1
|
She Y, Wu P, Wan W, Liu H, Liu R, Wang T, Wang M, Shen L, Yang Y, Huang X, Zhang X, Tian Y, Zhang K. Polysaccharides, proteins and DNA based stimulus responsive hydrogels promoting wound healing and repair: A review. Int J Biol Macromol 2025; 304:140961. [PMID: 39952504 DOI: 10.1016/j.ijbiomac.2025.140961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
The healing of various wounds remains a serious challenge in the medical field, hydrogel has high hydrophilicity and biocompatibility due to its unique network structure, which shows a strong advantage in the field of wound healing. Stimulus responsive hydrogels are particularly effective,which can control the material properties according to the external stimulus source, and provide more targeted treatment for different wounds. Here, we review physiological mechanisms of wound healing and the relationship between polysaccharides, proteins and DNA based stimulus responsive hydrogels and wound healing, materials commonly used of polysaccharides, proteins and DNA based stimulus responsive hydrogels, mechanisms of stimulus responsive hydrogels formation and network structure types, common properties of polysaccharides, proteins and DNA based stimulus responsive hydrogels for promoting wound healing and discuss their applications in medicine. Finally, the limitations and application prospects of polysaccharides, proteins and DNA based stimulus responsive hydrogels were discussed and evaluated. The review focuses on the biomedical use of polysaccharides, proteins and DNA based stimulus responsive hydrogels in wound healing and repair, and provides insights for the development of clinical related materials.
Collapse
Affiliation(s)
- Yumo She
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, China
| | - Wenyu Wan
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, China; Key Laboratory of Immunodermatology, National Health Commission of the People's Republic of China, The First Hospital of China Medical University, China; National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, China
| | - He Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Ruonan Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, China
| | - Mengyao Wang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, China
| | - Lufan Shen
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, China
| | - Xingyong Huang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, China
| | - Xiaoyue Zhang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, China
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; Foshan Graduate School of Innovation, Northeastern University, Foshan 528300, China.
| | - Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, China; Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, China..
| |
Collapse
|
2
|
Ariyoshi W, Takeuchi J, Mitsugi S, Koga A, Nagai-Yoshioka Y, Yamasaki R. Mechanisms Underlying the Stimulation of DUSP10/MKP5 Expression in Chondrocytes by High Molecular Weight Hyaluronic Acid. Biomedicines 2025; 13:376. [PMID: 40002789 PMCID: PMC11852791 DOI: 10.3390/biomedicines13020376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Previously, we reported that high molecular weight hyaluronic acid (HMW-HA) exerts chondroprotective effects by enhancing dual specificity protein phosphatase 10/mitogen-activated protein kinase (MAPK) phosphatase 5 (DUSP10/MKP5) expression and suppressing inflammatory cytokine-induced matrix metalloproteinase-13 (MMP13) expression in a human immortalized chondrocyte line (C28/I2 cells) via inhibition of MAPKs. The aim of this study was to elucidate the molecular mechanisms underlying the enhancement of DUSP10/MKP5 expression by HMW-HA in C28/I2 cells. Methods: C28/I2 cells were treated with HMW-HA, and the activation of intracellular signaling molecules was determined using Western blot analysis. The expression levels of mRNAs and microRNAs (miRNAs) were evaluated through real-time quantitative reverse transcription PCR analysis. Results: HMW-HA treatment induced Akt phosphorylation via interaction with CD44, and pretreatment with specific inhibitors of phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) signaling attenuated the HMW-HA-induced expression of DUSP10/MKP5. HMW-HA suppressed the expression of miR-92a, miR-181a, and miR-181d. Loss-of-function and gain-of-function analyses of these miRNAs indicate that miR-92a, miR-181a, and miR-181d negatively regulate DUSP10/MKP5 expression. Moreover, HMW-HA-induced Akt phosphorylation was partially suppressed by miR-181a and miR-181d mimics. Finally, we found that HMW-HA activates RhoA-associated protein kinase (ROK) signaling, which contributes to Akt phosphorylation. Conclusions: These findings suggest that the induction of DUSP10/MKP5 expression by HMW-HA binding to CD44, leading to MMP13 suppression, involves multiple regulatory mechanisms, including PI3K/Akt and RhoA-activated ROK signaling, in addition to miRNA-mediated regulation. Elucidating these detailed molecular mechanisms may reveal novel biological activities that contribute to the therapeutic efficacy of HMW-HA against osteoarthritis.
Collapse
Affiliation(s)
- Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka 803-8580, Japan; (A.K.); (Y.N.-Y.); (R.Y.)
| | - Jun Takeuchi
- Medical Affairs, Seikagaku Corporation, Tokyo 100-0005, Japan;
| | - Sho Mitsugi
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka 540-0008, Japan;
| | - Ayaka Koga
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka 803-8580, Japan; (A.K.); (Y.N.-Y.); (R.Y.)
- School of Oral Health Sciences, Faculty of Dentistry, Kyushu Dental University, Fukuoka 803-8580, Japan
| | - Yoshie Nagai-Yoshioka
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka 803-8580, Japan; (A.K.); (Y.N.-Y.); (R.Y.)
| | - Ryota Yamasaki
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka 803-8580, Japan; (A.K.); (Y.N.-Y.); (R.Y.)
| |
Collapse
|
3
|
Baldión PA, Díaz CA, Betancourt DE. Myricetin Modulates Matrix Metalloproteinases Expression Induced by TEGDMA in Human Odontoblast-Like Cells. J Biomed Mater Res A 2025; 113:e37872. [PMID: 39893556 DOI: 10.1002/jbm.a.37872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/15/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025]
Abstract
The activity of matrix metalloproteinases (MMPs) plays a crucial role in the aging of the resin-dentin interface. The in situ action of MMP-2 and MMP-9 has been confirmed in the process of dentin-collagen degradation. However, the involvement of dental pulp cells in MMP secretion as a response to oxidative stress induced by contact with resin monomers has not been fully elucidated. Myricetin (MYR), like proanthocyanidin (PAC), has antioxidant properties and may help prevent extracellular matrix degradation. The objective was to evaluate the effect of MYR on the MMP expression and activity in response to reactive oxygen species (ROS) increase induced by triethylene glycol dimethacrylate (TEGDMA) in human odontoblast-like cells (hOLCs). hOLCs differentiated from dental pulp mesenchymal stem cells were exposed to TEGDMA released from dentin blocks using a barrier model with transwell inserts for 18, 24, and 36 h. Intracellular oxidation was evaluated using the 2',7'-dichlorofluorescein probe. The effect of 600 μM MYR on the MMP-2 and MMP-9 expression was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The extracellular MMP levels were quantified using enzyme-linked immunosorbent assay, and their activation by means of a proteolytic fluorometric assay. The results were analyzed by one-way analysis of variance and Tukey's post hoc test, p ≤ 0.05. TEGDMA exposure increased intracellular ROS and upregulated MMP-2 and MMP-9 mRNA in hOLCs (p < 0.001). The levels of MMPs increased significantly 24 h after TEGDMA exposure (p = 0.013). These secreted proteases exhibited high activation ability. MYR reduced ROS production and downregulated MMP expression and activity at both mRNA and protein levels, similar to the effect found for PAC, which was used as a control. A relationship was observed between MMP-2 and MMP-9 expression, secretion, and early activation with ROS increase due to TEGDMA exposure. MYR showed potential as a therapeutic strategy to control MMP expression and modulate redox imbalance, offering a protective effect on cellular response.
Collapse
Affiliation(s)
- Paula Alejandra Baldión
- Departamento de Salud Oral, Facultad de Odontología, Sede Bogotá, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos Aldemar Díaz
- Departamento de Salud Oral, Facultad de Odontología, Sede Bogotá, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diego Enrique Betancourt
- Departamento de Salud Oral, Facultad de Odontología, Sede Bogotá, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
4
|
Chowdhury A, Gorain B, Mitra Mazumder P. Recent advancements in drug delivery system of flavonoids with a special emphasis on the flavanone naringenin: exploring their application in wound healing and associated processes. Inflammopharmacology 2025; 33:69-90. [PMID: 39576423 DOI: 10.1007/s10787-024-01600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/02/2024] [Indexed: 02/06/2025]
Abstract
Numerous flavonoids have been identified in citrus fruits which show potential to cure several complex diseases. These natural polyphenolic bioactive compounds are the secondary metabolites of various plants, among which naringenin has been explored in several pre-clinical research for its beneficial role in promoting health by modulating various biochemical processes. Its antioxidant, anti-inflammatory, and anti-microbial effects have been projected toward healing of wounds. Further, its application has also been shown to regrow vascular networks, which are known to facilitate the healing of chronic wounds. Thus, the potential of naringenin to modulate various molecular pathways aids in the healing process of wounds. Considering the recent literature, an update has been attempted to present the correlation between the healing mechanisms of wounds by the application of naringenin. Furthermore, the application of naringenin is challenging because of its properties of poor solubility and limited permeability, which can be overcome by the nanotechnology platform. Thus, several nanocarriers that have been employed for the improvement of naringenin delivery are highlighted. Thereby, it can be concluded that a suitable nanocarrier of naringenin could be an effective tool in treating wounds to improve the quality of life of such patients.
Collapse
Affiliation(s)
- Ankit Chowdhury
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
5
|
Li F, Yan W, Chen Z, Dong W, Chen Z. PNSC5325 prevents acute respiratory distress syndrome by alleviating inflammation and inhibiting extracellular matrix degradation of alveolar macrophages. Int Immunopharmacol 2024; 143:113579. [PMID: 39520964 DOI: 10.1016/j.intimp.2024.113579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is characterized by severe inflammation and significant extracellular matrix (ECM) degradation in the lungs. Our prior research identified the CtBP2-p300-NF-κB (C-terminal-binding protein 2-histone acetyltransferase p300-nuclear factor kappa B) transcriptional complex as critical in ARDS by activating pro-inflammatory cytokine genes. METHODS An ARDS mouse model was established using intratracheal instillation of lipopolysaccharide (LPS). Small molecules that inhibit the CtBP2-p300 interaction were identified through AlphaScreen. RNA sequencing (RNA-Seq) was conducted to determine differential gene expression. Immunoprecipitation and co-immunoprecipitation analyzed protein interactions. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunoblotting detected gene and protein expression. Histological staining evaluated tissue damage. RESULTS Through AlphaScreen, two natural compounds, PNSC2477 and PNSC5325, were identified for their ability to inhibit the CtBP2-p300 interaction. While PNSC2477 demonstrated toxicity and was deemed unsuitable for further research, PNSC5325 exhibited minimal toxicity. PNSC5325 effectively inhibited the CtBP2-p300 interaction and reduced pro-inflammatory cytokine gene expression. RNA-Seq analysis of PNSC5325-treated cells indicated significant suppression of pro-inflammatory cytokine genes and matrix metalloproteinases (MMPs). Further molecular studies revealed that the CtBP2-p300 complex, in conjunction with activator protein 1 (AP1), activates MMP expression. PNSC5325 simultaneously suppressed both pro-inflammatory cytokines and MMPs by targeting the CtBP2-p300 complex. In LPS-injected mice, PNSC5325 administration significantly reduced ARDS incidence by inhibiting inflammatory and MMP genes. CONCLUSION These findings suggest that PNSC5325 protects against ARDS by inhibiting key inflammatory and ECM degradation pathways, highlighting its potential as a novel therapeutic agent for ARDS and paving the way for further clinical investigations.
Collapse
Affiliation(s)
- Fan Li
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330009, China
| | - Wenqing Yan
- Department of Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; Department of Emergency, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, China
| | - Zhiping Chen
- Department of Emergency, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, China; Department of Emergency, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Weihua Dong
- Department of Emergency, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, China; Department of Emergency, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China.
| | - Zhi Chen
- Department of Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| |
Collapse
|
6
|
Kamdar A, Sykes R, Thomson CR, Mangion K, Ang D, Lee MAW, Van Agtmael T, Berry C. Vascular fibrosis and extracellular matrix remodelling in post-COVID 19 conditions. INFECTIOUS MEDICINE 2024; 3:100147. [PMID: 39649442 PMCID: PMC11621938 DOI: 10.1016/j.imj.2024.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/02/2024] [Accepted: 09/23/2024] [Indexed: 12/10/2024]
Abstract
Causal associations between viral infections and acute myocardial injury are not fully understood, with mechanisms potentially involving direct cardiovascular involvement or systemic inflammation. This review explores plausible mechanisms of vascular fibrosis in patients with post-COVID-19 syndrome, focusing on extracellular matrix remodelling. Despite global attention, significant mechanistic or translational breakthroughs in the management of post-viral syndromes remain limited. No effective pharmacological or non-pharmacological interventions are currently available for patients experiencing persistent symptoms following COVID-19 infection. The substantial expansion of scientific knowledge resulting from collaborative efforts by medical experts, scientists, and government organisations in undertaking COVID-19 research could inform treatment strategies for other post-viral syndromes and respiratory illnesses. There is a critical need for clinical trials to evaluate potential therapeutic candidates, providing evidence to guide treatment decisions for post-COVID-19 syndromes.
Collapse
Affiliation(s)
- Anna Kamdar
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK
| | - Robert Sykes
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK
| | - Cameron R. Thomson
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
| | - Kenneth Mangion
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK
- Department of Cardiology, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde Health Board, Glasgow G51 4TF, UK
| | - Daniel Ang
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK
| | - Michelle AW Lee
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
| | - Tom Van Agtmael
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
| | - Colin Berry
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK
- Department of Cardiology, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde Health Board, Glasgow G51 4TF, UK
| |
Collapse
|
7
|
Chatterjee A, Roy T, Swarnakar S. Transcriptional upregulation of MMP-9 gene under hyperglycemic conditions in AGS cells: Role of AP-1 transcription factor. Cell Signal 2024; 124:111435. [PMID: 39332786 DOI: 10.1016/j.cellsig.2024.111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Gastric cancer and diabetes are two complex and interrelated diseases having significant impact on global health. Hyperglycemic condition notably exacerbates cancer by promoting inflammation, angiogenesis, and metastasis. Elevated glucose levels can also upregulate the expression of specific matrix metalloproteinases (MMPs), especially MMP-9, which is associated with cancer cell migration and invasion. However, the molecular mechanism behind such upregulation remains unexplored. In the present study, we have identified the mechanism for hyperglycemia-induced transcriptional activation of MMP-9, in gastric adenocarcinoma (AGS) cells. Using various tools like luciferase-reporter assays with promoter deletion constructs, siRNAs, pharmacological inhibitors, and nuclear translocation experiments, we have identified that the transcriptional activation of MMP-9 under hyperglycemic conditions is predominantly governed by the MAPK pathway, via formation of the AP-1 heterodimer. The p65 NF-κB signaling pathway, although activated, plays no significant role in regulating hyperglycemia-induced MMP-9 expression. Chromatin immunoprecipitation studies indicate that the distal AP-1 binding site is responsible for hyperglycemia-induced MMP-9 transcription; whereas the proximal one accounts for both hyperglycemia-induced and basal MMP-9 transcription. Therefore, binding of AP-1 at both the proximal and distal binding sites on the MMP-9 promoter region is required for hyperglycemia-induced MMP-9 expression. Overall, our study unveils a novel mechanism of MMP-9 transcription under hyperglycemic conditions and also suggests that inhibiting the binding of the AP-1 heterodimer with its distal binding site can potentially reduce the complications developed during gastric cancer-hyperglycemia co-morbidity. A drug designed specifically to inhibit this interaction may prevent hyperglycemia-induced tumor aggressiveness to a considerable extent by impeding MMP-9 transcription.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Tapasi Roy
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Snehasikta Swarnakar
- Infectious Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India.
| |
Collapse
|
8
|
Barron A, Tuulari J, Karlsson L, Karlsson H, O'Keeffe G, McCarthy C. Simulated ischaemia/reperfusion impairs trophoblast function through divergent oxidative stress- and MMP-9-dependent mechanisms. Biosci Rep 2024; 44:BSR20240763. [PMID: 39474810 PMCID: PMC11581840 DOI: 10.1042/bsr20240763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 11/22/2024] Open
Abstract
Early-onset pre-eclampsia is believed to arise from defective placentation in the first trimester, leading to placental ischaemia/reperfusion (I/R) and oxidative stress. However, our current understanding of the effects of I/R and oxidative stress on trophoblast function is ambiguous in part due to studies exposing trophoblasts to hypoxia instead of I/R, and which report conflicting results. Here, we present a model of simulated ischaemia/reperfusion (SI/R) to recapitulate the pathophysiological events of early-onset pre-eclampsia (PE), by exposing first trimester cytotrophoblast HTR-8/SVneo cells to a simulated ischaemia buffer followed by reperfusion. We examined different ischaemia and reperfusion times and observed that 1 h ischaemia and 24 h reperfusion induced an increase in reactive oxygen species (ROS) production (P<0.0001) and oxygen consumption rate (P<0.01). SI/R-exposed trophoblast cells exhibited deficits in migration, proliferation, and invasion (P<0.01). While the deficits in migration and proliferation were rescued by antioxidants, suggesting an ROS-dependent mechanism, the loss of invasion was not affected by antioxidants, which suggests a divergent ROS-independent pathway. In line with this, we observed a decrease in MMP-9, the key regulatory enzyme necessary for trophoblast invasion (P<0.01), which was similarly unaffected by antioxidants, and pharmacological inhibition of MMP-9 replicated the phenotype of deficient invasion (P<0.01). Collectively, these data demonstrate that I/R impairs trophoblast migration and proliferation via a ROS-dependent mechanism, and invasion via an ROS-independent loss of MMP-9, disambiguating the role of oxidative stress and providing insights into the response of trophoblasts to I/R in the context of early-onset PE.
Collapse
Affiliation(s)
- Aaron Barron
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Jetro J. Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry and Turku Brain and Mind Centre, University of Turku and Turku University Hospital, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
- Department of Clinical Medicine, Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry and Turku Brain and Mind Centre, University of Turku and Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
| | - Gerard W. O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Du F, Li J, Zhong X, Zhang Z, Zhao Y. Endothelial-to-mesenchymal transition in the tumor microenvironment: Roles of transforming growth factor-β and matrix metalloproteins. Heliyon 2024; 10:e40118. [PMID: 39568849 PMCID: PMC11577214 DOI: 10.1016/j.heliyon.2024.e40118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
Cancer is a leading cause of global morbidity and mortality. Tumor cells grow in a complex microenvironment, comprising immune cells, stromal cells, and vascular cells, collaborating to support tumor growth and facilitate metastasis. Transforming growth factor-beta (TGF-β) is a multipotent factor that can not only affect fibrosis promotion but also assume distinct roles in the early and late stages of the tumor. Matrix metalloproteinases (MMPs) primarily function to degrade the extracellular matrix, a pivotal cellular player in tumor progression. Moreover, endothelial-to-mesenchymal transition (EndMT), similar to epithelial-to-mesenchymal transition, is associated with cancer progression by promoting angiogenesis, disrupting the endothelial barrier, and leading to cancer-associated fibroblasts. Recent studies have underscored the pivotal roles of TGF-β and MMPs in EndMT. This review delves into the contributions of TGF-β and MMPs, as well as their regulatory mechanisms, within the tumor microenvironment. This collective understanding offers fresh insights into the potential for combined targeted therapies in the fight against cancer.
Collapse
Affiliation(s)
- Fei Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
- Department of Pharmacy, Meishan TianFu New Area People's Hospital, Meishan, Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| |
Collapse
|
10
|
Mao Y, Su C, Yang H, Ma X, Zhao F, Qu B, Yang Y, Hou X, Zhao B, Cui Y. PI3K/AKT/mTORC1 signalling pathway regulates MMP9 gene activation via transcription factor NF-κB in mammary epithelial cells of dairy cows. Anim Biotechnol 2024; 35:2314100. [PMID: 38343377 DOI: 10.1080/10495398.2024.2314100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Matrix metalloproteinase 9 (MMP9) plays a pivotal role in mammary ductal morphogenesis, angiogenesis and glandular tissue architecture remodeling. However, the molecular mechanism of MMP9 expression in mammary epithelial cells of dairy cows remains unclear. This study aimed to explore the underlying mechanism of MMP9 expression. In this study, to determine whether the PI3K/AKT/mTORC1/NF-κB signalling pathway participates in the regulation of MMP9 expression, we treated mammary epithelial cells with specific pharmacological inhibitors of PI3K (LY294002), mTORC1 (Rapamycin) or NF-κB (Celastrol), respectively. Western blotting results indicated that LY294002, Rapamycin and Celastrol markedly decreased MMP9 expression and P65 nuclear translocation. Furthermore, we found that NF-κB (P65) overexpression resulted in elevated expression of MMP9 protein and activation of MMP9 promoter. In addition, we observed that Celastrol markedly decreases P65-overexpression-induced MMP9 promoter activity. Moreover, the results of the promoter assay indicated that the core regulation sequence for MMP9 promoter activation may be located at -420 ∼ -80 bp downstream from the transcription start site. These observations indicated that the PI3K/AKT/mTORC1 signalling pathway is involved in MMP9 expression by regulating MMP9 promoter activity via NF-κB in the mammary epithelial cells of dairy cows.
Collapse
Affiliation(s)
- Yongjin Mao
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, PR China
| | - Chen Su
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, PR China
| | - Huilin Yang
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, PR China
| | - Xiaocong Ma
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, PR China
| | - Feng Zhao
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, PR China
| | - Bo Qu
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, PR China
| | - Yang Yang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, PR China
| | - Xiaoming Hou
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, PR China
| | - Bing Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Yingjun Cui
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, PR China
| |
Collapse
|
11
|
Kim M, Jorge GL, Aschern M, Cuiné S, Bertrand M, Mekhalfi M, Putaux JL, Yang JS, Thelen JJ, Beisson F, Peltier G, Li-Beisson Y. The DYRKP1 kinase regulates cell wall degradation in Chlamydomonas by inducing matrix metalloproteinase expression. THE PLANT CELL 2024; 36:koae271. [PMID: 39401319 PMCID: PMC11852342 DOI: 10.1093/plcell/koae271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/22/2024] [Accepted: 10/02/2024] [Indexed: 01/01/2025]
Abstract
The cell wall of plants and algae is an important cell structure that protects cells from changes in the external physical and chemical environment. This extracellular matrix, composed of polysaccharides and glycoproteins, must be constantly remodeled throughout the life cycle. However, compared to matrix polysaccharides, little is known about the mechanisms regulating the formation and degradation of matrix glycoproteins. We report here that a plant kinase belonging to the DUAL-SPECIFICITY TYROSINE PHOSPHORYLATION-REGULATED KINASE (DYRK) family present in all eukaryotes regulates cell wall degradation after mitosis of Chlamydomonas reinhardtii by inducing the expression of matrix metalloproteinases (MMPs). Without the plant DYRK kinase (DYRKP1), daughter cells cannot disassemble parental cell walls and remain trapped inside for more than 10 days. On the other hand, the DYRKP1 complementation line shows normal degradation of the parental cell wall. Transcriptomic and proteomic analyses indicate a marked down-regulation of MMP gene expression and accumulation, respectively, in the dyrkp1 mutants. The mutants deficient in MMPs retain palmelloid structures for a longer time than the background strain, like dyrkp1 mutants. Our findings show that DYRKP1, by ensuring timely MMP expression, enables the successful execution of the cell cycle. Altogether, this study provides insight into the life cycle regulation in plants and algae.
Collapse
Affiliation(s)
- Minjae Kim
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, Saint-Paul-lez-Durance 13108, France
| | - Gabriel Lemes Jorge
- Division of Biochemistry and Interdisciplinary Plant Group, Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Moritz Aschern
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Cerdanyola 08193, Spain
- Doctoral Program of Biotechnology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona 08028, Spain
| | - Stéphan Cuiné
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, Saint-Paul-lez-Durance 13108, France
| | - Marie Bertrand
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, Saint-Paul-lez-Durance 13108, France
| | - Malika Mekhalfi
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, Saint-Paul-lez-Durance 13108, France
| | - Jean-Luc Putaux
- CNRS, CERMAV, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | - Jae-Seong Yang
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Cerdanyola 08193, Spain
| | - Jay J Thelen
- Division of Biochemistry and Interdisciplinary Plant Group, Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Fred Beisson
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, Saint-Paul-lez-Durance 13108, France
| | - Gilles Peltier
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, Saint-Paul-lez-Durance 13108, France
| | - Yonghua Li-Beisson
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, Saint-Paul-lez-Durance 13108, France
| |
Collapse
|
12
|
Song HK, Kim JM, Noh EM, Youn HJ, Lee YR. Role of NOX1 and NOX5 in protein kinase C/reactive oxygen species‑mediated MMP‑9 activation and invasion in MCF‑7 breast cancer cells. Mol Med Rep 2024; 30:188. [PMID: 39219290 PMCID: PMC11350630 DOI: 10.3892/mmr.2024.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
NADPH oxidases (NOXs) are a family of membrane proteins responsible for intracellular reactive oxygen species (ROS) generation by facilitating electron transfer across biological membranes. Despite the established activation of NOXs by protein kinase C (PKC), the precise mechanism through which PKC triggers NOX activation during breast cancer invasion remains unclear. The present study aimed to investigate the role of NOX1 and NOX5 in the invasion of MCF‑7 human breast cancer cells. The expression and activity of NOXs and matrix metalloprotease (MMP)‑9 were assessed by reverse transcription‑quantitative PCR and western blotting, and the activity of MMP‑9 was monitored using zymography. Cellular invasion was assessed using the Matrigel invasion assay, whereas ROS levels were quantified using a FACSCalibur flow cytometer. The findings suggested that NOX1 and NOX5 serve crucial roles in 12‑O‑tetradecanoylphorbol‑13‑acetate (TPA)‑induced MMP‑9 expression and invasion of MCF‑7 cells. Furthermore, a connection was established between PKC and the NOX1 and 5/ROS signaling pathways in mediating TPA‑induced MMP‑9 expression and cellular invasion. Notably, NOX inhibitors (diphenyleneiodonium chloride and apocynin) significantly attenuated TPA‑induced MMP‑9 expression and invasion in MCF‑7 cells. NOX1‑ and NOX5‑specific small interfering RNAs attenuated TPA‑induced MMP‑9 expression and cellular invasion. In addition, knockdown of NOX1 and NOX5 suppressed TPA‑induced ROS levels. Furthermore, a PKC inhibitor (GF109203X) suppressed TPA‑induced intracellular ROS levels, MMP‑9 expression and NOX activity in MCF‑7 cells. Therefore, NOX1 and NOX5 may serve crucial roles in TPA‑induced MMP‑9 expression and invasion of MCF‑7 breast cancer cells. Furthermore, the present study indicated that TPA‑induced MMP‑9 expression and cellular invasion were mediated through PKC, thus linking the NOX1 and 5/ROS signaling pathways. These findings offer novel insights into the potential mechanisms underlying their anti‑invasive effects in breast cancer.
Collapse
Affiliation(s)
- Hyun-Kyung Song
- Practical Research Division, Honam National Institute of Biological Resources, Mokpo, Jeollanam 58762, Republic of Korea
| | - Jeong-Mi Kim
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54907, Republic of Korea
| | - Eun-Mi Noh
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| | - Hyun Jo Youn
- Department of Surgery, Research Institute of Clinical Medicine, Jeonbuk National University Hospital, Jeonbuk National University and Biomedical Research Institute, Jeonju, Jeollabuk 54907, Republic of Korea
| | - Young-Rae Lee
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| |
Collapse
|
13
|
Jin Y, Chang C, Zhou X, Zhang R, Jiang P, Wei K, Xu L, Shi Y, Yang G, Lv X, Zheng Y, He D. LncRNA NONHSAT042241 inhibits rheumatoid synovial proliferation, inflammation and aggression via inactivating WNT/β-catenin signaling pathway. Autoimmunity 2024; 57:2387076. [PMID: 39229919 DOI: 10.1080/08916934.2024.2387076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/08/2024] [Accepted: 07/27/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVE This study aims to explore the effect of NONHSAT042241 on the function of rheumatoid arthritis -fibroblast-like synoviocyte (RA-FLS) and the underlying mechanisms. METHODS RA-FLS was treated with NONHSAT042241 overexpression and NONHSAT042241 knockdown lentiviruses. Cell counting kit-8 (CCK-8) assay, colony formation assay, flow cytometry, Transwell assay, western-blot, ELISA, and qRT-PCR were used to measure the changes of cell proliferation, apoptosis, invasion, secretion of inflammatory cytokines and matrix metalloproteinases (MMPs). Fluorescent in situ hybridization (FISH) assay, RNA pull-down assay, mass spectrometry (MS) and RNA immunoprecipitation (RIP) were used to find the target proteins that bond to NONHSAT042241, and western-blot was used to detect the expression of related proteins of Wnt/β-catenin signaling pathway. RESULTS Overexpression of NONHSAT042241 inhibited the proliferation of RA-FLS (p < 0.05), invasion, secretion of pro-inflammatory factors (IL-1and IL-6) and MMPs (MMP-1 and MMP-3) (p < 0.05), and elevated the level of pro-apoptotic factors (Bax and cleaved caspase3), while NONHSAT042241 knockdown had the opposite effect. NONHSAT042241 can directly bind to hnRNP D, and down-regulated the expression of β-catenin (p < 0.05), p-GSK-3β (p < 0.05), Cyclin D1 (p < 0.05), PCNA (p < 0.05), and thus reduced the cell proliferation. CONCLUSION NONHSAT042241 may inhibit FLS-mediated rheumatoid synovial proliferation, inflammation and aggression. The underlying mechanisms may be that NONHSAT042241 inhibits the activity of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yehua Jin
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xinpeng Zhou
- Department of Rheumatology, Shandong Province Hospital of Traditional Chinese Medicine, Jinan, China
| | - Runrun Zhang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ping Jiang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guizhen Yang
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinliang Lv
- Department of Rheumatology, Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yuejuan Zheng
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongyi He
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shandong Province Hospital of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Aldaghi N, kamalabadi-Farahani M, Alizadeh M, Alizadeh A, Salehi M. Enhancing pressure ulcer healing and tissue regeneration by using N-acetyl-cysteine loaded carboxymethyl cellulose/gelatin/sodium alginate hydrogel. Biomed Eng Lett 2024; 14:833-845. [PMID: 38946815 PMCID: PMC11208367 DOI: 10.1007/s13534-024-00378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/27/2024] [Accepted: 03/31/2024] [Indexed: 07/02/2024] Open
Abstract
Prolonged pressure on the skin can result in pressure ulcers, which may lead to serious complications, such as infection and tissue damage. In this study, we evaluated the effect of a carboxymethyl cellulose/gelatin/sodium alginate (CMC/Gel/Alg) hydrogel containing N-acetyl-cysteine (NAC) on the healing of pressure ulcers. Pressure ulcers were induced by applying a magnet to the dorsum of rat skin. The wounds were then treated with sterile gauze, ChitoHeal Gel®, and CMC/Gel/Alg hydrogel dressings with or without NAC for the other groups. We evaluated the morphology, weight loss, swelling, rheology, blood compatibility, cytocompatibility, antioxidant capacity, and wound scratch of the prepared hydrogel. MTT assay revealed that the optimum concentration of NAC was 5 mg/ml, which induced higher cell proliferation and viability. Results of the histopathological evaluation showed increased wound closure, and complete re-epithelialization in the hydrogel-containing NAC group compared to the other groups. The CMC/Gel/Alg/5 mg/ml NAC hydrogel dressing showed 84% wound closure at 14 days after treatment. Immunohistochemical results showed a decrease in the level of TNF-α on day 14 compared day 7. Results of the qPCR assay revealed that NAC hydrogel increased the expression of Collagen type I and TGF-β1 and decreased MMP2 and MMP9 mRNA on the 14th day. The results suggest that the CMC/Gel/Alg/5 mg/ml NAC hydrogel with antioxidant properties is an appropriate dressing for wound healing.
Collapse
Affiliation(s)
- Niloofar Aldaghi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Health Technology Incubator Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
15
|
Zhang Y, Chang L, Huang P, Cao M, Hong R, Zhao X, He X, Xu L. Loss of PTPRS elicits potent metastatic capability and resistance to temozolomide in glioblastoma. Mol Carcinog 2024; 63:1235-1247. [PMID: 38517048 DOI: 10.1002/mc.23720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor type with worse clinical outcome due to the hallmarks of strong invasiveness, high rate of recurrence, and therapeutic resistance to temozolomide (TMZ), the first-line drug for GBM, representing a major challenge for successful GBM therapeutics. Understanding the underlying mechanisms that drive GBM progression will shed novel insight into therapeutic strategies. Receptor-type tyrosine-protein phosphatase S (PTPRS) is a frequently mutated gene in human cancers, including GBM. Its role in GBM has not yet been clarified. Here, inactivating PTPRS mutation or deficiency was frequently found in GBM, and deficiency in PTPRS significantly induced defects in the G2M checkpoint and limited GBM cells proliferation, leading to potent resistance to TMZ treatment in vitro and in vivo. Surprisingly, loss of PTPRS triggered an unexpected mesenchymal phenotype that markedly enhances the migratory capabilities of GBM cells through upregulating numerous matrix metalloproteinases via MAPK-MEK-ERK signaling. Therefore, this work provides a therapeutic window for precisely excluding PTPRS-mutated patients who do not respond to TMZ.
Collapse
Affiliation(s)
- Yihua Zhang
- Department of Neurosurgery, Daping Hospital, The Army Medical University, Chongqing, China
| | - Liugang Chang
- Department of Neurosurgery, Daping Hospital, The Army Medical University, Chongqing, China
| | - Ping Huang
- Department of Neurosurgery, Daping Hospital, The Army Medical University, Chongqing, China
| | - Min Cao
- Department of Neurosurgery, Daping Hospital, The Army Medical University, Chongqing, China
| | - Rujun Hong
- Department of Neurosurgery, Daping Hospital, The Army Medical University, Chongqing, China
| | - Xinhu Zhao
- Department of Neurosurgery, Daping Hospital, The Army Medical University, Chongqing, China
| | - Xuzhi He
- Department of Neurosurgery, Daping Hospital, The Army Medical University, Chongqing, China
| | - Lunshan Xu
- Department of Neurosurgery, Daping Hospital, The Army Medical University, Chongqing, China
| |
Collapse
|
16
|
Radisky ES. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J Biol Chem 2024; 300:107347. [PMID: 38718867 PMCID: PMC11170211 DOI: 10.1016/j.jbc.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| |
Collapse
|
17
|
Zivkovic M, Stankovic A, Koncar I, Kolakovic A, Boskovic M, Djuric T. The MMP-9 promoter genetic variant rs3918242, mRNA and protein expression in advanced carotid plaque tissue. Mol Biol Rep 2024; 51:540. [PMID: 38642151 DOI: 10.1007/s11033-024-09458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND The MMP-9 is a known player in atherosclerosis, yet associations of the MMP-9 -1562 C/T variant (rs3918242) with various atherosclerotic phenotypes and tissue mRNA expression are still contradictory. This study aimed to investigate the MMP-9 -1562 C/T variant, its mRNA and protein expression in carotid plaque (CP) tissue, as a risk factor for CP presence and as a marker of different plaque phenotypes (hyperechoic and hypoechoic) in patients undergoing carotid endarterectomy. The MnSOD as an MMP-9 negative regulator was also studied in relation to CP phenotypes. METHODS AND RESULTS Genotyping of 770 participants (285 controls/485 patients) was done by tetra-primer ARMS PCR. The MMP-9 mRNA expression in 88 human CP tissues was detected by TaqMan® technology. The protein levels of MMP-9 and MnSOD were assessed by Western blot analysis. The MMP-9 -1562 C/T variant was not recognized as a risk factor for plaque presence or in predisposing MMP-9 mRNA and protein levels in plaque tissue. Patients with hypoechoic plaques had significantly lower MMP-9 mRNA and protein levels than those with hyperechoic plaque (p = 0.008, p = 0.003, respectively). MnSOD protein level was significantly higher in hypoechoic plaque compared to hyperechoic (p = 0.039). MMP-9 protein expression in CP tissue was significantly affected by sex and plaque type interaction (p = 0.009). CONCLUSIONS Considering the differences of MMP-9 mRNA and protein expression in CP tissue regarding different plaque phenotypes and the observed sex-specific effect, the role of MMP-9 in human atherosclerotic plaques should be further elucidated.
Collapse
Grants
- 451-03-66/2024-03/200017 The Ministry of Science, Technological Development and Innovation, Republic of Serbia
- 451-03-66/2024-03/200017 The Ministry of Science, Technological Development and Innovation, Republic of Serbia
- 451-03-66/2024-03/200017 The Ministry of Science, Technological Development and Innovation, Republic of Serbia
- 451-03-66/2024-03/200017 The Ministry of Science, Technological Development and Innovation, Republic of Serbia
- 451-03-66/2024-03/200017 The Ministry of Science, Technological Development and Innovation, Republic of Serbia
- 451-03-66/2024-03/200017 The Ministry of Science, Technological Development and Innovation, Republic of Serbia
Collapse
Affiliation(s)
- Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, VINCA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O. Box 522, Vinca, Belgrade, 11351, Serbia.
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, VINCA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O. Box 522, Vinca, Belgrade, 11351, Serbia
| | - Igor Koncar
- Clinic for Vascular and Endovascular Surgery, Clinical Center of Serbia, Dr Koste Todorovica 8, Belgrade, 11000, Serbia
- Medical Faculty, University of Belgrade, Dr Subotica 8, Belgrade, 11000, Serbia
| | - Ana Kolakovic
- Laboratory for Radiobiology and Molecular Genetics, VINCA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O. Box 522, Vinca, Belgrade, 11351, Serbia
| | - Maja Boskovic
- Laboratory for Radiobiology and Molecular Genetics, VINCA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O. Box 522, Vinca, Belgrade, 11351, Serbia
| | - Tamara Djuric
- Laboratory for Radiobiology and Molecular Genetics, VINCA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O. Box 522, Vinca, Belgrade, 11351, Serbia
| |
Collapse
|
18
|
Tong Z, Zhang Y, Guo P, Wang W, Chen Q, Jin J, Liu S, Yu C, Mo P, Zhang L, Huang J. Steroid receptor coactivator 1 promotes human hepatocellular carcinoma invasiveness through enhancing MMP-9. J Cell Mol Med 2024; 28:e18171. [PMID: 38506084 PMCID: PMC10951881 DOI: 10.1111/jcmm.18171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 03/21/2024] Open
Abstract
SRC-1 functions as a transcriptional coactivator for steroid receptors and various transcriptional factors. Notably, SRC-1 has been implicated in oncogenic roles in multiple cancers, including breast cancer and prostate cancer. Previous investigations from our laboratory have established the high expression of SRC-1 in human HCC specimens, where it accelerates HCC progression by enhancing Wnt/beta-catenin signalling. In this study, we uncover a previously unknown role of SRC-1 in HCC metastasis. Our findings reveal that SRC-1 promotes HCC metastasis through the augmentation of MMP-9 expression. The knockdown of SRC-1 effectively mitigated HCC cell metastasis both in vitro and in vivo by suppressing MMP-9 expression. Furthermore, we observed a positive correlation between SRC-1 mRNA levels and MMP-9 mRNA levels in limited and larger cohorts of HCC specimens from GEO database. Mechanistically, SRC-1 operates as a coactivator for NF-κB and AP-1, enhancing MMP-9 promoter activity in HCC cells. Higher levels of SRC-1 and MMP-9 expression are associated with worse overall survival in HCC patients. Treatment with Bufalin, known to inhibit SRC-1 expression, significantly decreased MMP-9 expression and inhibited HCC metastasis in both in vitro and in vivo settings. Our results demonstrated the pivotal role of SRC-1 as a critical modulator in HCC metastasis, presenting a potential therapeutic target for HCC intervention.
Collapse
Affiliation(s)
- Zhangwei Tong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life SciencesXiamen UniversityXiamenChina
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTexasUSA
| | - Yong Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life SciencesXiamen UniversityXiamenChina
| | - Peng Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life SciencesXiamen UniversityXiamenChina
| | - Wei Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life SciencesXiamen UniversityXiamenChina
| | - Qiang Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life SciencesXiamen UniversityXiamenChina
| | - Jing Jin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life SciencesXiamen UniversityXiamenChina
| | - Shixiao Liu
- Department of Cardiology, School of MedicineThe First Affiliated Hospital of Xiamen University, Xiamen UniversityXiamenChina
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life SciencesXiamen UniversityXiamenChina
| | - Pingli Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life SciencesXiamen UniversityXiamenChina
| | - Lei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical SciencesShanxi Medical University; Shanxi Tongji Hospital, Huazhong University of Science and TechnologyTaiyuanChina
| | - Junli Huang
- Department of General SurgeryArmy 73rd Group Military Hospital of the Chinese People's Liberation Army (Chenggong Hospital of Xiamen University)XiamenChina
| |
Collapse
|
19
|
Rainu SK, Singh N. Dual-Sensitive Fluorescent Nanoprobes for Simultaneously Monitoring In Situ Changes in pH and Matrix Metalloproteinase Expression in Stiffness-Tunable Three-Dimensional In Vitro Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12175-12187. [PMID: 38420964 DOI: 10.1021/acsami.3c16334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A tumor microenvironment often presents altered physicochemical characteristics of the extracellular matrix (ECM) including changes in matrix composition, stiffness, protein expression, pH, temperature, or the presence of certain stromal and immune cells. Of these, overexpression of matrix metalloproteinases (MMPs) and extracellular acidosis are the two major hallmarks of cancer that can be exploited for tumor detection. The change in matrix stiffness and the release of certain cytokines (TNF-α) in the tumor microenvironment play major roles in inducing MMP-9 expression in cancerous cells. This study highlights the role of mechanical cues in upregulating MMP-9 expression in cancerous cells using stiffness-tunable matrix compositions and dual-sensitive fluorescent nanoprobes. Ionically cross-linked 3D alginate/gelatin (AG) scaffolds with three stiffnesses were chosen to reflect the ECM stiffnesses corresponding to healthy and pathological tissues. Moreover, a dual-sensitive nanoprobe, an MMP-sensitive peptide conjugated to carbon nanoparticles with intrinsic pH fluorescence properties, was utilized for in situ monitoring of the two cancer hallmarks in the 3D scaffolds. This platform was further utilized for designing a 3D core-shell platform for spatially mapping tumor margins and for visualizing TNF-α-induced MMP-9 expression in cancerous cells.
Collapse
Affiliation(s)
- Simran Kaur Rainu
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
20
|
Yi L, Ma H, Yang X, Zheng Q, Zhong J, Ye S, Li X, Chen D, Li H, Li C. Cotransplantation of NSCs and ethyl stearate promotes synaptic plasticity in PD rats by Drd1/ERK/AP-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117292. [PMID: 37806537 DOI: 10.1016/j.jep.2023.117292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine views kidney shortage as a significant contributor to the aetiology of Parkinson's disease (PD), a neurodegenerative condition that is closely linked to aging. In clinical, patients with Parkinson's disease are often treated with Testudinis Carapax et Plastrum (Plastrum Testudinis, PT), a traditional Chinese medication that tonifies the kidney. Previous research has demonstrated that ethyl stearate (PubChem CID: 8122), an active component of Plastrum Testudinis Extracted with ethyl acetate (PTE), may encourage neural stem cells (NSCs) development into dopaminergic (DAergic) neurons. However, the effectiveness and mechanism of cotransplantation of ethyl stearate and NSCs in treating PD model rats still require further investigation. AIM OF THE STUDY PD is a neurodegenerative condition marked by the loss and degradation of dopaminergic neurons in the substantia nigra of the midbrain. Synaptic damage is also a critical pathology in PD. Because of their self-renewal, minimal immunogenicity, and capacity to differentiate into dopaminergic (DAergic) neurons, NSCs are a prospective treatment option for Parkinson's disease cell transplantation therapy. However, encouraging transplanted NSCs to differentiate into dopaminergic neurons and enhancing synaptic plasticity in vivo remains a significant challenge in improving the efficacy of NSCs transplantation for PD. This investigation seeks to examine the efficacy of cotransplantation of NSCs and ethyl stearate in PD model rats and its mechanism related to synaptic plasticity. MATERIALS AND METHODS On 6-hydroxydopamine-induced PD model rats, we performed NSCs transplantation therapy and cotransplantation therapy involving ethyl stearate and NSCs. Rotating behavior induced by apomorphine (APO) and pole climbing tests were used to evaluate behavioral changes. Using a variety of methods, including Western blotting (WB), immunofluorescence analysis, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction (qRT-PCR), we examined the function and potential molecular mechanisms of ethyl stearate in combined NSCs transplantation therapy. RESULTS In the rat PD model, cotransplantation of ethyl stearate with NSCs dramatically reduced motor dysfunction, restored TH protein levels, and boosted dopamine levels in the striatum, according to our findings. Furthermore, the expression levels of SYN1 and PSD95, markers of synaptic plasticity, and BDNF, closely related to synaptic plasticity, were significantly increased. Cotransplantation with ethyl stearate and NSCs also increased the expression levels of Dopamine Receptor D1 (Drd1), an important receptor in the dopamine neural circuit, accompanied by an increase in MMP9 levels, ERK1/2 phosphorylation levels, and c-fos protein levels. CONCLUSIONS According to the results of our investigation, cotransplantation of ethyl stearate and NSCs significantly improves the condition of PD model rats. We found that cotransplantation of ethyl stearate and NSCs may promote the expression of MMP9 by regulating the Drd1-ERK-AP-1 pathway, thus improving synaptic plasticity after NSCs transplantation. These findings provide new experimental support for the treatment of PD with the kidney tonifying Chinese medicine Plastrum Testudinis and suggest a potential therapeutic strategy for PD based on cotransplantation therapy.
Collapse
Affiliation(s)
- Lan Yi
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China; Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China; Guangzhou Huaxia Vocational College, Guangzhou, Guangdong Province, 510935, PR China
| | - Haisheng Ma
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China; Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Xiaoxiao Yang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China; Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Qi Zheng
- School of Information Science and Technology, Guangdong University of Foreign Studies, Guangzhou, Guangdong Province, 510006, PR China
| | - Jun Zhong
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China; Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Sen Ye
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China; Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Xican Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Dongfeng Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Hui Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China.
| | - Caixia Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China; Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China.
| |
Collapse
|
21
|
Mukherjee A, Das B. The role of inflammatory mediators and matrix metalloproteinases (MMPs) in the progression of osteoarthritis. BIOMATERIALS AND BIOSYSTEMS 2024; 13:100090. [PMID: 38440290 PMCID: PMC10910010 DOI: 10.1016/j.bbiosy.2024.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/04/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Osteoarthritis (OA) is a chronic musculoskeletal disorder characterized by an imbalance between (synthesis) and catabolism (degradation) in altered homeostasis of articular cartilage mediated primarily by the innate immune system. OA degenerates the joints resulting in synovial hyperplasia, degradation of articular cartilage with damage of the structural and functional integrity of the cartilage extracellular matrix, subchondral sclerosis, osteophyte formation, and is characterized by chronic pain, stiffness, and loss of function. Inflammation triggered by factors like biomechanical stress is involved in the development of osteoarthritis. In OA apart from catabolic effects, anti-inflammatory anabolic processes also occur continually. There is also an underlying chronic inflammation present, not only in cartilage tissue but also within the synovium, which perpetuates tissue destruction of the OA joint. The consideration of inflammation in OA considers synovitis and/or other cellular and molecular events in the synovium during the progression of OA. In this review, we have presented the progression of joint degradation that results in OA. The critical role of inflammation in the pathogenesis of OA is discussed in detail along with the dysregulation within the cytokine networks composed of inflammatory and anti-inflammatory cytokines that drive catabolic pathways, inhibit matrix synthesis, and promote cellular apoptosis. OA pathogenesis, fluctuation of synovitis, and its clinical impact on disease progression are presented here along with the role of synovial macrophages in promoting inflammatory and destructive responses in OA. The role of interplay between different cytokines, structure, and function of their receptors in the inter-cellular signaling pathway is further explored. The effect of cytokines in the increased synthesis and release of matrix-decomposing proteolytic enzymes, such as matrix metalloproteinase (MMPs) and a disintegrin-like and metalloproteinase with thrombospondin motif (ADAMTS), is elaborated emphasizing the potential impact of MMPs on the chondrocytes, synovial cells, articular and periarticular tissues, and other immune system cells migrating to the site of inflammation. We also shed light on the pathogenesis of OA via oxidative damage particularly due to nitric oxide (NO) via its angiogenic response to inflammation. We concluded by presenting the current knowledge about the tissue inhibitors of metalloproteinases (TIMPs). Synthetic MMP inhibitors include zinc binding group (ZBG), non-ZBG, and mechanism-based inhibitors, all of which have the potential to be therapeutically beneficial in the treatment of osteoarthritis. Improving our understanding of the signaling pathways and molecular mechanisms that regulate the MMP gene expression, may open up new avenues for the creation of therapies that can stop the joint damage associated with OA.
Collapse
Affiliation(s)
- Anwesha Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| | - Bodhisatwa Das
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| |
Collapse
|
22
|
Cameron O, Neves JF, Gentleman E. Listen to Your Gut: Key Concepts for Bioengineering Advanced Models of the Intestine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302165. [PMID: 38009508 PMCID: PMC10837392 DOI: 10.1002/advs.202302165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/12/2023] [Indexed: 11/29/2023]
Abstract
The intestine performs functions central to human health by breaking down food and absorbing nutrients while maintaining a selective barrier against the intestinal microbiome. Key to this barrier function are the combined efforts of lumen-lining specialized intestinal epithelial cells, and the supportive underlying immune cell-rich stromal tissue. The discovery that the intestinal epithelium can be reproduced in vitro as intestinal organoids introduced a new way to understand intestinal development, homeostasis, and disease. However, organoids reflect the intestinal epithelium in isolation whereas the underlying tissue also contains myriad cell types and impressive chemical and structural complexity. This review dissects the cellular and matrix components of the intestine and discusses strategies to replicate them in vitro using principles drawing from bottom-up biological self-organization and top-down bioengineering. It also covers the cellular, biochemical and biophysical features of the intestinal microenvironment and how these can be replicated in vitro by combining strategies from organoid biology with materials science. Particularly accessible chemistries that mimic the native extracellular matrix are discussed, and bioengineering approaches that aim to overcome limitations in modelling the intestine are critically evaluated. Finally, the review considers how further advances may extend the applications of intestinal models and their suitability for clinical therapies.
Collapse
Affiliation(s)
- Oliver Cameron
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
| | - Joana F. Neves
- Centre for Host‐Microbiome InteractionsKing's College LondonLondonSE1 9RTUK
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
- Department of Biomedical SciencesUniversity of LausanneLausanne1005Switzerland
| |
Collapse
|
23
|
Kollet O, Das A, Karamanos N, Auf dem Keller U, Sagi I. Redefining metalloproteases specificity through network proteolysis. Trends Mol Med 2024; 30:147-163. [PMID: 38036391 PMCID: PMC11004056 DOI: 10.1016/j.molmed.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Proteolytic processes on cell surfaces and extracellular matrix (ECM) sustain cell behavior and tissue integrity in health and disease. Matrix metalloproteases (MMPs) and a disintegrin and metalloproteases (ADAMs) remodel cell microenvironments through irreversible proteolysis of ECM proteins and cell surface bioactive molecules. Pan-MMP inhibitors in inflammation and cancer clinical trials have encountered challenges due to promiscuous activities of MMPs. Systems biology advances revealed that MMPs initiate multifactorial proteolytic cascades, creating new substrates, activating or suppressing other MMPs, and generating signaling molecules. This review highlights the intricate network that underscores the role of MMPs beyond individual substrate-enzyme activities. Gaining insight into MMP function and tissue specificity is crucial for developing effective drug discovery strategies and novel therapeutics. This requires considering the dynamic cellular processes and consequences of network proteolysis.
Collapse
Affiliation(s)
- Orit Kollet
- The Weizmann Institute of Science, Department of Immunology and Regenerative Biology, Rehovot, Israel
| | - Alakesh Das
- The Weizmann Institute of Science, Department of Immunology and Regenerative Biology, Rehovot, Israel
| | - Nikos Karamanos
- University of Patras, Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, Patras, Greece
| | - Ulrich Auf dem Keller
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Lyngby, Denmark
| | - Irit Sagi
- The Weizmann Institute of Science, Department of Immunology and Regenerative Biology, Rehovot, Israel.
| |
Collapse
|
24
|
Ng D, Altamirano-Vallejo JC, Navarro-Partida J, Sanchez-Aguilar OE, Inzunza A, Valdez-Garcia JE, Gonzalez-de-la-Rosa A, Bustamante-Arias A, Armendariz-Borunda J, Santos A. Enhancing Ocular Surface in Dry Eye Disease Patients: A Clinical Evaluation of a Topical Formulation Containing Sesquiterpene Lactone Helenalin. Pharmaceuticals (Basel) 2024; 17:175. [PMID: 38399390 PMCID: PMC10892869 DOI: 10.3390/ph17020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this work was to assess the tolerability, safety, and efficacy of an ophthalmic topical formulation containing helenalin from Arnica montana and hyaluronic acid 0.4% (HA) in patients with mild-to-moderate Dry Eye Disease (DED) exhibiting positive Matrix Metalloproteinase 9 (MMP-9) test results. Tolerability and safety were evaluated in 24 healthy subjects. Participants were instructed to apply one drop of the formulation three times a day in the study eye, for 2 weeks, followed by a clinical follow-up of 21 days. Efficacy was studied in 48 DED patients randomized into Study (Group 1/receiving the studied formulation) or Control (Group 2/Receiving HA 0.4% eye lubricant) groups for 1 month. Assessments included an MMP-9 positivity test, conjunctival impression cytology (CIC), Ocular Surface Disease Index (OSDI), non-invasive film tear breakup time (NIBUT), non-invasive average breakup time (NIAvg-BUT), ocular surface staining, Schirmer's test, and meibomiography. A crossover design with an additional 1-month follow-up was applied to both groups. Healthy subjects receiving the studied formulation exhibited good tolerability and no adverse events. Regarding the efficacy study, Group 1 exhibited a statistically significant reduction in the MMP-9 positivity rate compared to Group 2 (p < 0.001). Both Group 1 and Group 2 exhibited substantial improvements in OSDI and NIBUT scores (p < 0.001). However, Group 1 demonstrated a significant improvement in NI-Avg-BUT and Schirmer's test scores (p < 0.001), whereas Group 2 did not (p > 0.05). Finally, after the crossover, the proportion of MMP-9-positive subjects in Group 1 increased from 25% to 91.6%, while Group 2 showed a significant decrease from 87.5% to 20.8%. Overall, the topical formulation containing sesquiterpene helenalin from Arnica montana and hyaluronic acid was well tolerated and exhibited a favorable safety profile. Our formulation reduces DED symptomatology and modulates the ocular surface inflammatory process; this is evidenced by the enhancement of CIC, the improvement of DED-related tear film status, and the reduction of the MMP-9 positivity rate.
Collapse
Affiliation(s)
- Dalia Ng
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
- Grupo Oftalmologico Acosta, Hospital Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Juan Carlos Altamirano-Vallejo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
- Centro de Retina Medica y Quirurgica, Hospital Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
- Centro de Retina Medica y Quirurgica, Hospital Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Oscar Eduardo Sanchez-Aguilar
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
| | - Andres Inzunza
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
| | - Jorge Eugenio Valdez-Garcia
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
| | - Alejandro Gonzalez-de-la-Rosa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
- Centro de Retina Medica y Quirurgica, Hospital Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | | | - Juan Armendariz-Borunda
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
- Centro Universitario Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico; (D.N.); (J.C.A.-V.); (J.N.-P.); (O.E.S.-A.); (A.I.); (J.E.V.-G.); (A.G.-d.-l.-R.); (J.A.-B.)
- Centro de Retina Medica y Quirurgica, Hospital Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| |
Collapse
|
25
|
Sampaio Moura N, Schledwitz A, Alizadeh M, Patil SA, Raufman JP. Matrix metalloproteinases as biomarkers and therapeutic targets in colitis-associated cancer. Front Oncol 2024; 13:1325095. [PMID: 38288108 PMCID: PMC10824561 DOI: 10.3389/fonc.2023.1325095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Colorectal cancer (CRC) remains a major cause of morbidity and mortality. Therapeutic approaches for advanced CRC are limited and rarely provide long-term benefit. Enzymes comprising the 24-member matrix metalloproteinase (MMP) family of zinc- and calcium-dependent endopeptidases are key players in extracellular matrix degradation, a requirement for colon tumor expansion, invasion, and metastasis; hence, MMPs are an important research focus. Compared to sporadic CRC, less is known regarding the molecular mechanisms and the role of MMPs in the development and progression of colitis-associated cancer (CAC) - CRC on a background of chronic inflammatory bowel disease (IBD) - primarily ulcerative colitis and Crohn's disease. Hence, the potential of MMPs as biomarkers and therapeutic targets for CAC is uncertain. Our goal was to review data regarding the role of MMPs in the development and progression of CAC. We sought to identify promising prognostic and therapeutic opportunities and novel lines of investigation. A key observation is that since MMPs may be more active in early phases of CAC, using MMPs as biomarkers of advancing neoplasia and as potential therapeutic targets for adjuvant therapy in those with advanced stage primary CAC rather than overt metastases may yield more favorable outcomes.
Collapse
Affiliation(s)
- Natalia Sampaio Moura
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alyssa Schledwitz
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Madeline Alizadeh
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Seema A. Patil
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
- Medical Service, Veterans Affairs Maryland Healthcare System, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
26
|
Kakali B. Natural Compounds as Protease Inhibitors in Therapeutic Focus on Cancer Therapy. Anticancer Agents Med Chem 2024; 24:1167-1181. [PMID: 38988167 DOI: 10.2174/0118715206303964240708095110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Proteases are implicated in every hallmark of cancer and have complicated functions. For cancer cells to survive and thrive, the process of controlling intracellular proteins to keep the balance of the cell proteome is essential. Numerous natural compounds have been used as ligands/ small molecules to target various proteases that are found in the lysosomes, mitochondria, cytoplasm, and extracellular matrix, as possible anticancer therapeutics. Promising protease modulators have been developed for new drug discovery technology through recent breakthroughs in structural and chemical biology. The protein structure, function of significant tumor-related proteases, and their natural compound inhibitors have been briefly included in this study. This review highlights the most current frontiers and future perspectives for novel therapeutic approaches associated with the list of anticancer natural compounds targeting protease and the mode and mechanism of proteinase-mediated molecular pathways in cancer.
Collapse
Affiliation(s)
- Bhadra Kakali
- Department of Zoology, University of Kalyani, Kalyani, 741235, India
| |
Collapse
|
27
|
Huang YC, Chen WC, Yu CL, Chang TK, I-Chin Wei A, Chang TM, Liu JF, Wang SW. FGF2 drives osteosarcoma metastasis through activating FGFR1-4 receptor pathway-mediated ICAM-1 expression. Biochem Pharmacol 2023; 218:115853. [PMID: 37832794 DOI: 10.1016/j.bcp.2023.115853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Osteosarcoma is a malignant tumor with high metastatic potential, such that the overall 5-year survival rate of patients with metastatic osteosarcoma is only 20%. Therefore, it is necessary to unravel the mechanisms of osteosarcoma metastasis to identify predictors of metastasis by which to develop new therapies. Fibroblast growth factor 2 (FGF2) is a growth factor involved in embryonic development, cell migration, and proliferation. The overexpression of FGF2 and FGF receptors (FGFRs) has been shown to enhance cancer cell proliferation in lung, breast, gastric, and prostate cancers as well as melanoma. Nonetheless, the roles of FGF2 and FGFRs in human osteosarcoma cells remain unknown. In the present study, we found that FGF2 was overexpressed in human osteosarcoma sections and correlated with lung metastasis. Treatment of FGF2 induced migration activity, invasion activity, and intercellular adhesion molecule (ICAM)-1 expression in osteosarcoma cells. In particular, the downregulation or antagonism of FGFR1-4 suppressed FGF2-induced ICAM-1 expression and cancer cell migration. Furthermore, FGFR1, FGFR2, FGFR3, and FGFR4 were involved in FGF2-induced the phospholipase Cβ/protein kinase Cα/proto-oncogene c-Src signaling pathway and triggered c-Jun nuclear translocation. Subsequent c-Jun upregulation of activator protein-1 transcription activity on the ICAM-1 promoter led to an increased migration of osteosarcoma cells. Moreover, the knockdown of endogenous FGF2 suppressed ICAM-1 expression and migration of osteosarcoma cells. These findings suggest that FGF2/FGFR1-4 signaling promotes metastasis via its direct downstream target gene ICAM-1, revealing a novel potential therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Yu-Ching Huang
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan; Division of Spine Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wei-Cheng Chen
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Division of Sports Medicine & Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chen-Lin Yu
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Ting-Kuo Chang
- Division of Spine Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Augusta I-Chin Wei
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Tsung-Ming Chang
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ju-Fang Liu
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - Shih-Wei Wang
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
28
|
Gonzalez-Avila G, Sommer B, Flores-Soto E, Aquino-Galvez A. Hypoxic Effects on Matrix Metalloproteinases' Expression in the Tumor Microenvironment and Therapeutic Perspectives. Int J Mol Sci 2023; 24:16887. [PMID: 38069210 PMCID: PMC10707261 DOI: 10.3390/ijms242316887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
The tumor microenvironment (TME) is characterized by an acidic pH and low oxygen concentrations. Hypoxia induces neoplastic cell evasion of the immune surveillance, rapid DNA repair, metabolic reprogramming, and metastasis, mainly as a response to the hypoxic inducible factors (HIFs). Likewise, cancer cells increase matrix metalloproteinases' (MMPs) expression in response to TME conditions, allowing them to migrate from the primary tumor to different tissues. Since HIFs and MMPs are augmented in the hypoxic TME, it is easy to consider that HIFs participate directly in their expression regulation. However, not all MMPs have a hypoxia response element (HRE)-HIF binding site. Moreover, different transcription factors and signaling pathways activated in hypoxia conditions through HIFs or in a HIF-independent manner participate in MMPs' transcription. The present review focuses on MMPs' expression in normal and hypoxic conditions, considering HIFs and a HIF-independent transcription control. In addition, since the hypoxic TME causes resistance to anticancer conventional therapy, treatment approaches using MMPs as a target alone, or in combination with other therapies, are also discussed.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico;
| | - Arnoldo Aquino-Galvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| |
Collapse
|
29
|
Promila L, Joshi A, Khan S, Aggarwal A, Lahiri A. Role of mitochondrial dysfunction in the pathogenesis of rheumatoid arthritis: Looking closely at fibroblast- like synoviocytes. Mitochondrion 2023; 73:62-71. [PMID: 38506094 DOI: 10.1016/j.mito.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/28/2023] [Accepted: 10/28/2023] [Indexed: 03/21/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune, and inflammatory disease that primarily targets the joints, leading to cartilage and bone destruction.Fibroblast-like synoviocytes (FLS) are specialized cells of the synovial lining in the joint that plays a fundamental role in the development of RA. Particularly, FLS of RA patients (RA-FLS) in the joint exhibit specific characteristics like higher invading and immunogenic properties, hyperproliferation, and reduced apoptotic capacity, suggesting a dysfunctional mitochondrial pool in these cells. Mitochondria are emerging as a potential organelle that can decide cellular immunometabolism, invasion properties, and cell death. Accordingly, multiplestudies established that mitochondria are crucial in establishing RA. However, the underlying mechanism of impaired mitochondrial function in RA remains poorly understood. This review will provide an overview of the mitochondrial role in the progression of RA, specifically in the context of FLS biology. We will also outline how mitochondria-centric therapeutics can be achieved that would yield novel avenues of research in pathological mediation and prevention.
Collapse
Affiliation(s)
- Lakra Promila
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anubha Joshi
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shazia Khan
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amita Aggarwal
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medicine, Lucknow, India
| | - Amit Lahiri
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
30
|
Alsharabasy AM, Aljaabary A, Bohara R, Farràs P, Glynn SA, Pandit A. Nitric Oxide-Scavenging, Anti-Migration Effects, and Glycosylation Changes after Hemin Treatment of Human Triple-Negative Breast Cancer Cells: A Mechanistic Study. ACS Pharmacol Transl Sci 2023; 6:1416-1432. [PMID: 37854626 PMCID: PMC10580390 DOI: 10.1021/acsptsci.3c00115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 10/20/2023]
Abstract
The enhanced expression of nitric oxide (•NO) synthase predicts triple-negative breast cancer outcome and its resistance to different therapeutics. Our earlier work demonstrated the efficiency of hemin to scavenge the intra- and extracellular •NO, proposing its potency as a therapeutic agent for inhibiting cancer cell migration. In continuation, the present work evaluates the effects of •NO on the migration of MDA-MB-231 cells and how hemin modulates the accompanied cellular behavior, focusing on the corresponding expression of cellular glycoproteins, migration-associated markers, and mitochondrial functions. We demonstrated for the first time that while •NO induced cell migration, hemin contradicted that by •NO-scavenging. This was in combination with modulation of the •NO-enhanced glycosylation patterns of cellular proteins with inhibition of the expression of specific proteins involved in the epithelial-mesenchymal transition. These effects were in conjunction with changes in the mitochondrial functions related to both •NO, hemin, and its nitrosylated product. Together, these results suggest that hemin can be employed as a potential anti-migrating agent targeting •NO-scavenging and regulating the expression of migration-associated proteins.
Collapse
Affiliation(s)
- Amir M. Alsharabasy
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Amal Aljaabary
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Raghvendra Bohara
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Pau Farràs
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
- School
of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway H91 TK33, Ireland
| | - Sharon A. Glynn
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
- Discipline
of Pathology, Lambe Institute for Translational Research, School of
Medicine, University of Galway, Galway H91 YR71, Ireland
| | - Abhay Pandit
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
31
|
Bakhtiyari M, Liaghat M, Aziziyan F, Shapourian H, Yahyazadeh S, Alipour M, Shahveh S, Maleki-Sheikhabadi F, Halimi H, Forghaniesfidvajani R, Zalpoor H, Nabi-Afjadi M, Pornour M. The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: immune checkpoints, metabolic checkpoints, and signaling pathways. Cell Commun Signal 2023; 21:252. [PMID: 37735675 PMCID: PMC10512514 DOI: 10.1186/s12964-023-01282-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Acute myeloid leukemia (AML) comprises a multifarious and heterogeneous array of illnesses characterized by the anomalous proliferation of myeloid cells in the bone marrow microenvironment (BMM). The BMM plays a pivotal role in promoting AML progression, angiogenesis, and metastasis. The immune checkpoints (ICs) and metabolic processes are the key players in this process. In this review, we delineate the metabolic and immune checkpoint characteristics of the AML BMM, with a focus on the roles of BMM cells e.g. tumor-associated macrophages, natural killer cells, dendritic cells, metabolic profiles and related signaling pathways. We also discuss the signaling pathways stimulated in AML cells by BMM factors that lead to AML progression. We then delve into the roles of immune checkpoints in AML angiogenesis, metastasis, and cell proliferation, including co-stimulatory and inhibitory ICs. Lastly, we discuss the potential therapeutic approaches and future directions for AML treatment, emphasizing the potential of targeting metabolic and immune checkpoints in AML BMM as prognostic and therapeutic targets. In conclusion, the modulation of these processes through the use of directed drugs opens up new promising avenues in combating AML. Thereby, a comprehensive elucidation of the significance of these AML BMM cells' metabolic and immune checkpoints and signaling pathways on leukemic cells can be undertaken in the future investigations. Additionally, these checkpoints and cells should be considered plausible multi-targeted therapies for AML in combination with other conventional treatments in AML. Video Abstract.
Collapse
Affiliation(s)
- Maryam Bakhtiyari
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mahsa Liaghat
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Alipour
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Shaghayegh Shahveh
- American Association of Naturopath Physician (AANP), Washington, DC, USA
| | - Fahimeh Maleki-Sheikhabadi
- Department of Hematology and Blood Banking, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Halimi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Forghaniesfidvajani
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Pornour
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.
| |
Collapse
|
32
|
Nasif S, Colombo M, Uldry AC, Schröder M, de Brot S, Mühlemann O. Inhibition of nonsense-mediated mRNA decay reduces the tumorigenicity of human fibrosarcoma cells. NAR Cancer 2023; 5:zcad048. [PMID: 37681034 PMCID: PMC10480688 DOI: 10.1093/narcan/zcad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic RNA decay pathway with roles in cellular stress responses, differentiation, and viral defense. It functions in both quality control and post-transcriptional regulation of gene expression. NMD has also emerged as a modulator of cancer progression, although available evidence supports both a tumor suppressor and a pro-tumorigenic role, depending on the model. To further investigate the role of NMD in cancer, we knocked out the NMD factor SMG7 in the HT1080 human fibrosarcoma cell line, resulting in suppression of NMD function. We then compared the oncogenic properties of the parental cell line, the SMG7-knockout, and a rescue cell line in which we re-introduced both isoforms of SMG7. We also tested the effect of a drug inhibiting the NMD factor SMG1 to distinguish NMD-dependent effects from putative NMD-independent functions of SMG7. Using cell-based assays and a mouse xenograft tumor model, we showed that suppression of NMD function severely compromises the oncogenic phenotype. Molecular pathway analysis revealed that NMD suppression strongly reduces matrix metalloprotease 9 (MMP9) expression and that MMP9 re-expression partially rescues the oncogenic phenotype. Since MMP9 promotes cancer cell migration and invasion, metastasis and angiogenesis, its downregulation may contribute to the reduced tumorigenicity of NMD-suppressed cells. Collectively, our results highlight the potential value of NMD inhibition as a therapeutic approach.
Collapse
Affiliation(s)
- Sofia Nasif
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Switzerland
| | - Martino Colombo
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Switzerland
| | - Markus S Schröder
- NCCR RNA & Disease Bioinformatics Support,Department of Biology, ETH Zürich, Switzerland
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Switzerland
| |
Collapse
|
33
|
Oza PP, Kashfi K. The Triple Crown: NO, CO, and H 2S in cancer cell biology. Pharmacol Ther 2023; 249:108502. [PMID: 37517510 PMCID: PMC10529678 DOI: 10.1016/j.pharmthera.2023.108502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are three endogenously produced gases with important functions in the vasculature, immune defense, and inflammation. It is increasingly apparent that, far from working in isolation, these three exert many effects by modulating each other's activity. Each gas is produced by three enzymes, which have some tissue specificities and can also be non-enzymatically produced by redox reactions of various substrates. Both NO and CO share similar properties, such as activating soluble guanylate cyclase (sGC) to increase cyclic guanosine monophosphate (cGMP) levels. At the same time, H2S both inhibits phosphodiesterase 5A (PDE5A), an enzyme that metabolizes sGC and exerts redox regulation on sGC. The role of NO, CO, and H2S in the setting of cancer has been quite perplexing, as there is evidence for both tumor-promoting and pro-inflammatory effects and anti-tumor and anti-inflammatory activities. Each gasotransmitter has been found to have dual effects on different aspects of cancer biology, including cancer cell proliferation and apoptosis, invasion and metastasis, angiogenesis, and immunomodulation. These seemingly contradictory actions may relate to each gas having a dual effect dependent on its local flux. In this review, we discuss the major roles of NO, CO, and H2S in the context of cancer, with an effort to highlight the dual nature of each gas in different events occurring during cancer progression.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York 10091, USA.
| |
Collapse
|
34
|
Sakowicz A, Bralewska M, Rybak-Krzyszkowska M, Grzesiak M, Pietrucha T. New Ideas for the Prevention and Treatment of Preeclampsia and Their Molecular Inspirations. Int J Mol Sci 2023; 24:12100. [PMID: 37569476 PMCID: PMC10418829 DOI: 10.3390/ijms241512100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific disorder affecting 4-10% of all expectant women. It greatly increases the risk of maternal and foetal death. Although the main symptoms generally appear after week 20 of gestation, scientific studies indicate that the mechanism underpinning PE is initiated at the beginning of gestation. It is known that the pathomechanism of preeclampsia is strongly related to inflammation and oxidative stress, which influence placentation and provoke endothelial dysfunction in the mother. However, as of yet, no "key players" regulating all these processes have been discovered. This might be why current therapeutic strategies intended for prevention or treatment are not fully effective, and the only effective method to stop the disease is the premature induction of delivery, mostly by caesarean section. Therefore, there is a need for further research into new pharmacological strategies for the treatment and prevention of preeclampsia. This review presents new preventive methods and therapies for PE not yet recommended by obstetrical and gynaecological societies. As many of these therapies are in preclinical studies or under evaluation in clinical trials, this paper reports the molecular targets of the tested agents or methods.
Collapse
Affiliation(s)
- Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; (M.B.); (T.P.)
| | - Michalina Bralewska
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; (M.B.); (T.P.)
| | - Magda Rybak-Krzyszkowska
- Department of Obstetrics and Perinatology, University Hospital in Krakow, 31-501 Krakow, Poland;
| | - Mariusz Grzesiak
- Department of Perinatology, Obstetrics and Gynecology, Polish Mother’s Memorial Hospital-Research Institute in Lodz, 93-338 Lodz, Poland;
- Department of Gynecology and Obstetrics, Medical University of Lodz, 93-338 Lodz, Poland
| | - Tadeusz Pietrucha
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; (M.B.); (T.P.)
| |
Collapse
|
35
|
Aziz MA, Jafrin S, Barek MA, Anonna SN, Islam MS. MMP-3 -1171 5A/6A promoter polymorphism and cancer susceptibility: an updated meta-analysis and trial sequential analysis. Future Oncol 2023; 19:1495-1512. [PMID: 37551683 DOI: 10.2217/fon-2022-1306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Purpose: Previous studies of MMP-3 -1171 5A/6A in cancers have produced inconclusive outcomes. This updated meta-analysis was performed to clarify the link between this variant and cancer. Methods: Databases including PubMed, Google Scholar, EMBASE and Cochrane were searched for data collection. The associations were calculated by odds ratios with 95% CIs. Results: 63 eligible studies with 14,252 cases and 15,176 controls were included. The codominant 2, codominant 3, dominant, recessive and allele models were found to be significantly associated with 1.28-, 1.13-, 1.13-, 1.19- and 1.13-fold enhanced overall risk of cancer, respectively. Stratification analysis revealed a 1.28-times enhanced risk of esophageal cancer (codominant 1), 1.29- and 1.26-fold (codominant 3) and 1.18- and 1.28-fold (recessive model) enhanced risk in colorectal and gastrointestinal cancers, respectively, 1.30-, 1.35- and 1.22-times in codominant model 1, dominant and allele models for breast cancer, 1.56-fold (codominant 2) for gynecological cancer and 2.40-times in codominant model 2 for hepatocellular cancer. Conclusion: This meta-analysis suggests a significant association between the MMP-3 -1171 5A/6A variant and cancer. This meta-analysis was registered at INPLASY (registration number: INPLASY202280049).
Collapse
Affiliation(s)
- Md Abdul Aziz
- Department of Pharmacy, Noakhali Science & Technology University, Sonapur, 3814, Noakhali, Chittagong, Bangladesh
- Laboratory of Pharmacogenomics & Molecular Biology, Department of Pharmacy, Noakhali Science & Technology University, Sonapur, 3814, Noakhali, Bangladesh
| | - Sarah Jafrin
- Department of Pharmacy, Noakhali Science & Technology University, Sonapur, 3814, Noakhali, Chittagong, Bangladesh
- Laboratory of Pharmacogenomics & Molecular Biology, Department of Pharmacy, Noakhali Science & Technology University, Sonapur, 3814, Noakhali, Bangladesh
| | - Md Abdul Barek
- Department of Pharmacy, Noakhali Science & Technology University, Sonapur, 3814, Noakhali, Chittagong, Bangladesh
- Laboratory of Pharmacogenomics & Molecular Biology, Department of Pharmacy, Noakhali Science & Technology University, Sonapur, 3814, Noakhali, Bangladesh
| | - Shamima Nasrin Anonna
- Department of Pharmacy, Noakhali Science & Technology University, Sonapur, 3814, Noakhali, Chittagong, Bangladesh
- Laboratory of Pharmacogenomics & Molecular Biology, Department of Pharmacy, Noakhali Science & Technology University, Sonapur, 3814, Noakhali, Bangladesh
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science & Technology University, Sonapur, 3814, Noakhali, Chittagong, Bangladesh
- Laboratory of Pharmacogenomics & Molecular Biology, Department of Pharmacy, Noakhali Science & Technology University, Sonapur, 3814, Noakhali, Bangladesh
| |
Collapse
|
36
|
Pietrzak J, Wosiak A, Szmajda-Krygier D, Świechowski R, Łochowski M, Pązik M, Balcerczak E. Correlation of TIMP1-MMP2/MMP9 Gene Expression Axis Changes with Treatment Efficacy and Survival of NSCLC Patients. Biomedicines 2023; 11:1777. [PMID: 37509417 PMCID: PMC10376864 DOI: 10.3390/biomedicines11071777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
In the course of lung cancer, normal cells are transformed into cancerous ones, and changes occur in the microenvironment, including the extracellular matrix (ECM), which is not only a scaffold for cells, but also a reservoir of cytokines, chemokines and growth factors. Metalloproteinases (MMPs) are among the elements that enable ECM remodeling. The publication focuses on the problem of changes in the gene expression of MMP2, MMP9 and tissue inhibitor of metalloproteinases (TIMP1) in the blood of NSCLC patients during therapy (one year after surgical resection of the tumor). The paper also analyzes differences in the expression of the studied genes in the tumor tissue, as well as data collected in publicly available databases. The results of blood tests showed no differences in the expression of the tested genes during therapy; however, changes were observed in cancerous tissue, which was characterized by higher expression of MMP2 and MMP9, compared to non-cancerous tissue, and unchanged expression of TIMP1. Nevertheless, higher expression of each of the studied genes was associated with shorter patient survival. Interestingly, it was not only the increased expression of metalloproteinase genes, but also the increased expression of the metalloproteinase inhibitor (TIMP1) that was unfavorable for patients.
Collapse
Affiliation(s)
- Jacek Pietrzak
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Agnieszka Wosiak
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Dagmara Szmajda-Krygier
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Rafał Świechowski
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Mariusz Łochowski
- Department of Thoracic Surgery, Copernicus Memorial Hospital, Medical University of Lodz, Pabianicka 62, 93-513 Lodz, Poland
| | - Milena Pązik
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Ewa Balcerczak
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| |
Collapse
|
37
|
Xie H, Hu J, Wang Y, Wang X. Identification of the matrix metalloproteinase (MMP) gene family in Japanese flounder (Paralichthys olivaceus): Involved in immune response regulation to temperature stress and Edwardsiella tarda infection. FISH & SHELLFISH IMMUNOLOGY 2023:108878. [PMID: 37271328 DOI: 10.1016/j.fsi.2023.108878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
The Matrix metalloproteinase (MMP) gene family is responsible for regulating the degradation of Extra Cellular Matrix (ECM) proteins, which are important for physiological processes such as wound healing, tissue remodeling, and stress response. Although MMPs have been studied in many species, their role in immune response in Japanese flounder (Paralichthys olivaceus) is still not fully understood. This study conducted a comprehensive analysis of MMPs in flounder, including gene structures, evolutionary relationships, conserved domains, molecular evolution, and expression patterns. Analysis revealed that MMP genes could be grouped into 17 subfamilies and were evolutionarily conserved and functionally-constrained. Meanwhile, MMP genes were found to express in different embryonic and larval stages and might play the role of sentinel in healthy tissues. Furthermore, expression profiling showed that MMPs had diverse functions in environmental stress, with 60% (9/15) and 73% (11/15) of MMPs showing differential expression patterns under temperature stress and Edwardsiella tarda (E. tarda) infection, respectively. These findings provide a useful resource for understanding the immune functions of MMP genes in Japanese flounder.
Collapse
Affiliation(s)
- Huihui Xie
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China
| | - Jiabao Hu
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China; School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China
| | - Yajun Wang
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China.
| | - Xubo Wang
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China.
| |
Collapse
|
38
|
Bello-Alvarez C, Zamora-Sánchez CJ, Peña-Gutiérrez KM, Camacho-Arroyo I. Progesterone and its metabolite allopregnanolone promote invasion of human glioblastoma cells through metalloproteinase‑9 and cSrc kinase. Oncol Lett 2023; 25:223. [PMID: 37153033 PMCID: PMC10157356 DOI: 10.3892/ol.2023.13809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/26/2023] [Indexed: 05/09/2023] Open
Abstract
Glioblastomas are the most aggressive and common primary brain tumors in adults. Glioblastoma cells have a great capacity to migrate and invade the brain parenchyma, often reaching the contralateral hemisphere. Progesterone (P4) and its metabolite, allopregnanolone (3α-THP), promote the migration and invasion of human glioblastoma-derived cells. P4 induces migration in glioblastoma cells by the activation of the proto-oncogene tyrosine-protein kinase Src (cSrc) and focal adhesion kinase (Fak). In breast cancer cells, cSrc and Fak promote invasion by increasing the expression and activation of extracellular matrix metalloproteinases (MMPs). However, the mechanism of action by which P4 and 3a-THP promote invasion in glioblastoma cells remains unclear. The effects of P4 and 3α-THP on the protein expression levels of MMP-2 and -9 and the participation of cSrc in progestin effects in U251 and U87 human glioblastoma-derived cells were evaluated. It was determined by western blotting that the P4 increased the protein expression level of MMP-9 in U251 and U87 cells, and 3α-THP increased the protein expression level of MMP-9 in U87 cells. None of these progestins modified MMP-2 protein expression levels. The increase in MMP-9 expression was reduced when the intracellular progesterone receptor and cSrc expression were blocked with small interfering RNAs. Cell invasion induced by P4 and 3α-THP was also blocked by inhibiting cSrc activity with PP2 or by cSrc gene silencing. These results suggest that P4 and its metabolite 3α-THP induce the invasion of glioblastoma cells by increasing MMP-9 expression through the cSrc kinase family. The results of this study provide information of interest in the context of targeted therapies against molecular pathways involved in glioblastoma invasion.
Collapse
Affiliation(s)
- Claudia Bello-Alvarez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Carmen J. Zamora-Sánchez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Karla M. Peña-Gutiérrez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Correspondence to: Dr Ignacio Camacho-Arroyo, Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Avenue Universidad 3000, Coyoacán, Mexico City 04510, Mexico, E-mail:
| |
Collapse
|
39
|
Nel J, Elkhoury K, Velot É, Bianchi A, Acherar S, Francius G, Tamayol A, Grandemange S, Arab-Tehrany E. Functionalized liposomes for targeted breast cancer drug delivery. Bioact Mater 2023; 24:401-437. [PMID: 36632508 PMCID: PMC9812688 DOI: 10.1016/j.bioactmat.2022.12.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Despite the exceptional progress in breast cancer pathogenesis, prognosis, diagnosis, and treatment strategies, it remains a prominent cause of female mortality worldwide. Additionally, although chemotherapies are effective, they are associated with critical limitations, most notably their lack of specificity resulting in systemic toxicity and the eventual development of multi-drug resistance (MDR) cancer cells. Liposomes have proven to be an invaluable drug delivery system but of the multitudes of liposomal systems developed every year only a few have been approved for clinical use, none of which employ active targeting. In this review, we summarize the most recent strategies in development for actively targeted liposomal drug delivery systems for surface, transmembrane and internal cell receptors, enzymes, direct cell targeting and dual-targeting of breast cancer and breast cancer-associated cells, e.g., cancer stem cells, cells associated with the tumor microenvironment, etc.
Collapse
Affiliation(s)
- Janske Nel
- Université de Lorraine, LIBio, F-54000, Nancy, France
| | | | - Émilie Velot
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Arnaud Bianchi
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, F-54000, Nancy, France
| | | | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | | | |
Collapse
|
40
|
Yun HJ, Lee HY. The novel TAK1 inhibitor handelin inhibits NF-κB and AP-1 activity to alleviate elastase-induced emphysema in mice. Life Sci 2023; 319:121388. [PMID: 36640900 DOI: 10.1016/j.lfs.2023.121388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
AIMS Emphysema, one of the two major components of chronic obstructive pulmonary disease (COPD), is driven by aberrant inflammatory responses and associated with irreversible lung parenchymal destruction. As effective therapy for preventing or treating COPD/emphysema is yet unavailable, development of molecular targets and therapeutic agents for COPD/emphysema is required. MAIN METHODS AND KEY FINDINGS We identified handelin-a guaianolide dimer of sesquiterpene lactones- from a chemical library of 431 natural products as it exhibited potent inhibitory effects on lipopolysaccharide (LPS)-induced nitric oxide (NO) and reactive oxygen species (ROS) production, LPS-induced activation of nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK)/AP-1, and expression of proinflammatory mediators in macrophage cells. In silico docking and biochemical studies enabled the identification of the ATP-binding pocket of transforming growth factor beta-activated kinase 1 (TAK1), a kinase upstream of NF-κB and MAPK/AP-1 pathways, as a molecular target for handelin. Moreover, oral administration of handelin (10 mg/kg) suppressed elastase-induced development of emphysematous phenotypes, including lung function disturbance, airspace enlargement, and increases in the level of neutrophils and CD8+ T cells in lung tissues, without overt toxicity. Consistent with in vitro results, analyses of lung tissues revealed that treatment with handelin suppressed elastase-induced NF-κB and AP-1 activation in the lungs, followed by downregulation of their targets including interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and matrix metalloproteinase 9 (MMP9). SIGNIFICANCE These findings suggest that handelin, as a TAK1 inhibitor, effectively prevents development of emphysema in an elastase-induced mouse model by inhibiting a proinflammatory mediators mediated by NF-κB and AP-1.
Collapse
Affiliation(s)
- Hye Jeong Yun
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Young Lee
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
41
|
Plümers R, Lindenkamp C, Osterhage MR, Knabbe C, Hendig D. Matrix Metalloproteinases Contribute to the Calcification Phenotype in Pseudoxanthoma Elasticum. Biomolecules 2023; 13:672. [PMID: 37189419 PMCID: PMC10135689 DOI: 10.3390/biom13040672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Ectopic calcification and dysregulated extracellular matrix remodeling are prominent hallmarks of the complex heterogenous pathobiochemistry of pseudoxanthoma elasticum (PXE). The disease arises from mutations in ABCC6, an ATP-binding cassette transporter expressed predominantly in the liver. Neither its substrate nor the mechanisms by which it contributes to PXE are completely understood. The fibroblasts isolated from PXE patients and Abcc6-/- mice were subjected to RNA sequencing. A group of matrix metalloproteinases (MMPs) clustering on human chromosome 11q21-23, respectively, murine chromosome 9, was found to be overexpressed. A real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay and immunofluorescent staining confirmed these findings. The induction of calcification by CaCl2 resulted in the elevated expression of selected MMPs. On this basis, the influence of the MMP inhibitor Marimastat (BB-2516) on calcification was assessed. PXE fibroblasts (PXEFs) exhibited a pro-calcification phenotype basally. PXEF and normal human dermal fibroblasts responded with calcium deposit accumulation and the induced expression of osteopontin to the addition of Marimastat to the calcifying medium. The raised MMP expression in PXEFs and during cultivation with calcium indicates a correlation of ECM remodeling and ectopic calcification in PXE pathobiochemistry. We assume that MMPs make elastic fibers accessible to controlled, potentially osteopontin-dependent calcium deposition under calcifying conditions.
Collapse
Affiliation(s)
| | | | | | | | - Doris Hendig
- Herz- und Diabeteszentrum Nordrhein-Westfalen, Institut für Laboratoriums- und Transfusionsmedizin, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
42
|
Shahzad A, Rink L, Wessels I. Regulation of matrix metalloproteinase-9 during monopoiesis and zinc deficiency by chromatin remodeling. J Trace Elem Med Biol 2023; 78:127162. [PMID: 37027894 DOI: 10.1016/j.jtemb.2023.127162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/25/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
INTRODUCTION Matrix metalloproteinase-9 (MMP-9) cleaves various extracellular matrix proteins, hence significantly contributes to numerous physiological but also pathological processes. Monocytic differentiation is associated with increased MMP-9 gene expression. Interestingly, MMP-9 upregulation during monocytic differentiation is paralleled by a decline in intracellular zinc levels. Hence, an influence of zinc on the regulation of MMP-9 expression may exist. Although, previous studies suggest a vital role of zinc regarding MMP-9 activity, the possible relevance of zinc homeostasis during transcriptional regulation of MMP-9 for example via epigenetic mechanisms is rather unclear. AIM This study aims to find a correlation between zinc deficiency and MMP-9 transcriptional regulation, focusing on epigenetics as the possible mechanism behind zinc deficiency-induced changes. METHODS The effect of differentiation and zinc deficiency on MMP-9 expression and MMP9 promoter accessibility was investigated using the acute promyelocytic cell line NB4. Intracellular free zinc levels were detected by flow cytometry. MMP-9 gene expression was measured by real-time PCR and ELISA. Analysis of chromatin structures was done using chromatin accessibility by real-time PCR (CHART) assay. RESULTS During monocytic differentiation of NB4 cells, the decrease in intracellular zinc levels was paralleled by an increased production of MMP-9. Assessment of chromatin structure revealed increased accessibility of certain regions within the MMP-9 promoter in differentiated cells. Interestingly, upregulated activation-induced MMP-9 gene expression as well as a more accessible MMP-9 promoter were in zinc-deficient NB4 cells whereas zinc resupplementation reversed the effects. CONCLUSION These data demonstrate an important role of epigenetic mechanisms in regulating MMP-9 expression under zinc deficiency. This could provide an encouraging step to expand the research on using zinc for the treatment of various pathological conditions such as inflammatory, vascular and autoimmune diseases resulting from MMP-9 deregulation.
Collapse
Affiliation(s)
- Asad Shahzad
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Inga Wessels
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany.
| |
Collapse
|
43
|
Garza LA, Sheu M, Kim N, Tsai J, Alessi Cesar SS, Lee J, Hawkins SS, Chien AL, Kang S. Association of Early Clinical Response to Laser Rejuvenation of Photoaged Skin with Increased Lipid Metabolism and Restoration of Skin Barrier Function. J Invest Dermatol 2023; 143:374-385.e7. [PMID: 36055399 PMCID: PMC9971340 DOI: 10.1016/j.jid.2022.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/25/2022] [Accepted: 07/18/2022] [Indexed: 10/14/2022]
Abstract
Laser resurfacing treatments for photoaged skin have improved dramatically over the past decades, but few studies have examined the molecular mechanisms underlying differences in clinical response. Seventeen white female participants with moderate-to-severe photoaging received nonablative fractional laser treatment on the face and forearm once monthly for 6 months. Biopsies for microarray analysis were performed at baseline and 7 days after facial treatment and at baseline and 1, 7, 14, and 29 days after forearm treatment in each participant, resulting in 119 total samples. Participants were stratified into fast (n = 11) and slow (n = 6) responders on the basis of the presence of clinical improvement after the first treatment. Microarray analysis revealed the upregulation of genes associated with matrix metalloproteinases, collagen and extracellular components, TGF-β signaling, double-stranded RNA signaling, and retinoic acid synthesis after treatment that did not differ significantly between fast and slow responders. Cluster and enrichment analyses suggested significantly greater activation of lipid metabolism and keratinocyte differentiation in fast responders, who showed greater upregulation of acyltransferases, fatty acid elongases, fatty acid 2-hydroxylase, fatty acid desaturases, and specific keratins that may contribute to epidermal barrier function. These results create, to our knowledge, a previously unreported atlas of molecular changes that correlate with improvements in photoaging after laser therapy.
Collapse
Affiliation(s)
- Luis A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mary Sheu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Noori Kim
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jerry Tsai
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sabrina S Alessi Cesar
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jianming Lee
- Unilever Human Biology Science and Technology, Trumbull, Connecticut, USA
| | - Stacy S Hawkins
- Unilever Human Biology Science and Technology, Trumbull, Connecticut, USA
| | - Anna L Chien
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sewon Kang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
44
|
Shao CG, Sinha NR, Mohan RR, Webel AD. Novel Therapies for the Prevention of Fibrosis in Glaucoma Filtration Surgery. Biomedicines 2023; 11:657. [PMID: 36979636 PMCID: PMC10045591 DOI: 10.3390/biomedicines11030657] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Conjunctival fibrosis remains the major impediment to the success of glaucoma filtration surgery. Anti-metabolites remain the gold standard for mitigating post-surgical fibrosis, but they are associated with high complication rates and surgical failure rates. Establishing a more targeted approach to attenuate conjunctival fibrosis may revolutionize the surgical approach to glaucoma. A new strategy is needed to prevent progressive tissue remodeling and formation of a fibrotic scar, subsequently increasing surgical success and reducing the prevalence of glaucoma-related vision loss. Advancements in our understanding of molecular signaling and biomechanical cues in the conjunctival tissue architecture are broadening the horizon for new therapies and biomaterials for the mitigation of fibrosis. This review aims to highlight the strategies and current state of promising future approaches for targeting fibrosis in glaucoma filtration surgery.
Collapse
Affiliation(s)
| | - Nishant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65212, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65212, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Aaron D. Webel
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
45
|
He L, Kang Q, Chan KI, Zhang Y, Zhong Z, Tan W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front Immunol 2023; 13:1093990. [PMID: 36776395 PMCID: PMC9910179 DOI: 10.3389/fimmu.2022.1093990] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are an important class of enzymes in the body that function through the extracellular matrix (ECM). They are involved in diverse pathophysiological processes, such as tumor invasion and metastasis, cardiovascular diseases, arthritis, periodontal disease, osteogenesis imperfecta, and diseases of the central nervous system. MMPs participate in the occurrence and development of numerous cancers and are closely related to immunity. In the present study, we review the immunomodulatory role of MMPs in colitis-associated cancer (CAC) and discuss relevant clinical applications. We analyze more than 300 pharmacological studies retrieved from PubMed and the Web of Science, related to MMPs, cancer, colitis, CAC, and immunomodulation. Key MMPs that interfere with pathological processes in CAC such as MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, and MMP-13, as well as their corresponding mechanisms are elaborated. MMPs are involved in cell proliferation, cell differentiation, angiogenesis, ECM remodeling, and the inflammatory response in CAC. They also affect the immune system by modulating differentiation and immune activity of immune cells, recruitment of macrophages, and recruitment of neutrophils. Herein we describe the immunomodulatory role of MMPs in CAC to facilitate treatment of this special type of colon cancer, which is preceded by detectable inflammatory bowel disease in clinical populations.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| |
Collapse
|
46
|
13-Butoxyberberine Bromide Inhibits Migration and Invasion in Skin Cancer A431 Cells. Molecules 2023; 28:molecules28030991. [PMID: 36770659 PMCID: PMC9921070 DOI: 10.3390/molecules28030991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Cancer metastasis is the primary cause of cancer morbidity and mortality. Anti-metastasis mechanism of skin cancer by 13-butoxyberberine bromide, a novel berberine derivative, has not yet been reported. This study investigated the effects of 13-butoxyberberine bromide on migration and invasion of skin cancer A431 cells. The cytotoxicity of 13-butoxyberberine bromide was determined by MTT assay. The effect of 13-butoxyberberine bromide on cell migration and invasion were examined using a wound-healing assay, transwell migration assay, and transwell invasion assay, respectively. The cell adhesion ability was determined by an adhesion assay. Protein expressions that play important roles in cancer migration and invasion were evaluated by Western blot analysis. The results showed that 13-butoxyberberine bromide effectively inhibited cell migration, invasion, and adhesion in A431 cells. Interestingly, 13-butoxyberberine bromide was more effective for cell migration inhibition than berberine. In addition, 13-butoxyberberine bromide showed anti-migration and anti-invasion effects by down-regulated MMP-2 and MMP-9 expression and up-regulated TIMP-1 and TIMP-2 expression in A431 cells. Moreover, pretreatment with 13-butoxyberberine bromide significantly inhibited EGF-induced cell migration and p-EGFR, ERK, p-ERK, STAT3, and p-STAT3 expressions in A431 cells at lower concentrations when compared with the berberine. These findings indicated that 13-butoxyberberine bromide could be further developed as an anticancer agent.
Collapse
|
47
|
Perini JA, da Silva MC, Correa LV, Silva YM, Borges RM, Moreira MDFR. Chronic Cadmium Exposure and Genetic Polymorphisms of MMP-2 and MMP-9 in a Population Exposed to Steel Slag in the State of Rio de Janeiro, Brazil: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15304. [PMID: 36430020 PMCID: PMC9691087 DOI: 10.3390/ijerph192215304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Genetic polymorphisms in the matrix metalloproteinases (MMPs) family genes may be associated with cadmium (Cd) levels and its adverse effects. This study investigated the impact of MMP-2 and MMP-9 polymorphisms on Cd levels in 238 residents of a condominium in Rio de Janeiro, Brazil, built over an industrial steel slag waste. Polymorphisms were genotyped using TaqMan validated assays, and the Cd levels were measured in blood (BCd) and urine (UCd) samples by atomic absorption spectrometry. Associations were evaluated by linear correlation coefficients and multiple logistic regression, using odds ratios (OR) and 95% confidence intervals (CI). Mean age was 50 ± 15 years; 58% were female, 69% non-smokers. Mean concentrations for BCd and UCd were 0.70 ± 0.2 μg L-1 and 0.56 ± 0.55 μg L-1, respectively. Smoking status was associated with BCd ≥ 0.70 μg L-1 (OR = 2.9; 95% CI = 1.6-5.9). MMP-9 rs17576 A > G was associated with BCd ≥ 0.70 μg L-1 (OR = 2.11; 95% CI = 1.10-4.05) and UCd ≥ 0.56 μg L-1 (OR = 3.38; 95% CI = 1.82-7.65). Knowing possible individual predisposing factors is essential to understand Cd toxicity, and to improve the monitoring of high-risk populations.
Collapse
Affiliation(s)
- Jamila A. Perini
- Laboratório de Pesquisa de Ciências Farmacêuticas—LAPESF, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Estado do Rio de Janeiro (UERJ), Av. Manuel Caldeira de Alvarenga, 1.203, Rio de Janeiro 23070-200, RJ, Brazil
| | - Mayara C. da Silva
- Laboratório de Pesquisa de Ciências Farmacêuticas—LAPESF, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Estado do Rio de Janeiro (UERJ), Av. Manuel Caldeira de Alvarenga, 1.203, Rio de Janeiro 23070-200, RJ, Brazil
| | - Lorena V. Correa
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz (ENSP/Fiocruz), Rio de Janeiro 21041-210, RJ, Brazil
| | - Yasmin M. Silva
- Laboratório de Pesquisa de Ciências Farmacêuticas—LAPESF, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Estado do Rio de Janeiro (UERJ), Av. Manuel Caldeira de Alvarenga, 1.203, Rio de Janeiro 23070-200, RJ, Brazil
| | - Renato M. Borges
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz (ENSP/Fiocruz), Rio de Janeiro 21041-210, RJ, Brazil
| | - Maria de Fátima R. Moreira
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz (ENSP/Fiocruz), Rio de Janeiro 21041-210, RJ, Brazil
| |
Collapse
|
48
|
Altered Extracellular Matrix as an Alternative Risk Factor for Epileptogenicity in Brain Tumors. Biomedicines 2022; 10:biomedicines10102475. [PMID: 36289737 PMCID: PMC9599244 DOI: 10.3390/biomedicines10102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Seizures are one of the most common symptoms of brain tumors. The incidence of seizures differs among brain tumor type, grade, location and size, but paediatric-type diffuse low-grade gliomas/glioneuronal tumors are often highly epileptogenic. The extracellular matrix (ECM) is known to play a role in epileptogenesis and tumorigenesis because it is involved in the (re)modelling of neuronal connections and cell-cell signaling. In this review, we discuss the epileptogenicity of brain tumors with a focus on tumor type, location, genetics and the role of the extracellular matrix. In addition to functional problems, epileptogenic tumors can lead to increased morbidity and mortality, stigmatization and life-long care. The health advantages can be major if the epileptogenic properties of brain tumors are better understood. Surgical resection is the most common treatment of epilepsy-associated tumors, but post-surgery seizure-freedom is not always achieved. Therefore, we also discuss potential novel therapies aiming to restore ECM function.
Collapse
|
49
|
Attia ZR, Zedan MM, Mutawi TM, Saad EA, Abd El Azeem RA, El Basuni MA. Association of the Gelatinase B/Metalloproteinase 9 (MMP-9) Gene Haplotype in Systemic Lupus Erythematosus (SLE) in the Pediatric Egyptian Population. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9091271. [PMID: 36138580 PMCID: PMC9496982 DOI: 10.3390/children9091271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022]
Abstract
Permanent systemic inflammation is a defining feature of systemic lupus erythematosus (SLE), which affects multiple organs. Gelatinase B/matrix metalloproteinase-9 (MMP-9) is an essential protease investigated in inflammation that has been linked to SLE. The study’s objective was to investigate the relationship between the rs3918249 T/C and rs17576 A/G SNPs in the MMP-9 gene with SLE. The study was conducted with 100 SLE cases and 100 age/sex-matched healthy individuals. TaqManTM SNP was used for genotyping by real time PCR on the Artus Rotor-Gene Qiagen equipment. Haplotypes (TG: OR = 0.226, 95% CI = 0.119−0.429) and (CA: OR = 0.36, 95% CI = 0.2206−0.631), both with a p-value < 0.001 were substantially linked to a lower incidence of SLE. Conversely, the risk of SLE was not associated with the individual SNPs studied. The haplotype analysis was more significant than the SNP analysis and may correlate with the decreased risk of SLE in children and adolescents in Egypt.
Collapse
Affiliation(s)
- Zeinab R. Attia
- Mansoura University Children’s Hospital, Mansoura University, Mansoura 35516, Egypt
- Correspondence: ; Tel.: +20-1098830190
| | - Mohamed M. Zedan
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Thuraya M. Mutawi
- Mansoura University Children’s Hospital, Mansoura University, Mansoura 35516, Egypt
| | - Entsar A. Saad
- Chemistry Department, Faculty of Science, Damietta University, Damietta 34511, Egypt
| | | | - Mohamed A. El Basuni
- Mansoura University Children’s Hospital, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
50
|
Go H, Park T, Shin AR, Jung YS, Amano A, Song KB, Choi YH. Validity of a combination of periodontal pathogens and salivary biomarkers as predictors of periodontitis. J Periodontal Res 2022; 57:1083-1092. [PMID: 35978527 DOI: 10.1111/jre.13048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 07/03/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Chronic periodontitis is caused by multiple risk factors. To predict chronic periodontitis in older people, we evaluated the association between a combination of major periodontal pathogens and salivary biomarkers and the presence of periodontitis. METHODS Stimulated saliva samples were collected to analyze the prevalence of Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Prevotella intermedia, as well as four biomarkers: interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), and prostaglandin E2 (PGE2). A total of 201 Japanese patients were recruited. Oral examinations ware performed to determine chronic periodontitis as measured by Community Periodontal Index. The sociodemographic and behavioral characteristics were also obtained, and the parameters were adjusted as potential confounders to employ statistical models. RESULTS The odds ratio (OR) for the presence of P. gingivalis and the third tertile level of IL-1β as compared with the absence of P. gingivalis and the lowest tertile of IL-1β was highest in individuals with periodontitis (OR = 13.98; 95% confidence interval [CI] 3.87-50.52) with the best level (0.79) of area under the curve (AUC) based on the receiver operating characteristic curve. The OR for the presence of P. gingivalis and the third tertile of PGE2 was 7.76 (CI 1.89-31.91) with an AUC of 0.78. The coexistence of more than two periodontal bacteria and the third tertile of PGE2 was also strongly associated with chronic periodontitis (OR = 9.23, 95% CI 2.38-35.79) with an AUC of 0.76. CONCLUSIONS The combined information of the presence of P. gingivalis in stimulated saliva, and higher levels of salivary IL-1β may play a vital role in the detection and prediction of chronic periodontitis in older adults.
Collapse
Affiliation(s)
- Hyeonjeong Go
- Department of Preventive Dentistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Taejun Park
- Department of Preventive Dentistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Ah-Ra Shin
- Department of Preventive Dentistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Yun-Sook Jung
- Department of Dental Hygiene, Kyungpook National University, Sangju, Korea
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Keun-Bae Song
- Department of Preventive Dentistry, School of Dentistry, Kyungpook National University, Daegu, Korea.,Facial nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
| | - Youn-Hee Choi
- Department of Preventive Dentistry, School of Dentistry, Kyungpook National University, Daegu, Korea.,Institute for Translational Research in Dentistry, Kyungpook National University, Daegu, Korea
| |
Collapse
|