1
|
Dino P, Giuffrè MR, Buscetta M, Di Vincenzo S, La Mensa A, Cristaldi M, Bucchieri F, Lo Iacono G, Bertani A, Pace E, Cipollina C. Release of IL-1β and IL-18 in human primary bronchial epithelial cells exposed to cigarette smoke is independent of NLRP3. Eur J Immunol 2024; 54:e2451053. [PMID: 39072707 DOI: 10.1002/eji.202451053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Cigarette smoke (CS) is a major risk factor for chronic lung diseases and promotes activation of pattern recognition receptors in the bronchial epithelium. NOD-like receptor family, pyrin domain-containing 3 (NLRP3) is a pattern recognition receptor whose activation leads to caspase-1 cleavage, maturation/release of IL-1β and IL-18, and eventually pyroptosis. Whether the NLRP3 inflammasome participates in CS-induced inflammation in bronchial epithelial cells is still unclear. Herein, we evaluated the involvement of NLRP3 in CS-induced inflammatory responses in human primary bronchial epithelial cells. To this purpose, human primary bronchial epithelial cells were stimulated with CS extracts (CSE) and lytic cell death, caspase activation (-1, -8, -3/7), cytokine release (IL-1β, IL-18, and IL-8), NLRP3, pro-IL-1β/pro-IL-18 mRNA, and protein expression were measured. The impact of inhibitors of NLRP3 (MCC950), caspases, and the effect of the antioxidant N-acetyl cysteine were evaluated. We found that CSE increased pro-IL-1β expression and induced activation of caspase-1 and release of IL-1β and IL-18. These events were independent of NLRP3 and we found that NLRP3 was not expressed. N-acetyl cysteine reverted CSE-induced caspase-1 activation. Overall, our findings support that the bronchial epithelium may play a central role in the release of IL-1 family cytokines independently of NLRP3 in the lungs of smokers.
Collapse
Affiliation(s)
- Paola Dino
- Ri.MED Foundation, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
- Ospedale Civile di Venezia SS. Giovanni e Paolo, Venezia, Italy
| | | | | | | | - Agnese La Mensa
- Ri.MED Foundation, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | | | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | | | | | - Elisabetta Pace
- Istituto di Farmacologia Traslazionale (IFT)-CNR, Palermo, Italy
| | - Chiara Cipollina
- Ri.MED Foundation, Palermo, Italy
- Istituto di Farmacologia Traslazionale (IFT)-CNR, Palermo, Italy
| |
Collapse
|
2
|
Ranjbar M, Cusack RP, Whetstone CE, Nawaz S, Khoury C, Wattie J, Wiltshire L, Le Roux J, Cheng E, Srinathan T, Ho T, Sehmi R, Duong M, Gauvreau GM. Gene Polymorphisms of Epithelial Cell-Derived Alarmins and Their Effects on Protein Levels and Disease Severity in Patients with COVID-19. Genes (Basel) 2023; 14:1721. [PMID: 37761861 PMCID: PMC10530834 DOI: 10.3390/genes14091721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The immune response in COVID-19 is characterized by the release of alarmin cytokines, which play crucial roles in immune activation and inflammation. The interplay between these cytokines and genetic variations may influence disease severity and outcomes, while sex differences might further contribute to variations in the immune response. METHODS We measured the levels of alarmin cytokines in a cohort of COVID-19 and non-COVID-19 patients using a sensitive Meso Scale Discovery system. Additionally, we conducted an SNP analysis to identify genetic variations within the IL-33 and TSLP genes. The association between these genetic variations, cytokine production, and COVID-19 severity was examined. RESULTS Our findings revealed elevated levels of IL-33 and IL-25 in COVID-19-positive patients compared to COVID-19-negative patients (p < 0.05), indicating their potential as therapeutic targets for disease modulation. Moreover, a minor allele within the IL-33 gene (rs3939286) was found to be associated with a protective effect against severe COVID-19 (p < 0.05), and minor alleles of the TSLP gene (rs2289276 and rs13806933) were found to significantly reduce TSLP protein levels in serum (p < 0.05). Sex-specific effects of TSLP and IL-33 SNPs were observed, suggesting a potential influence of sex hormones and genetic variations on the regulation of cytokine production. CONCLUSION The present study highlights the importance of alarmin cytokines and genetic variations in COVID-19 severity, providing valuable insights into personalized treatment approaches. Our results suggest that targeting alarmin cytokines may offer potential therapeutic benefits in managing COVID-19. Furthermore, the sex-specific effects of genetic variations emphasize the need to consider individual genetic profiles and sex differences when designing targeted interventions.
Collapse
Affiliation(s)
- Maral Ranjbar
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (S.N.); (C.K.); (J.W.); (L.W.); (T.H.); (R.S.); (M.D.)
| | - Ruth P. Cusack
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (S.N.); (C.K.); (J.W.); (L.W.); (T.H.); (R.S.); (M.D.)
| | - Christiane E. Whetstone
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (S.N.); (C.K.); (J.W.); (L.W.); (T.H.); (R.S.); (M.D.)
| | - Shiraz Nawaz
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (S.N.); (C.K.); (J.W.); (L.W.); (T.H.); (R.S.); (M.D.)
| | - Christopher Khoury
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (S.N.); (C.K.); (J.W.); (L.W.); (T.H.); (R.S.); (M.D.)
| | - Jennifer Wattie
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (S.N.); (C.K.); (J.W.); (L.W.); (T.H.); (R.S.); (M.D.)
| | - Lesley Wiltshire
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (S.N.); (C.K.); (J.W.); (L.W.); (T.H.); (R.S.); (M.D.)
| | | | - Eric Cheng
- St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada; (E.C.)
| | - Thivya Srinathan
- St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada; (E.C.)
| | - Terence Ho
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (S.N.); (C.K.); (J.W.); (L.W.); (T.H.); (R.S.); (M.D.)
- St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada; (E.C.)
- The Research Institute of St. Joe’s Hamilton, Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Roma Sehmi
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (S.N.); (C.K.); (J.W.); (L.W.); (T.H.); (R.S.); (M.D.)
- St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada; (E.C.)
- The Research Institute of St. Joe’s Hamilton, Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| | - MyLinh Duong
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (S.N.); (C.K.); (J.W.); (L.W.); (T.H.); (R.S.); (M.D.)
- St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada; (E.C.)
- The Research Institute of St. Joe’s Hamilton, Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
- Population Health Research Institute, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Gail M. Gauvreau
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (S.N.); (C.K.); (J.W.); (L.W.); (T.H.); (R.S.); (M.D.)
| |
Collapse
|
3
|
Chang HC, Liu SF, Kuo HC, Chen KD, Liu JF, Tseng CW, Weng CM, Chou TC. Smoking cessation and influenza vaccination can reduce the healthcare burden of COPD. Tob Induc Dis 2023; 21:108. [PMID: 37637228 PMCID: PMC10458000 DOI: 10.18332/tid/167962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 08/29/2023] Open
Abstract
INTRODUCTION Influenza vaccination (INV) and smoking cessation (SC) have individual positive effects on COPD, but their synergistic impact has yet to be extensively studied. This retrospective study aimed to assess the combined effect of SC and IV on the medical burden of COPD, including medical visits, hospitalization, medical expenses, and the occurrence of respiratory failure. METHODS Patients with COPD who visited our medical center between January and October 2018 were included in the study. The patients were categorized into four groups: Group I (no SC or INV), Group II (INV only), Group III (SC only), and Group IV (both SC and INV). The outcomes analyzed were emergency utilization, hospital utilization, and occurrence of respiratory failure. Airflow limitation was stratified according to GOLD guidelines, and successful smoking cessation was defined as not smoking for at least one year. RESULTS A total of 357 patients were included in the study. Group I (119 patients) neither smoking cessation nor influenza vaccination; Group II (66 patients) had only influenza vaccination; Group III (94 patients), had only smoking cessation, Group IV (78 patients), with both smoking cessation and influenza vaccination. Group IV had lower odds of emergency utilization (OR=0.13; 95% CI: 0.07-0.25), hospital utilization (OR=0.13; 95% CI: 0.05-0.30, p<0.001), and occurrence of respiratory failure (OR=0.13; 95% CI: 0.04-0.40, p<0.001). CONCLUSIONS Combined smoking cessation and influenza vaccination are more effective in reducing the medical burden of COPD compared to either intervention alone or neither. These findings highlight the importance of promoting both smoking cessation and influenza vaccination in the management of COPD.
Collapse
Affiliation(s)
- Hui-Chuan Chang
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ho-Chang Kuo
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Kuang-Den Chen
- Institute of Translation Research in Biomedicine, Liver Transplantation Center and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Jui-Fang Liu
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Ching-Wan Tseng
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ching-Mei Weng
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Teng-Ching Chou
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Salehi Z, Motlagh Ghoochani BFN, Hasani Nourian Y, Jamalkandi SA, Ghanei M. The controversial effect of smoking and nicotine in SARS-CoV-2 infection. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:49. [PMID: 37264452 PMCID: PMC10234254 DOI: 10.1186/s13223-023-00797-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023]
Abstract
The effects of nicotine and cigarette smoke in many diseases, notably COVID-19 infection, are being debated more frequently. The current basic data for COVID-19 is increasing and indicating the higher risk of COVID-19 infections in smokers due to the overexpression of corresponding host receptors to viral entry. However, current multi-national epidemiological reports indicate a lower incidence of COVID-19 disease in smokers. Current data indicates that smokers are more susceptible to some diseases and more protective of some other. Interestingly, nicotine is also reported to play a dual role, being both inflammatory and anti-inflammatory. In the present study, we tried to investigate the effect of pure nicotine on various cells involved in COVID-19 infection. We followed an organ-based systematic approach to decipher the effect of nicotine in damaged organs corresponding to COVID-19 pathogenesis (12 related diseases). Considering that the effects of nicotine and cigarette smoke are different from each other, it is necessary to be careful in generalizing the effects of nicotine and cigarette to each other in the conducted researches. The generalization and the undifferentiation of nicotine from smoke is a significant bias. Moreover, different doses of nicotine stimulate different effects (dose-dependent response). In addition to further assessing the role of nicotine in COVID-19 infection and any other cases, a clever assessment of underlying diseases should also be considered to achieve a guideline for health providers and a personalized approach to treatment.
Collapse
Affiliation(s)
- Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Wu C, Liu H, Lin Y, An R, Wang M, Zhong H, Yi H, Wang Q, Tan H, Chen L, Deng J, Chen M. Polymorphisms in PI3K/AKT genes and gene‑smoking interaction are associated with susceptibility to tuberculosis. Ann Hum Biol 2023; 50:472-479. [PMID: 38117222 DOI: 10.1080/03014460.2023.2288008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/26/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) are involved in the clearance of Mycobacterium tuberculosis (MTB) by macrophages. AIM This study aimed to investigate the effects of polymorphisms in the PI3K/AKT genes and the gene-smoking interaction on susceptibility to TB. METHODS This case-control study used stratified sampling to randomly select 503 TB patients and 494 control subjects. Logistic regression analysis was used to determine the association between the polymorphisms and TB. Simultaneously, the marginal structure linear dominance model was used to estimate the gene-smoking interaction. RESULTS Genotypes GA (OR 1.562), AA (OR 2.282), and GA + AA (OR 1.650) at rs3730089 of the PI3KR1 gene were significantly associated with the risk to develop TB. Genotypes AG (OR 1.460), GG (OR 2.785), and AG + GG (OR 1.622) at rs1130233 of the AKT1 gene were significantly associated with the risk to develop TB. In addition, the relative excess risk of interaction (RERI) between rs3730089 and smoking was 0.9608 (95% CI: 0.5959, 1.3256, p < 0.05), which suggests a positive interaction. CONCLUSION We conclude that rs3730089 and rs1130233 are associated with susceptibility to TB, and there was positive interaction between rs3730089 and smoking on susceptibility to TB.
Collapse
Affiliation(s)
- Chunli Wu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Huixia Liu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ying Lin
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Rongjing An
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Mian Wang
- Department of Epidemiology and Health Statistics, School of Public Health, University of South China, Hengyang, Hunan, China
| | - Hua Zhong
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hengzhong Yi
- Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Qiaozhi Wang
- Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Hongzhuan Tan
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Lizhang Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jing Deng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Mengshi Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Shao Y, Saaoud F, Cornwell W, Xu K, Kirchhoff A, Lu Y, Jiang X, Wang H, Rogers TJ, Yang X. Cigarette Smoke and Morphine Promote Treg Plasticity to Th17 via Enhancing Trained Immunity. Cells 2022; 11:2810. [PMID: 36139385 PMCID: PMC9497420 DOI: 10.3390/cells11182810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022] Open
Abstract
CD4+ regulatory T cells (Tregs) respond to environmental cues to permit or suppress inflammation, and atherosclerosis weakens Treg suppression and promotes plasticity. However, the effects of smoking plus morphine (SM + M) on Treg plasticity remain unknown. To determine whether SM + M promotes Treg plasticity to T helper 17 (Th17) cells, we analyzed the RNA sequencing data from SM, M, and SM + M treated Tregs and performed knowledge-based and IPA analysis. We demonstrated that (1) SM + M, M, and SM upregulated the transcripts of cytokines, chemokines, and clusters of differentiation (CDs) and modulated the transcripts of kinases and phosphatases in Tregs; (2) SM + M, M, and SM upregulated the transcripts of immunometabolism genes, trained immunity genes, and histone modification enzymes; (3) SM + M increased the transcripts of Th17 transcription factor (TF) RORC and Tfh factor CXCR5 in Tregs; M increased the transcripts of T helper cell 1 (Th1) TF RUNX3 and Th1-Th9 receptor CXCR3; and SM inhibited Treg TGIF1 transcript; (4) six genes upregulated in SM + M Tregs were matched with the top-ranked Th17 pathogenic genes; and 57, 39 genes upregulated in SM + M Tregs were matched with groups II and group III Th17 pathogenic genes, respectively; (5) SM + M upregulated the transcripts of 70 IPA-TFs, 11 iTregs-specific TFs, and 4 iTregs-Th17 shared TFs; and (6) SM + M, M, and SM downregulated Treg suppression TF Rel (c-Rel); and 35 SM + M downregulated genes were overlapped with Rel-/- Treg downregulated genes. These results provide novel insights on the roles of SM + M in reprogramming Treg transcriptomes and Treg plasticity to Th17 cells and novel targets for future therapeutic interventions involving immunosuppression in atherosclerotic cardiovascular diseases, autoimmune diseases, transplantation, and cancers.
Collapse
Affiliation(s)
- Ying Shao
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Fatma Saaoud
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - William Cornwell
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Keman Xu
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Aaron Kirchhoff
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yifan Lu
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xiaohua Jiang
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Thomas J. Rogers
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
7
|
Buscetta M, Cristaldi M, Cimino M, La Mensa A, Dino P, Bucchieri F, Rappa F, Amato S, Aronica TS, Pace E, Bertani A, Cipollina C. Cigarette smoke promotes inflammasome-independent activation of caspase-1 and -4 leading to gasdermin D cleavage in human macrophages. FASEB J 2022; 36:e22525. [PMID: 36004615 DOI: 10.1096/fj.202200837r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 11/11/2022]
Abstract
Mechanisms and consequences of gasdermin D (GSDMD) activation in cigarette smoke (CS)-associated inflammation and lung disease are unknown. GSDMD is a downstream effector of caspase-1, -8, and -4. Upon cleavage, GSDMD generates pores into cell membranes. Different degrees of GSDMD activation are associated with a range of physiological outputs ranging from cell hyperactivation to pyroptosis. We have previously reported that in human monocyte-derived macrophages CS extract (CSE) inhibits the NLRP3 inflammasome and shifts the response to lipopolysaccharide (LPS) towards the TLR4-TRIF axis leading to activation of caspase-8, which, in turn, activates caspase-1. In the present work, we investigated whether other ASC-dependent inflammasomes could be involved in caspase activation by CSE and whether caspase activation led to GSDMD cleavage and other downstream effects. Presented results demonstrate that CSE promoted ASC-independent activation of caspase-1 leading to GSDMD cleavage and increased cell permeability, in the absence of cell death. GSDMD cleavage was strongly enhanced upon stimulation with LPS+CSE, suggesting a synergistic effect between the two stimuli. Noteworthy, CSE promoted LPS internalization leading to caspase-4 activation, thus contributing to increased GSDMD cleavage. Caspase-dependent GSDMD cleavage was associated with mitochondrial superoxide generation. Increased cleaved GSDMD was found in lung macrophages of smokers compared to ex-smokers and non-smoking controls. Our findings revealed that ASC-independent activation of caspase-1, -4, and -8 and GSDMD cleavage upon exposure to CS may contribute to macrophage dysfunction and feed the chronic inflammation observed in the smokers' lung.
Collapse
Affiliation(s)
| | | | | | - Agnese La Mensa
- Fondazione RiMED, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Paola Dino
- Fondazione RiMED, Palermo, Italy.,Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Santina Amato
- Azienda di Rilievo Nazionale ed Alta Specializzazione Ospedali (A.R.N.A.S) "Civico Di Cristina Benfratelli", Palermo, Italy
| | - Tommaso Silvano Aronica
- Azienda di Rilievo Nazionale ed Alta Specializzazione Ospedali (A.R.N.A.S) "Civico Di Cristina Benfratelli", Palermo, Italy
| | - Elisabetta Pace
- Istituto di Farmacologia Traslazionale (IFT)-CNR, Palermo, Italy
| | | | - Chiara Cipollina
- Fondazione RiMED, Palermo, Italy.,Istituto di Farmacologia Traslazionale (IFT)-CNR, Palermo, Italy
| |
Collapse
|
8
|
Liu X, Sun W, Ma W, Wang H, Xu K, Zhao L, He Y. Smoking related environmental microbes affecting the pulmonary microbiome in Chinese population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154652. [PMID: 35307427 DOI: 10.1016/j.scitotenv.2022.154652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Smoking is a serious public health problem that affects human health conditions. Although there is evidence that microorganisms are associated with smoking-related lung diseases, the relationship between the rich lung microbiome of upper respiratory tract groups and smoking has not been studied. OBJECTIVE In this study, we investigated the effects of smoking on environmental microbes and lung microbiome in the Chinese population and provided clues for the role of smoking in the development of respiratory disease. METHODS Bronchoalveolar lavage fluid samples were collected from 55 individuals with a history of smoking. Microbial gene sequencing was carried out through NGS technology. We analyzed and compared the diversity, community structure, and species abundance of bronchoalveolar lavage microbiome between smokers and nonsmokers, to speculate the effects of smoking on the lung microbiome. RESULTS Smoking hardly affected the α diversity of microbial groups of bronchoalveolar lavage, but it had a huge influence on the microbiome composition. The relative abundance of Rothia, Actinomycetes, Haemophilus, Porphyrins, Neisseria, Acinetobacter, and Streptococcus genera had a remarkable increase in the smoking group. On the other hand, the relative abundance of Plusella and Veronella decreased significantly. CONCLUSION Smoking may change the environmental microbes and then alter the structure of the lung microbiome, which may lead to smoking-related diseases.
Collapse
Affiliation(s)
- Xinyue Liu
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Wenwen Sun
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Weiqi Ma
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wang
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Kandi Xu
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Lishu Zhao
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yayi He
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| |
Collapse
|
9
|
Obernolte H, Niehof M, Braubach P, Fieguth HG, Jonigk D, Pfennig O, Tschernig T, Warnecke G, Braun A, Sewald K. Cigarette smoke alters inflammatory genes and the extracellular matrix - investigations on viable sections of peripheral human lungs. Cell Tissue Res 2021; 387:249-260. [PMID: 34820703 PMCID: PMC8821047 DOI: 10.1007/s00441-021-03553-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/04/2021] [Indexed: 12/03/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex chronic respiratory disorder often caused by cigarette smoke. Cigarette smoke contains hundreds of toxic substances. In our study, we wanted to identify initial mechanisms of cigarette smoke induced changes in the distal lung. Viable slices of human lungs were exposed 24 h to cigarette smoke condensate, and the dose–response profile was analyzed. Non-toxic condensate concentrations and lipopolysaccharide were used for further experiments. COPD-related protein and gene expression was measured. Cigarette smoke condensate did not induce pro-inflammatory cytokines and most inflammation-associated genes. In contrast, lipopolysaccharide significantly induced IL-1α, IL-1β, TNF-α and IL-8 (proteins) and IL1B, IL6, and TNF (genes). Interestingly, cigarette smoke condensate induced metabolism- and extracellular matrix–associated proteins and genes, which were not influenced by lipopolysaccharide. Also, a significant regulation of CYP1A1 and CYP1B1, as well as MMP9 and MMP9/TIMP1 ratio, was observed which resembles typical findings in COPD. In conclusion, our data show that cigarette smoke and lipopolysaccharide induce significant responses in human lung tissue ex vivo, giving first hints that COPD starts early in smoking history.
Collapse
Affiliation(s)
- Helena Obernolte
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Monika Niehof
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | | | - Danny Jonigk
- Institute for Pathology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Olaf Pfennig
- KRH Klinikum Siloah-Oststadt-Heidehaus, Hannover, Germany
| | - Thomas Tschernig
- Institute for Anatomy and Cell Biology, Saarland University, Homburg Saar, Germany
| | - Gregor Warnecke
- Division of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
10
|
Baker JR, Donnelly LE. Leukocyte Function in COPD: Clinical Relevance and Potential for Drug Therapy. Int J Chron Obstruct Pulmon Dis 2021; 16:2227-2242. [PMID: 34354348 PMCID: PMC8331105 DOI: 10.2147/copd.s266394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung condition affecting 10% of the global population over 45 years. Currently, there are no disease-modifying treatments, with current therapies treating only the symptoms of the disease. COPD is an inflammatory disease, with a high infiltration of leukocytes being found within the lung of COPD patients. These leukocytes, if not kept in check, damage the lung, leading to the pathophysiology associated with the disease. In this review, we focus on the main leukocytes found within the COPD lung, describing how the release of chemokines from the damaged epithelial lining recruits these cells into the lung. Once present, these cells become active and may be driven towards a more pro-inflammatory phenotype. These cells release their own subtypes of inflammatory mediators, growth factors and proteases which can all lead to airway remodeling, mucus hypersecretion and emphysema. Finally, we describe some of the current therapies and potential new targets that could be utilized to target aberrant leukocyte function in the COPD lung. Here, we focus on old therapies such as statins and corticosteroids, but also look at the emerging field of biologics describing those which have been tested in COPD already and potential new monoclonal antibodies which are under review.
Collapse
Affiliation(s)
- Jonathan R Baker
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Louise E Donnelly
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
11
|
Zhang MY, Jiang YX, Yang YC, Liu JY, Huo C, Ji XL, Qu YQ. Cigarette smoke extract induces pyroptosis in human bronchial epithelial cells through the ROS/NLRP3/caspase-1 pathway. Life Sci 2021; 269:119090. [PMID: 33465393 DOI: 10.1016/j.lfs.2021.119090] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
AIMS Pyroptosis and inflammation are involved in the development of chronic obstructive pulmonary disease (COPD). However, the cigarette smoke-mediated mechanism of COPD remains unclear. In this study, we aimed to investigate the role of nucleotide-binding domain-like receptor protein-3 (NLRP3) inflammasome-mediated pyroptosis in the death of human bronchial epithelial (HBE) cells after cigarette smoke extract (CSE) exposure. MAIN METHODS The protein level of NLRP3 in lung tissue was measured after cigarette smoke exposure in vivo. In vitro, HBE cells were treated with CSE. Subsequently, the activity of caspase-1, lactate dehydrogenase (LDH) release, release of interleukin (IL)-1β and NLRP3 expression levels were measured. The involvement of reactive oxygen species (ROS) was also explored. KEY FINDINGS After exposure to CSE, increased release of LDH, the transcriptional and translational upregulation of NLRP3, the caspase-1 activity levels, and enhanced IL-1β and IL-18 release were observed in 16HBE cells. In addition, NLRP3 was required to activate the caspase-1. Our results suggested that pre-stimulated of 16HBE with a caspase-1 inhibitor, or using NLRP3 siRNA to silence NLRP3 expression, also caused the decrease of IL-1β release and pyroptosis. SIGNIFICANCES CSE induced inflammation and contributed to pyroptosis through the ROS/NLRP3/caspase-1 pathway in 16HBE cells. The NLRP3 inflammasome participates in CSE-induced HBE cell damage and pyroptosis, which could provide new insights into COPD.
Collapse
Affiliation(s)
- Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ying-Xiao Jiang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yi-Can Yang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jian-Yu Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chen Huo
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiu-Li Ji
- Department of Pulmonary Disease, Jinan Traditional Chinese Medicine Hospital, Jinan 250012, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
12
|
Jakhmola S, Indari O, Kashyap D, Varshney N, Rani A, Sonkar C, Baral B, Chatterjee S, Das A, Kumar R, Jha HC. Recent updates on COVID-19: A holistic review. Heliyon 2020; 6:e05706. [PMID: 33324769 PMCID: PMC7729279 DOI: 10.1016/j.heliyon.2020.e05706] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/21/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are large positive-sense RNA viruses with spike-like peplomers on their surface. The Coronaviridae family's strains infect different animals and are popularly associated with several outbreaks, namely SARS and MERS epidemic. COVID-19 is one such recent outbreak caused by SARS-CoV-2 identified first in Wuhan, China. COVID-19 was declared a pandemic by WHO on 11th March 2020. Our review provides information covering various facets of the disease starting from its origin, transmission, mutations in the virus to pathophysiological changes in the host upon infection followed by diagnostics and possible therapeutics available to tackle the situation. We have highlighted the zoonotic origin of SARS-CoV-2, known to share 96.2% nucleotide similarity with bat coronavirus. Notably, several mutations in SARS-CoV-2 spike protein, nucleocapsid protein, PLpro, and ORF3a are reported across the globe. These mutations could alter the usual receptor binding function, fusion process with the host cell, virus replication, and the virus's assembly. Therefore, studying these mutations could help understand the virus's virulence properties and design suitable therapeutics. Moreover, the aggravated immune response to COVID-19 can be fatal. Hypertension, diabetes, and cardiovascular diseases are comorbidities substantially associated with SARS-CoV-2 infection. The review article discusses these aspects, stating the importance of various comorbidities in disease outcomes. Furthermore, medications' unavailability compels the clinicians to opt for atypical drugs like remdesivir, chloroquine, etc. The current diagnostics of COVID-19 include qRT-PCR, CT scan, serological tests, etc. We have described these aspects to expose the information to the scientific community and to accelerate the research.
Collapse
Affiliation(s)
- Shweta Jakhmola
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Omkar Indari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Dharmendra Kashyap
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Nidhi Varshney
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Annu Rani
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Charu Sonkar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Budhadev Baral
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Sayantani Chatterjee
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Ayan Das
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Rajesh Kumar
- Discipline of Physics, Indian Institute of Technology, Indore, India
| | - Hem Chandra Jha
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| |
Collapse
|
13
|
Kulshrestha R, Dhanda H, Pandey A, Singh A, Kumar R. Immunopathogenesis and therapeutic potential of macrophage influx in diffuse parenchymal lung diseases. Expert Rev Respir Med 2020; 14:917-928. [PMID: 32600077 DOI: 10.1080/17476348.2020.1776117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The diffuse parenchymal lung diseases (DPLD)/interstitial lung diseases (ILD) are progressive lung disorders with usually unclear etiology, poor long-term survival and no effective treatment. Their pathogenesis is characterized by alveolar epithelial cell injury, inflammation, epithelial-mesenchymal transition, and parenchymal fibrosis. Macrophages play diverse roles in their development, both in the acute phase and in tissue repair. AREAS COVERED In this review, we summarize the current state of knowledge regarding the role of macrophages and their phenotypes in the immunopathogenesis of DPLDs; CVD-ILD, UIP, NSIP, DIP, RB-ILD, AIP, HP, Sarcoidosis, etc. Our goal is to update the understanding of the immune mechanisms underlying the initiation and progression of fibrosis in DPLDs. This will help in identification of biomarkers and in developing novel therapeutic strategies for DPLDs. A thorough literature search of the published studies in PubMed (from 1975 to 2020) was done. EXPERT OPINION The macrophage associated inflammatory markers needs to be explored for their potential as biomarkers of disease activity and progression. Pharmacological targeting of macrophage activation may reduce the risk of macrophage activation syndrome (MAS) and help improving the survival and prognosis of these patients.
Collapse
Affiliation(s)
| | - Himanshu Dhanda
- Department of Pathology, V.P.Chest Institute , New Delhi, India
| | - Apoorva Pandey
- Department of Pathology, V.P.Chest Institute , New Delhi, India
| | - Amit Singh
- Department of Pathology, V.P.Chest Institute , New Delhi, India
| | - Raj Kumar
- Department of Pulmonary Medicine, V.P.Chest Institute , New Delhi, India
| |
Collapse
|
14
|
Tajlil A, Ghaffari S, Pourafkari L, Mashayekhi S, Roshanravan N. Nicotine and smoking in the COVID-19 era. J Cardiovasc Thorac Res 2020; 12:136-139. [PMID: 32626554 PMCID: PMC7320997 DOI: 10.34172/jcvtr.2020.22] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/23/2020] [Indexed: 01/08/2023] Open
Abstract
Introduction: The knowledge regarding the demographic characteristics of patients with Covid-19 and risk factors distribution is still evolving. Considering the role of cigarette smoking in the pathogenesis of lung diseases and the effect of nicotine on expression of the entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is important to determine the implications of smoking in COVID-19.
Methods: In this brief report, by using the published articles in the literature, we aimed to compare the reported prevalence of smoking in patients with COVID-19 to the prevalence of smoking in the general population of the corresponding report. Binomial tests were conducted and a P value of less than 0.05 was considered statistically significant.
Results: Among the screened papers, we found 12 peer-reviewed articles in which epidemiological characteristics of COVID-19 patients, including smoking status, were stated. Based on the descriptive reports of characteristics of COVID-19 patients, we observed a significantly lower proportion of COVID-19 patients with smoking history compared to what is expected, given the population average for each study’s geographic area.
Conclusion: This analysis of available data showed a lower prevalence of smoking in COVID-19 patients in comparison to the regional average. Considering the limitations of the study, the results should be interpreted with great caution and be viewed just as a preliminary report to motivate related basic and clinical researches.
Collapse
Affiliation(s)
- Arezou Tajlil
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sina Mashayekhi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Bin YF, Ma N, Lu YX, Sun XJ, Liang Y, Bai J, Zhang JQ, Li MH, Zhong XN, He ZY. Erythromycin reverses cigarette smoke extract-induced corticosteroid insensitivity by inhibition of the JNK/c-Jun pathway. Free Radic Biol Med 2020; 152:494-503. [PMID: 31770582 DOI: 10.1016/j.freeradbiomed.2019.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Abstract
Corticosteroid insensitivity is a feature of airway inflammation in chronic obstructive pulmonary disease (COPD). Erythromycin exhibits anti-inflammatory activity in COPD, but the concrete mechanism is still unclear. This study aimed to investigate the effects of erythromycin on corticosteroid sensitivity in peripheral blood mononuclear cells (PBMCs) and U937 cells (a human monocytic cell line). PBMCs were collected from non-smokers, healthy smoker volunteers, and COPD subjects. U937 cells were incubated with or without erythromycin and stimulated with TNF-α in the presence or absence of cigarette smoke extract (CSE). The dexamethasone (Dex) concentration required to achieve 50% inhibition of TNF-α-induced interleukin (IL)-8 production was determined and the mitogen-activated protein kinase (MAPK)/Activator protein-1 (AP-1) pathway was also evaluated. Erythromycin improved corticosteroid sensitivity in PBMCs obtained from COPD patients and CSE-treated U937 cells. This improvement in corticosteroid sensitivity was associated with reduced c-Jun expression, which resulted from the inhibition of P38 Mitogen-activated protein kinase (P38MAPK), extracellular signal-regulated protein kinase (ERK)1/2, and c-Jun N-terminal kinase (JNK) phosphorylation. Erythromycin had no effects on the phosphorylated and total protein expression levels of P38MAPK and ERK; however, it induced inhibition of the phosphorylated and total protein expression levels of JNK. This study provides evidence that erythromycin restores corticosteroid sensitivity in PBMCs and U937 cells. JNK inhibition by erythromycin restores corticosteroid sensitivity via the inhibition of c-Jun expression. Thus, JNK/c-Jun is a potential novel therapeutic target for COPD.
Collapse
Affiliation(s)
- Yan-Fei Bin
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Nan Ma
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yan-Xiu Lu
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xue-Jiao Sun
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yi Liang
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jing Bai
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jian-Quan Zhang
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Mei-Hua Li
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiao-Ning Zhong
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhi-Yi He
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
16
|
Buscetta M, Di Vincenzo S, Miele M, Badami E, Pace E, Cipollina C. Cigarette smoke inhibits the NLRP3 inflammasome and leads to caspase-1 activation via the TLR4-TRIF-caspase-8 axis in human macrophages. FASEB J 2020; 34:1819-1832. [PMID: 31914643 DOI: 10.1096/fj.201901239r] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/24/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022]
Abstract
The NLRP3 inflammasome is formed by the sensor NLRP3, the adaptor ASC, and pro-caspase-1. Assembly and activation of the inflammasome trigger caspase-1-dependent cleavage of pro-IL-1β and pro-IL-18 into their secreted forms. Cigarette smoke is a risk factor for chronic inflammatory diseases and is associated with macrophage dysfunction. The impact of cigarette smoke on NLRP3-dependent responses in macrophages is largely unknown. Herein, we investigated the effects of cigarette smoke extract (CSE) on the NLRP3 inflammasome in human monocyte-derived macrophages (MDMs) and THP-1 cells stimulated with lipopolysaccharide (LPS) and LPS plus the NLRP3 inflammasome activator ATP. We found that CSE inhibited the release of IL-1β and IL-18 as well as the expression of NLRP3 acting mainly at the transcriptional level. Interestingly, we found that CSE increased the caspase-1 activity via an NLRP3-independent and TLR4-TRIF-caspase-8-dependent pathway. Activation of caspase-1 by CSE led to a reduction of the basal glycolytic flux and impaired glycolytic burst in response to LPS. Overall, our findings unveil novel pathways leading to immune-metabolic alterations in human macrophages exposed to cigarette smoke. These mechanisms may contribute to macrophage dysfunction and increased risk of infection in smokers.
Collapse
Affiliation(s)
| | - Serena Di Vincenzo
- Istituto per la Ricerca e l'Innovazione Biomedica-Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Monica Miele
- Fondazione Ri.MED, Palermo, Italy
- Department of Laboratory Medicine and Advanced Biotechnologies, Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (IRCCS-ISMETT), Palermo, Italy
| | - Ester Badami
- Fondazione Ri.MED, Palermo, Italy
- Department of Laboratory Medicine and Advanced Biotechnologies, Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (IRCCS-ISMETT), Palermo, Italy
| | - Elisabetta Pace
- Istituto per la Ricerca e l'Innovazione Biomedica-Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Chiara Cipollina
- Fondazione Ri.MED, Palermo, Italy
- Istituto per la Ricerca e l'Innovazione Biomedica-Consiglio Nazionale delle Ricerche, Palermo, Italy
| |
Collapse
|
17
|
Igari K, Kelly MJ, Yamanouchi D. Cigarette Smoke Extract Activates Tartrate-Resistant Acid Phosphatase-Positive Macrophage. J Vasc Res 2019; 56:139-151. [PMID: 31064000 PMCID: PMC6764454 DOI: 10.1159/000498893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/13/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND It has been reported that smoking is one of the strongest positive risk factors for abdominal aortic aneurysms (AAAs). Although many studies have been directed to decipher the effect of smoking on AAA, its effect on macrophage activation has not yet been explored. OBJECTIVES We have reported the importance of osteoclastogenesis (OCG) in aneurysm formation. Therefore, we examined the effect of cigarette smoking on OCG and arterial aneurysmal formation by using cigarette smoke extract (CSE) in this study. METHODS Macrophage cell lines were stimulated with CSE, and their activation and differentiation were examined in vitro. Since macrophages activated through the OCG pathway are identified by tartrate-resistant acid phosphatase (TRAP) expression, these cells are referred to as TRAP-positive macrophages (TPMs) in this study. We also applied CSE-contained PBS in the calcium chloride-induced mouse carotid aneurysm model in vivo. RESULTS Macrophages stimulated with CSE expressed significantly higher levels of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), TRAP, cathepsin K, matrix metalloproteinase-9 and membrane-type metalloproteinase (MT1-MMP). CSE-treated mouse aneurysms showed increased aneurysm size with increased TPM infiltration and protease expression compared to non-CSE-treated mouse aneurysms. CONCLUSIONS These results suggest that CSE intensifies OCG in macrophages and promotes arterial aneurysmal progression.
Collapse
Affiliation(s)
- Kimihiro Igari
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Matthew J Kelly
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Dai Yamanouchi
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA,
| |
Collapse
|
18
|
Koarai A, Ichinose M. Possible involvement of acetylcholine-mediated inflammation in airway diseases. Allergol Int 2018; 67:460-466. [PMID: 29605098 DOI: 10.1016/j.alit.2018.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/18/2022] Open
Abstract
Inhaled bronchodilator treatment with a long acting muscarinic antagonist (LAMA) reduces symptoms and the risk of exacerbations in COPD and asthma. However, increasing evidence from cell culture and animal studies suggests that anti-muscarinic drugs could also possess anti-inflammatory effects. Recent studies have revealed that acetylcholine (ACh) can be synthesized and released from both neuronal and non-neuronal cells, and the released ACh can potentiate airway inflammation and remodeling in airway diseases. However, these anti-inflammatory effects of anti-muscarinic drugs have not yet been confirmed in COPD and asthma patients. This review will focus on recent findings about the possible involvement of ACh in airway inflammation and remodeling, and the anti-inflammatory effect of anti-muscarinic drugs in airway diseases. Clarifying the acetylcholine-mediated inflammation could provide insights into the mechanisms of airway diseases, which could lead to future therapeutic strategies for inhibiting the disease progression and exacerbations.
Collapse
|
19
|
Hamon R, Tran HB, Roscioli E, Ween M, Jersmann H, Hodge S. Bushfire smoke is pro-inflammatory and suppresses macrophage phagocytic function. Sci Rep 2018; 8:13424. [PMID: 30194323 PMCID: PMC6128914 DOI: 10.1038/s41598-018-31459-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 08/03/2018] [Indexed: 12/03/2022] Open
Abstract
Bushfires are increasing in frequency and severity worldwide. Bushfire smoke contains organic/inorganic compounds including aldehydes and acrolein. We described suppressive effects of tobacco smoke on the phagocytic capacity of airway macrophages, linked to secondary necrosis of uncleared apoptotic epithelial cells, persistence of non-typeable H. influenzae (NTHi), and inflammation. We hypothesised that bushfire smoke extract (BFSE) would similarly impair macrophage function. THP-1 or monocyte-derived macrophages (MDM) were exposed to 1-10% BFSE prepared from foliage of 5 common Australian native plants (genus Acacia or Eucalyptus), or 10% cigarette smoke extract (CSE). Phagocytic recognition receptors were measured by flow cytometry; pro-inflammatory cytokines and caspase 1 by immunofluorescence or cytometric bead array; viability by LDH assay; and capsase-3/PARP by western blot. BFSE significantly decreased phagocytosis of apoptotic cells or NTHi by both THP-1 macrophages and MDM vs air control, consistent with the effects of CSE. BFSE significantly decreased MDM expression of CD36, CD44, SR-A1, CD206 and TLR-2 and increased active IL-1β, caspase-1 and secreted IL-8. BFSE dose-dependently decreased THP-1 macrophage viability (5-fold increase in LDH at 10%) and significantly increased active caspase-3. BFSE impairs macrophage function to a similar extent as CSE, highlighting the need for further research, especially in patients with pre-existing lung disease.
Collapse
Affiliation(s)
- Rhys Hamon
- Chronic Inflammatory Lung Disease Research Laboratory, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
- Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Hai B Tran
- Chronic Inflammatory Lung Disease Research Laboratory, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
- Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Eugene Roscioli
- Chronic Inflammatory Lung Disease Research Laboratory, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
- Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Miranda Ween
- Chronic Inflammatory Lung Disease Research Laboratory, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
- Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Hubertus Jersmann
- Chronic Inflammatory Lung Disease Research Laboratory, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
- Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Sandra Hodge
- Chronic Inflammatory Lung Disease Research Laboratory, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia.
- Department of Medicine, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
20
|
Zuo J, Hu Z, Liu T, Chen C, Tao Z, Chen S, Li F. Calpeptin attenuates cigarette smoke-induced pulmonary inflammation via suppressing calpain/IκBα signaling in mice and BEAS-2B cells. Pathol Res Pract 2018; 214:1199-1209. [PMID: 30078403 DOI: 10.1016/j.prp.2018.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 11/29/2022]
Abstract
Exposure to cigarette smoke including secondhand smoking is the most important risk factor in the development of chronic obstructive pulmonary disease where incidence has substantially increased in recent decades. The mechanisms responsible for cigarette smoke-induced pulmonary inflammation remain unclear, and thus lack of effective treatment. The present study investigated the effect of calpeptin on attenuating cigarette smoke induced pulmonary inflammation and its potential mechanism and function. When BALB/c mice were exposed to cigarette smoke and received calpeptin intraperitoneally injection after 90 days, calpeptin histologically attenuated the accumulation of neutrophils (P < 0.001), eosinophils (P < 0.001), macrophages (P < 0.01), fibrinous exudation and proliferation within the interstitial and alveolar spaces. BEAS-2B cells were added with cigarette smoke extract in vitro and treated with calpeptin for 24 h in the treatment group. The markedly upregulation of μ-calpain (P < 0.01), m-calpain (P < 0.001) and IκBα (P < 0.01) in cigarette smoke-induced lungs were simultaneously decreased by calpeptin treatment (P < 0.05). The increased expression of μ-calpain, m-calpain and IκBα (P < 0.05) in cigarette smoke extract-stimulated BEAS-2B cells were also decreased by calpeptin treatment (P < 0.05). These data indicated that calpeptin attenuated cigarette smoke-induced pulmonary inflammation by suppressing the pathway of μ-calpain, m-calpain and IκBα in vivo and in vitro. Calpeptin might have a potential for prevention of the development of inflammatory pulmonary diseases and warrant further pharmaceutical investigation.
Collapse
Affiliation(s)
- Jingjing Zuo
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Zhangwei Hu
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Tao Liu
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Chen Chen
- Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Zezhang Tao
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China.
| | - Shiming Chen
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China; Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Fen Li
- Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| |
Collapse
|
21
|
Mubarak RA, Roberts N, Mason RJ, Alper S, Chu HW. Comparison of pro- and anti-inflammatory responses in paired human primary airway epithelial cells and alveolar macrophages. Respir Res 2018; 19:126. [PMID: 29940963 PMCID: PMC6020222 DOI: 10.1186/s12931-018-0825-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/08/2018] [Indexed: 12/27/2022] Open
Abstract
Background Airway epithelial cells and alveolar macrophages (AMs) are the first line of defense in the lung during infection. Toll-like receptor (TLR) agonists have been extensively used to define the regulation of inflammation in these cells. However, previous studies were performed in non-paired airway epithelial cells and AMs. The major goal of our study was to compare the pro- and anti-inflammatory responses of paired human primary airway epithelial cells and AMs to TLR3 and TLR4 agonists. Methods Tracheobronchial epithelial cells (TBEC) and AMs from four smokers and four non-smokers without lung disease were cultured with or without Poly(I:C) (PIC) (a TLR3 agonist) or LPS (a TLR4 agonist) for 4, 24 and 48 h. The immune responses of paired cells were compared. Results TBEC and AMs showed stronger pro-inflammatory cytokine (e.g., IL-8) responses to PIC and LPS, respectively. TLR3 and TLR4 mRNA levels were similar in non-stimulated TBEC and AMs. However, PIC stimulation in AMs led to sustained up-regulation of the immune negative regulators Tollip and A20, which may render AMs less sensitive to PIC stimulation than TBEC. Unlike AMs, TBEC did not increase NF-κB activation after LPS stimulation. Interestingly, smoking status was correlated with less TLR3 and IRAK-M expression in non-stimulated TBEC, but not in AMs. PIC-stimulated TBEC and LPS-stimulated AMs from smokers vs. non-smokers produced more IL-8. Finally, we show that expression of A20 and IRAK-M is strongly correlated in the two paired cell types. Conclusions By using paired airway epithelial cells and AMs, this study reveals how these two critical types of lung cells respond to viral and bacterial pathogen associated molecular patterns, and provides rationale for modulating immune negative regulators to prevent excessive lung inflammation during respiratory infection. Electronic supplementary material The online version of this article (10.1186/s12931-018-0825-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Reem Al Mubarak
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Nicole Roberts
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Robert J Mason
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Scott Alper
- Department of Biomedical Research and Center for Genes, Environment, and Health, National Jewish Health, University of Colorado, 1400 Jackson Street, Denver, CO, 80206, USA. .,Department of Immunology and Microbiology, University of Colorado, 1400 Jackson Street, Denver, CO, 80206, USA.
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA.
| |
Collapse
|
22
|
Belhareth R, Mezouar S, Ben Amara A, Chartier C, Azzouz EB, Chabrière E, Amri M, Mege JL. Cigarette smoke extract interferes with placenta macrophage functions: A new mechanism to compromise placenta functions? Reprod Toxicol 2018; 78:120-129. [PMID: 29673796 DOI: 10.1016/j.reprotox.2018.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 12/25/2022]
Abstract
The success of pregnancy depends on the maternal immune system's ability to promote tolerance and host defense. This equilibrium is compromised in inflammatory and infectious impairment of placenta. Smoking during pregnancy exposes the fetus to severe complications which might result from an alteration in placenta macrophages (pMφ) functions. In this study, we assessed the effect of cigarette smoke extract (CSE) on the functions of third trimester pMφs.CSE inhibited particles uptake and the formation of multinucleated giant cells, a recently reported property of pMφs based on their ability to fuse in vitro. These alterations were associated with a CSE-induced abnormal activation of pMφs, which was characterized by an increased release of TNF, interleukin (IL)-33, and decreased IL-6 and IL-10 release. Furthermore, CSE enhanced the expression of metalloproteinase genes known to be involved in tissue remodeling. This effect of CSE on pMφs was specific because CSE affected circulating monocytes in a different way. Finally, we showed that nicotine affected in part the functional properties of pMφs. Taken together, these results showed that CSE modulated the functional activity of pMφs, which may compromise pregnancy.
Collapse
Affiliation(s)
- Rym Belhareth
- Aix-Marseille University, Unité de Recherche sur les Maladies Infectieuses Transmissibles et Emergentes (URMITE), CNRS 7278, IRD 198, INSERM 1095, Marseille, France; Laboratoire de Neurophysiologie Fonctionnelle et Pathologies UR/11ES09, FST Campus Universitaire, 2092, El Manar Tunis, Tunisie
| | - Soraya Mezouar
- Aix-Marseille University, Unité de Recherche sur les Maladies Infectieuses Transmissibles et Emergentes (URMITE), CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Amira Ben Amara
- Aix-Marseille University, Unité de Recherche sur les Maladies Infectieuses Transmissibles et Emergentes (URMITE), CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Céline Chartier
- Aix-Marseille University, Unité de Recherche sur les Maladies Infectieuses Transmissibles et Emergentes (URMITE), CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Eya Ben Azzouz
- Aix-Marseille University, Unité de Recherche sur les Maladies Infectieuses Transmissibles et Emergentes (URMITE), CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Eric Chabrière
- Aix-Marseille University, Unité de Recherche sur les Maladies Infectieuses Transmissibles et Emergentes (URMITE), CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Mohamed Amri
- Laboratoire de Neurophysiologie Fonctionnelle et Pathologies UR/11ES09, FST Campus Universitaire, 2092, El Manar Tunis, Tunisie
| | - Jean-Louis Mege
- Aix-Marseille University, Unité de Recherche sur les Maladies Infectieuses Transmissibles et Emergentes (URMITE), CNRS 7278, IRD 198, INSERM 1095, Marseille, France.
| |
Collapse
|
23
|
Belvisi MG, Baker K, Malloy N, Raemdonck K, Dekkak B, Pieper M, Nials AT, Birrell MA. Modelling the asthma phenotype: impact of cigarette smoke exposure. Respir Res 2018; 19:89. [PMID: 29747661 PMCID: PMC5946402 DOI: 10.1186/s12931-018-0799-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/29/2018] [Indexed: 12/28/2022] Open
Abstract
Background Asthmatics that are exposed to inhaled pollutants such as cigarette smoke (CS) have increased symptom severity. Approximately 25% of adult asthmatics are thought to be active smokers and many sufferers, especially in the third world, are exposed to high levels of inhaled pollutants. The mechanism by which CS or other airborne pollutants alter the disease phenotype and the effectiveness of treatment in asthma is not known. The aim of this study was to determine the impact of CS exposure on the phenotype and treatment sensitivity of rodent models of allergic asthma. Methods Models of allergic asthma were configured that mimicked aspects of the asthma phenotype and the effect of CS exposure investigated. In some experiments, treatment with gold standard asthma therapies was investigated and end-points such as airway cellular burden, late asthmatic response (LAR) and airway hyper-Reactivity (AHR) assessed. Results CS co-exposure caused an increase in the LAR but interestingly attenuated the AHR. The effectiveness of LABA, LAMA and glucocorticoid treatment on LAR appeared to be retained in the CS-exposed model system. The eosinophilia or lymphocyte burden was not altered by CS co-exposure, nor did CS appear to alter the effectiveness of glucocorticoid treatment. Steroids, however failed to reduce the neutrophilic inflammation in sensitized mice exposed to CS. Conclusions These model data have certain parallels with clinical findings in asthmatics, where CS exposure did not impact the anti-inflammatory efficacy of steroids but attenuated AHR and enhanced symptoms such as the bronchospasm associated with the LAR. These model systems may be utilised to investigate how CS and other airborne pollutants impact the asthma phenotype; providing the opportunity to identify novel targets.
Collapse
Affiliation(s)
- Maria G Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.,Respiratory, Inflammation Autoimmunity RIA IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Katie Baker
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Nicole Malloy
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Kristof Raemdonck
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.,Department of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.,Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450, Porto, Portugal
| | - Bilel Dekkak
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Michael Pieper
- Boehringer Ingelheim Pharma GmbH & Co. KG, Rhein, Germany
| | | | - Mark A Birrell
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK. .,Respiratory, Inflammation Autoimmunity RIA IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden. .,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK.
| |
Collapse
|
24
|
Ween MP, Whittall JJ, Hamon R, Reynolds PN, Hodge SJ. Phagocytosis and Inflammation: Exploring the effects of the components of E-cigarette vapor on macrophages. Physiol Rep 2018; 5:5/16/e13370. [PMID: 28867672 PMCID: PMC5582261 DOI: 10.14814/phy2.13370] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 01/24/2023] Open
Abstract
E‐cigarettes are perceived as harmless; however, evidence of their safety is lacking. New data suggests E‐cigarettes discharge a range of compounds capable of physiological damage to users. We previously established that cigarette smoke caused defective alveolar macrophage phagocytosis. The present study compared the effect E‐cigarette of components; E‐liquid flavors, nicotine, vegetable glycerine, and propylene glycol on phagocytosis, proinflammatory cytokine secretion, and phagocytic recognition molecule expression using differentiated THP‐1 macrophages. Similar to CSE, phagocytosis of NTHi bacteria was significantly decreased by E‐liquid flavoring (11.65–15.75%) versus control (27.01%). Nicotine also decreased phagocytosis (15.26%). E‐liquid, nicotine, and E‐liquid+ nicotine reduced phagocytic recognition molecules; SR‐A1 and TLR‐2. IL‐8 secretion increased with flavor and nicotine, while TNFα, IL‐1β, IL‐6, MIP‐1α, MIP‐1β, and MCP‐1 decreased after exposure to most flavors and nicotine. PG, VG, or PG:VG mix also induced a decrease in MIP‐1α and MIP‐1β. We conclude that E‐cigarettes can cause macrophage phagocytic dysfunction, expression of phagocytic recognition receptors and cytokine secretion pathways. As such, E‐cigarettes should be treated with caution by users, especially those who are nonsmokers.
Collapse
Affiliation(s)
- Miranda P Ween
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia .,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Jonathan J Whittall
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Rhys Hamon
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Paul N Reynolds
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Sandra J Hodge
- School of Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
25
|
Li Y, Xiao X, Han Y, Gorlova O, Qian D, Leighl N, Johansen JS, Barnett M, Chen C, Goodman G, Cox A, Taylor F, Woll P, Wichmann HE, Manz J, Muley T, Risch A, Rosenberger A, Arnold SM, Haura EB, Bolca C, Holcatova I, Janout V, Kontic M, Lissowska J, Mukeria A, Ognjanovic S, Orlowski TM, Scelo G, Swiatkowska B, Zaridze D, Bakke P, Skaug V, Zienolddiny S, Duell EJ, Butler LM, Houlston R, Soler Artigas M, Grankvist K, Johansson M, Shepherd FA, Marcus MW, Brunnström H, Manjer J, Melander O, Muller DC, Overvad K, Trichopoulou A, Tumino R, Liu G, Bojesen SE, Wu X, Marchand LL, Albanes D, Bickeböller H, Aldrich MC, Bush WS, Tardon A, Rennert G, Teare MD, Field JK, Kiemeney LA, Lazarus P, Haugen A, Lam S, Schabath MB, Andrew AS, Bertazzi PA, Pesatori AC, Christiani DC, Caporaso N, Johansson M, McKay JD, Brennan P, Hung RJ, Amos CI. Genome-wide interaction study of smoking behavior and non-small cell lung cancer risk in Caucasian population. Carcinogenesis 2018; 39:336-346. [PMID: 29059373 PMCID: PMC6248554 DOI: 10.1093/carcin/bgx113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/12/2017] [Indexed: 01/02/2023] Open
Abstract
Non-small cell lung cancer is the most common type of lung cancer. Both environmental and genetic risk factors contribute to lung carcinogenesis. We conducted a genome-wide interaction analysis between single nucleotide polymorphisms (SNPs) and smoking status (never- versus ever-smokers) in a European-descent population. We adopted a two-step analysis strategy in the discovery stage: we first conducted a case-only interaction analysis to assess the relationship between SNPs and smoking behavior using 13336 non-small cell lung cancer cases. Candidate SNPs with P-value <0.001 were further analyzed using a standard case-control interaction analysis including 13970 controls. The significant SNPs with P-value <3.5 × 10-5 (correcting for multiple tests) from the case-control analysis in the discovery stage were further validated using an independent replication dataset comprising 5377 controls and 3054 non-small cell lung cancer cases. We further stratified the analysis by histological subtypes. Two novel SNPs, rs6441286 and rs17723637, were identified for overall lung cancer risk. The interaction odds ratio and meta-analysis P-value for these two SNPs were 1.24 with 6.96 × 10-7 and 1.37 with 3.49 × 10-7, respectively. In addition, interaction of smoking with rs4751674 was identified in squamous cell lung carcinoma with an odds ratio of 0.58 and P-value of 8.12 × 10-7. This study is by far the largest genome-wide SNP-smoking interaction analysis reported for lung cancer. The three identified novel SNPs provide potential candidate biomarkers for lung cancer risk screening and intervention. The results from our study reinforce that gene-smoking interactions play important roles in the etiology of lung cancer and account for part of the missing heritability of this disease.
Collapse
Affiliation(s)
- Yafang Li
- Biomedical Data Science Department, Dartmouth College, Hanover, NH, USA
| | - Xiangjun Xiao
- Biomedical Data Science Department, Dartmouth College, Hanover, NH, USA
| | - Younghun Han
- Biomedical Data Science Department, Dartmouth College, Hanover, NH, USA
| | - Olga Gorlova
- Biomedical Data Science Department, Dartmouth College, Hanover, NH, USA
| | - David Qian
- Biomedical Data Science Department, Dartmouth College, Hanover, NH, USA
| | - Natasha Leighl
- Department of Medicine, The Princess Margaret Cancer Center, University
Health Network, Toronto, ON, Canada
| | - Jakob S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University
Hospital, Copenhagen University, Herlev, Denmark
| | - Matt Barnett
- Public Health Sciences Division, Program in Epidemiology, Fred Hutchinson
Cancer Research Center, Seattle, WA, USA
| | - Chu Chen
- Public Health Sciences Division, Program in Epidemiology, Fred Hutchinson
Cancer Research Center, Seattle, WA, USA
| | - Gary Goodman
- Public Health Sciences Division, Cancer Prevention Program, Swedish Medical
Center, Seattle, WA, USA
| | - Angela Cox
- Department of Oncology, University of Sheffield, Sheffield UK
| | - Fiona Taylor
- Department of Oncology, University of Sheffield, Sheffield UK
| | - Penella Woll
- Department of Oncology, University of Sheffield, Sheffield UK
| | - H -Erich Wichmann
- Institute of Epidemiology, Helmholtz Centre Munich, Neuherberg, Germany
| | - Judith Manz
- Institute of Epidemiology, Helmholtz Centre Munich, Neuherberg, Germany
| | - Thomas Muley
- Biobank and Tumor Documentation, Thoraxklinik at University Hospital
Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German
Center for Lung Research (DZL), Heidelberg, Germany
| | - Angela Risch
- Biobank and Tumor Documentation, Thoraxklinik at University Hospital
Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German
Center for Lung Research (DZL), Heidelberg, Germany
- Cancer Center Cluster Salzburg at PLUS, Department of Molecular Biology,
University of Salzburg, Salzburg, Austria
| | - Albert Rosenberger
- Department of Genetic Epidemiology, Medical School, Georg-August University
of Göttingen, Göttingen, Germany
| | - Susanne M Arnold
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL,
USA
| | - Ciprian Bolca
- Thoracic Surgery Division, “Marius Nasta” National Institute of Pneumology,
București, Romania
| | - Ivana Holcatova
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Vladimir Janout
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Milica Kontic
- Internal Medicine, School of Medicine, Clinical Center of Serbia, University
of Belgrade, Belgrade, Serbia
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Cancer
Center, Institute of Oncology, Warsaw, Pol
| | - Anush Mukeria
- Department of Epidemiology and Prevention, Russian N.N. Blokhin Cancer
Research Centre, Moscow, Russia
| | - Simona Ognjanovic
- International Organization for Cancer Prevention and Research, Belgrade,
Serbia
| | - Tadeusz M Orlowski
- Department of Thoracic Surgery, National Institute of Tuberculosis and Lung
Diseases, Warsaw, Pol
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC), Genetic Epidemiology
Group, Lyon, France
| | - Beata Swiatkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational
Medicine, Łódź, Pol
| | - David Zaridze
- Department of Epidemiology and Prevention, Russian N.N. Blokhin Cancer
Research Centre, Moscow, Russia
| | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Vidar Skaug
- Department of Toxicology, National Institute of Occupational Health, Oslo,
Norway
| | - Shanbeh Zienolddiny
- Department of Toxicology, National Institute of Occupational Health, Oslo,
Norway
| | - Eric J Duell
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research
Programme, Catalan Institute of Oncology (ICO-IDIBELL), Hospitalet de Llobregat, Barcelona,
Spain
| | - Lesley M Butler
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | | - María Soler Artigas
- Department of Health Sciences, Genetic Epidemiology Group, University of
Leicester, Leicester, UK
- Genetic Epidemiology Group, Department of Health Sciences, Leicester
Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | | | - Frances A Shepherd
- Medical Oncology Toronto, Princess Margaret Hospital, Toronto, ON,
Canada
| | - Michael W Marcus
- Department of Molecular and Clinical Cancer Medicine, University of
Liverpool, Liverpool, UK
| | - Hans Brunnström
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jonas Manjer
- Department of Internal Medicine, Skåne University Hospital, Malmö,
Sweden
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö,
Sweden
| | - David C Muller
- Department of Epidemiology and Biostatistics, Imperial College London, St
Mary’s Campus, London, UK
| | - Kim Overvad
- Section for Epidemiology, Department of Public Health, Aarhus University,
Aarhus C, Denmark
| | - Antonia Trichopoulou
- Department of Hygiene and Epidemiology, Medical School, University of Athens,
Athens, Greece
| | - Rosario Tumino
- Molecular and Nutritional Epidemiology Unit, CSPO (Cancer Research and
Prevention Centre), Scientific Institute of Tuscany, Florence, Italy
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, Toronto, ON M5G, Canada
| | - Stig E Bojesen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen
University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen,
Denmark
- Copenhagen General Population Study, Herlev and Gentofte Hospital,
Copenhagen, Denmark
| | - Xifeng Wu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center,
Houston, TX, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI,
USA
| | - Demetrios Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US
National Institutes of Health, Bethesda, MD, USA
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August
University Göttingen, Göttingen, Germany
| | - Melinda C Aldrich
- Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt
University Medical Center, Nashville, TN, USA
| | - William S Bush
- Department of Epidemiology and Biostatistics, School of Medicine, Case
Western Reserve University, Cleveland, OH, USA
| | | | - Gad Rennert
- Technion Faculty of Medicine, Clalit National Cancer Control Center, Carmel
Medical Center, Haifa, Israel
| | - M Dawn Teare
- Genetic Epidemiology, School of Health and Related Research, University of
Sheffield, Sheffield, UK
| | - John K Field
- Institute of Translational Medicine, University of Liverpool, Liverpool,
UK
| | - Lambertus A Kiemeney
- Department for Health Evidence, Radboud University Medical Center, Nijmegen
EZ, Netherlands
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State
University, Spokane, WA, USA
| | - Aage Haugen
- Department of Toxicology, National Institute of Occupational Health, Oslo,
Norway
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre,
Vancouver, BC, Canada
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research
Institute, Tampa, FL, USA
| | - Angeline S Andrew
- Department of Epidemiology, Norris Cotton Cancer Center, Dartmouth College,
Hanover, NH, USA
| | - Pier Alberto Bertazzi
- Department of Preventive Medicine, IRCCS Foundation Cà Granda Ospedale,
Maggiore Policlinico, University of Milan, Milan, Italy
- Department of Clinical Sciences and Community Health–DISCCO, University of
Milan, Milan, Italy
| | - Angela C Pesatori
- Department of Clinical Sciences and Community Health–DISCCO, University of
Milan, Milan, Italy
| | - David C Christiani
- Department of Epidemiology, Harvard School of Public Health, Boston, MA,
USA
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US
National Institutes of Health, Bethesda, MD, USA
| | - Mattias Johansson
- International Agency for Research on Cancer, World Health Organization, Lyon,
France
| | - James D McKay
- International Agency for Research on Cancer (IARC), Genetic Epidemiology
Group, Lyon, France
| | - Paul Brennan
- International Agency for Research on Cancer, World Health Organization, Lyon,
France
| | - Rayjean J Hung
- Division of Epidemiology, Dalla Lana School of Public Health, University of
Toronto, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | | |
Collapse
|
26
|
Dysregulated Functions of Lung Macrophage Populations in COPD. J Immunol Res 2018; 2018:2349045. [PMID: 29670919 PMCID: PMC5835245 DOI: 10.1155/2018/2349045] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/29/2017] [Indexed: 01/02/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a diverse respiratory disease characterised by bronchiolitis, small airway obstruction, and emphysema. Innate immune cells play a pivotal role in the disease's progression, and in particular, lung macrophages exploit their prevalence and strategic localisation to orchestrate immune responses. To date, alveolar and interstitial resident macrophages as well as blood monocytes have been described in the lungs of patients with COPD contributing to disease pathology by changes in their functional repertoire. In this review, we summarise recent evidence from human studies and work with animal models of COPD with regard to altered functions of each of these myeloid cell populations. We primarily focus on the dysregulated capacity of alveolar macrophages to secrete proinflammatory mediators and proteases, induce oxidative stress, engulf microbes and apoptotic cells, and express surface and intracellular markers in patients with COPD. In addition, we discuss the differences in the responses between alveolar macrophages and interstitial macrophages/monocytes in the disease and propose how the field should advance to better understand the implications of lung macrophage functions in COPD.
Collapse
|
27
|
Oliveira da Silva C, Monte-Alto-Costa A, Renovato-Martins M, Viana Nascimento FJ, Dos Santos Valença S, Lagente V, Pôrto LC, Victoni T. Time Course of the Phenotype of Blood and Bone Marrow Monocytes and Macrophages in the Lung after Cigarette Smoke Exposure In Vivo. Int J Mol Sci 2017; 18:ijms18091940. [PMID: 28891938 PMCID: PMC5618589 DOI: 10.3390/ijms18091940] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 12/20/2022] Open
Abstract
Alveolar macrophages play a central role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Monocytes are recruited from blood during inflammation and then mature into alveolar macrophages. The aim of this study was to investigate the effect of cigarette smoke (CS) at different times in lung macrophages and monocytes from blood and bone marrow in mice. Male mice (C57BL/6, n = 45) were divided into groups: control, CS 5 days, CS 14 days and CS 30 days. Five days’ CS exposure induced a pronounced influx of neutrophils and macrophages in the lung associated with increased levels of keratinocyte chemoattractant (KC), tumor necrosis factor-α (TNF-α), nitric oxide (NO) and matrix metalloproteinase (MMP)-12. After 14 days of CS exposure, neutrophil recruitment and cytokine production were greatly reduced. Moreover, chronic CS exposure led to increased recruitment of macrophages (with high expression of CD206), transforming growth factor-β (TGF-β) production as well as no detection of TNF-α, interleukin (IL)-6 and KC. CS can also change the monocyte phenotype in the blood and bone marrow, with an increase in Ly6Clow cells. These results show for the first time that CS can change not only macrophage polarization but also monocyte. These results suggest that continued recruitment of Ly6Clow monocytes may help the distinct renewing macrophage M2 population required for COPD progression.
Collapse
Affiliation(s)
- Camila Oliveira da Silva
- Laboratório e Histocompatibilidade e Criopreservação, HLA/Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20950-000, Brazil.
| | - Andréa Monte-Alto-Costa
- Laboratório de Reparo Tecidual, DHE/IBRAG/Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20950-003, Brazil.
| | - Mariana Renovato-Martins
- Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20551-030, Brazil.
| | - Filipe Jorge Viana Nascimento
- Laboratório e Histocompatibilidade e Criopreservação, HLA/Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20950-000, Brazil.
| | - Samuel Dos Santos Valença
- Laboratório de Biologia Redox, ICB/Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Vincent Lagente
- Nutrition, Métabolismes et Cancer, NUMECAN Unité, Institut national de la santé et de la recherche médicale, INSERM 1241/Institut national de la recherche agronomique, INRA 1341/Université de Rennes 1, 35000 Rennes, France.
| | - Luís Cristóvão Pôrto
- Laboratório e Histocompatibilidade e Criopreservação, HLA/Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20950-000, Brazil.
| | - Tatiana Victoni
- Laboratório e Histocompatibilidade e Criopreservação, HLA/Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20950-000, Brazil.
- Nutrition, Métabolismes et Cancer, NUMECAN Unité, Institut national de la santé et de la recherche médicale, INSERM 1241/Institut national de la recherche agronomique, INRA 1341/Université de Rennes 1, 35000 Rennes, France.
| |
Collapse
|
28
|
Zhou X, Gu D, Hou G. Erythromycin attenuates metalloprotease/anti-metalloprotease imbalance in cigarette smoke-induced emphysema in rats via the mitogen-activated protein kinase/nuclear factor-κB activation pathway. Mol Med Rep 2017; 15:2983-2990. [PMID: 28358431 PMCID: PMC5428383 DOI: 10.3892/mmr.2017.6416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/31/2017] [Indexed: 01/16/2023] Open
Abstract
The present study investigated whether erythromycin (ERY) reduces cigarette smoke (CS)-induced emphysema in rats and aimed to determine the anti-inflammatory effect of ERY, which may identify potential treatments for chronic obstructive pulmonary disease. Furthermore, the current study focused on the potential effects on the imbalance between matrix metalloprotease (MMP) and anti-MMP activity, the phosphorylation of mitogen-activated protein kinases (MAPKs) and the nuclear factor‑κB (NF‑κB) signaling pathway. Wistar rats were divided into the following three groups (n=12 each): control (ERY vehicle only, without any CS exposure), CS (animals were exposed to CS for 12 weeks) and CS + ERY (animals were exposed to CS for 12 weeks and received 100 mg/kg/day ERY). The recruitment of inflammatory cells into the bronchoalveolar lavage fluid (BALF) and the histopathology of lung tissue from all groups was evaluated to grade the severity of the emphysema. The expression of MMP‑2, MMP‑9 and tissue inhibitor of metalloproteinase‑1 was evaluated by immunohistochemistry and western blotting. The activation of MAPKs, NF‑κB and inhibitor of NF‑κB (IκBα), in lung tissues was examined by western blotting. Treatment with ERY resulted in fewer inflammatory cells and cytokines in the BALF, and fewer emphysema‑associated changes in the lungs compared with control. The stimulus of CS promoted the phosphorylation of extracellular signal‑regulated kinase (ERK)1/2 and p38, but not c‑Jun NH2‑terminal kinase, thereby inducing the activation of the ERK/MAPK signaling pathway in rats. Furthermore, CS exposure increased the expression of NF-κB and decreased the expression of IκBα. The levels of phosphorylated ERK1/2 and p38 were significantly reduced in rats with CS‑induced emphysema when treated with ERY compared with the CS group. The results of the present study therefore indicate that oral administration of ERY may suppress CS‑induced emphysema by regulating inflammatory cytokines and the MMP/anti-MMP imbalance via the MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Department of Respiratory Medicine, The Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Dongxue Gu
- Department of Respiratory Medicine, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Gang Hou
- The Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
29
|
Wu W, Zhang W, Booth JL, Hutchings DC, Wang X, White VL, Youness H, Cross CD, Zou MH, Burian D, Metcalf JP. Human primary airway epithelial cells isolated from active smokers have epigenetically impaired antiviral responses. Respir Res 2016; 17:111. [PMID: 27604339 PMCID: PMC5013564 DOI: 10.1186/s12931-016-0428-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/02/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cigarette smoking (CS) is the main risk factor for the development of chronic obstructive pulmonary disease (COPD) and most COPD exacerbations are caused by respiratory infections including influenza. Influenza infections are more severe in smokers. The mechanism of the increased risk and severity of infections in smokers is likely multifactorial, but certainly includes changes in immunologic host defenses. METHODS We investigated retinoic acid-inducible protein I (RIG-I) and interferon (IFN) induction by influenza A virus (IAV) in human bronchial epithelial cells (HBEC) isolated from smokers or nonsmokers. Subcultured HBEC cells were infected with A/Puerto Rico/8/1934 (PR8) IAV at an MOI of 1. After 24 h of infection, cells and supernatants were collected for qRT-PCR, immunoblot or ELISA to determine RIG-I, Toll-like receptor3 (TLR3) and IFN expression levels. RESULTS IAV exposure induced a vigorous IFN-β, IFN-λ 1 and IFN-λ 2/3 antiviral response in HBEC from nonsmokers and significant induction of RIG-I and TLR3. In cells from smokers, viral RIG-I and TLR3 mRNA induction was reduced 87 and 79 % compared to the response from nonsmokers. CS exposure history was associated with inhibition of viral induction of the IFN-β, IFN-λ1 and IFN-λ 2/3 mRNA response by 85, 96 and 95 %, respectively, from that seen in HBEC from nonsmokers. The demethylating agent 5-Aza-2-deoxycytidine reversed the immunosuppressive effects of CS exposure in HBEC since viral induction of all three IFNs was restored. IFN-β induction of RIG-I and TLR3 was also suppressed in the cells from smokers. CONCLUSION Our results suggest that active smoking reduces expression of antiviral cytokines in primary HBEC cells. This effect likely occurs via downregulation of RIG-I and TLR3 due to smoke-induced epigenetic modifications. Reduction in lung epithelial cell RIG-I and TLR3 responses may be a major mechanism contributing to the increased risk and severity of viral respiratory infections in smokers and to viral-mediated acute exacerbations of COPD.
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wei Zhang
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J Leland Booth
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Xiaoqiu Wang
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vicky L White
- Civil Aerospace Medical Institute, Federal Aviation Administration, Oklahoma City, OK, USA
| | - Houssein Youness
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Cory D Cross
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ming-Hui Zou
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Dennis Burian
- Civil Aerospace Medical Institute, Federal Aviation Administration, Oklahoma City, OK, USA
| | - Jordan P Metcalf
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
30
|
Sanei F, Wilkinson T. Influenza vaccination for patients with chronic obstructive pulmonary disease: understanding immunogenicity, efficacy and effectiveness. Ther Adv Respir Dis 2016; 10:349-67. [PMID: 27193567 DOI: 10.1177/1753465816646050] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Influenza infection is an important cause of global mortality and morbidity with the greatest impact on older people and those with chronic disease. Patients with chronic obstructive pulmonary disease (COPD) are particularly vulnerable to influenza, with evidence for increased incidence and severity of infection. In this patient group influenza is associated with exacerbations and pneumonia which result in a significant healthcare burden and premature mortality. Influenza vaccination and in particular the use of the seasonal trivalent influenza vaccine (TIV) is recommended for patients with COPD. The evidence base for its effects in this population is, however, limited. Available data suggest that immunogenicity is variable in COPD but the underlying mechanisms are not completely understood. The contribution of age, disease severity, comorbidity and treatments to vaccine responses has only been investigated in a limited manner. Existing data suggest that key immune mechanisms governing T- and B-cell responses are adversely affected by these factors. The efficacy of TIV has been studied in a number of small clinical trials which form the basis of a Cochrane review. Here evidence for effect is conflicting depending on individual trial design and inclusions. Overall, TIV offers protection against influenza infection in the trial setting but further studies are required to stratify patients and enable prediction of inadequate responses. Larger-scale clinical studies have largely been observational and have often been conducted in consort with pneumonia vaccination. Overall the mortality benefit of TIV in COPD is suggested by a number studies but the impact on exacerbation prevention is less clear. Influenza vaccination currently plays an important role in disease prevention in COPD. However, we postulate that a more in-depth understanding of mechanisms of response in the context of a highly heterogeneous disease will lead to a more informed approach to vaccination and greater benefit for the individual patient.
Collapse
Affiliation(s)
- Farzaneh Sanei
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| | - Tom Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Mailpoint 810, Level F, South Block, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|
31
|
Lau WKW, Cui LY, Chan SCH, Ip MSM, Mak JCW. The presence of serotonin in cigarette smoke – a possible mechanistic link to 5-HT-induced airway inflammation. Free Radic Res 2016; 50:495-502. [DOI: 10.3109/10715762.2016.1145355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
Guo L, Wang T, Wu Y, Yuan Z, Dong J, Li X, An J, Liao Z, Zhang X, Xu D, Wen FQ. WNT/β-catenin signaling regulates cigarette smoke-induced airway inflammation via the PPARδ/p38 pathway. J Transl Med 2016; 96:218-29. [PMID: 26322419 DOI: 10.1038/labinvest.2015.101] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/18/2015] [Accepted: 05/05/2015] [Indexed: 02/05/2023] Open
Abstract
The mechanisms of WNT/β-catenin signaling involved in airway inflammation of chronic obstructive pulmonary disease (COPD) remain unknown, although recent observations have suggested an important contribution of the pathway in pulmonary parenchymal tissue repair and airway epithelium differentiation. We investigated the role of WNT/β-catenin signaling in cigarette smoke (CS)-related airway inflammation using patient lung tissues, human bronchial epithelial cells (16HBECs), and mouse models. Reduced activity of WNT/β-catenin signaling was observed in the airway epithelium of smokers with or without COPD. The mRNA expression of WNT transcription factor TCF4 negatively correlated with the pack year. The mRNA levels of WNT receptor FZD4 negatively correlated with the mRNA levels of IL-1β. CS exposure decreased the activity of WNT/β-catenin signaling in both 16HBECs and mice. In vitro studies demonstrated the upregulation of inflammatory cytokines TNF-α and IL-1β secretion induced by CS extract (CSE) could be attenuated by β-catenin activator SB216763 and be exacerbated by β-catenin small-interfering RNA (siRNA), respectively. Furthermore, the decrease in the expression of peroxisome proliferator-activated receptor (PPARδ) induced by CSE stimulation could be rescued by SB216763. SB216763 also attenuated the upregulation of phosphorylated p38 mitogen-activated protein kinase (MAPK) stimulated by CSE. Both PPARδ agonist and p38 MAPK inhibitor could suppress the TNF-α and IL-1β release induced by CSE treatment. In addition, PPARδ activation could abolish β-catenin siRNA-mediated aggravation of phosphorylated p38 MAPK in response to CSE. Finally, SB216763 treatment significantly ameliorated peribronchial inflammatory cell infiltration, leukocyte influx, and the release of TNF-α and IL-1β in the bronchoalveolar lavage fluid of CS-exposed mice. Taken together, our findings indicate that the reduced activity of WNT/β-catenin signaling induced by CS may promote inflammatory cytokine production in airway epithelium and have an essential role in airway inflammation in COPD by PPARδ/p38 MAPK pathway.
Collapse
Affiliation(s)
- Lingli Guo
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Tao Wang
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yanqiu Wu
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Zhicheng Yuan
- Department of Biological Science, College of Life Science, Sichuan University, Chengdu, China
| | - Jiajia Dong
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xiao'ou Li
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jing An
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Zenglin Liao
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xue Zhang
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Dan Xu
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Fu-Qiang Wen
- Division of Pulmonary Diseases, Department of Respiratory Medicine, State Key Laboratory of Biotherapy of China, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Induction of thioredoxin reductase 1 by crotonaldehyde as an adaptive mechanism in human endothelial cells. Mol Cell Toxicol 2016. [DOI: 10.1007/s13273-015-0046-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
Birrell MA, Maher SA, Dekkak B, Jones V, Wong S, Brook P, Belvisi MG. Anti-inflammatory effects of PGE2 in the lung: role of the EP4 receptor subtype. Thorax 2015; 70:740-7. [PMID: 25939749 PMCID: PMC4516010 DOI: 10.1136/thoraxjnl-2014-206592] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/16/2015] [Accepted: 03/12/2015] [Indexed: 01/23/2023]
Abstract
BACKGROUND Asthma and chronic obstructive pulmonary disease (COPD) are chronic inflammatory diseases of the airway. Current treatment options (long acting β-adrenoceptor agonists and glucocorticosteroids) are not optimal as they are only effective in certain patient groups and safety concerns exist regarding both compound classes. Therefore, novel bronchodilator and anti-inflammatory strategies are being pursued. Prostaglandin E2 (PGE2) is an arachidonic acid-derived eicosanoid produced by the lung which acts on four different G-protein coupled receptors (EP1-4) to cause an array of beneficial and deleterious effects. The aim of this study was to identify the EP receptor mediating the anti-inflammatory actions of PGE2 in the lung using a range of cell-based assays and in vivo models. METHODS AND RESULTS It was demonstrated in three distinct model systems (innate stimulus, lipopolysaccharide (LPS); allergic response, ovalbumin (OVA); inhaled pollutant, cigarette smoke) that mice missing functional EP4 (Ptger4(-/-)) receptors had higher levels of airway inflammation, suggesting that endogenous PGE2 was suppressing inflammation via EP4 receptor activation. Cell-based assay systems (murine and human monocytes/alveolar macrophages) demonstrated that PGE2 inhibited cytokine release from LPS-stimulated cells and that this was mimicked by an EP4 (but not EP1-3) receptor agonist and inhibited by an EP4 receptor antagonist. The anti-inflammatory effect occurred at the transcriptional level and was via the adenylyl cyclase/cAMP/ cAMP-dependent protein kinase (PKA) axis. CONCLUSION This study demonstrates that EP4 receptor activation is responsible for the anti-inflammatory activity of PGE2 in a range of disease relevant models and, as such, could represent a novel therapeutic target for chronic airway inflammatory conditions.
Collapse
Affiliation(s)
- Mark A Birrell
- Faculty of Medicine, Department of Respiratory Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
- MRC-Asthma UK Centre in Allergic Mechanisms of Asthma
| | - Sarah A Maher
- Faculty of Medicine, Department of Respiratory Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Bilel Dekkak
- Faculty of Medicine, Department of Respiratory Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Victoria Jones
- Faculty of Medicine, Department of Respiratory Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Sissie Wong
- Faculty of Medicine, Department of Respiratory Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter Brook
- Faculty of Medicine, Department of Respiratory Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Maria G Belvisi
- Faculty of Medicine, Department of Respiratory Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
- MRC-Asthma UK Centre in Allergic Mechanisms of Asthma
| |
Collapse
|
35
|
Lee SE, Yang H, Son GW, Park HR, Jin YH, Park CS, Park YS. Crotonaldehyde-exposed macrophages induce heme oxygenase-1 expression as an adaptive mechanism. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0015-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Vallese D, Ricciardolo FLM, Gnemmi I, Casolari P, Brun P, Sorbello V, Capelli A, Cappello F, Cavallesco GN, Papi A, Chung KF, Balbi B, Adcock IM, Caramori G, Di Stefano A. Phospho-p38 MAPK expression in COPD patients and asthmatics and in challenged bronchial epithelium. Respiration 2015; 89:329-42. [PMID: 25791156 DOI: 10.1159/000375168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 01/02/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The role of mitogen-activated protein kinases (MAPK) in regulating the inflammatory response in the airways of patients with chronic obstructive pulmonary disease (COPD) and asthmatic patients is unclear. OBJECTIVES To investigate the expression of activated MAPK in lungs of COPD patients and in bronchial biopsies of asthmatic patients and to study MAPK expression in bronchial epithelial cells in response to oxidative and inflammatory stimuli. METHODS Immunohistochemical expression of phospho (p)-p38 MAPK, p-JNK1 and p-ERK1/2 was measured in bronchial mucosa in patients with mild/moderate (n = 17), severe/very severe (n = 16) stable COPD, control smokers (n = 16), control non-smokers (n = 9), in mild asthma (n = 9) and in peripheral airways from COPD patients (n = 15) and control smokers (n = 15). Interleukin (IL)-8 and MAPK mRNA was measured in stimulated 16HBE cells. RESULTS No significant differences in p-p38 MAPK, p-JNK or p-ERK1/2 expression were seen in bronchial biopsies and peripheral airways between COPD and control subjects. Asthmatics showed increased submucosal p-p38 MAPK expression compared to COPD patients (p < 0.003) and control non-smokers (p < 0.05). Hydrogen peroxide (H₂O₂), cytomix (tumour necrosis factor-α + IL-1β + interferon-γ) and lipopolysaccharide (LPS) upregulated IL-8 mRNA at 1 or 2 h. p38 MAPKα mRNA was significantly increased after H₂O₂ and LPS treatment. JNK1 and ERK1 mRNA were unchanged after H₂O₂, cytomix or LPS treatments. CONCLUSION p-p38 MAPK expression is similar in stable COPD and control subjects but increased in the bronchi of mild asthmatics compared to stable COPD patients. p38 MAPK mRNA is increased after bronchial epithelial challenges in vitro. These data together suggest a potential role for this MAPK in Th2 inflammation and possibly during COPD exacerbations.
Collapse
Affiliation(s)
- Davide Vallese
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardiorespiratorio, Fondazione Salvatore Maugeri, IRCCS, Veruno, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Khorasani N, Baker J, Johnson M, Chung KF, Bhavsar PK. Reversal of corticosteroid insensitivity by p38 MAPK inhibition in peripheral blood mononuclear cells from COPD. Int J Chron Obstruct Pulmon Dis 2015; 10:283-91. [PMID: 25678784 PMCID: PMC4322842 DOI: 10.2147/copd.s72403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Corticosteroids (CS) have limited efficacy in the treatment of chronic obstructive pulmonary disease (COPD). p38 mitogen-activated protein kinase (MAPK) activation is increased in lung macrophages of COPD. We investigated whether p38 MAPK inhibition can modulate CS insensitivity of peripheral blood mononuclear cells (PBMCs) from patients with COPD. METHODS PBMCs from patients with COPD (n=8) or healthy smokers (n=8) were exposed to lipopolysaccharide (LPS) with a selective p38 MAPK inhibitor (GW856553; 10(-10)-10(-6) M), with dexamethasone (10(-10)-10(-6) M), or with both. Phosphorylated glucocorticoid receptor (GR) was measured by Western blot. RESULTS Baseline (P<0.01) and LPS-induced (P<0.05) CXCL8 release was greater in PBMCs from COPD compared to healthy smokers. Inhibition of LPS-induced CXCL8 release by dexamethasone (10(-6) M) was reduced, and baseline and LPS-induced p38 MAPK activation increased in PBMCs of COPD. GW856553 (10(-9) and 10(-10) M) synergistically increased the inhibitory effect of dexamethasone (10(-8) and 10(-6) M) on LPS-induced CXCL8 release in COPD. Similar results were obtained for IL-6 release. GW856553 inhibited dexamethasone- and LPS-activated phosphorylation of serine 211 on GR. CS insensitivity in COPD PBMCs is reversed by inhibition of p38 MAPK activity, partly by preventing phosphorylation of GR at serine 211. CONCLUSION p38 MAPK inhibition may be beneficial in COPD by restoring CS sensitivity.
Collapse
Affiliation(s)
- Nadia Khorasani
- Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust Hospital, London, UK
| | - Josephine Baker
- Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust Hospital, London, UK
| | | | - Kian Fan Chung
- Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust Hospital, London, UK
| | - Pankaj K Bhavsar
- Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust Hospital, London, UK
| |
Collapse
|
38
|
Ross CL, Galloway-Phillipps N, Armstrong PC, Mitchell JA, Warner TD, Brearley C, Ito M, Tunstall T, Elkin S, Kon OM, Hansel TT, Paul-Clark MJ. Protocol for a human in vivo model of acute cigarette smoke inhalation challenge in smokers with COPD: monitoring the nasal and systemic immune response using a network biology approach. BMJ Open 2015; 5:e005750. [PMID: 25631307 PMCID: PMC4316420 DOI: 10.1136/bmjopen-2014-005750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Cigarette smoke contributes to a diverse range of diseases including chronic obstructive pulmonary disease (COPD), cardiovascular disorders and many cancers. There currently is a need for human challenge models, to assess the acute effects of a controlled cigarette smoke stimulus, followed by serial sampling of blood and respiratory tissue for advanced molecular profiling. We employ precision sampling of nasal mucosal lining fluid by absorption to permit soluble mediators measurement in eluates. Serial nasal curettage was used for transcriptomic analysis of mucosal tissue. METHODS AND ANALYSIS Three groups of strictly defined patients will be studied: 12 smokers with COPD (GOLD Stage 2) with emphysema, 12 matched smokers with normal lung function and no evidence of emphysema, and 12 matched never smokers with normal spirometry. Patients in the smoking groups are current smokers, and will be given full support to stop smoking immediately after this study. In giving a controlled cigarette smoke stimulus, all patients will have abstained from smoking for 12 h, and will smoke two cigarettes with expiration through the nose in a ventilated chamber. Before and after inhalation of cigarette smoke, a series of samples will be taken from the blood, nasal mucosal lining fluid and nasal tissue by curettage. Analysis of plasma nicotine and metabolites in relation to levels of soluble inflammatory mediators in nasal lining fluid and blood, as well as assessing nasal transcriptomics, ex vivo blood platelet aggregation and leucocyte responses to toll-like receptor agonists will be undertaken. IMPLICATIONS Development of acute cigarette smoke challenge models has promise for the study of molecular effects of smoking in a range of pathological processes. ETHICS AND DISSEMINATION This study was approved by the West London National Research Ethics Committee (12/LO/1101). The study findings will be presented at conferences and will be reported in peer-reviewed journals.
Collapse
Affiliation(s)
- Clare L Ross
- Imperial Clinical Respiratory Research Unit (ICRRU) and Biomedical Research Centre (BMRC), Centre for Respiratory Infection (CRI), St Mary's Hospital, Imperial College, London, UK
| | | | - Paul C Armstrong
- William Harvey Research Institute, Barts and The London, Queen Mary's School of Medicine and Dentistry, London, UK
| | - Jane A Mitchell
- National Heart and Lung Institute, Imperial College, London, UK
| | - Timothy D Warner
- William Harvey Research Institute, Barts and The London, Queen Mary's School of Medicine and Dentistry, London, UK
| | | | - Mari Ito
- Dainippon Sumitomo Pharma Co Ltd, Osaka, Japan
- Department of Molecular Regulation for intractable Diseases, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Tanushree Tunstall
- Imperial Clinical Respiratory Research Unit (ICRRU) and Biomedical Research Centre (BMRC), Centre for Respiratory Infection (CRI), St Mary's Hospital, Imperial College, London, UK
| | - Sarah Elkin
- Imperial Clinical Respiratory Research Unit (ICRRU) and Biomedical Research Centre (BMRC), Centre for Respiratory Infection (CRI), St Mary's Hospital, Imperial College, London, UK
| | - Onn Min Kon
- Imperial Clinical Respiratory Research Unit (ICRRU) and Biomedical Research Centre (BMRC), Centre for Respiratory Infection (CRI), St Mary's Hospital, Imperial College, London, UK
| | - Trevor T Hansel
- Imperial Clinical Respiratory Research Unit (ICRRU) and Biomedical Research Centre (BMRC), Centre for Respiratory Infection (CRI), St Mary's Hospital, Imperial College, London, UK
| | | |
Collapse
|
39
|
Arimilli S, Damratoski BE, G L P. Methods to evaluate cytotoxicity and immunosuppression of combustible tobacco product preparations. J Vis Exp 2015:52351. [PMID: 25650834 PMCID: PMC4354515 DOI: 10.3791/52351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Among other pathophysiological changes, chronic exposure to cigarette smoke causes inflammation and immune suppression, which have been linked to increased susceptibility of smokers to microbial infections and tumor incidence. Ex vivo suppression of receptor-mediated immune responses in human peripheral blood mononuclear cells (PBMCs) treated with smoke constituents is an attractive approach to study mechanisms and evaluate the likely long-term effects of exposure to tobacco products. Here, we optimized methods to perform ex vivo assays using PBMCs stimulated by bacterial lipopolysaccharide, a Toll-like receptor-4 ligand. The effects of whole smoke-conditioned medium (WS-CM), a combustible tobacco product preparation (TPP), and nicotine were investigated on cytokine secretion and target cell killing by PBMCs in the ex vivo assays. We show that secreted cytokines IFN-γ, TNF, IL-10, IL-6, and IL-8 and intracellular cytokines IFN-γ, TNF-α, and MIP-1α were suppressed in WS-CM-exposed PBMCs. The cytolytic function of effector PBMCs, as determined by a K562 target cell killing assay was also reduced by exposure to WS-CM; nicotine was minimally effective in these assays. In summary, we present a set of improved assays to evaluate the effects of TPPs in ex vivo assays, and these methods could be readily adapted for testing other products of interest.
Collapse
Affiliation(s)
- Subhashini Arimilli
- Department of Microbiology and Immunology, Wake Forest University Health Sciences;
| | - Brad E Damratoski
- Department of Microbiology and Immunology, Wake Forest University Health Sciences
| | - Prasad G L
- R&D Department, R.J. Reynolds Tobacco Company
| |
Collapse
|
40
|
Baxter M, Eltom S, Dekkak B, Yew-Booth L, Dubuis ED, Maher SA, Belvisi MG, Birrell MA. Role of transient receptor potential and pannexin channels in cigarette smoke-triggered ATP release in the lung. Thorax 2014; 69:1080-9. [PMID: 25301060 DOI: 10.1136/thoraxjnl-2014-205467] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND COPD is an inflammatory disease usually associated with cigarette smoking (CS) with an increasing global prevalence and no effective medication. Extracellular ATP is increased in the COPD affected lung and may play a key role in driving CS-induced airway inflammation, but the mechanism involved in ATP release has eluded researchers. Recently, the transient receptor potential (TRP) and pannexin-1 channels have been suggested to play a role in other experimental paradigms. Thus, the aim of this work is to investigate if these channels are involved in CS-induced ATP release in the lung. METHODS Primary human cells were exposed to CS and extracellular ATP levels measured. Mice were exposed to mainstream CS and airway inflammation assessed. TRPV1/4 mRNA expression was assessed in human lung parenchyma. RESULTS CS exposure caused a dose-related increase in ATP from primary airway bronchial epithelial cells. This was attenuated by blockers of TRPV1, TRPV4 and pannexin-1 channels. Parallel data was obtained using murine acute CS-driven model systems. Finally, TRPV1/4 mRNA expression was increased in lung tissue samples from patients with COPD. CONCLUSIONS Extracellular ATP is increased in the COPD affected lung and may play a key role in driving disease pathophysiology. These experiments uncover a novel mechanism which may be responsible for CS-induced ATP release. These findings highlight novel targets that could lead to the development of medicine to treat this devastating disease.
Collapse
Affiliation(s)
- Matthew Baxter
- Respiratory Pharmacology, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Suffwan Eltom
- Respiratory Pharmacology, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Bilel Dekkak
- Respiratory Pharmacology, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Liang Yew-Booth
- Respiratory Pharmacology, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Eric D Dubuis
- Respiratory Pharmacology, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Sarah A Maher
- Respiratory Pharmacology, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Maria G Belvisi
- Respiratory Pharmacology, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Mark A Birrell
- Respiratory Pharmacology, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
41
|
Vlahos R, Bozinovski S. Role of alveolar macrophages in chronic obstructive pulmonary disease. Front Immunol 2014; 5:435. [PMID: 25309536 PMCID: PMC4160089 DOI: 10.3389/fimmu.2014.00435] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/26/2014] [Indexed: 11/13/2022] Open
Abstract
Alveolar macrophages (AMs) represent a unique leukocyte population that responds to airborne irritants and microbes. This distinct microenvironment coordinates the maturation of long-lived AMs, which originate from fetal blood monocytes and self-renew through mechanisms dependent on GM-CSF and CSF-1 signaling. Peripheral blood monocytes can also replenish lung macrophages; however, this appears to occur in a stimuli specific manner. In addition to mounting an appropriate immune response during infection and injury, AMs actively coordinate the resolution of inflammation through efferocytosis of apoptotic cells. Any perturbation of this process can lead to deleterious responses. In chronic obstructive pulmonary disease (COPD), there is an accumulation of airway macrophages that do not conform to the classic M1/M2 dichotomy. There is also a skewed transcriptome profile that favors expression of wound-healing M2 markers, which is reflective of a deficiency to resolve inflammation. Endogenous mediators that can promote an imbalance in inhibitory M1 vs. healing M2 macrophages are discussed, as they are the plausible mechanisms underlying why AMs fail to effectively resolve inflammation and restore normal lung homeostasis in COPD.
Collapse
Affiliation(s)
- Ross Vlahos
- Department of Pharmacology and Therapeutics, Lung Health Research Centre, The University of Melbourne , Parkville, VIC , Australia
| | - Steven Bozinovski
- Department of Pharmacology and Therapeutics, Lung Health Research Centre, The University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
42
|
Ji J, von Schéele I, Bergström J, Billing B, Dahlén B, Lantz AS, Larsson K, Palmberg L. Compartment differences of inflammatory activity in chronic obstructive pulmonary disease. Respir Res 2014; 15:104. [PMID: 25155252 PMCID: PMC4243731 DOI: 10.1186/s12931-014-0104-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/19/2014] [Indexed: 01/20/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is associated with local and systemic inflammation. The knowledge of interaction and co-variation of the inflammatory responses in different compartments is meagre. Method Healthy controls (n = 23), smokers with (n = 28) and without (n = 29) COPD performed spirometry and dental examinations. Saliva, induced sputum, bronchoalveolar lavage (BAL) fluid and serum were collected. Inflammatory markers were assessed in all compartments using ELISA, flow cytometry and RT-PCR. Results Negative correlations between lung function and saliva IL-8 and matrix metalloproteinase-9 (MMP-9) were found in smokers with COPD. IL-8 and MMP-9 in saliva correlated positively with periodontal disease as assessed by gingival bleeding in non-smokers. Tumor necrosis factor-α (TNF-α) in saliva, serum and TNF-α mRNA expression on macrophages in BAL-fluid were lower in smokers than in non-smokers. There were positive correlations between soluble TNF-α receptor 1 (sTNFR1) and soluble TNF-α receptor 2 (sTNFR2) in sputum, BAL-fluid and serum in all groups. Sputum interleukin-8 (IL-8) or interleukin-6 (IL-6) was positively correlated with sTNFR1 or sTNFR2 in non-smokers and with sTNFR2 in COPD. Conclusion Saliva which is convenient to collect and analyse, may be suitable for biomarker assessment of disease activity in COPD. An attenuated TNF-α expression was demonstrated by both protein and mRNA analyses in different compartments suggesting that TNF-α response is altered in moderate and severe COPD. Shedding of TNFR1 or TNFR2 is similarly regulated irrespective of airflow limitation.
Collapse
Affiliation(s)
- Jie Ji
- Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 171 77, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Moscovis S, Hall S, Burns C, Scott R, Blackwell C. Development of an experimental model for assessing the effects of cigarette smoke and virus infections on inflammatory responses to bacterial antigens. Innate Immun 2014; 20:647-58. [PMID: 24137042 DOI: 10.1177/1753425913503893] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/23/2013] [Indexed: 12/16/2023] Open
Abstract
Interactions among major risk factors associated with bacterial infections were assessed in a model system using surrogates for virus infection; IFN-g, and exposure to cigarette smoke; cigarette smoke extract (CSE), nicotine and cotinine. Cytokine responses elicited by LPS from THP-1 cells in the presence of these components, or combinations of components, were assessed by multiplex bead assay, i.e. IL-1β, IL-6, IL-8, IL-10, TNF-α and IFN-γ. IFN-γ-priming significantly increased pro-inflammatory cytokines induced by LPS. CSE suppressed production of pro-inflammatory cytokines IL-1β, TNF-α and IFN-γ, but enhanced production of IL-8. Nicotine and cotinine suppressed all cytokine responses. In combination, IFN-γ masked the inhibitory effects of CSE. In relation to the objectives of the study, we concluded that (a) IFN-γ at biologically relevant concentrations significantly enhanced pro-inflammatory responses; (b) CSE, nicotine and cotinine dysregulated the inflammatory response and that the effects of CSE were different from those of the individual components, nicotine and cotinine; (c) when both IFN-γ and CSE were present, IFN-γ masked the effect of CSE. There is a need for clinical investigations on the increase in IL-8 responses in relation to exposure to cigarette smoke and increased pro-inflammatory responses in relation to recent viral infection.
Collapse
Affiliation(s)
- Sophia Moscovis
- School of Biomedical Sciences, Faculty of Health, University of Newcastle, Australia Hunter Medical Research Institute, Newcastle, Australia
| | - Sharron Hall
- Hunter Medical Research Institute, Newcastle, Australia Hunter Area Pathology Service Immunology, New Lambton, Australia
| | - Christine Burns
- Hunter Medical Research Institute, Newcastle, Australia Hunter Area Pathology Service Immunology, New Lambton, Australia
| | - Rodney Scott
- School of Biomedical Sciences, Faculty of Health, University of Newcastle, Australia Hunter Medical Research Institute, Newcastle, Australia Human Genetics, John Hunter Hospital, New Lambton, Australia
| | - Caroline Blackwell
- School of Biomedical Sciences, Faculty of Health, University of Newcastle, Australia Hunter Medical Research Institute, Newcastle, Australia
| |
Collapse
|
44
|
Dual anti-oxidant and anti-inflammatory actions of the electrophilic cyclooxygenase-2-derived 17-oxo-DHA in lipopolysaccharide- and cigarette smoke-induced inflammation. Biochim Biophys Acta Gen Subj 2014; 1840:2299-309. [DOI: 10.1016/j.bbagen.2014.02.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/13/2014] [Accepted: 02/24/2014] [Indexed: 01/17/2023]
|
45
|
Metcalfe HJ, Lea S, Hughes D, Khalaf R, Abbott-Banner K, Singh D. Effects of cigarette smoke on Toll-like receptor (TLR) activation of chronic obstructive pulmonary disease (COPD) macrophages. Clin Exp Immunol 2014; 176:461-72. [PMID: 24528166 DOI: 10.1111/cei.12289] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2014] [Indexed: 01/08/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by an abnormal innate immune response. We have investigated the changes in the innate immune response of COPD alveolar macrophages exposed to both cigarette smoke and Toll-like receptor (TLR) stimulation. COPD and control alveolar macrophages were exposed to cigarette smoke extract (CSE) followed by TLR-2, -4 and -5 ligands [Pam3CSK4, lipopolysaccharide (LPS) and phase I flagellin (FliC), respectively] or non-typeable Haemophilus influenzae (NTHi). CSE exposure suppressed TLR-induced tumour necrosis factor (TNF)-α, interleukin (IL)-6, IL-10 and regulated on activation, normal T cell expressed and secreted (RANTES) production in both COPD and control alveolar macrophages, but had no effect on interleukin 8 (CXCL8) production. Similarly, CSE suppressed NTHi-induced TNF-α but not NTHi-induced CXCL8 production in COPD alveolar macrophages. Gene expression analysis showed that CSE suppressed LPS-induced TNF-α transcription but not CXCL8 transcription in COPD alveolar macrophages. The dampening effect of CSE on LPS-induced cytokine production was associated with a reduction in p38, extracellular signal regulated kinase (ERK) and p65 activation. In conclusion, CSE caused a reduced innate immune response in COPD alveolar macrophages, with the exception of persistent CXCL8 production. This could be a mechanism by which alveolar macrophages promote neutrophil chemotaxis under conditions of oxidative stress and bacterial exposure.
Collapse
Affiliation(s)
- H J Metcalfe
- The University of Manchester, Manchester Academic Health Science Centre, University Hospital South Manchester NHS Foundation Trust, NIHR South Manchester Respiratory and Allergy Clinical Research Facility, Manchester, UK
| | | | | | | | | | | |
Collapse
|
46
|
Gross TJ, Powers LS, Boudreau RL, Brink B, Reisetter A, Goel K, Gerke AK, Hassan IH, Monick MM. A microRNA processing defect in smokers' macrophages is linked to SUMOylation of the endonuclease DICER. J Biol Chem 2014; 289:12823-34. [PMID: 24668803 PMCID: PMC4007470 DOI: 10.1074/jbc.m114.565473] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 03/24/2014] [Indexed: 11/06/2022] Open
Abstract
Despite the fact that alveolar macrophages play an important role in smoking-related disease, little is known about what regulates their pathophysiologic phenotype. Evaluating smoker macrophages, we found significant down-regulation of multiple microRNAs (miRNAs). This work investigates the hypothesis that cigarette smoke alters mature miRNA expression in lung macrophages by inhibiting processing of primary miRNA transcripts. Studies on smoker alveolar macrophages showed a defect in miRNA maturation. Studies on the miRNA biogenesis machinery led us to focus on the cytosolic RNA endonuclease, DICER. DICER cleaves the stem-loop structure from pre-miRNAs, allowing them to dissociate into their mature 20-22-nucleotide single-stranded form. DICER activity assays confirmed impaired DICER activity following cigarette smoke exposure. Further protein studies demonstrated a decreased expression of the native 217-kDa form of DICER and an accumulation of high molecular weight forms with cigarette smoke exposure. This molecular mass shift was shown to contain SUMO moieties and could be blocked by silencing RNA directed at the primary SUMOylating ligase, Ubc9. In determining the cigarette smoke components responsible for changes in DICER, we found that N-acetylcysteine, an antioxidant and anti-aldehyde, protected DICER protein and activity from cigarette smoke extract. This massive down-regulation of miRNAs (driven in part by alterations in DICER) may be an important regulator of the disease-promoting macrophage phenotype found in the lungs of smokers.
Collapse
Affiliation(s)
- Thomas J. Gross
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Linda S. Powers
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Ryan L. Boudreau
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Brandi Brink
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Anna Reisetter
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Khushboo Goel
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Alicia K. Gerke
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Ihab H. Hassan
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Martha M. Monick
- From the Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
47
|
Colombo G, Clerici M, Giustarini D, Portinaro NM, Aldini G, Rossi R, Milzani A, Dalle-Donne I. Pathophysiology of tobacco smoke exposure: recent insights from comparative and redox proteomics. MASS SPECTROMETRY REVIEWS 2014; 33:183-218. [PMID: 24272816 DOI: 10.1002/mas.21392] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 06/02/2023]
Abstract
First-hand and second-hand tobacco smoke are causally linked to a huge number of deaths and are responsible for a broad spectrum of pathologies such as cancer, cardiovascular, respiratory, and eye diseases as well as adverse effects on female reproductive function. Cigarette smoke is a complex mixture of thousands of different chemical species, which exert their negative effects on macromolecules and biochemical pathways, both directly and indirectly. Many compounds can act as oxidants, pro-inflammatory agents, carcinogens, or a combination of these. The redox behavior of cigarette smoke has many implications for smoke related diseases. Reactive oxygen and nitrogen species (both radicals and non-radicals), reactive carbonyl compounds, and other species may induce oxidative damage in almost all the biological macromolecules, compromising their structure and/or function. Different quantitative and redox proteomic approaches have been applied in vitro and in vivo to evaluate, respectively, changes in protein expression and specific oxidative protein modifications induced by exposure to cigarette smoke and are overviewed in this review. Many gel-based and gel-free proteomic techniques have already been used successfully to obtain clues about smoke effects on different proteins in cell cultures, animal models, and humans. The further implementation with other sensitive screening techniques could be useful to integrate the comprehension of cigarette smoke effects on human health. In particular, the redox proteomic approach may also help identify biomarkers of exposure to tobacco smoke useful for preventing these effects or potentially predictive of the onset and/or progression of smoking-induced diseases as well as potential targets for therapeutic strategies.
Collapse
Affiliation(s)
- Graziano Colombo
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Yang BC, Yang ZH, Pan XJ, Wang LM, Liu XY, Zhu MX, Xie JP. Transcript profiling analysis of in vitro cultured THP-1 cells after exposure to crotonaldehyde. J Toxicol Sci 2014; 39:487-97. [DOI: 10.2131/jts.39.487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Bi-cheng Yang
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences
| | - Zhi-hua Yang
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine
| | - Xiu-jie Pan
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine
| | - Li-meng Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences
| | - Xing-yu Liu
- Beijing Work Station, Technology Center of Shanghai Tobacco Corporation
| | - Mao-xiang Zhu
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine
| | | |
Collapse
|
49
|
Nagasaki T, Matsumoto H. Influences of smoking and aging on allergic airway inflammation in asthma. Allergol Int 2013; 62:171-9. [PMID: 23612496 DOI: 10.2332/allergolint.12-ra-0523] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/30/2013] [Indexed: 11/20/2022] Open
Abstract
Asthma is a heterogeneous disease with varying phenotypes and numerous risk factors. This condition results from complex interactions between genetic and environmental factors, and active smoking is one of these risk factors. The effects of aging should also be taken into account in these interactions. From an epidemiological standpoint, smokers and/or elderly patients with asthma are not small part in the total population with asthma. Furthermore, both smoking and aging are important risk factors for severe asthma. This review discusses the potential effects of smoking and aging on healthy subjects and patients with asthma, particularly from the perspective of inflammatory changes. First we show evidence that smokers and the elderly have increased neutrophil counts in their airways, which may have impacts on their clinical characteristics of elderly smokers with asthma. Secondly, on the basis of our recent findings on the interactions between smoking and aging in patients with asthma, we propose that IgE/eosinophilic inflammation should not be underestimated in elderly smokers with asthma, particularly those who are atopic. This review may expand our understanding of the effects of smoking and aging on asthma with a new perspective of an old issue.
Collapse
Affiliation(s)
- Tadao Nagasaki
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
50
|
Yang BC, Yang ZH, Pan XJ, Xiao FJ, Liu XY, Zhu MX, Xie JP. Crotonaldehyde-exposed macrophages induce IL-8 release from airway epithelial cells through NF-κB and AP-1 pathways. Toxicol Lett 2013; 219:26-34. [PMID: 23458894 DOI: 10.1016/j.toxlet.2013.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 11/24/2022]
|