1
|
Das F, Ghosh-Choudhury N, Kasinath BS, Sharma K, Choudhury GG. High glucose-induced downregulation of PTEN-Long is sufficient for proximal tubular cell injury in diabetic kidney disease. Exp Cell Res 2024; 440:114116. [PMID: 38830568 DOI: 10.1016/j.yexcr.2024.114116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
During the progression of diabetic kidney disease, proximal tubular epithelial cells respond to high glucose to induce hypertrophy and matrix expansion leading to renal fibrosis. Recently, a non-canonical PTEN has been shown to be translated from an upstream initiation codon CUG (leucine) to produce a longer protein called PTEN-Long (PTEN-L). Interestingly, the extended sequence present in PTEN-L contains cell secretion/penetration signal. Role of this non-canonical PTEN-L in diabetic renal tubular injury is not known. We show that high glucose decreases expression of PTEN-L. As a mechanism of its function, we find that reduced PTEN-L activates Akt-2, which phosphorylates and inactivate tuberin and PRAS40, resulting in activation of mTORC1 in tubular cells. Antibacterial agent acriflavine and antiviral agent ATA regulate translation from CUG codon. Acriflavine and ATA, respectively, decreased and increased expression of PTEN-L to altering Akt-2 and mTORC1 activation in the absence of change in expression of canonical PTEN. Consequently, acriflavine and ATA modulated high glucose-induced tubular cell hypertrophy and lamininγ1 expression. Importantly, expression of PTEN-L inhibited high glucose-stimulated Akt/mTORC1 activity to abrogate these processes. Since PTEN-L contains secretion/penetration signals, addition of conditioned medium containing PTEN-L blocked Akt-2/mTORC1 activity. Notably, in renal cortex of diabetic mice, we found reduced PTEN-L concomitant with Akt-2/mTORC1 activation, leading to renal hypertrophy and lamininγ1 expression. These results present first evidence for involvement of PTEN-L in diabetic kidney disease.
Collapse
Affiliation(s)
- Falguni Das
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, TX, USA
| | | | | | - Kumar Sharma
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, TX, USA
| | - Goutam Ghosh Choudhury
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Medicine, TX, USA; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
2
|
Wu LX, Xu YC, Pantopoulos K, Tan XY, Wei XL, Zheng H, Luo Z. Glycophagy mediated glucose-induced changes of hepatic glycogen metabolism via OGT1-AKT1-FOXO1Ser238 pathway. J Nutr Biochem 2023; 117:109337. [PMID: 36990368 DOI: 10.1016/j.jnutbio.2023.109337] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Glycophagy is the autophagy degradation of glycogen. However, the regulatory mechanisms for glycophagy and glucose metabolism remain unexplored. Herein, we demonstrated that high-carbohydrate diet (HCD) and high glucose (HG) incubation induced glycogen accumulation, AKT1 expression and AKT1-dependent phosphorylation of forkhead transcription factor O1 (FOXO1) at Ser238 in the liver tissues and hepatocytes. The glucose-induced FOXO1 phosphorylation at Ser238 prevents FOXO1 entry into the nucleus and the recruitment to the gabarapl1 promoter, reduces the gabarapl1 promoter activity, and inhibits glycophagy and glucose production. The glucose-dependent O-GlcNAcylation of AKT1 by OGT1 enhances the stability of AKT1 protein and promotes its binding with FOXO1. Moreover, the glycosylation of AKT1 is crucial for promoting FOXO1 nuclear translocation and inhibiting glycophagy. Our studies elucidate a novel mechanism for glycophagy inhibition by high carbohydrate and glucose via OGT1-AKT1-FOXO1Ser238 pathway in the liver tissues and hepatocytes, which provides critical insights into potential intervention strategies for glycogen storage disorders in vertebrates, as well as human beings.
Collapse
|
3
|
Das F, Ghosh-Choudhury N, Maity S, Kasinath BS, Choudhury GG. Oncoprotein DJ-1 interacts with mTOR complexes to effect transcription factor Hif1α-dependent expression of collagen I (α2) during renal fibrosis. J Biol Chem 2022; 298:102246. [PMID: 35835217 PMCID: PMC9399488 DOI: 10.1016/j.jbc.2022.102246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022] Open
Abstract
Proximal tubular epithelial cells respond to transforming growth factor β (TGFβ) to synthesize collagen I (α2) during renal fibrosis. The oncoprotein DJ-1 has previously been shown to promote tumorigenesis and prevent apoptosis of dopaminergic neurons; however, its role in fibrosis signaling is unclear. Here, we show TGFβ-stimulation increased expression of DJ-1, which promoted noncanonical mTORC1 and mTORC2 activities. We show DJ-1 augmented the phosphorylation/activation of PKCβII, a direct substrate of mTORC2. In addition, coimmunoprecipitation experiments revealed association of DJ-1 with Raptor and Rictor, exclusive subunits of mTORC1 and mTORC2, respectively, as well as with mTOR kinase. Interestingly, siRNAs against DJ-1 blocked TGFβ-stimulated expression of collagen I (α2), while expression of DJ-1 increased expression of this protein. In addition, expression of dominant negative PKCβII and siRNAs against PKCβII significantly inhibited TGFβ-induced collagen I (α2) expression. In fact, constitutively active PKCβII abrogated the effect of siRNAs against DJ-1, suggesting a role of PKCβII downstream of this oncoprotein. Moreover, we demonstrate expression of collagen I (α2) stimulated by DJ-1 and its target PKCβII is dependent on the transcription factor hypoxia-inducible factor 1α (Hif1α). Finally, we show in the renal cortex of diabetic rats that increased TGFβ was associated with enhanced expression of DJ-1 and activation of mTOR and PKCβII, concomitant with increased Hif1α and collagen I (α2). Overall, we identified that DJ-1 affects TGFβ-induced expression of collagen I (α2) via an mTOR-, PKCβII-, and Hif1α-dependent mechanism to regulate renal fibrosis.
Collapse
Affiliation(s)
- Falguni Das
- VA Research, South Texas Veterans Health Care System, San Antonio, Texas; Department of Medicine, UT Health San Antonio, Texas
| | | | - Soumya Maity
- Department of Medicine, UT Health San Antonio, Texas
| | | | - Goutam Ghosh Choudhury
- VA Research, South Texas Veterans Health Care System, San Antonio, Texas; Department of Medicine, UT Health San Antonio, Texas; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas.
| |
Collapse
|
4
|
Zhou Q, Tang S, Zhang X, Chen L. Targeting PRAS40: a novel therapeutic strategy for human diseases. J Drug Target 2021; 29:703-715. [PMID: 33504218 DOI: 10.1080/1061186x.2021.1882470] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Proline-rich Akt substrate of 40 kD (PRAS40) is not only the substrate of protein kinase B (PKB/Akt), but also the binding protein of 14-3-3 protein. PRAS40 is expressed in a variety of tissues in vivo and has multiple phosphorylation sites, which its activity is closely related to phosphorylation. Studies have shown that PRAS40 is involved in regulating cell growth, cell apoptosis, oxidative stress, autophagy and angiogenesis, as well as various of signalling pathways such as mammalian target of mammalian target rapamycin (mTOR), protein kinase B (PKB/Akt), nuclear factor kappa-B(NF-κB), proto-oncogene serine/threonine-protein kinase PIM-1(PIM1) and pyruvate kinase M2 (PKM2). The interactive roles between PRAS40 and these signal proteins were analysed by bioinformatics in this paper. Moreover, it is of great necessity for analyse the important roles of PRAS40 in some human diseases including cardiovascular disease, ischaemia-reperfusion injury, neurodegenerative disease, cancer, diabetes and other metabolic diseases. Finally, the effects of miRNA on the regulation of PRAS40 function and the occurrence and development of PRAS40-related diseases are also discussed. Overall, PRAS40 is expected to be a drug target and provide a new treatment strategy for human diseases.
Collapse
Affiliation(s)
- Qun Zhou
- Hunan Province Key Laboratory for Antibody- Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody- Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Xianhui Zhang
- Orthopedics Department, Dongkou People's Hospital, Dongkou, China
| | - Linxi Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target, New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| |
Collapse
|
5
|
High glucose-stimulated enhancer of zeste homolog-2 (EZH2) forces suppression of deptor to cause glomerular mesangial cell pathology. Cell Signal 2021; 86:110072. [PMID: 34224844 DOI: 10.1016/j.cellsig.2021.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022]
Abstract
Function of mTORC1 and mTORC2 has emerged as a driver of mesangial cell pathologies in diabetic nephropathy. The mechanism of mTOR activation is poorly understood in this disease. Deptor is a constitutive subunit and a negative regulator of both mTOR complexes. Mechanistic investigation in mesangial cells revealed that high glucose decreased the expression of deptor concomitant with increased mTORC1 and mTORC2 activities, induction of hypertrophy and, expression of fibronectin and PAI-1. shRNAs against deptor mimicked these pathologic outcomes of high glucose. Conversely, overexpression of deptor significantly inhibited all effects of high glucose. To determine the mechanism of deptor suppression, we found that high glucose significantly increased the expression of EZH2, resulting in lysine-27 tri-methylation of histone H3 (H3K27Me3). Employing approaches including pharmacological inhibition, shRNA-mediated downregulation and overexpression of EZH2, we found that EZH2 regulates high glucose-induced deptor suppression along with activation of mTOR, mesangial cell hypertrophy and fibronectin/PAI-1 expression. Moreover, expression of hyperactive mTORC1 reversed shEZH2-mediated inhibition of hypertrophy and expression of fibronectin and PAI-1 by high glucose. Finally, in renal cortex of diabetic mice, we found that enhanced expression of EZH2 is associated with decreased deptor levels and increased mTOR activity and, expression of fibronectin and PAI-1. Together, our findings provide a novel mechanism for mTOR activation via EZH2 to induce mesangial cell hypertrophy and matrix expansion during early progression of diabetic nephropathy. These results suggest a strategy for leveraging the intrinsic effect of deptor to suppress mTOR activity via reducing EZH2 as a novel therapy for diabetic nephropathy.
Collapse
|
6
|
Maity S, Das F, Kasinath BS, Ghosh-Choudhury N, Ghosh Choudhury G. TGFβ acts through PDGFRβ to activate mTORC1 via the Akt/PRAS40 axis and causes glomerular mesangial cell hypertrophy and matrix protein expression. J Biol Chem 2020; 295:14262-14278. [PMID: 32732288 DOI: 10.1074/jbc.ra120.014994] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Interaction of transforming growth factor-β (TGFβ)-induced canonical signaling with the noncanonical kinase cascades regulates glomerular hypertrophy and matrix protein deposition, which are early features of glomerulosclerosis. However, the specific target downstream of the TGFβ receptor involved in the noncanonical signaling is unknown. Here, we show that TGFβ increased the catalytic loop phosphorylation of platelet-derived growth factor receptor β (PDGFRβ), a receptor tyrosine kinase expressed abundantly in glomerular mesangial cells. TGFβ increased phosphorylation of the PI 3-kinase-interacting Tyr-751 residue of PDGFRβ, thus activating Akt. Inhibition of PDGFRβ using a pharmacological inhibitor and siRNAs blocked TGFβ-stimulated phosphorylation of proline-rich Akt substrate of 40 kDa (PRAS40), an intrinsic inhibitory component of mTORC1, and prevented activation of mTORC1 in the absence of any effect on Smad 2/3 phosphorylation. Expression of constitutively active myristoylated Akt reversed the siPDGFRβ-mediated inhibition of mTORC1 activity; however, co-expression of the phospho-deficient mutant of PRAS40 inhibited the effect of myristoylated Akt, suggesting a definitive role of PRAS40 phosphorylation in mTORC1 activation downstream of PDGFRβ in mesangial cells. Additionally, we demonstrate that PDGFRβ-initiated phosphorylation of PRAS40 is required for TGFβ-induced mesangial cell hypertrophy and fibronectin and collagen I (α2) production. Increased activating phosphorylation of PDGFRβ is also associated with enhanced TGFβ expression and mTORC1 activation in the kidney cortex and glomeruli of diabetic mice and rats, respectively. Thus, pursuing TGFβ noncanonical signaling, we identified how TGFβ receptor I achieves mTORC1 activation through PDGFRβ-mediated Akt/PRAS40 phosphorylation to spur mesangial cell hypertrophy and matrix protein accumulation. These findings provide support for targeting PDGFRβ in TGFβ-driven renal fibrosis.
Collapse
Affiliation(s)
- Soumya Maity
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Falguni Das
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Balakuntalam S Kasinath
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA.,Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| | | | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA .,Department of Veterans Affairs Research, South Texas Veterans Health Care System, San Antonio, Texas, USA.,Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
7
|
Bork T, Liang W, Yamahara K, Lee P, Tian Z, Liu S, Schell C, Thedieck K, Hartleben B, Patel K, Tharaux PL, Lenoir O, Huber TB. Podocytes maintain high basal levels of autophagy independent of mtor signaling. Autophagy 2019; 16:1932-1948. [PMID: 31865844 PMCID: PMC7595647 DOI: 10.1080/15548627.2019.1705007] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While constant basal levels of macroautophagy/autophagy are a prerequisite to preserve long-lived podocytes at the filtration barrier, MTOR regulates at the same time podocyte size and compensatory hypertrophy. Since MTOR is known to generally suppress autophagy, the apparently independent regulation of these two key pathways of glomerular maintenance remained puzzling. We now report that long-term genetic manipulation of MTOR activity does in fact not influence high basal levels of autophagy in podocytes either in vitro or in vivo. Instead we present data showing that autophagy in podocytes is mainly controlled by AMP-activated protein kinase (AMPK) and ULK1 (unc-51 like kinase 1). Pharmacological inhibition of MTOR further shows that the uncoupling of MTOR activity and autophagy is time dependent. Together, our data reveal a novel and unexpected cell-specific mechanism, which permits concurrent MTOR activity as well as high basal autophagy rates in podocytes. Thus, these data indicate manipulation of the AMPK-ULK1 axis rather than inhibition of MTOR as a promising therapeutic intervention to enhance autophagy and preserve podocyte homeostasis in glomerular diseases. Abbreviations: AICAR: 5-aminoimidazole-4-carboxamide ribonucleotide; AMPK: AMP-activated protein kinase; ATG: autophagy related; BW: body weight; Cq: chloroquine; ER: endoplasmic reticulum; ESRD: end stage renal disease; FACS: fluorescence activated cell sorting; GFP: green fluorescent protein; i.p.: intra peritoneal; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NPHS1: nephrosis 1, nephrin; NPHS2: nephrosis 2, podocin; PLA: proximity-ligation assay; PRKAA: 5ʹ-AMP-activated protein kinase catalytic subunit alpha; RPTOR/RAPTOR: regulatory associated protein of MTOR, complex 1; RFP: red fluorescent protein; TSC1: tuberous sclerosis 1; ULK1: unc-51 like kinase 1
Collapse
Affiliation(s)
- Tillmann Bork
- Department of Medicine IV, Faculty of Medicine, University of Freiburg , Freiburg, Germany
| | - Wei Liang
- Department of Medicine IV, Faculty of Medicine, University of Freiburg , Freiburg, Germany.,Division of Nephrology, Renmin Hospital of Wuhan University , Wuhan, China
| | - Kosuke Yamahara
- Department of Medicine IV, Faculty of Medicine, University of Freiburg , Freiburg, Germany.,Department of Medicine, Shiga University of Medical Science , Otsu, Japan
| | - Philipp Lee
- Department of Medicine IV, Faculty of Medicine, University of Freiburg , Freiburg, Germany
| | - Zhejia Tian
- Department of Medicine IV, Faculty of Medicine, University of Freiburg , Freiburg, Germany
| | - Shuya Liu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Christoph Schell
- Department of Medicine IV, Faculty of Medicine, University of Freiburg , Freiburg, Germany.,Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg , Freiburg, Germany.,Berta-Ottenstein Programme, Faculty of Medicine, University of Freiburg , Freiburg, Germany
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck , Innsbruck, Austria.,Department of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen (UMCG) , Groningen, The Netherlands.,Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg , Oldenburg, Germany
| | - Bjoern Hartleben
- Institute of Pathology, Hannover Medical School , Hannover, Germany
| | - Ketan Patel
- School of Biological Science, University of Reading , Reading, UK.,FFRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-University , Freiburg, Germany
| | - Pierre-Louis Tharaux
- PARCC, INSERM, Université de Paris , Paris, France.,Nephrology Division, Georges Pompidou European Hospital , Paris, France
| | | | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| |
Collapse
|
8
|
Vega MI, Shi Y, Frost P, Huerta-Yepez S, Antonio-Andres G, Hernandez-Pando R, Lee J, Jung ME, Gera JF, Lichtenstein A. A Novel Therapeutic Induces DEPTOR Degradation in Multiple Myeloma Cells with Resulting Tumor Cytotoxicity. Mol Cancer Ther 2019; 18:1822-1831. [PMID: 31395691 DOI: 10.1158/1535-7163.mct-19-0115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/19/2019] [Accepted: 07/30/2019] [Indexed: 11/16/2022]
Abstract
Prior work indicates DEPTOR expression in multiple myeloma cells could be a therapeutic target. DEPTOR binds to mTOR via its PDZ domain and inhibits mTOR kinase activity. We previously identified a drug, which prevented mTOR-DEPTOR binding (NSC126405) and induced multiple myeloma cytotoxicity. We now report on a related therapeutic, drug 3g, which induces proteasomal degradation of DEPTOR. DEPTOR degradation followed drug 3g binding to its PDZ domain and was not due to caspase activation or enhanced mTOR phosphorylation of DEPTOR. Drug 3g enhanced mTOR activity, and engaged the IRS-1/PI3K/AKT feedback loop with reduced phosphorylation of AKT on T308. Activation of TORC1, in part, mediated multiple myeloma cytotoxicity. Drug 3g was more effective than NSC126405 in preventing binding of recombinant DEPTOR to mTOR, preventing binding of DEPTOR to mTOR inside multiple myeloma cells, in activating mTOR and inducing apoptosis in multiple myeloma cells. In vivo, drug 3g injected daily abrogated DEPTOR expression in xenograft tumors and induced an antitumor effect although modest weight loss was seen. Every-other-day treatment, however, was equally effective without weight loss. Drug 3g also reduced DEPTOR expression in normal tissues. Although no potential toxicity was identified in hematopoietic or hepatic function, moderate cardiac enlargement and glomerular mesangial hypertrophy was seen. DEPTOR protected multiple myeloma cells against bortezomib suggesting anti-DEPTOR drugs could synergize with proteasome inhibitors (PI). Indeed, combinations of drug NSC126405 + bortezomib were synergistic. In contrast, drug 3g was not and was even antagonistic. This antagonism was probably due to prevention of proteasomal DEPTOR degradation.
Collapse
Affiliation(s)
- Mario I Vega
- Hematology-Oncology, VA West LA-UCLA Medical Center, Los Angeles, California
| | - Yijiang Shi
- Hematology-Oncology, VA West LA-UCLA Medical Center, Los Angeles, California
| | - Patrick Frost
- Hematology-Oncology, VA West LA-UCLA Medical Center, Los Angeles, California
| | - Sara Huerta-Yepez
- Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico.,Pathology & Laboratory Medicine, UCLA Medical School, Los Angeles, California
| | - Gabriela Antonio-Andres
- Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico.,Pathology & Laboratory Medicine, UCLA Medical School, Los Angeles, California
| | | | | | - Michael E Jung
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California.,Jonsson Cancer Center, University of California, Los Angeles, California
| | - Joseph F Gera
- Hematology-Oncology, VA West LA-UCLA Medical Center, Los Angeles, California.,Jonsson Cancer Center, University of California, Los Angeles, California
| | - Alan Lichtenstein
- Hematology-Oncology, VA West LA-UCLA Medical Center, Los Angeles, California. .,Jonsson Cancer Center, University of California, Los Angeles, California
| |
Collapse
|
9
|
Maity S, Das F, Ghosh-Choudhury N, Kasinath BS, Ghosh Choudhury G. High glucose increases miR-214 to power a feedback loop involving PTEN and the Akt/mTORC1 signaling axis. FEBS Lett 2019; 593:2261-2272. [PMID: 31240704 DOI: 10.1002/1873-3468.13505] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 12/20/2022]
Abstract
The mechanism of PTEN repression by high glucose in diabetic nephropathy is not known. Using proximal tubular cells, we show that inhibition of PI3 kinase/Akt and their inactive enzymes prevents high glucose-induced PTEN downregulation. Similarly, rapamycin (Rapa) and shRaptor block suppression of PTEN by high glucose. In contrast, the constitutive activation of Akt and mechanistic target of rapamycin (mTOR)C1 decrease the expression of PTEN, similarly to high glucose. Remarkably, PI3 kinase/Akt/mTORC1 inhibition significantly attenuates high glucose-stimulated increase in miR-214, which targets PTEN, while constitutively active Akt/mTORC1 increases miR-214. Furthermore, anti-miR-214 and mTORC1 inhibition block high glucose-induced hypertrophy and fibronectin expression. These results reveal the first evidence for the presence of a high glucose-forced positive feedback conduit between the three-layered kinase cascade and miR-214/ PTEN in tubular cell injury.
Collapse
Affiliation(s)
- Soumya Maity
- Department of Medicine, UT Health San Antonio, TX, USA
| | - Falguni Das
- Department of Medicine, UT Health San Antonio, TX, USA
| | - Nandini Ghosh-Choudhury
- VA Biomedical Laboratory Research and Development, South Texas Veterans Health Care System, San Antonio, TX, USA.,Department of Pathology, UT Health San Antonio, San Antonio, TX, USA
| | - Balakuntalam S Kasinath
- Department of Medicine, UT Health San Antonio, TX, USA.,VA Biomedical Laboratory Research and Development, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Goutam Ghosh Choudhury
- Department of Medicine, UT Health San Antonio, TX, USA.,VA Biomedical Laboratory Research and Development, South Texas Veterans Health Care System, San Antonio, TX, USA.,Geriatric Research, Education and Clinical Research, South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
10
|
Das F, Maity S, Ghosh-Choudhury N, Kasinath BS, Ghosh Choudhury G. Deacetylation of S6 kinase promotes high glucose-induced glomerular mesangial cell hypertrophy and matrix protein accumulation. J Biol Chem 2019; 294:9440-9460. [PMID: 31028173 DOI: 10.1074/jbc.ra118.007023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/09/2019] [Indexed: 12/30/2022] Open
Abstract
S6 kinase acts as a driver for renal hypertrophy and matrix accumulation, two key pathologic signatures of diabetic nephropathy. As a post-translational modification, S6 kinase undergoes acetylation at the C terminus. The role of this acetylation to regulate kidney glomerular cell hypertrophy and matrix expansion is not known. In mesangial cells, high glucose decreased the acetylation and enhanced phosphorylation of S6 kinase and its substrates rps6 and eEF2 kinase that lead to dephosphorylation of eEF2. To determine the mechanism of S6 kinase deacetylation, we found that trichostatin A, a pan-histone deacetylase (HDAC) inhibitor, blocked all high glucose-induced effects. Furthermore, high glucose increased the expression and association of HDAC1 with S6 kinase. HDAC1 decreased the acetylation of S6 kinase and mimicked the effects of high glucose, resulting in mesangial cell hypertrophy and expression of fibronectin and collagen I (α2). In contrast, siRNA against HDAC1 inhibited these effects by high glucose. A C-terminal acetylation-mimetic mutant of S6 kinase suppressed high glucose-stimulated phosphorylation of S6 kinase, rps6 and eEF2 kinase, and inhibited the dephosphorylation of eEF2. Also, the acetylation mimetic attenuated the mesangial cell hypertrophy and fibronectin and collagen I (α2) expression. Conversely, an S6 kinase acetylation-deficient mutant induced all the above effects of high glucose. Finally, in the renal glomeruli of diabetic rats, the acetylation of S6 kinase was significantly reduced concomitant with increased HDAC1 and S6 kinase activity. In aggregate, our data uncovered a previously unrecognized role of S6 kinase deacetylation in high glucose-induced mesangial cell hypertrophy and matrix protein expression.
Collapse
Affiliation(s)
| | | | | | | | - Goutam Ghosh Choudhury
- Departments of Medicine and .,Departments of Medicine and.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas 78229 and
| |
Collapse
|
11
|
Akt2 causes TGFβ-induced deptor downregulation facilitating mTOR to drive podocyte hypertrophy and matrix protein expression. PLoS One 2018; 13:e0207285. [PMID: 30444896 PMCID: PMC6239304 DOI: 10.1371/journal.pone.0207285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023] Open
Abstract
TGFβ promotes podocyte hypertrophy and expression of matrix proteins in fibrotic kidney diseases such as diabetic nephropathy. Both mTORC1 and mTORC2 are hyperactive in response to TGFβ in various renal diseases. Deptor is a component of mTOR complexes and a constitutive inhibitor of their activities. We identified that deptor downregulation by TGFβ maintains hyperactive mTOR in podocytes. To unravel the mechanism, we found that TGFβ -initiated noncanonical signaling controls deptor inhibition. Pharmacological inhibitor of PI 3 kinase, Ly 294002 and pan Akt kinase inhibitor MK 2206 prevented the TGFβ induced downregulation of deptor, resulting in suppression of both mTORC1 and mTORC2 activities. However, specific isoform of Akt involved in this process is not known. We identified Akt2 as predominant isoform expressed in kidney cortex, glomeruli and podocytes. TGFβ time-dependently increased the activating phosphorylation of Akt2. Expression of dominant negative PI 3 kinase and its signaling inhibitor PTEN blocked Akt2 phosphorylation by TGFβ. Inhibition of Akt2 using a phospho-deficient mutant that inactivates its kinase activity, as well as siRNA against the kinase markedly diminished TGFβ -mediated deptor suppression, its association with mTOR and activation of mTORC1 and mTORC2. Importantly, inhibition of Akt2 blocked TGFβ -induced podocyte hypertrophy and expression of the matrix protein fibronectin. This inhibition was reversed by the downregulation of deptor. Interestingly, we detected increased phosphorylation of Akt2 concomitant with TGFβ expression in the kidneys of diabetic rats. Thus, our data identify previously unrecognized Akt2 kinase as a driver of TGFβ induced deptor downregulation and sustained mTORC1 and mTORC2 activation. Furthermore, we provide the first evidence that deptor downstream of Akt2 contributes to podocyte hypertrophy and matrix protein expression found in glomerulosclerosis in different renal diseases.
Collapse
|
12
|
Maity S, Bera A, Ghosh-Choudhury N, Das F, Kasinath BS, Choudhury GG. microRNA-181a downregulates deptor for TGFβ-induced glomerular mesangial cell hypertrophy and matrix protein expression. Exp Cell Res 2018; 364:5-15. [PMID: 29397070 DOI: 10.1016/j.yexcr.2018.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
TGFβ contributes to mesangial cell hypertrophy and matrix protein increase in various kidney diseases including diabetic nephropathy. Deptor is an mTOR-interacting protein and suppresses mTORC1 and mTORC2 activities. We have recently shown that TGFβ-induced inhibition of deptor increases the mTOR activity. The mechanism by which TGFβ regulates deptor expression is not known. Here we identify deptor as a target of the microRNA-181a. We show that in mesangial cells, TGFβ increases the expression of miR-181a to downregulate deptor. Decrease in deptor augments mTORC2 activity, resulting in phosphorylation/activation of Akt kinase. Akt promotes inactivating phosphorylation of PRAS40 and tuberin, leading to stimulation of mTORC1. miR-181a-mimic increased mTORC1 and C2 activities, while anti-miR-181a inhibited them. mTORC1 controls protein synthesis via phosphorylation of translation initiation and elongation suppressors 4EBP-1 and eEF2 kinase. TGFβ-stimulated miR-181a increased the phosphorylation of 4EBP-1 and eEF2 kinase, resulting in their inactivation. miR-181a-dependent inactivation of eEF2 kinase caused dephosphorylation of eEF2. Consequently, miR-181a-mimic increased protein synthesis and hypertrophy of mesangial cells similar to TGFβ. Anti-miR-181a blocked these events in a deptor-dependent manner. Finally, TGFβ-miR-181a-driven deptor downregulation increased the expression of fibronectin. Our results identify a novel mechanism involving miR-181a-driven deptor downregulation, which contributes to mesangial cell pathologies in renal complications.
Collapse
Affiliation(s)
- Soumya Maity
- Department of Medicine, UT Health San Antonio, TX, United States
| | - Amit Bera
- Department of Medicine, UT Health San Antonio, TX, United States
| | - Nandini Ghosh-Choudhury
- VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Pathology, UT Health San Antonio, TX, United States
| | - Falguni Das
- Department of Medicine, UT Health San Antonio, TX, United States; VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Balakuntalam S Kasinath
- Department of Medicine, UT Health San Antonio, TX, United States; VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Goutam Ghosh Choudhury
- Department of Medicine, UT Health San Antonio, TX, United States; VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Geriatric Research, Education and Clinical Research Center, South Texas Veterans Health Care System, San Antonio, TX, United States.
| |
Collapse
|
13
|
Dhanani KCH, Samson WJ, Edkins AL. Fibronectin is a stress responsive gene regulated by HSF1 in response to geldanamycin. Sci Rep 2017; 7:17617. [PMID: 29247221 PMCID: PMC5732156 DOI: 10.1038/s41598-017-18061-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/02/2017] [Indexed: 01/16/2023] Open
Abstract
Fibronectin is an extracellular matrix glycoprotein with key roles in cell adhesion and migration. Hsp90 binds directly to fibronectin and Hsp90 depletion regulates fibronectin matrix stability. Where inhibition of Hsp90 with a C-terminal inhibitor, novobiocin, reduced the fibronectin matrix, treatment with an N-terminal inhibitor, geldanamycin, increased fibronectin levels. Geldanamycin treatment induced a stress response and a strong dose and time dependent increase in fibronectin mRNA via activation of the fibronectin promoter. Three putative heat shock elements (HSEs) were identified in the fibronectin promoter. Loss of two of these HSEs reduced both basal and geldanamycin-induced promoter activity, as did inhibition of the stress-responsive transcription factor HSF1. Binding of HSF1 to one of the putative HSE was confirmed by ChIP under basal conditions, and occupancy shown to increase with geldanamycin treatment. These data support the hypothesis that fibronectin is stress-responsive and a functional HSF1 target gene. COLA42 and LAMB3 mRNA levels were also increased with geldanamycin indicating that regulation of extracellular matrix (ECM) genes by HSF1 may be a wider phenomenon. Taken together, these data have implications for our understanding of ECM dynamics in stress-related diseases in which HSF1 is activated, and where the clinical application of N-terminal Hsp90 inhibitors is intended.
Collapse
Affiliation(s)
- Karim Colin Hassan Dhanani
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - William John Samson
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
14
|
Bera A, Das F, Ghosh-Choudhury N, Mariappan MM, Kasinath BS, Ghosh Choudhury G. Reciprocal regulation of miR-214 and PTEN by high glucose regulates renal glomerular mesangial and proximal tubular epithelial cell hypertrophy and matrix expansion. Am J Physiol Cell Physiol 2017; 313:C430-C447. [PMID: 28701356 PMCID: PMC5668576 DOI: 10.1152/ajpcell.00081.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/06/2017] [Accepted: 07/09/2017] [Indexed: 02/06/2023]
Abstract
Aberrant expression of microRNAs (miRs) contributes to diabetic renal complications, including renal hypertrophy and matrix protein accumulation. Reduced expression of phosphatase and tensin homolog (PTEN) by hyperglycemia contributes to these processes. We considered involvement of miR in the downregulation of PTEN. In the renal cortex of type 1 diabetic mice, we detected increased expression of miR-214 in association with decreased levels of PTEN and enhanced Akt phosphorylation and fibronectin expression. Mesangial and proximal tubular epithelial cells exposed to high glucose showed augmented expression of miR-214. Mutagenesis studies using 3'-UTR of PTEN in a reporter construct revealed PTEN as a direct target of miR-214, which controls its expression in both of these cells. Overexpression of miR-214 decreased the levels of PTEN and increased Akt activity similar to high glucose and lead to phosphorylation of its substrates glycogen synthase kinase-3β, PRAS40, and tuberin. In contrast, quenching of miR-214 inhibited high-glucose-induced Akt activation and its substrate phosphorylation; these changes were reversed by small interfering RNAs against PTEN. Importantly, respective expression of miR-214 or anti-miR-214 increased or decreased the mammalian target of rapamycin complex 1 (mTORC1) activity induced by high glucose. Furthermore, mTORC1 activity was controlled by miR-214-targeted PTEN via Akt activation. In addition, neutralization of high-glucose-stimulated miR-214 expression significantly inhibited cell hypertrophy and expression of the matrix protein fibronectin. Finally, the anti-miR-214-induced inhibition of these processes was reversed by the expression of constitutively active Akt kinase and hyperactive mTORC1. These results uncover a significant role of miR-214 in the activation of mTORC1 that contributes to high-glucose-induced mesangial and proximal tubular cell hypertrophy and fibronectin expression.
Collapse
Affiliation(s)
- Amit Bera
- Department of Medicine, UT Health San Antonio, San Antonio, Texas
| | - Falguni Das
- Department of Medicine, UT Health San Antonio, San Antonio, Texas
| | - Nandini Ghosh-Choudhury
- Veterans Affairs Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas
- Department of Pathology, UT Health San Antonio, San Antonio, Texas; and
| | | | - Balakuntalam S Kasinath
- Department of Medicine, UT Health San Antonio, San Antonio, Texas
- Veterans Affairs Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas
| | - Goutam Ghosh Choudhury
- Department of Medicine, UT Health San Antonio, San Antonio, Texas;
- Veterans Affairs Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas
- Geriatric Research, Education and Clinical Research, South Texas Veterans Health Care System, San Antonio, Texas
| |
Collapse
|
15
|
Zhu G, Qi Q, Havel JJ, Li Z, Du Y, Zhang X, Fu H. PRAS40 promotes NF-κB transcriptional activity through association with p65. Oncogenesis 2017; 6:e381. [PMID: 28945219 PMCID: PMC5623906 DOI: 10.1038/oncsis.2017.80] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/19/2017] [Accepted: 07/26/2017] [Indexed: 01/06/2023] Open
Abstract
PRAS40 has been shown to have a crucial role in the repression of mammalian target of rapamycin (mTOR). Nonetheless, PRAS40 appears to have an oncogenic function in cancer cells. Whether PRAS40 mediates signaling independent of mTOR inhibition in cancer cells remains elusive. Here PRAS40 overexpression in lung adenocarcinoma and cutaneous melanoma was significantly correlated to worse prognosis. And we identified an unexpected role for PRAS40 in the regulation of nuclear factor (NF)-κB signaling. P65, a subunit of the NF-κB transcription factor complex, was confirmed to associate with PRAS40 by glutathione S-transferase co-precipitation. Importantly, we found that PRAS40 can enhance NF-κB transcriptional activity in a manner dependent upon PRAS40–P65 association. Furthermore, we found that a small p65-derived peptide can disrupt the PRAS40–P65 association and significantly decrease NF-κB transcriptional activity. These findings may help elucidate the pleiotropic functions of PRAS40 in cells and suggest a novel therapeutic strategy in cancer patients with high expression of PRAS40 and NF-κB.
Collapse
Affiliation(s)
- G Zhu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Q Qi
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - J J Havel
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Z Li
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Y Du
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - X Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - H Fu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
16
|
Das F, Ghosh-Choudhury N, Kasinath BS, Choudhury GG. Tyrosines-740/751 of PDGFRβ contribute to the activation of Akt/Hif1α/TGFβ nexus to drive high glucose-induced glomerular mesangial cell hypertrophy. Cell Signal 2017; 42:44-53. [PMID: 28951244 DOI: 10.1016/j.cellsig.2017.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/22/2017] [Indexed: 01/24/2023]
Abstract
Glomerular mesangial cell hypertrophy contributes to the complications of diabetic nephropathy. The mechanism by which high glucose induces mesangial cell hypertrophy is poorly understood. Here we explored the role of the platelet-derived growth factor receptor-β (PDGFRβ) tyrosine kinase in driving the high glucose-induced mesangial cell hypertrophy. We show that high glucose stimulates the association of the PDGFRβ with PI 3 kinase leading to tyrosine phosphorylation of the latter. High glucose-induced Akt kinase activation was also dependent upon PDGFRβ and its tyrosine phosphorylation at 740/751 residues. Inhibition of PDGFRβ activity, its downregulation and expression of its phospho-deficient (Y740/751F) mutant inhibited mesangial cell hypertrophy by high glucose. Interestingly, expression of constitutively active Akt reversed this inhibition, indicating a role of Akt kinase downstream of PDGFRβ phosphorylation in this process. The transcription factor Hif1α is a target of Akt kinase. siRNAs against Hif1α inhibited the high glucose-induced mesangial cell hypertrophy. In contrast, increased expression of Hif1α induced hypertrophy similar to high glucose. We found that inhibition of PDGFRβ and expression of PDGFRβ Y740/751F mutant significantly inhibited the high glucose-induced expression of Hif1α. Importantly, expression of Hif1α countered the inhibition of mesangial cell hypertrophy induced by siPDGFRβ or PDGFRβ Y740/751F mutant. Finally, we show that high glucose-stimulated PDGFRβ tyrosine phosphorylation at 740/751 residues and the tyrosine kinase activity of the receptor regulate the transforming growth factor-β (TGFβ) expression by Hif1α. Thus we define the cell surface PDGFRβ as a major link between high glucose and its effectors Hif1α and TGFβ for induction of diabetic mesangial cell hypertrophy.
Collapse
Affiliation(s)
- Falguni Das
- Department of Medicine, UT Health at San Antonio, TX, United States
| | - Nandini Ghosh-Choudhury
- VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Pathology, UT Health at San Antonio, TX, United States
| | - Balakuntalam S Kasinath
- Department of Medicine, UT Health at San Antonio, TX, United States; VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Goutam Ghosh Choudhury
- Department of Medicine, UT Health at San Antonio, TX, United States; VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Geriatric Research, Education and Clinical Research, South Texas Veterans Health Care System, San Antonio, TX, United States.
| |
Collapse
|
17
|
Lv D, Guo L, Zhang T, Huang L. PRAS40 signaling in tumor. Oncotarget 2017; 8:69076-69085. [PMID: 28978182 PMCID: PMC5620322 DOI: 10.18632/oncotarget.17299] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
The proline-rich Akt substrate of 40 kDa (PRAS40) is a substrate of Akt and a component of the mammalian target of rapamycin complex 1 (mTORC1). Locating at the crossroad of the PI3K/Akt pathway and the mTOR pathway, PRAS40 is phosphorylated by growth factors or other stimuli, and regulates the activation of these signaling pathways in turn. PRAS40 plays an important role in metabolic disorders and multiple cancers, and the phosphorylation of PRAS40 is often associated with the tumor progression of melanoma, prostate cancer, etc. PRAS40 promotes tumorigenesis by deregulating cellular proliferation, apoptosis, senescence, metastasis, etc. Herein, we provide an overview on current understandings of PRAS40 signaling in the tumor formation and progression, which suggests that PRAS40 or phospho-PRAS40 could become a novel biomarker and therapeutic target in tumor.
Collapse
Affiliation(s)
- Dan Lv
- Department of Pathophysiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Lianying Guo
- Department of Pathophysiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Ting Zhang
- Department of Pathophysiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Lin Huang
- Department of Pathophysiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
18
|
Das F, Ghosh-Choudhury N, Venkatesan B, Kasinath BS, Ghosh Choudhury G. PDGF receptor-β uses Akt/mTORC1 signaling node to promote high glucose-induced renal proximal tubular cell collagen I (α2) expression. Am J Physiol Renal Physiol 2017; 313:F291-F307. [PMID: 28424212 DOI: 10.1152/ajprenal.00666.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/28/2023] Open
Abstract
Increased expression of PDGF receptor-β (PDGFRβ) has been shown in renal proximal tubules in mice with diabetes. The core molecular network used by high glucose to induce proximal tubular epithelial cell collagen I (α2) expression is poorly understood. We hypothesized that activation of PDGFRβ by high glucose increases collagen I (α2) production via the Akt/mTORC1 signaling pathway in proximal tubular epithelial cells. Using biochemical and molecular biological techniques, we investigated this hypothesis. We show that high glucose increases activating phosphorylation of the PDGFRβ, resulting in phosphorylation of phosphatidylinositol 3-kinase. A specific inhibitor, JNJ-10198409, and small interfering RNAs targeting PDGFRβ blocked this phosphorylation without having any effect on MEK/Erk1/2 activation. We also found that PDGFRβ regulates high glucose-induced Akt activation, its targets tuberin and PRAS40 phosphorylation, and finally, mTORC1 activation. Furthermore, inhibition of PDGFRβ suppressed high glucose-induced expression of collagen I (α2) in proximal tubular cells. Importantly, expression of constitutively active Akt or mTORC1 reversed these processes. As a mechanism, we found that JNJ and PDGFRβ knockdown inhibited high glucose-stimulated Hif1α expression. Furthermore, overexpression of Hif1α restored expression of collagen I (α2) that was inhibited by PDGFRβ knockdown in high glucose-stimulated cells. Finally, we show increased phosphorylation of PDGFRβ and its association with Akt/mTORC1 activation, Hif1α expression, and elevated collagen I (α2) levels in the renal cortex of mice with diabetes. Our results identify PDGFRβ as a driver in activating Akt/mTORC1 nexus for high glucose-mediated expression of collagen I (α2) in proximal tubular epithelial cells, which contributes to tubulointerstitial fibrosis in diabetic nephropathy.
Collapse
Affiliation(s)
- Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Nandini Ghosh-Choudhury
- VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas.,Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Balachandar Venkatesan
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Balakuntalam S Kasinath
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; .,VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas.,Geriatric Research, Education and Clinical Research, South Texas Veterans Health Care System, San Antonio, Texas; and
| |
Collapse
|
19
|
Wang H, Wang J, Qu H, Wei H, Ji B, Yang Z, Wu J, He Q, Luo Y, Liu D, Duan Y, Liu F, Deng H. In vitro and in vivo inhibition of mTOR by 1,25-dihydroxyvitamin D 3 to improve early diabetic nephropathy via the DDIT4/TSC2/mTOR pathway. Endocrine 2016; 54:348-359. [PMID: 27395420 DOI: 10.1007/s12020-016-0999-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/24/2016] [Indexed: 02/07/2023]
Abstract
We investigated whether 1,25-dihydroxy-vitamin D3 (1,25(OH)2D3) could improve early diabetic nephropathy through the DNA-damage-inducible transcript 4/tuberous sclerosis 2/mammalian target of rapamycin pathway. Rat mesangial cells were cultured in media containing normal glucose or high glucose and were treated with or without 1,25(OH)2D3. Mesangial cells proliferation was measured. Streptozotocin-induced diabetic rats were injected intravenously with a recombinant lentivirus against the rat vitamin D receptor gene. Urinary and serum albumin, fasting plasma glucose, serum triglyceride, total cholesterol, calcium, parathyroid hormone and serum 25-dihydroxy-vitamin D (25(OH)D) levels, mean glomerular volume, glomerular basement membrane thickness and total kidney volume were determined. The expressions of vitamin D receptor, DNA-damage-inducible transcript 4, and mammalian target of rapamycin were measured. 1,25(OH)2D3 inhibited the proliferation of mesangial cells induced by hyperglycemia. 1,25(OH)2D3 also significantly reduced albumin excretion, mean glomerular volume, glomerular basement membrane, and total kidney volume in rats with diabetic nephropathy. The expression of DNA-damage-inducible transcript 4 was elevated by 1,25(OH)2D3 treatment. The phosphorylation of mammalian target of rapamycin was reduced by 1,25(OH)2D3 treatment. Vitamin D receptor gene silencing blocked all of the above results. The current study demonstrates that 1,25(OH)2D3 can effectively inhibit mesangial cells proliferation induced by hyperglycemia, thus suppressing the development of diabetic nephropathy. This study also shows that the nephron-protective effect of 1,25(OH)2D3 occurs partly through the DDIT4/TSC2/mTOR pathway.
Collapse
Affiliation(s)
- Hang Wang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jianmin Wang
- Department of Nephrology, Chongqing Armed Corps Police Hospital, Chongqing, P.R. China
| | - Hua Qu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Huili Wei
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Baolan Ji
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Zesong Yang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jing Wu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Qin He
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Yuanyuan Luo
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Dan Liu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Yang Duan
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Fang Liu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Huacong Deng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China.
| |
Collapse
|
20
|
Wang M, Yao D, Wang S, Yan Q, Lu W. Long non-coding RNA ENSMUST00000147869 protects mesangial cells from proliferation and fibrosis induced by diabetic nephropathy. Endocrine 2016; 54:81-92. [PMID: 27083175 DOI: 10.1007/s12020-016-0950-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/31/2016] [Indexed: 12/29/2022]
Abstract
Diabetic nephropathy as the primary cause of end-stage renal disease reveals an increased incidence in patients with kidney disease as the continuous rising of type 2 diabetes. Long non-coding RNAs (lncRNAs) are involved in the development of many diseases including diabetes; however, the role of lncRNAs in diabetic nephropathy is still unclear. In the present study, lncRNA microarray analysis was used to identify abnormally expressed lncRNAs and nearby mRNAs in renal cortical tissues dissected from kidney of db/db and db/m mice. After verifying the data from microarray analysis by quantitative RT-PCR, downregulated ENSMUST00000147869 associated with Cyp4a12a was selected for overexpression in mouse mesangial cells among differentially expressed lncRNAs. Cell Counting Kit-8, Western blotting, and quantitative RT-PCR showed that proliferation and fibrosis indexes were reversed in mesangial cells with ENSMUST00000147869 overexpression. Our data suggested the potential role of ENSMUST00000147869 in proliferation and fibrosis of mesangial cells, which provided a molecular biomarker and therapeutic target for diabetic nephropathy.
Collapse
Affiliation(s)
- Min Wang
- Department of Endocrinology and Metabolism, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu, 223300, P. R. China
| | - Di Yao
- Department of Endocrinology and Metabolism, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu, 223300, P. R. China
| | - Suyu Wang
- Department of Endocrinology and Metabolism, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu, 223300, P. R. China
| | - Qin Yan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, P. R. China.
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 210029, P. R. China.
- Department of Microbiology, Nanjing Medical University, Nanjing, 210029, P. R. China.
| | - Weiping Lu
- Department of Endocrinology and Metabolism, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu, 223300, P. R. China.
| |
Collapse
|
21
|
Velazquez R, Shaw DM, Caccamo A, Oddo S. Pim1 inhibition as a novel therapeutic strategy for Alzheimer's disease. Mol Neurodegener 2016; 11:52. [PMID: 27412291 PMCID: PMC4944476 DOI: 10.1186/s13024-016-0118-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/02/2016] [Indexed: 01/07/2023] Open
Abstract
Background Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder worldwide. Clinically, AD is characterized by impairments of memory and cognitive functions. Accumulation of amyloid-β (Aβ) and neurofibrillary tangles are the prominent neuropathologies in patients with AD. Strong evidence indicates that an imbalance between production and degradation of key proteins contributes to the pathogenesis of AD. The mammalian target of rapamycin (mTOR) plays a key role in maintaining protein homeostasis as it regulates both protein synthesis and degradation. A key regulator of mTOR activity is the proline-rich AKT substrate 40 kDa (PRAS40), which directly binds to mTOR and reduces its activity. Notably, AD patients have elevated levels of phosphorylated PRAS40, which correlate with Aβ and tau pathologies as well as cognitive deficits. Physiologically, PRAS40 phosphorylation is regulated by Pim1, a protein kinase of the protoconcogene family. Here, we tested the effects of a selective Pim1 inhibitor (Pim1i), on spatial reference and working memory and AD-like pathology in 3xTg-AD mice. Results We have identified a Pim1i that crosses the blood brain barrier and reduces PRAS40 phosphorylation. Pim1i-treated 3xTg-AD mice performed significantly better than their vehicle treated counterparts as well as non-transgenic mice. Additionally, 3xTg-AD Pim1i-treated mice showed a reduction in soluble and insoluble Aβ40 and Aβ42 levels, as well as a 45.2 % reduction in Aβ42 plaques within the hippocampus. Furthermore, phosphorylated tau immunoreactivity was reduced in the hippocampus of Pim1i–treated 3xTg-AD mice by 38 %. Mechanistically, these changes were linked to a significant increase in proteasome activity. Conclusion These results suggest that reductions in phosphorylated PRAS40 levels via Pim1 inhibition reduce Aβ and Tau pathology and rescue cognitive deficits by increasing proteasome function. Given that Pim1 inhibitors are already being tested in ongoing human clinical trials for cancer, the results presented here may open a new venue of drug discovery for AD by developing more Pim1 inhibitors.
Collapse
Affiliation(s)
- Ramon Velazquez
- Neurodegenerative Disease Research Center, Biodesign Institute, School of Life Sciences, Arizona State University, 727 E. Tyler Street, Tempe, AZ, 85287-5001, USA
| | - Darren M Shaw
- Neurodegenerative Disease Research Center, Biodesign Institute, School of Life Sciences, Arizona State University, 727 E. Tyler Street, Tempe, AZ, 85287-5001, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Antonella Caccamo
- Neurodegenerative Disease Research Center, Biodesign Institute, School of Life Sciences, Arizona State University, 727 E. Tyler Street, Tempe, AZ, 85287-5001, USA
| | - Salvatore Oddo
- Neurodegenerative Disease Research Center, Biodesign Institute, School of Life Sciences, Arizona State University, 727 E. Tyler Street, Tempe, AZ, 85287-5001, USA. .,School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
22
|
Das F, Dey N, Bera A, Kasinath BS, Ghosh-Choudhury N, Choudhury GG. MicroRNA-214 Reduces Insulin-like Growth Factor-1 (IGF-1) Receptor Expression and Downstream mTORC1 Signaling in Renal Carcinoma Cells. J Biol Chem 2016; 291:14662-76. [PMID: 27226530 DOI: 10.1074/jbc.m115.694331] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 01/21/2023] Open
Abstract
Elevated IGF-1/insulin-like growth factor-1 receptor (IGF-1R) autocrine/paracrine signaling in patients with renal cell carcinoma is associated with poor prognosis of the disease independent of their von Hippel-Lindau (VHL) status. Increased expression of IGF-1R in renal cancer cells correlates with their potency of tumor development and progression. The mechanism by which expression of IGF-1R is increased in renal carcinoma is not known. We report that VHL-deficient and VHL-positive renal cancer cells possess significantly decreased levels of mature, pre-, and pri-miR-214 than normal proximal tubular epithelial cells. We identified an miR-214 recognition element in the 3'UTR of IGF-1R mRNA and confirmed its responsiveness to miR-214. Overexpression of miR-214 decreased the IGF-1R protein levels, resulting in the inhibition of Akt kinase activity in both types of renal cancer cells. IGF-1 provoked phosphorylation and inactivation of PRAS40 in an Akt-dependent manner, leading to the activation of mTORC1 signal transduction to increase phosphorylation of S6 kinase and 4EBP-1. Phosphorylation-deficient mutants of PRAS40 and 4EBP-1 significantly inhibited IGF-1R-driven proliferation of renal cancer cells. Expression of miR-214 suppressed IGF-1R-induced phosphorylation of PRAS40, S6 kinase, and 4EBP-1, indicating inhibition of mTORC1 activity. Finally, miR-214 significantly blocked IGF-1R-forced renal cancer cell proliferation, which was reversed by expression of 3'UTR-less IGF-1R and constitutively active mTORC1. Together, our results identify a reciprocal regulation of IGF-1R levels and miR-214 expression in renal cancer cells independent of VHL status. Our data provide evidence for a novel mechanism for IGF-1R-driven renal cancer cell proliferation involving miR-214 and mTORC1.
Collapse
Affiliation(s)
| | | | | | | | - Nandini Ghosh-Choudhury
- From Veterans Affairs Research and Geriatric Research, Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Goutam Ghosh Choudhury
- the Departments of Medicine and From Veterans Affairs Research and Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas 78229-3900 and
| |
Collapse
|
23
|
Chong ZZ. Targeting PRAS40 for multiple diseases. Drug Discov Today 2016; 21:1222-31. [PMID: 27086010 DOI: 10.1016/j.drudis.2016.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/18/2016] [Accepted: 04/07/2016] [Indexed: 12/19/2022]
Abstract
Proline-rich Akt substrate 40kDa (PRAS40) bridges cell signaling between protein kinase B (Akt) and the mammalian target of rapamycin complex 1 (mTORC1). Both Akt and mTORC1 can phosphorylate PRAS40. As a negative regulator of mTORC1, PRAS40 prevents the binding of mTOR to its substrates. The phosphorylation of PRAS40 results in its dissociation from mTORC1 and enhanced mTOR activation. PRAS40 in conjunction with mTORC1 has been closely associated with programmed cell death and is implicated in diabetes mellitus (DM), cardiovascular diseases, cancer, and neurological diseases. Thus, targeting PRAS40 might hold great promise for innovative therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA; Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
24
|
Das F, Ghosh-Choudhury N, Mariappan MM, Kasinath BS, Choudhury GG. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy. Am J Physiol Cell Physiol 2016; 310:C583-96. [PMID: 26739493 DOI: 10.1152/ajpcell.00266.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/06/2016] [Indexed: 01/23/2023]
Abstract
PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy.
Collapse
Affiliation(s)
- Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Nandini Ghosh-Choudhury
- Veterans Affairs Research, South Texas Veterans Health Care System, San Antonio, Texas; Departments of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Meenalakshmi M Mariappan
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Balakuntalam S Kasinath
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Veterans Affairs Research, South Texas Veterans Health Care System, San Antonio, Texas
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Veterans Affairs Research, South Texas Veterans Health Care System, San Antonio, Texas; Geriatric Research, Education and Clinical Research, South Texas Veterans Health Care System, San Antonio, Texas; and
| |
Collapse
|
25
|
Dey N, Bera A, Das F, Ghosh-Choudhury N, Kasinath BS, Choudhury GG. High glucose enhances microRNA-26a to activate mTORC1 for mesangial cell hypertrophy and matrix protein expression. Cell Signal 2015; 27:1276-85. [PMID: 25797045 PMCID: PMC4437875 DOI: 10.1016/j.cellsig.2015.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/06/2015] [Accepted: 03/15/2015] [Indexed: 02/06/2023]
Abstract
High glucose milieu inhibits PTEN expression to activate Akt kinase and induces glomerular mesangial cell hypertrophy and matrix protein expression in diabetic nephropathy. Specific mechanism by which high glucose inhibits PTEN expression is not clear. We found that high glucose increased the expression of the microRNA-26a (miR-26a) in mesangial cells. Using a sensor plasmid with 3'UTR-driven luciferase, we showed PTEN as a target of miR-26a in response to high glucose. Overexpression of miR-26a reduced the PTEN protein levels resulting in increased Akt kinase activity similar to high glucose treatment. In contrast, anti-miR-26a reversed high glucose-induced suppression of PTEN with concomitant inhibition of Akt kinase activity. Akt-mediated phosphorylation of tuberin and PRAS40 regulates mTORC1, which is necessary for mesangial cell hypertrophy and matrix protein expression. Inhibition of high glucose-induced miR-26a blocked phosphorylation of tuberin and PRAS40, which lead to suppression of phosphorylation of S6 kinase and 4EBP-1, two substrates of mTORC1. Furthermore, we show that expression of miR-26a induced mesangial cell hypertrophy and increased fibronectin and collagen I (α2) expression similar to that observed with the cells incubated with high glucose. Anti-miR-26a inhibited these phenomena in response to high glucose. Together our results provide the first evidence for the involvement of miR-26a in high glucose-induced mesangial cell hypertrophy and matrix protein expression. These data indicate the potential therapeutic utility of anti-miR-26a for the complications of diabetic kidney disease.
Collapse
Affiliation(s)
- Nirmalya Dey
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States
| | - Amit Bera
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States
| | - Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States
| | - Nandini Ghosh-Choudhury
- VA Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Pathology, University of Texas Health Science Center at San Antonio, Texas, United States
| | - Balakuntalam S Kasinath
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States; VA Research, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio Texas, United States; VA Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, United States.
| |
Collapse
|
26
|
Das F, Bera A, Ghosh-Choudhury N, Abboud HE, Kasinath BS, Choudhury GG. TGFβ-induced deptor suppression recruits mTORC1 and not mTORC2 to enhance collagen I (α2) gene expression. PLoS One 2014; 9:e109608. [PMID: 25333702 PMCID: PMC4198127 DOI: 10.1371/journal.pone.0109608] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/02/2014] [Indexed: 02/06/2023] Open
Abstract
Enhanced TGFβ activity contributes to the accumulation of matrix proteins including collagen I (α2) by proximal tubular epithelial cells in progressive kidney disease. Although TGFβ rapidly activates its canonical Smad signaling pathway, it also recruits noncanonical pathway involving mTOR kinase to regulate renal matrix expansion. The mechanism by which chronic TGFβ treatment maintains increased mTOR activity to induce the matrix protein collagen I (α2) expression is not known. Deptor is an mTOR interacting protein that suppresses mTOR activity in both mTORC1 and mTORC2. In proximal tubular epithelial cells, TGFβ reduced deptor levels in a time-dependent manner with concomitant increase in both mTORC1 and mTORC2 activities. Expression of deptor abrogated activity of mTORC1 and mTORC2, resulting in inhibition of collagen I (α2) mRNA and protein expression via transcriptional mechanism. In contrast, neutralization of endogenous deptor by shRNAs increased activity of both mTOR complexes and expression of collagen I (α2) similar to TGFβ treatment. Importantly, downregulation of deptor by TGFβ increased the expression of Hif1α by increasing translation of its mRNA. TGFβ-induced deptor downregulation promotes Hif1α binding to its cognate hypoxia responsive element in the collagen I (α2) gene to control its protein expression via direct transcriptional mechanism. Interestingly, knockdown of raptor to specifically block mTORC1 activity significantly inhibited expression of collagen I (α2) and Hif1α while inhibition of rictor to prevent selectively mTORC2 activation did not have any effect. Critically, our data provide evidence for the requirement of TGFβ-activated mTORC1 only by deptor downregulation, which dominates upon the bystander mTORC2 activity for enhanced expression of collagen I (α2). Our results also suggest the presence of a safeguard mechanism involving deptor-mediated suppression of mTORC1 activity against developing TGFβ-induced renal fibrosis.
Collapse
Affiliation(s)
- Falguni Das
- Departments of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Amit Bera
- Departments of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Nandini Ghosh-Choudhury
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- VA Research, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Hanna E. Abboud
- Departments of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- VA Research, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Balakuntalam S. Kasinath
- Departments of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- VA Research, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Goutam Ghosh Choudhury
- Departments of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- VA Research, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
27
|
Das F, Ghosh-Choudhury N, Dey N, Bera A, Mariappan MM, Kasinath BS, Ghosh Choudhury G. High glucose forces a positive feedback loop connecting Akt kinase and FoxO1 transcription factor to activate mTORC1 kinase for mesangial cell hypertrophy and matrix protein expression. J Biol Chem 2014; 289:32703-16. [PMID: 25288788 DOI: 10.1074/jbc.m114.605196] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
High glucose-induced Akt acts as a signaling hub for mesangial cell hypertrophy and matrix expansion, which are recognized as cardinal signatures for the development of diabetic nephropathy. How mesangial cells sustain the activated state of Akt is not clearly understood. Here we show Akt-dependent phosphorylation of the transcription factor FoxO1 by high glucose. Phosphorylation-deficient, constitutively active FoxO1 inhibited the high glucose-induced phosphorylation of Akt to suppress the phosphorylation/inactivation of PRAS40 and mTORC1 activity. In contrast, dominant negative FoxO1 increased the phosphorylation of Akt, resulting in increased mTORC1 activity similar to high glucose treatment. Notably, FoxO1 regulates high glucose-induced protein synthesis, hypertrophy, and expression of fibronectin and PAI-1. High glucose paves the way for complications of diabetic nephropathy through the production of reactive oxygen species (ROS). We considered whether the FoxO1 target antioxidant enzyme catalase contributes to sustained activation of Akt. High glucose-inactivated FoxO1 decreases the expression of catalase to increase the production of ROS. Moreover, we show that catalase blocks high glucose-stimulated Akt phosphorylation to attenuate the inactivation of FoxO1 and PRAS40, resulting in the inhibition of mTORC1 and mesangial cell hypertrophy and fibronectin and PAI-1 expression. Finally, using kidney cortices from type 1 diabetic OVE26 mice, we show that increased FoxO1 phosphorylation is associated with decreased catalase expression and increased fibronectin and PAI-1 expression. Together, our results provide the first evidence for the presence of a positive feedback loop for the sustained activation of Akt involving inactivated FoxO1 and a decrease in catalase expression, leading to increased ROS and mesangial cell hypertrophy and matrix protein expression.
Collapse
Affiliation(s)
| | - Nandini Ghosh-Choudhury
- Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 From the Veterans Affairs Research and Geriatric Research and
| | | | | | | | - Balakuntalam S Kasinath
- the Departments of Medicine and From the Veterans Affairs Research and Geriatric Research and
| | - Goutam Ghosh Choudhury
- the Departments of Medicine and From the Veterans Affairs Research and Geriatric Research and Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas 78229 and
| |
Collapse
|
28
|
Nistala R, Habibi J, Aroor A, Sowers JR, Hayden MR, Meuth A, Knight W, Hancock T, Klein T, DeMarco VG, Whaley-Connell A. DPP4 inhibition attenuates filtration barrier injury and oxidant stress in the zucker obese rat. Obesity (Silver Spring) 2014; 22:2172-9. [PMID: 24995775 PMCID: PMC4180797 DOI: 10.1002/oby.20833] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Obesity-related glomerulopathy is characterized initially by glomerular hyperfiltration with hypertrophy and then development of proteinuria. Putative mechanisms include endothelial dysfunction and filtration barrier injury due to oxidant stress and immune activation. There has been recent interest in targeting dipeptidyl peptidase 4 (DPP4) enzyme due to increasing role in non-enzymatic cellular processes. METHODS The Zucker obese (ZO) rat (aged 8 weeks) fed a normal chow or diet containing the DPP4 inhibitor linagliptin for 8 weeks (83 mg/kg rat chow) was utilized. RESULTS Compared to lean controls, there were increases in plasma DPP4 activity along with proteinuria in ZO rats. ZO rats further displayed increases in glomerular size and podocyte foot process effacement. These findings occurred in parallel with decreased endothelial stromal-derived factor-1α (SDF-1α), increased oxidant markers, and tyrosine phosphorylation of nephrin and serine phosphorylation of the mammalian target of rapamycin (mTOR). DPP4 inhibition improved proteinuria along with filtration barrier remodeling, circulating and kidney tissue DPP4 activity, increased active glucagon like peptide-1 (GLP-1) as well as SDF-1α, and improved oxidant markers and the podocyte-specific protein nephrin. CONCLUSIONS These data support a role for DPP4 in glomerular filtration function and targeting DPP4 with inhibition improves oxidant stress-related glomerulopathy and associated proteinuria.
Collapse
Affiliation(s)
- Ravi Nistala
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Divisions of Nephrology and Hypertension, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - Javad Habibi
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - Annayya Aroor
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - James R Sowers
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Medical Pharmacology and Physiology, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - Melvin R Hayden
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
| | - Alex Meuth
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Divisions of Nephrology and Hypertension, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - William Knight
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - Tamara Hancock
- College of Veterinary Medicine, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | | | - Vincent G DeMarco
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Medical Pharmacology and Physiology, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| | - Adam Whaley-Connell
- University of Missouri School of Medicine, Columbia, Mo
- Diabetes and Cardiovascular Center, Columbia, Mo
- Departments of Internal Medicine, Columbia, Mo
- Divisions of Nephrology and Hypertension, Columbia, Mo
- Endocrinology and Metabolism, Columbia, Mo
- Harry S. Truman Memorial Veterans Hospital, Columbia, Mo
| |
Collapse
|
29
|
Hao J, Li F, Liu W, Liu Q, Liu S, Li H, Duan H. Phosphorylation of PRAS40-Thr246 involved in renal lipid accumulation of diabetes. J Cell Physiol 2014; 229:1069-77. [PMID: 24347388 DOI: 10.1002/jcp.24533] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 12/05/2013] [Indexed: 12/16/2022]
Abstract
Lipid accumulation of kidney is a threat to renal physiological function of diabetes. The previous studies on diabetic nephropathy have demonstrated that activated Akt was involved in renal lipogenesis through enhancing transcription factor SREBP-1. PRAS40 is one of the downstream targets of activated Akt that was reported to involve in lipid metabolism in hepatic cells. However, it is still not clear whether PRAS40 is also involved in the renal lipogenesis of diabetes. Our study revealed that phosphorylation of PRAS40-Thr246 known as inactivated style increased in renal tubular cells of diabetic rats accompanied with over-expression of phospho-Akt, SREBP-1, and ADRP. In addition, in vitro experiment also found that high glucose enhanced expression of phospho-PRAS40-Thr246 followed by increased SREBP-1 and lipid droplets in HKC cells. After treated with LY294002, high glucose-induced HKC cells showed decreased phospho-PRAS40-Thr246, phospho-Akt-Ser473, and SREBP-1. Furthermore, wild type PRAS40 vector-caused increased phospho-PRAS40-Thr246 exaggerated lipid deposits in high glucose-treated HKC cells, which was effectively prevented in cells transfected with mutant PRAS40 vector (T246A). These above data suggested that phosphorylation of PRAS40-Thr246 mediated abnormal lipid metabolism in kidney of diabetes and might be the potential target for treating lipogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Wiza C, Chadt A, Blumensatt M, Kanzleiter T, Herzfeld De Wiza D, Horrighs A, Mueller H, Nascimento EBM, Schürmann A, Al-Hasani H, Ouwens DM. Over-expression of PRAS40 enhances insulin sensitivity in skeletal muscle. Arch Physiol Biochem 2014; 120:64-72. [PMID: 24576065 DOI: 10.3109/13813455.2014.894076] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
CONTEXT Silencing proline-rich Akt substrate of 40-kDa (PRAS40) impairs insulin signalling in skeletal muscle. OBJECTIVE This study assessed the effects of over-expressing wild type or mutant AAA-PRAS40, in which the major phosphorylation sites and mTORC1-binding site were mutated, on insulin signalling in skeletal muscle. RESULTS Over-expression of WT-PRAS40, but not AAA-PRAS40, impaired the insulin-mediated activation of the mTORC1-pathway in human skeletal muscle cells (hSkMC). However, insulin-mediated Akt-phosphorylation was increased upon over-expression of WT-PRAS40 both in hSkMC and mouse skeletal muscle. Also over-expression of AAA-PRAS40 had an insulin-sensitizing effect, although to a lesser extent as WT-PRAS40. The insulin-sensitizing effect associated with increased IRS1 protein abundance and inhibition of proteasome activity. Finally, over-expression of WT-PRAS40 reversed hyperinsulinemia-induced insulin resistance. CONCLUSION This study identifies PRAS40 as a regulator of insulin sensitivity in hSkMC. In contrast to the mTORC1-pathway, the insulin-sensitizing action of PRAS40 occurs independent of binding of PRAS40 to the mTORC1-complex.
Collapse
Affiliation(s)
- Claudia Wiza
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Centre , Auf'mHennekamp 65, D-40225 Düsseldorf , Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wagner B, Gorin Y. Src tyrosine kinase mediates platelet-derived growth factor BB-induced and redox-dependent migration in metanephric mesenchymal cells. Am J Physiol Renal Physiol 2013; 306:F85-97. [PMID: 24197068 DOI: 10.1152/ajprenal.00371.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The adult kidney is derived from the interaction between the metanephric blastema and the ureteric bud. Platelet-derived growth factor (PDGF) receptor β is essential for the development of the mature glomerular tuft, as mice deficient for this receptor lack mesangial cells. This study investigated the role of Src tyrosine kinase in PDGF-mediated reactive oxygen species (ROS) generation and migration of metanephric mesenchymal cells (MMCs). Cultured embryonic MMCs from wild-type and PDGF receptor-deficient embryos were established. Migration was determined via wound-healing assay. Unlike PDGF AA, PDGF BB-induced greater migration in MMCs with respect to control. This was abrogated by neutralizing an antibody to PDGF BB. Phosphatidylinositol 3-kinase (PI3K) inhibitors suppressed PDGF BB-induced migration. Conversely, mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) inhibitors had no effect. Src inhibitors inhibited PDGF-induced cell migration, PI3K activity, and Akt phosphorylation. Adenoviral dominant negative Src (AD DN Src) abrogated PDGF BB-induced Akt phosphorylation. Hydrogen peroxide stimulated cell migration. PDGF BB-induced wound closure was inhibited by the antioxidants N-acetyl-l-cysteine, tiron, and the flavoprotein inhibitor diphenyleneiodonium. These cells express the NADPH oxidase homolog Nox4. Inhibiting Nox4 with antisense oligonucleotides or small interfering RNA (siRNA) suppressed PDGF-induced wound closure. Inhibition of Src with siRNA reduced PDGF BB-induced ROS generation as assessed by 2',7'-dichlorodihydrofluorescein diacetate fluorescence. Furthermore, PDGF BB-stimulated ROS generation and migration were similarly suppressed by Ad DN Src. In MMCs, PDGF BB-induced migration is mediated by PI3K and Src in a redox-dependent manner involving Nox4. Src may be upstream to PI3K and Nox4.
Collapse
Affiliation(s)
- Brent Wagner
- South Texas Veterans Health Care System, Div. of Nephrology MC 7882, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900.
| | | |
Collapse
|
32
|
Phospho-GSK-3β is involved in the high-glucose-mediated lipid deposition in renal tubular cells in diabetes. Int J Biochem Cell Biol 2013; 45:2066-75. [DOI: 10.1016/j.biocel.2013.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 07/10/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022]
|
33
|
Hao J, Zhu L, Li F, Liu Q, Zhao X, Liu S, Xing L, Feng X, Duan H. Phospho-mTOR: a novel target in regulation of renal lipid metabolism abnormality of diabetes. Exp Cell Res 2013; 319:2296-306. [PMID: 23827786 DOI: 10.1016/j.yexcr.2013.06.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/10/2013] [Accepted: 06/22/2013] [Indexed: 12/14/2022]
Abstract
The activation of Akt has been proved to involve in the lipogenesis of diabetic nephropathy. However, it's still not clear whether mTOR, another main gene in PI3K/Akt pathway, is also involved in the renal lipogenesis of diabetes. In the present study, it was revealed that the phosphorylation of mTOR was up-regulated in the renal tubular cells of diabetic rats, followed by the over-expression of SREBP-1, ADRP and lipogenesis. Again, high glucose increased the expression of phospho-mTOR accompanied with SREBP-1 and ADRP up-regulation and lipid accumulation in HKC cells. Rapamycin, known as mTOR inhibitor, was used to inhibit the activation of mTOR, which prevented effectively high glucose-induced SREBP-1 up-regulation and lipogenesis in HKC cells. Furthermore, high glucose-stimulated HKC cells transfected with wild-type mTOR vector showed the enhanced SREBP-1 and lipid droplets, however, TE mTOR vector (kinase dead)-transfected HKC cells presented resistance to high glucose and decreased SREBP-1 expression and lipogenesis. These above data suggested that phospho-mTOR mediated lipid accumulation in renal tubular cells of diabetes and might be the potential targets for treating lipogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wiza C, Nascimento EBM, Linssen MML, Carlotti F, Herzfeld de Wiza D, van der Zon GCM, Maassen JA, Diamant M, Guigas B, Ouwens DM. Proline-rich Akt substrate of 40-kDa contains a nuclear export signal. Cell Signal 2013; 25:1762-8. [PMID: 23712034 DOI: 10.1016/j.cellsig.2013.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 05/07/2013] [Accepted: 05/12/2013] [Indexed: 01/01/2023]
Abstract
The proline-rich Akt substrate of 40-kDa (PRAS40) has been linked to the regulation of the activity of the mammalian target of rapamycin complex 1 as well as insulin action. Despite these cytosolic functions, PRAS40 was originally identified as nuclear phosphoprotein in Hela cells. This study aimed to detail mechanisms and consequences of the nucleocytosolic trafficking of PRAS40. Sequence analysis identified a potential leucine-rich nuclear export signal (NES) within PRAS40. Incubation of A14 fibroblasts overexpressing human PRAS40 (hPRAS40) resulted in nuclear accumulation of the protein. Furthermore, mutation of the NES mimicked the effects of leptomycin B, a specific inhibitor of nuclear export, on the subcellular localization of hPRAS40. Finally, A14 cells expressing the NES-mutant showed impaired activation of components of the Akt-pathway as well as of the mTORC1 substrate p70 S6 kinase after insulin stimulation. This impaired insulin signaling could be ascribed to reduced protein levels of insulin receptor substrate 1 in cells expressing mutant NES. In conclusion, PRAS40 contains a functional nuclear export signal. Furthermore, enforced nuclear accumulation of PRAS40 impairs insulin action, thereby substantiating the function of this protein in the regulation of insulin sensitivity.
Collapse
Affiliation(s)
- Claudia Wiza
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wiza C, Herzfeld de Wiza D, Nascimento EBM, Lehr S, Al-Hasani H, Ouwens DM. Knockdown of PRAS40 inhibits insulin action via proteasome-mediated degradation of IRS1 in primary human skeletal muscle cells. Diabetologia 2013; 56:1118-28. [PMID: 23460019 DOI: 10.1007/s00125-013-2861-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
AIMS/HYPOTHESIS The proline-rich Akt substrate of 40 kDa (PRAS40) is a component of the mammalian target of rapamycin complex 1 (mTORC1) and among the most prominent Akt substrates in skeletal muscle. Yet the cellular functions of PRAS40 are incompletely defined. This study assessed the function of PRAS40 in insulin action in primary human skeletal muscle cells (hSkMC). METHODS Insulin action was examined in hSkMC following small interfering RNA-mediated silencing of PRAS40 (also known as AKT1S1) under normal conditions and following chemokine-induced insulin resistance. RESULTS PRAS40 knockdown (PRAS40-KD) in hSkMC decreased insulin-mediated phosphorylation of Akt by 50% (p < 0.05) as well as of the Akt substrates glycogen synthase kinase 3 (40%) and tuberous sclerosis complex 2 (32%) (both p < 0.05). Furthermore, insulin-stimulated glucose uptake was reduced by 20% in PRAS40-KD myotubes (p < 0.05). Exposing PRAS40-KD myotubes to chemokines caused no additional deterioration of insulin action. PRAS40-KD further reduced insulin-mediated phosphorylation of the mTORC1-regulated proteins p70S6 kinase (p70S6K) (47%), S6 (43%), and eukaryotic elongation 4E-binding protein 1 (100%), as well as protein levels of growth factor receptor bound protein 10 (35%) (all p < 0.05). The inhibition of insulin action in PRAS40-KD myotubes was associated with a reduction in IRS1 protein levels (60%) (p < 0.05), and was reversed by pharmacological proteasome inhibition. Accordingly, expression of the genes encoding E3-ligases F-box protein 32 (also known as atrogin-1) and muscle RING-finger protein-1 and activity of the proteasome was elevated in PRAS40-KD myotubes. CONCLUSIONS/INTERPRETATION Inhibition of insulin action in PRAS40-KD myotubes was found to associate with IRS1 degradation promoted by increased proteasome activity rather than hyperactivation of the p70S6K-negative-feedback loop. These findings identify PRAS40 as a modulator of insulin action.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Cells, Cultured
- Chemokine CCL2/metabolism
- Chemokines/metabolism
- Down-Regulation/drug effects
- Female
- Gene Silencing
- Humans
- Hypoglycemic Agents/pharmacology
- Insulin Receptor Substrate Proteins/metabolism
- Insulin Resistance
- Insulin, Regular, Pork/pharmacology
- Intercellular Signaling Peptides and Proteins
- Male
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/immunology
- Muscle, Skeletal/metabolism
- Phosphorylation/drug effects
- Proteasome Endopeptidase Complex/drug effects
- Proteasome Endopeptidase Complex/metabolism
- Protein Processing, Post-Translational/drug effects
- Proteolysis/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering
- Recombinant Proteins/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- C Wiza
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Auf´m Hennekamp 65, 40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Das F, Ghosh-Choudhury N, Bera A, Dey N, Abboud HE, Kasinath BS, Choudhury GG. Transforming growth factor β integrates Smad 3 to mechanistic target of rapamycin complexes to arrest deptor abundance for glomerular mesangial cell hypertrophy. J Biol Chem 2013; 288:7756-7768. [PMID: 23362262 DOI: 10.1074/jbc.m113.455782] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In many renal diseases, transforming growth factor β (TGFβ)-stimulated canonical Smad 3 and noncanonical mechanistic target of rapamycin (mTOR) promote increased protein synthesis and mesangial cell hypertrophy. The cellular underpinnings involving these signaling molecules to regulate mesangial cell hypertrophy are not fully understood. Deptor has recently been identified as an mTOR interacting protein and functions as an endogenous inhibitor of the kinase activity for both TORC1 and TORC2. Prolonged incubation of mesangial cells with TGFβ reduced the levels of deptor concomitant with an increase in TORC1 and TORC2 activity. Sustained TGFβ activation was required to inhibit association of deptor with mTOR, whereas rapid activation had no effect. Using the mTOR inhibitor PP242, we found that TGFβ-induced both early and sustained activation of TORC1 and TORC2 was necessary for deptor suppression. PP242-induced reversal of deptor suppression by TGFβ was associated with a significant inhibition of TGFβ-stimulated protein synthesis and hypertrophy. Interestingly, expression of siRNA against Smad 3 or Smad 7, which blocks TGFβ receptor-specific Smad 3 signaling, prevented TGFβ-induced suppression of deptor abundance and TORC1/2 activities. Furthermore, overexpression of Smad 3 decreased deptor expression similar to TGFβ stimulation concomitant with increased TORC1 and TORC2 activities. Finally, knockdown of deptor reversed Smad 7-mediated inhibition of protein synthesis and mesangial cell hypertrophy induced by TGFβ. These data reveal the requirement of both early and late activation of mTOR for TGFβ-induced protein synthesis. Our results support that TGFβ-stimulated Smad 3 acts as a key node to instill a feedback loop between deptor down-regulation and TORC1/2 activation in driving mesangial cell hypertrophy.
Collapse
Affiliation(s)
- Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Nandini Ghosh-Choudhury
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Veterans Affairs Research, South Texas Veterans Health Care System, San Antonio, Texas 78229
| | - Amit Bera
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Nirmalya Dey
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Hanna E Abboud
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Veterans Affairs Research, South Texas Veterans Health Care System, San Antonio, Texas 78229
| | - Balakuntalam S Kasinath
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Veterans Affairs Research, South Texas Veterans Health Care System, San Antonio, Texas 78229
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; Veterans Affairs Research, South Texas Veterans Health Care System, San Antonio, Texas 78229; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas 78229.
| |
Collapse
|
37
|
Dey N, Ghosh-Choudhury N, Kasinath BS, Choudhury GG. TGFβ-stimulated microRNA-21 utilizes PTEN to orchestrate AKT/mTORC1 signaling for mesangial cell hypertrophy and matrix expansion. PLoS One 2012; 7:e42316. [PMID: 22879939 PMCID: PMC3411779 DOI: 10.1371/journal.pone.0042316] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/02/2012] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-β (TGFβ) promotes glomerular hypertrophy and matrix expansion, leading to glomerulosclerosis. MicroRNAs are well suited to promote fibrosis because they can repress gene expression, which negatively regulate the fibrotic process. Recent cellular and animal studies have revealed enhanced expression of microRNA, miR-21, in renal cells in response to TGFβ. Specific miR-21 targets downstream of TGFβ receptor activation that control cell hypertrophy and matrix protein expression have not been studied. Using 3′UTR-driven luciferase reporter, we identified the tumor suppressor protein PTEN as a target of TGFβ-stimulated miR-21 in glomerular mesangial cells. Expression of miR-21 Sponge, which quenches endogenous miR-21 levels, reversed TGFβ-induced suppression of PTEN. Additionally, miR-21 Sponge inhibited TGFβ-stimulated phosphorylation of Akt kinase, resulting in attenuation of phosphorylation of its substrate GSK3β. Tuberin and PRAS40, two other Akt substrates, and endogenous inhibitors of mTORC1, regulate mesangial cell hypertrophy. Neutralization of endogenous miR-21 abrogated TGFβ-stimulated phosphorylation of tuberin and PRAS40, leading to inhibition of phosphorylation of S6 kinase, mTOR and 4EBP-1. Moreover, downregulation of miR-21 significantly suppressed TGFβ-induced protein synthesis and hypertrophy, which were reversed by siRNA-targeted inhibition of PTEN expression. Similarly, expression of constitutively active Akt kinase reversed the miR-21 Sponge-mediated inhibition of TGFβ-induced protein synthesis and hypertrophy. Furthermore, expression of constitutively active mTORC1 prevented the miR-21 Sponge-induced suppression of mesangial cell protein synthesis and hypertrophy by TGFβ. Finally, we show that miR-21 Sponge inhibited TGFβ-stimulated fibronectin and collagen expression. Suppression of PTEN expression and expression of both constitutively active Akt kinase and mTORC1 independently reversed this miR-21-mediated inhibition of TGFβ-induced fibronectin and collagen expression. Our results uncover an essential role of TGFβ-induced expression of miR-21, which targets PTEN to initiate a non-canonical signaling circuit involving Akt/mTORC1 axis for mesangial cell hypertrophy and matrix protein synthesis.
Collapse
Affiliation(s)
- Nirmalya Dey
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Nandini Ghosh-Choudhury
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Veterans Administration Research, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Balakuntalam S. Kasinath
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Veterans Administration Research, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Veterans Administration Research, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
38
|
Wiza C, Nascimento EBM, Ouwens DM. Role of PRAS40 in Akt and mTOR signaling in health and disease. Am J Physiol Endocrinol Metab 2012; 302:E1453-60. [PMID: 22354785 DOI: 10.1152/ajpendo.00660.2011] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proline-rich Akt substrate of 40 kDa (PRAS40) acts at the intersection of the Akt- and mammalian target of rapamycin (mTOR)-mediated signaling pathways. The protein kinase mTOR is the catalytic subunit of two distinct signaling complexes, mTOR complex 1 (mTORC1) and mTORC2, that link energy and nutrients to the regulation of cellular growth and energy metabolism. Activation of mTOR in response to nutrients and growth factors results in the phosphorylation of numerous substrates, including the phosphorylations of S6 kinase by mTORC1 and Akt by mTORC2. Alterations in Akt and mTOR activity have been linked to the progression of multiple diseases such as cancer and type 2 diabetes. Although PRAS40 was first reported as substrate for Akt, investigations toward mTOR-binding partners subsequently identified PRAS40 as both component and substrate of mTORC1. Phosphorylation of PRAS40 by Akt and by mTORC1 itself results in dissociation of PRAS40 from mTORC1 and may relieve an inhibitory constraint on mTORC1 activity. Adding to the complexity is that gene silencing studies indicate that PRAS40 is also necessary for the activity of the mTORC1 complex. This review summarizes the regulation and potential function(s) of PRAS40 in the complex Akt- and mTOR-signaling network in health and disease.
Collapse
Affiliation(s)
- Claudia Wiza
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | | | | |
Collapse
|
39
|
Dey N, Das F, Ghosh-Choudhury N, Mandal CC, Parekh DJ, Block K, Kasinath BS, Abboud HE, Choudhury GG. microRNA-21 governs TORC1 activation in renal cancer cell proliferation and invasion. PLoS One 2012; 7:e37366. [PMID: 22685542 PMCID: PMC3368259 DOI: 10.1371/journal.pone.0037366] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/20/2012] [Indexed: 02/07/2023] Open
Abstract
Metastatic renal cancer manifests multiple signatures of gene expression. Deviation in expression of mature miRNAs has been linked to human cancers. Importance of miR-21 in renal cell carcinomas is proposed from profiling studies using tumor tissue samples. However, the role of miR-21 function in causing renal cancer cell proliferation and invasion has not yet been shown. Using cultured renal carcinoma cells, we demonstrate enhanced expression of mature miR-21 along with pre-and pri-miR-21 by increased transcription compared to normal proximal tubular epithelial cells. Overexpression of miR-21 Sponge to quench endogenous miR-21 levels inhibited proliferation, migration and invasion of renal cancer cells. In the absence of mutation in the PTEN tumor suppressor gene, PTEN protein levels are frequently downregulated in renal cancer. We show that miR-21 targets PTEN mRNA 3'untranslated region to decrease PTEN protein expression and augments Akt phosphorylation in renal cancer cells. Downregulation of PTEN as well as overexpression of constitutively active Akt kinase prevented miR-21 Sponge-induced inhibition of renal cancer cell proliferation and migration. Moreover, we show that miR-21 Sponge inhibited the inactivating phosphorylation of the tumor suppressor protein tuberin and attenuated TORC1 activation. Finally, we demonstrate that expression of constitutively active TORC1 attenuated miR-21 Sponge-mediated suppression of proliferation and migration of renal cancer cells. Our results uncover a layer of post-transcriptional regulation of PTEN by transcriptional activation of miR-21 to force the canonical oncogenic Akt/TORC1 signaling conduit to drive renal cancer cell proliferation and invasion.
Collapse
Affiliation(s)
- Nirmalya Dey
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Nandini Ghosh-Choudhury
- Veterans Administration Research, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Chandi Charan Mandal
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Dipen J. Parekh
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Karen Block
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Veterans Administration Research, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Balakuntalam S. Kasinath
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Veterans Administration Research, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Hanna E. Abboud
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Veterans Administration Research, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Veterans Administration Research, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| |
Collapse
|
40
|
Lee HJ, Mariappan MM, Feliers D, Cavaglieri RC, Sataranatarajan K, Abboud HE, Choudhury GG, Kasinath BS. Hydrogen sulfide inhibits high glucose-induced matrix protein synthesis by activating AMP-activated protein kinase in renal epithelial cells. J Biol Chem 2011; 287:4451-61. [PMID: 22158625 DOI: 10.1074/jbc.m111.278325] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Hydrogen sulfide, a signaling gas, affects several cell functions. We hypothesized that hydrogen sulfide modulates high glucose (30 mm) stimulation of matrix protein synthesis in glomerular epithelial cells. High glucose stimulation of global protein synthesis, cellular hypertrophy, and matrix laminin and type IV collagen content was inhibited by sodium hydrosulfide (NaHS), an H(2)S donor. High glucose activation of mammalian target of rapamycin (mTOR) complex 1 (mTORC1), shown by phosphorylation of p70S6 kinase and 4E-BP1, was inhibited by NaHS. High glucose stimulated mTORC1 to promote key events in the initiation and elongation phases of mRNA translation: binding of eIF4A to eIF4G, reduction in PDCD4 expression and inhibition of its binding to eIF4A, eEF2 kinase phosphorylation, and dephosphorylation of eEF2; these events were inhibited by NaHS. The role of AMP-activated protein kinase (AMPK), an inhibitor of protein synthesis, was examined. NaHS dose-dependently stimulated AMPK phosphorylation and restored AMPK phosphorylation reduced by high glucose. Compound C, an AMPK inhibitor, abolished NaHS modulation of high glucose effect on events in mRNA translation as well as global and matrix protein synthesis. NaHS induction of AMPK phosphorylation was inhibited by siRNA for calmodulin kinase kinase β, but not LKB1, upstream kinases for AMPK; STO-609, a calmodulin kinase kinase β inhibitor, had the same effect. Renal cortical content of cystathionine β-synthase and cystathionine γ-lyase, hydrogen sulfide-generating enzymes, was significantly reduced in mice with type 1 diabetes or type 2 diabetes, coinciding with renal hypertrophy and matrix accumulation. Hydrogen sulfide is a newly identified modulator of protein synthesis in the kidney, and reduction in its generation may contribute to kidney injury in diabetes.
Collapse
Affiliation(s)
- Hak Joo Lee
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Dey N, Das F, Mariappan MM, Mandal CC, Ghosh-Choudhury N, Kasinath BS, Choudhury GG. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. J Biol Chem 2011; 286:25586-603. [PMID: 21613227 DOI: 10.1074/jbc.m110.208066] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hyperglycemia induces a wide array of signaling pathways in the kidney that lead to hypertrophy and matrix expansion, eventually culminating in progressive kidney failure. High glucose-induced reduction of the tumor suppressor protein phosphatase and tensin homolog deleted in chromosome 10 (PTEN) contributes to renal cell hypertrophy and matrix expansion. We identified microRNA-21 (miR-21) as the molecular link between high glucose and PTEN suppression. Renal cortices from OVE26 type 1 diabetic mice showed significantly elevated levels of miR-21 associated with reduced PTEN and increased fibronectin content. In renal mesangial cells, high glucose increased the expression of miR-21, which targeted the 3'-UTR of PTEN mRNA to inhibit PTEN protein expression. Overexpression of miR-21 mimicked the action of high glucose, which included a reduction in PTEN expression and a concomitant increase in Akt phosphorylation. In contrast, expression of miR-21 Sponge, to inhibit endogenous miR-21, prevented down-regulation of PTEN and phosphorylation of Akt induced by high glucose. Interestingly, high glucose-stimulated miR-21 inactivated PRAS40, a negative regulator of TORC1. Finally, miR-21 enhanced high glucose-induced TORC1 activity, resulting in renal cell hypertrophy and fibronectin expression. Thus, our results identify a previously unrecognized function of miR-21 that is the reciprocal regulation of PTEN levels and Akt/TORC1 activity that mediate critical pathologic features of diabetic kidney disease.
Collapse
Affiliation(s)
- Nirmalya Dey
- Veterans Affairs Research, South Texas Veterans Health Care System, San Antonio, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Das F, Dey N, Venkatesan B, Kasinath BS, Ghosh-Choudhury N, Choudhury GG. High glucose upregulation of early-onset Parkinson's disease protein DJ-1 integrates the PRAS40/TORC1 axis to mesangial cell hypertrophy. Cell Signal 2011; 23:1311-9. [PMID: 21426932 DOI: 10.1016/j.cellsig.2011.03.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/14/2011] [Indexed: 11/15/2022]
Abstract
The Akt kinase signaling pathway is frequently deregulated in many human diseases including cancer, autoimmune disease and diabetes. In nephropathy, associated with diabetes, increased Akt signal transduction results in glomerular especially mesangial cell hypertrophy. The mechanism of Akt activation by elevated glucose is poorly understood. The oncogene DJ-1 prevents oxidative damage and apoptosis of dopaminergic neurons in animal models of Parkinson's disease and in culture. We identified DJ-1 to increase in response to high glucose in renal glomerular mesangial cells concomitant with an increase in phosphorylation of Akt in a time-dependent manner. Plasmid-derived overexpression as well as downregulation of DJ-1 by siRNA showed the requirement of this protein in high glucose-stimulated Akt phosphorylation. The tumor suppressor protein PTEN acts as a negative regulator of Akt activation. Interestingly, DJ-1 was associated with PTEN and this interaction was significantly increased in response to high glucose. High glucose-induced increase in DJ-1 promoted phosphorylation of the PRAS40, a negative regulator of TORC1 kinase activity, resulting in activating and inactivating phosphorylation of S6 kinase and 4EBP-1, respectively. Furthermore, DJ-1 increased protein synthesis and hypertrophy of mesangial cells. Our results provide evidence for a unique mechanism whereby DJ-1 induces Akt/PRAS40/TORC1-mediated hypertrophy in response to high glucose.
Collapse
Affiliation(s)
- Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio, TX, 78229–3900, USA
| | | | | | | | | | | |
Collapse
|
43
|
Mandal CC, Ghosh-Choudhury N, Yoneda T, Choudhury GG, Ghosh-Choudhury N. Simvastatin prevents skeletal metastasis of breast cancer by an antagonistic interplay between p53 and CD44. J Biol Chem 2011; 286:11314-27. [PMID: 21199873 DOI: 10.1074/jbc.m110.193714] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Substantial data from clinical trials and epidemiological studies show promising results for use of statins in many cancers, including mammary carcinoma. Breast tumor primarily metastasizes to bone to form osteolytic lesions, causing severe pain and pathological fracture. Here, we report that simvastatin acts as an inhibitor of osteolysis in a mouse model of breast cancer skeletal metastasis of human mammary cancer cell MDA-MB-231, which expresses the mutant p53R280K. Simvastatin and lovastatin attenuated migration and invasion of MDA-MB-231 and BT-20 breast tumor cells in culture. Acquisition of phenotype to express the cancer stem cell marker, CD44, leads to invasive potential of the tumor cells. Interestingly, statins significantly decreased the expression of CD44 protein via a transcriptional mechanism. shRNA-mediated down-regulation of CD44 markedly reduced the migration and invasion of breast cancer cells in culture. We identified that in the MDA-MB-231 cells, simvastatin elevated the levels of mutated p53R280K, which was remarkably active as a transcription factor. shRNA-derived inhibition of mutant p53R280K augmented the expression of CD44, leading to increased migration and invasion. Finally, we demonstrate an inverse correlation between expression of p53 and CD44 in the tumors of mice that received simvastatin. Our results reveal a unique function of statins, which foster enhanced expression of mutant p53R280K to prevent breast cancer cell metastasis to bone.
Collapse
Affiliation(s)
- Chandi Charan Mandal
- Department of Pathology, University of Texas Health Science Center, San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | |
Collapse
|
44
|
TGFβ enforces activation of eukaryotic elongation factor-2 (eEF2) via inactivation of eEF2 kinase by p90 ribosomal S6 kinase (p90Rsk) to induce mesangial cell hypertrophy. FEBS Lett 2010; 584:4268-72. [PMID: 20837011 DOI: 10.1016/j.febslet.2010.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/24/2010] [Accepted: 09/03/2010] [Indexed: 12/11/2022]
Abstract
eEF2 phosphorylation is under tight control to maintain mRNA translation elongation. We report that TGFβ activates eEF2 by decreasing eEF2 phosphorylation and simultaneously increasing eEF2 kinase phosphorylation. Remarkably, inhibition of Erk1/2 blocked the TGFβ-induced dephosphorylation and phosphorylation of eEF2 and eEF2 kinase. TGFβ increased phosphorylation of p90Rsk in an Erk1/2-dependent manner. Inactive p90Rsk reversed TGFβ-inhibited phosphorylation of eEF2 and suppressed eEF2 kinase activity. Finally, inactive p90Rsk significantly attenuated TGFβ-induced protein synthesis and hypertrophy of mesangial cells. These results present the first evidence that TGFβ utilizes the two layered kinase module Erk/p90Rsk to activate eEF2 for increased protein synthesis during cellular hypertrophy.
Collapse
|