ahmed HH. Osteoblast-Based Therapy-A New Approach for Bone Repair in Osteoporosis: Pre-Clinical Setting. Tissue Eng Regen Med 2020; 17:363-373. [PMID: 32347454 DOI: 10.1007/s13770-020-00249-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Osteoporosis is a metabolic bone disease characterized by low bone density resulting in increased fracture susceptibility. This research was constructed to uncover the potential therapeutic application of osteoblasts transplantation, generated upon culturing male rat bone marrow-derived mesenchymal stem cells (BM-MSCs) in osteogenic medium (OM), OM containing gold (Au-NPs) or gold/hydroxyapatite (Au/HA-NPs) nanoparticles, in ovariectomized rats to counteract osteoporosis. METHODS Forty rats were randomized into: (1) negative control, (2) osteoporotic rats, whereas groups (3), (4) and (5) constituted osteoporotic rats treated with osteoblasts yielded from culturing BM-MSCs in OM, OM plus Au-NPs or Au/HA-NPs, respectively. After 3 months, osterix (OSX), bone alkaline phosphatase (BALP), sclerostin (SOST) and bone sialoprotein (BSP) serum levels were assessed. In addition, gene expression levels of cathepsin K, receptor activator of nuclear factor-κb ligand (RANKL), osteoprotegerin (OPG) and RANKL/OPG ratio were evaluated using real-time PCR. Moreover, histological investigation of femur bone tissues in different groups was performed. The homing of implanted osteoblasts to the osteoporotic femur bone of rats was documented by Sex determining region Y gene detection in bone tissue. RESULTS Our results indicated that osteoblasts infusion significantly blunted serum BALP, BSP and SOST levels, while significantly elevated OSX level. Also, they brought about significant down-regulation in gene expression levels of cathepsin K, RANKL and RANKL/OPG ratio versus untreated osteoporotic rats. Additionally, osteoblasts nidation could restore bone histoarchitecture. CONCLUSION These findings offer scientific evidence that transplanting osteoblasts in osteoporotic rats regains the homeostasis of the bone remodeling cycle, thus providing a promising treatment strategy for primary osteoporosis.
Collapse
Affiliation(s)
- Nadia Samy Mahmoud
- Hormones Department, Medical Research Division, National Research Centre, 33 EL Bohouth St. (former EL -Tahrir st.)-Dokki, Giza, 12622, Egypt.
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, 33 EL Bohouth St. (former EL -Tahrir st.)-Dokki, Giza, 12622, Egypt.
| | - Mohamed Ragaa Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, El-Khalyfa El-Ma'moun St., Abbasya, Cairo, 11566, Egypt
| | - Mohamed Ahmed Mohamed Ali
- Biochemistry Department, Faculty of Science, Ain Shams University, El-Khalyfa El-Ma'moun St., Abbasya, Cairo, 11566, Egypt
| | - Hadeer Ahmed Aglan
- Hormones Department, Medical Research Division, National Research Centre, 33 EL Bohouth St. (former EL -Tahrir st.)-Dokki, Giza, 12622, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, 33 EL Bohouth St. (former EL -Tahrir st.)-Dokki, Giza, 12622, Egypt
| | - Khalda Sayed Amr
- Medical Molecular Genetics Department, Human Genetics and Genome Researches Division, National Research Centre, 33 EL Bohouth St. (former EL -Tahrir St.)-Dokki, Giza, 12622, Egypt
| | - Hanaa Hamdy Ahmed
- Hormones Department, Medical Research Division, National Research Centre, 33 EL Bohouth St. (former EL -Tahrir st.)-Dokki, Giza, 12622, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, 33 EL Bohouth St. (former EL -Tahrir st.)-Dokki, Giza, 12622, Egypt
| |
Collapse
|
17
|
Bone Regeneration, Reconstruction and Use of Osteogenic Cells; from Basic Knowledge, Animal Models to Clinical Trials. J Clin Med 2020; 9:jcm9010139. [PMID: 31947922 PMCID: PMC7019836 DOI: 10.3390/jcm9010139] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/21/2019] [Accepted: 01/02/2020] [Indexed: 01/01/2023] Open
Abstract
The deterioration of the human skeleton's capacity for self-renewal occurs naturally with age. Osteoporosis affects millions worldwide, with current treatments including pharmaceutical agents that target bone formation and/or resorption. Nevertheless, these clinical approaches often result in long-term side effects, with better alternatives being constantly researched. Mesenchymal stem cells (MSCs) derived from bone marrow and adipose tissue are known to hold therapeutic value for the treatment of a variety of bone diseases. The following review summarizes the latest studies and clinical trials related to the use of MSCs, both individually and combined with other methods, in the treatment of a variety of conditions related to skeletal health. For example, some of the most recent works noted the advantage of bone grafts based on biomimetic scaffolds combined with MSC and growth factor delivery, with a greatly increased regeneration rate and minimized side effects for patients. This review also highlights the continuing research into the mechanisms underlying bone homeostasis, including the key transcription factors and signalling pathways responsible for regulating the differentiation of osteoblast lineage. Paracrine factors and specific miRNAs are also believed to play a part in MSC differentiation. Furthering the understanding of the specific mechanisms of cellular signalling in skeletal remodelling is key to incorporating new and effective treatment methods for bone disease.
Collapse
|
18
|
Jiang YP, Tang YL, Wang SS, Wu JS, Zhang M, Pang X, Wu JB, Chen Y, Tang YJ, Liang XH. PRRX1-induced epithelial-to-mesenchymal transition in salivary adenoid cystic carcinoma activates the metabolic reprogramming of free fatty acids to promote invasion and metastasis. Cell Prolif 2019; 53:e12705. [PMID: 31657086 PMCID: PMC6985691 DOI: 10.1111/cpr.12705] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/04/2019] [Accepted: 09/14/2019] [Indexed: 02/05/2023] Open
Abstract
Objectives Increasing evidences demonstrate a close correlation between epithelial‐to‐mesenchymal transition (EMT) induction and cancer lipid metabolism. However, the molecular mechanisms have not been clarified. Materials and methods In our study, the relative expression level of PRRX1 was detected, its relationship with free fatty acid (FFA) and PPARG2 was analysed in 85 SACC tissues and 15 salivary glands from the benign salivary tumours. We also compared the FFAs composition and levels in these SACC cells. PPARG2 was detected in PRRX1‐induced FFAs treatment as well as Src and MMP‐9 were detected in FFAs treatment–induced invasion and migration of SACC cells, and ChIP test was performed to identify the target interactions. Results Our data showed that overexpression of PRRX1 induced EMT and facilitated the invasion and migration of SACC cells, and PRRX1 expression was closely associated with high FFAs level and poor prognosis of SACC patients. Furthermore, PRRX1 silence led to the increase of PPARG2 and the reduction of FFAs level and the migration and invasion of SACC cells. And inhibition of PPARG2 rescued FFAs level and migration and invasion capabilities of SACC cells. Free fatty acids treatment induced an increase of Stat5‐DNA binding activity via Src‐ and MMP‐9‐dependent pathway. Conclusions Collectively, our findings showed that the PRRX1/PPARG2/FFAs signalling in SACC was important for accelerating tumour metastasis through the induction of EMT and the metabolic reprogramming of FFAs.
Collapse
Affiliation(s)
- Ya-Ping Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China.,Department of Implant, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Sha-Sha Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Jia-Shun Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Xin Pang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Jing-Biao Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Yu Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| |
Collapse
|
19
|
Cabahug-Zuckerman P, Liu C, Cai C, Mahaffey I, Norman SC, Cole W, Castillo AB. Site-Specific Load-Induced Expansion of Sca-1 +Prrx1 + and Sca-1 -Prrx1 + Cells in Adult Mouse Long Bone Is Attenuated With Age. JBMR Plus 2019; 3:e10199. [PMID: 31667455 PMCID: PMC6808224 DOI: 10.1002/jbm4.10199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 02/04/2023] Open
Abstract
Aging is associated with significant bone loss and increased fracture risk, which has been attributed to a diminished response to anabolic mechanical loading. In adults, skeletal progenitors proliferate and differentiate into bone‐forming osteoblasts in response to increasing mechanical stimuli, though the effects of aging on this response are not well‐understood. Here we show that both adult and aged mice exhibit load‐induced periosteal bone formation, though the response is significantly attenuated with age. We also show that the acute response of adult bone to loading involves expansion of Sca‐1+Prrx1+ and Sca‐1−Prrx1+ cells in the periosteum. On the endosteal surface, loading enhances proliferation of both these cell populations, though the response is delayed by 2 days relative to the periosteal surface. In contrast to the periosteum and endosteum, the marrow does not exhibit increased proliferation of Sca‐1+Prrx1+ cells, but only of Sca‐1−Prrx1+ cells, underscoring fundamental differences in how the stem cell niche in distinct bone envelopes respond to mechanical stimuli. Notably, the proliferative response to loading is absent in aged bone even though there are similar baseline numbers of Prrx1 + cells in the periosteum and endosteum, suggesting that the proliferative capacity of progenitors is attenuated with age, and proliferation of the Sca‐1+Prrx1+ population is critical for load‐induced periosteal bone formation. These findings provide a basis for the development of novel therapeutics targeting these cell populations to enhance osteogenesis for overcoming age‐related bone loss. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Pamela Cabahug-Zuckerman
- Department of Orthopaedic Surgery NYU Langone Health, New York University New York NY USA.,Department of Biomedical Engineering Tandon School of Engineering, New York University New York NY USA.,Rehabilitation Research and Development Veterans Affairs New York Harbor Healthcare System New York NY USA
| | - Chao Liu
- Department of Orthopaedic Surgery NYU Langone Health, New York University New York NY USA.,Department of Biomedical Engineering Tandon School of Engineering, New York University New York NY USA.,Rehabilitation Research and Development Veterans Affairs New York Harbor Healthcare System New York NY USA
| | - Cinyee Cai
- Department of Orthopaedic Surgery NYU Langone Health, New York University New York NY USA.,Department of Biomedical Engineering Tandon School of Engineering, New York University New York NY USA
| | - Ian Mahaffey
- Rehabilitation Research and Development Veterans Affairs Palo Alto Healthcare System Palo Alto CA USA
| | - Stephanie C Norman
- Rehabilitation Research and Development Veterans Affairs Palo Alto Healthcare System Palo Alto CA USA
| | - Whitney Cole
- Rehabilitation Research and Development Veterans Affairs Palo Alto Healthcare System Palo Alto CA USA
| | - Alesha B Castillo
- Department of Orthopaedic Surgery NYU Langone Health, New York University New York NY USA.,Department of Biomedical Engineering Tandon School of Engineering, New York University New York NY USA.,Rehabilitation Research and Development Veterans Affairs New York Harbor Healthcare System New York NY USA
| |
Collapse
|
20
|
Liu C, Cabahug-Zuckerman P, Stubbs C, Pendola M, Cai C, Mann KA, Castillo AB. Mechanical Loading Promotes the Expansion of Primitive Osteoprogenitors and Organizes Matrix and Vascular Morphology in Long Bone Defects. J Bone Miner Res 2019; 34:896-910. [PMID: 30645780 PMCID: PMC8263903 DOI: 10.1002/jbmr.3668] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022]
Abstract
Elucidating the effects of mechanical stimulation on bone repair is crucial for optimization of the healing process. Specifically, the regulatory role that mechanical loading exerts on the osteogenic stem cell pool and vascular morphology during healing is incompletely understood. Because dynamic loading has been shown to enhance osteogenesis and repair, we hypothesized that loading induces the expansion of the osteoprogenitor cell population within a healing bone defect, leading to an increased presence of osteogenic cells. We further hypothesized that loading during the repair process regulates vascular and collagen matrix morphology and spatial interactions between vessels and osteogenic cells. To address these hypotheses, we used a mechanobiological bone repair model, which produces a consistent and reproducible intramembranous repair response confined in time and space. Bilateral tibial defects were created in adult C57BL/6 mice, which were subjected to axial compressive dynamic loading either during the early cellular invasion phase on postsurgical days (PSDs) 2 to 5 or during the matrix deposition phase on PSD 5 to 8. Confocal and two-photon microscopy was used to generate high-resolution three-dimensional (3D) renderings of longitudinal thick sections of the defect on PSD 10. Endomucin (EMCN)-positive vessels, Paired related homeobox 1 (Prrx1+) stem cell antigen-1 positive (Sca-1+) primitive osteoprogenitors (OPCs), and osterix positive (Osx+) preosteoblasts were visualized and quantified using deep tissue immunohistochemistry. New bone matrix was visualized with second harmonic generation autofluorescence of collagen fibers. We found that mechanical loading during the matrix deposition phase (PSD 5 to 8) increased vessel volume and number, and aligned vessels and collagen fibers to the load-bearing direction of bone. Furthermore, loading led to a significant increase in the proliferation and number of Prrx1+ Sca-1+ primitive OPCs, but not Osx+ preosteoblasts within the defect. Together, these data illustrate the adaptation of both collagen matrix and vascular morphology to better withstand mechanical load during bone repair, and that the mechanoresponsive cell population consists of the primitive osteogenic progenitors. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chao Liu
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 10010
- Department of Orthopedic Surgery, School of Medicine, New York University, New York, NY 10010
- Veterans Affairs New York Harbor Healthcare System, New York, NY 10010
| | - Pamela Cabahug-Zuckerman
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 10010
- Department of Orthopedic Surgery, School of Medicine, New York University, New York, NY 10010
| | - Christopher Stubbs
- Department of Mechanical Engineering, New York University, New York, NY 10010
| | - Martin Pendola
- Department of Orthopedic Surgery, School of Medicine, New York University, New York, NY 10010
| | - Cinyee Cai
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 10010
| | - Kenneth A. Mann
- Department of Orthopedic Surgery, Upstate Medical University, New York, NY 13210
| | - Alesha B. Castillo
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 10010
- Department of Orthopedic Surgery, School of Medicine, New York University, New York, NY 10010
- Veterans Affairs New York Harbor Healthcare System, New York, NY 10010
| |
Collapse
|
21
|
Wu Z, Wu H, Md S, Yu G, Habib SL, Li B, Li J. Tsc1 ablation in Prx1 and Osterix lineages causes renal cystogenesis in mouse. Sci Rep 2019; 9:837. [PMID: 30696882 PMCID: PMC6351533 DOI: 10.1038/s41598-018-37139-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/28/2018] [Indexed: 02/02/2023] Open
Abstract
Tuberous Sclerosis Complex (TSC) is caused by mutations in TSC1 or TSC2, which encode negative regulators of the mTOR signaling pathway. The renal abnormalities associated with TSC include angiomyolipoma, cysts, and renal cell carcinoma. Here we report that specific ablation of Tsc1 using the mesenchymal stem cell-osteoblast lineage markers induced cystogenesis in mice. Using Rosa-tdTomato mice, we found that Prx1- or Dermo1-labeled cells were present in the nephron including glomerulus but they were not stained by markers for podocytes, mesangial cells, endothelial cells, or proximal or loop of Henle tubular cells, while Osx is known to label tubular cells. Tsc1 deficiency in Prx1 lineage cells caused development of mild cysts that were positive only for Tamm-Horsfall protein (THP), a loop of Henle marker, while Tsc1 deficiency in Osx lineage cells caused development of cysts that were positive for Villin, a proximal tubular cell marker. On the other hand, Tsc1 deficiency in the Dermo1 lineage did not produce detectable phenotypical changes in the kidney. Cyst formation in Prx1-Cre; Tsc1f/f and Osx-Cre; Tsc1f/f mice were associated with increase in both proliferative and apoptotic cells in the affected tissue and were largely suppressed by rapamycin. These results suggest that Prx1 and Osx lineages cells may contribute to renal cystogenesis in TSC patients.
Collapse
Affiliation(s)
- Zhixiang Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongguang Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shafiquzzaman Md
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guo Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Samy L Habib
- Department of Cellular and Structural Biology, South Texas Veterans Health Care System, San Antonio, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Li
- Department of Ophthalmology, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Bassir SH, Garakani S, Wilk K, Aldawood ZA, Hou J, Yeh SCA, Sfeir C, Lin CP, Intini G. Prx1 Expressing Cells Are Required for Periodontal Regeneration of the Mouse Incisor. Front Physiol 2019; 10:591. [PMID: 31231227 PMCID: PMC6558369 DOI: 10.3389/fphys.2019.00591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
Previous studies have shown that post-natal skeletal stem cells expressing Paired-related homeobox 1 (PRX1 or PRRX1) are present in the periosteum of long bones where they contribute to post-natal bone development and regeneration. Our group also identified post-natal PRX1 expressing cells (pnPRX1+ cells) in mouse calvarial synarthroses (sutures) and showed that these cells are required for calvarial bone regeneration. Since calvarial synarthroses are similar to dentoalveolar gomphosis (periodontium) and since there is no information available on the presence or function of pnPRX1+ cells in the periodontium, the present study aimed at identifying and characterizing pnPRX1+ cells within the mouse periodontium and assess their contribution to periodontal development and regeneration. Here we demonstrated that pnPRX1+ cells are present within the periodontal ligament (PDL) of the mouse molars and of the continuously regenerating mouse incisor. By means of diphtheria toxin (DTA)-mediated conditional ablation of pnPRX1+ cells, we show that pnPRX1+ cells contribute to post-natal periodontal development of the molars and the incisor, as ablation of pnPRX1+ cells in 3-days old mice resulted in a significant enlargement of the PDL space after 18 days. The contribution of pnPRX1+ cells to periodontal regeneration was assessed by developing a novel non-critical size periodontal defect model. Outcomes showed that DTA-mediated post-natal ablation of pnPRX1+ cells results in lack of regeneration in periodontal non-critical size defects in the regeneration competent mouse incisors. Importantly, gene expression analysis of these cells shows a profile typical of quiescent cells, while gene expression analysis of human samples of periodontal stem cells (PDLSC) confirmed that Prx1 is highly expressed in human periodontium. In conclusion, pnPRX1+ cells are present within the continuously regenerating PDL of the mouse incisor, and at such location they contribute to post-natal periodontal development and regeneration. Since this study further reports the presence of PRX1 expressing cells within human periodontal ligament, we suggest that studying the mouse periodontal pnPRX1+ cells may provide significant information for the development of novel and more effective periodontal regenerative therapies in humans.
Collapse
Affiliation(s)
- Seyed Hossein Bassir
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States.,Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Sasan Garakani
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Katarzyna Wilk
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Zahra A Aldawood
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Jue Hou
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shu-Chi A Yeh
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States.,Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Charles Sfeir
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States.,University of Pittsburgh McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States
| | - Charles P Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Giuseppe Intini
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States.,Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States.,University of Pittsburgh McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States.,Harvard Stem Cell Institute, Cambridge, MA, United States
| |
Collapse
|
23
|
Li J, Zuo B, Zhang L, Dai L, Zhang X. Osteoblast versus Adipocyte: Bone Marrow Microenvironment-Guided Epigenetic Control. CASE REPORTS IN ORTHOPEDIC RESEARCH 2018. [DOI: 10.1159/000489053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The commitment and differentiation of bone marrow mesenchymal stem cells (MSCs) is tightly controlled by the local environment ensuring lineage differentiation balance and bone homeostasis. However, pathological conditions linked with osteoporosis have changed the bone marrow microenvironment, shifting MSCs’ fate to favor adipocytes over osteoblasts, and consequently leading to decreased bone mass with marrow fat accumulation. Multiple questions related to the underlying mechanisms remain to be answered. As recent findings have confirmed the fundamental role of the epigenetic mechanism in connecting environmental signals with gene expression and stem cell differentiation, a regulatory network in the bone marrow microenvironment, epigenetic modulation, gene expression, and MSC differentiation begins to emerge. This review discusses how pathological environmental factors affect MSCs’ fate by epigenetic modulating lineage-specific genes. We conclude that manipulating local environments and/or the epigenetic regulatory machinery that target the adipocyte differentiation pathway might be a therapeutic implication of bone loss diseases such as osteoporosis.
Collapse
|
24
|
Doro DH, Grigoriadis AE, Liu KJ. Calvarial Suture-Derived Stem Cells and Their Contribution to Cranial Bone Repair. Front Physiol 2017; 8:956. [PMID: 29230181 PMCID: PMC5712071 DOI: 10.3389/fphys.2017.00956] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022] Open
Abstract
In addition to the natural turnover during life, the bones in the skeleton possess the ability to self-repair in response to injury or disease-related bone loss. Based on studies of bone defect models, both processes are largely supported by resident stem cells. In the long bones, the source of skeletal stem cells has been widely investigated over the years, where the major stem cell population is thought to reside in the perivascular niche of the bone marrow. In contrast, we have very limited knowledge about the stem cells contributing to the repair of calvarial bones. In fact, until recently, the presence of specific stem cells in adult craniofacial bones was uncertain. These flat bones are mainly formed via intramembranous rather than endochondral ossification and thus contain minimal bone marrow space. It has been previously proposed that the overlying periosteum and underlying dura mater provide osteoprogenitors for calvarial bone repair. Nonetheless, recent studies have identified a major stem cell population within the suture mesenchyme with multiple differentiation abilities and intrinsic reparative potential. Here we provide an updated review of calvarial stem cells and potential mechanisms of regulation in the context of skull injury repair.
Collapse
Affiliation(s)
- Daniel H Doro
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, United Kingdom
| | - Agamemnon E Grigoriadis
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, United Kingdom
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, United Kingdom
| |
Collapse
|
25
|
Wilk K, Yeh SCA, Mortensen LJ, Ghaffarigarakani S, Lombardo CM, Bassir SH, Aldawood ZA, Lin CP, Intini G. Postnatal Calvarial Skeletal Stem Cells Expressing PRX1 Reside Exclusively in the Calvarial Sutures and Are Required for Bone Regeneration. Stem Cell Reports 2017; 8:933-946. [PMID: 28366454 PMCID: PMC5390237 DOI: 10.1016/j.stemcr.2017.03.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 11/08/2022] Open
Abstract
Post-natal skeletal stem cells expressing PRX1 (pnPRX1+) have been identified in the calvaria and in the axial skeleton. Here we characterize the location and functional capacity of the calvarial pnPRX1+ cells. We found that pnPRX1+ reside exclusively in the calvarial suture niche and decrease in number with age. They are distinct from preosteoblasts and osteoblasts of the sutures, respond to WNT signaling in vitro and in vivo by differentiating into osteoblasts, and, upon heterotopic transplantation, are able to regenerate bone. Diphtheria toxin A (DTA)-mediated lineage ablation of pnPRX1+ cells and suturectomy perturb regeneration of calvarial bone defects and confirm that pnPRX1+ cells of the sutures are required for bone regeneration. Orthotopic transplantation of sutures with traceable pnPRX1+ cells into wild-type animals shows that pnPRX1+ cells of the suture contribute to calvarial bone defect regeneration. DTA-mediated lineage ablation of pnPRX1+ does not, however, interfere with calvarial development. The suture is the exclusive niche of the calvarial PRX1-expressing cells Postnatal PRX1-expressing cells of the calvaria are required for bone regeneration Postnatal Prx1-expressing cells of the calvaria are dispensable for development
Collapse
Affiliation(s)
- Katarzyna Wilk
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Shu-Chi A Yeh
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA; Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Luke J Mortensen
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA; Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Regenerative Bioscience Center, Rhodes Center for ADS, and College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Sasan Ghaffarigarakani
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Courtney M Lombardo
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA; University of Florida College of Dentistry, Gainesville, FL 32608, USA
| | - Seyed Hossein Bassir
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Zahra A Aldawood
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Charles P Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - Giuseppe Intini
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
26
|
Wang L, Zhang J, Wang C, Qi Y, Du M, Liu W, Yang C, Yang P. Low concentrations of TNF-α promote osteogenic differentiation via activation of the ephrinB2-EphB4 signalling pathway. Cell Prolif 2016; 50. [PMID: 27726217 DOI: 10.1111/cpr.12311] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/17/2016] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Low concentrations of tumour necrosis factor-alpha (TNF-α) have been reported to promote osteogenic differentiation. In this study, a series of in vitro experiments was performed to investigate underlying molecular mechanisms involved. MATERIALS AND METHODS MC3T3-E1 murine preosteoblasts were treated with TNF-α at doses of 0, 0.1 or 1 ng/mL. The ephrinB2-EphB4 signalling pathway was activated using ephrinB2-fc, or inhibited using lentiviruses encoding siRNAs specifically targeting EphB4. Cell proliferation/survival was evaluated using the Cell Counting Kit-8 (CCK-8) assay, and expression levels of Runx2, BSP, ephrinB2 and EphB4 were determined using RT-PCR and Western blotting. ALP activity in these cells was also determined, and mineral nodule formation was evaluated with alizarin red S staining. RESULTS Low concentrations of TNF-α had no influence on cell proliferation/survival. However, expression levels of Runx2, BSP, ephrinB2 and EphB4, as well as ALP activity and mineral nodule formation, were significantly enhanced in MC3T3-E1 cells treated with low concentrations of TNF-α. Moreover, activation of the ephrinB2-EphB4 signalling pathway by ephrinB2-fc enhanced TNF-α-induced osteogenic differentiation, while down-regulation of EphB4 level reversed the positive effect of TNF-α. CONCLUSIONS Low concentrations of TNF-α promoted osteogenic differentiation via activation of the ephrinB2-EphB4 signalling pathway.
Collapse
Affiliation(s)
- Limei Wang
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China
| | - Jin Zhang
- Department of Endodontics, School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Cunwei Wang
- Department of Prosthodontics, School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Yuping Qi
- Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, Shandong, China
| | - Mi Du
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Wenhua Liu
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Chengzhe Yang
- Department of Oral & Maxillofacial Surgery, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, Shandong, China
| | - Pishan Yang
- Department of Periodontology, School of Stomatology, Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China
| |
Collapse
|
27
|
Lu J, Qu S, Yao B, Xu Y, Jin Y, Shi K, Shui Y, Pan S, Chen L, Ma C. Osterix acetylation at K307 and K312 enhances its transcriptional activity and is required for osteoblast differentiation. Oncotarget 2016; 7:37471-37486. [PMID: 27250035 PMCID: PMC5122325 DOI: 10.18632/oncotarget.9650] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 05/11/2016] [Indexed: 11/25/2022] Open
Abstract
Osterix (Osx) is an essential transcription factor involved in osteoblast differentiation and bone formation. The precise molecular mechanisms of the regulation of Osx expression are not fully understood. In the present study, we found that in cells, both endogenous and exogenous Osx protein increased after treatment with histone deacetylase inhibitors Trichostatin A and hydroxamic acid. Meanwhile, the results of immunoprecipitation indicated that Osx was an acetylated protein and that the CREB binding protein (CBP), and less efficiently p300, acetylated Osx. The interaction and colocalization of CBP and Osx were demonstrated by Co-immunoprecipitation and immunofluorescence, respectively. In addition, K307 and K312 were identified as the acetylated sites of Osx. By contrast, HDAC4, a histone deacetylase (HDAC), was observed to interact and co-localize with Osx. HDAC4 was demonstrated to mediate the deacetylation of Osx. Moreover, we found that acetylation of Osx enhanced its stability, DNA binding ability and transcriptional activity. Finally, we demonstrated that acetylation of Osx was required for the osteogenic differentiation of C2C12 cells. Taken together, our results provide evidence that CBP-mediated acetylation and HDAC4-mediated deacetylation have critical roles in the modification of Osx, and thus are important in osteoblast differentiation.
Collapse
Affiliation(s)
- Jianlei Lu
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, P.R. China
| | - Shuang Qu
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, P.R. China
| | - Bing Yao
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, P.R. China
| | - Yuexin Xu
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, P.R. China
| | - Yucui Jin
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, P.R. China
| | - Kaikai Shi
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, P.R. China
| | - Yifang Shui
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, P.R. China
| | - Shiyang Pan
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Li Chen
- Molecular Endocrinology Laboratory, Department of Endocrinology, Odense University Hospital, Odense C, Denmark
| | - Changyan Ma
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
28
|
Li J, Liu X, Zuo B, Zhang L. The Role of Bone Marrow Microenvironment in Governing the Balance between Osteoblastogenesis and Adipogenesis. Aging Dis 2015; 7:514-25. [PMID: 27493836 DOI: 10.14336/ad.2015.1206] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 12/06/2015] [Indexed: 01/08/2023] Open
Abstract
In the adult bone marrow, osteoblasts and adipocytes share a common precursor called mesenchymal stem cells (MSCs). The plasticity between the two lineages has been confirmed over the past decades, and has important implications in the etiology of bone diseases such as osteoporosis, which involves an imbalance between osteoblasts and adipocytes. The commitment and differentiation of bone marrow (BM) MSCs is tightly controlled by the local environment that maintains a balance between osteoblast lineage and adipocyte. However, pathological conditions linked to osteoporosis can change the BM microenvironment and shift the MSC fate to favor adipocytes over osteoblasts, and consequently decrease bone mass with marrow fat accumulation. This review discusses the changes that occur in the BM microenvironment under pathological conditions, and how these changes affect MSC fate. We suggest that manipulating local environments could have therapeutic implications to avoid bone loss in diseases like osteoporosis.
Collapse
Affiliation(s)
- Jiao Li
- 1Department of Cell Biology, Zunyi Medical College, Zunyi, China
| | - Xingyu Liu
- 1Department of Cell Biology, Zunyi Medical College, Zunyi, China
| | - Bin Zuo
- 2Department of Orthopedic Surgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Li Zhang
- 3Department of Orthopedics, Tenth People's Hospital, Shanghai Tong Ji University, School of Medicine, Shanghai, China
| |
Collapse
|
29
|
The Effect of Tumor Necrosis Factor-α at Different Concentrations on Osteogenetic Differentiation of Bone Marrow Mesenchymal Stem Cells. J Craniofac Surg 2015; 26:2081-5. [DOI: 10.1097/scs.0000000000001971] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
30
|
Jeschke A, Catala-Lehnen P, Sieber S, Bickert T, Schweizer M, Koehne T, Wintges K, Marshall RP, Mautner A, Duchstein L, Otto B, Horst AK, Amling M, Kreienkamp HJ, Schinke T. Sharpin Controls Osteogenic Differentiation of Mesenchymal Bone Marrow Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:3675-84. [PMID: 26363054 DOI: 10.4049/jimmunol.1402392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 08/11/2015] [Indexed: 01/24/2023]
Abstract
The cytosolic protein Sharpin is a component of the linear ubiquitin chain assembly complex, which regulates NF-κB signaling in response to specific ligands, such as TNF-α. Its inactivating mutation in chronic proliferative dermatitis mutation (Cpdm) mice causes multiorgan inflammation, yet this phenotype is not transferable into wild-type mice by hematopoietic stem cell transfer. Recent evidence demonstrated that Cpdm mice additionally display low bone mass, and that this osteopenia is corrected by Tnf deletion. Because the cellular mechanism underlying this pathology, however, was still undefined, we performed a thorough skeletal phenotyping of Cpdm mice on the basis of nondecalcified histology and cellular and dynamic histomorphometry. We show that the trabecular and cortical osteopenia in Cpdm mice is solely explained by impaired bone formation, whereas osteoclastogenesis is unaffected. Consistently, Cpdm primary calvarial cells display reduced osteogenic capacity ex vivo, and the same was observed with CD11b(-) bone marrow cells. Unexpectedly, short-term treatment of these cultures with TNF-α did not reveal an impaired molecular response in the absence of Sharpin. Instead, genome-wide and gene-specific expression analyses revealed that Cpdm mesenchymal cells display increased responsiveness toward TNF-α-induced expression of specific cytokines, such as CXCL5, IL-1β, and IL-6. Therefore, our data not only demonstrate that the skeletal defects of Cpdm mice are specifically caused by impaired differentiation of osteoprogenitor cells, they also suggest that increased cytokine expression in mesenchymal bone marrow cells contributes to the inflammatory phenotype of Cpdm mice.
Collapse
Affiliation(s)
- Anke Jeschke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Philip Catala-Lehnen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Sabrina Sieber
- Department of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Thomas Bickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Michaela Schweizer
- Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Till Koehne
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Kristofer Wintges
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Robert P Marshall
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Andrea Mautner
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Lara Duchstein
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Benjamin Otto
- Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; and
| | - Andrea K Horst
- Institute of Experimental Immunology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Hans-Juergen Kreienkamp
- Department of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany;
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany;
| |
Collapse
|
31
|
Li Y, Pan E, Wang Y, Zhu X, Wei A. Flk-1⁺Sca-1⁻ mesenchymal stem cells: functional characteristics in vitro and regenerative capacity in vivo. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:9875-9888. [PMID: 26617697 PMCID: PMC4637782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/21/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVES Mesenchymal stem cells (MSCs) represent a powerful tool in regenerative medicine because of their differentiation and migration capacities. We aimed to investigate the possibility of Flk-1(+)Sca-1(-) mesenchymal stem cells (Flk-1(+)Sca-1(-) MSCs) transplantation to repair erectile function in patients suffering from diabetes mellitus (DM)-associated erectile dysfunction (ED). METHODS In this study, we isolated Flk-1(+)Sca-1(-) MSCs from bone marrow (bMSCs). Then, newborn male rats were intraperitoneally injected with 5-ethynyl-2-deoxyuridine for the purpose of tracking endogenous Flk-1(+)Sca-1(-) MSCs. Eight weeks later, 8 of these rats were randomly chosen to serve as normal control (N group). The remaining rats were injected intraperitoneally with 60 mg/kg of streptozotocin (STZ) to induce DM. Eight of these rats were randomly chosen to serve as DM control (DM group) while another 8 rats were subject to Flk-1(+)Sca-1(-) MSCs treatment (DM+MSC group). All rats were evaluated for erectile function by intracavernous pressure (ICP) measurement. Afterward, their penile tissues were examined by histology. RESULTS Flk-1(+)Sca-1(-) MSCs could differentiate into skeletal muscle cells and endothelial cells in vivo and in vitro. Engrafted Flk-1(+)Sca-1(-) MSCs were shown to home to injured muscle, participate in myofibers repair and could partially reconstitute the sarcolemmal expression of myocardin and ameliorate the level of related specific pathological markers. CONCLUSION Flk-1(+)Sca-1(-) MSCs could be used in the treatment erectile function in diabetes mellitus associated erectile dysfunction by promoting regeneration of nNOS-positive nerves, endothelium, and smooth muscle in the penis.
Collapse
Affiliation(s)
- Yugang Li
- Hospital of Integrated Traditional Chinese Medicine & Western Medicine, Southern Medical UniversityGuangzhou 510315, China
| | - Enshan Pan
- Hospital of Integrated Traditional Chinese Medicine & Western Medicine, Southern Medical UniversityGuangzhou 510315, China
| | - Yu Wang
- Hospital of Integrated Traditional Chinese Medicine & Western Medicine, Southern Medical UniversityGuangzhou 510315, China
| | - Xiaoguang Zhu
- Hospital of Integrated Traditional Chinese Medicine & Western Medicine, Southern Medical UniversityGuangzhou 510315, China
| | - Anyang Wei
- Department of Urology, Medical Center for Overseas Patients, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, China
| |
Collapse
|
32
|
Diabetes mellitus related bone metabolism and periodontal disease. Int J Oral Sci 2015; 7:63-72. [PMID: 25857702 PMCID: PMC4817554 DOI: 10.1038/ijos.2015.2] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2014] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus and periodontal disease are chronic diseases affecting a large number of populations worldwide. Changed bone metabolism is one of the important long-term complications associated with diabetes mellitus. Alveolar bone loss is one of the main outcomes of periodontitis, and diabetes is among the primary risk factors for periodontal disease. In this review, we summarise the adverse effects of diabetes on the periodontium in periodontitis subjects, focusing on alveolar bone loss. Bone remodelling begins with osteoclasts resorbing bone, followed by new bone formation by osteoblasts in the resorption lacunae. Therefore, we discuss the potential mechanism of diabetes-enhanced bone loss in relation to osteoblasts and osteoclasts.
Collapse
|
33
|
Egawa S, Miura S, Yokoyama H, Endo T, Tamura K. Growth and differentiation of a long bone in limb development, repair and regeneration. Dev Growth Differ 2014; 56:410-24. [PMID: 24860986 DOI: 10.1111/dgd.12136] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 12/25/2022]
Abstract
Repair from traumatic bone fracture is a complex process that includes mechanisms of bone development and bone homeostasis. Thus, elucidation of the cellular/molecular basis of bone formation in skeletal development would provide valuable information on fracture repair and would lead to successful skeletal regeneration after limb amputation, which never occurs in mammals. Elucidation of the basis of epimorphic limb regeneration in amphibians would also provide insights into skeletal regeneration in mammals, since the epimorphic regeneration enables an amputated limb to re-develop the three-dimensional structure of bones. In the processes of bone development, repair and regeneration, growth of the bone is achieved through several events including not only cell proliferation but also aggregation of mesenchymal cells, enlargement of cells, deposition and accumulation of extracellular matrix, and bone remodeling.
Collapse
Affiliation(s)
- Shiro Egawa
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | | | | | | | | |
Collapse
|
34
|
Wang L, Zhao Y, Liu Y, Akiyama K, Chen C, Qu C, Jin Y, Shi S. IFN-γ and TNF-α synergistically induce mesenchymal stem cell impairment and tumorigenesis via NFκB signaling. Stem Cells 2014; 31:1383-95. [PMID: 23553791 DOI: 10.1002/stem.1388] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/18/2013] [Accepted: 03/04/2013] [Indexed: 12/25/2022]
Abstract
An inflammatory microenvironment may cause organ degenerative diseases and malignant tumors. However, the precise mechanisms of inflammation-induced diseases are not fully understood. Here, we show that the proinflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor α (TNF-α) synergistically impair self-renewal and differentiation of mesenchymal stem cells (MSCs) via nuclear factor κB (NFκB)-mediated activation of mothers against decapentaplegic homolog 7 (SMAD7) in ovariectomized (OVX) mice. More interestingly, a long-term elevated levels of IFN-γ and TNF-α result in significantly increased susceptibility to malignant transformation in MSCs through NFκB-mediated upregulation of the oncogenes c-Fos and c-Myc. Depletion of either IFN-γ or TNF-α in OVX mice abolishes MSC impairment and the tendency toward malignant transformation with no NFκB-mediated oncogene activation. Systemic administration of aspirin, which significantly reduces the levels of IFN-γ and TNF-α, results in blockage of MSC deficiency and tumorigenesis by inhibition of NFκB/SMAD7 and NFκB/c-FOS and c-MYC pathways in OVX mice. In summary, this study reveals that inflammation factors, such as IFN-γ and TNF-α, synergistically induce MSC deficiency via NFκB/SMAD7 signaling and tumorigenesis via NFκB-mediated oncogene activation.
Collapse
Affiliation(s)
- Lei Wang
- University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Osta B, Benedetti G, Miossec P. Classical and Paradoxical Effects of TNF-α on Bone Homeostasis. Front Immunol 2014; 5:48. [PMID: 24592264 PMCID: PMC3923157 DOI: 10.3389/fimmu.2014.00048] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/27/2014] [Indexed: 01/18/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) plays an essential role in the regulation of bone homeostasis in several chronic immune and inflammatory joint diseases, where inhibition of TNF has led to significant clinical improvement. However, TNF-activated pathways and mechanisms involved in bone remodeling remain unclear. So far, TNF-α was known as an inhibitor of osteoblast differentiation and an activator of osteoclastogenesis. Recent contradictory findings indicated that TNF-α can also activate osteoblastogenesis. The paradoxical role of TNF-α in bone homeostasis seems to depend on the concentration and the differentiation state of the cell type used as well as on the exposure time. This review aims to summarize the recent contradictory findings on the regulation of bone homeostasis by TNF-α at the isolated cell, whole bone, and whole body levels. In addition, the involvement of TNF-α in the bone remodeling imbalance is observed in inflammatory joint diseases including rheumatoid arthritis and ankylosing spondylitis, which are associated with bone destruction and ectopic calcified matrix formation, respectively. Both diseases are associated with systemic/vertebral osteoporosis.
Collapse
Affiliation(s)
- Bilal Osta
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Immunology and Rheumatology, Hospital Edouard Herriot, University of Lyon 1 , Lyon , France
| | - Giulia Benedetti
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Immunology and Rheumatology, Hospital Edouard Herriot, University of Lyon 1 , Lyon , France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Immunology and Rheumatology, Hospital Edouard Herriot, University of Lyon 1 , Lyon , France
| |
Collapse
|
36
|
Tacheny A, Dieu M, Arnould T, Renard P. Mass spectrometry-based identification of proteins interacting with nucleic acids. J Proteomics 2013; 94:89-109. [PMID: 24060998 DOI: 10.1016/j.jprot.2013.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/19/2013] [Accepted: 09/13/2013] [Indexed: 01/02/2023]
Abstract
The identification of the regulatory proteins that control DNA transcription as well as RNA stability and translation represents a key step in the comprehension of gene expression regulation. Those proteins can be purified by DNA- or RNA-affinity chromatography, followed by identification by mass spectrometry. Although very simple in the concept, this represents a real technological challenge due to the low abundance of regulatory proteins compared to the highly abundant proteins binding to nucleic acids in a nonsequence-specific manner. Here we review the different strategies that have been set up to reach this purpose, discussing the key parameters that should be considered to increase the chances of success. Typically, two categories of biological questions can be distinguished: the identification of proteins that specifically interact with a precisely defined binding site, mostly addressed by quantitative mass spectrometry, and the identification in a non-comparative manner of the protein complexes recruited by a poorly characterized long regulatory region of nucleic acids. Finally, beside the numerous studies devoted to in vitro-assembled nucleic acid-protein complexes, the scarce data reported on proteomic analyses of in vivo-assembled complexes are described, with a special emphasis on the associated challenges.
Collapse
Affiliation(s)
- A Tacheny
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | | | | | | |
Collapse
|
37
|
TNF α mediated IL-6 secretion is regulated by JAK/STAT pathway but not by MEK phosphorylation and AKT phosphorylation in U266 multiple myeloma cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:580135. [PMID: 24151609 PMCID: PMC3787550 DOI: 10.1155/2013/580135] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 12/16/2022]
Abstract
IL-6 and TNFα were significantly increased in the bone marrow aspirate samples of patients with active multiple myeloma (MM) compared to those of normal controls. Furthermore, MM patients with advanced aggressive disease had significantly higher levels of IL-6 and TNFα than those with MM in plateau phase. TNFα increased interleukin-6 (IL-6) production from MM cells. However, the detailed mechanisms involved in signaling pathways by which TNFα promotes IL-6 secretion from MM cells are largely unknown. In our study, we found that TNFα treatments induce MEK and AKT phosphorylation. TNFα-stimulated IL-6 production was abolished by inhibition of JAK2 and IKKβ or by small interfering RNA (siRNA) targeting TNF receptors (TNFR) but not by MEK, p38, and PI3K inhibitors. Also, TNFα increased phosphorylation of STAT3 (ser727) including c-Myc and cyclin D1. Three different types of JAK inhibitors decreased the activation of the previously mentioned pathways. In conclusion, blockage of JAK/STAT-mediated NF-κB activation was highly effective in controlling the growth of MM cells and, consequently, an inhibitor of TNFα-mediated IL-6 secretion would be a potential new therapeutic agent for patients with multiple myeloma.
Collapse
|
38
|
Nagore LI, Nadeau RJ, Guo Q, Jadhav YLA, Jarrett HW, Haskins WE. Purification and characterization of transcription factors. MASS SPECTROMETRY REVIEWS 2013; 32:386-398. [PMID: 23832591 PMCID: PMC3758410 DOI: 10.1002/mas.21369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 11/19/2012] [Accepted: 11/19/2012] [Indexed: 06/02/2023]
Abstract
Transcription factors (TFs) are essential for the expression of all proteins, including those involved in human health and disease. However, TFs are resistant to proteomic characterization because they are frequently masked by more abundant proteins due to the limited dynamic range of capillary liquid chromatography-tandem mass spectrometry and protein database searching. Purification methods, particularly strategies that exploit the high affinity of TFs for DNA response elements (REs) on gene promoters, can enrich TFs prior to proteomic analysis to improve dynamic range and penetrance of the TF proteome. For example, trapping of TF complexes specific for particular REs has been achieved by recovering the element DNA-protein complex on solid supports. Additional methods for improving dynamic range include two- and three-dimensional gel electrophoresis incorporating electrophoretic mobility shift assays and Southwestern blotting for detection. Here we review methods for TF purification and characterization. We fully expect that future investigations will apply these and other methods to illuminate this important but challenging proteome.
Collapse
Affiliation(s)
- LI Nagore
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249
| | - RJ Nadeau
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249
- Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Q Guo
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249
- Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - YLA Jadhav
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- RCMI Proteomics, University of Texas at San Antonio, San Antonio, TX, 78249
- Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - HW Jarrett
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249
- Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
| | - WE Haskins
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249
- Departments of Biology, University of Texas at San Antonio, San Antonio, TX, 78249
- RCMI Proteomics, University of Texas at San Antonio, San Antonio, TX, 78249
- Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249
- Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
- Departments of Medicine, Division of Hematology & Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229
- Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229
| |
Collapse
|
39
|
Sinha KM, Zhou X. Genetic and molecular control of osterix in skeletal formation. J Cell Biochem 2013; 114:975-84. [PMID: 23225263 DOI: 10.1002/jcb.24439] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/23/2012] [Indexed: 12/16/2022]
Abstract
Osteoblast differentiation is a multi-step process where mesenchymal cells differentiate into osteoblast lineage cells including osteocytes. Osterix (Osx) is an osteoblast-specific transcription factor which activates a repertoire of genes during differentiation of preosteoblasts into mature osteoblasts and osteocytes. The essential role of Osx in the genetic program of bone formation and in bone homeostasis is well established. Osx mutant embryos do not form bone and fail to express osteoblast-specific marker genes. Inactivation of Osx in mice after birth causes multiple skeletal phenotypes including lack of new bone formation, absence of resorption of mineralized cartilage, and defects in osteocyte maturation and function. Since Osx is a major effector in skeletal formation, studies on Osx gained momentum over the last 5-7 years and implicated its important function in tooth formation as well as in healing of bone fractures. This review outlines mouse genetic studies that establish the essential role of Osx in bone and tooth formation as well as in healing of bone fractures. We also discuss the recent advances in regulation of Osx expression, which is under control of a transcriptional network, signaling pathways, and epigenetic regulation. Finally, we summarize important findings on the positive and negative regulation of Osx's transcriptional activity through protein-protein interactions in expression of its target genes during osteoblast differentiation. In particular, the identification of the histone demethylase NO66 as an Osx-interacting protein, which negatively regulates Osx activity opens further avenues in studying epigenetic control of Osx target genes during differentiation and maturation of osteoblasts.
Collapse
Affiliation(s)
- Krishna M Sinha
- Department of Endocrine Neoplasia and Hormonal Disorders, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
40
|
Differentiation of mesenchymal stem cells to osteoblasts and chondrocytes: a focus on adenosine receptors. Expert Rev Mol Med 2013; 15:e1. [PMID: 23406574 DOI: 10.1017/erm.2013.2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skeletogenesis, either during development, post-injury or for maintenance, is a carefully coordinated process reliant on the appropriate differentiation of mesenchymal stem cells. Some well described, as well as a new regulator of this process (adenosine receptors), are alike in that they signal via cyclic-AMP (cAMP). This review highlights the known contribution of cAMP signalling to mesenchymal stem cell differentiation to osteoblasts and to chondrocytes. Focus has been given to how these regulators influence the commitment of the osteochondroprogenitor to these separate lineages.
Collapse
|
41
|
Abstract
Osterix (Osx, Sp7) is a zinc-finger transcription factor belonging to the specificity protein (Sp) family expressed in cells of the osteoblast lineage in the developing skeleton where it regulates expression of a number of osteoblastic genes. We previously reported inhibition of osterix mRNA and protein by parathyroid hormone (PTH) stimulation of cAMP in osteoblasts. We here show that Osx expression in osteoblasts is regulated by Sp proteins as demonstrated by mithramycin A inhibition of Osx mRNA and OSX protein levels. Mutation of putative transcription factor binding sites within the Osx promoter demonstrated a tandem repeat sequence that selectively binds OSX but not other Sp factors expressed in osteoblasts (Sp1, Sp3, or Tieg (Klf10)). Mutation of either or both the repeat sequences inhibited 90% of the promoter activity and also abrogated some of the PTH-mediated inhibition of the promoter. Previous studies have shown growth factor regulation of Osx expression by MAPK proteins, particularly p38 phosphorylation of OSX that increases its transcriptional activity. PTH stimulation of osteoblasts inhibits MAPK components (ERK, JNK, and p38) but inhibition of Osx mRNA and protein expression by PTH was selectively mimicked by p38 inhibition and expression of constitutively active MKK6, which stimulates p38, blocked PTH inhibition of OSX. Together, our studies suggest that OSX autoregulation is a major mechanism in osteoblasts and that PTH stimulation inhibits osterix by inhibition of p38 MAPK regulation of OSX.
Collapse
|
42
|
Du B, Cawthorn WP, Su A, Doucette CR, Yao Y, Hemati N, Kampert S, McCoin C, Broome DT, Rosen CJ, Yang G, MacDougald OA. The transcription factor paired-related homeobox 1 (Prrx1) inhibits adipogenesis by activating transforming growth factor-β (TGFβ) signaling. J Biol Chem 2012; 288:3036-47. [PMID: 23250756 DOI: 10.1074/jbc.m112.440370] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Differentiation of adipocytes from preadipocytes contributes to adipose tissue expansion in obesity. Impaired adipogenesis may underlie the development of metabolic diseases such as insulin resistance and type 2 diabetes. Mechanistically, a well defined transcriptional network coordinates adipocyte differentiation. The family of paired-related homeobox transcription factors, which includes Prrx1a, Prrx1b, and Prrx2, is implicated with regulation of mesenchymal cell fate, including myogenesis and skeletogenesis; however, whether these proteins impact adipogenesis remains to be addressed. In this study, we identify Prrx1a and Prrx1b as negative regulators of adipogenesis. We show that Prrx1a and Prrx1b are down-regulated during adipogenesis in vitro and in vivo. Stable knockdown of Prrx1a/b enhances adipogenesis, with increased expression of peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein-α and FABP4 and increased secretion of the adipokines adiponectin and chemerin. Although stable low-level expression of Prrx1a, Prrx1b, or Prrx2 does not affect 3T3-L1 adipogenesis, transient overexpression of Prrx1a or Prrx1b inhibits peroxisome proliferator-activated receptor-γ activity. Prrx1 knockdown decreases expression of Tgfb2 and Tgfb3, and inhibition of TGFβ signaling during adipogenesis mimics the effects of Prrx1 knockdown. These data support the hypothesis that endogenous Prrx1 restrains adipogenesis by regulating expression of TGFβ ligands and thereby activating TGFβ signaling. Finally, we find that expression of Prrx1a or Prrx1b in adipose tissue increases during obesity and strongly correlates with Tgfb3 expression in BL6 mice. These observations suggest that increased Prrx1 expression may promote TGFβ activity in adipose tissue and thereby contribute to aberrant adipocyte function during obesity.
Collapse
Affiliation(s)
- Baowen Du
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang L, Zhao Y, Shi S. Interplay between mesenchymal stem cells and lymphocytes: implications for immunotherapy and tissue regeneration. J Dent Res 2012; 91:1003-10. [PMID: 22988011 DOI: 10.1177/0022034512460404] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In addition to their potential for replacing damaged and diseased tissues by differentiating into tissue-specific cells, mesenchymal stem cells (MSCs) have been found to interact closely with immune cells, such as lymphocytes. In this review, we will discuss current research regarding the immunomodulatory properties of MSCs and the effects of lymphocytes on MSCs. We will suggest how these findings could be translated to potential clinical treatment. MSCs can regulate immune response by inducing activated T-cell apoptosis through the FAS ligand (FASL)/FAS-mediated death pathway via cell-cell contact, leading to up-regulation of regulatory T-cells (Tregs), which ultimately results in immune tolerance. Conversely, lymphocytes can impair survival and osteogenic differentiation of implanted MSCs by secreting the pro-inflammatory cytokines IFN-γ and TNF-α and/or through the FASL/FAS-mediated death pathway, thereby negatively affecting MSC-mediated tissue regeneration. One novel strategy to improve MSC-based tissue engineering involves the reduction of IFN-γ and TNF-α concentration by systemic infusion of Tregs or local application of aspirin. Further understanding of the mechanisms underlying the interplay between lymphocytes and MSCs may be helpful in the development of promising approaches to improve cell-based regenerative medicine and immune therapies.
Collapse
Affiliation(s)
- L Wang
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
44
|
Susa T, Kato T, Yoshida S, Yako H, Higuchi M, Kato Y. Paired-related homeodomain proteins Prx1 and Prx2 are expressed in embryonic pituitary stem/progenitor cells and may be involved in the early stage of pituitary differentiation. J Neuroendocrinol 2012; 24:1201-12. [PMID: 22577874 DOI: 10.1111/j.1365-2826.2012.02336.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We recently cloned a paired-related homeodomain protein Prx2 as a novel factor in the pituitary. In the present study, we investigated the ontogenic profiles of Prx2 and another cognate Prx1 in the rat embryonic pituitary. Quantitative real-time polymerase chain reaction showed low expression of Prx2 and a marked increase of Prx1 on rat embryonic day (E)20.5. Immunohistochemical analyses using an antibody that recognises both proteins, with the aim of investigating their roles in pituitary organogenesis, demonstrated that PRXs first appear in the Rathke's pouch on E13.5 in the pituitary stem/progenitor cells expressing Prop1 and Sox2. After E16.5, the number of Prx-expressing cells was increased in both anterior and intermediate lobes. SOX2(+) stem/progenitor cells in the intermediate lobe started to produce PRXs, and PRX(+) /SOX2(+) /PROP1(+) -cells were present on the anterior side of the marginal cell layer and were scattered in the parenchyma of the anterior lobe. On the other hand, PRX(+) -cells negative for PROP1 and SOX2 were located in the anterior lobe. Analysis of the relationship with pituitary endocrine cells revealed that a part of PRX(+) /PROP1(-) /SOX2(-) -cells in the anterior lobe co-expressed all types of hormones. The proportion of co-localisation of PRXs and hormones was highest on the day each hormone first appeared. These data indicate that PRXs are produced in the pituitary progenitor cells and may play roles in the process of terminal differentiation during early pituitary organogenesis. An in vitro small interfering RNA-knockdown experiment in the pituitary-derived cell line, TtT/GF, revealed that PRX1 and PRX2 play roles in proliferation by different mechanisms because knockdown of Prx2, but not Prx1, induced the p21 expression. Furthermore, immunohistochemical analysis demonstrated that 76% of PRXs(+) cells were positive for a cell proliferation marker Ki67 in the E18.5 pituitary. This is the first report of the involvement of PRX1 and PRX2 in organogenesis of tissue originating from the ectoderm other than the mesoderm.
Collapse
Affiliation(s)
- T Susa
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Tacheny A, Michel S, Dieu M, Payen L, Arnould T, Renard P. Unbiased proteomic analysis of proteins interacting with the HIV-1 5'LTR sequence: role of the transcription factor Meis. Nucleic Acids Res 2012; 40:e168. [PMID: 22904091 PMCID: PMC3505963 DOI: 10.1093/nar/gks733] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To depict the largest picture of a core promoter interactome, we developed a one-step DNA-affinity capture method coupled with an improved mass spectrometry analysis process focused on the identification of low abundance proteins. As a proof of concept, this method was developed through the analysis of 230 bp contained in the 5′long terminal repeat (LTR) of the human immunodeficiency virus 1 (HIV-1). Beside many expected interactions, many new transcriptional regulators were identified, either transcription factors (TFs) or co-regulators, which interact directly or indirectly with the HIV-1 5′LTR. Among them, the homeodomain-containing TF myeloid ectopic viral integration site was confirmed to functionally interact with a specific binding site in the HIV-1 5′LTR and to act as a transcriptional repressor, probably through recruitment of the repressive Sin3A complex. This powerful and validated DNA-affinity approach could also be used as an efficient screening tool to identify a large set of proteins that physically interact, directly or indirectly, with a DNA sequence of interest. Combined with an in silico analysis of the DNA sequence of interest, this approach provides a powerful approach to select the interacting candidates to validate functionally by classical approaches.
Collapse
Affiliation(s)
- A Tacheny
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | | | | | | | | | | |
Collapse
|
46
|
Cooper LN, Cretekos CJ, Sears KE. The evolution and development of mammalian flight. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:773-9. [DOI: 10.1002/wdev.50] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
|