1
|
Dzubanova M, Bond JM, Craige SM, Tencerova M. NOX4-reactive oxygen species axis: critical regulators of bone health and metabolism. Front Cell Dev Biol 2024; 12:1432668. [PMID: 39188529 PMCID: PMC11345137 DOI: 10.3389/fcell.2024.1432668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Bone marrow stromal cells (BMSCs) play a significant role in bone metabolism as they can differentiate into osteoblasts, bone marrow adipocytes (BMAds), and chondrocytes. BMSCs chronically exposed to nutrient overload undergo adipogenic programming, resulting in bone marrow adipose tissue (BMAT) formation. BMAT is a fat depot transcriptionally, metabolically, and morphologically distinct from peripheral adipose depots. Reactive oxygen species (ROS) are elevated in obesity and serve as important signals directing BMSC fate. ROS produced by the NADPH oxidase (NOX) family of enzymes, such as NOX4, may be responsible for driving BMSC adipogenesis at the expense of osteogenic differentiation. The dual nature of ROS as both cellular signaling mediators and contributors to oxidative stress complicates their effects on bone metabolism. This review discusses the complex interplay between ROS and BMSC differentiation in the context of metabolic bone diseases.Special attention is paid to the role of NOX4-ROS in regulating cellular processes within the bone marrow microenvironment and potential target in metabolic bone diseases.
Collapse
Affiliation(s)
- Martina Dzubanova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Jacob M. Bond
- Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, VA, United States
| | - Siobhan M. Craige
- Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Fawzy El-Sayed KM, Cosgarea R, Sculean A, Doerfer C. Can vitamins improve periodontal wound healing/regeneration? Periodontol 2000 2024; 94:539-602. [PMID: 37592831 DOI: 10.1111/prd.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Periodontitis is a complex inflammatory disorder of the tooth supporting structures, associated with microbial dysbiosis, and linked to a number if systemic conditions. Untreated it can result in an irreversible damage to the periodontal structures and eventually teeth loss. Regeneration of the lost periodontium requires an orchestration of a number of biological events on cellular and molecular level. In this context, a set of vitamins have been advocated, relying their beneficial physiological effects, to endorse the biological regenerative events of the periodontium on cellular and molecular levels. The aim of the present article is to elaborate on the question whether or not vitamins improve wound healing/regeneration, summarizing the current evidence from in vitro, animal and clinical studies, thereby shedding light on the knowledge gap in this field and highlighting future research needs. Although the present review demonstrates the current heterogeneity in the available evidence and knowledge gaps, findings suggest that vitamins, especially A, B, E, and CoQ10, as well as vitamin combinations, could exert positive attributes on the periodontal outcomes in adjunct to surgical or nonsurgical periodontal therapy.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Giza, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Raluca Cosgarea
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
- Department of Periodontology and Peri-implant Diseases, Philips University Marburg, Marburg, Germany
- Clinic for Prosthetic Dentistry, University Iuliu-Hatieganu, Cluj-Napoca, Romania
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Christof Doerfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
3
|
Liu Q, Liu Z, Wang C, Gao X, Li C, Wang M, Wang Q, Cai JP. Increased production of 8-oxo-7,8-dihydroguanine in human urine, a novel biomarker of osteoporosis. Free Radic Res 2022; 56:358-365. [PMID: 35880390 DOI: 10.1080/10715762.2022.2106224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Osteoporosis is a worldwide disease that seriously affects the quality of life and survival rate of the elderly. The detection of bone biomarkers will provide supplementary information of bone mineral density, contributing to the accurate diagnosis of osteoporosis and better health care for prevention. This study aimed to investigate the efficacy of oxidative stress markers-8-oxo-7,8-dihydroguanine (8-oxoGsn) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGsn) in the assessment of osteoporosis. We conducted a cross-sectional study among menopausal women with a mean (standard deviation) age of 62.967 (7.798) years old (n = 151). Participants were recruited for the bone mineral density (BMD) assessment, blood and urinary samples. Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-guanine concentrations were measured by ultra performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS). The urinary 8-oxoGsn/Cre value differed significantly between normal and osteoporotic participants (p < 0.001), while the 8-oxodGsn/Cre value did not (p = 0.720). Even after adjusting for the age and body mass index, the BMD was still associated with urinary 8-oxoGsn/Cre value. ROC analysis showed that 8-oxoGsn has a strong diagnostic value for osteoporosis (AUC =0.744). The results show for the first time that 8-oxoGsn may be a biomarker for the future diagnosis of osteoporosis in women.
Collapse
Affiliation(s)
- Qian Liu
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, P.R. China
| | - Zhen Liu
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, P.R. China
| | - Chenchen Wang
- Department of Pharmacy, Quzhou KeCheng People's Hospital, Quzhou, Zhejiang, China
| | - Xin Gao
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, P.R. China
| | - Chuanbao Li
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Meng Wang
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Qiang Wang
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Ping Cai
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, P.R. China
| |
Collapse
|
4
|
Scott MB, Styring AK, McCullagh JSO. Polyphenols: Bioavailability, Microbiome Interactions and Cellular Effects on Health in Humans and Animals. Pathogens 2022; 11:770. [PMID: 35890016 PMCID: PMC9324685 DOI: 10.3390/pathogens11070770] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/26/2022] [Accepted: 07/03/2022] [Indexed: 12/12/2022] Open
Abstract
Polyphenolic compounds have a variety of functions in plants including protecting them from a range of abiotic and biotic stresses such as pathogenic infections, ionising radiation and as signalling molecules. They are common constituents of human and animal diets, undergoing extensive metabolism by gut microbiota in many cases prior to entering circulation. They are linked to a range of positive health effects, including anti-oxidant, anti-inflammatory, antibiotic and disease-specific activities but the relationships between polyphenol bio-transformation products and their interactions in vivo are less well understood. Here we review the state of knowledge in this area, specifically what happens to dietary polyphenols after ingestion and how this is linked to health effects in humans and animals; paying particular attention to farm animals and pigs. We focus on the chemical transformation of polyphenols after ingestion, through microbial transformation, conjugation, absorption, entry into circulation and uptake by cells and tissues, focusing on recent findings in relation to bone. We review what is known about how these processes affect polyphenol bioactivity, highlighting gaps in knowledge. The implications of extending the use of polyphenols to treat specific pathogenic infections and other illnesses is explored.
Collapse
Affiliation(s)
- Michael B. Scott
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
- School of Archaeology, University of Oxford, Oxford OX1 3TG, UK;
| | - Amy K. Styring
- School of Archaeology, University of Oxford, Oxford OX1 3TG, UK;
| | - James S. O. McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
| |
Collapse
|
5
|
Massaccesi L, Galliera E, Pellegrini A, Banfi G, Corsi Romanelli MM. Osteomyelitis, Oxidative Stress and Related Biomarkers. Antioxidants (Basel) 2022; 11:antiox11061061. [PMID: 35739958 PMCID: PMC9220672 DOI: 10.3390/antiox11061061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/30/2022] Open
Abstract
Bone is a very dynamic tissue, subject to continuous renewal to maintain homeostasis through bone remodeling, a process promoted by two cell types: osteoblasts, of mesenchymal derivation, are responsible for the deposition of new material, and osteoclasts, which are hematopoietic cells, responsible for bone resorption. Osteomyelitis (OM) is an invasive infectious process, with several etiological agents, the most common being Staphylococcus aureus, affecting bone or bone marrow, and severely impairing bone homeostasis, resulting in osteolysis. One of the characteristic features of OM is a strong state of oxidative stress (OS) with severe consequences on the delicate balance between osteoblastogenesis and osteoclastogenesis. Here we describe this, analyzing the effects of OS in bone remodeling and discussing the need for new, easy-to-measure and widely available OS biomarkers that will provide valid support in the management of the disease.
Collapse
Affiliation(s)
- Luca Massaccesi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (E.G.); (M.M.C.R.)
- Correspondence: ; Tel.: +39-0250316027
| | - Emanuela Galliera
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (E.G.); (M.M.C.R.)
- IRCCS Galeazzi Orthopaedic Institute, 20161 Milan, Italy;
| | - Antonio Pellegrini
- Centre for Reconstructive Surgery and Osteoarticular Infections, IRCCS Galeazzi Orthopaedic Institute, 20161 Milan, Italy;
| | - Giuseppe Banfi
- IRCCS Galeazzi Orthopaedic Institute, 20161 Milan, Italy;
| | - Massimiliano Marco Corsi Romanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (E.G.); (M.M.C.R.)
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| |
Collapse
|
6
|
Sun Y, Li J, Xie X, Gu F, Sui Z, Zhang K, Yu T. Recent Advances in Osteoclast Biological Behavior. Front Cell Dev Biol 2021; 9:788680. [PMID: 34957116 PMCID: PMC8694526 DOI: 10.3389/fcell.2021.788680] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
With the progress of the aging population, bone-related diseases such as osteoporosis and osteoarthritis have become urgent problems. Recent studies have demonstrated the importance of osteoclasts in bone homeostasis, implying these will be an important mediator in the treatment of bone-related diseases. Up to now, several reviews have been performed on part of osteoclast biological behaviors such as differentiation, function, or apoptosis. However, few reviews have shown the complete osteoclast biology and research advances in recent years. Therefore, in this review, we focus on the origin, differentiation, apoptosis, behavior changes and coupling signals with osteoblasts, providing a simple but comprehensive overview of osteoclasts for subsequent studies.
Collapse
Affiliation(s)
- Yang Sun
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Jiangbi Li
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Xiaoping Xie
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Feng Gu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Zhenjiang Sui
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Ke Zhang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Tiecheng Yu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Sun Y, Li J, Xie X, Gu F, Sui Z, Zhang K, Yu T. Macrophage-Osteoclast Associations: Origin, Polarization, and Subgroups. Front Immunol 2021; 12:778078. [PMID: 34925351 PMCID: PMC8672114 DOI: 10.3389/fimmu.2021.778078] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/15/2021] [Indexed: 12/31/2022] Open
Abstract
Cellular associations in the bone microenvironment are involved in modulating the balance between bone remodeling and resorption, which is necessary for maintaining a normal bone morphology. Macrophages and osteoclasts are both vital components of the bone marrow. Macrophages can interact with osteoclasts and regulate bone metabolism by secreting a variety of cytokines, which make a significant contribution to the associations. Although, recent studies have fully explored either macrophages or osteoclasts, indicating the significance of these two types of cells. However, it is of high importance to report the latest discoveries on the relationships between these two myeloid-derived cells in the field of osteoimmunology. Therefore, this paper reviews this topic from three novel aspects of the origin, polarization, and subgroups based on the previous work, to provide a reference for future research and treatment of bone-related diseases.
Collapse
Affiliation(s)
- Yang Sun
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Jiangbi Li
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Xiaoping Xie
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Feng Gu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Zhenjiang Sui
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Ke Zhang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Tiecheng Yu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Reis J, Ramos A. In Sickness and in Health: The Oxygen Reactive Species and the Bone. Front Bioeng Biotechnol 2021; 9:745911. [PMID: 34888300 PMCID: PMC8650620 DOI: 10.3389/fbioe.2021.745911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress plays a central role in physiological and pathological bone conditions. Its role in signalment and control of bone cell population differentiation, activity, and fate is increasingly recognized. The possibilities of its use and manipulation with therapeutic goals are virtually unending. However, how redox balance interplays with the response to mechanical stimuli is yet to be fully understood. The present work summarizes current knowledge on these aspects, in an integrative and broad introductory perspective.
Collapse
Affiliation(s)
- Joana Reis
- Agronomic and Veterinary Sciences, School of Agriculture, Polytechnic Institute of Viana Do Castelo, Ponte de Lima, Portugal
| | - António Ramos
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
9
|
Johnston RA, Vullioud P, Thorley J, Kirveslahti H, Shen L, Mukherjee S, Karner CM, Clutton-Brock T, Tung J. Morphological and genomic shifts in mole-rat 'queens' increase fecundity but reduce skeletal integrity. eLife 2021; 10:e65760. [PMID: 33843584 PMCID: PMC8104968 DOI: 10.7554/elife.65760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/11/2021] [Indexed: 12/21/2022] Open
Abstract
In some mammals and many social insects, highly cooperative societies are characterized by reproductive division of labor, in which breeders and nonbreeders become behaviorally and morphologically distinct. While differences in behavior and growth between breeders and nonbreeders have been extensively described, little is known of their molecular underpinnings. Here, we investigate the consequences of breeding for skeletal morphology and gene regulation in highly cooperative Damaraland mole-rats. By experimentally assigning breeding 'queen' status versus nonbreeder status to age-matched littermates, we confirm that queens experience vertebral growth that likely confers advantages to fecundity. However, they also upregulate bone resorption pathways and show reductions in femoral mass, which predicts increased vulnerability to fracture. Together, our results show that, as in eusocial insects, reproductive division of labor in mole-rats leads to gene regulatory rewiring and extensive morphological plasticity. However, in mole-rats, concentrated reproduction is also accompanied by costs to bone strength.
Collapse
Affiliation(s)
- Rachel A Johnston
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
| | - Philippe Vullioud
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Jack Thorley
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Henry Kirveslahti
- Department of Statistical Science, Duke UniversityDurhamUnited States
| | - Leyao Shen
- Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of MedicineDurhamUnited States
| | - Sayan Mukherjee
- Department of Statistical Science, Duke UniversityDurhamUnited States
- Department of Computer Science, Duke UniversityDurhamUnited States
- Department of Mathematics, Duke UniversityDurhamUnited States
- Department of Bioinformatics & Biostatistics, Duke UniversityDurhamUnited States
| | - Courtney M Karner
- Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of MedicineDurhamUnited States
- Department of Cell Biology, Duke UniversityDurhamUnited States
| | - Tim Clutton-Brock
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Department of Zoology and Entomology, Mammal Research Institute, University of PretoriaPretoriaSouth Africa
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
- Department of Biology, Duke UniversityDurhamUnited States
- Duke Population Research Institute, Duke UniversityDurhamUnited States
- Canadian Institute for Advanced ResearchTorontoCanada
| |
Collapse
|
10
|
Gao L, Kong L, Zhao Y. The Regulatory Role of Rho GTPases and their Substrates in Osteoclastogenesis. Curr Drug Targets 2021; 22:1064-1070. [PMID: 32981499 DOI: 10.2174/1389450121666200925150446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 11/22/2022]
Abstract
Pathological bone loss diseases (osteolysis, Paget's diseases) are commonly caused by the excessive differentiation and activity of osteoclasts. The Rho GTPases family members Rac1/2 (Rac1 and Rac2) have been reported for their special role in exerting multiple cellular functions during osteoclastic differentiation, which includes the most prominent function on dynamic actin cytoskeleton rearranging. Besides that, the increasing studies demonstrated that the regulating effects of Rac1/2 on the osteoclastic cytoskeletal organization are through the GEFs member Dock5. Although the amount of relevant studies on this topic is still limited, several excellent studies have been reported that extensively explored the molecular mechanisms involved in Rac1/2 and Dock5 during the osteoclastogenesis regulation, as well as their role as the therapeutic target in bone loss diseases. Herein, in this review, we aim to focus on recent advances studies for extensively understanding the role of Rho GTPases Rac1/2 and Dock5 in osteoclastogenesis, as well as their role as a potential therapeutic target in regulating osteoclastogenesis.
Collapse
Affiliation(s)
- Lin Gao
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi'an Jiaotong University, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi'an Jiaotong University, China
| | - Yuanting Zhao
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi'an Jiaotong University, China
| |
Collapse
|
11
|
Wegner AM, Haudenschild DR. NADPH oxidases in bone and cartilage homeostasis and disease: A promising therapeutic target. J Orthop Res 2020; 38:2104-2112. [PMID: 32285964 DOI: 10.1002/jor.24693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/08/2020] [Accepted: 04/06/2020] [Indexed: 02/04/2023]
Abstract
Reactive oxygen species (ROS) generated by the NADPH oxidase (Nox) enzymes are important short-range signaling molecules. They have been extensively studied in the physiology and pathophysiology of the cardiovascular system, where they have important roles in vascular inflammation, angiogenesis, hypertension, cardiac injury, stroke, and aging. Increasing evidence demonstrates that ROS and Nox enzymes also affect bone homeostasis and osteoporosis, and more recent studies implicate ROS and Nox enzymes in both inflammatory arthritis and osteoarthritis. Mechanistically, this connection may be through the effects of ROS on signal transduction. ROS affect both transforming growth factor-β/Smad signaling, interleukin-1β/nuclear factor-kappa B signaling, and the resulting changes in matrix metalloproteinase expression. The purpose of this review is to describe the role of Nox enzymes in the physiology and pathobiology of bone and joints and to highlight the potential of therapeutically targeting the Nox enzymes.
Collapse
Affiliation(s)
- Adam M Wegner
- OrthoCarolina, Winston-Salem Spine Center, Winston-Salem, North Carolina
| | - Dominik R Haudenschild
- Department of Orthopaedic Surgery, University of California Davis, School of Medicine, Sacramento, California
| |
Collapse
|
12
|
Liu Y, Dou Y, Yan L, Yang X, He B, Kong L, Smith W. The role of Rho GTPases' substrates Rac and Cdc42 in osteoclastogenesis and relevant natural medicinal products study. Biosci Rep 2020; 40:BSR20200407. [PMID: 32578854 PMCID: PMC7364480 DOI: 10.1042/bsr20200407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/07/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022] Open
Abstract
Recently, Rho GTPases substrates include Rac (Rac1 and Rac2) and Cdc42 that have been reported to exert multiple cellular functions in osteoclasts, the most prominent of which includes regulating the dynamic actin cytoskeleton rearrangements. In addition, natural products and their molecular frameworks have a long tradition as valuable starting points for medicinal chemistry and drug discovery. Although currently, there are reports about the natural product, which could play a therapeutic role in bone loss diseases (osteoporosis and osteolysis) through the regulation of Rac1/2 and Cdc42 during osteoclasts cytoskeletal structuring. There have been several excellent studies for exploring the therapeutic potentials of various natural products for their role in inhibiting cancer cells migration and function via regulating the Rac1/2 and Cdc42. Herein in this review, we try to focus on recent advancement studies for extensively understanding the role of Rho GTPases substrates Rac1, Rac2 and Cdc42 in osteoclastogenesis, as well as therapeutic potentials of natural medicinal products for their properties on the regulation of Rac1, and/or Rac2 and Cdc42, which is in order to inspire drug discovery in regulating osteoclastogenesis.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiaotong University, Xi'an, China
- Department of Orthopedics, Yan’an University Medical School, Yan’an, China
| | - Yusheng Dou
- Department of Shoulder and Elbow Joint, Honghui Hospital, School of Medicine, Xi’an Jiaotong University, China
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiaotong University, Xi'an, China
| | - Xiaobin Yang
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiaotong University, Xi'an, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiaotong University, Xi'an, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui Hospital, School of Medicine, Xi’an Jiaotong University, Xi'an, China
| | - Wanli Smith
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, U.S.A
| |
Collapse
|
13
|
Wang J, Fang Z, Song C, Kang H, Guo Q, Dong Y, Zhang Y, Peng R, Guan H, Li F. Schisandrin B Inhibits Osteoclastogenesis and Protects Against Ovariectomy-Induced Bone Loss. Front Pharmacol 2020; 11:1175. [PMID: 32848781 PMCID: PMC7413103 DOI: 10.3389/fphar.2020.01175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis is a systemic skeletal disease which is highly prevalent worldwide and considered to be associated with excessive bone resorption mediated by osteoclast. Osteoclast differentiation is featured by the activation of inflammation-related pathways and the generation of reactive oxygen species. Schisandrin B is a bioactive compound with strong antiinflammation and antioxidative properties, we thus speculated that Schisandrin B might serve as a potential candidate for osteoporosis. In the present study, we found that the formation and` function of osteoclasts were dramatically suppressed by Schisandrin B. And consistent with the in vitro results, treatment with Schisandrin B attenuated ovariectomy-induced bone loss in mice. Moreover, Schisandrin B notably inhibited the activation of mitogen activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways and scavenged ROS by activating nuclear factor E2 p45-related factor 2 (Nrf2) signaling. In conclusion, our study indicates that Schisandrin B is an effective approach to treat osteoporosis and other osteoclast-related diseases.
Collapse
Affiliation(s)
- Jia Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhong Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Song
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglei Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Dong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renpeng Peng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanfeng Guan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Fawzy El-Sayed KM, Elahmady M, Adawi Z, Aboushadi N, Elnaggar A, Eid M, Hamdy N, Sanaa D, Dörfer CE. The periodontal stem/progenitor cell inflammatory-regenerative cross talk: A new perspective. J Periodontal Res 2019; 54:81-94. [PMID: 30295324 DOI: 10.1111/jre.12616] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/24/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022]
Abstract
Adult multipotent stem/progenitor cells, with remarkable regenerative potential, have been isolated from various components of the human periodontium. These multipotent stem/progenitor cells include the periodontal ligament stem/progenitor cells (PDLSCs), stem cells from the apical papilla (SCAP), the gingival mesenchymal stem/progenitor cells (G-MSCs), and the alveolar bone proper stem/progenitor cells (AB-MSCs). Whereas inflammation is regarded as the reason for tissue damage, it also remains a fundamental step of any early healing process. In performing their periodontal tissue regenerative/reparative activity, periodontal stem/progenitor cells interact with their surrounding inflammatory micro-environmental, through their expressed receptors, which could influence their fate and the outcome of any periodontal stem/progenitor cell-mediated reparative/regenerative activity. The present review discusses the current understanding about the interaction of periodontal stem/progenitor cells with their surrounding inflammatory micro-environment, elaborates on the inflammatory factors influencing their stemness, proliferation, migration/homing, differentiation, and immunomodulatory attributes, the possible underlying intracellular mechanisms, as well as their proposed relationship to the canonical and noncanonical Wnt pathways.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | | | - Zeina Adawi
- Faculty of Dentistry, New Giza University, Giza, Egypt
| | | | - Ali Elnaggar
- Faculty of Dentistry, New Giza University, Giza, Egypt
| | - Maryam Eid
- Faculty of Dentistry, New Giza University, Giza, Egypt
| | - Nayera Hamdy
- Faculty of Dentistry, New Giza University, Giza, Egypt
| | - Dalia Sanaa
- Faculty of Dentistry, New Giza University, Giza, Egypt
| | - Christof E Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
15
|
Lee J, Son HS, Lee HI, Lee GR, Jo YJ, Hong SE, Kim N, Kwon M, Kim NY, Kim HJ, Lee YJ, Seo EK, Jeong W. Skullcapflavone II inhibits osteoclastogenesis by regulating reactive oxygen species and attenuates the survival and resorption function of osteoclasts by modulating integrin signaling. FASEB J 2018; 33:2026-2036. [PMID: 30216110 DOI: 10.1096/fj.201800866rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many bone diseases, such as osteoporosis and rheumatoid arthritis, are attributed to an increase in osteoclast number or activity; therefore, control of osteoclasts has significant clinical implications. This study shows how skullcapflavone II (SFII), a flavonoid with anti-inflammatory activity, regulates osteoclast differentiation, survival, and function. SFII inhibited osteoclastogenesis with decreased activation of MAPKs, Src, and cAMP response element-binding protein (CREB), which have been known to be redox sensitive. SFII decreased reactive oxygen species by scavenging them or activating nuclear factor-erythroid 2-related factor 2 (Nrf2), and its effects were partially reversed by hydrogen peroxide cotreatment or Nrf2 deficiency. In addition, SFII attenuated survival, migration, and bone resorption, with a decrease in the expression of integrin β3, Src, and p130 Crk-associated substrate, and the activation of RhoA and Rac1 in differentiated osteoclasts. Furthermore, SFII inhibited osteoclast formation and bone loss in an inflammation- or ovariectomy-induced osteolytic mouse model. These findings suggest that SFII inhibits osteoclastogenesis through redox regulation of MAPKs, Src, and CREB and attenuates the survival and resorption function by modulating the integrin pathway in osteoclasts. SFII has therapeutic potential in the treatment and prevention of bone diseases caused by excessive osteoclast activity.-Lee, J., Son, H. S., Lee, H. I., Lee, G.-R., Jo, Y.-J., Hong, S.-E., Kim, N., Kwon, M., Kim, N. Y., Kim, H. J., Lee, Y. J., Seo, E. K., Jeong, W. Skullcapflavone II inhibits osteoclastogenesis by regulating reactive oxygen species and attenuates the survival and resorption function of osteoclasts by modulating integrin signaling.
Collapse
Affiliation(s)
- Jiae Lee
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Han Saem Son
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Hye In Lee
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Gong-Rak Lee
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - You-Jin Jo
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Seong-Eun Hong
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Narae Kim
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Minjeong Kwon
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Nam Young Kim
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Hyun Jin Kim
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Yoo Jin Lee
- College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Eun Kyoung Seo
- College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Woojin Jeong
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
16
|
Kubatzky KF, Uhle F, Eigenbrod T. From macrophage to osteoclast - How metabolism determines function and activity. Cytokine 2018; 112:102-115. [PMID: 29914791 DOI: 10.1016/j.cyto.2018.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 12/13/2022]
Abstract
Osteoclasts are specialised cells that resorb bone and develop from the monocyte/macrophage lineage. While there is a wealth of information on the regulation of macrophage function through metabolic activity, the connection between osteoclast differentiation and metabolism is less well understood. Recent data show that mitochondria participate in switching macrophages from an inflammatory phenotype towards differentiation into osteoclasts. Additionally, it was found that reactive oxygen species (ROS) actively take place in osteoclast differentiation by acting as secondary signalling molecules. Bone resorption is an energy demanding process and differentiating osteoclasts triggers the biogenesis of mitochondria. In addition, the activity of specific OXPHOS components of macrophages and osteoclasts is differentially regulated. This review summarises our knowledge on macrophage-mediated inflammation, its impact on a cell's metabolic activity and its effect on osteoclast differentiation.
Collapse
Affiliation(s)
- Katharina F Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | - Florian Uhle
- Klinik für Anaesthesiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Tatjana Eigenbrod
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Gao Y, Ge W. The histone methyltransferase DOT1L inhibits osteoclastogenesis and protects against osteoporosis. Cell Death Dis 2018; 9:33. [PMID: 29348610 PMCID: PMC5833786 DOI: 10.1038/s41419-017-0040-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/14/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022]
Abstract
Osteoclasts are absorptive cells that play a critical role in homeostatic bone remodeling and pathological bone resorption. Emerging evidence suggests an important role of epigenetic regulation in osteoclastogenesis. In this study, we investigated the role of DOT1L, which regulates gene expression epigenetically by histone H3K79 methylation (H3K79me), during osteoclast formation. Using RANKL-induced RAW264.7 macrophage cells as an osteoclast differentiation model, we found that DOT1L and H3K79me2 levels were upregulated during osteoclast differentiation. Small molecule inhibitor- (EPZ5676 or EPZ004777) or short hairpin RNA-mediated reduction in DOT1L expression promoted osteoclast differentiation and resorption. In addition, DOT1L inhibition increased osteoclast surface area and accelerated bone-mass reduction in a mouse ovariectomy (OVX) model of osteoporosis without alter osteoblast differentiation. DOT1L inhibition increase reactive oxygen species (ROS) generation and autophagy activity, and cell migration in pre-osteoclasts. Moreover, it strengthened expression of osteoclast fusion and resorption-related protein CD9 and MMP9 in osteoclasts derived from RAW264.7. Our findings support a new mechanism of DOT1L-regulated, H3K79me2-mediated, epigenetic regulation of osteoclast differentiation, implicating DOT1L as a new therapeutic target for osteoclast dysregulation-induced disease.
Collapse
Affiliation(s)
- Yanpan Gao
- State Key Laboratory of Medical Molecular Biology & Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
18
|
Robinson NA, Timmerhaus G, Baranski M, Andersen Ø, Takle H, Krasnov A. Training the salmon's genes: influence of aerobic exercise, swimming performance and selection on gene expression in Atlantic salmon. BMC Genomics 2017; 18:971. [PMID: 29246115 PMCID: PMC5731093 DOI: 10.1186/s12864-017-4361-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/01/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Farmed and wild Atlantic salmon are exposed to many infectious and non-infectious challenges that can cause mortality when they enter the sea. Exercise before transfer promotes growth, health and survival in the sea. Swimming performance in juveniles at the freshwater parr stage is positively associated with resistance to some diseases. Genetic variation is likely to affect response to exercise. In this study we map genetic differences associated with aerobic exercise, swimming performance and genetic origin. Eggs from the selectively bred Bolaks salmon and wild Lærdal River salmon strains were reared until parr in a common environment. Swimming performance was assessed by subjecting the fish to either continuous hard exercise or control conditions for 18 days. Heart was sampled for examination of gene expression using RNA-seq (~60 fish/treatment). RESULTS Lower expression of genes affecting immune function was found in domesticated than wild parr. Among wild parr under control exercise the expression of a large number of genes involved in general metabolism, stress and immune response was lower in superior swimmers suggesting that minimisation of energy expenditure during periods of low activity makes parr better able to sustain bursts of swimming for predator avoidance. A similar set of genes were down-regulated with training among wild parr with inferior swimming performance. These parr react to training in a way that their cardiac expression patterns become like the superior performing wild parr under control exercise conditions. Diversifying selection caused by breeding of domesticated stock, and adaptive pressures in wild stock, has affected the expression and frequency of single nucleotide polymorphisms (SNPs) for multiple functional groups of genes affecting diverse processes. SNPs associated with swimming performance in wild parr map to genes involved in energetic processes, coding for contractile filaments in the muscle and controlling cell proliferation. CONCLUSIONS Domesticated parr have less phenotypic plasticity in response to training and lower expression of genes with functions affecting immune response. The genetic response to training is complex and depends on the background of parr and their swimming ability. Exercise should be tailored to the genetics and swimming performance of fish.
Collapse
Affiliation(s)
- Nicholas A. Robinson
- Nofima, Osloveien 1, 1430 Ås, Norway
- Sustainable Aquaculture Laboratory - Temperate and Tropical (SALTT), School of BioSciences, The University of Melbourne, Parkville, Vic 3010 Australia
- Nofima, PO Box 210, 1431 Ås, Norway
| | | | | | | | | | | |
Collapse
|
19
|
Fawzy El-Sayed KM, Dörfer CE. Animal Models for Periodontal Tissue Engineering: A Knowledge-Generating Process. Tissue Eng Part C Methods 2017; 23:900-925. [DOI: 10.1089/ten.tec.2017.0130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Karim M. Fawzy El-Sayed
- Department of Oral Medicine and Periodontology, Faculty of Oral and Dental Medicine, Cairo University, Giza, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
20
|
Davies JMS, Cillard J, Friguet B, Cadenas E, Cadet J, Cayce R, Fishmann A, Liao D, Bulteau AL, Derbré F, Rébillard A, Burstein S, Hirsch E, Kloner RA, Jakowec M, Petzinger G, Sauce D, Sennlaub F, Limon I, Ursini F, Maiorino M, Economides C, Pike CJ, Cohen P, Salvayre AN, Halliday MR, Lundquist AJ, Jakowec NA, Mechta-Grigoriou F, Mericskay M, Mariani J, Li Z, Huang D, Grant E, Forman HJ, Finch CE, Sun PY, Pomatto LCD, Agbulut O, Warburton D, Neri C, Rouis M, Cillard P, Capeau J, Rosenbaum J, Davies KJA. The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience 2017; 39:499-550. [PMID: 29270905 PMCID: PMC5745211 DOI: 10.1007/s11357-017-0002-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023] Open
Abstract
A paradox is a seemingly absurd or impossible concept, proposition, or theory that is often difficult to understand or explain, sometimes apparently self-contradictory, and yet ultimately correct or true. How is it possible, for example, that oxygen "a toxic environmental poison" could be also indispensable for life (Beckman and Ames Physiol Rev 78(2):547-81, 1998; Stadtman and Berlett Chem Res Toxicol 10(5):485-94, 1997)?: the so-called Oxygen Paradox (Davies and Ursini 1995; Davies Biochem Soc Symp 61:1-31, 1995). How can French people apparently disregard the rule that high dietary intakes of cholesterol and saturated fats (e.g., cheese and paté) will result in an early death from cardiovascular diseases (Renaud and de Lorgeril Lancet 339(8808):1523-6, 1992; Catalgol et al. Front Pharmacol 3:141, 2012; Eisenberg et al. Nat Med 22(12):1428-1438, 2016)?: the so-called, French Paradox. Doubtless, the truth is not a duality and epistemological bias probably generates apparently self-contradictory conclusions. Perhaps nowhere in biology are there so many apparently contradictory views, and even experimental results, affecting human physiology and pathology as in the fields of free radicals and oxidative stress, antioxidants, foods and drinks, and dietary recommendations; this is particularly true when issues such as disease-susceptibility or avoidance, "healthspan," "lifespan," and ageing are involved. Consider, for example, the apparently paradoxical observation that treatment with low doses of a substance that is toxic at high concentrations may actually induce transient adaptations that protect against a subsequent exposure to the same (or similar) toxin. This particular paradox is now mechanistically explained as "Adaptive Homeostasis" (Davies Mol Asp Med 49:1-7, 2016; Pomatto et al. 2017a; Lomeli et al. Clin Sci (Lond) 131(21):2573-2599, 2017; Pomatto and Davies 2017); the non-damaging process by which an apparent toxicant can activate biological signal transduction pathways to increase expression of protective genes, by mechanisms that are completely different from those by which the same agent induces toxicity at high concentrations. In this review, we explore the influences and effects of paradoxes such as the Oxygen Paradox and the French Paradox on the etiology, progression, and outcomes of many of the major human age-related diseases, as well as the basic biological phenomenon of ageing itself.
Collapse
Affiliation(s)
- Joanna M S Davies
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Josiane Cillard
- Lab de Biologie Cellulaire et Végétale, Faculté de Pharmacie, Université de Rennes, 35043, Rennes Cedex, France
| | - Bertrand Friguet
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - Enrique Cadenas
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- School of Pharmacy, University of Southern California, Los Angeles, CA, 90089-9121, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Rachael Cayce
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Andrew Fishmann
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - David Liao
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Anne-Laure Bulteau
- Institut de Génomique Fonctionnelle de Lyon,ENS de Lyon, CNRS, 69364, Lyon Cedex 07, France
| | - Frédéric Derbré
- Laboratory for Movement, Sport and Health Sciences-EA 1274, M2S, Université de Rennes 2-ENS, Bruz, 35170, Rennes, France
| | - Amélie Rébillard
- Laboratory for Movement, Sport and Health Sciences-EA 1274, M2S, Université de Rennes 2-ENS, Bruz, 35170, Rennes, France
| | - Steven Burstein
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Etienne Hirsch
- INSERM UMR 1127-CNRS UMR 7225, Institut du cerveau et de la moelle épinière-ICM Thérapeutique Expérimentale de la Maladie de Parkinson, Université Pierre et Marie Curie, 75651, Paris Cedex 13, France
| | - Robert A Kloner
- Huntington Medical Research Institutes, Pasadena, CA, 91105, USA
| | - Michael Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Giselle Petzinger
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Delphine Sauce
- Chronic infections and Immune ageing, INSERM U1135, Hopital Pitie-Salpetriere, Pierre et Marie Curie University, 75013, Paris, France
| | | | - Isabelle Limon
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Matilde Maiorino
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Christina Economides
- Los Angeles Cardiology Associates, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Christian J Pike
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Neurobiology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Anne Negre Salvayre
- Lipid peroxidation, Signalling and Vascular Diseases INSERM U1048, 31432, Toulouse Cedex 4, France
| | - Matthew R Halliday
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Adam J Lundquist
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nicolaus A Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | | | - Mathias Mericskay
- Laboratoire de Signalisation et Physiopathologie Cardiovasculaire-Inserm UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, 92296 Châtenay-Malabry, Paris, France
| | - Jean Mariani
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Zhenlin Li
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - David Huang
- Department of Radiation Oncology, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Ellsworth Grant
- Department of Oncology & Hematology, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Henry J Forman
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Los Angeles Cardiology Associates, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Patrick Y Sun
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Onnik Agbulut
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - David Warburton
- Children's Hospital of Los Angeles, Developmental Biology, Regenerative Medicine and Stem Cell Therapeutics program and the Center for Environmental Impact on Global Health Across the Lifespan at The Saban Research Institute, Los Angeles, CA, 90027, USA
- Department of Pediatrics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Christian Neri
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Mustapha Rouis
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - Pierre Cillard
- Lab de Biologie Cellulaire et Végétale, Faculté de Pharmacie, Université de Rennes, 35043, Rennes Cedex, France
| | - Jacqueline Capeau
- DR Saint-Antoine UMR_S938, UPMC, Inserm Faculté de Médecine, Université Pierre et Marie Curie, 75012, Paris, France
| | - Jean Rosenbaum
- Scientific Service of the Embassy of France in the USA, Consulate General of France in Los Angeles, Los Angeles, CA, 90025, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA.
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA.
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA.
| |
Collapse
|
21
|
Borghi SM, Mizokami SS, Pinho-Ribeiro FA, Fattori V, Crespigio J, Clemente-Napimoga JT, Napimoga MH, Pitol DL, Issa JPM, Fukada SY, Casagrande R, Verri WA. The flavonoid quercetin inhibits titanium dioxide (TiO 2)-induced chronic arthritis in mice. J Nutr Biochem 2017; 53:81-95. [PMID: 29197723 DOI: 10.1016/j.jnutbio.2017.10.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 05/31/2017] [Accepted: 10/16/2017] [Indexed: 01/14/2023]
Abstract
Titanium dioxide (TiO2) is a common component of orthopedic prosthesis. However, prosthesis wear releases TiO2, which induces inflammation and osteolysis in peri-prosthetic tissues. Quercetin is a flavonoid widely present in human diet, which presents biological activities such as antinociceptive, anti-inflammatory and antioxidant effects. Therefore, the effect of intraperitoneal treatment with quercetin in TiO2-induced arthritis model was evaluated. In the first set of experiments, mice received injection of TiO2 (0.1-3 mg/knee joint) and articular mechanical hyperalgesia, edema and histopathology analysis were performed in a 30 days protocol. The dose of 3 mg of TiO2 showed the most harmful effect, and was chosen to the following experiments. Subsequently, mice received 3 mg of TiO2 followed by post-treatment with quercetin during 30 days. Quercetin (10-100 mg/kg) inhibited in a dose-dependent manner TiO2-induced knee joint mechanical hyperalgesia, edema and leukocyte recruitment and did not induce damage in major organs such as liver, kidney and stomach. The dose of 30 mg/kg was chosen for the subsequent analysis, and reduced histopathological changes such as leukocyte infiltration, vascular proliferation and synovial hyperplasia (pannus formation) on day 30 after TiO2 challenge. The protective analgesic and anti-inflammatory mechanisms of quercetin included the inhibition of TiO2-induced neutrophil and macrophage recruitment, proteoglycan degradation, oxidative stress, cytokine production (TNF-α, IL-1β, IL-6, and IL-10), COX-2 mRNA expression, and bone resorption as well as activation of Nrf2/HO-1 signaling pathway. These results demonstrate the potential therapeutic applicability of the dietary flavonoid quercetin to reduce pain and inflammatory damages associated with prosthesis wear process-induced arthritis.
Collapse
Affiliation(s)
- Sergio M Borghi
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Sandra S Mizokami
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Felipe A Pinho-Ribeiro
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Victor Fattori
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Jefferson Crespigio
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Juliana T Clemente-Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, 13045-755, Campinas, São Paulo, Brazil
| | - Marcelo H Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, 13045-755, Campinas, São Paulo, Brazil
| | - Dimitrius L Pitol
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry, University of São Paulo, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - João P M Issa
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry, University of São Paulo, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Sandra Y Fukada
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, University Hospital (Health Science Centre), Londrina State University, 86038-350, Londrina, Paraná, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
22
|
Hong SE, Lee J, Seo DH, In Lee H, Ri Park D, Lee GR, Jo YJ, Kim N, Kwon M, Shon H, Kyoung Seo E, Kim HS, Young Lee S, Jeong W. Euphorbia factor L1 inhibits osteoclastogenesis by regulating cellular redox status and induces Fas-mediated apoptosis in osteoclast. Free Radic Biol Med 2017; 112:191-199. [PMID: 28774817 DOI: 10.1016/j.freeradbiomed.2017.07.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/11/2017] [Accepted: 07/29/2017] [Indexed: 02/01/2023]
Abstract
Excessive bone resorption caused by increased osteoclast number or activity leads to a variety of bone diseases including osteoporosis, rheumatoid arthritis and periodontitis. Thus, the therapeutic strategy for these diseases has been focused primarily on the inhibition of osteoclast formation and function. This study shows that euphorbia factor L1 (EFL1), a diterpenoid isolated from Euphorbia lathyris, inhibited osteoclastogenesis and induced osteoclast apoptosis. EFL1 suppressed osteoclast formation and bone resorption at both initial and terminal differentiation stages. EFL1 inhibited receptor activator of NF-κB ligand (RANKL)-induced NFATc1 induction with attenuated NF-κB activation and c-Fos expression. EFL1 decreased the level of reactive oxygen species by scavenging them or activating Nrf2, and inhibited PGC-1β that regulates mitochondria biogenesis. In addition, EFL1 induced apoptosis in differentiated osteoclasts by increasing Fas ligand expression followed by caspase activation. Moreover, EFL1 inhibited inflammation-induced bone erosion and ovariectomy-induced bone loss in mice. These findings suggest that EFL1 inhibits osteoclast differentiation by regulating cellular redox status and induces Fas-mediated apoptosis in osteoclast, and may provide therapeutic potential for preventing or treating bone-related diseases caused by excessive osteoclast.
Collapse
Affiliation(s)
- Seong-Eun Hong
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Jiae Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Dong-Hyun Seo
- Department of Biomedical Engineering, College of Health Science, Institute of Medical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Hye In Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Doo Ri Park
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Gong-Rak Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - You-Jin Jo
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Narae Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Minjung Kwon
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Hansem Shon
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Eun Kyoung Seo
- College of Pharmacy, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Han-Sung Kim
- Department of Biomedical Engineering, College of Health Science, Institute of Medical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Soo Young Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Woojin Jeong
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
23
|
Feng YL, Jiang XT, Ma FF, Han J, Tang XL. Resveratrol prevents osteoporosis by upregulating FoxO1 transcriptional activity. Int J Mol Med 2017; 41:202-212. [PMID: 29115382 PMCID: PMC5746307 DOI: 10.3892/ijmm.2017.3208] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 10/12/2017] [Indexed: 11/11/2022] Open
Abstract
Resveratrol (3,5,4-trihydroxystilbene, RES), a natural antioxidant, prevents bone loss by attenuating damage caused by oxidative stress. Our previous research revealed that the forkhead box O1 (FoxO1)/β-catenin signaling pathway affected the proliferation and differentiation of osteoblasts through its regulation of redox balance, and RES regulated the expression of FoxO1 to control white adipose tissue and then ameliorate an overweight condition. Based on previous research, we hypothesized that RES regulates FoxO1 transcriptional activity through the phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway to achieve an antioxidative effect on osteoporosis and then we confirmed this hypothesis in the present study. An ovariectomized (OVX) rat model of osteoporosis and a H2O2-induced oxidative cell injury model in RAW 264.7 cells were established to explore the underlying molecular mechanisms of how RES confers an antioxidant effect and prevents bone loss. The obtained results demonstrated that RES strongly prevented bone loss induced by oxidative stress in vivo. More specifically, RES effectively decreased the receptor activator of nuclear factor-κB ligand (RANKL) together with the tartrate-resistant acid phosphatase-5b (TRAP-5b) level, but elevated the osteoproprotegrin (OPG) level and attenuated bone microarchitecture damage. Notably, RES, due to its antioxidant effect, suppressed RANKL production and then inhibited osteoclastogenesis in the OVX rats. In vitro, RES improved the oxidative stress status of cells and thus inhibited the mRNA expression of osteoclast-specific enzymes. These data indicate that RES has a significant bone protective effect by antagonizing oxidative stress to suppress osteoclast activity, function and formation both in vivo and in vitro. Moreover, at the molecular level, we confirmed, for the first time, that RES upregulated FoxO1 transcriptional activity by inhibiting the PI3K/AKT signaling pathway, and hence promoted resistance to oxidative damage and restrained osteoclastogenesis. Inhibition of the PI3K/AKT signaling pathway may be induced by RANKL. FoxO1 is a major action target of RES to confer anti-osteoporosis function, and whose effect stems from its power to improve redox balance.
Collapse
Affiliation(s)
- Yan-Ling Feng
- The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiao-Tong Jiang
- The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Fang-Fang Ma
- The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jie Han
- The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xu-Lei Tang
- The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
24
|
Corazzari I, Tomatis M, Turci F, Ferraris S, Bertone E, Prenesti E, Vernè E. Gallic acid grafting modulates the oxidative potential of ferrimagnetic bioactive glass-ceramic SC-45. Colloids Surf B Biointerfaces 2016; 148:592-599. [PMID: 27694048 DOI: 10.1016/j.colsurfb.2016.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/22/2016] [Accepted: 09/23/2016] [Indexed: 01/21/2023]
Abstract
Magnetite-containing glass-ceramics are promising bio-materials for replacing bone tissue after tumour resection. Thanks to their ferrimagnetic properties, they generate heat when subjected to an alternated magnetic field. In virtue of this they can be employed for the hyperthermic treatment of cancer. Moreover, grafting anti-cancer drugs onto their surface produces specific anti-neoplastic activity in these biomaterials. Gallic acid (GA) exhibits antiproliferative activity which renders it a promising candidate for anticancer applications. In the present paper, the reactivity of ferrimagnetic glass-ceramic SC-45 grafted with GA (SC-45+GA) was studied in terms of ROS release, rupture of the C-H bond of the formate molecule and Fenton reactivity by EPR/spin trapping in acellular systems. The ability of these materials to cause lipid peroxidation was assessed by UV-vis/TBA assay employing linoleic acid as a model of membrane lipid. The results, compared to those obtained with SC-45, showed that GA grafting (i) significantly enhanced the Fenton reactivity and (ii) restored the former reactivity of SC-45 towards both the C-H bond and linoleic acid which had been completely suppressed by prolonged contact with water. Fe2+ centres at the surface are probably implicated. GA, acting as a pro-oxidant, reduces Fe3+ to Fe2+ by maintaining a supply of Fe2+ at the surface of SC-45+GA.
Collapse
Affiliation(s)
- Ingrid Corazzari
- University of Torino, Department of Chemistry, Via Pietro Giuria 7, 10125 Torino, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and other Toxic Particulates, Via Pietro Giuria 7, 10125 Torino, Italy.
| | - Maura Tomatis
- University of Torino, Department of Chemistry, Via Pietro Giuria 7, 10125 Torino, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and other Toxic Particulates, Via Pietro Giuria 7, 10125 Torino, Italy.
| | - Francesco Turci
- University of Torino, Department of Chemistry, Via Pietro Giuria 7, 10125 Torino, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and other Toxic Particulates, Via Pietro Giuria 7, 10125 Torino, Italy.
| | - Sara Ferraris
- Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy.
| | - Elisa Bertone
- Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy.
| | - Enrico Prenesti
- University of Torino, Department of Chemistry, Via Pietro Giuria 7, 10125 Torino, Italy.
| | - Enrica Vernè
- Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy.
| |
Collapse
|
25
|
Langlois J, Zaoui A, Bichara DA, Nich C, Bensidhoum M, Petite H, Muratoglu OK, Hamadouche M. Biological reaction to polyethylene particles in a murine calvarial model is highly influenced by age. J Orthop Res 2016; 34:574-80. [PMID: 26375608 DOI: 10.1002/jor.23050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/09/2015] [Indexed: 02/04/2023]
Abstract
Particle-induced osteolysis is driven by multiple factors including bone metabolism, inflammation, and age. The objective of this study was to determine the influence of age on polyethylene (PE) particle-induced osteolysis in a murine calvarial model comparing 2-month-old (young) versus 24-month-old (old) mice. After PE particle implantation, calvaria were assessed at days (D) 3, D7, D14, and D21 via chemoluminescent imaging for inflammation (L-012 probe). In addition micro-computed tomography (micro-CT) and histomorphometry end points addressed the bone reaction. Inflammation peaked at D7 in young mice and D14 in old mice. Using micro-CT, a nadir of mature bone was recorded at D7 for young mice, versus D21 for old mice. Besides, regenerating bone peaked at distinct timepoints: D7 for young mice versus D21 for old mice. In the young mice group, the histomorphometric findings correlated with micro-CT regenerating bone findings at D7, associated with ample osteoïd deposition. No osteoïd could be histologically quantified in the old mice group at D7. This study demonstrated that the biological reaction to polyethylene particles is highly influenced by age.
Collapse
Affiliation(s)
- Jean Langlois
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, GRJ 1231, Boston, Massachusetts, 02114.,Laboratoire de Bioingénierie et Biomécanique Ostéo-articulaires, UMR CNRS 7052, Faculté de Médecine Paris 7-Denis Diderot, 10, Avenue de Verdun, 75010, Paris, France
| | - Amine Zaoui
- Laboratoire de Bioingénierie et Biomécanique Ostéo-articulaires, UMR CNRS 7052, Faculté de Médecine Paris 7-Denis Diderot, 10, Avenue de Verdun, 75010, Paris, France
| | - David A Bichara
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, GRJ 1231, Boston, Massachusetts, 02114
| | - Christophe Nich
- Laboratoire de Bioingénierie et Biomécanique Ostéo-articulaires, UMR CNRS 7052, Faculté de Médecine Paris 7-Denis Diderot, 10, Avenue de Verdun, 75010, Paris, France
| | - Morad Bensidhoum
- Laboratoire de Bioingénierie et Biomécanique Ostéo-articulaires, UMR CNRS 7052, Faculté de Médecine Paris 7-Denis Diderot, 10, Avenue de Verdun, 75010, Paris, France
| | - Hervé Petite
- Laboratoire de Bioingénierie et Biomécanique Ostéo-articulaires, UMR CNRS 7052, Faculté de Médecine Paris 7-Denis Diderot, 10, Avenue de Verdun, 75010, Paris, France
| | - Orhun K Muratoglu
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, GRJ 1231, Boston, Massachusetts, 02114
| | - Moussa Hamadouche
- Laboratoire de Bioingénierie et Biomécanique Ostéo-articulaires, UMR CNRS 7052, Faculté de Médecine Paris 7-Denis Diderot, 10, Avenue de Verdun, 75010, Paris, France
| |
Collapse
|
26
|
Higher Urinary Levels of 8-Hydroxy-2'-deoxyguanosine Are Associated with a Worse RANKL/OPG Ratio in Postmenopausal Women with Osteopenia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:6038798. [PMID: 26635910 PMCID: PMC4655257 DOI: 10.1155/2016/6038798] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/12/2015] [Accepted: 06/21/2015] [Indexed: 12/20/2022]
Abstract
Postmenopausal osteoporosis (PO) is a major public health issue which affects a large fraction of elderly women. Emerging in vitro evidence suggests a central role of oxidative stress (OxS) in postmenopausal osteoporosis (PO) development. Contrariwise, the human studies on this topic are still scarce and inconclusive. In the attempt to address this issue, we sought to determine if OxS, as assessed by 8-hydroxy-2-deoxyguanosine (8-OHdG), may influence the level of receptor activator of nuclear factor-κb ligand (RANKL)/osteoprotegerin (OPG) ratio (a central regulator of bone metabolism) in a sample (n = 124), including postmenopausal women with osteoporosis, osteopenia and normal bone mass density (BMD). The most striking result that emerged in our study was the independent and positive (beta = 0.449, p = 0.004, and R2 = 0.185) association between the OxS marker and RANKL/OPG ratio which was found in osteopenic but not in the other 2 sample groups. If confirmed by longitudinal studies, our findings would suggest that OxS is implicated in the derangement of bone homeostasis which precedes PO development. In line with these considerations, antioxidant treatment of postmenopausal women with moderately low BMD might contribute to preventing PO and related complications.
Collapse
|
27
|
Barbeck M, Motta A, Migliaresi C, Sader R, Kirkpatrick CJ, Ghanaati S. Heterogeneity of biomaterial-induced multinucleated giant cells: Possible importance for the regeneration process? J Biomed Mater Res A 2015; 104:413-8. [PMID: 26422451 DOI: 10.1002/jbm.a.35579] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/18/2015] [Accepted: 09/25/2015] [Indexed: 11/05/2022]
Abstract
Biomaterial-associated multinucleated giant cells (BMGCs) have been found within the implantation beds of many different biomaterials. However, their exact differentiation and their involvement in the inflammatory and healing events of the foreign body response still remain mostly unclear. Silk fibroin (SF) scaffolds, which induces a tissue reaction involving both macrophages and BMGCs, was implanted in the subcutaneous connective tissue of four CD-1 mice for 15 days using an established subcutaneous implantation model. Analysis of macrophage polarization and BMGCs was performed by immunohistochemcial detection of pro- (cyclooxygenase-2 (COX-2), C-C chemokine receptor type 7 (CCR7), nuclear factor "kappa-light-chain-enhancer" (NF-κB)) and anti-(heme oxygenase-1 (HO-1) and mannose receptor (MR, also known as CD206)). Furthermore, histochemical detection of tartrate-resistant acid phosphatase (TRAP) was conducted to test its predictive efficiency for the pro-inflammatory differentiation of cells. An established system for histomorphometrical analysis was used for counting of BMGCs expressing these molecules. The results show that BMGCs express both pro- and anti-inflammatory molecules within the implantation beds of SF scaffolds in comparable numbers, while only statistically significantly lower numbers of TRAP-positive BMGCs were measured in comparison to the BMGCs expressing the above-mentioned molecules. As these data substantiate the heterogeneity of BMGCs, the question arises to what extent BMGCs can "support" the process of tissue regeneration. Furthermore, the data prompt the question to what extent TRAP-expression within a biomaterial implantation bed can be seen as a predictive marker for an inflammatory condition, as in this study no obvious correlation between TRAP-expression and other pro-inflammatory markers could be observed.
Collapse
Affiliation(s)
- Mike Barbeck
- Clinic of Oro-Maxillofacial and Plastic Surgery, FORM-Lab, University Medical Center of the Goethe University, Frankfurt, Germany.,Institute of Pathology, REPAIR-Lab, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Antonella Motta
- Department of Materials Engineering and Industrial Technologies and BIOtech Research Centre, University of Trento, Trento, I-38050, Italy
| | - Claudio Migliaresi
- Department of Materials Engineering and Industrial Technologies and BIOtech Research Centre, University of Trento, Trento, I-38050, Italy
| | - Robert Sader
- Clinic of Oro-Maxillofacial and Plastic Surgery, FORM-Lab, University Medical Center of the Goethe University, Frankfurt, Germany
| | - Charles James Kirkpatrick
- Institute of Pathology, REPAIR-Lab, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shahram Ghanaati
- Clinic of Oro-Maxillofacial and Plastic Surgery, FORM-Lab, University Medical Center of the Goethe University, Frankfurt, Germany.,Institute of Pathology, REPAIR-Lab, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
28
|
Targeting oxidant-dependent mechanisms for the treatment of COPD and its comorbidities. Pharmacol Ther 2015; 155:60-79. [PMID: 26297673 DOI: 10.1016/j.pharmthera.2015.08.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 12/30/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is an incurable global health burden and is characterised by progressive airflow limitation and loss of lung function. In addition to the pulmonary impact of the disease, COPD patients often develop comorbid diseases such as cardiovascular disease, skeletal muscle wasting, lung cancer and osteoporosis. One key feature of COPD, yet often underappreciated, is the contribution of oxidative stress in the onset and development of the disease. Patients experience an increased burden of oxidative stress due to the combined effects of excess reactive oxygen species (ROS) and nitrogen species (RNS) generation, antioxidant depletion and reduced antioxidant enzyme activity. Currently, there is a lack of effective treatments for COPD, and an even greater lack of research regarding interventions that treat both COPD and its comorbidities. Due to the involvement of oxidative stress in the pathogenesis of COPD and many of its comorbidities, a unique therapeutic opportunity arises where the treatment of a multitude of diseases may be possible with only one therapeutic target. In this review, oxidative stress and the roles of ROS/RNS in the context of COPD and comorbid cardiovascular disease, skeletal muscle wasting, lung cancer, and osteoporosis are discussed and the potential for therapeutic benefit of anti-oxidative treatment in these conditions is outlined. Because of the unique interplay between oxidative stress and these diseases, oxidative stress represents a novel target for the treatment of COPD and its comorbidities.
Collapse
|
29
|
Rahim AH, Setiawan B, Dewi FRP, Noor Z. Regulation by Phloroglucinol of Nrf2/Maf-Mediated Expression of Antioxidant Enzymes and Inhibition of Osteoclastogenesis via the RANKL/RANK Signaling Pathway: In Silico study. Acta Inform Med 2015; 23:228-32. [PMID: 26483597 PMCID: PMC4584081 DOI: 10.5455/aim.2015.23.228-232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/15/2015] [Indexed: 12/22/2022] Open
Abstract
Introduction: Phloroglucinol is an antioxidant compound with many positive effects on health. The purpose of this study was to determine the role of phloroglucinol in osteoclastogenesis via the RANKL/RANK signaling pathway and the activity of the transcription factor Nrf2. Material and methods: Analysis was performed in silico using the primary method of docking by the use of Hex 8.0 software and Haddock web server. Analysis of interactions was then performed to determine interactions between the ligand and its receptors by using the software LigPlus and LigandScout 3.1. Results: Results indicated that phloroglucinol compound was thought to inhibit osteoclastogenesis via three mechanisms: inhibiting RANKL−RANK interaction, sustaining the RANKL−OPG bond, and increasing the activity of the transcription factor Nrf2.
Collapse
Affiliation(s)
- Agus Hadian Rahim
- Department of Orthopaedics and Traumatology, Hasan Sadikin General Hospital, Medical Faculty Padjadjaran University, Bandung, West Java, Indonesia
| | - Bambang Setiawan
- Research Center for Osteoporosis, Department of Medical Chemistry and Biochemistry, Medical Faculty Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | | | - Zairin Noor
- Research Center for Osteoporosis, Department of Orthopaedics and Traumatology, Ulin General Hospital, Medical Faculty Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| |
Collapse
|
30
|
Callaway DA, Jiang JX. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab 2015; 33:359-70. [PMID: 25804315 DOI: 10.1007/s00774-015-0656-4] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/12/2015] [Indexed: 12/11/2022]
Abstract
Osteoclasts are cells derived from bone marrow macrophages and are important in regulating bone resorption during bone homeostasis. Understanding what drives osteoclast differentiation and activity is important when studying diseases characterized by heightened bone resorption relative to formation, such as osteoporosis. In the last decade, studies have indicated that reactive oxygen species (ROS), including superoxide and hydrogen peroxide, are crucial components that regulate the differentiation process of osteoclasts. However, there are still many unanswered questions that remain. This review will examine the mechanisms by which ROS can be produced in osteoclasts as well as how it may affect osteoclast differentiation and activity through its actions on osteoclastogenesis signaling pathways. In addition, the contribution of ROS to the aging-associated disease of osteoporosis will be addressed and how targeting ROS may lead to the development of novel therapeutic treatment options.
Collapse
Affiliation(s)
- Danielle A Callaway
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | | |
Collapse
|
31
|
Kobayashi CAN, Leite AL, Peres-Buzalaf C, Carvalho JG, Whitford GM, Everett ET, Siqueira WL, Buzalaf MAR. Bone response to fluoride exposure is influenced by genetics. PLoS One 2014; 9:e114343. [PMID: 25501567 PMCID: PMC4263599 DOI: 10.1371/journal.pone.0114343] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/06/2014] [Indexed: 12/12/2022] Open
Abstract
Genetic factors influence the effects of fluoride (F) on amelogenesis and bone homeostasis but the underlying molecular mechanisms remain undefined. A label-free proteomics approach was employed to identify and evaluate changes in bone protein expression in two mouse strains having different susceptibilities to develop dental fluorosis and to alter bone quality. In vivo bone formation and histomorphometry after F intake were also evaluated and related to the proteome. Resistant 129P3/J and susceptible A/J mice were assigned to three groups given low-F food and water containing 0, 10 or 50 ppmF for 8 weeks. Plasma was evaluated for alkaline phosphatase activity. Femurs, tibiae and lumbar vertebrae were evaluated using micro-CT analysis and mineral apposition rate (MAR) was measured in cortical bone. For quantitative proteomic analysis, bone proteins were extracted and analyzed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS), followed by label-free semi-quantitative differential expression analysis. Alterations in several bone proteins were found among the F treatment groups within each mouse strain and between the strains for each F treatment group (ratio ≥1.5 or ≤0.5; p<0.05). Although F treatment had no significant effects on BMD or bone histomorphometry in either strain, MAR was higher in the 50 ppmF 129P3/J mice than in the 50 ppmF A/J mice treated with 50 ppmF showing that F increased bone formation in a strain-specific manner. Also, F exposure was associated with dose-specific and strain-specific alterations in expression of proteins involved in osteogenesis and osteoclastogenesis. In conclusion, our findings confirm a genetic influence in bone response to F exposure and point to several proteins that may act as targets for the differential F responses in this tissue.
Collapse
Affiliation(s)
- Cláudia A. N. Kobayashi
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Aline L. Leite
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | - Juliane G. Carvalho
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Gary M. Whitford
- Department of Oral Biology, College of Dental Medicine, Georgia Regents University, Augusta, Georgia, United States
| | - Eric T. Everett
- Department of Pediatric Dentistry, The Carolina Center for Genome Sciences, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Walter L. Siqueira
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Marília A. R. Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| |
Collapse
|
32
|
Steinbeck MJ, Jablonowski LJ, Parvizi J, Freeman TA. The role of oxidative stress in aseptic loosening of total hip arthroplasties. J Arthroplasty 2014; 29:843-9. [PMID: 24290740 PMCID: PMC3965616 DOI: 10.1016/j.arth.2013.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/26/2013] [Accepted: 09/02/2013] [Indexed: 02/01/2023] Open
Abstract
This study investigated the hypothesis that wear particle-induced oxidative stress initiates osteolysis after total hip arthroplasty (THA). Patient radiographs were scored for osteolysis and periprosthetic tissues were immunostained and imaged to quantify polyethylene wear, inflammation, and five osteoinflammatory and oxidative stress-responsive factors. These included high mobility group protein-B1 (HMGB1), cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS), 4-hydroxynonenal (4-HNE), and nitrotyrosine (NT). The results show wear debris correlated with inflammation, 4-HNE, NT and HMGB1, whereas inflammation only correlated with NT and HMGB1. Similar to wear debris and inflammation, osteolysis correlated with HMGB1. Additionally, osteolysis correlated with COX2 and 4-HNE, but not iNOS or NT. Understanding the involvement of oxidative stress in wear-induced osteolysis will help identify diagnostic biomarkers and therapeutic targets to prevent osteolysis after THA.
Collapse
Affiliation(s)
- Marla J Steinbeck
- School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, Pennsylvania; Department of Orthopaedic Surgery,Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Lauren J Jablonowski
- School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Javad Parvizi
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania; Rothman Institute at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Theresa A Freeman
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Hyeon S, Lee H, Yang Y, Jeong W. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation. Free Radic Biol Med 2013; 65:789-799. [PMID: 23954472 DOI: 10.1016/j.freeradbiomed.2013.08.005] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 12/22/2022]
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that regulates the expression of a variety of antioxidant and detoxification genes through an antioxidant-response element. Nrf2 has been shown to protect several types of cells against the acute and chronic injury that accompanies oxidative stress, but its role in osteoclasts remains unclear. In this study, we investigated the role of Nrf2 in osteoclast (OC) differentiation, a process in which reactive oxygen species (ROS) are generated and then participate, using Nrf2-knockout mice. Receptor activator of nuclear factor κB ligand (RANKL)-induced OC differentiation, actin ring formation, and osteoclastic bone resorption were substantially promoted in Nrf2-deficient OC precursor cells compared to wild-type cells. Under both unstimulated and RANKL-stimulated conditions, Nrf2 loss led to an increase in the intracellular ROS level and the oxidized-to-reduced glutathione ratio and a defect in the production of numerous antioxidant enzymes and glutathione. Moreover, pretreatment with N-acetylcysteine or diphenyleneiodonium significantly reduced the OC differentiation and decreased the intracellular ROS level in both Nrf2-deficient and wild-type cells. Pretreatment with sulforaphane and curcumin also inhibited the OC differentiation by activating Nrf2 in part. Nrf2 deficiency promoted the RANKL-induced activation of mitogen-activated protein kinases, including c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38; the induction of c-Fos; and the consequent induction of nuclear factor of activated T cells, cytoplasmic 1, a pivotal determinant of OC differentiation. Our results suggest that Nrf2 probably inhibits RANKL-induced OC differentiation by regulating the cellular redox status by controlling the expression of oxidative response genes, findings that might form the basis of a new strategy for treating inflammatory bone diseases.
Collapse
Affiliation(s)
- Seungha Hyeon
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Woman's University, Seoul 120-750, Korea
| | - Hyojung Lee
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Woman's University, Seoul 120-750, Korea
| | - Yoohee Yang
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Woman's University, Seoul 120-750, Korea
| | - Woojin Jeong
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Woman's University, Seoul 120-750, Korea.
| |
Collapse
|
34
|
Venditti P, Di Stefano L, Di Meo S. Vitamin E management of oxidative damage-linked dysfunctions of hyperthyroid tissues. Cell Mol Life Sci 2013; 70:3125-44. [PMID: 23255045 PMCID: PMC11114018 DOI: 10.1007/s00018-012-1217-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/15/2012] [Accepted: 11/19/2012] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Thyroid hormones affect growth, development, and metabolism of vertebrates, and are considered the major regulators of their homeostasis. On the other hand, elevated circulating levels of thyroid hormones are associated with modifications in the whole organism (weight loss and increased metabolism and temperature) and in several body regions. Indeed, tachycardia, atrial arrhythmias, heart failure, muscle weakness and wasting, bone mass loss, and hepatobiliary complications are commonly found in hyperthyroid animals and humans. RESULTS Most thyroid hormone actions result from influences on transcription of T3-responsive genes, which are mediated through nuclear receptors. However, there is significant evidence that tissue oxidative stress underlies some dysfunctions produced by hyperthyroidism. DISCUSSION During the last decades, increasing interest has been turned to the use of antioxidants as therapeutic agents in various diseases and pathophysiological disorders believed to be mediated by oxidative stress. In particular, because elevated circulating levels of thyroid hormones are associated with tissue oxidative injury, more attention has been paid to explore the application of antioxidants as therapeutic agents in thyroid related disorders. CONCLUSIONS At present, vitamin E is among the most commonly consumed dietary supplements due to the belief that it, as an antioxidant, may attenuate morbidity and mortality. This is due to the results of numerous scientific studies, which demonstrate that vitamin E has a primary function to destroy peroxyl radicals, thus protecting polyunsaturated fatty acids biological membranes from oxidative damage. However, results are also available indicating that protective vitamin E effects against oxidative damage can be obtained even through different mechanisms.
Collapse
Affiliation(s)
- Paola Venditti
- Dipartimento delle Scienze Biologiche, Sezione di Fisiologia, Università di Napoli Federico II, Via Mezzocannone 8, 80134 Naples, Italy.
| | | | | |
Collapse
|
35
|
|
36
|
DiSilvestro RA, Selsby J, Siefker K. A pilot study of copper supplementation effects on plasma F2alpha isoprostanes and urinary collagen crosslinks in young adult women. J Trace Elem Med Biol 2010; 24:165-8. [PMID: 20569928 DOI: 10.1016/j.jtemb.2010.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 12/21/2009] [Accepted: 02/17/2010] [Indexed: 11/19/2022]
Abstract
Marginal copper deficiency has been proposed to occur frequently, but the benefits of correction remain largely uncharacterized. Two benefits could be reduced oxidant stress and better crosslinking of collagen in bone. Copper intake was increased in 8 female university students by supplementation with copper glycinate (2 mg copper/day) for 8 weeks. Supplementation improved copper status based on serum activity of two copper enzymes, ceruloplasmin and diamine oxidase (9% and 75% mean increase, respectively). No effect was seen for erythrocyte copper-zinc superoxide dismutase. Supplementation produced a 39% mean decrease in plasma for F(2alpha)-isoprostanes (a marker of oxidant stress), and gave a 62% increase in the urine ratio of collagen crosslinks to a measure of total collagen. None of the supplementation effects were duplicated for 8 women given placebo. In conclusion, this pilot study found that in young adult women, increased copper intake can alter biochemical parameters relevant to copper function.
Collapse
|
37
|
Quinn MT, Schepetkin IA. Role of NADPH oxidase in formation and function of multinucleated giant cells. J Innate Immun 2009; 1:509-26. [PMID: 20375608 DOI: 10.1159/000228158] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 05/08/2009] [Indexed: 01/03/2023] Open
Abstract
Macrophages play essential roles in a wide variety of physiological and pathological processes. One of the unique features of these phagocytic leukocytes is their ability to fuse, forming multinucleated giant cells. Multinucleated giant cells are important mediators of tissue remodeling and repair and are also responsible for removal or sequestration of foreign material, intracellular bacteria and non-phagocytosable pathogens, such as parasites and fungi. Depending on the tissue where fusion occurs and the inflammatory insult, multinucleated giant cells assume distinctly different phenotypes. Nevertheless, the ultimate outcome is the formation of large cells that can resorb bone tissue (osteoclasts) or foreign material and pathogens (giant cells) extracellularly. While progress has been made in recent years, the mechanisms and factors involved in macrophage fusion are still not fully understood. In addition to cytokines and a number of adhesion proteins and receptors, it is becoming increasingly clear that NADPH oxidase-generated reactive oxygen species (ROS) also play an important role in macrophage fusion. In this review, we provide an overview of macrophage multinucleation, with a specific focus on the role of NADPH oxidases and ROS in macrophage fusion and in the function of multinucleated giant cells. In addition, we provide an updated overview of the role of these cells in inflammation and various autoimmune diseases.
Collapse
Affiliation(s)
- Mark T Quinn
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717, USA.
| | | |
Collapse
|
38
|
Shen CL, Yeh JK, Cao JJ, Wang JS. Green tea and bone metabolism. Nutr Res 2009; 29:437-56. [PMID: 19700031 PMCID: PMC2754215 DOI: 10.1016/j.nutres.2009.06.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/18/2009] [Accepted: 06/30/2009] [Indexed: 01/01/2023]
Abstract
Osteoporosis is a major health problem in both elderly women and men. Epidemiological evidence has shown an association between tea consumption and the prevention of age-related bone loss in elderly women and men. Ingestion of green tea and green tea bioactive compounds may be beneficial in mitigating bone loss of this population and decreasing their risk of osteoporotic fractures. This review describes the effect of green tea or its bioactive components on bone health, with an emphasis on (i) the prevalence and etiology of osteoporosis; (ii) the role of oxidative stress and antioxidants in osteoporosis; (iii) green tea composition and bioavailability; (iv) the effects of green tea and its active components on osteogenesis, osteoblastogenesis, and osteoclastogenesis from human epidemiological, animal, as well as cell culture studies; (v) possible mechanisms explaining the osteoprotective effects of green tea bioactive compounds; (vi) other bioactive components in tea that benefit bone health; and (vii) a summary and future direction of green tea and bone health research and the translational aspects. In general, tea and its bioactive components might decrease the risk of fracture by improving bone mineral density and supporting osteoblastic activities while suppressing osteoclastic activities.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430-9097, USA.
| | | | | | | |
Collapse
|
39
|
McCarty MF. ''Iatrogenic Gilbert syndrome''--a strategy for reducing vascular and cancer risk by increasing plasma unconjugated bilirubin. Med Hypotheses 2007; 69:974-94. [PMID: 17825497 DOI: 10.1016/j.mehy.2006.12.069] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 01/11/2023]
Abstract
The catabolism of heme, generating biliverdin, carbon monoxide, and free iron, is mediated by heme oxygenase (HO). One form of this of this enzyme, heme oxygenase-1, is inducible by numerous agents which promote oxidative stress, and is now known to provide important antioxidant protection, as demonstrated in many rodent models of free radical-mediated pathogenesis, and suggested by epidemiology observing favorable health outcomes in individuals carrying high-expression alleles of the HO-1 gene. The antioxidant impact of HO-1 appears to be mediated by bilirubin, generated rapidly from biliverdin by ubiquitously expressed biliverdin reductase. Bilirubin efficiently scavenges a wide range of physiological oxidants by electron donation. In the process, it is often reconverted to biliverdin, but biliverdin reductase quickly regenerates bilirubin, thereby greatly boosting its antioxidant potential. There is also suggestive evidence that bilirubin inhibits the activity or activation of NADPH oxidase. Increased serum bilirubin is associated with reduced risk for atherogenic disease in epidemiological studies, and more limited data show an inverse correlation between serum bilirubin and cancer risk. Gilbert syndrome, a genetic variant characterized by moderate hyperbilirubinemia attributable to reduced hepatic expression of the UDP-glucuronosyltransferase which conjugates bilirubin, has been associated with a greatly reduced risk for ischemic heart disease and hypertension in a recent study. Feasible strategies for boosting serum bilirubin levels may include administration of HO-1 inducers, supplementation with bilirubin or biliverdin, and administration of drugs which decrease the efficiency of hepatic bilirubin conjugation. The well-tolerated uricosuric drug probenecid achieves non-competitive inhibition of hepatic glucuronidation reactions by inhibiting the transport of UDP-glucuronic acid into endoplasmic reticulum; probenecid therapy is included in the differential diagnosis of hyperbilirubinemia, and presumably could be used to induce an ''iatrogenic Gilbert syndrome''. Other drugs, such as rifampin, can raise serum bilirubin through competitive inhibition of hepatocyte bilirubin uptake--although unfortunately rifampin is not as safe as probenecid. Measures which can safely achieve moderate serum elevations of bilirubin may prove to have value in the prevention and/or treatment of a wide range of disorders in which oxidants play a prominent pathogenic role, including many vascular diseases, cancer, and inflammatory syndromes. Phycobilins, algal biliverdin metabolites that are good substrates for biliverdin reductase, may prove to have clinical antioxidant potential comparable to that of bilirubin.
Collapse
|
40
|
Pi SH, Kim SC, Kim HT, Lee HJ, Lee SK, Kim EC. Defense mechanism of heme oxygenase-1 against cytotoxic and receptor activator of nuclear factor-kappaB ligand inducing effects of hydrogen peroxide in human periodontal ligament cells. J Periodontal Res 2007; 42:331-9. [PMID: 17559630 DOI: 10.1111/j.1600-0765.2006.00953.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Although induction of heme oxygenase-1 by H2O2 has been reported, the protective role of heme oxygenase-1 against the cytotoxic and osteoclastogenic effects of H2O2 have not been elucidated in human periodontal ligament cells. The aim of this work was to investigate the defense mechanism of heme oxygenase-1 on H2O2-induced cytotoxicity and to analyze the expression of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin as markers for osteoclast differentiation in periodontal ligament cells. MATERIAL AND METHODS Using human periodontal ligament cells, cytotoxicity was measured by the 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT) assay, and expression of heme oxygenase-1, RANKL, and osteoprotegerin mRNA was determined by reverse transcription-polymerase chain reaction. RESULTS H2O2 produced a cytotoxic effect by reducing the cell viability and enhancing the expression of heme oxygenase-1 and RANKL mRNAs in a concentration- and time-dependent manner. Additional experiments revealed that heme oxygenase-1 inducer (hemin), a membrane-permeable cGMP analog (8-bromo-cGMP), carbon monoxide, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase inhibitor, protein kinase inhibitor (KT5823), and nuclear factor-kappaB inhibitor (pyrrolidine dithiocarbamate) also blocked the effects of H2O2 on cell viability and RANKL mRNA expression in periodontal ligament cells. CONCLUSION These data suggest that heme oxygenase-1 induction plays a protective role in periodontal ligament cells against the cytotoxic and RANKL-inducing effects of H2O2, through multiple signaling pathways.
Collapse
Affiliation(s)
- S-H Pi
- Department of Periodontology, Wonkwang University, Iksan, South Korea
| | | | | | | | | | | |
Collapse
|
41
|
Krause KH. Aging: A revisited theory based on free radicals generated by NOX family NADPH oxidases. Exp Gerontol 2007; 42:256-62. [DOI: 10.1016/j.exger.2006.10.011] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 09/27/2006] [Accepted: 10/03/2006] [Indexed: 01/01/2023]
|
42
|
Yousefzadeh G, Larijani B, Mohammadirad A, Heshmat R, Dehghan G, Rahimi R, Abdollahi M. Determination of oxidative stress status and concentration of TGF-beta 1 in the blood and saliva of osteoporotic subjects. Ann N Y Acad Sci 2007; 1091:142-50. [PMID: 17341610 DOI: 10.1196/annals.1378.062] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Preliminary reports indicate the influence of oxidative stress and interleukins, particularly TGF-beta1, in maintenance of bone mass. This study was designed to determine any possible variations of cellular lipid peroxidation, the total antioxidant power, and concentration of TGF-beta1 in blood and saliva of osteoporotic subjects in comparison to healthy people. Blood and saliva samples of 22 osteoporotic women and 22 age-matched healthy women were collected. Samples were analyzed for thiobarbituric acid-reactive substances (TBARS) as a marker of lipid peroxidation, ferric reducing ability (total antioxidant power, TAP), and concentration of TGF-beta1. The blood and saliva TAP (mean +/- SD) of osteoporotic subjects was significantly lower than that of healthy controls (606.65 +/- 119.13 vs. 665.64 +/- 63.73 mmol/L and 560.43 +/- 84.70 vs. 612.05 +/- 81.5, respectively). Blood and saliva TBARS (mean +/- SD) of osteoporotic subjects were significantly higher than those of healthy controls (0.30 +/- 0.04 vs. 0.26 +/- 0.04 and 0.23 +/- 0.03 vs. 0.16 +/- 0.04 micromol/L, respectively). Concentrations of TGF-beta1 (mean +/- SD) in plasma and saliva of osteoporotic subjects were not different in comparison to healthy subjects. Results indicate that persons with osteoporosis have an increased oxidative stress that is not accompanied by changes in TGF-beta1 levels. Use of supplementary antioxidants in osteoporotic patients may be helpful.
Collapse
Affiliation(s)
- Gholamreza Yousefzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
| | | | | | | | | | | | | |
Collapse
|
43
|
Tatro JM, Taki N, Islam AS, Goldberg VM, Rimnac CM, Doerschuk CM, Stewart MC, Greenfield EM. The balance between endotoxin accumulation and clearance during particle-induced osteolysis in murine calvaria. J Orthop Res 2007; 25:361-9. [PMID: 17106883 DOI: 10.1002/jor.20289] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacterial endotoxin may contribute to aseptic loosening of orthopedic implants even in the absence of clinical or microbiological evidence of infection. One potential source of endotoxin during aseptic loosening is systemically circulating endotoxin, derived from intestinal flora, minor infections, or dental procedures, that may bind to wear particles. The current study demonstrates that systemically derived endotoxin accumulates when 'endotoxin-free' titanium and polyethylene particles are implanted on murine calvaria. Time-course experiments and experiments using germ-free mice rule out the possibility that the observed endotoxin accumulation may be due to bacterial contamination. In contrast, endotoxin is cleared from titanium particles that originally carry high amounts of adherent endotoxin. The mechanism of endotoxin clearance is not dependent on induction of a respiratory burst. Taken together, these results indicate that a balance between endotoxin accumulation and endotoxin clearance controls the steady-state level of endotoxin surrounding orthopedic wear particles implanted on murine calvaria. This balance may regulate the rate of osteolysis in the murine calvaria model as well as in patients with aseptic loosening.
Collapse
Affiliation(s)
- Joscelyn M Tatro
- Department of Orthopadics, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106-5000, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Nakagawa H, Hasumi K, Takami M, Aida-Hyugaji S, Woo JT, Nagai K, Ishikawa T, Wachi M. Identification of two biologically crucial hydroxyl groups of (−)-epigallocatechin gallate in osteoclast culture. Biochem Pharmacol 2007; 73:34-43. [PMID: 17034764 DOI: 10.1016/j.bcp.2006.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 08/25/2006] [Accepted: 09/05/2006] [Indexed: 10/24/2022]
Abstract
(-)-Epigallocatechin gallate (EGCG) induces cell death of osteoclasts in an Fe(2+)- and H(2)O(2)-dependent manner. In the present study, we further explore the cytotoxic mechanism of EGCG using four EGCG analogues. Molecules methylated at position 4' in the B ring (EGCG-4'-O-Me) or at position 4'' in the D-ring (EGCG-4''-O-Me) showed markedly decreased cytotoxicity to osteoclasts, indicating that hydroxyl groups at these two positions of EGCG are crucial for inducing cell death of osteoclasts. EGCG-4'-O-Me also showed the lowest Fe(3+)-reducing activity among five EGCGs. The Fe(3+)-reducing activity of EGCG was enhanced under conditions whereby protonated EGCG levels were increased, indicating that the protonated status of EGCG was involved in the Fe(3+)-reducing activity. The hydroxyl group at position 4'' in the D-ring was shown by quantum chemical calculation to be preferentially deprotonated among all of the hydroxyl groups in EGCGs. It was also shown that the highest occupied molecular orbital (HOMO) was localized to the B-ring of EGCGs, except for EGCG-4'-O-Me. We report here that the HOMO on the B-ring plays crucial roles in both the Fe(3+)-reducing activity of EGCG and the cytotoxicity of EGCG to osteoclasts, while deprotonation of the hydroxyl group at position 4'' in the D-ring plays a supplementary role.
Collapse
Affiliation(s)
- Hiroshi Nakagawa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Szymczyk KH, Kerr BAE, Freeman TA, Adams CS, Steinbeck MJ. Involvement of hydrogen peroxide in the differentiation and apoptosis of preosteoclastic cells exposed to arsenite. Biochem Pharmacol 2006; 72:761-9. [PMID: 16876763 DOI: 10.1016/j.bcp.2006.06.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 06/08/2006] [Accepted: 06/08/2006] [Indexed: 11/21/2022]
Abstract
Long-term exposure to sodium arsenite (AsO(2)) promotes the development of various cancers. Paradoxically, arsenic also induces pro-myelomonocytic leukemia cell differentiation, and at higher concentrations, apoptosis. The present study investigated the effects of AsO(2) on preosteoclasts. When treated with 2.5-5microM AsO(2), RAW264.7 cells underwent osteoclast differentiation as evidenced by an increase in the number of multinucleate cells expressing tartrate resistant acid phosphatase (TRAP). The appearance of these phenotypic markers was preceded by a low level increase in extracellular production of H(2)O(2) and was prevented by the addition of catalase (4.5microg/ml), an enzyme that removes H(2)O(2). Only at high concentrations (10-25microM) of AsO(2) was a significant loss of cell viability and a high level increase in H(2)O(2) production (1.5microM) observed. Apoptosis was blocked by pretreatment with diphenylene iodonium chloride (2microM), a NAD(P)H-flavoprotein inhibitor, suggesting the involvement of NADPH-oxidase. The data show that AsO(2), dose-dependently, stimulates increasing amounts of H(2)O(2) production. Moreover, at concentrations found in tissues of individuals exposed to geochemical AsO(2), osteoclasts underwent an H(2)O(2)-dependent differentiation. Therefore, chronic exposure to low-level amounts of AsO(2) could result in increased bone resorption and contribute to bone related pathologies.
Collapse
Affiliation(s)
- K H Szymczyk
- Department of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut Street, Suite 501 Curtis, Philadelphia, PA, USA.
| | | | | | | | | |
Collapse
|
46
|
Kim HJ, Chang EJ, Kim HM, Lee SB, Kim HD, Su Kim G, Kim HH. Antioxidant alpha-lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-kappaB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-kappaB ligand and tumor necrosis factor-alpha. Free Radic Biol Med 2006; 40:1483-93. [PMID: 16632109 DOI: 10.1016/j.freeradbiomed.2005.10.066] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 10/03/2005] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
The relationship between oxidative stress and bone mineral density or osteoporosis has recently been reported. As bone loss occurring in osteoporosis and inflammatory diseases is primarily due to increases in osteoclast number, reactive oxygen species (ROS) may be relevant to osteoclast differentiation, which requires receptor activator of nuclear factor-kappaB ligand (RANKL). Tumor necrosis factor-alpha (TNF-alpha) frequently present in inflammatory conditions has a profound synergy with RANKL in osteoclastogenesis. In this study, we investigated the effects of alpha-lipoic acid (alpha-LA), a strong antioxidant clinically used for some time, on osteoclast differentiation and bone resorption. At concentrations showing no growth inhibition, alpha-LA potently suppressed osteoclastogenesis from bone marrow-derived precursor cells driven either by a high-dose RANKL alone or by a low-dose RANKL plus TNF-alpha (RANKL/TNF-alpha). alpha-LA abolished ROS elevation by RANKL or RANKL/TNF-alpha and inhibited NF-kappaB activation in osteoclast precursor cells. Specifically, alpha-LA reduced DNA binding of NF-kappaB but did not inhibit IKK activation. Furthermore, alpha-LA greatly suppressed in vivo bone loss induced by RANKL or TNF-alpha in a calvarial remodeling model. Therefore, our data provide evidence that ROS plays an important role in osteoclast differentiation through NF-kappaB regulation and the antioxidant alpha-lipoic acid has a therapeutic potential for bone erosive diseases.
Collapse
Affiliation(s)
- Hyon Jong Kim
- Department of Cell and Developmental Biology, Brain Korea 21 Program, and Dental Research Institute, Seoul National University School of Dentistry, 28 Yeongon-Dong, Chongno-Gu, Seoul 110-749, Korea
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Oxidative stress is now recognized as an important etiological factor in the causation of several chronic diseases including cancer, cardiovascular diseases, osteoporosis, and diabetes. Antioxidants play an important role in mitigating the damaging effects of oxidative stress on cells. Lycopene, a carotenoid antioxidant, has received considerable scientific interest in recent years. Epidemiological, tissue culture, and animal studies provide convincing evidence supporting the role of lycopene in the prevention of chronic diseases. Human intervention studies are now being conducted to validate epidemiological observations and to understand the mechanisms of action of lycopene in disease prevention. To obtain a better understanding of the role of lycopene in human health, this chapter reviews the most recent information pertaining to its chemistry, bioavailability, metabolism, role in the prevention of prostate cancer and cancer of other target organs, its role in cardiovascular diseases, osteoporosis, hypertension, and male infertility. A discussion of the most relevant molecular markers of cancer is also included as a guide to future researchers in this area. The chapter concludes by reviewing global intake levels of lycopene, suggested levels of intake, and future research directions.
Collapse
Affiliation(s)
- A V Rao
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
48
|
Huh YJ, Kim JM, Kim H, Song H, So H, Lee SY, Kwon SB, Kim HJ, Kim HH, Lee SH, Choi Y, Chung SC, Jeong DW, Min BM. Regulation of osteoclast differentiation by the redox-dependent modulation of nuclear import of transcription factors. Cell Death Differ 2005; 13:1138-46. [PMID: 16224490 DOI: 10.1038/sj.cdd.4401793] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
This study sought to characterize the reduced glutathione (GSH)/oxidized GSSG ratio during osteoclast differentiation and determine whether changes in the intracellular redox status regulate its differentiation through a RANKL-dependent signaling pathway. A progressive decrease of the GSH/GSSG ratio was observed during osteoclast differentiation, and the phenomenon was dependent on a decrease in total glutathione via downregulation of expression of the gamma-glutamylcysteinyl synthetase modifier gene. Glutathione depletion by L-buthionine-(S,R)-sulfoximine (BSO) was found to inhibit osteoclastogenesis by blocking nuclear import of NF-kappaB and AP-1 in RANKL-propagated signaling and bone pit formation by increasing BSO concentrations in mature osteoclasts. Furthermore, intraperitoneal injection of BSO in mice resulted in an increase in bone density and a decrease of the number of osteoclasts in bone. Conversely, glutathione repletion with either N-acetylcysteine or GSH enhanced osteoclastogenesis. These findings indicate that redox status decreases during osteoclast differentiation and that this modification directly regulates RANKL-induced osteoclastogenesis.
Collapse
Affiliation(s)
- Y-J Huh
- Department of Oral Biochemistry and Craniomaxillofacial Reconstructive Science, Dental Research Institute, Seoul National University College of Dentistry, Seoul 110-749, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abdollahi M, Larijani B, Rahimi R, Salari P. Role of oxidative stress in osteoporosis. ACTA ACUST UNITED AC 2005. [DOI: 10.2217/14750708.2.5.787] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Abstract
A new superoxide-generating enzyme, NADPH oxidase 4 (Nox4), contributes to osteoclastic superoxide production. In this study, we demonstrated that Nox4 is expressed at a higher level in osteoclasts than that in precursor cells. This result suggested that Nox4 is upregulated during the differentiation and development of osteoclasts. Cotransfection of Nox4/P22 DNA resulted in enhanced superoxide production in osteoclasts, indicating that P22 may be a necessary factor for the Nox4 activity. In addition, expression of both cathepsin K and TRAP is increased significantly in osteoclasts cotransfected with Nox4/P22. Further study revealed that JNK was activated and that NF-kappa B was inhibited in Nox4/P22 cotransfected osteoclasts. These findings suggest that superoxide and/or superoxide derived molecules may modulate the signal transduction pathways necessary for osteoclasts to function.
Collapse
Affiliation(s)
- Su Yang
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425,USA.
| | | | | | | |
Collapse
|