1
|
Wada S, Ideno H, Nakashima K, Komatsu K, Demura N, Tomonari H, Kimura H, Tachibana M, Nifuji A. The histone H3K9 methyltransferase G9a regulates tendon formation during development. Sci Rep 2024; 14:20771. [PMID: 39237663 PMCID: PMC11377446 DOI: 10.1038/s41598-024-71570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
G9a is a histone methyltransferase that catalyzes the methylation of histone 3 lysine 9 (H3K9), which is involved in the regulation of gene expression. We had previously reported that G9a is expressed in developing tendons in vivo and in vitro and that G9a-deficient tenocytes show impaired proliferation and differentiation in vitro. In this study, we investigated the functions of G9a in tendon development in vivo by using G9a conditional knockout (G9a cKO) mice. We crossed Sox9Cre/+ mice with G9afl/fl mice to generate G9afl/fl; Sox9Cre/+ mice. The G9a cKO mice showed hypoplastic tendon formation at 3 weeks of age. Bromodeoxyuridine labeling on embryonic day 16.5 (E16.5) revealed decreased cell proliferation in the tenocytes of G9a cKO mice. Immunohistochemical analysis revealed decreased expression levels of G9a and its substrate, H3K9me2, in the vertebral tendons of G9a cKO mice. The tendon tissue of the vertebrae and limbs of G9a cKO mice showed reduced expression of a tendon marker, tenomodulin (Tnmd), and col1a1 genes, suggesting that tenocyte differentiation was suppressed. Overexpression of G9a resulted in enhancement of Tnmd and col1a1 expression in tenocytes in vitro. These results suggest that G9a regulates the proliferation and differentiation of tendon progenitor cells during tendon development. Thus, our results suggest that G9a plays an essential role in tendon development.
Collapse
Affiliation(s)
- Satoshi Wada
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
- Department of Oral and Maxillofacial Surgery, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Hisashi Ideno
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Kazuhisa Nakashima
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Koichiro Komatsu
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Noboru Demura
- Department of Oral and Maxillofacial Surgery, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Hiroshi Tomonari
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501, Japan
| | - Makoto Tachibana
- Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Akira Nifuji
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan.
| |
Collapse
|
2
|
Diaz-Hernandez ME, Murakami K, Murata S, Khan NM, Shenoy SPV, Henke K, Yamada H, Drissi H. Inhibition of KDM2/7 Promotes Notochordal Differentiation of hiPSCs. Cells 2024; 13:1482. [PMID: 39273051 PMCID: PMC11393929 DOI: 10.3390/cells13171482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Intervertebral disc disease (IDD) is a debilitating spine condition that can be caused by intervertebral disc (IVD) damage which progresses towards IVD degeneration and dysfunction. Recently, human pluripotent stem cells (hPSCs) were recognized as a valuable resource for cell-based regenerative medicine in skeletal diseases. Therefore, adult somatic cells reprogrammed into human induced pluripotent stem cells (hiPSCs) represent an attractive cell source for the derivation of notochordal-like cells (NCs) as a first step towards the development of a regenerative therapy for IDD. Utilizing a differentiation method involving treatment with a four-factor cocktail targeting the BMP, FGF, retinoic acid, and Wnt signaling pathways, we differentiate CRISPR/Cas9-generated mCherry-reporter knock-in hiPSCs into notochordal-like cells. Comprehensive analysis of transcriptomic changes throughout the differentiation process identified regulation of histone methylation as a pivotal driver facilitating the differentiation of hiPSCs into notochordal-like cells. We further provide evidence that specific inhibition of histone demethylases KDM2A and KDM7A/B enhanced the lineage commitment of hiPSCs towards notochordal-like cells. Our results suggest that inhibition of KDMs could be leveraged to alter the epigenetic landscape of hiPSCs to control notochord-specific gene expression. Thus, our study highlights the importance of epigenetic regulators in stem cell-based regenerative approaches for the treatment of disc degeneration.
Collapse
Affiliation(s)
- Martha E. Diaz-Hernandez
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (M.E.D.-H.); (K.M.); (S.M.); (N.M.K.); (S.P.V.S.)
- Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Kimihide Murakami
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (M.E.D.-H.); (K.M.); (S.M.); (N.M.K.); (S.P.V.S.)
- Department of Orthopaedics Surgery, Wakayama Medical University, Wakayama 641-8510, Japan;
| | - Shizumasa Murata
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (M.E.D.-H.); (K.M.); (S.M.); (N.M.K.); (S.P.V.S.)
- Department of Orthopaedics Surgery, Wakayama Medical University, Wakayama 641-8510, Japan;
| | - Nazir M. Khan
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (M.E.D.-H.); (K.M.); (S.M.); (N.M.K.); (S.P.V.S.)
| | - Sreekala P. V. Shenoy
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (M.E.D.-H.); (K.M.); (S.M.); (N.M.K.); (S.P.V.S.)
| | - Katrin Henke
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (M.E.D.-H.); (K.M.); (S.M.); (N.M.K.); (S.P.V.S.)
| | - Hiroshi Yamada
- Department of Orthopaedics Surgery, Wakayama Medical University, Wakayama 641-8510, Japan;
| | - Hicham Drissi
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (M.E.D.-H.); (K.M.); (S.M.); (N.M.K.); (S.P.V.S.)
- Atlanta VA Medical Center, Decatur, GA 30033, USA
| |
Collapse
|
3
|
Velez J, Han Y, Yim H, Yang P, Deng Z, Park KS, Kabir M, Kaniskan HÜ, Xiong Y, Jin J. Discovery of the First-in-Class G9a/GLP PROTAC Degrader. J Med Chem 2024; 67:6397-6409. [PMID: 38602846 PMCID: PMC11069390 DOI: 10.1021/acs.jmedchem.3c02394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Aberrantly expressed lysine methyltransferases G9a and GLP, which catalyze mono- and dimethylation of histone H3 lysine 9 (H3K9), have been implicated in numerous cancers. Recent studies have uncovered both catalytic and noncatalytic oncogenic functions of G9a/GLP. As such, G9a/GLP catalytic inhibitors have displayed limited anticancer activity. Here, we report the discovery of the first-in-class G9a/GLP proteolysis targeting chimera (PROTAC) degrader 10 (MS8709), as a potential anticancer therapeutic. 10 induces G9a/GLP degradation in a concentration-, time-, and ubiquitin-proteasome system (UPS)-dependent manner. Futhermore, 10 does not alter the mRNA expression of G9a/GLP and is selective for G9a/GLP over other methyltransferases. Moreover, 10 displays superior cell growth inhibition to the parent G9a/GLP inhibitor UNC0642 in prostate, leukemia, and lung cancer cells and has suitable mouse pharmacokinetic properties for in vivo efficacy studies. Overall, 10 is a valuable chemical biology tool to further investigate the functions of G9a/GLP and a potential therapeutic for treating G9a/GLP-dependent cancers.
Collapse
Affiliation(s)
- Julia Velez
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yulin Han
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hyerin Yim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Peiyi Yang
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Zhijie Deng
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Md Kabir
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science, and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
4
|
Velez J, Han Y, Yim H, Yang P, Deng Z, Park KS, Kabir M, Kaniskan HÜ, Xiong Y, Jin J. Discovery of the First-in-class G9a/GLP PROTAC Degrader. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582210. [PMID: 38464025 PMCID: PMC10925177 DOI: 10.1101/2024.02.26.582210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Aberrantly expressed lysine methyltransferases G9a and GLP, which catalyze mono- and di-methylation of histone H3 lysine 9 (H3K9), have been implicated in numerous cancers. Recent studies have uncovered both catalytic and non-catalytic oncogenic functions of G9a/GLP. As such, G9a/GLP catalytic inhibitors have displayed limited anticancer activity. Here, we report the discovery of the first-in-class G9a/GLP proteolysis targeting chimera (PROTAC) degrader, 10 (MS8709), as a potential anticancer therapeutic. 10 induces G9a/GLP degradation in a concentration-, time, and ubiquitin-proteasome system (UPS)-dependent manner, does not alter the mRNA expression of G9a/GLP and is selective for G9a/GLP over other methyltransferases. Moreover, 10 displays superior cell growth inhibition to the parent G9a/GLP inhibitor UNC0642 in prostate, leukemia, and lung cancer cells and has suitable mouse pharmacokinetic properties for in vivo efficacy studies. Overall, 10 is a valuable chemical biology tool to further investigate the functions of G9a/GLP and a potential therapeutic for treating G9a/GLP-dependent cancers.
Collapse
Affiliation(s)
- Julia Velez
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yulin Han
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hyerin Yim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peiyi Yang
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhijie Deng
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kwang-su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Current address: College of Pharmacy, Keimyung University, Daegu 704-701, South Korea
| | - Md Kabir
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - H. Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Science, Oncological Science and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
5
|
Lee RA, Chang M, Yiv N, Tsay A, Tian S, Li D, Poulard C, Stallcup MR, Pufall MA, Wang JC. Transcriptional coactivation by EHMT2 restricts glucocorticoid-induced insulin resistance in a study with male mice. Nat Commun 2023; 14:3143. [PMID: 37253782 PMCID: PMC10229547 DOI: 10.1038/s41467-023-38584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
The classical dogma of glucocorticoid-induced insulin resistance is that it is caused by the transcriptional activation of hepatic gluconeogenic and insulin resistance genes by the glucocorticoid receptor (GR). Here, we find that glucocorticoids also stimulate the expression of insulin-sensitizing genes, such as Irs2. The transcriptional coregulator EHMT2 can serve as a transcriptional coactivator or a corepressor. Using male mice that have a defective EHMT2 coactivation function specifically, we show that glucocorticoid-induced Irs2 transcription is dependent on liver EHMT2's coactivation function and that IRS2 play a key role in mediating the limitation of glucocorticoid-induced insulin resistance by EHMT2's coactivation. Overall, we propose a model in which glucocorticoid-regulated insulin sensitivity is determined by the balance between glucocorticoid-modulated insulin resistance and insulin sensitizing genes, in which EHMT2 coactivation is specifically involved in the latter process.
Collapse
Affiliation(s)
- Rebecca A Lee
- Endocrinology Graduate Program, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Maggie Chang
- Endocrinology Graduate Program, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Nicholas Yiv
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA, 94720, USA
- Metabolic Biology Graduate Program, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Ariel Tsay
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA, 94720, USA
- Metabolic Biology Graduate Program, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Sharon Tian
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Danielle Li
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Coralie Poulard
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 28 Rue Laennec, 69000, Lyon, France
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Miles A Pufall
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Jen-Chywan Wang
- Endocrinology Graduate Program, University of California Berkeley, Berkeley, CA, 94720, USA.
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA, 94720, USA.
- Metabolic Biology Graduate Program, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
6
|
Ang GCK, Gupta A, Surana U, Yap SXL, Taneja R. Potential Therapeutics Targeting Upstream Regulators and Interactors of EHMT1/2. Cancers (Basel) 2022; 14:2855. [PMID: 35740522 PMCID: PMC9221123 DOI: 10.3390/cancers14122855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Euchromatin histone lysine methyltransferases (EHMTs) are epigenetic regulators responsible for silencing gene transcription by catalyzing H3K9 dimethylation. Dysregulation of EHMT1/2 has been reported in multiple cancers and is associated with poor clinical outcomes. Although substantial insights have been gleaned into the downstream targets and pathways regulated by EHMT1/2, few studies have uncovered mechanisms responsible for their dysregulated expression. Moreover, EHMT1/2 interacting partners, which can influence their function and, therefore, the expression of target genes, have not been extensively explored. As none of the currently available EHMT inhibitors have made it past clinical trials, understanding upstream regulators and EHMT protein complexes may provide unique insights into novel therapeutic avenues in EHMT-overexpressing cancers. Here, we review our current understanding of the regulators and interacting partners of EHMTs. We also discuss available therapeutic drugs that target the upstream regulators and binding partners of EHMTs and could potentially modulate EHMT function in cancer progression.
Collapse
Affiliation(s)
- Gareth Chin Khye Ang
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Amogh Gupta
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
| | - Uttam Surana
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Shirlyn Xue Ling Yap
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Reshma Taneja
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
| |
Collapse
|
7
|
G9a inhibition by CM-272: Developing a novel anti-tumoral strategy for castration-resistant prostate cancer using 2D and 3D in vitro models. Biomed Pharmacother 2022; 150:113031. [PMID: 35483199 DOI: 10.1016/j.biopha.2022.113031] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is an incurable form of prostate cancer (PCa), with DNMT1 and G9a being reported as overexpressed, rendering them highly attractive targets for precision medicine. CM-272 is a dual inhibitor of both methyltransferases' activity. Herein, we assessed the response of different PCa cell lines to CM-272, in both 2D and 3D models, and explored the molecular mechanisms underlying CM-272 inhibitory effects. CRPC tissues displayed significantly higher DNMT1, G9a and H3K9me2 expression than localized PCa. In vitro, CM-272 caused a significant decrease in PCa cell viability and proliferation alongside with increased apoptotic levels. We disclose that, under the evaluated dose, CM-272 led to G9a activity inhibition, while not significantly affecting DNMT1 activity. Upon G9a knockdown, DU145 and PC3 showed decreased cell viability. Remarkably, DU145 cells treated with CM-272 or with G9a knockdown displayed no differences in viability, suggesting a SET-dependent mechanism. Contrarily, PC3 cell viability impact was higher in G9a knockdown, compared with CM-272 treatment, suggesting an additional G9a function. Moreover, DU145 cells overexpressing catalytically functional G9a disclosed higher resistance to CM-272 treatment, reinforcing that the drug mechanism of action is dependent on G9a catalytic function. Importantly, we successfully assembled spheroids from several prostate cell lines. Our results showed that CM-272 retained its anti-tumoral effects in 3D PCa models, leading to a clear reduction in cancer cell survival. We concluded that inhibition of G9a methyltransferase activity by CM-272 has anti-tumor effect in PCa cells, holding therapeutic potential against CRPC.
Collapse
|
8
|
Leach DA, Fernandes RC, Bevan CL. Cellular specificity of androgen receptor, coregulators, and pioneer factors in prostate cancer. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2022; 2:R112-R131. [PMID: 37435460 PMCID: PMC10259329 DOI: 10.1530/eo-22-0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 07/13/2023]
Abstract
Androgen signalling, through the transcription factor androgen receptor (AR), is vital to all stages of prostate development and most prostate cancer progression. AR signalling controls differentiation, morphogenesis, and function of the prostate. It also drives proliferation and survival in prostate cancer cells as the tumour progresses; given this importance, it is the main therapeutic target for disseminated disease. AR is also essential in the surrounding stroma, for the embryonic development of the prostate and controlling epithelial glandular development. Stromal AR is also important in cancer initiation, regulating paracrine factors that excite cancer cell proliferation, but lower stromal AR expression correlates with shorter time to progression/worse outcomes. The profile of AR target genes is different between benign and cancerous epithelial cells, between castrate-resistant prostate cancer cells and treatment-naïve cancer cells, between metastatic and primary cancer cells, and between epithelial cells and fibroblasts. This is also true of AR DNA-binding profiles. Potentially regulating the cellular specificity of AR binding and action are pioneer factors and coregulators, which control and influence the ability of AR to bind to chromatin and regulate gene expression. The expression of these factors differs between benign and cancerous cells, as well as throughout disease progression. The expression profile is also different between fibroblast and mesenchymal cell types. The functional importance of coregulators and pioneer factors in androgen signalling makes them attractive therapeutic targets, but given the contextual expression of these factors, it is essential to understand their roles in different cancerous and cell-lineage states.
Collapse
Affiliation(s)
- Damien A Leach
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Rayzel C Fernandes
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Charlotte L Bevan
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
9
|
Nachiyappan A, Gupta N, Taneja R. EHMT1/EHMT2 in EMT, Cancer Stemness and Drug Resistance: Emerging Evidence and Mechanisms. FEBS J 2021; 289:1329-1351. [PMID: 34954891 DOI: 10.1111/febs.16334] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/25/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Metastasis, therapy failure and tumor recurrence are major clinical challenges in cancer. The interplay between tumor initiating cells (TICs) and Epithelial-Mesenchymal transition (EMT) drives tumor progression and spread. Recent advances have highlighted the involvement of epigenetic deregulation in these processes. The Euchromatin Histone Lysine Methyltransferase 1 (EHMT1) and Euchromatin Histone Lysine Methyltransferase 2 (EHMT2) that primarily mediate histone 3 lysine 9 di-methylation (H3K9me2), as well as methylation of non-histone proteins, are now recognized to be aberrantly expressed in many cancers. Their deregulated expression is associated with EMT, cellular plasticity and therapy resistance. In this review, we summarize evidence of their myriad roles in cancer metastasis, stemness and drug resistance. We discuss cancer-type specific molecular targets, context-dependent mechanisms and future directions of research in targeting EHMT1/EHMT2 for the treatment of cancer.
Collapse
Affiliation(s)
- Alamelu Nachiyappan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593
| | - Neelima Gupta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 117593
| |
Collapse
|
10
|
Poulard C, Noureddine LM, Pruvost L, Le Romancer M. Structure, Activity, and Function of the Protein Lysine Methyltransferase G9a. Life (Basel) 2021; 11:life11101082. [PMID: 34685453 PMCID: PMC8541646 DOI: 10.3390/life11101082] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
G9a is a lysine methyltransferase catalyzing the majority of histone H3 mono- and dimethylation at Lys-9 (H3K9), responsible for transcriptional repression events in euchromatin. G9a has been shown to methylate various lysine residues of non-histone proteins and acts as a coactivator for several transcription factors. This review will provide an overview of the structural features of G9a and its paralog called G9a-like protein (GLP), explore the biochemical features of G9a, and describe its post-translational modifications and the specific inhibitors available to target its catalytic activity. Aside from its role on histone substrates, the review will highlight some non-histone targets of G9a, in order gain insight into their role in specific cellular mechanisms. Indeed, G9a was largely described to be involved in embryonic development, hypoxia, and DNA repair. Finally, the involvement of G9a in cancer biology will be presented.
Collapse
Affiliation(s)
- Coralie Poulard
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Correspondence:
| | - Lara M. Noureddine
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Hadat-Beirut 90565, Lebanon
| | - Ludivine Pruvost
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Cancer Research Cancer of Lyon, Université de Lyon, F-69000 Lyon, France; (L.M.N.); (L.P.); (M.L.R.)
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
11
|
Histone Methyltransferase G9a Promotes the Development of Renal Cancer through Epigenetic Silencing of Tumor Suppressor Gene SPINK5. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6650781. [PMID: 34336110 PMCID: PMC8294961 DOI: 10.1155/2021/6650781] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/05/2021] [Accepted: 06/22/2021] [Indexed: 01/25/2023]
Abstract
Background Renal cell carcinoma (RCC) accounts for approximately 2–3% of malignant tumors in adults, while clear cell renal cell carcinoma accounts for 70–85% of kidney cancer cases, with an increasing incidence worldwide. G9a is the second histone methyltransferase found in mammals, catalyzing lysine and histone methylation. It regulates gene transcription by catalyzing histone methylation and interacting with transcription factors to alter the tightness of histone-DNA binding. The main purpose of this study is to explore the role and mechanism of G9a in renal cell carcinoma. Methods Firstly, we investigated the expression of G9a in 80 clinical tissues and four cell lines. Then, we explored the effect of G9a-specific inhibitor UNC0638 on proliferation, apoptosis, migration, and invasion of two renal cancer cell lines (786-O, SN12C). In order to study the specific mechanism, G9a knocking down renal cancer cell line was constructed by lentivirus. Finally, we identified the downstream target genes of G9a using ChIP experiments and rescue experiments. Results The results showed that the specific G9a inhibitor UNC0638 significantly inhibited the proliferation, migration, and invasion of kidney cancer in vivo and in vitro; similar results were obtained after knocking down G9a. Meanwhile, we demonstrated that SPINK5 was one of the downstream target genes of G9a through ChIP assay and proved that G9a downregulate the expression of SPINK5 by methylation of H3K9me2. Therefore, targeting G9a might be a new approach to the treatment of kidney cancer. Conclusion G9a was upregulated in renal cancer and could promote the development of renal cancer in vitro and in vivo. Furthermore, we identified SPINK5 as one of the downstream target genes of G9a. Therefore, targeting G9a might be a new treatment for kidney cancer.
Collapse
|
12
|
Colyn L, Bárcena-Varela M, Álvarez-Sola G, Latasa MU, Uriarte I, Santamaría E, Herranz JM, Santos-Laso A, Arechederra M, Ruiz de Gauna M, Aspichueta P, Canale M, Casadei-Gardini A, Francesconi M, Carotti S, Morini S, Nelson LJ, Iraburu MJ, Chen C, Sangro B, Marin JJG, Martinez-Chantar ML, Banales JM, Arnes-Benito R, Huch M, Patino JM, Dar AA, Nosrati M, Oyarzábal J, Prósper F, Urman J, Cubero FJ, Trautwein C, Berasain C, Fernandez-Barrena MG, Avila MA. Dual Targeting of G9a and DNA Methyltransferase-1 for the Treatment of Experimental Cholangiocarcinoma. Hepatology 2021; 73:2380-2396. [PMID: 33222246 DOI: 10.1002/hep.31642] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is a devastating disease often detected at advanced stages when surgery cannot be performed. Conventional and targeted systemic therapies perform poorly, and therefore effective drugs are urgently needed. Different epigenetic modifications occur in CCA and contribute to malignancy. Targeting epigenetic mechanisms may thus open therapeutic opportunities. However, modifications such as DNA and histone methylation often coexist and cooperate in carcinogenesis. We tested the therapeutic efficacy and mechanism of action of a class of dual G9a histone-methyltransferase and DNA-methyltransferase 1 (DNMT1) inhibitors. APPROACH AND RESULTS Expression of G9a, DNMT1, and their molecular adaptor, ubiquitin-like with PHD and RING finger domains-1 (UHRF1), was determined in human CCA. We evaluated the effect of individual and combined pharmacological inhibition of G9a and DNMT1 on CCA cell growth. Our lead G9a/DNMT1 inhibitor, CM272, was tested in human CCA cells, patient-derived tumoroids and xenograft, and a mouse model of cholangiocarcinogenesis with hepatocellular deletion of c-Jun-N-terminal-kinase (Jnk)-1/2 and diethyl-nitrosamine (DEN) plus CCl4 treatment (JnkΔhepa + DEN + CCl4 mice). We found an increased and correlative expression of G9a, DNMT1, and UHRF1 in CCAs. Cotreatment with independent pharmacological inhibitors G9a and DNMT1 synergistically inhibited CCA cell growth. CM272 markedly reduced CCA cell proliferation and synergized with Cisplatin and the ERBB-targeted inhibitor, Lapatinib. CM272 inhibited CCA tumoroids and xenograft growth and significantly antagonized CCA progression in JnkΔhepa + DEN + CCl4 mice without apparent toxicity. Mechanistically, CM272 reprogrammed the tumoral metabolic transcriptome and phenotype toward a differentiated and quiescent status. CONCLUSIONS Dual targeting of G9a and DNMT1 with epigenetic small molecule inhibitors such as CM272 is a potential strategy to treat CCA and/or enhance the efficacy of other systemic therapies.
Collapse
Affiliation(s)
- Leticia Colyn
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | | | - Gloria Álvarez-Sola
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - M Ujue Latasa
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Santamaría
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Jose M Herranz
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Alvaro Santos-Laso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, Ikerbasque, Donostia-San Sebastian, Spain
| | | | - Mikel Ruiz de Gauna
- Biocruces Health Research Institute, Department of Physiology, University of the Basque Country, Leioa, Spain
| | - Patricia Aspichueta
- Biocruces Health Research Institute, Department of Physiology, University of the Basque Country, Leioa, Spain
| | - Matteo Canale
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Andrea Casadei-Gardini
- School of Medicine, Vita-Salute San Raffaele University and Unit of Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Francesconi
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Simone Carotti
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy.,Predictive Molecular Diagnostic Division, Pathology Department, Campus Bio-Medico University Hospital, Rome, Italy
| | - Sergio Morini
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Leonard J Nelson
- School of Engineering, Institute of Engineering, The University of Edimburgh, Edimburgh, United Kingdom
| | - Maria J Iraburu
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - Chaobo Chen
- Department of Immunology, Ophtalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Bruno Sangro
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Hepatology Unit, Navarra University Clinic, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Jose J G Marin
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Maria L Martinez-Chantar
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CICbioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Jesus M Banales
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, Ikerbasque, Donostia-San Sebastian, Spain
| | - Robert Arnes-Benito
- Max Plank Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Meritxell Huch
- Max Plank Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - John M Patino
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Altaf A Dar
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Mehdi Nosrati
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Julen Oyarzábal
- Molecular Therapies Program, CIMA, University of Navarra, Pamplona, Spain
| | - Felipe Prósper
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.,Oncohematology Program, CIMA, University of Navarra, Pamplona, Spain
| | - Jesus Urman
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.,Department of Digestive Diseases, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophtalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - Carmen Berasain
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Maite G Fernandez-Barrena
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Matias A Avila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| |
Collapse
|
13
|
Jan S, Dar MI, Wani R, Sandey J, Mushtaq I, Lateef S, Syed SH. Targeting EHMT2/ G9a for cancer therapy: Progress and perspective. Eur J Pharmacol 2020; 893:173827. [PMID: 33347828 DOI: 10.1016/j.ejphar.2020.173827] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Euchromatic histone lysine methyltransferase-2, also known as G9a, is a ubiquitously expressed SET domain-containing histone lysine methyltransferase linked with both facultative and constitutive heterochromatin formation and transcriptional repression. It is an essential developmental gene and reported to play role in embryonic development, establishment of proviral silencing in ES cells, tumor cell growth, metastasis, T-cell immune response, cocaine induced neural plasticity and cognition and adaptive behavior. It is mainly responsible for carrying out mono, di and tri methylation of histone H3K9 in euchromatin. G9a levels are elevated in many cancers and its selective inhibition is known to reduce the cell growth and induce autophagy, apoptosis and senescence. We carried out a thorough search of online literature databases including Pubmed, Scopus, Journal websites, Clinical trials etc to gather the maximum possible information related to the G9a. The main messages from the cited papers are presented in a systematic manner. Chemical structures were drawn by Chemdraw software. In this review, we shed light on current understanding of structure and biological activity of G9a, the molecular events directing its targeting to genomic regions and its post-translational modification. Finally, we discuss the current strategies to target G9a in different cancers and evaluate the available compounds and agents used to inhibit G9a functions. The review provides the present status and future directions of research in targeting G9a and provides the basis to persuade the development of novel strategies to target G9a -related effects in cancer cells.
Collapse
Affiliation(s)
- Suraya Jan
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohd Ishaq Dar
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rubiada Wani
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jagjeet Sandey
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Iqra Mushtaq
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sammar Lateef
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sajad Hussain Syed
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
14
|
Rahman Z, Bazaz MR, Devabattula G, Khan MA, Godugu C. Targeting H3K9 methyltransferase G9a and its related molecule GLP as a potential therapeutic strategy for cancer. J Biochem Mol Toxicol 2020; 35:e22674. [PMID: 33283949 DOI: 10.1002/jbt.22674] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
H3K9 methyltransferase (G9a) and its relevant molecule GLP are the SET domain proteins that specifically add mono, di and trimethyl groups on to the histone H3K9, which lead to the transcriptional inactivation of chromatin and reduce the expression of cancer suppressor genes, which trigger growth and progress of several cancer types. Various studies have demonstrated that overexpression of H3K9 methyltransferase G9a and GLP in different kinds of tumors, like lung, breast, bladder, colon, cervical, gastric, skin cancers, hepatocellular carcinoma and hematological malignancies. Several G9a and GLP inhibitors such as BIX-01294, UNC0642, A-366 and DCG066 were developed to combat various cancers; however, there is a need for more effective and less toxic compounds. The current molecular docking study suggested that the selected new compounds such as ninhydrin, naphthoquinone, cysteamine and disulfide cysteamine could be suitable molecules as a G9a and GLP inhibitors. Furthermore, detailed cell based and preclinical animal studies are required to confirm their properties. In the current review, we discussed the role of G9a and GLP mediated epigenetic regulation in the cancers. A thorough literature review was done related to G9a and GLP. The databases used extensively for retrieval of information were PubMed, Medline, Scopus and Science-direct. Further, molecular docking was performed using Maestro Schrodinger version 9.2 software to investigate the binding profile of compounds with Human G9a HMT (PDB ID: 3FPD, 3RJW) and Human GLP MT (PDB ID: 6MBO, 6MBP).
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Mohd Rabi Bazaz
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Geetanjali Devabattula
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Mohd Abrar Khan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
15
|
Ideno H, Nakashima K, Komatsu K, Araki R, Abe M, Arai Y, Kimura H, Shinkai Y, Tachibana M, Nifuji A. G9a is involved in the regulation of cranial bone formation through activation of Runx2 function during development. Bone 2020; 137:115332. [PMID: 32344102 DOI: 10.1016/j.bone.2020.115332] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 11/28/2022]
Abstract
The methyltransferase G9a was originally isolated as a histone methyltransferase that catalyzes the methylation of histone 3 lysine 9 (H3K9) to a dimethylated state (H3K9me2). Recent studies have revealed that G9a has multiple functions in various cells, including osteoblasts. Here, we investigated G9a function during cranial bone formation. Crossing Sox9-cre with G9aflox/flox (fl/fl) mice generated conditional knockout mice lacking G9a expression in Sox9-positive neural crest-derived bone cells. Sox9-Cre/G9afl/fl mice showed severe hypo-mineralization of cranial vault bones, including defects in nasal, frontal, and parietal bones with opened fontanelles. Cell proliferation was inhibited in G9a-deleted calvarial bone tissues. Expression levels of bone marker genes, i.e., alkaline phosphatase and osteocalcin, were suppressed, whereas Runx2 expression was not significantly decreased in those tissues. In vitro experiments using G9a-deleted calvarial osteoblasts showed decreased cell proliferation after G9a deletion. In G9a-deleted osteoblasts, expression levels of fibroblast growth factor receptors and several cyclins were suppressed. Moreover, the expression of bone marker genes was decreased, whereas Runx2 expression was not altered by G9a deletion in vitro. G9a enhanced the transcriptional activity of Runx2, whereas siRNA targeting G9a inhibited the transcriptional activity of Runx2 in C3H10T1/2 mesenchymal cells. We confirmed the direct association of endogenous Runx2 with G9a. Chromatin immunoprecipitation experiments showed that G9a bound to Runx2-target regions in promoters in primary osteoblasts. Furthermore, Runx2 binding to the osteocalcin promoter was abrogated in G9-deleted osteoblasts. These results suggest that G9a regulates proliferation and differentiation of cranial bone cells through binding to and activating Runx2.
Collapse
Affiliation(s)
- Hisashi Ideno
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Kanagawa 230-8501, Japan; Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Kazuhisa Nakashima
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Kanagawa 230-8501, Japan
| | - Koichiro Komatsu
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Kanagawa 230-8501, Japan
| | - Ryoko Araki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Masumi Abe
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yoshinori Arai
- Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN, Wako 351-0198, Saitama, Japan
| | - Makoto Tachibana
- Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akira Nifuji
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Kanagawa 230-8501, Japan; Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.
| |
Collapse
|
16
|
Anderson EM, Penrod RD, Barry SM, Hughes BW, Taniguchi M, Cowan CW. It is a complex issue: emerging connections between epigenetic regulators in drug addiction. Eur J Neurosci 2019; 50:2477-2491. [PMID: 30251397 DOI: 10.1111/ejn.14170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
Drug use leads to addiction in some individuals, but the underlying brain mechanisms that control the transition from casual drug use to an intractable substance use disorder (SUD) are not well understood. Gene x environment interactions such as the frequency of drug use and the type of substance used likely to promote maladaptive plastic changes in brain regions that are critical for controlling addiction-related behavior. Epigenetics encompasses a broad spectrum of mechanisms important for regulating gene transcription that are not dependent on changes in DNA base pair sequences. This review focuses on the proteins and complexes contributing to epigenetic modifications in the nucleus accumbens (NAc) following drug experience. We discuss in detail the three major mechanisms: histone acetylation and deacetylation, histone methylation, and DNA methylation. We discuss how drug use alters the regulation of the associated proteins regulating these processes and highlight how experimental manipulations of these proteins in the NAc can alter drug-related behaviors. Finally, we discuss the ways that histone modifications and DNA methylation coordinate actions by recruiting large epigenetic enzyme complexes to aid in transcriptional repression. Targeting these multiprotein epigenetic enzyme complexes - and the individual proteins that comprise them - might lead to effective therapeutics to reverse or treat SUDs in patients.
Collapse
Affiliation(s)
- Ethan M Anderson
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Rachel D Penrod
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Sarah M Barry
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Brandon W Hughes
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Makoto Taniguchi
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| | - Christopher W Cowan
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Medical University of South Carolina, 173 Ashley Ave, MSC 510, Charleston, SC, 29425-2030, USA
| |
Collapse
|
17
|
Crawford NT, McIntyre AJ, McCormick A, D'Costa ZC, Buckley NE, Mullan PB. TBX2 interacts with heterochromatin protein 1 to recruit a novel repression complex to EGR1-targeted promoters to drive the proliferation of breast cancer cells. Oncogene 2019; 38:5971-5986. [PMID: 31253870 DOI: 10.1038/s41388-019-0853-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 11/09/2022]
Abstract
Early Growth Response 1 (EGR1) is a stress response transcription factor with multiple tumour suppressor roles in breast tissue, whose expression is often lost in breast cancers. We have previously shown that the breast cancer oncogene TBX2 (T-BOX2) interacts with EGR1 to co-repress EGR1-target genes including the breast tumour suppressor NDRG1. Here, we show the mechanistic basis of this TBX2 repression complex. We show that siRNA knockdown of TBX2, EGR1, Heterochromatin Protein 1 (HP1) isoforms and the generic HP1-associated corepressor protein KAP1 all resulted in growth inhibition of TBX2-expressing breast cancer cells. We show that TBX2 interacts with HP1 through a conserved HP1-binding motif in its N-terminus, which in turn leads to the recruitment of KAP1 and other associated proteins. Mutation of the TBX2 HP1 binding domain abrogates the TBX2-HP1 interaction and loss of repression of target genes such as NDRG1. Chromatin-immunoprecipitation (ChIP) assays showed that TBX2 establishes a repressive chromatin mark, specifically H3K9me3, around the NDRG1 proximal promoter coincident with the recruitment of the DNA methyltransferase DNMT3B and histone methyltransferase (HMT) complex components (G9A, Enhancer of Zeste 2 (EZH2) and Suppressor of Zeste 12 (SUZ12)). Knockdown of G9A, EZH2 or SUZ12 resulted in upregulation of TBX2/EGR1 co-regulated targets accompanied by a dramatic inhibition of cell proliferation. We show that a generic inhibitor of HMT activity, DzNep, phenocopies expression of an inducible dominant negative TBX2. Knockdown of TBX2, KAP1 or HP1 inhibited NDRG1 promoter decoration specifically with the H3K9me3 repression mark. Correspondingly, treatment with a G9A inhibitor effectively reversed TBX2 repression of NDRG1 and synergistically downregulated cell proliferation following TBX2 functional inhibition. These data demonstrate that TBX2 promotes suppression of normal growth control mechanisms through recruitment of a large repression complex to EGR1-responsive promoters leading to the uncontrolled proliferation of breast cancer cells.
Collapse
Affiliation(s)
- N T Crawford
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - A J McIntyre
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - A McCormick
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Z C D'Costa
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - N E Buckley
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - P B Mullan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK.
| |
Collapse
|
18
|
Khanban H, Fattahi E, Talkhabi M. In vivo administration of G9a inhibitor A366 decreases osteogenic potential of bone marrow-derived mesenchymal stem cells. EXCLI JOURNAL 2019; 18:300-309. [PMID: 31338003 PMCID: PMC6635719 DOI: 10.17179/excli2019-1234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/06/2019] [Indexed: 12/26/2022]
Abstract
Epigenetic mechanisms such as histone methylation are considered as one of the most important mediators that control stem cell behaviors such as proliferation, senescence and differentiation. G9a, a histone methyltransferase, has recently generated intense attention as potential target for controlling many diseases such as cancers. The aim of the present study was to evaluate the effect of in vivo administration of A366, a G9a inhibitor, on proliferative and differentiation potential of bone marrow-derived mesenchymal stem cells (BM-MSCs). We inhibited G9a using intraperitoneally administration of A366, and we evaluated BM-MSC proliferation and differentiation behaviors in vitro. Colony formation assay of BM-MSCs at primary culture showed that in vivo administration of A366 reduced the colony forming capacity of BM-MSCs. Moreover, PDT of BM-MSC isolated from A366-treated rats was higher than control, especially in the early passages. BM-MSC isolated from A366-treated rats showed higher adipogenic potential compared to the control at the early passages as determined by gene expression and Oil Red staining. Whereas, osteogenic potential of BM-MSC isolated from A366-treated rats was lower than control, especially at early passages. Our results suggest that the epigenetic modifier such as A366, which seems to be a therapeutic approach for controlling diseases such as cancer, might also influence the proliferation and differentiation capacity of MSCs both in vitro and in vivo. Moreover, epigenetic modifying chemicals seem to be a strategy to manipulate MSC expansion capacity and differentiation propensity, as well as to efficiently involvement of MSCs in tissue homeostasis, cell-based therapy and tissue engineering.
Collapse
Affiliation(s)
- Hedyeh Khanban
- Department of Biology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Esmail Fattahi
- Department of Biology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Mahmood Talkhabi
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
19
|
Abstract
The epigenetic control of gene expression could be affected by addition and/or removal of post-translational modifications such as phosphorylation, acetylation and methylation of histone proteins, as well as methylation of DNA (5-methylation on cytosines). Misregulation of these modifications is associated with altered gene expression, resulting in various disease conditions. G9a belongs to the protein lysine methyltransferases that specifically methylates the K9 residue of histone H3, leading to suppression of several tumor suppressor genes. In this review, G9a functions, role in various diseases, structural biology aspects for inhibitor design, structure-activity relationship among the reported inhibitors are discussed which could aid in the design and development of potent G9a inhibitors for cancer treatment in the future.
Collapse
|
20
|
Bhat AV, Palanichamy Kala M, Rao VK, Pignata L, Lim HJ, Suriyamurthy S, Chang KT, Lee VK, Guccione E, Taneja R. Epigenetic Regulation of the PTEN-AKT-RAC1 Axis by G9a Is Critical for Tumor Growth in Alveolar Rhabdomyosarcoma. Cancer Res 2019; 79:2232-2243. [PMID: 30833420 DOI: 10.1158/0008-5472.can-18-2676] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/17/2018] [Accepted: 02/26/2019] [Indexed: 11/16/2022]
Abstract
Alveolar rhabdomyosarcoma (ARMS) is an aggressive pediatric cancer with poor prognosis. As transient and stable modifications to chromatin have emerged as critical mechanisms in oncogenic signaling, efforts to target epigenetic modifiers as a therapeutic strategy have accelerated in recent years. To identify chromatin modifiers that sustain tumor growth, we performed an epigenetic screen and found that inhibition of lysine methyltransferase G9a significantly affected the viability of ARMS cell lines. Targeting expression or activity of G9a reduced cellular proliferation and motility in vitro and tumor growth in vivo. Transcriptome and chromatin immunoprecipitation-sequencing analysis provided mechanistic evidence that the tumor-suppressor PTEN was a direct target gene of G9a. G9a repressed PTEN expression in a methyltransferase activity-dependent manner, resulting in increased AKT and RAC1 activity. Re-expression of constitutively active RAC1 in G9a-deficient tumor cells restored oncogenic phenotypes, demonstrating its critical functions downstream of G9a. Collectively, our study provides evidence for a G9a-dependent epigenetic program that regulates tumor growth and suggests targeting G9a as a therapeutic strategy in ARMS. SIGNIFICANCE: These findings demonstrate that RAC1 is an effector of G9a oncogenic functions and highlight the potential of G9a inhibitors in the treatment of ARMS.
Collapse
Affiliation(s)
- Akshay V Bhat
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Monica Palanichamy Kala
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vinay Kumar Rao
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Luca Pignata
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Huey Jin Lim
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sudha Suriyamurthy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kenneth T Chang
- Department of Pathology, KK Women and Children's Hospital, Singapore, Singapore
| | - Victor K Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
21
|
Bárcena-Varela M, Caruso S, Llerena S, Álvarez-Sola G, Uriarte I, Latasa MU, Urtasun R, Rebouissou S, Alvarez L, Jimenez M, Santamaría E, Rodriguez-Ortigosa C, Mazza G, Rombouts K, San José-Eneriz E, Rabal O, Agirre X, Iraburu M, Santos-Laso A, Banales JM, Zucman-Rossi J, Prósper F, Oyarzabal J, Berasain C, Ávila MA, Fernández-Barrena MG. Dual Targeting of Histone Methyltransferase G9a and DNA-Methyltransferase 1 for the Treatment of Experimental Hepatocellular Carcinoma. Hepatology 2019; 69:587-603. [PMID: 30014490 DOI: 10.1002/hep.30168] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022]
Abstract
Epigenetic modifications such as DNA and histone methylation functionally cooperate in fostering tumor growth, including that of hepatocellular carcinoma (HCC). Pharmacological targeting of these mechanisms may open new therapeutic avenues. We aimed to determine the therapeutic efficacy and potential mechanism of action of our dual G9a histone-methyltransferase and DNA-methyltransferase 1 (DNMT1) inhibitor in human HCC cells and their crosstalk with fibrogenic cells. The expression of G9a and DNMT1, along with that of their molecular adaptor ubiquitin-like with PHD and RING finger domains-1 (UHRF1), was measured in human HCCs (n = 268), peritumoral tissues (n = 154), and HCC cell lines (n = 32). We evaluated the effect of individual and combined inhibition of G9a and DNMT1 on HCC cell growth by pharmacological and genetic approaches. The activity of our lead compound, CM-272, was examined in HCC cells under normoxia and hypoxia, human hepatic stellate cells and LX2 cells, and xenograft tumors formed by HCC or combined HCC+LX2 cells. We found a significant and correlative overexpression of G9a, DNMT1, and UHRF1 in HCCs in association with poor prognosis. Independent G9a and DNMT1 pharmacological targeting synergistically inhibited HCC cell growth. CM-272 potently reduced HCC and LX2 cells proliferation and quelled tumor growth, particularly in HCC+LX2 xenografts. Mechanistically, CM-272 inhibited the metabolic adaptation of HCC cells to hypoxia and induced a differentiated phenotype in HCC and fibrogenic cells. The expression of the metabolic tumor suppressor gene fructose-1,6-bisphosphatase (FBP1), epigenetically repressed in HCC, was restored by CM-272. Conclusion: Combined targeting of G9a/DNMT1 with compounds such as CM-272 is a promising strategy for HCC treatment. Our findings also underscore the potential of differentiation therapy in HCC.
Collapse
Affiliation(s)
| | - Stefano Caruso
- Functional Genomics of Solid Tumors, Inserm U1162, Université Paris Descartes, Université Paris Diderot, Université Paris 13, IUH, France
| | - Susana Llerena
- Marqués de Valdecilla University Hospital, Santander, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Gloria Álvarez-Sola
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Iker Uriarte
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - M Ujue Latasa
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain
| | - Raquel Urtasun
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain
| | - Sandra Rebouissou
- Functional Genomics of Solid Tumors, Inserm U1162, Université Paris Descartes, Université Paris Diderot, Université Paris 13, IUH, France
| | - Laura Alvarez
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain
| | | | - Eva Santamaría
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Carlos Rodriguez-Ortigosa
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Giuseppe Mazza
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Krista Rombouts
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Edurne San José-Eneriz
- Oncohematology Program, Cima-University of Navarra, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Obdulia Rabal
- Molecular Therapeutics Program, Cima-University of Navarra, Pamplona, Spain
| | - Xabier Agirre
- Oncohematology Program, Cima-University of Navarra, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Maria Iraburu
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - Alvaro Santos-Laso
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain.,Biodonostia Research Institute, Donostia University Hospital, Ikerbasque, San Sebastian, Spain
| | - Jesus M Banales
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain.,Biodonostia Research Institute, Donostia University Hospital, Ikerbasque, San Sebastian, Spain
| | - Jessica Zucman-Rossi
- Functional Genomics of Solid Tumors, Inserm U1162, Université Paris Descartes, Université Paris Diderot, Université Paris 13, IUH, France
| | - Felipe Prósper
- Oncohematology Program, Cima-University of Navarra, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Julen Oyarzabal
- Molecular Therapeutics Program, Cima-University of Navarra, Pamplona, Spain
| | - Carmen Berasain
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Matías A Ávila
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Maite G Fernández-Barrena
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| |
Collapse
|
22
|
Natesan R, Aras S, Effron SS, Asangani IA. Epigenetic Regulation of Chromatin in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:379-407. [PMID: 31900918 DOI: 10.1007/978-3-030-32656-2_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epigenetics refers to mitotically/meiotically heritable mechanisms that regulate gene transcription without a need for changes in the DNA code. Covalent modifications of DNA, in the form of methylation, and histone post-translational modifications, in the form of acetylation and methylation, constitute the epigenetic code of a cell. Both DNA and histone modifications are highly dynamic and often work in unison to define the epigenetic state of a cell. Most epigenetic mechanisms regulate gene transcription by affecting localized/genome-wide transitions between heterochromatin and euchromatin states, thereby altering the accessibility of the transcriptional machinery and in turn, reduce/increase transcriptional output. Altered chromatin structure is associated with cancer progression, and epigenetic plasticity primarily governs the resistance of cancer cells to therapeutic agents. In this chapter, we specifically focus on regulators of histone methylation and acetylation, the two well-studied chromatin post-translational modifications, in the context of prostate cancer.
Collapse
Affiliation(s)
- Ramakrishnan Natesan
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shweta Aras
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel Sander Effron
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Irfan A Asangani
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Araya HF, Sepulveda H, Lizama CO, Vega OA, Jerez S, Briceño PF, Thaler R, Riester SM, Antonelli M, Salazar-Onfray F, Rodríguez JP, Moreno RD, Montecino M, Charbonneau M, Dubois CM, Stein GS, van Wijnen AJ, Galindo MA. Expression of the ectodomain-releasing protease ADAM17 is directly regulated by the osteosarcoma and bone-related transcription factor RUNX2. J Cell Biochem 2018; 119:8204-8219. [PMID: 29923217 DOI: 10.1002/jcb.26832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/06/2018] [Indexed: 01/04/2023]
Abstract
Osteoblast differentiation is controlled by transcription factor RUNX2 which temporally activates or represses several bone-related genes, including those encoding extracellular matrix proteins or factors that control cell-cell, and cell-matrix interactions. Cell-cell communication in the many skeletal pericellular micro-niches is critical for bone development and involves paracrine secretion of growth factors and morphogens. This paracrine signaling is in part regulated by "A Disintegrin And Metalloproteinase" (ADAM) proteins. These cell membrane-associated metalloproteinases support proteolytic release ("shedding") of protein ectodomains residing at the cell surface. We analyzed microarray and RNA-sequencing data for Adam genes and show that Adam17, Adam10, and Adam9 are stimulated during BMP2 mediated induction of osteogenic differentiation and are robustly expressed in human osteoblastic cells. ADAM17, which was initially identified as a tumor necrosis factor alpha (TNFα) converting enzyme also called (TACE), regulates TNFα-signaling pathway, which inhibits osteoblast differentiation. We demonstrate that Adam17 expression is suppressed by RUNX2 during osteoblast differentiation through the proximal Adam17 promoter region (-0.4 kb) containing two functional RUNX2 binding motifs. Adam17 downregulation during osteoblast differentiation is paralleled by increased RUNX2 expression, cytoplasmic-nuclear translocation and enhanced binding to the Adam17 proximal promoter. Forced expression of Adam17 reduces Runx2 and Alpl expression, indicating that Adam17 may negatively modulate osteoblast differentiation. These findings suggest a novel regulatory mechanism involving a reciprocal Runx2-Adam17 negative feedback loop to regulate progression through osteoblast differentiation. Our results suggest that RUNX2 may control paracrine signaling through regulation of ectodomain shedding at the cell surface of osteoblasts by directly suppressing Adam17 expression.
Collapse
Affiliation(s)
- Héctor F Araya
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Hugo Sepulveda
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Carlos O Lizama
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Oscar A Vega
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sofia Jerez
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pedro F Briceño
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Marcelo Antonelli
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Flavio Salazar-Onfray
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan Pablo Rodríguez
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), University of Chile, Santiago, Chile
| | - Ricardo D Moreno
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Montecino
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Martine Charbonneau
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Claire M Dubois
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, Vermont
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Mario A Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
24
|
Dhiman VK, Bolt MJ, White KP. Nuclear receptors in cancer — uncovering new and evolving roles through genomic analysis. Nat Rev Genet 2017; 19:160-174. [DOI: 10.1038/nrg.2017.102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
YM155 as an inhibitor of cancer stemness simultaneously inhibits autophosphorylation of epidermal growth factor receptor and G9a-mediated stemness in lung cancer cells. PLoS One 2017; 12:e0182149. [PMID: 28787001 PMCID: PMC5546577 DOI: 10.1371/journal.pone.0182149] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/13/2017] [Indexed: 11/19/2022] Open
Abstract
Cancer stem cell survival is the leading factor for tumor recurrence after tumor-suppressive treatments. Therefore, specific and efficient inhibitors of cancer stemness must be discovered for reducing tumor recurrence. YM155 has been indicated to significantly reduce stemness-derived tumorsphere formation. However, the pharmaceutical mechanism of YM155 against cancer stemness is unclear. This study investigated the potential mechanism of YM155 against cancer stemness in lung cancer. Tumorspheres derived from epidermal growth factor receptor (EGFR)-mutant HCC827 and EGFR wild-type A549 cells expressing higher cancer stemness markers (CD133, Oct4, and Nanog) were used as cancer stemness models. We observed that EGFR autophosphorylation (Y1068) was higher in HCC827- and A549-derived tumorspheres than in parental cells; this autophosphorylation induced tumorsphere formation by activating G9a-mediated stemness. Notably, YM155 inhibited tumorsphere formation by blocking the autophosphorylation of EGFR and the EGFR-G9a-mediated stemness pathway. The chemical and genetic inhibition of EGFR and G9a revealed the significant role of the EGFR-G9a pathway in maintaining the cancer stemness property. In conclusion, this study not only revealed that EGFR could trigger tumorsphere formation by elevating G9a-mediated stemness but also demonstrated that YM155 could inhibit this formation by simultaneously blocking EGFR autophosphorylation and G9a activity, thus acting as a potent agent against lung cancer stemness.
Collapse
|
26
|
Poulard C, Bittencourt D, Wu DY, Hu Y, Gerke DS, Stallcup MR. A post-translational modification switch controls coactivator function of histone methyltransferases G9a and GLP. EMBO Rep 2017; 18:1442-1459. [PMID: 28615290 DOI: 10.15252/embr.201744060] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/10/2017] [Accepted: 05/16/2017] [Indexed: 11/09/2022] Open
Abstract
Like many transcription regulators, histone methyltransferases G9a and G9a-like protein (GLP) can act gene-specifically as coregulators, but mechanisms controlling this specificity are mostly unknown. We show that adjacent post-translational methylation and phosphorylation regulate binding of G9a and GLP to heterochromatin protein 1 gamma (HP1γ), formation of a ternary complex with the glucocorticoid receptor (GR) on chromatin, and function of G9a and GLP as coactivators for a subset of GR target genes. HP1γ is recruited by G9a and GLP to GR binding sites associated with genes that require G9a, GLP, and HP1γ for glucocorticoid-stimulated transcription. At the physiological level, G9a and GLP coactivator function is required for glucocorticoid activation of genes that repress cell migration in A549 lung cancer cells. Thus, regulated methylation and phosphorylation serve as a switch controlling G9a and GLP coactivator function, suggesting that this mechanism may be a general paradigm for directing specific transcription factor and coregulator actions on different genes.
Collapse
Affiliation(s)
- Coralie Poulard
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Danielle Bittencourt
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Dai-Ying Wu
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Yixin Hu
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Daniel S Gerke
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
27
|
Deimling SJ, Olsen JB, Tropepe V. The expanding role of the Ehmt2/G9a complex in neurodevelopment. NEUROGENESIS 2017; 4:e1316888. [PMID: 28596979 DOI: 10.1080/23262133.2017.1316888] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/22/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
Epigenetic regulators play a crucial role in neurodevelopment. One such epigenetic complex, Ehmt1/2 (G9a/GLP), is essential for repressing gene transcription by methylating H3K9 in a highly tissue- and temporal-specific manner. Recently, data has emerged suggesting that this complex plays additional roles in regulating the activity of numerous other non-histone proteins. While much is known about the downstream effects of Ehmt1/2 function, evidence is only beginning to come to light suggesting the control of Ehmt1/2 function may be, at least in part, due to context-dependent binding partners. Here we review emerging roles for the Ehmt1/2 complex suggesting that it may play a much larger role than previously recognized, and discuss binding partners that we and others have recently characterized which act to coordinate its activity during early neurodevelopment.
Collapse
Affiliation(s)
- Steven J Deimling
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Jonathan B Olsen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Vincent Tropepe
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| |
Collapse
|
28
|
G9A promotes tumor cell growth and invasion by silencing CASP1 in non-small-cell lung cancer cells. Cell Death Dis 2017; 8:e2726. [PMID: 28383547 PMCID: PMC5477595 DOI: 10.1038/cddis.2017.65] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/21/2017] [Accepted: 01/26/2017] [Indexed: 01/04/2023]
Abstract
Non-small-cell lung cancer (NSCLC) is one of the leading causes of cancer-related death worldwide. Although epigenetic deregulation is known to be important for tumor progression, the molecular mechanisms in NSCLC remain unclear. Here, we found that G9A (known as EHMT2), a histone methyltransferase responsible for mono- or di-methylation of histone 3 (H3) lysine 9 (K9), is significantly upregulated in NSCLC. Knocking down G9A or pharmacological inhibition of its activity suppressed tumor cell growth, colony formation, invasion and migration. Furthermore, G9A exerts these functions by repressing CASP1 expression. Knocking down CASP1 in G9A-deficient cell restored capacities of tumor cell invasion and migration. Mechanistically, G9A silences the CASP1 promoter activity by increasing H3K9me2 around its promoter. Finally, high expression of G9A or low expression of CASP1 is correlated with poor overall survival in lung adenocarcinoma. Overall, our study uncovers a novel mechanism of G9A promoting tumor cell growth and invasion by silencing CASP1, and implies that G9A may serve as a therapeutic target in treating NSCLC.
Collapse
|
29
|
KDM5A controls bone morphogenic protein 2-induced osteogenic differentiation of bone mesenchymal stem cells during osteoporosis. Cell Death Dis 2016; 7:e2335. [PMID: 27512956 PMCID: PMC5108323 DOI: 10.1038/cddis.2016.238] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/11/2016] [Indexed: 02/06/2023]
Abstract
Bone morphogenetic protein 2 (BMP2) has been used to induce bone regeneration by promoting osteogenic differentiation of bone marrow-derived mesenchymal stem cells (MSCs). However, its effect is attenuated in osteoporotic conditions by unknown mechanisms. In this study, we investigated the molecular mechanisms of reduced osteogenic effect of BMP2 in osteoporotic conditions. By interrogating the microarray data from osteoporosis patients, we revealed an upregulation of the epigenetic modifying protein lysine (K)-specific demethylase 5A (KDM5A) and decreased Runt-related transcription factor 2 (RUNX2) expression. Further studies were focused on the role of KDM5A in osteoporosis. We first established ovariectomized (OVX) mouse model and found that the BMP2-induced osteogenic differentiation of osteoporotic MSCs was impaired. The elevated level of KDM5A was confirmed in osteoporotic MSCs. Overexpression of KDM5A in normal MSCs inhibited BMP2-induced osteogenesis. Moreover, osteogenic differentiation of osteoporotic MSCs was restored by specific KDM5A short hairpin RNA or inhibitor. Furthermore, by chromatin immunoprecipitation assay we demonstrated that KDM5A functions as endogenous modulator of osteogenic differentiation by decreasing H3K4me3 levels on promoters of Runx2, depend on its histone methylation activity. More importantly, we found an inhibitory role of KDM5A in regulating bone formation in osteoporotic mice, and pretreatment with KDM5A inhibitor partly rescued the bone loss during osteoporosis. Our results show, for the first time, that KDM5A-mediated H3K4me3 modification participated in the etiology of osteoporosis and may provide new strategies to improve the clinical efficacy of BMP2 in osteoporotic conditions.
Collapse
|
30
|
Liu S, Ye D, Guo W, Yu W, He Y, Hu J, Wang Y, Zhang L, Liao Y, Song H, Zhong S, Xu D, Yin H, Sun B, Wang X, Liu J, Wu Y, Zhou BP, Zhang Z, Deng J. G9a is essential for EMT-mediated metastasis and maintenance of cancer stem cell-like characters in head and neck squamous cell carcinoma. Oncotarget 2016; 6:6887-901. [PMID: 25749385 PMCID: PMC4466657 DOI: 10.18632/oncotarget.3159] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/17/2015] [Indexed: 12/18/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a particularly aggressive cancer with poor prognosis, largely due to lymph node metastasis and local recurrence. Emerging evidence suggests that epithelial-to-mesenchymal transition (EMT) is important for cancer metastasis, and correlated with increased cancer stem cells (CSCs) characteristics. However, the mechanisms underlying metastasis to lymph nodes in HNSCC is poorly defined. In this study, we show that E-cadherin repression correlates with cancer metastasis and poor prognosis in HNSCC. We found that G9a, a histone methyltransferase, interacts with Snail and mediates Snail-induced transcriptional repression of E-cadherin and EMT, through methylation of histone H3 lysine-9 (H3K9). Moreover, G9a is required for both lymph node-related metastasis and TGF-β-induced EMT in HNSCC cells since knockdown of G9a reversed EMT, inhibited cell migration and tumorsphere formation, and suppressed the expression of CSC markers. Our study demonstrates that the G9a protein is essential for the induction of EMT and CSC-like properties in HNSCC. Thus, targeting the G9a-Snail axis may represent a novel strategy for treatment of metastatic HNSCC.
Collapse
Affiliation(s)
- Shuli Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongxia Ye
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzheng Guo
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenwen Yu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue He
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingzhou Hu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueling Liao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyong Song
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangshuang Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongliang Xu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijing Yin
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beibei Sun
- Translation Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofei Wang
- Translation Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyi Liu
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Yadi Wu
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiong Deng
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Translation Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Zhang X, Huang Y, Shi X. Emerging roles of lysine methylation on non-histone proteins. Cell Mol Life Sci 2015; 72:4257-72. [PMID: 26227335 PMCID: PMC11114002 DOI: 10.1007/s00018-015-2001-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 06/27/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
Lysine methylation is a common posttranslational modification (PTM) of histones that is important for the epigenetic regulation of transcription and chromatin in eukaryotes. Increasing evidence demonstrates that in addition to histones, lysine methylation also occurs on various non-histone proteins, especially transcription- and chromatin-regulating proteins. In this review, we will briefly describe the histone lysine methyltransferases (KMTs) that have a broad spectrum of non-histone substrates. We will use p53 and nuclear receptors, especially estrogen receptor alpha, as examples to discuss the dynamic nature of non-histone protein lysine methylation, the writers, erasers, and readers of these modifications, and the crosstalk between lysine methylation and other PTMs in regulating the functions of the modified proteins. Understanding the roles of lysine methylation in normal cells and during development will shed light on the complex biology of diseases associated with the dysregulation of lysine methylation on both histones and non-histone proteins.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yaling Huang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaobing Shi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The Genes and Development and the Epigenetics and Molecular Carcinogenesis Graduate Programs, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
32
|
Lai YS, Chen JY, Tsai HJ, Chen TY, Hung WC. The SUV39H1 inhibitor chaetocin induces differentiation and shows synergistic cytotoxicity with other epigenetic drugs in acute myeloid leukemia cells. Blood Cancer J 2015; 5:e313. [PMID: 25978433 PMCID: PMC4476016 DOI: 10.1038/bcj.2015.37] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/14/2015] [Indexed: 12/26/2022] Open
Abstract
Epigenetic modifying enzymes have a crucial role in the pathogenesis of acute myeloid leukemia (AML). Methylation of lysine 9 on histone H3 by the methyltransferase G9a and SUV39H1 is associated with inhibition of tumor suppressor genes. We studied the effect of G9a and SUV39H1 inhibitors on viability and differentiation of AML cells and tested the cytotoxicity induced by combination of G9a and SUV39H1 inhibitors and various epigenetic drugs. The SUV39H1 inhibitor (chaetocin) and the G9a inhibitor (UNC0638) caused cell death in AML cells at high concentrations. However, only chaetocin-induced CD11b expression and differentiation of AML cells at non-cytotoxic concentration. HL-60 and KG-1a cells were more sensitive to chaetocin than U937 cells. Long-term incubation of chaetocin led to downregulation of SUV39H1 and reduction of H3K9 tri-methylation in HL-60 and KG-1a cells. Combination of chaetocin with suberoylanilide hydroxamic acid (SAHA, a histone deacetylase inhibitor) or JQ (a BET (bromodomain extra terminal) bromodomain inhibitor) showed synergistic cytotoxicity. Conversely, no synergism was found by combining chaetocin and UNC0638. More importantly, chaetocin-induced differentiation and combined cytotoxicity were also found in the primary cells of AML patients. Collectively, the SUV39H1 inhibitor chaetocin alone or in combination with other epigenetic drugs may be effective for the treatment of AML.
Collapse
Affiliation(s)
- Y-S Lai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - J-Y Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - H-J Tsai
- 1] National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan [2] Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - T-Y Chen
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - W-C Hung
- 1] National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan [2] Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
33
|
Wada S, Ideno H, Shimada A, Kamiunten T, Nakamura Y, Nakashima K, Kimura H, Shinkai Y, Tachibana M, Nifuji A. H3K9MTase G9a is essential for the differentiation and growth of tenocytes in vitro. Histochem Cell Biol 2015; 144:13-20. [PMID: 25812847 DOI: 10.1007/s00418-015-1318-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
Cell differentiation is controlled by specific transcription factors. The functions and expression levels of these transcription factors are regulated by epigenetic modifications, such as histone modifications and cytosine methylation of the genome. In tendon tissue, tendon-specific transcription factors have been shown to play functional roles in the regulation of tenocyte differentiation. However, the effects of epigenetic modifications on gene expression and differentiation in tenocytes are unclear. In this study, we investigated the epigenetic regulation of tenocyte differentiation, focusing on the enzymes mediating histone 3 lysine 9 (H3K9) methylation. In primary mouse tenocytes, six H3K9 methyltransferase (H3K9MTase) genes, i.e., G9a, G9a-like protein (GLP), PR domain zinc finger protein 2 (PRDM2), SUV39H1, SUV39H2, and SETDB1/ESET were all expressed, with increased mRNA levels observed during tenocyte differentiation. In mouse embryos, G9a and Prdm2 mRNAs were expressed in tenocyte precursor cells, which were overlapped with or were adjacent to cells expressing a tenocyte-specific marker, tenomodulin. Using tenocytes isolated from G9a-flox/flox mice, we deleted G9a by infecting the cells with Cre-expressing adenoviruses. Proliferation of G9a-null tenocytes was significantly decreased compared with that of control cells infected with GFP-expressing adenoviruses. Moreover, the expression levels of tendon transcription factors gene, i.e., Scleraxis (Scx), Mohawk (Mkx), Egr1, Six1, and Six2 were all suppressed in G9a-null tenocytes. The tendon-related genes Col1a1, tenomodulin, and periostin were also downregulated. Consistent with this, Western blot analysis showed that tenomodulin protein expression was significantly suppressed by G9a deletion. These results suggested that expression of the H3K9MTase G9a was essential for the differentiation and growth of tenocytes and that H3K9MTases may play important roles in tendinogenesis.
Collapse
Affiliation(s)
- Satoshi Wada
- Department of Pharmacology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhong X, Chen X, Guan X, Zhang H, Ma Y, Zhang S, Wang E, Zhang L, Han Y. Overexpression of G9a and MCM7 in oesophageal squamous cell carcinoma is associated with poor prognosis. Histopathology 2014; 66:192-200. [PMID: 24805087 DOI: 10.1111/his.12456] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 05/01/2014] [Indexed: 11/28/2022]
Abstract
AIMS Histone methyltransferase G9a has been primarily understood as a co-repressor of gene expression, but it has been shown that G9a also positively regulates nuclear receptor-mediated transcription. MCM7, a critical component of the DNA replication licensing complex, is amplified and overexpressed in a variety of human malignancies. The objectives of the present study were to study the relationship between the expression of G9a and MCM7 and the pathological grade, clinical stage and prognosis of oesophageal squamous cell carcinoma (OSCC). METHODS AND RESULTS We collected 139 formalin-fixed and paraffin-embedded tissues from patients with OSCC and surveyed them by tissue microarray-based immunohistochemical staining. Associations between the expression of MCM7 and G9a and clinicopathological parameters and prognosis of OSCC were examined. From tissue microarray immunohistochemistry staining results, we found that nuclear staining intensity for MCM7 and G9a was associated with histological grade (both P < 0.001), tumour depth (P = 0.050, 0.034), lymph node metastasis (P = 0.001, 0.009) and tumour stage (P < 0.001, =0.003). G9a expression was correlated with that of MCM7. G9a overexpression independently predicted poor cancer-specific survival in OSCC (hazard ratio 0.05, 95% confidence interval 0.006-0.417, P = 0.006) and MCM7 (hazard ratio 0.05, 95% confidence interval 0.013-0.441, P = 0.004). OSCC patients whose tumours showed double-positive expression of G9a and MCM7 (G9a(+) MCM7(+) ) had much shorter survival than those from either the G9a or MCM7 low expression groups (G9a(-) MCM7(-) , G9a(+) MCM7(-) , G9a(-) MCM7(+) ). CONCLUSIONS MCM7 and G9a may serve as effective prognostic factors and could also be used as biomarkers for predicting various clinical outcomes of OSCCs in the Chinese population.
Collapse
Affiliation(s)
- Xinwen Zhong
- Department of Thoracic Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kamiunten T, Ideno H, Shimada A, Nakamura Y, Kimura H, Nakashima K, Nifuji A. Coordinated expression of H3K9 histone methyltransferases during tooth development in mice. Histochem Cell Biol 2014; 143:259-66. [DOI: 10.1007/s00418-014-1284-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
|
36
|
Guan X, Zhong X, Men W, Gong S, Zhang L, Han Y. Analysis of EHMT1 expression and its correlations with clinical significance in esophageal squamous cell cancer. Mol Clin Oncol 2013; 2:76-80. [PMID: 24649311 DOI: 10.3892/mco.2013.207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/28/2013] [Indexed: 01/25/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly aggressive malignancy, requiring effective biomarkers for prognosis and therapeutic responsiveness. Histone H3K9 methyltransferases (EHMT1 and EHMT2) are global genome organizers, which are crucial for maintaining the balance state of cells in a tissue-specific manner. It was previously suggested that EHMT1 expression is a predictor of prognosis in several malignant tumors; however, the prognostic significance of EHMT1 expression in ESCC has not been determined. A cohort of 50 ESCC cases and 46 paired normal esophageal tissue samples were evaluated to assess the levels of EHMT1 expression by immunohistochemistry and reverse transcription-polymerase chain reaction. The SPSS software package was used for statistical data analysis. A significantly upregulated EHMT1 expression was observed in squamous preinvasive lesions and ESCC compared to the matched normal esophageal epithelia (52.0 vs. 21.7%, respectively). The expression of EHMT1 was correlated with tumor grade (G), depth of invasion (T) and lymph node metastasis (N) in ESCC. EHMT1 overexpression was found to be associated with poor cancer-specific survival in squamous cell carcinomas (χ2=3.922, P=0.048). The expression of EHMT1 was identified as an independent prognostic factor for overall survival in ESCC patients. In conclusion, EHMT1 expression is upregulated in ESCC and early preinvasive esophageal squamous lesions and the overexpression of EHMT1 is associated with poor prognosis in ESCC. Therefore, the expression of EHMT1 may be an effective prognostic biomarker for ESCC.
Collapse
Affiliation(s)
- Xiaojiao Guan
- Department of Pathology, Basic Science College, China Medical University, Shenyang, Liaoning, P.R. China
| | - Xinwen Zhong
- Departments of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Wanfu Men
- Departments of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shulei Gong
- Departments of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Lin Zhang
- Departments of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Yuchen Han
- Department of Pathology, Basic Science College, China Medical University, Shenyang, Liaoning, P.R. China ; ; Pathology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
37
|
Wang ZQ, Keita M, Bachvarova M, Gobeil S, Morin C, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Trinh XB, Bachvarov D. Inhibition of RUNX2 transcriptional activity blocks the proliferation, migration and invasion of epithelial ovarian carcinoma cells. PLoS One 2013; 8:e74384. [PMID: 24124450 PMCID: PMC3790792 DOI: 10.1371/journal.pone.0074384] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/31/2013] [Indexed: 01/19/2023] Open
Abstract
Previously, we have identified the RUNX2 gene as hypomethylated and overexpressed in post-chemotherapy (CT) primary cultures derived from serous epithelial ovarian cancer (EOC) patients, when compared to primary cultures derived from matched primary (prior to CT) tumors. However, we found no differences in the RUNX2 methylation in primary EOC tumors and EOC omental metastases, suggesting that DNA methylation-based epigenetic mechanisms have no impact on RUNX2 expression in advanced (metastatic) stage of the disease. Moreover, RUNX2 displayed significantly higher expression not only in metastatic tissue, but also in high-grade primary tumors and even in low malignant potential tumors. Knockdown of the RUNX2 expression in EOC cells led to a sharp decrease of cell proliferation and significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as various genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon RUNX2 suppression, while a number of pro-apoptotic genes and some EOC tumor suppressor genes were induced. Taken together, our data are indicative for a strong oncogenic potential of the RUNX2 gene in serous EOC progression and suggest that RUNX2 might be a novel EOC therapeutic target. Further studies are needed to more completely elucidate the functional implications of RUNX2 and other members of the RUNX gene family in ovarian tumorigenesis.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Mamadou Keita
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Magdalena Bachvarova
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Stephane Gobeil
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, CHUL, Québec (Québec), Canada
| | - Chantale Morin
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Marie Plante
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Jean Gregoire
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Marie-Claude Renaud
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Alexandra Sebastianelli
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Xuan Bich Trinh
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Gynecological Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Dimcho Bachvarov
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- * E-mail:
| |
Collapse
|
38
|
Li H, Zhou RJ, Zhang GQ, Xu JP. Clinical significance of RUNX2 expression in patients with nonsmall cell lung cancer: a 5-year follow-up study. Tumour Biol 2013; 34:1807-12. [DOI: 10.1007/s13277-013-0720-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/24/2013] [Indexed: 02/07/2023] Open
|
39
|
Shankar SR, Bahirvani AG, Rao VK, Bharathy N, Ow JR, Taneja R. G9a, a multipotent regulator of gene expression. Epigenetics 2012; 8:16-22. [PMID: 23257913 DOI: 10.4161/epi.23331] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lysine methylation of histone and non-histone substrates by the methyltransferase G9a is mostly associated with transcriptional repression. Recent studies, however, have highlighted its role as an activator of gene expression through mechanisms that are independent of its methyltransferase activity. Here we review the growing repertoire of molecular mechanisms and substrates through which G9a regulates gene expression. We also discuss emerging evidence for its wide-ranging functions in development, pluripotency, cellular differentiation and cell cycle regulation that underscore the complexity of its functions. The deregulated expression of G9a in cancers and other human pathologies suggests that it may be a viable therapeutic target in various diseases.
Collapse
Affiliation(s)
- Shilpa Rani Shankar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
40
|
Maintenance of gene silencing by the coordinate action of the H3K9 methyltransferase G9a/KMT1C and the H3K4 demethylase Jarid1a/KDM5A. Proc Natl Acad Sci U S A 2012; 109:18845-50. [PMID: 23112189 DOI: 10.1073/pnas.1213951109] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chromatin remodeling is essential for controlling the expression of genes during development. The histone-modifying enzyme G9a/KMT1C can act both as a coactivator and a corepressor of transcription. Here, we show that the dual function of G9a as a coactivator vs. a corepressor entails its association within two distinct protein complexes, one containing the coactivator Mediator and one containing the corepressor Jarid1a/KDM5A. Functionally, G9a is important in stabilizing the Mediator complex for gene activation, whereas its repressive function entails a coordinate action with the histone H3 lysine 4 (H3K4) demethylase Jarid1a for the maintenance of gene repression. The essential nature of cross-talk between the histone methyltransferase G9a and the demethylase Jarid1a is demonstrated on the embryonic E(y)-globin gene, where the concurrent introduction of repressive histone marks (dimethylated H3K9 and dimethylated H3K27) and removal of activating histone mark (trimethylated H3K4) is required for maintenance of gene silencing. Taken together with our previous demonstration of cross-talk between UTX and MLL2 to mediate activation of the adult β(maj)-globin gene, these data suggest a model where "active" and "repressive" cross-talk between histone-modifying enzymes coexist on the same multigene locus and play a crucial role in the precise control of developmentally regulated gene expression.
Collapse
|
41
|
Overexpression of runt-related transcription factor-2 is associated with advanced tumor progression and poor prognosis in epithelial ovarian cancer. J Biomed Biotechnol 2012; 2012:456534. [PMID: 23093845 PMCID: PMC3475129 DOI: 10.1155/2012/456534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 08/04/2012] [Accepted: 08/04/2012] [Indexed: 12/29/2022] Open
Abstract
Aim. To investigate clinical significance of runt-related transcription factor (RUNX)-2 in epithelial ovarian cancer (EOC).
Methods. RUNX2 protein expression and its subcellular localization were detected by immunohistochemistry in 116 patients with EOC.
Results. RUNX2 protein was predominantly expressed in cell nucleus of EOC tissues. The expression level of RUNX2 in EOC tissues was significantly higher than that in normal ovarian tissues (P < 0.001). In addition, the nuclear labeling index (LI) of RUNX2 in tumor cells was significantly associated with the advanced clinical stage of EOC tissues (P = 0.001). Moreover, EOC patients with high RUNX2 LI had significantly shorter overall (P < 0.001) and progression-free (P = 0.002) survival than those with low RUNX2 LI. Especially, subgroup analysis revealed that EOC patients with high clinical stages (III~IV) in high RUNX2 expression group demonstrated a significantly worse clinical outcome than those in low RUNX2 expression group, but patients with low clinical stages (I~II) had no significantly different prognosis between high and low RUNX2 expression groups.
Conclusions. Our data suggest for the first time that RUNX2 overexpression is associated with advanced tumor progression and poor clinical outcome of EOC patients. RUNX2 might be a novel prognostic marker of EOC.
Collapse
|
42
|
Oncoepigenomics: making histone lysine methylation count. Eur J Med Chem 2012; 56:179-94. [PMID: 22975593 DOI: 10.1016/j.ejmech.2012.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/01/2012] [Accepted: 08/04/2012] [Indexed: 12/30/2022]
Abstract
Increasing studies show that methylation of histone lysine residues is implicated in the development and progression of varying disease states such as schizophrenia, diabetes, and multiple human cancers. Targeting the specific enzymes responsible for these processes has fueled global investigation into the understanding and correction of epigenetic pathology. This review aims to assemble a timely account of the current progress against chromatin-modifying histone lysine methyltransferases (KMTs) and demethylases (KDMs) to inform ongoing and future efforts into this promising field. In particular, we report on their role in tumor growth and progression and the development of small molecules that modulate these enzymes.
Collapse
|