1
|
Jiang S, Jiang D, Lian Z, Huang X, Li T, Zhang Y. THSD7A as a Promising Biomarker for Membranous Nephrosis. Mol Biotechnol 2024; 66:3117-3135. [PMID: 37884765 DOI: 10.1007/s12033-023-00934-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
Membranous nephropathy (MN) is an autoimmune disease of the kidney glomerulus and one of the leading causes of nephrotic syndrome. The disease exhibits heterogeneous outcomes with approximately 30% of cases progressing to end-stage renal disease. Traditionally, the standard approach of diagnosing MN involves performing a kidney biopsy. Nevertheless, kidney biopsy is an invasive procedure that poses risks for the patient including bleeding and pain, and bears greater costs for the health system. The clinical management of MN has steadily advanced owing to the identification of autoantibodies to the phospholipase A2 receptor (PLA2R) in 2009 and thrombospondin domain-containing 7A (THSD7A) in 2014 on the podocyte surface. At present, serum anti-PLA2R antibody detection and glomerular PLA2R antigen staining have been used for clinical diagnosis and prognosis, but the related detection of THSD7A has not been widely used in clinical practice. Here, we summarized the emerging knowledge regarding the roles THSD7A plays in MN and its clinical implications as diagnostic, prognostic, and therapeutic response as well as Methods for detecting serum THSD7A antibodies.
Collapse
Affiliation(s)
- Shuiqing Jiang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350117, Fujian, China.
| | - Dehua Jiang
- Kangrun Biotech LTD, Guangzhou, 511400, Guangdong, China
| | - Zhiyuan Lian
- Kangrun Biotech LTD, Guangzhou, 511400, Guangdong, China
| | - Xiaohong Huang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Ting Li
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Yinan Zhang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, 350117, Fujian, China
| |
Collapse
|
2
|
Michot JM, Dozio V, Rohmer J, Pommeret F, Roumier M, Yu H, Sklodowki K, Danlos FX, Ouali K, Kishazi E, Naigeon M, Griscelli F, Gachot B, Groh M, Bacciarello G, Stoclin A, Willekens C, Sakkal M, Bayle A, Zitvogel L, Silvin A, Soria JC, Barlesi F, Beeler K, André F, Vasse M, Chaput N, Ackermann F, Escher C, Marabelle A. Circulating Proteins Associated with Anti-IL6 Receptor Therapeutic Resistance in the Sera of Patients with Severe COVID-19. J Proteome Res 2024; 23:5001-5015. [PMID: 39352225 DOI: 10.1021/acs.jproteome.2c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Circulating proteomes provide a snapshot of the physiological state of a human organism responding to pathogenic challenges and drug interventions. The outcomes of patients with COVID-19 and acute respiratory distress syndrome triggered by the SARS-CoV2 virus remain uncertain. Tocilizumab is an anti-interleukin-6 treatment that exerts encouraging clinical activity by controlling the cytokine storm and improving respiratory distress in patients with COVID-19. We investigate the biological determinants of therapeutic outcomes after tocilizumab treatment. Overall, 28 patients hospitalized due to severe COVID-19 who were treated with tocilizumab intravenously were included in this study. Sera were collected before and after tocilizumab, and the patient's outcome was evaluated until day 30 post-tocilizumab infusion for favorable therapeutic response to tocilizumab and mortality. Hyperreaction monitoring measurements by liquid chromatography-mass spectrometry-based proteomic analysis with data-independent acquisition quantified 510 proteins and 7019 peptides in the serum of patients. Alterations in the serum proteome reflect COVID-19 outcomes in patients treated with tocilizumab. Our results suggested that circulating proteins associated with the most significant prognostic impact belonged to the complement system, platelet degranulation, acute-phase proteins, and the Fc-epsilon receptor signaling pathway. Among these, upregulation of the complement system by activation of the classical pathway was associated with poor response to tocilizumab, and upregulation of Fc-epsilon receptor signaling was associated with lower mortality.
Collapse
Affiliation(s)
- Jean-Marie Michot
- Département des Innovations Thérapeutiques et des Essais Précoces (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
| | - Vito Dozio
- Biognosys, Wagistrasse 21, Schlieren 8952, Switzerland
| | - Julien Rohmer
- Service de Médecine Interne, Hôpital Foch, Suresnes 92150, France
| | - Fanny Pommeret
- Département de Médecine, Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
| | - Mathilde Roumier
- Service de Médecine Interne, Hôpital Foch, Suresnes 92150, France
| | - Haochen Yu
- Biognosys, Wagistrasse 21, Schlieren 8952, Switzerland
| | | | - François-Xavier Danlos
- Département de Médecine, Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
| | - Kaissa Ouali
- Département de Médecine, Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
| | - Edina Kishazi
- Biognosys, Wagistrasse 21, Schlieren 8952, Switzerland
| | - Marie Naigeon
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France
- Laboratoire d'Immunomonitoring en Oncologie, Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
- Université Paris Saclay, Faculté de Pharmacie, Chatenay-Malabry F-92296, France
| | - Franck Griscelli
- Département de biologie et pathologie, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Bertrand Gachot
- Unité de Pathologie Infectieuse, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Matthieu Groh
- Service de Médecine Interne, Hôpital Foch, Suresnes 92150, France
| | - Giulia Bacciarello
- Département de Médecine, Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
| | - Annabelle Stoclin
- Unité de Pathologie Infectieuse, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Christophe Willekens
- Département d'hématologie, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Madona Sakkal
- Département des Innovations Thérapeutiques et des Essais Précoces (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
| | - Arnaud Bayle
- Département des Innovations Thérapeutiques et des Essais Précoces (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
| | | | - Aymeric Silvin
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Jean-Charles Soria
- Département des Innovations Thérapeutiques et des Essais Précoces (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
- Université Paris Saclay, Faculté de Médecine, Le Kremlin-Bicêtre 94270, France
| | - Fabrice Barlesi
- Département de Médecine, Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
| | | | - Fabrice André
- Département de Médecine, Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
- Université Paris Saclay, Faculté de Médecine, Le Kremlin-Bicêtre 94270, France
- Unité INSERM U981, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Marc Vasse
- Université Paris Saclay, Faculté de Pharmacie, Chatenay-Malabry F-92296, France
- Service de biologie clinique, Hôpital Foch, Suresnes 92150, France
- Unité INSERM U1176, Le Kremlin-Bicêtre, Université Paris Saclay, Faculté de Médecine, Le Kremlin-Bicêtre 94270, France
| | - Nathalie Chaput
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France
- Laboratoire d'Immunomonitoring en Oncologie, Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
| | - Felix Ackermann
- Service de Médecine Interne, Hôpital Foch, Suresnes 92150, France
| | | | - Aurélien Marabelle
- Département des Innovations Thérapeutiques et des Essais Précoces (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif 94800, France
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France
- Université Paris Saclay, Faculté de Médecine, Le Kremlin-Bicêtre 94270, France
- Centre d'investigation clinique - biothérapie, INSERM CICBT1428, Villejuif 94800, France
| |
Collapse
|
3
|
Xiang G, Zhao Y, Jin D, Fang Y, Li Z, He X, Zhai Y, Teng J, Deng W. Down-Regulation of miRNA-1303 Promotes the Angiogenesis of HUVECs via Targeting THSD7A. Mol Biotechnol 2024; 66:2897-2908. [PMID: 37847360 DOI: 10.1007/s12033-023-00906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Angiogenesis promotes neurological recovery after acute ischemic stroke (AIS), and microRNAs play crucial roles in cerebral angiogenesis. This study found that Homo sapiens-microRNA-1303(miR-1303) was reduced in blood specimens of AIS patients and human umbilical vein endothelial cells after suffering from oxygen-glucose deprivation/reperfusion. The experiment detected the effect of miR-1303 on angiogenesis by wound healing assay, tube formation assay, and transwell assay. Down-regulation of miRNA-1303 promotes angiogenesis in vitro experiments, while miR-1303 over-expression reverses this effect. Based on bioinformatics analyses and dual-luciferase reporter assay, the thrombospondin type 1 domain containing 7A (THSD7A) was investigated and further validated as the downstream gene of miR-1303. Furthermore, the knockdown of miR-1303 decreased the protein translation and mRNA transcript levels of THSD7A. Our results reveal a novel miR-1303/THSD7A pathway for angiogenesis and further imply that miR-1303 can be a promising biomarker and therapeutic target for AIS.
Collapse
Affiliation(s)
- Guoliang Xiang
- Department of Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Province Neurological Disease Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yanan Zhao
- Department of Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Province Neurological Disease Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Di Jin
- Department of Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Province Neurological Disease Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yanbo Fang
- Department of Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Province Neurological Disease Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhiyi Li
- Department of Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Province Neurological Disease Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaofeng He
- Department of Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Province Neurological Disease Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yifei Zhai
- Department of Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Province Neurological Disease Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Junfang Teng
- Department of Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Province Neurological Disease Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Wenjing Deng
- Department of Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Province Neurological Disease Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
4
|
Xu J, Hu H, Sun Y, Zhao Z, Zhang D, Yang L, Lu Q. The fate of immune complexes in membranous nephropathy. Front Immunol 2024; 15:1441017. [PMID: 39185424 PMCID: PMC11342396 DOI: 10.3389/fimmu.2024.1441017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The most characteristic feature of membranous nephropathy (MN) is the presence of subepithelial electron dense deposits and the consequential thickening of the glomerular basement membrane. There have been great advances in the understanding of the destiny of immune complexes in MN by the benefit of experimental models represented by Heymann nephritis. Subepithelial immune complexes are formed in situ by autoantibodies targeting native autoantigens or exogenous planted antigens such as the phospholipase A2 receptor (PLA2R) and cationic BSA respectively. The nascent immune complexes would not be pathogenic until they develop into immune deposits. Podocytes are the major source of autoantigens in idiopathic membranous nephropathy. They also participate in the modulation and removal of the immune complexes to a large extent. The balance between deposition and clearance is regulated by a wide range of factors such as the composition and physicochemical properties of the immune complexes and the complement system. Complement components such as C3 and C1q have been reported to be precipitated with the deposits whereas a complement regulatory protein CR1 expressed by podocytes is involved in the phagocytosis of immune complexes by podocytes. Podocytes regulate the dynamic change of immune complexes which is disturbed in membranous nephropathy. To elucidate the precise fate of the immune complexes is essential for developing more rational and novel therapies for membranous nephropathy.
Collapse
Affiliation(s)
- Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haikun Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhe Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Danyuan Zhang
- Qi Huang of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Yang
- Department of Nephropathy, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Liu J, Malhotra D, Ge Y, Gunning W, Dworkin L, Gong R. THSD7A-associated membranous nephropathy involves both complement-mediated and autonomous podocyte injury. Front Pharmacol 2024; 15:1430451. [PMID: 39086386 PMCID: PMC11288966 DOI: 10.3389/fphar.2024.1430451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Membranous nephropathy (MN) continues to be a leading cause of nephrotic syndrome in non-diabetic adults. As a unique subtype in the serology-based classification of MN, thrombospondin type 1 domain containing 7A (THSD7A)-associated MN has attracted increasing interest, because, unlike other autoantigens, THSD7A is also expressed in preclinical species, facilitating the study of its role in MN. A heterologous mouse model of THSD7A-associated MN was previously established using a proprietary in-house antibody that was unfortunately not available to the research community. Here, we developed a mouse model of THSD7A-associated MN by administering a commercially available antibody targeting the most N-terminal part of THSD7A. Our model was characterized by heavy proteinuria and pathological features of human MN without sex differences. Complement depletion with cobra venom factor only partially attenuated proteinuria and glomerular injury in this model, entailing that complement-independent pathomechanisms also contribute. Consistently, in vitro in primary podocytes, exposure to the anti-THSD7A antibody caused evident podocytopathic changes, including disruption of actin cytoskeleton integrity, podocyte hypermobility, oxidative stress, and apoptotic cell death. These signs of podocytopathy were preserved, albeit to a lesser extent, after complement inactivation, indicating autonomous podocyte injury. Furthermore, as the first FDA-approved treatment for primary MN, adrenocorticotropic hormone therapy with repository corticotropin injection (Purified Cortrophin Gel®) appeared to be beneficial and significantly attenuated proteinuria and glomerular injury, suggesting that this model may be useful for developing novel treatments or understanding the pathogenesis of MN. Collectively, our model, based on the use of a commercially available anti-THSD7A antibody, will be an important tool for MN research.
Collapse
Affiliation(s)
- Jing Liu
- Division of Nephrology, Department of Medicine, Toledo, OH, United States
| | - Deepak Malhotra
- Division of Nephrology, Department of Medicine, Toledo, OH, United States
| | - Yan Ge
- Division of Nephrology, Department of Medicine, Toledo, OH, United States
| | - William Gunning
- Department of Pathology, The University of Toledo College of Medicine, Toledo, OH, United States
| | - Lance Dworkin
- Division of Nephrology, Department of Medicine, Toledo, OH, United States
| | - Rujun Gong
- Division of Nephrology, Department of Medicine, Toledo, OH, United States
| |
Collapse
|
6
|
Flockerzi FA, Hohneck J, Langer F, Tränkenschuh W, Stahl PR. The Role of SCARA5 as a Potential Biomarker in Squamous Cell Carcinoma of the Lung. Int J Mol Sci 2024; 25:7355. [PMID: 39000462 PMCID: PMC11242384 DOI: 10.3390/ijms25137355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths in the western world. Squamous cell carcinoma is one of the most common histological subtypes of this malignancy. For squamous cell carcinoma of the lung (LSCC), prognostic and predictive markers still are largely missing. In a previous study, we were able to show that the expression of THSD7A shows an association with unfavorable prognostic parameters in prostate cancer. There is also a link to a high expression of FAK. There is incidence that SCARA5 might be the downstream gene of THSD7A. Furthermore, there is evidence that SCARA5 interacts with FAK. We were interested in the role of SCARA5 as a potential biomarker in LSCC. Furthermore, we wanted to know whether SCARA5 expression is linked to THSD7A positivity and to the expression level of FAK. For this reason, we analyzed 101 LSCC tumors by immunohistochemistry. Tissue microarrays were utilized. No significant association was found between SCARA5 expression and overall survival or clinicopathological parameters. There was also no significant association between THSD7A positivity and SCARA5 expression level. Moreover, no significant association was found between FAK expression level and SCARA5 expression level. SCARA5 seems not to play a major role as a biomarker in squamous cell carcinoma of the lung.
Collapse
Affiliation(s)
| | - Johannes Hohneck
- Department of Pathology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Frank Langer
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, 66421 Homburg, Germany
| | | | - Phillip Rolf Stahl
- Department of Pathology, Saarland University Medical Center, 66421 Homburg, Germany
- Department of Pathology, Medical School Berlin, 14197 Berlin, Germany
| |
Collapse
|
7
|
Wang G, Hu X, Ye N, Xu X, Guo W, Sun L, Dong H, Zhao X, Cheng H. Analysis of Clinicopathological Characteristics of Malignancy Patients with Membranous Nephropathy and Literature Review. Cancer Manag Res 2024; 16:677-689. [PMID: 38919875 PMCID: PMC11198026 DOI: 10.2147/cmar.s465211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Purpose In recent years, the incidence of malignancy patients with membranous nephropathy (MN) has gradually increased, but the clinical and pathological characteristics of these patients are still unclear. Our study aims at elucidating the clinical and pathological characteristics of malignancy patients with MN, especially the expression patterns of MN-specific antigens in both kidney and tumor tissue. Patients and Methods A retrospective analysis was performed to summarize the clinical and pathological data of MN patients with malignancy at Beijing Anzhen Hospital from January 1, 2012, to December 31, 2022, followed by a thorough review of relevant literature published between May 1, 2000 to May 1, 2023 and case aggregation. Results 19 patients in our center's MN cohort and 21 patients from literature review were diagnosed with malignancy either before or after being diagnosed with MN. Among them, 16 (40.0%) and 17 (42.5%) patients tested PLA2R-only and THSD7A-only positive in renal tissue, respectively. And 16 of 26 patients showed similar staining in tumor and kidney tissues. Compared to the idiopathic membranous nephropathy (IMN) patients at our center, patients with malignancy were older, had a lower estimated glomerular filtration rate, and had a lower rate of partial or complete response to treatment. Renal tissue from MN patients with concomitant malignancy was less frequently PLA2R-positive, more frequently THSD7A-positive, and more often glomerular IgG subclass IgG2 (P = 0.033) but less frequently IgG4 (P < 0.001). Conclusion The clinical and pathological characteristics of MN patients with concomitant malignancy are different from those of IMN patients. Active screening for malignancy should be performed in non-PLA2R-positive elderly MN patients with a poor therapeutic response. Staining for MN target antigens in kidney and tumor tissues may be inconsistent, and the role of MN target antigens needs to be further explored.
Collapse
Affiliation(s)
- Guoqin Wang
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiaoying Hu
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Nan Ye
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiaoyi Xu
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Weiyi Guo
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Lijun Sun
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hongrui Dong
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiaoyi Zhao
- Division of Nephrology, Affiliated Hospital of Chifeng University, Neimenggu, People’s Republic of China
| | - Hong Cheng
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Hu X, Wang G, Cheng H. Specific antigens in malignancy-associated membranous nephropathy. Front Med (Lausanne) 2024; 11:1368457. [PMID: 38686366 PMCID: PMC11056512 DOI: 10.3389/fmed.2024.1368457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Membranous nephropathy (MN) is a glomerular disease mediated by autoimmune complex deposition, with approximately 30% of cases attributed to secondary causes. Among them, malignant tumors are a significant cause of secondary MN. Recent advancements in the identification of MN-specific antigens, such as THSD7A and NELL-1, suggest a potential association with malignant tumors, yet definitive proof of this relationship remains elusive. Therefore, this article aims to review the distribution of MN-specific antigens in patients with MN caused by malignant tumors and the possible role of these antigens in the pathogenesis of the disease.
Collapse
Affiliation(s)
| | | | - Hong Cheng
- Division of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Gorman BR, Francis M, Nealon CL, Halladay CW, Duro N, Markianos K, Genovese G, Hysi PG, Choquet H, Afshari NA, Li YJ, Gaziano JM, Hung AM, Wu WC, Greenberg PB, Pyarajan S, Lass JH, Peachey NS, Iyengar SK. A multi-ancestry GWAS of Fuchs corneal dystrophy highlights the contributions of laminins, collagen, and endothelial cell regulation. Commun Biol 2024; 7:418. [PMID: 38582945 PMCID: PMC10998918 DOI: 10.1038/s42003-024-06046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/13/2024] [Indexed: 04/08/2024] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a leading indication for corneal transplantation, but its molecular etiology remains poorly understood. We performed genome-wide association studies (GWAS) of FECD in the Million Veteran Program followed by multi-ancestry meta-analysis with the previous largest FECD GWAS, for a total of 3970 cases and 333,794 controls. We confirm the previous four loci, and identify eight novel loci: SSBP3, THSD7A, LAMB1, PIDD1, RORA, HS3ST3B1, LAMA5, and COL18A1. We further confirm the TCF4 locus in GWAS for admixed African and Hispanic/Latino ancestries and show an enrichment of European-ancestry haplotypes at TCF4 in FECD cases. Among the novel associations are low frequency missense variants in laminin genes LAMA5 and LAMB1 which, together with previously reported LAMC1, form laminin-511 (LM511). AlphaFold 2 protein modeling, validated through homology, suggests that mutations at LAMA5 and LAMB1 may destabilize LM511 by altering inter-domain interactions or extracellular matrix binding. Finally, phenome-wide association scans and colocalization analyses suggest that the TCF4 CTG18.1 trinucleotide repeat expansion leads to dysregulation of ion transport in the corneal endothelium and has pleiotropic effects on renal function.
Collapse
Affiliation(s)
- Bryan R Gorman
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Michael Francis
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Cari L Nealon
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
| | - Christopher W Halladay
- Center of Innovation in Long Term Services and Supports, Providence VA Medical Center, Providence, RI, USA
| | - Nalvi Duro
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Kyriacos Markianos
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
| | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Pirro G Hysi
- Department of Ophthalmology, King's College London, London, UK
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
- UCL Great Ormond Street Hospital Institute of Child Health, King's College London, London, UK
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, USA
| | - Natalie A Afshari
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, CA, USA
| | - Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Adriana M Hung
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Wen-Chih Wu
- Cardiology Section, Medical Service, Providence VA Medical Center, Providence, RI, USA
| | - Paul B Greenberg
- Ophthalmology Section, Providence VA Medical Center, Providence, RI, USA
- Division of Ophthalmology, Alpert Medical School, Brown University, Providence, RI, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
| | - Jonathan H Lass
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Neal S Peachey
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA.
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Sudha K Iyengar
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA.
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA.
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
10
|
Yang G, Alarcon C, Chanfreau C, Lee NH, Friedman P, Nutescu E, Tuck M, O'Brien T, Gong L, Klein TE, Chang KM, Tsao PS, Meltzer DO, Tuteja S, Perera MA. Investigation of genomic and transcriptomic risk factors in clopidogrel response in African Americans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.05.23299140. [PMID: 38106031 PMCID: PMC10723512 DOI: 10.1101/2023.12.05.23299140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Clopidogrel, an anti-platelet drug, used to prevent thrombosis after percutaneous coronary intervention. Clopidogrel resistance results in recurring ischemic episodes, with African Americans suffering disproportionately. The aim of this study was to identify biomarkers of clopidogrel resistance in African American patients. We conducted a genome-wide association study, including local ancestry adjustment, in 141 African Americans on clopidogrel to identify associations with high on-treatment platelet reactivity (HTPR). We validated genome-wide and suggestive hits in an independent cohort of African American clopidogrel patients (N = 823) from the Million Veteran's Program (MVP) along with in vitro functional follow up. We performed differential gene expression (DGE) analysis in whole blood with functional follow-up in MEG-01 cells. We identified rs7807369, within thrombospondin 7A (THSD7A), as significantly associated with increasing risk of HTPR (p = 4.56 × 10-9). Higher THSD7A expression was associated with HTPR in an independent gene expression cohort of clopidogrel treated patients (p = 0.004) and supported by increased gene expression on THSD7A in primary human endothelial cells carrying the risk haplotype. Two SNPs (rs1149515 and rs191786) were validated in the MVP cohort. DGE analysis identified an association with decreased LAIR1 expression to HTPR. LAIR1 knockdown in a MEG-01 cells resulted in increased expression of SYK and AKT1, suggesting an inhibitory role of LAIR1 in the Glycoprotein VI pathway. Notably, the CYP2C19 variants showed no association with clopidogrel response in the discovery or MVP cohorts. In summary, these finding suggest that other variants outside of CYP2C19 star alleles play an important role in clopidogrel response in African Americans.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pharmacology, Center for Pharmacogenomics, Fienberg School of Medicine, Northwestern University, Chicago IL
| | - Cristina Alarcon
- Department of Pharmacology, Center for Pharmacogenomics, Fienberg School of Medicine, Northwestern University, Chicago IL
| | | | - Norman H Lee
- Department of Pharmacology and Physiology, George Washington University, 2300 I Street NW, Washington, DC, 20037, USA
| | - Paula Friedman
- Department of Pharmacology, Center for Pharmacogenomics, Fienberg School of Medicine, Northwestern University, Chicago IL
| | - Edith Nutescu
- Department of Pharmacy Practice and Center for Pharmacoepidemiology and Pharmacoeconomic Research, University of Illinois Chicago, College of Pharmacy, Chicago, IL
| | - Matthew Tuck
- Washington DC VA Medical Center, Washington, DC and The George Washington University, Washington, DC
| | - Travis O'Brien
- Department of Pharmacology and Physiology, George Washington University, 2300 I Street NW, Washington, DC, 20037, USA
| | - Li Gong
- Department of Biomedical Data Science, Stanford University, Stanford, CA
| | - Teri E Klein
- Department of Biomedical Data Science and Department of Medicine, Stanford University, Stanford, CA
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Philip S Tsao
- VA Palo Alto Healthcare System and Stanford University, Palo Alto, CA
| | - David O Meltzer
- Section of Hospital Medicine, Department of Medicine, University of Chicago, Chicago, IL
| | - Sony Tuteja
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Minoli A Perera
- Department of Pharmacology, Center for Pharmacogenomics, Fienberg School of Medicine, Northwestern University, Chicago IL
| |
Collapse
|
11
|
Nakamura R, Tohnai G, Nakatochi M, Atsuta N, Watanabe H, Ito D, Katsuno M, Hirakawa A, Izumi Y, Morita M, Hirayama T, Kano O, Kanai K, Hattori N, Taniguchi A, Suzuki N, Aoki M, Iwata I, Yabe I, Shibuya K, Kuwabara S, Oda M, Hashimoto R, Aiba I, Ishihara T, Onodera O, Yamashita T, Abe K, Mizoguchi K, Shimizu T, Ikeda Y, Yokota T, Hasegawa K, Tanaka F, Nakashima K, Kaji R, Niwa JI, Doyu M, Terao C, Ikegawa S, Fujimori K, Nakamura S, Ozawa F, Morimoto S, Onodera K, Ito T, Okada Y, Okano H, Sobue G. Genetic factors affecting survival in Japanese patients with sporadic amyotrophic lateral sclerosis: a genome-wide association study and verification in iPSC-derived motor neurons from patients. J Neurol Neurosurg Psychiatry 2023; 94:816-824. [PMID: 37142397 DOI: 10.1136/jnnp-2022-330851] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Several genetic factors are associated with the pathogenesis of sporadic amyotrophic lateral sclerosis (ALS) and its phenotypes, such as disease progression. Here, in this study, we aimed to identify the genes that affect the survival of patients with sporadic ALS. METHODS We enrolled 1076 Japanese patients with sporadic ALS with imputed genotype data of 7 908 526 variants. We used Cox proportional hazards regression analysis with an additive model adjusted for sex, age at onset and the first two principal components calculated from genotyped data to conduct a genome-wide association study. We further analysed messenger RNA (mRNA) and phenotype expression in motor neurons derived from induced pluripotent stem cells (iPSC-MNs) of patients with ALS. RESULTS Three novel loci were significantly associated with the survival of patients with sporadic ALS-FGF1 at 5q31.3 (rs11738209, HR=2.36 (95% CI, 1.77 to 3.15), p=4.85×10-9), THSD7A at 7p21.3 (rs2354952, 1.38 (95% CI, 1.24 to 1.55), p=1.61×10-8) and LRP1 at 12q13.3 (rs60565245, 2.18 (95% CI, 1.66 to 2.86), p=2.35×10-8). FGF1 and THSD7A variants were associated with decreased mRNA expression of each gene in iPSC-MNs and reduced in vitro survival of iPSC-MNs obtained from patients with ALS. The iPSC-MN in vitro survival was reduced when the expression of FGF1 and THSD7A was partially disrupted. The rs60565245 was not associated with LRP1 mRNA expression. CONCLUSIONS We identified three loci associated with the survival of patients with sporadic ALS, decreased mRNA expression of FGF1 and THSD7A and the viability of iPSC-MNs from patients. The iPSC-MN model reflects the association between patient prognosis and genotype and can contribute to target screening and validation for therapeutic intervention.
Collapse
Affiliation(s)
- Ryoichi Nakamura
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Genki Tohnai
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Division of ALS Research, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Naoki Atsuta
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University, Toyoake, Aichi, Japan
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
| | - Daisuke Ito
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Akihiro Hirakawa
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yuishin Izumi
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mitsuya Morita
- Division of Neurology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Takehisa Hirayama
- Department of Neurology, Toho University Faculty of Medicine, Ota-ku, Tokyo, Japan
| | - Osamu Kano
- Department of Neurology, Toho University Faculty of Medicine, Ota-ku, Tokyo, Japan
| | - Kazuaki Kanai
- Department of Neurology, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Akira Taniguchi
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Ikuko Iwata
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazumoto Shibuya
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaya Oda
- Department of Neurology, Vihara Hananosato Hospital, Miyoshi, Hiroshima, Japan
| | - Rina Hashimoto
- Department of Neurology, National Hospital Organization Higashinagoya National Hospital, Nagoya, Aichi, Japan
| | - Ikuko Aiba
- Department of Neurology, National Hospital Organization Higashinagoya National Hospital, Nagoya, Aichi, Japan
| | - Tomohiko Ishihara
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Toru Yamashita
- Department of Neurology, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kouichi Mizoguchi
- Department of Neurology, National Hospital Organization Shizuoka Medical Center, Shizuoka, Japan
| | - Toshio Shimizu
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kazuko Hasegawa
- Division of Neurology, National Hospital Organization, Sagamihara National Hospital, Sagamihara, Kanagawa, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kenji Nakashima
- Department of Neurology, National Hospital Organization, Matsue Medical Center, Matsue, Shimane, Japan
| | - Ryuji Kaji
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Jun-Ichi Niwa
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Manabu Doyu
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Koki Fujimori
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shiho Nakamura
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Fumiko Ozawa
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kazunari Onodera
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Takuji Ito
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Yohei Okada
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
- Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
12
|
Burbelo PD, Olson SW, Keller JM, Joshi M, Schwartz DM, Chuang YJ, Lambeau G, Beck LH, Waldman M. Prediagnostic Appearance of Thrombospondin Type-1 Domain 7A Autoantibodies in Membranous Nephropathy. KIDNEY360 2023; 4:217-225. [PMID: 36821613 PMCID: PMC10103354 DOI: 10.34067/kid.0005112022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Abstract
Key Points
The entire extracellular domain of thrombospondin type-1 domain 7A (THSD7A) in the luciferase immunoprecipitation system immunoassay was required to detect autoantibodies with high sensitivity in membranous nephropathy (MN).In THSD7A-seropositive MN patients, changes in antibody levels precede changes in clinical status.Seropositive THSD7A antibodies were detected in some patients with MN considered to be secondary to autoimmunity or cancer.
Background
Pathogenic autoantibodies against thrombospondin type-1 domain 7A (THSD7A) are present in approximately 3% of patients with membranous nephropathy (MN). Compared with PLA2R antibodies, less is known about THSD7A autoantibodies (ABs) because of the relative rarity and the lack of a commercially available quantitative immunoassay.
Methods
In this study, we describe the development and validation of a highly quantitative luciferase immunoprecipitation system (LIPS) assay for detecting THSD7A ABs and used it to study dominant THSD7A epitopes, disease associations, and monitoring disease activity. The Department of Defense Serum Repository (DODSR) was then used to analyze THSD7A AB in 371 longitudinal serum samples collected before clinical diagnosis of MN from 110 PLA2R-negative MN subjects.
Results
LIPS analysis demonstrated that a near full-length THSD7A (amino acids 1–1656) detected robust autoantibody levels in all known seropositive MN patients with 100% sensitivity and specificity compared with ELISA and/or Western blotting. Most of the THSD7A-seropositive subjects in our pilot cohort had evidence of coexisting autoimmunity or cancer. Moreover, three THSD7A-seropositive patients undergoing immunosuppressive therapy showed longitudinal autoantibody levels that tracked clinical status. Additional epitope analysis of two smaller protein THSD7A fragments spanning amino acids 1-416 and 1-671 demonstrated lower sensitivity of 32% and 44%, respectively. In the DODSR cohort, THSD7A seropositivity was detected in 4.5% of PLA2R-negative MN patients. In one primary and in one secondary MN-associated with cancer, THSD7A ABs were detectable <1 month before biopsy-proven diagnosis. In addition, three patients with lupus membranous nephropathy had detectable THSD7A ABs years before hypoalbuminemia and biopsy-proven diagnosis.
Conclusions
Although further studies are needed to explore the significance of THSD7A ABs in lupus membranous nephropathy, this study describes a novel, highly sensitive LIPS immunoassay for detecting THSD7A ABs and adds to the existing literature on THSD7A-associated MN.
Clinical Trial registry name and registration number:
NCT00977977; registration date: September 16, 2009.
Collapse
Affiliation(s)
- Peter D Burbelo
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Stephen W Olson
- Nephrology Department, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Jason M Keller
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Megha Joshi
- Nephrology Department, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Daniella M Schwartz
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Yung-Jen Chuang
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Gérard Lambeau
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France
| | - Laurence H Beck
- Department of Medicine, Section of Nephrology, Boston University School of Medicine, Boston, Massachusetts
| | - Meryl Waldman
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
13
|
Li X, Shen X, Wang Z, Jiang H, Ma Z, Yu P, Yu Z, Qian X, Liu J. Gene expression profiling in nucleus pulposus of human ruptured lumbar disc herniation. Front Pharmacol 2022; 13:892594. [PMID: 36506585 PMCID: PMC9732013 DOI: 10.3389/fphar.2022.892594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose: To examine the differences in gene expression between ruptured and non-ruptured nucleus pulposus tissues of the intervertebral discs using gene chip technology. Methods: A total of 8 patients with nucleus pulposus from a lumbar disc herniation (LDH) undergoing discectomy in our hospital were selected, including 4 ruptured and 4 non-ruptured herniated nucleus pulposus cases. Total RNA was extracted from cells by using TRIzol reagent. Nucleus pulposus cDNA probes of the two groups were obtained by the single marker method and hybridized with a human gene expression profiling chip (Agilent). The fluorescence signal images were scanned by a laser, and the obtained genes were analyzed by bioinformatics. Results: There were 75 differentially expressed genes with more than 2-fold-changes, of which 56 were up-regulated and 19 were down-regulated. The differential expression of THSD7A, which was up-regulated 18 times, was the most significant, followed by CCL5, AQP3 and SDC4. Conclusion: THSD7A can be used as a characteristic differentially expressed gene in human ruptured nucleus pulposus. Moreover, CCL5, AQP3 and SDC4 may improve the chemotaxis of stem cell migration for self-healing of damaged disc tissue, increase water uptake by nucleus accumbens cells, and inhibit the inflammatory response, thus delaying the process of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Xiaochun Li
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Xueqiang Shen
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Zhiqiang Wang
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Hong Jiang
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Zhijia Ma
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Pengfei Yu
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Zhenhan Yu
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Xiang Qian
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Jintao Liu
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China,Nanjing University of Traditional Chinese Medicine, Nanjing, China,*Correspondence: Jintao Liu,
| |
Collapse
|
14
|
Dong Z, Dai H, Liu W, Jiang H, Feng Z, Liu F, Zhao Q, Rui H, Liu WJ, Liu B. Exploring the Differences in Molecular Mechanisms and Key Biomarkers Between Membranous Nephropathy and Lupus Nephritis Using Integrated Bioinformatics Analysis. Front Genet 2022; 12:770902. [PMID: 35047003 PMCID: PMC8762271 DOI: 10.3389/fgene.2021.770902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/06/2021] [Indexed: 01/16/2023] Open
Abstract
Background: Both membranous nephropathy (MN) and lupus nephritis (LN) are autoimmune kidney disease. In recent years, with the deepening of research, some similarities have been found in the pathogenesis of these two diseases. However, the mechanism of their interrelationship is not clear. The purpose of this study was to investigate the differences in molecular mechanisms and key biomarkers between MN and LN. Method: The expression profiles of GSE99325, GSE99339, GSE104948 and GSE104954 were downloaded from GEO database, and the differentially expressed genes (DEGs) of MN and LN samples were obtained. We used Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for enrichment analysis of DEGs. A protein-protein interaction (PPI) network of DEGs was constructed using Metascape. We filtered DEGs with NetworkAnalyst. Finally, we used receiver operating characteristic (ROC) analysis to identify the most significant DEGs for MN and LN. Result: Compared with LN in the glomerulus, 14 DEGs were up-regulated and 77 DEGs were down-regulated in MN. Compared with LN in renal tubules, 21 DEGs were down-regulated, but no up-regulated genes were found in MN. According to the result of GO and KEGG enrichment, PPI network and Networkanalyst, we screened out six genes (IFI6, MX1, XAF1, HERC6, IFI44L, IFI44). Interestingly, among PLA2R, THSD7A and NELL1, which are the target antigens of podocyte in MN, the expression level of NELL1 in MN glomerulus is significantly higher than that of LN, while there is no significant difference in the expression level of PLA2R and THSD7A. Conclusion: Our study provides new insights into the pathogenesis of MN and LN by analyzing the differences in gene expression levels between MN and LN kidney samples, and is expected to be used to prepare an animal model of MN that is more similar to human.
Collapse
Affiliation(s)
- Zhaocheng Dong
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Dai
- Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| | - Wenbin Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhendong Feng
- Beijing Chinese Medicine Hospital Pinggu Hospital, Beijing, China
| | - Fei Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Capital Medical University, Beijing, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wei Jing Liu
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| |
Collapse
|
15
|
Podvin S, Jones A, Liu Q, Aulston B, Mosier C, Ames J, Winston C, Lietz CB, Jiang Z, O’Donoghue AJ, Ikezu T, Rissman RA, Yuan SH, Hook V. Mutant Presenilin 1 Dysregulates Exosomal Proteome Cargo Produced by Human-Induced Pluripotent Stem Cell Neurons. ACS OMEGA 2021; 6:13033-13056. [PMID: 34056454 PMCID: PMC8158845 DOI: 10.1021/acsomega.1c00660] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
The accumulation and propagation of hyperphosphorylated tau (p-Tau) is a neuropathological hallmark occurring with neurodegeneration of Alzheimer's disease (AD). Extracellular vesicles, exosomes, have been shown to initiate tau propagation in the brain. Notably, exosomes from human-induced pluripotent stem cell (iPSC) neurons expressing the AD familial A246E mutant form of presenilin 1 (mPS1) are capable of inducing tau deposits in the mouse brain after in vivo injection. To gain insights into the exosome proteome cargo that participates in propagating tau pathology, this study conducted proteomic analysis of exosomes produced by human iPSC neurons expressing A246E mPS1. Significantly, mPS1 altered the profile of exosome cargo proteins to result in (1) proteins present only in mPS1 exosomes and not in controls, (2) the absence of proteins in the mPS1 exosomes which were present only in controls, and (3) shared proteins which were upregulated or downregulated in the mPS1 exosomes compared to controls. These results show that mPS1 dysregulates the proteome cargo of exosomes to result in the acquisition of proteins involved in the extracellular matrix and protease functions, deletion of proteins involved in RNA and protein translation systems along with proteasome and related functions, combined with the upregulation and downregulation of shared proteins, including the upregulation of amyloid precursor protein. Notably, mPS1 neuron-derived exosomes displayed altered profiles of protein phosphatases and kinases involved in regulating the status of p-tau. The dysregulation of exosome cargo proteins by mPS1 may be associated with the ability of mPS1 neuron-derived exosomes to propagate tau pathology.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Alexander Jones
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Qing Liu
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Brent Aulston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Janneca Ames
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Charisse Winston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Christopher B. Lietz
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Zhenze Jiang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Tsuneya Ikezu
- Department
of Pharmacology and Experimental Therapeutics, Department of Neurology,
Alzheimer’s Disease Research Center, Boston University, School of Medicine, Boston 02118, Massachusetts, United States
| | - Robert A. Rissman
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
- Veterans
Affairs San Diego Healthcare System,
La Jolla, San Diego 92161, California, United States
| | - Shauna H. Yuan
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| |
Collapse
|
16
|
Decreased Lymphangiogenic Activities and Genes Expression of Cord Blood Lymphatic Endothelial Progenitor Cells (VEGFR3 +/Pod +/CD11b + Cells) in Patient with Preeclampsia. Int J Mol Sci 2021; 22:ijms22084237. [PMID: 33921847 PMCID: PMC8073258 DOI: 10.3390/ijms22084237] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
The abnormal development or disruption of the lymphatic vasculature has been implicated in metabolic and hypertensive diseases. Recent evidence suggests that the offspring exposed to preeclampsia (PE) in utero are at higher risk of long-term health problems, such as cardiovascular and metabolic diseases in adulthood, owing to in utero fetal programming. We aimed to investigate lymphangiogenic activities in the lymphatic endothelial progenitor cells (LEPCs) of the offspring of PE. Human umbilical cord blood LEPCs from pregnant women with severe PE (n = 10) and gestationally matched normal pregnancies (n = 10) were purified with anti-vascular endothelial growth factor receptor 3 (VEGFR3)/podoplanin/CD11b microbeads using a magnetic cell sorter device. LEPCs from PE displayed significantly delayed differentiation and reduced formation of lymphatic endothelial cell (LEC) colonies compared with the LEPCs from normal pregnancies. LECs differentiated from PE-derived LEPCs exhibited decreased tube formation, migration, proliferation, adhesion, wound healing, and 3D-sprouting activities as well as increased lymphatic permeability through the disorganization of VE-cadherin junctions, compared with the normal pregnancy-derived LECs. In vivo, LEPCs from PE showed significantly reduced lymphatic vessel formation compared to the LEPCs of the normal pregnancy. Gene expression analysis revealed that compared to the normal pregnancy-derived LECs, the PE-derived LECs showed a significant decrease in the expression of pro-lymphangiogenic genes (GREM1, EPHB3, VEGFA, AMOT, THSD7A, ANGPTL4, SEMA5A, FGF2, and GBX2). Collectively, our findings demonstrate, for the first time, that LEPCs from PE have reduced lymphangiogenic activities in vitro and in vivo and show the decreased expression of pro-lymphangiogenic genes. This study opens a new avenue for investigation of the molecular mechanism of LEPC differentiation and lymphangiogenesis in the offspring of PE and subsequently may impact the treatment of long-term health problems such as cardiovascular and metabolic disorders of offspring with abnormal development of lymphatic vasculature.
Collapse
|
17
|
Abstract
The identification of the phospholipase A2 receptor 1 (PLA2R) and thrombospondin type-1 domain-containing protein 7A (THSD7A) as podocyte antigens in adult patients with membranous nephropathy (MN) has strongly impacted both experimental and clinical research on this disease. Evidence has been furnished that podocyte-directed autoantibodies can cause MN, and novel PLA2R- and THSD7A-specific animal models have been developed. Today, measurement of serum autoantibody levels and staining of kidney biopsies for the target antigens guides MN diagnosis and treatment worldwide. Additionally, anti-PLA2R antibodies have been proven to be valuable prognostic biomarkers in MN. Despite these impressive advances, a variety of questions regarding the disease pathomechanisms, clinical use of antibody measurement, and future treatments remain unanswered. In this review, we will outline recent advances made in the field of MN and discuss open questions and perspectives with a focus on novel antigen identification, mechanisms of podocyte injury, clinical use of antibody measurement to guide diagnosis and treatment, and the potential of innovative, pathogenesis-based treatment strategies.
Collapse
|
18
|
Waller AP, Troost JP, Parikh SV, Wolfgang KJ, Rovin BH, Nieman MT, Smoyer WE, Kretzler M, Kerlin BA. Nephrotic syndrome disease activity is proportional to its associated hypercoagulopathy. Thromb Res 2021; 201:50-59. [PMID: 33636573 DOI: 10.1016/j.thromres.2021.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Nephrotic syndrome (NS) is associated with an acquired hypercoagulopathy that drives its strong predilection for life-threatening thrombosis. We previously demonstrated that hypercoagulopathy is proportional to NS disease severity in animal models. Therefore, hypercoagulopathy and disease severity may inform thrombosis risk and better guide therapeutic decision making. The objective of this study was thus to establish the relationship between disease severity and hypercoagulopathy in human NS. MATERIALS AND METHODS Thrombin generation assays (TGA) were performed on biorepository plasma samples from a prospective longitudinal NS cohort study. TGA was also determined on a separate cohort of incident NS patients. Multivariable regression was used to build NS-hypercoagulopathy relationship models. RESULTS Endogenous thrombin potential (ETP) was the TGA parameter most strongly correlated with NS severity and was proportional to conventional measures of NS disease activity including proteinuria, hypercholesterolemia, and hypoalbuminemia. The overall disease activity model was well correlated with ETP (R2 = 0.38). The relationship with disease activity was confirmed in the second cohort. These models further revealed that ETP is related to disease activity in a manner dependent on remission status. CONCLUSION Consistent with our previously reported animal model observations, we found that the combination of proteinuria, hypercholesterolemia, and hypoalbuminemia correlated with ETP-defined hypercoagulopathy. Hypercoagulopathy improved significantly with partial or complete NS remission. These data are expected to inform studies designed to stratify thrombotic risk for patients with NS.
Collapse
Affiliation(s)
- Amanda P Waller
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH, USA
| | - Jonathan P Troost
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, MI, USA
| | - Samir V Parikh
- Division of Nephrology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Katelyn J Wolfgang
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH, USA
| | - Brad H Rovin
- Division of Nephrology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Marvin T Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - William E Smoyer
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH, USA; Division of Nephrology, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Matthias Kretzler
- Departments of Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Bryce A Kerlin
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH, USA; Division of Hematology/Oncology/Blood & Marrow Transplantation, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| | | |
Collapse
|
19
|
Hussein D, Dallol A, Quintas R, Schulten HJ, Alomari M, Baeesa S, Bangash M, Alghamdi F, Khan I, ElAssouli MZM, Saka M, Carracedo A, Chaudhary A, Abuzenadah A. Overlapping variants in the blood, tissues and cell lines for patients with intracranial meningiomas are predominant in stem cell-related genes. Heliyon 2020; 6:e05632. [PMID: 33305042 PMCID: PMC7710648 DOI: 10.1016/j.heliyon.2020.e05632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Bulk tissue genomic analysis of meningiomas identified common somatic mutations, however, it often excluded blood-related variants. In contrast, genomic characterisation of primary cell lines that can provide critical information regarding growth and proliferation, have been rare. In our work, we identified the variants that are present in the blood, tissues and corresponding cell lines that are likely to be predictive, tumorigenic and progressive. METHOD Whole-exome sequencing was used to identify variants and distinguish related pathways that exist in 42 blood, tissues and corresponding cell lines (BTCs) samples for patients with intracranial meningiomas. Conventional sequencing was used for the confirmation of variants. Integrative analysis of the gene expression for the corresponding samples was utilised for further interpretations. RESULTS In total, 926 BTC variants were detected, implicating 845 genes. A pathway analysis of all BTC genes with damaging variants indicated the 'cell morphogenesis involved in differentiation' stem cell-related pathway to be the most frequently affected pathway. Concordantly, five stem cell-related genes, GPRIN2, ALDH3B2, ASPN, THSD7A and SIGLEC6, showed BTC variants in at least five of the patients. Variants that were heterozygous in the blood and homozygous in the tissues or the corresponding cell lines were rare (average: 1.3 ± 0.3%), and included variants in the RUNX2 and CCDC114 genes. An analysis comparing the variants detected only in tumours with aggressive features indicated a total of 240 BTC genes, implicating the 'homophilic cell adhesion via plasma membrane adhesion molecules' pathway, and identifying the stem cell-related transcription coactivator NCOA3/AIB1/SRC3 as the most frequent BTC gene. Further analysis of the possible impact of the poly-Q mutation present in the NCOA3 gene indicated associated deregulation of 15 genes, including the up-regulation of the stem cell related SEMA3D gene and the angiogenesis related VEGFA gene. CONCLUSION Stem cell-related pathways and genes showed high prevalence in the BTC variants, and novel variants in stem cell-related genes were identified for meningioma. These variants can potentially be used as predictive, tumorigenic and progressive biomarkers for meningioma.
Collapse
Affiliation(s)
- Deema Hussein
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Ashraf Dallol
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rita Quintas
- Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona Alomari
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Saleh Baeesa
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Bangash
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Alghamdi
- Pathology Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishaq Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| | - M-Zaki Mustafa ElAssouli
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Mohamad Saka
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Angel Carracedo
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Adeel Chaudhary
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adel Abuzenadah
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
20
|
Bogenschutz EL, Fox ZD, Farrell A, Wynn J, Moore B, Yu L, Aspelund G, Marth G, Yandell M, Shen Y, Chung WK, Kardon G. Deep whole-genome sequencing of multiple proband tissues and parental blood reveals the complex genetic etiology of congenital diaphragmatic hernias. HGG ADVANCES 2020; 1:100008. [PMID: 33263113 PMCID: PMC7703690 DOI: 10.1016/j.xhgg.2020.100008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
The diaphragm is critical for respiration and separation of the thoracic and abdominal cavities, and defects in diaphragm development are the cause of congenital diaphragmatic hernias (CDH), a common and often lethal birth defect. The genetic etiology of CDH is complex. Single-nucleotide variants (SNVs), insertions/deletions (indels), and structural variants (SVs) in more than 150 genes have been associated with CDH, although few genes are recurrently mutated in multiple individuals and mutated genes are incompletely penetrant. This suggests that multiple genetic variants in combination, other not-yet-investigated classes of variants, and/or nongenetic factors contribute to CDH etiology. However, no studies have comprehensively investigated in affected individuals the contribution of all possible classes of variants throughout the genome to CDH etiology. In our study, we used a unique cohort of four individuals with isolated CDH with samples from blood, skin, and diaphragm connective tissue and parental blood and deep whole-genome sequencing to assess germline and somatic de novo and inherited SNVs, indels, and SVs. In each individual we found a different mutational landscape that included germline de novo and inherited SNVs and indels in multiple genes. We also found in two individuals a 343 bp deletion interrupting an annotated enhancer of the CDH-associated gene GATA4, and we hypothesize that this common SV (found in 1%-2% of the population) acts as a sensitizing allele for CDH. Overall, our comprehensive reconstruction of the genetic architecture of four CDH individuals demonstrates that the etiology of CDH is heterogeneous and multifactorial.
Collapse
Affiliation(s)
- Eric L. Bogenschutz
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Zac D. Fox
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Andrew Farrell
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- USTAR Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Barry Moore
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- USTAR Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Lan Yu
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gudrun Aspelund
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gabor Marth
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- USTAR Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Mark Yandell
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- USTAR Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
- JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
21
|
Liu W, Gao C, Liu Z, Dai H, Feng Z, Dong Z, Zheng Y, Gao Y, Tian X, Liu B. Idiopathic Membranous Nephropathy: Glomerular Pathological Pattern Caused by Extrarenal Immunity Activity. Front Immunol 2020; 11:1846. [PMID: 33042109 PMCID: PMC7524879 DOI: 10.3389/fimmu.2020.01846] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Idiopathic membranous nephropathy (IMN) is a pathological pattern of glomerular damage caused by an autoimmune response. Immune complex deposition, thickness of glomerular basement membrane, and changes in the podocyte morphology are responsible for the development of proteinuria, which is caused by the targeted binding of auto-antibodies to podocytes. Several auto-antigens have recently been identified in IMN, including M-type receptor for secretory phospholipase A2 (PLA2R1), thrombospondin type-1 domain-containing 7A (THSD7A), and neural epidermal growth factor-like 1 protein (NELL-1). The measurement of peripheral circulating antibodies has become an important clinical reference index. However, some clinical features of IMN remain elusive and need to be further investigated, such as the autoimmunity initiation, IgG4 predominance, spontaneous remission, and the unique glomerular lesion. As these unresolved issues are closely related to clinical practice, we have proposed a hypothetical pathogenesis model of IMN. Induced by environmental stimuli or other causes, the PLA2R1 antigen and/or THSD7A antigen exposed to extrarenal tissues, such as lungs, then produce the auto-antibodies that target and cause damage to the podocytes in circulation. In this review, we highlighted the potential association between environmental stimuli, immune activity, and glomerular lesions, the underlying basis for spontaneous immune and proteinuria remission.
Collapse
Affiliation(s)
- Wenbin Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chang Gao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhiyuan Liu
- Basic Medical College, Taishan Medical University, Tai'an, China
| | - Haoran Dai
- Beijing Chinese Medicine Hospital PingGu Hospital, Beijing, China
| | - Zhendong Feng
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Zhaocheng Dong
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yang Zheng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yu Gao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Clark EA, Rutlin M, Capano LS, Aviles S, Saadon JR, Taneja P, Zhang Q, Bullis JB, Lauer T, Myers E, Schulmann A, Forrest D, Nelson SB. Cortical RORβ is required for layer 4 transcriptional identity and barrel integrity. eLife 2020; 9:e52370. [PMID: 32851975 PMCID: PMC7492084 DOI: 10.7554/elife.52370] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 08/26/2020] [Indexed: 02/01/2023] Open
Abstract
Retinoic acid-related orphan receptor beta (RORβ) is a transcription factor (TF) and marker of layer 4 (L4) neurons, which are distinctive both in transcriptional identity and the ability to form aggregates such as barrels in rodent somatosensory cortex. However, the relationship between transcriptional identity and L4 cytoarchitecture is largely unknown. We find RORβ is required in the cortex for L4 aggregation into barrels and thalamocortical afferent (TCA) segregation. Interestingly, barrel organization also degrades with age in wildtype mice. Loss of RORβ delays excitatory input and disrupts gene expression and chromatin accessibility, with down-regulation of L4 and up-regulation of L5 genes, suggesting a disruption in cellular specification. Expression and binding site accessibility change for many other TFs, including closure of neurodevelopmental TF binding sites and increased expression and binding capacity of activity-regulated TFs. Lastly, a putative target of RORβ, Thsd7a, is down-regulated without RORβ, and Thsd7a knock-out alone disrupts TCA organization in adult barrels.
Collapse
MESH Headings
- Animals
- Antigens, Surface/chemistry
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Female
- Male
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Neurons/chemistry
- Neurons/cytology
- Neurons/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 2/chemistry
- Nuclear Receptor Subfamily 1, Group F, Member 2/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 2/metabolism
- Somatosensory Cortex/chemistry
- Somatosensory Cortex/cytology
- Somatosensory Cortex/metabolism
- Somatosensory Cortex/physiology
- Thalamus/chemistry
- Thalamus/metabolism
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptome/genetics
Collapse
Affiliation(s)
- Erin A Clark
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Michael Rutlin
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Lucia S Capano
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Samuel Aviles
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Jordan R Saadon
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Praveen Taneja
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Qiyu Zhang
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - James B Bullis
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Timothy Lauer
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | - Emma Myers
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| | | | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institutes of Health, NIDDKBethesdaUnited States
| | - Sacha B Nelson
- Department of Biology and Program in Neuroscience, Brandeis UniversityWalthamUnited States
| |
Collapse
|
23
|
Oishi M, Munesue S, Harashima A, Nakada M, Yamamoto Y, Hayashi Y. Aquaporin 1 elicits cell motility and coordinates vascular bed formation by downregulating thrombospondin type-1 domain-containing 7A in glioblastoma. Cancer Med 2020; 9:3904-3917. [PMID: 32253832 PMCID: PMC7286445 DOI: 10.1002/cam4.3032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/03/2020] [Accepted: 03/13/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Aquaporin (AQP) 1 expression has been linked with tumor malignancy but its role in glioblastoma (GBM), a lethal glioma, remains to be clarified. METHODS AQP1 expression was examined in 33 human GBM specimens by immunohistochemistry. GBM cells (U251 and U87) that stably express AQP1 were established and used for cellular proliferation, migration, invasion, and vascular tube formation assays. The GeneChip assay was used to identify differentially expressed genes in AQP1-expressing cells. RESULTS AQP1 was expressed only in tumor cells. AQP1 dose-dependently accelerated cell migration and invasion, but not proliferation, in GBM cell lines. AQP1 also upregulated cathepsin B, focal adhesion kinase and activities of matrix metalloproteinase 9. AQP1 in GBM cells induced wall thickness of ECV304, vascular endothelial cells, in a contact-dependent manner. Downregulation of thrombospondin type 1 domain containing 7A (THSD7A) was identified in AQP1-expressing GBM cells in vitro, and was negatively correlated with AQP1 expression in human GBM specimens. CONCLUSION AQP1 is involved in tumor malignancy by facilitating the migration and invasion of GBM cells, and promoting the formation of vascular beds that are characteristic of GBM by downregulating THSD7A.
Collapse
Affiliation(s)
- Masahiro Oishi
- Department of NeurosurgeryKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Seiichi Munesue
- Department of Biochemistry and Molecular Vascular BiologyKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular BiologyKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Mitsutoshi Nakada
- Department of NeurosurgeryKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular BiologyKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Yasuhiko Hayashi
- Department of NeurosurgeryKanazawa University Graduate School of Medical SciencesKanazawaJapan
- Department of NeurosurgeryKanazawa Medical UniversityUchinadaJapan
| |
Collapse
|
24
|
Maifata SM, Hod R, Zakaria F, Abd Ghani F. Primary Membranous Glomerulonephritis: The Role of Serum and Urine Biomarkers in Patient Management. Biomedicines 2019; 7:E86. [PMID: 31683874 PMCID: PMC6966460 DOI: 10.3390/biomedicines7040086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022] Open
Abstract
The detection of phospholipase A2 receptor (PLA2R) and thrombospondin domain containing 7A THSD7A among primary membranous glomerulonephritis (MGN) patients transformed the diagnosis, treatment monitoring, and prognosis. Anti-PLA2R can be detected in 70-90% of primary MGN patients while anti-THSD7A in 2-3% of anti-PLA2R negative primary MGN patients depending on the technique used. Serum and urine samples are less invasive and non-invasive, respectively, and thus can detect the presence of anti-PLA2R and anti-THSD7A with higher sensitivity and specificity, which is significant in patient monitoring and prognosis. It is better than exposing patients to a frequent biopsy, which is an invasive procedure. Different techniques of detection of PLA2R and THSD7A in patients' urine and sera were reviewed to provide newer and alternative techniques. We proposed the use of biomarkers (PLA2R and THSD7A) in the diagnosis, treatment decision, and follow-up of patients with primary MGN. In addition, other prognostic renal biomarkers like retinol binding protein (RBP) and beta-2 microglobulin were reviewed to detect the progression of renal damage for early intervention.
Collapse
Affiliation(s)
- Sadiq Mu'azu Maifata
- Histopathology Unit, Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
- Physiology Unit, Department of Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
- Department of Physiology, Faculty of Basic Medical Science, College of Medicine, Federal University Lafia, Lafia, Nasarawa 950102, Nigeria.
| | - Rafidah Hod
- Physiology Unit, Department of Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Fadhlina Zakaria
- Nephrology Unit, Department of Medicine, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Fauzah Abd Ghani
- Histopathology Unit, Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Despite major advances in since the discovery of the phospholipase A2 receptor (PLA2R) as the major autoantigen on podocytes in primary membranous nephropathy, there are still several unanswered questions as highlighted here. RECENT FINDINGS A substantial body of literature, included in more than 680 articles since 2009, has documented genetic susceptibility to primary membranous nephropathy involving PLA2R1 and class II MHC alleles, the clinical value of anti-PLA2R assays, the significance of epitope spreading of the anti-PLA2R response, discovery of thrombospondin type I domain-containing 7A (THSD7A) as a minor antigen in primary membranous nephropathy, and the ability to transfer disease into mice by infusion of anti-THSD7A sera. However, the normal physiology and pathophysiology of PLA2R and THSD7A in podocytes is still unknown and the genetic influence on disease susceptibility is unexplained. We still do not know what causes loss of self-tolerance to PLA2R and THSD7A or how the autoantibodies, which are predominantly of the IgG4 subclass, cause podocyte injury and proteinuria. Complement deposits are prominent in membranous nephropathy but we are still uncertain how the complement system is activated and whether or not it plays a role in podocyte damage. Notwithstanding the advances over the past decade, our treatments have not changed substantially. SUMMARY This review identifies opportunities to extend the advances that have been made to better understand the immunopathogenesis and genetic basis of primary membranous nephropathy and apply the knowledge to design more specific therapies.
Collapse
|
26
|
Kamyshova ES, Bobkova IN, Gorelova IA, Каkhsurueva PA, Filatova EE. Genetic determinants of the development and course of membranous nephropathy. TERAPEVT ARKH 2019; 90:105-111. [PMID: 30701913 DOI: 10.26442/terarkh2018906105-111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Membranous nephropathy (MN) is one of the most common causes of nephrotic syndrome in adults and is classified as either primary (idiopatic) or secondary MN according to underlying etiology (the later result from some known disease such as systemic autoimmune diseases, infections, malignancies, drugs, etc). In recent years, phospholipase A2 receptor 1 (PLA2R) and thrombospondin type-1 domain-containing 7A (THSD7A) were identified as two major podocytic antigens involved in the pathogenesis of idiopatic MN (IMN). And the discovery of circulating antibodies specific for these target antigens has transformed the diagnostic workup and significally improved management of IMN. However why do such antibodies develop is not conclusively established. The role of underlying genetic factors is discussed. The review presents the results of recent studies, that have shown significant associations of specific genetic factors (particularly human leucocyte antigen class II and PLA2R1 genes) with IMN.
Collapse
Affiliation(s)
- E S Kamyshova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - I N Bobkova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - I A Gorelova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - P A Каkhsurueva
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - E E Filatova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Moscow, Russia
| |
Collapse
|
27
|
Possible cooption of a VEGF-driven tubulogenesis program for biomineralization in echinoderms. Proc Natl Acad Sci U S A 2019; 116:12353-12362. [PMID: 31152134 DOI: 10.1073/pnas.1902126116] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Biomineralization is the process by which living organisms use minerals to form hard structures that protect and support them. Biomineralization is believed to have evolved rapidly and independently in different phyla utilizing preexisting components. The mechanistic understanding of the regulatory networks that drive biomineralization and their evolution is far from clear. Sea urchin skeletogenesis is an excellent model system for studying both gene regulation and mineral uptake and deposition. The sea urchin calcite spicules are formed within a tubular cavity generated by the skeletogenic cells controlled by vascular endothelial growth factor (VEGF) signaling. The VEGF pathway is essential for biomineralization in echinoderms, while in many other phyla, across metazoans, it controls tubulogenesis and vascularization. Despite the critical role of VEGF signaling in sea urchin spiculogenesis, the downstream program it activates was largely unknown. Here we study the cellular and molecular machinery activated by the VEGF pathway during sea urchin spiculogenesis and reveal multiple parallels to the regulation of vertebrate vascularization. Human VEGF rescues sea urchin VEGF knockdown, vesicle deposition into an internal cavity plays a significant role in both systems, and sea urchin VEGF signaling activates hundreds of genes, including biomineralization and interestingly, vascularization genes. Moreover, five upstream transcription factors and three signaling genes that drive spiculogenesis are homologous to vertebrate factors that control vascularization. Overall, our findings suggest that sea urchin spiculogenesis and vertebrate vascularization diverged from a common ancestral tubulogenesis program, broadly adapted for vascularization and specifically coopted for biomineralization in the echinoderm phylum.
Collapse
|
28
|
Everson TM, Marable C, Deyssenroth MA, Punshon T, Jackson BP, Lambertini L, Karagas MR, Chen J, Marsit CJ. Placental Expression of Imprinted Genes, Overall and in Sex-Specific Patterns, Associated with Placental Cadmium Concentrations and Birth Size. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:57005. [PMID: 31082282 PMCID: PMC6791491 DOI: 10.1289/ehp4264] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 04/09/2019] [Accepted: 04/22/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Prenatal cadmium (Cd) exposure has been recognized to restrict growth, and male and female fetuses may have differential susceptibility to the developmental toxicity of Cd. Imprinted genes, which exhibit monoallelic expression based on parent of origin, are highly expressed in placental tissues. The function of these genes is particularly critical to fetal growth and development, and some are expressed in sex-specific patterns. OBJECTIVES We aimed to examine whether prenatal Cd associates with the expression of imprinted placental genes, overall or in fetal sex-specific patterns, across two independent epidemiologic studies. METHODS We tested for Cd–sex interactions in association with gene expression, then regressed the placental expression levels of 74 putative imprinted genes on placental log-Cd concentrations while adjusting for maternal age, sex, smoking history, and educational attainment. These models were performed within study- and sex-specific strata in the New Hampshire Birth Cohort Study (NHBCS; [Formula: see text]) and the Rhode Island Child Health Study (RICHS; [Formula: see text]). We then used fixed-effects models to estimate the sex-specific and overall associations across strata and then examine heterogeneity in the associations by fetal sex. RESULTS We observed that higher Cd concentrations were associated with higher expression of distal-less homeobox 5 (DLX5) ([Formula: see text]), and lower expression of h19 imprinted maternally expressed transcript (H19) ([Formula: see text]) and necdin, MAGE family member (NDN) ([Formula: see text]) across study and sex-specific strata, while three other genes [carboxypeptidase A4 (CPA4), growth factor receptor bound protein 10 (GRB10), and integrin-linked kinase (ILK)] were significantly associated with Cd concentrations, but only among female placenta ([Formula: see text]). Additionally, the expression of DLX5, H19, and NDN, the most statistically significant Cd-associated genes, were also associated with standardized birth weight z-scores. DISCUSSION The differential regulation of a set of imprinted genes, particularly DLX5, H19, and NDN, in association with prenatal Cd exposure may be involved in overall developmental toxicity, and some imprinted genes may respond to Cd exposure in a manner that is specific to infant gender. https://doi.org/10.1289/EHP4264.
Collapse
Affiliation(s)
- Todd M. Everson
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, Georgia, USA
| | - Carmen Marable
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, Georgia, USA
| | - Maya A. Deyssenroth
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Luca Lambertini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carmen J. Marsit
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, Georgia, USA
- Department of Epidemiology, Rollins School of Public Health at Emory University, Atlanta, Georgia, USA
| |
Collapse
|
29
|
Placental imprinted gene expression mediates the effects of maternal psychosocial stress during pregnancy on fetal growth. J Dev Orig Health Dis 2019; 10:196-205. [PMID: 30968809 DOI: 10.1017/s2040174418000545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Imprinted genes uniquely drive and support fetoplacental growth by controlling the allocation of maternal resources to the fetus and affecting the newborn's growth. We previously showed that alterations of the placental imprinted gene expression are associated with suboptimal perinatal growth and respond to environmental stimuli including socio-economic determinants. At the same time, maternal psychosocial stress during pregnancy (MPSP) has been shown to affect fetal growth. Here, we set out to test the hypothesis that placental imprinted gene expression mediates the effects of MPSP on fetal growth in a well-characterized birth cohort, the Stress in Pregnancy (SIP) Study. We observed that mothers experiencing high MPSP deliver infants with lower birthweight (P=0.047). Among the 109 imprinted genes tested, we detected panels of placental imprinted gene expression of 23 imprinted genes associated with MPSP and 26 with birthweight. Among these genes, five imprinted genes (CPXM2, glucosidase alpha acid (GAA), GPR1, SH3 and multiple ankyrin repeat domains 2 (SHANK2) and THSD7A) were common to the two panels. In multivariate analyses, controlling for maternal age and education and gestational age at birth and infant gender, two genes, GAA and SHANK2, each showed a 22% mediation of MPSP on fetal growth. These data provide new insights into the role that imprinted genes play in translating the maternal stress message into a fetoplacental growth pattern.
Collapse
|
30
|
Herwig J, Skuza S, Sachs W, Sachs M, Failla AV, Rune G, Meyer TN, Fester L, Meyer-Schwesinger C. Thrombospondin Type 1 Domain-Containing 7A Localizes to the Slit Diaphragm and Stabilizes Membrane Dynamics of Fully Differentiated Podocytes. J Am Soc Nephrol 2019; 30:824-839. [PMID: 30971456 DOI: 10.1681/asn.2018090941] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND About 3%-5% of adults with membranous nephropathy have autoantibodies directed against thrombospondin type 1 domain-containing 7A (THSD7A), a podocyte-expressed transmembrane protein. However, the temporal and spatial expression of THSD7A and its biologic function for podocytes are unknown, information that is needed to understand the effects of THSD7A autoantibodies in this disease. METHODS Using a variety of microscopic techniques, we analyzed THSD7A localization in postnatal, adult, and autoantibody-injected mice as well as in human podocytes. We also analyzed THSD7A function in human podocytes using confocal microscopy; Western blotting; and adhesion and migration assays. RESULTS We found that THSD7A expression begins on glomerular vascularization with slit diaphragm formation in development. THSD7A localizes to the basal aspect of foot processes, closely following the meanders of the slit diaphragm in human and mice. Autoantibodies binding to THSD7A localize to the slit diaphragm. In human podocytes, THSD7A expression is accentuated at filopodia and thin arborized protrusions, an expression pattern associated with decreased membrane activity of cytoskeletal regulators. We also found that, phenotypically, THSD7A expression in human podocytes is associated not only with increases in cell size, enhanced adhesion, and reduced detachment from collagen type IV-coated plates but also, with decreased ability to migrate. CONCLUSIONS Our findings suggest that THSD7A functions as a foot process protein involved in the stabilization of the slit diaphragm of mature podocytes and that autoantibodies to THSD7A, on the basis of their localization, might structurally and functionally alter the slit diaphragm's permeability to protein.
Collapse
Affiliation(s)
| | - Sinah Skuza
- Institutes of Cellular and Integrative Physiology and
| | - Wiebke Sachs
- Institutes of Cellular and Integrative Physiology and
| | - Marlies Sachs
- Institutes of Cellular and Integrative Physiology and
| | - Antonio Virgilio Failla
- University Microscopy Imaging Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and
| | | | - Tobias N Meyer
- Department of Internal Medicine, Nephrology, Asklepios Klinikum Barmbek, Hamburg, Germany
| | | | | |
Collapse
|
31
|
Taguchi S, Koshikawa Y, Ohyama S, Miyachi H, Ozawa H, Asada H. Thrombospondin type-1 domain-containing 7A-associated membranous nephropathy after resection of rectal cancer: a case report. BMC Nephrol 2019; 20:43. [PMID: 30727973 PMCID: PMC6366086 DOI: 10.1186/s12882-019-1236-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/28/2019] [Indexed: 11/13/2022] Open
Abstract
Background Thrombospondin type-1 domain-containing 7A (THSD7A) is a target antigen in idiopathic membranous nephropathy (MN). Patients with THSD7A-associated MN are known to have a high possibility of developing malignancy. However, there are few case reports on THSD7A-associated MN with malignancy, and details of its characteristics have not been clarified thoroughly. Here, we report the case of a 77-year-old male patient who was diagnosed with THSD7A-associated MN after resection of rectal cancer. Case presentation A 77-year-old man who had developed bilateral peripheral edema, persistent proteinuria, and nephrotic syndrome was admitted to our hospital. He was diagnosed with MN based on a renal biopsy 3 years after resection of rectal cancer, and positive staining for THSD7A in both kidney and rectal cancer tissues suggested that these two diseases were related. Furthermore, THSD7A staining of metastatic lymph nodes revealed deposition of THSD7A in the secondary lymph follicles and sinus. Recurrence of rectal cancer was suspected; however, tumor recurrence was not observed on chest and abdominal computed tomography (CT) and colonoscopy. There was no lymph node enlargement. The patient was kept on observation with supportive therapy. Consequently, although nephrotic syndrome persisted, obvious recurrence and metastasis of the primary tumor were not observed. Conclusion This is the first case in which pathological examination results suggested that THSD7A-associated MN was caused by rectal cancer. Based on the reports of THSD7A-associated MN with malignancy and the pathogenesis of MN, lymph node metastasis may be a risk for cancer-related MN.
Collapse
Affiliation(s)
- Shinya Taguchi
- Department of Nephrology, Okazaki City Hospital, 3-1 Goshoai Koryuzi-cho, Okazaki, Aichi, 444-8553, Japan. .,Department of Nephrology, Immunology and Vascular Medicine, Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8553, Japan.
| | - Yoshiki Koshikawa
- Department of Nephrology, Okazaki City Hospital, 3-1 Goshoai Koryuzi-cho, Okazaki, Aichi, 444-8553, Japan
| | - Shoya Ohyama
- Department of Nephrology, Okazaki City Hospital, 3-1 Goshoai Koryuzi-cho, Okazaki, Aichi, 444-8553, Japan
| | - Hiroko Miyachi
- Department of Nephrology, Okazaki City Hospital, 3-1 Goshoai Koryuzi-cho, Okazaki, Aichi, 444-8553, Japan
| | - Hiroaki Ozawa
- Department of Pathology, Okazaki City hospital, 3-1 Goshoai Koryuzi-cho, Okazaki, Aichi, 444-8553, Japan
| | - Hiroaki Asada
- Department of Nephrology, Okazaki City Hospital, 3-1 Goshoai Koryuzi-cho, Okazaki, Aichi, 444-8553, Japan
| |
Collapse
|
32
|
Stoddard SV, Welsh CL, Palopoli MM, Stoddard SD, Aramandla MP, Patel RM, Ma H, Beck LH. Structure and function insights garnered from in silico modeling of the thrombospondin type-1 domain-containing 7A antigen. Proteins 2018; 87:136-145. [PMID: 30520531 DOI: 10.1002/prot.25640] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/07/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022]
Abstract
The thrombospondin type-1 domain containing 7A (THSD7A) protein is known to be one of the antigens responsible for the autoimmune disorder idiopathic membranous nephropathy. The structure of this antigen is currently unsolved experimentally. Here we present a homology model of the extracellular portion of the THSD7A antigen. The structure was evaluated for folding patterns, epitope site prediction, and function was predicted. Results show that this protein contains 21 extracellular domains and with the exception of the first two domains, has a regular repeating pattern of TSP-1-like followed by F-spondin-like domains. Our results indicate the presence of a novel Trp-ladder sequence of WxxxxW in the TSP-1-like domains. Of the 21 domains, 18 were shown to have epitope binding sites as predicted by epitopia. Several of the F-spondin-like domains have insertions in the canonical TSP fold, most notably the coiled coil region in domain 4, which may be utilized in protein-protein binding interactions, suggesting that this protein functions as a heparan sulfate binding site.
Collapse
Affiliation(s)
| | - Colin L Welsh
- Department of Chemistry, Rhodes College, Memphis, Tennessee
| | | | - Serena D Stoddard
- Department of Chemistry, Rhodes College, Memphis, Tennessee.,Department of Animal Science, University of Missouri, Columbia, Missouri
| | | | - Riya M Patel
- Department of Chemistry, Rhodes College, Memphis, Tennessee
| | - Hong Ma
- Department of Cell Biology, College of Arts and Sciences, Boston University, Boston, Massachusetts
| | - Laurence H Beck
- Department of Medicine, Nephrology Section, Boston University Medical Center, Boston, Massachusetts
| |
Collapse
|
33
|
Ren S, Wu C, Zhang Y, Wang AY, Li G, Wang L, Hong D. An update on clinical significance of use of THSD7A in diagnosing idiopathic membranous nephropathy: a systematic review and meta-analysis of THSD7A in IMN. Ren Fail 2018; 40:306-313. [PMID: 29623759 PMCID: PMC6014291 DOI: 10.1080/0886022x.2018.1456457] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/05/2018] [Accepted: 03/15/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND THSD7A is a new target antigen of idiopathic membranous nephropathy (IMN). Moreover, malignancies are also found in patients with THSD7A-positive membranous nephropathy. We aimed to systematically evaluate the prevalence of THSD7A in IMN patients and malignancies in THSD7A-positive patients. METHODS We searched English and Chinese database to 31 December 2017 with the term 'THSD7A' or 'thrombospondin type 1 domain-containing 7A'. Meta-analysis was used to explore the positive rate of THSD7A in the IMN patients. Subgroup analysis was performed according to the race, sample size, and detecting method of THSD7A. RESULTS Ten studies involving 4121 participants were eventually included. The prevalence of THSD7A was 3% (95% CI, 3%-4%) in all patients and 10% (95% CI, 6%-15%) in PLA2R-negative patients. 77 patients had positive circulating antibodies, and the prevalence of THSD7A was also low at 3% (95% CI, 2%-4%). Overall, 72 patients had positive THSD7A staining on renal biopsy, and the prevalence was 3% (95% CI 2%-4%). Subgroup analysis showed significant differences in the prevalence of THSD7A based on the study sample sizes, however, no significant differences were seen in different ethnic groups. Furthermore, among THSD7A-positive patients, 3/10 studies reported malignancies with the incidence varied from 6% to 25%. CONCLUSIONS The prevalence of THSD7A is more common in the PLA2R-negative patients than the IMN patients. Screening for malignancies in THSD7A-positive MN patients is recommended.
Collapse
Affiliation(s)
- Song Ren
- Renal Department and Nephrology Institute, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Changwei Wu
- Renal Department and Nephrology Institute, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Zhang
- Renal Department and Nephrology Institute, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Amanda Y. Wang
- The George Institute for Global Health, University of Sydney, Sydney, Australia
| | - Guisen Li
- Renal Department and Nephrology Institute, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Wang
- Renal Department and Nephrology Institute, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Daqing Hong
- Renal Department and Nephrology Institute, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- The George Institute for Global Health, University of Sydney, Sydney, Australia
| |
Collapse
|
34
|
Human anti-thrombospondin type 1 domain-containing 7A antibodies induce membranous nephropathy through activation of lectin complement pathway. Biosci Rep 2018; 38:BSR20180131. [PMID: 29769410 PMCID: PMC6013707 DOI: 10.1042/bsr20180131] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 01/06/2023] Open
Abstract
To investigate whether the human anti-thrombospondin type 1 domain-containing 7A (THSD7A) antibody-induced membranous nephropathy (MN) is mediated by activating lectin complement pathway. Automatic biochemical apparatus was used to assess renal function of mice. The serum levels of anti-THSD7A antibodies and complement were tested by using ELISA. The expression level of THSD7A and mannose-binding lectin (MBL) in clinical tissue, and the histological features of MN in mice were examined by immunochemical methods. We found that THSD7A, MBL, and complement expression level from patients with circulating anti-THSD7A antibodies were significantly higher than that in normal group. Furthermore, difference of renal function in anti-THSD7A antibody-containing serum treatment groups and control groups was significant. Meanwhile, human anti-THSD7A autoantibodies activated the complement system and induced the histological features of MN in mice. In conclusion, human anti-THSD7A antibodies induce MN through activating MBL lectin complement pathway in mice.
Collapse
|
35
|
Bartoszewski R, Serocki M, Janaszak-Jasiecka A, Bartoszewska S, Kochan-Jamrozy K, Piotrowski A, Króliczewski J, Collawn JF. miR-200b downregulates Kruppel Like Factor 2 (KLF2) during acute hypoxia in human endothelial cells. Eur J Cell Biol 2017; 96:758-766. [PMID: 29042072 PMCID: PMC5677561 DOI: 10.1016/j.ejcb.2017.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/01/2017] [Accepted: 10/11/2017] [Indexed: 01/03/2023] Open
Abstract
The role of microRNAs in controlling angiogenesis is recognized as a promising therapeutic target in both cancer and cardiovascular disorders. However, understanding a miRNA's pleiotropic effects on angiogenesis is a limiting factor for these types of therapeutic approaches. Using genome-wide next-generation sequencing, we examined the role of an antiangiogenic miRNA, miR-200b, in primary human endothelial cells. The results indicate that miR-200b has complex effects on hypoxia-induced angiogenesis in human endothelia and importantly, that many of the reported miR-200b effects using miRNA overexpression may not be representative of the physiological role of this miRNA. We also identified the antiangiogenic KLF2 gene as a novel target of miR-200b. Our studies indicate that the physiological changes in miR-200b levels during acute hypoxia may actually have a proangiogenic effect through Klf2 downregulation and subsequent stabilization of HIF-1 signaling. Moreover, we provide a viable approach for differentiating direct from indirect miRNA effects in order to untangle the complexity of individual miRNA networks.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland.
| | - Marcin Serocki
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Anna Janaszak-Jasiecka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Kinga Kochan-Jamrozy
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Arkadiusz Piotrowski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Jarosław Króliczewski
- Laboratory of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
36
|
Abstract
The phospholipase A2 receptor (PLA2R) and thrombospondin type-1 domain-containing 7A (THSD7A) are the two major autoantigens in primary membranous nephropathy (MN), and define two molecular subclasses of this disease. Both proteins are large transmembrane glycoproteins expressed by the podocyte, and both induce IgG4-predominant humoral immune responses that produce circulating autoantibodies that can be used clinically for diagnostic and monitoring purposes. The biologic roles of these proteins remain speculative, although several features of THSD7A suggest a role in adhesion. PLA2R-associated MN was initially found to associate with risk alleles within HLA-DQA1, but subsequent studies have shifted the focus to the HLA-DRB locus. Three distinct humoral epitope-containing regions have been defined within the extracellular portion of PLA2R, and it appears that the number of targeted epitopes may determine disease severity. Although similar information is not yet available for THSD7A-associated MN, this form of MN may have a unique association with malignancy. Finally, it appears likely that other autoantigens in primary MN exist. Although protocols similar to those that identified PLA2R and THSD7A may be successful in the identification of novel antigenic targets in MN, newer techniques such as laser-capture mass spectrometry or protein arrays may be helpful as well.
Collapse
Affiliation(s)
- Laurence H Beck
- Renal Section, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
37
|
Expression, prognosis and functional role of Thsd7a in esophageal squamous cell carcinoma of Kazakh patients, Xinjiang. Oncotarget 2017; 8:60539-60557. [PMID: 28947992 PMCID: PMC5601160 DOI: 10.18632/oncotarget.16966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/01/2017] [Indexed: 12/12/2022] Open
Abstract
Thsd7a (Thrombospondin type 1 domain containing 7a) is a critical transmembrane protein. Studies have indicated that Thsd7a was associated with cytoskeletal organization, cell migration and filopodia formation. However, the involvement of Thsd7a remains elusive in human Esophageal Squamous Cell Carcinoma (ESCC). Consequently, immunohistochemistry and reverse transcription-polymerase chain reaction were utilized to study the correlation between the expression of Thsd7a and clinical-pathological characteristics. The influence of Thsd7a on apoptosis, cell proliferating activity, cell cycle, migratory and invasive capacity was determined in Eca 109 and EC 9706 cell lines in vitro. And the influence on proliferating activity was testified using naked mice model in vivo. In addition, the potential molecular mechanism was tested by microarray. It was discovered that there is a certain correlation between Thsd7a and the Kazakh ESCC. By knocking out Thsd7a, the invasion, migration and proliferation could be decreased. And it could also arrest the cell cycle at G1 phase and increase the apoptosis rate. It was further verified that Thsd7a had obvious effect on proliferation in naked mice with xenograft of Eca109 cells. Finally, it was uncovered by microarray analysis that a variety of tumor genes and pathways related to Thsd7a. Together, it was demonstrated that Thsd7a might have a certain degree of carcinogenesis in ESCC.
Collapse
|
38
|
Bobkova IN, Kakhsurueva PA, Stavrovskaya EV. [Idiopathic membranous nephropathy: Evolution in understanding the problem]. TERAPEVT ARKH 2016; 88:89-94. [PMID: 27489901 DOI: 10.17116/terarkh201688689-94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The review highlights the evolution of ideas on the. mechanisms responsible for the 'development of membranous nephropathy(MN), glomerulopathy that is the most common cause of nephrotic syndrome in adults. Primary emphasis is placed on the primary form of MN. The important step to understanding the nature of this clinical and morphological form of glomerulonephritis is to create its animal model (Heymann nephritis), then to decipher the mechanisms of immune complex damage (complement activation,a role of cellular immunity), and to identify autoantigens responsible for the development of idiopathic MN in man (podocyteneutral endopeptidase, transmembrane M-type phospholipase A2 receptor, thrombospondin type-1 domain-containing 7A. The findings constituted the basis for developing current methods for the diagnosis and treatment of MN, including the pathogenetically sound inhibition of autoantibody production, as well as a molecular orientation effect on podocyte dysfunction.
Collapse
Affiliation(s)
- I N Bobkova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - P A Kakhsurueva
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - E V Stavrovskaya
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
39
|
Liu LYM, Lin MH, Lai ZY, Jiang JP, Huang YC, Jao LE, Chuang YJ. Motor neuron-derived Thsd7a is essential for zebrafish vascular development via the Notch-dll4 signaling pathway. J Biomed Sci 2016; 23:59. [PMID: 27484901 PMCID: PMC4971630 DOI: 10.1186/s12929-016-0277-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/18/2016] [Indexed: 11/10/2022] Open
Abstract
Background Development of neural and vascular systems displays astonishing similarities among vertebrates. This parallelism is under a precise control of complex guidance signals and neurovascular interactions. Previously, our group identified a highly conserved neural protein called thrombospondin type I domain containing 7A (THSD7A). Soluble THSD7A promoted and guided endothelial cell migration, tube formation and sprouting. In addition, we showed that thsd7a could be detected in the nervous system and was required for intersegmental vessels (ISV) patterning during zebrafish development. However, the exact origin of THSD7A and its effect on neurovascular interaction remains unclear. Results In this study, we discovered that zebrafish thsd7a was expressed in the primary motor neurons. Knockdown of Thsd7a disrupted normal primary motor neuron formation and ISV sprouting in the Tg(kdr:EGFP/mnx1:TagRFP) double transgenic zebrafish. Interestingly, we found that Thsd7a morphants displayed distinct phenotypes that are very similar to the loss of Notch-delta like 4 (dll4) signaling. Transcript profiling further revealed that expression levels of notch1b and its downstream targets, vegfr2/3 and nrarpb, were down-regulated in the Thsd7a morphants. These data supported that zebrafish Thsd7a could regulate angiogenic sprouting via Notch-dll4 signaling during development. Conclusions Our results suggested that motor neuron-derived Thsd7a plays a significant role in neurovascular interactions. Thsd7a could regulate ISV angiogenesis via Notch-dll4 signaling. Thus, Thsd7a is a potent angioneurin involved in the development of both neural and vascular systems. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0277-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lawrence Yu-Min Liu
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Division of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital Hsinchu Branch, Hsinchu, 30071, Taiwan
| | - Min-Hsuan Lin
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Zih-Yin Lai
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jie-Peng Jiang
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Ching Huang
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Li-En Jao
- Department of Cell Biology and Human Anatomy, UC Davis School of Medicine, 4415 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA
| | - Yung-Jen Chuang
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
40
|
Hypoxia-inducible miR-210 contributes to preeclampsia via targeting thrombospondin type I domain containing 7A. Sci Rep 2016; 6:19588. [PMID: 26796133 PMCID: PMC4726282 DOI: 10.1038/srep19588] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022] Open
Abstract
Preeclampsia, a relatively common pregnancy disorder, is a major contributor to maternal mortality and morbidity worldwide. An elevation in microRNA-210 (miR-210) expression in the placenta has been reported to be associated with preeclampsia. Our bioinformatic analysis showed that thrombospondin type I domain containing 7A (THSD7A) is a predicted target for miR-210. The aim of this study was to determine whether miR-210 is involved in preeclampsia through its targeting of THSD7A in human placental trophoblasts. In preeclamptic placental tissues, THSD7A levels were significantly downregulated, and were inversely correlated with the levels of miR-210. THSD7A was validated as a direct target of miR-210 using quantitative real time PCR (qRT-PCR), Western blotting, and dual luciferase assays in HTR8/SVneo cells. Transwell insert invasion assays showed that THSD7A mediated the invasion-inhibitory effect of miR-210 in HTR8/SVneo cells. Interestingly, hypoxia markedly increased miR-210 expression while suppressing THSD7A expression in a time-dependent manner in HTR8/SVneo cells. This study provides novel data on the function of THSD7A in human placental cells, and extends our knowledge of how miR-210 is involved in the development of the preeclampsia.
Collapse
|
41
|
Iwakura T, Fujigaki Y, Katahashi N, Sato T, Ishigaki S, Tsuji N, Naito Y, Isobe S, Ono M, Sakao Y, Tsuji T, Ohashi N, Kato A, Miyajima H, Yasuda H. Membranous Nephropathy with an Enhanced Granular Expression of Thrombospondin Type-1 Domain-containing 7A in a Pregnant Woman. Intern Med 2016; 55:2663-8. [PMID: 27629964 DOI: 10.2169/internalmedicine.55.6726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 30-year-old woman with proteinuria first noted at 26 weeks of gestation was admitted to undergo further evaluation. A renal biopsy revealed membranous nephropathy (MN). There was no evidence of any secondary MN. Prednisolone was initiated 6 months after delivery. Four months later, her urine protein became negative. Enhanced granular staining for thrombospondin type-1 domain-containing 7A (THSD7A) in the glomeruli was retrospectively detected in a biopsy specimen. A literature review revealed that 60% of cases of THSD7A-related MN occurred in women of childbearing age. Therefore, THSD7A-related MN should be considered in female patients presenting with idiopathic MN in childbearing age.
Collapse
Affiliation(s)
- Takamasa Iwakura
- First Department of Medicine, Hamamatsu University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tomas NM, Beck LH, Meyer-Schwesinger C, Seitz-Polski B, Ma H, Zahner G, Dolla G, Hoxha E, Helmchen U, Dabert-Gay AS, Debayle D, Merchant M, Klein J, Salant DJ, Stahl RAK, Lambeau G. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med 2014; 371:2277-2287. [PMID: 25394321 PMCID: PMC4278759 DOI: 10.1056/nejmoa1409354] [Citation(s) in RCA: 617] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Idiopathic membranous nephropathy is an autoimmune disease. In approximately 70% of patients, it is associated with autoantibodies against the phospholipase A2 receptor 1 (PLA2R1). Antigenic targets in the remaining patients are unknown. METHODS Using Western blotting, we screened serum samples from patients with idiopathic membranous nephropathy, patients with other glomerular diseases, and healthy controls for antibodies against human native glomerular proteins. We partially purified a putative new antigen, identified this protein by means of mass spectrometry of digested peptides, and validated the results by analysis of recombinant protein expression, immunoprecipitation, and immunohistochemical analysis. RESULTS Serum samples from 6 of 44 patients in a European cohort and 9 of 110 patients in a Boston cohort with anti-PLA2R1-negative idiopathic membranous nephropathy recognized a glomerular protein that was 250 kD in size. None of the serum samples from the 74 patients with idiopathic membranous nephropathy who were seropositive for anti-PLA2R1 antibodies, from the 76 patients with other glomerular diseases, and from the 44 healthy controls reacted against this antigen. Although this newly identified antigen is clearly different from PLA2R1, it shares some biochemical features, such as N-glycosylation, membranous location, and reactivity with serum only under nonreducing conditions. Mass spectrometry identified this antigen as thrombospondin type-1 domain-containing 7A (THSD7A). All reactive serum samples recognized recombinant THSD7A and immunoprecipitated THSD7A from glomerular lysates. Moreover, immunohistochemical analyses of biopsy samples from patients revealed localization of THSD7A to podocytes, and IgG eluted from one of these samples was specific for THSD7A. CONCLUSIONS In our cohort, 15 of 154 patients with idiopathic membranous nephropathy had circulating autoantibodies to THSD7A but not to PLA2R1, a finding that suggests a distinct subgroup of patients with this condition. (Funded by the French National Center for Scientific Research and others.).
Collapse
Affiliation(s)
- Nicola M Tomas
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Valbonne, France (N.M.T., B.S.-P., G.D., A.-S.D.-G., D.D., G.L.); University Medical Center Hamburg-Eppendorf, Hamburg, Germany (N.M.T., C.M.-S., G.Z., E.H., U.H., R.A.K.S.); Boston University School of Medicine, Boston (L.H.B., H.M., D.J.S.); and the University of Louisville (M.M., J.K.) and Robley Rex Veterans Affairs Medical Center (J.K.) - both in Louisville, KY
| | - Laurence H Beck
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Valbonne, France (N.M.T., B.S.-P., G.D., A.-S.D.-G., D.D., G.L.); University Medical Center Hamburg-Eppendorf, Hamburg, Germany (N.M.T., C.M.-S., G.Z., E.H., U.H., R.A.K.S.); Boston University School of Medicine, Boston (L.H.B., H.M., D.J.S.); and the University of Louisville (M.M., J.K.) and Robley Rex Veterans Affairs Medical Center (J.K.) - both in Louisville, KY
| | - Catherine Meyer-Schwesinger
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Valbonne, France (N.M.T., B.S.-P., G.D., A.-S.D.-G., D.D., G.L.); University Medical Center Hamburg-Eppendorf, Hamburg, Germany (N.M.T., C.M.-S., G.Z., E.H., U.H., R.A.K.S.); Boston University School of Medicine, Boston (L.H.B., H.M., D.J.S.); and the University of Louisville (M.M., J.K.) and Robley Rex Veterans Affairs Medical Center (J.K.) - both in Louisville, KY
| | - Barbara Seitz-Polski
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Valbonne, France (N.M.T., B.S.-P., G.D., A.-S.D.-G., D.D., G.L.); University Medical Center Hamburg-Eppendorf, Hamburg, Germany (N.M.T., C.M.-S., G.Z., E.H., U.H., R.A.K.S.); Boston University School of Medicine, Boston (L.H.B., H.M., D.J.S.); and the University of Louisville (M.M., J.K.) and Robley Rex Veterans Affairs Medical Center (J.K.) - both in Louisville, KY
| | - Hong Ma
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Valbonne, France (N.M.T., B.S.-P., G.D., A.-S.D.-G., D.D., G.L.); University Medical Center Hamburg-Eppendorf, Hamburg, Germany (N.M.T., C.M.-S., G.Z., E.H., U.H., R.A.K.S.); Boston University School of Medicine, Boston (L.H.B., H.M., D.J.S.); and the University of Louisville (M.M., J.K.) and Robley Rex Veterans Affairs Medical Center (J.K.) - both in Louisville, KY
| | - Gunther Zahner
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Valbonne, France (N.M.T., B.S.-P., G.D., A.-S.D.-G., D.D., G.L.); University Medical Center Hamburg-Eppendorf, Hamburg, Germany (N.M.T., C.M.-S., G.Z., E.H., U.H., R.A.K.S.); Boston University School of Medicine, Boston (L.H.B., H.M., D.J.S.); and the University of Louisville (M.M., J.K.) and Robley Rex Veterans Affairs Medical Center (J.K.) - both in Louisville, KY
| | - Guillaume Dolla
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Valbonne, France (N.M.T., B.S.-P., G.D., A.-S.D.-G., D.D., G.L.); University Medical Center Hamburg-Eppendorf, Hamburg, Germany (N.M.T., C.M.-S., G.Z., E.H., U.H., R.A.K.S.); Boston University School of Medicine, Boston (L.H.B., H.M., D.J.S.); and the University of Louisville (M.M., J.K.) and Robley Rex Veterans Affairs Medical Center (J.K.) - both in Louisville, KY
| | - Elion Hoxha
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Valbonne, France (N.M.T., B.S.-P., G.D., A.-S.D.-G., D.D., G.L.); University Medical Center Hamburg-Eppendorf, Hamburg, Germany (N.M.T., C.M.-S., G.Z., E.H., U.H., R.A.K.S.); Boston University School of Medicine, Boston (L.H.B., H.M., D.J.S.); and the University of Louisville (M.M., J.K.) and Robley Rex Veterans Affairs Medical Center (J.K.) - both in Louisville, KY
| | - Udo Helmchen
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Valbonne, France (N.M.T., B.S.-P., G.D., A.-S.D.-G., D.D., G.L.); University Medical Center Hamburg-Eppendorf, Hamburg, Germany (N.M.T., C.M.-S., G.Z., E.H., U.H., R.A.K.S.); Boston University School of Medicine, Boston (L.H.B., H.M., D.J.S.); and the University of Louisville (M.M., J.K.) and Robley Rex Veterans Affairs Medical Center (J.K.) - both in Louisville, KY
| | - Anne-Sophie Dabert-Gay
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Valbonne, France (N.M.T., B.S.-P., G.D., A.-S.D.-G., D.D., G.L.); University Medical Center Hamburg-Eppendorf, Hamburg, Germany (N.M.T., C.M.-S., G.Z., E.H., U.H., R.A.K.S.); Boston University School of Medicine, Boston (L.H.B., H.M., D.J.S.); and the University of Louisville (M.M., J.K.) and Robley Rex Veterans Affairs Medical Center (J.K.) - both in Louisville, KY
| | - Delphine Debayle
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Valbonne, France (N.M.T., B.S.-P., G.D., A.-S.D.-G., D.D., G.L.); University Medical Center Hamburg-Eppendorf, Hamburg, Germany (N.M.T., C.M.-S., G.Z., E.H., U.H., R.A.K.S.); Boston University School of Medicine, Boston (L.H.B., H.M., D.J.S.); and the University of Louisville (M.M., J.K.) and Robley Rex Veterans Affairs Medical Center (J.K.) - both in Louisville, KY
| | - Michael Merchant
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Valbonne, France (N.M.T., B.S.-P., G.D., A.-S.D.-G., D.D., G.L.); University Medical Center Hamburg-Eppendorf, Hamburg, Germany (N.M.T., C.M.-S., G.Z., E.H., U.H., R.A.K.S.); Boston University School of Medicine, Boston (L.H.B., H.M., D.J.S.); and the University of Louisville (M.M., J.K.) and Robley Rex Veterans Affairs Medical Center (J.K.) - both in Louisville, KY
| | - Jon Klein
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Valbonne, France (N.M.T., B.S.-P., G.D., A.-S.D.-G., D.D., G.L.); University Medical Center Hamburg-Eppendorf, Hamburg, Germany (N.M.T., C.M.-S., G.Z., E.H., U.H., R.A.K.S.); Boston University School of Medicine, Boston (L.H.B., H.M., D.J.S.); and the University of Louisville (M.M., J.K.) and Robley Rex Veterans Affairs Medical Center (J.K.) - both in Louisville, KY
| | - David J Salant
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Valbonne, France (N.M.T., B.S.-P., G.D., A.-S.D.-G., D.D., G.L.); University Medical Center Hamburg-Eppendorf, Hamburg, Germany (N.M.T., C.M.-S., G.Z., E.H., U.H., R.A.K.S.); Boston University School of Medicine, Boston (L.H.B., H.M., D.J.S.); and the University of Louisville (M.M., J.K.) and Robley Rex Veterans Affairs Medical Center (J.K.) - both in Louisville, KY
| | - Rolf A K Stahl
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Valbonne, France (N.M.T., B.S.-P., G.D., A.-S.D.-G., D.D., G.L.); University Medical Center Hamburg-Eppendorf, Hamburg, Germany (N.M.T., C.M.-S., G.Z., E.H., U.H., R.A.K.S.); Boston University School of Medicine, Boston (L.H.B., H.M., D.J.S.); and the University of Louisville (M.M., J.K.) and Robley Rex Veterans Affairs Medical Center (J.K.) - both in Louisville, KY
| | - Gérard Lambeau
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Valbonne, France (N.M.T., B.S.-P., G.D., A.-S.D.-G., D.D., G.L.); University Medical Center Hamburg-Eppendorf, Hamburg, Germany (N.M.T., C.M.-S., G.Z., E.H., U.H., R.A.K.S.); Boston University School of Medicine, Boston (L.H.B., H.M., D.J.S.); and the University of Louisville (M.M., J.K.) and Robley Rex Veterans Affairs Medical Center (J.K.) - both in Louisville, KY
| |
Collapse
|
43
|
A SAGE based approach to human glomerular endothelium: defining the transcriptome, finding a novel molecule and highlighting endothelial diversity. BMC Genomics 2014; 15:725. [PMID: 25163811 PMCID: PMC4156628 DOI: 10.1186/1471-2164-15-725] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/15/2014] [Indexed: 02/07/2023] Open
Abstract
Background Large scale transcript analysis of human glomerular microvascular endothelial cells (HGMEC) has never been accomplished. We designed this study to define the transcriptome of HGMEC and facilitate a better characterization of these endothelial cells with unique features. Serial analysis of gene expression (SAGE) was used for its unbiased approach to quantitative acquisition of transcripts. Results We generated a HGMEC SAGE library consisting of 68,987 transcript tags. Then taking advantage of large public databases and advanced bioinformatics we compared the HGMEC SAGE library with a SAGE library of non-cultured ex vivo human glomeruli (44,334 tags) which contained endothelial cells. The 823 tags common to both which would have the potential to be expressed in vivo were subsequently checked against 822,008 tags from 16 non-glomerular endothelial SAGE libraries. This resulted in 268 transcript tags differentially overexpressed in HGMEC compared to non-glomerular endothelia. These tags were filtered using a set of criteria: never before shown in kidney or any type of endothelial cell, absent in all nephron regions except the glomerulus, more highly expressed than statistically expected in HGMEC. Neurogranin, a direct target of thyroid hormone action which had been thought to be brain specific and never shown in endothelial cells before, fulfilled these criteria. Its expression in glomerular endothelium in vitro and in vivo was then verified by real-time-PCR, sequencing and immunohistochemistry. Conclusions Our results represent an extensive molecular characterization of HGMEC beyond a mere database, underline the endothelial heterogeneity, and propose neurogranin as a potential link in the kidney-thyroid axis. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-725) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Scharf JM, Yu D, Mathews CA, Neale BM, Stewart SE, Fagerness JA, Evans P, Gamazon E, Edlund CK, Service S, Tikhomirov A, Osiecki L, Illmann C, Pluzhnikov A, Konkashbaev A, Davis LK, Han B, Crane J, Moorjani P, Crenshaw AT, Parkin MA, Reus VI, Lowe TL, Rangel-Lugo M, Chouinard S, Dion Y, Girard S, Cath DC, Smit JH, King RA, Fernandez T, Leckman JF, Kidd KK, Kidd JR, Pakstis AJ, State M, Herrera LD, Romero R, Fournier E, Sandor P, Barr CL, Phan N, Gross-Tsur V, Benarroch F, Pollak Y, Budman CL, Bruun RD, Erenberg G, Naarden AL, Lee PC, Weiss N, Kremeyer B, Berrío GB, Campbell D, Silgado JCC, Ochoa WC, Restrepo SCM, Muller H, Duarte AVV, Lyon GJ, Leppert M, Morgan J, Weiss R, Grados MA, Anderson K, Davarya S, Singer H, Walkup J, Jankovic J, Tischfield JA, Heiman GA, Gilbert DL, Hoekstra PJ, Robertson MM, Kurlan R, Liu C, Gibbs JR, Singleton A, Hardy J, Strengman E, Ophoff R, Wagner M, Moessner R, Mirel DB, Posthuma D, Sabatti C, Eskin E, Conti DV, Knowles JA, Ruiz-Linares A, Rouleau GA, Purcell S, Heutink P, Oostra BA, McMahon W, Freimer N, Cox NJ, Pauls DL. Genome-wide association study of Tourette's syndrome. Mol Psychiatry 2013; 18:721-8. [PMID: 22889924 PMCID: PMC3605224 DOI: 10.1038/mp.2012.69] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 12/17/2022]
Abstract
Tourette's syndrome (TS) is a developmental disorder that has one of the highest familial recurrence rates among neuropsychiatric diseases with complex inheritance. However, the identification of definitive TS susceptibility genes remains elusive. Here, we report the first genome-wide association study (GWAS) of TS in 1285 cases and 4964 ancestry-matched controls of European ancestry, including two European-derived population isolates, Ashkenazi Jews from North America and Israel and French Canadians from Quebec, Canada. In a primary meta-analysis of GWAS data from these European ancestry samples, no markers achieved a genome-wide threshold of significance (P<5 × 10(-8)); the top signal was found in rs7868992 on chromosome 9q32 within COL27A1 (P=1.85 × 10(-6)). A secondary analysis including an additional 211 cases and 285 controls from two closely related Latin American population isolates from the Central Valley of Costa Rica and Antioquia, Colombia also identified rs7868992 as the top signal (P=3.6 × 10(-7) for the combined sample of 1496 cases and 5249 controls following imputation with 1000 Genomes data). This study lays the groundwork for the eventual identification of common TS susceptibility variants in larger cohorts and helps to provide a more complete understanding of the full genetic architecture of this disorder.
Collapse
Affiliation(s)
- Jeremiah M. Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Movement Disorders Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Division of Cognitive and Behavioral Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Dongmei Yu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Carol A. Mathews
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Benjamin M. Neale
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston MA
| | - S. Evelyn Stewart
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- British Columbia Mental Health and Addictions Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jesen A Fagerness
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick Evans
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Eric Gamazon
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Christopher K. Edlund
- Department of Preventative Medicine, Division of Biostatistics, University of Southern California, Los Angeles, CA, USA
- USC Epigenome Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Susan Service
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Anna Tikhomirov
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Lisa Osiecki
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Cornelia Illmann
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Anna Pluzhnikov
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Anuar Konkashbaev
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Lea K Davis
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Buhm Han
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Jacquelyn Crane
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Priya Moorjani
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Genetics, Harvard University, Cambridge MA, USA
| | - Andrew T. Crenshaw
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Melissa A. Parkin
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Victor I. Reus
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Thomas L. Lowe
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Martha Rangel-Lugo
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | | | - Yves Dion
- University of Montreal, Montreal, Quebec, Canada
| | - Simon Girard
- University of Montreal, Montreal, Quebec, Canada
| | - Danielle C Cath
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
- Department of Clinical & Health Psychology, Utrecht University, Utrecht, The Netherlands
| | - Jan H Smit
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - Robert A. King
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Thomas Fernandez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - James F. Leckman
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Kenneth K. Kidd
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Judith R. Kidd
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew J. Pakstis
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew State
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | - Paul Sandor
- The Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
- Division of Child Psychiatry, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Cathy L Barr
- The Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Nam Phan
- The Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
| | - Varda Gross-Tsur
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Fortu Benarroch
- Herman Dana Division of Child and Adolescent Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yehuda Pollak
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Cathy L. Budman
- North Shore-Long Island Jewish Medical Center, Manhasset, NY, USA
- Hofstra University School of Medicine, Hempstead, NY, USA
| | - Ruth D. Bruun
- North Shore-Long Island Jewish Medical Center, Manhasset, NY, USA
- New York University Medical Center, New York, NY, USA
| | | | - Allan L Naarden
- Department of Clinical Research, Medical City Dallas Hospital, Dallas, Texas, USA
| | - Paul C Lee
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas Weiss
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Ana V. Valencia Duarte
- Universidad de Antioquia, Medellín, Colombia
- Universidad Pontificia Bolivariana, Medellín, Colombia
| | | | | | | | | | - Marco A. Grados
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kelley Anderson
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Davarya
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harvey Singer
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Walkup
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Weill Cornell Medical Center, New York, NY, USA
| | - Joseph Jankovic
- Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Jay A. Tischfield
- Department of Genetics, Rutgers University, Piscataway, NJ, US
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, US
| | - Gary A. Heiman
- Department of Genetics, Rutgers University, Piscataway, NJ, US
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, US
| | - Donald L. Gilbert
- Cincinnati Children’s Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA
| | - Pieter J. Hoekstra
- Department of Psychiatry, University Medical Center, University of Groningen, Groningen, The Netherlands
| | - Mary M. Robertson
- University College London, London, UK
- St George’s Hospital and Medical School, London, UK
| | - Roger Kurlan
- Atlantic Neuroscience Institute, Overlook Hospital, Summit, NJ, USA
| | - Chunyu Liu
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - J. Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | - Eric Strengman
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
- University Medical Center, Utrecht, The Netherlands
| | - Roel Ophoff
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
- University Medical Center, Utrecht, The Netherlands
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Rainald Moessner
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Daniel B. Mirel
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Danielle Posthuma
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan Amsterdam, The Netherlands
- Section of Medical Genomics, Department of Clinical Genetics, VU Medical Centre, De Boelelaan, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center-Sophia Children’s Hospital, Wytemaweg, Rotterdam, The Netherlands
| | - Chiara Sabatti
- Department of Health Research and Policy, Stanford University, Stanford, CA USA
| | - Eleazar Eskin
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - David V. Conti
- Department of Preventative Medicine, Division of Biostatistics, University of Southern California, Los Angeles, CA, USA
| | - James A. Knowles
- Department of Psychiatry and the Behavioral Sciences, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | - Shaun Purcell
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston MA
| | - Peter Heutink
- Section of Medical Genomics, Department of Clinical Genetics, VU Medical Centre, De Boelelaan, Amsterdam, The Netherlands
| | - Ben A. Oostra
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Nelson Freimer
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Nancy J. Cox
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - David L. Pauls
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
45
|
Yang H, Zhou B, Prinz M, Siegel D. Proteomic analysis of menstrual blood. Mol Cell Proteomics 2012; 11:1024-35. [PMID: 22822186 DOI: 10.1074/mcp.m112.018390] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Menstruation is the expulsion of the endometrial lining of the uterus following a nearly month long preparation for embryo implantation and pregnancy. Increasingly, the health of the endometrium is being recognized as a critical factor in female fertility, and proteomes and transcriptomes from endometrial biopsies at different stages of the menstrual cycle have been studied for both diagnostic and therapeutic purposes (1 Kao, L. C., et al. 2003 Endocrinology 144, 2870-2881; Strowitzki, Tet al. 2006 Hum. Reprod. Update 12, 617-630; DeSouza, L., et al. 2005 Proteomics 5, 270-281). Disorders of the uterus ranging from benign to malignant tumors, as well as endometriosis, can cause abnormal menstrual bleeding and are frequently diagnosed through endometrial biopsy (Strowitzki, Tet al. 2006 Hum. Reprod. Update 12, 617-630; Ferenczy, A. 2003 Maturitas 45, 1-14). Yet the proteome of menstrual blood, an easily available noninvasive source of endometrial tissue, has yet to be examined for possible causes or diagnoses of infertility or endometrial pathology. This study employed five different methods to define the menstrual blood proteome. A total of 1061 proteins were identified, 361 were found by at least two methods and 678 were identified by at least two peptides. When the menstrual blood proteome was compared with those of circulating blood (1774 proteins) and vaginal fluid (823 proteins), 385 proteins were found unique to menstrual blood. Gene ontology analysis and evaluation of these specific menstrual blood proteins identified pathways consistent with the processes of the normal endometrial cycle. Several of the proteins unique to menstrual blood suggest that extramedullary uterine hematopoiesis or parenchymal hemoglobin synthesis may be occurring in late endometrial tissue. The establishment of a normal menstrual blood proteome is necessary for the evaluation of its usefulness as a diagnostic tool for infertility and uterine pathologies. Identification of unique menstrual blood proteins should aid the forensic community in distinguishing menstrual blood from circulating blood.
Collapse
Affiliation(s)
- Heyi Yang
- New York City Office of Chief Medical Examiner, New York, New York 10016, USA
| | | | | | | |
Collapse
|
46
|
Kuo MW, Wang CH, Wu HC, Chang SJ, Chuang YJ. Soluble THSD7A is an N-glycoprotein that promotes endothelial cell migration and tube formation in angiogenesis. PLoS One 2011; 6:e29000. [PMID: 22194972 PMCID: PMC3237571 DOI: 10.1371/journal.pone.0029000] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 11/18/2011] [Indexed: 12/19/2022] Open
Abstract
Background Thrombospondin type I domain containing 7A (THSD7A) is a novel neural protein that is known to affect endothelial migration and vascular patterning during development. To further understand the role of THSD7A in angiogenesis, we investigated the post-translational modification scheme of THS7DA and to reveal the underlying mechanisms by which this protein regulates blood vessel growth. Methodology/Principal Findings Full-length THSD7A was overexpressed in human embryonic kidney 293T (HEK293T) cells and was found to be membrane associated and N-glycosylated. The soluble form of THSD7A, which is released into the cultured medium, was harvested for further angiogenic assays. We found that soluble THSD7A promotes human umbilical vein endothelial cell (HUVEC) migration and tube formation. HUVEC sprouts and zebrafish subintestinal vessel (SIV) angiogenic assays further revealed that soluble THSD7A increases the number of branching points of new vessels. Interestingly, we found that soluble THSD7A increased the formation of filopodia in HUVEC. The distribution patterns of vinculin and phosphorylated focal adhesion kinase (FAK) were also affected, which implies a role for THSD7A in focal adhesion assembly. Moreover, soluble THSD7A increased FAK phosphorylation in HUVEC, suggesting that THSD7A is involved in regulating cytoskeleton reorganization. Conclusions/Significance Taken together, our results indicate that THSD7A is a membrane-associated N-glycoprotein with a soluble form. Soluble THSD7A promotes endothelial cell migration during angiogenesis via a FAK-dependent mechanism and thus may be a novel neuroangiogenic factor.
Collapse
Affiliation(s)
- Meng-Wei Kuo
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Chian-Huei Wang
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Hsiao-Chun Wu
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Shing-Jyh Chang
- Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan, Republic of China
| | - Yung-Jen Chuang
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
47
|
Prakash SK, LeMaire SA, Guo DC, Russell L, Regalado ES, Golabbakhsh H, Johnson RJ, Safi HJ, Estrera AL, Coselli JS, Bray MS, Leal SM, Milewicz DM, Belmont JW. Rare copy number variants disrupt genes regulating vascular smooth muscle cell adhesion and contractility in sporadic thoracic aortic aneurysms and dissections. Am J Hum Genet 2010; 87:743-56. [PMID: 21092924 DOI: 10.1016/j.ajhg.2010.09.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 09/07/2010] [Accepted: 09/16/2010] [Indexed: 10/18/2022] Open
Abstract
Thoracic aortic aneurysms and dissections (TAAD) cause significant morbidity and mortality, but the genetic origins of TAAD remain largely unknown. In a genome-wide analysis of 418 sporadic TAAD cases, we identified 47 copy number variant (CNV) regions that were enriched in or unique to TAAD patients compared to population controls. Gene ontology, expression profiling, and network analysis showed that genes within TAAD CNVs regulate smooth muscle cell adhesion or contractility and interact with the smooth muscle-specific isoforms of α-actin and β-myosin, which are known to cause familial TAAD when altered. Enrichment of these gene functions in rare CNVs was replicated in independent cohorts with sporadic TAAD (STAAD, n = 387) and inherited TAAD (FTAAD, n = 88). The overall prevalence of rare CNVs (23%) was significantly increased in FTAAD compared with STAAD patients (Fisher's exact test, p = 0.03). Our findings suggest that rare CNVs disrupting smooth muscle adhesion or contraction contribute to both sporadic and familial disease.
Collapse
|