1
|
Gandara L, Jacoby R, Laurent F, Spatuzzi M, Vlachopoulos N, Borst NO, Ekmen G, Potel CM, Garrido-Rodriguez M, Böhmert AL, Misunou N, Bartmanski BJ, Li XC, Kutra D, Hériché JK, Tischer C, Zimmermann-Kogadeeva M, Ingham VA, Savitski MM, Masson JB, Zimmermann M, Crocker J. Pervasive sublethal effects of agrochemicals on insects at environmentally relevant concentrations. Science 2024; 386:446-453. [PMID: 39446951 DOI: 10.1126/science.ado0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024]
Abstract
Insect biomass is declining globally, likely driven by climate change and pesticide use, yet systematic studies on the effects of various chemicals remain limited. In this work, we used a chemical library of 1024 molecules-covering insecticides, herbicides, fungicides, and plant growth inhibitors-to assess the impact of sublethal pesticide doses on insects. In Drosophila melanogaster, 57% of chemicals affected larval behavior, and a higher proportion compromised long-term survivability. Exposure to sublethal doses also induced widespread changes in the phosphoproteome and changes in development and reproduction. The negative effects of agrochemicals were amplified when the temperature was increased. We observed similar behavioral changes across multiple insect species, including mosquitoes and butterflies. These findings suggest that widespread sublethal pesticide exposure can alter insect behavior and physiology, threatening long-term population survival.
Collapse
Affiliation(s)
| | - Richard Jacoby
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | - Noa O Borst
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gülina Ekmen
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | - Antonia L Böhmert
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | | | | | - Xueying C Li
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Dominik Kutra
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | - Victoria A Ingham
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | | | | | | | - Justin Crocker
- European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
2
|
Lanfranchi C, Willis SJ, Laramée L, Conde Alonso S, Pialoux V, Kayser B, Place N, Millet GP, Zanou N. Repeated sprint training in hypoxia induces specific skeletal muscle adaptations through S100A protein signaling. FASEB J 2024; 38:e23615. [PMID: 38651657 DOI: 10.1096/fj.202302084rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Athletes increasingly engage in repeated sprint training consisting in repeated short all-out efforts interspersed by short recoveries. When performed in hypoxia (RSH), it may lead to greater training effects than in normoxia (RSN); however, the underlying molecular mechanisms remain unclear. This study aimed at elucidating the effects of RSH on skeletal muscle metabolic adaptations as compared to RSN. Sixteen healthy young men performed nine repeated sprint training sessions in either normoxia (FIO2 = 0.209, RSN, n = 7) or normobaric hypoxia (FIO2 = 0.136, RSH, n = 9). Before and after the training period, exercise performance was assessed by using repeated sprint ability (RSA) and Wingate tests. Vastus lateralis muscle biopsies were performed to investigate muscle metabolic adaptations using proteomics combined with western blot analysis. Similar improvements were observed in RSA and Wingate tests in both RSN and RSH groups. At the muscle level, RSN and RSH reduced oxidative phosphorylation protein content but triggered an increase in mitochondrial biogenesis proteins. Proteomics showed an increase in several S100A family proteins in the RSH group, among which S100A13 most strongly. We confirmed a significant increase in S100A13 protein by western blot in RSH, which was associated with increased Akt phosphorylation and its downstream targets regulating protein synthesis. Altogether our data indicate that RSH may activate an S100A/Akt pathway to trigger specific adaptations as compared to RSN.
Collapse
Affiliation(s)
- Clément Lanfranchi
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sarah J Willis
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| | - Louis Laramée
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sonia Conde Alonso
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Vincent Pialoux
- Inter-University Laboratory of Human Movement Biology UR7424, University Claude Bernard Lyon 1, Lyon, France
| | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Place
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nadège Zanou
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Chi T, Sang T, Wang Y, Ye Z. Cleavage and Noncleavage Chemistry in Reactive Oxygen Species (ROS)-Responsive Materials for Smart Drug Delivery. Bioconjug Chem 2024; 35:1-21. [PMID: 38118277 DOI: 10.1021/acs.bioconjchem.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The design and development of advanced drug delivery systems targeting reactive oxygen species (ROS) have gained significant interest in recent years for treating various diseases, including cancer, psychiatric diseases, cardiovascular diseases, neurological diseases, metabolic diseases, and chronic inflammations. Integrating specific chemical bonds capable of effectively responding to ROS and triggering drug release into the delivery system is crucial. In this Review, we discuss commonly used conjugation linkers (chemical bonds) and categorize them into two groups: cleavable linkers and noncleavable linkers. Our goal is to clarify their unique drug release mechanisms from a chemical perspective and provide practical organic synthesis approaches for their efficient production. We showcase numerous significant examples to demonstrate their synthesis routes and diverse applications. Ultimately, we strive to present a comprehensive overview of cleavage and noncleavage chemistry, offering insights into the development of smart drug delivery systems that respond to ROS.
Collapse
Affiliation(s)
- Teng Chi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ting Sang
- School of Stomatology of Nanchang University & Jiangxi Province Clinical Research Center for Oral Diseases & The Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Yanjing Wang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R. 999077, China
| |
Collapse
|
4
|
Rutledge CA. Molecular mechanisms underlying sarcopenia in heart failure. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:7. [PMID: 38455513 PMCID: PMC10919908 DOI: 10.20517/jca.2023.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The loss of skeletal muscle, also known as sarcopenia, is an aging-associated muscle disorder that is disproportionately present in heart failure (HF) patients. HF patients with sarcopenia have poor outcomes compared to the overall HF patient population. The prevalence of sarcopenia in HF is only expected to grow as the global population ages, and novel treatment strategies are needed to improve outcomes in this cohort. Multiple mechanistic pathways have emerged that may explain the increased prevalence of sarcopenia in the HF population, and a better understanding of these pathways may lead to the development of therapies to prevent muscle loss. This review article aims to explore the molecular mechanisms linking sarcopenia and HF, and to discuss treatment strategies aimed at addressing such molecular signals.
Collapse
Affiliation(s)
- Cody A. Rutledge
- Acute Medicine Section, Division of Medicine, Louis Stokes Cleveland Veteran Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Rico A, Valls A, Guembelzu G, Azpitarte M, Aiastui A, Zufiria M, Jaka O, López de Munain A, Sáenz A. Altered expression of proteins involved in metabolism in LGMDR1 muscle is lost in cell culture conditions. Orphanet J Rare Dis 2023; 18:315. [PMID: 37817200 PMCID: PMC10565977 DOI: 10.1186/s13023-023-02873-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Limb-girdle muscular dystrophy R1 calpain 3-related (LGMDR1) is an autosomal recessive muscular dystrophy due to mutations in the CAPN3 gene. While the pathophysiology of this disease has not been clearly established yet, Wnt and mTOR signaling pathways impairment in LGMDR1 muscles has been reported. RESULTS A reduction in Akt phosphorylation ratio and upregulated expression of proteins implicated in glycolysis (HK-II) and in fructose and lactate transport (GLUT5 and MCT1) in LGMDR1 muscle was observed. In vitro analysis to establish mitochondrial and glycolytic functions of primary cultures were performed, however, no differences between control and patients were observed. Additionally, gene expression analysis showed a lack of correlation between primary myoblasts/myotubes and LGMDR1 muscle while skin fibroblasts and CD56- cells showed a slightly better correlation with muscle. FRZB gene was upregulated in all the analyzed cell types (except in myoblasts). CONCLUSIONS Proteins implicated in metabolism are deregulated in LGMDR1 patients' muscle. Obtained results evidence the limited usefulness of primary myoblasts/myotubes for LGMDR1 gene expression and metabolic studies. However, since FRZB is the only gene that showed upregulation in all the analyzed cell types it is suggested its role as a key regulator of the pathophysiology of the LGMDR1 muscle fiber. The Wnt signaling pathway inactivation, secondary to FRZB upregulation, and GLUT5 overexpression may participate in the impaired adipogenesis in LGMD1R patients.
Collapse
Affiliation(s)
- Anabel Rico
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
| | - Andrea Valls
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
| | - Garazi Guembelzu
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
| | - Margarita Azpitarte
- Cell Culture, Histology and Multidisciplinary 3D Printing Platform, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Ana Aiastui
- Department of Neurology, Donostialdea Integrated Health Organization, San Sebastián, Spain
| | - Mónica Zufiria
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
| | - Oihane Jaka
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
| | - Adolfo López de Munain
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organization, San Sebastián, Spain
- Department of Neurosciences, University of the Basque Country UPV-EHU, San Sebastián, Spain
- Faculty of Medicine, University of Deusto, Bilbao, Spain
| | - Amets Sáenz
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain.
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
6
|
Mir SA, Dar A, Alshehri SA, Wahab S, Hamid L, Almoyad MAA, Ali T, Bader GN. Exploring the mTOR Signalling Pathway and Its Inhibitory Scope in Cancer. Pharmaceuticals (Basel) 2023; 16:1004. [PMID: 37513916 PMCID: PMC10384750 DOI: 10.3390/ph16071004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a protein kinase that regulates cellular growth, development, survival, and metabolism through integration of diverse extracellular and intracellular stimuli. Additionally, mTOR is involved in interplay of signalling pathways that regulate apoptosis and autophagy. In cells, mTOR is assembled into two complexes, mTORC1 and mTORC2. While mTORC1 is regulated by energy consumption, protein intake, mechanical stimuli, and growth factors, mTORC2 is regulated by insulin-like growth factor-1 receptor (IGF-1R), and epidermal growth factor receptor (EGFR). mTOR signalling pathways are considered the hallmark in cancer due to their dysregulation in approximately 70% of cancers. Through downstream regulators, ribosomal protein S6 kinase β-1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), mTORC1 influences various anabolic and catabolic processes in the cell. In recent years, several mTOR inhibitors have been developed with the aim of treating different cancers. In this review, we will explore the current developments in the mTOR signalling pathway and its importance for being targeted by various inhibitors in anti-cancer therapeutics.
Collapse
Affiliation(s)
- Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Ashraf Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Laraibah Hamid
- Department of Zoology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushyt, King Khalid University, Abha 61412, Saudi Arabia
| | - Tabasum Ali
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Ghulam Nabi Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|
7
|
Jhuo CF, Hsieh SK, Chen WY, Tzen JTC. Attenuation of Skeletal Muscle Atrophy Induced by Dexamethasone in Rats by Teaghrelin Supplementation. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020688. [PMID: 36677745 PMCID: PMC9864913 DOI: 10.3390/molecules28020688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
Muscle atrophy caused by an imbalance between the synthesis and the degradation of proteins is a syndrome commonly found in the elders. Teaghrelin, a natural compound from oolong tea, has been shown to promote cell differentiation and to inhibit dexamethasone-induced muscle atrophy in C2C12 cells. In this study, the therapeutic effects of teaghrelin on muscle atrophy were evaluated in Sprague Dawley rats treated with dexamethasone. The masses of the soleus, gastrocnemius and extensor digitorum longus muscles were reduced in dexamethasone-treated rats, and the reduction of these muscle masses was significantly attenuated when the rats were supplemented with teaghrelin. Accordingly, the level of serum creatine kinase, a marker enzyme of muscle proteolysis, was elevated in dexamethasone-treated rats, and the elevation was substantially reduced by teaghrelin supplementation. A decrease in Akt phosphorylation causing the activation of the ubiquitin-proteasome system and autophagy for protein degradation was detected in the gastrocnemius muscles of the dexamethasone-treated rats, and this signaling pathway for protein degradation was significantly inhibited by teaghrelin supplementation. Protein synthesis via the mTOR/p70S6K pathway was slowed down in the gastrocnemius muscles of the dexamethasone-treated rats and was significantly rescued after teaghrelin supplementation. Teaghrelin seemed to prevent muscle atrophy by reducing protein degradation and enhancing protein synthesis via Akt phosphorylation.
Collapse
Affiliation(s)
- Cian-Fen Jhuo
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Sheng-Kuo Hsieh
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung 402, Taiwan
- Correspondence: (W.-Y.C.); (J.T.C.T.); Tel.: +886-4-22840328 (ext. 776) (J.T.C.T.); Fax: +886-4-22853527 (J.T.C.T.)
| | - Jason T. C. Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
- Correspondence: (W.-Y.C.); (J.T.C.T.); Tel.: +886-4-22840328 (ext. 776) (J.T.C.T.); Fax: +886-4-22853527 (J.T.C.T.)
| |
Collapse
|
8
|
Characteristics of the Protocols Used in Electrical Pulse Stimulation of Cultured Cells for Mimicking In Vivo Exercise: A Systematic Review, Meta-Analysis, and Meta-Regression. Int J Mol Sci 2022; 23:ijms232113446. [PMID: 36362233 PMCID: PMC9657802 DOI: 10.3390/ijms232113446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
While exercise benefits a wide spectrum of diseases and affects most tissues and organs, many aspects of its underlying mechanistic effects remain unsolved. In vitro exercise, mimicking neuronal signals leading to muscle contraction in vitro, can be a valuable tool to address this issue. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for this systematic review and meta-analysis, we searched EMBASE and PubMed (from database inception to 4 February 2022) for relevant studies assessing in vitro exercise using electrical pulse stimulation to mimic exercise. Meta-analyses of mean differences and meta-regression analyses were conducted. Of 985 reports identified, 41 were eligible for analysis. We observed variability among existing protocols of in vitro exercise and heterogeneity among protocols of the same type of exercise. Our analyses showed that AMPK, Akt, IL-6, and PGC1a levels and glucose uptake increased in stimulated compared to non-stimulated cells, following the patterns of in vivo exercise, and that these effects correlated with the duration of stimulation. We conclude that in vitro exercise follows motifs of exercise in humans, allowing biological parameters, such as the aforementioned, to be valuable tools in defining the types of in vitro exercise. It might be useful in transferring obtained knowledge to human research.
Collapse
|
9
|
The Promotion of Migration and Myogenic Differentiation in Skeletal Muscle Cells by Quercetin and Underlying Mechanisms. Nutrients 2022; 14:nu14194106. [PMID: 36235757 PMCID: PMC9572605 DOI: 10.3390/nu14194106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Aging and muscle disorders frequently cause a decrease in myoblast migration and differentiation, leading to losses in skeletal muscle function and regeneration. Several studies have reported that natural flavonoids can stimulate muscle development. Quercetin, one such flavonoid found in many vegetables and fruits, has been used to promote muscle development. In this study, we investigated the effect of quercetin on migration and differentiation, two processes critical to muscle regeneration. We found that quercetin induced the migration and differentiation of mouse C2C12 cells. These results indicated quercetin could induce myogenic differentiation at the early stage through activated p-IGF-1R. The molecular mechanisms of quercetin include the promotion of myogenic differentiation via activated transcription factors STAT3 and the AKT signaling pathway. In addition, we demonstrated that AKT activation is required for quercetin induction of myogenic differentiation to occur. In addition, quercetin was found to promote myoblast migration by regulating the ITGB1 signaling pathway and activating phosphorylation of FAK and paxillin. In conclusion, quercetin can potentially be used to induce migration and differentiation and thus improve muscle regeneration.
Collapse
|
10
|
Seo DY, Hwang BG. Effects of exercise training on the biochemical pathways associated with sarcopenia. Phys Act Nutr 2020; 24:32-38. [PMID: 33108716 PMCID: PMC7669465 DOI: 10.20463/pan.2020.0019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
[Purpose] Sarcopenia is considered one of the major causes of disability in the elderly population and is highly associated with aging. Exercise is an essential strategy for improving muscle health while aging and involves multiple metabolic and transcriptional adaptations. Although the beneficial effects of exercise modalities on skeletal muscle structure and function in aging are well recognized, the exact cellular and molecular mechanisms underlying the influence of exercise have not been fully elucidated. [Methods] We summarize the biochemical pathways involved in the progression and pathogenesis of sarcopenia and describe the beneficial effects of exercise training on the relevant signaling pathways associated with sarcopenia. [Results] This study briefly introduces current knowledge on the signaling pathways involved in the development of sarcopenia, effects of aerobic exercise on mitochondria-related parameters and mitochondrial function, and role of resistance exercise in the regulation of muscle protein synthesis against sarcopenia. [Conclusion] This review suggested that the beneficial effects of exercise are still under-explored, and accelerated research will help develop better modalities for the prevention, management, and treatment of sarcopenia.
Collapse
Affiliation(s)
- Dae Yun Seo
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Boo Geun Hwang
- Department of Sport Rehabilitation, Tong Myong University, Busan, Republic of Korea
| |
Collapse
|
11
|
García-Puga M, Saenz-Antoñanzas A, Fernández-Torrón R, Munain ALD, Matheu A. Myotonic Dystrophy type 1 cells display impaired metabolism and mitochondrial dysfunction that are reversed by metformin. Aging (Albany NY) 2020; 12:6260-6275. [PMID: 32310829 PMCID: PMC7185118 DOI: 10.18632/aging.103022] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/03/2020] [Indexed: 12/26/2022]
Abstract
Myotonic dystrophy type 1 (DM1; MIM #160900) is an autosomal dominant disorder, clinically characterized by progressive muscular weakness and multisystem degeneration. The broad phenotypes observed in patients with DM1 resemble the appearance of a multisystem accelerated aging process. However, the molecular mechanisms underlying these phenotypes remain largely unknown. In this study, we characterized the impact of metabolism and mitochondria on fibroblasts and peripheral blood mononuclear cells (PBMCs) derived from patients with DM1 and healthy individuals. Our results revealed a decrease in oxidative phosphorylation system (OXPHOS) activity, oxygen consumption rate (OCR), ATP production, energy metabolism, and mitochondrial dynamics in DM1 fibroblasts, as well as increased accumulation of reactive oxygen species (ROS). PBMCs of DM1 patients also displayed reduced mitochondrial dynamics and energy metabolism. Moreover, treatment with metformin reversed the metabolic and mitochondrial defects as well as additional accelerated aging phenotypes, such as impaired proliferation, in DM1-derived fibroblasts. Our results identify impaired cell metabolism and mitochondrial dysfunction as important drivers of DM1 pathophysiology and, therefore, reveal the efficacy of metformin treatment in a pre-clinical setting.
Collapse
Affiliation(s)
- Mikel García-Puga
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Spain.,Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | | | - Roberto Fernández-Torrón
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Spain.,Neurology Department, Donostia University Hospital, OSAKIDETZA, San Sebastian, Spain.,CIBERNED, Carlos III Institute, Madrid, Spain
| | - Adolfo Lopez de Munain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Spain.,Neurology Department, Donostia University Hospital, OSAKIDETZA, San Sebastian, Spain.,CIBERNED, Carlos III Institute, Madrid, Spain.,Faculty of Medicine and Nursery, Department of Neurosciences, University of the Basque Country, San Sebastian, Spain
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,CIBERfes, Carlos III Institute, Madrid, Spain
| |
Collapse
|
12
|
Meister J, Bone DBJ, Godlewski G, Liu Z, Lee RJ, Vishnivetskiy SA, Gurevich VV, Springer D, Kunos G, Wess J. Metabolic effects of skeletal muscle-specific deletion of beta-arrestin-1 and -2 in mice. PLoS Genet 2019; 15:e1008424. [PMID: 31622341 PMCID: PMC6818801 DOI: 10.1371/journal.pgen.1008424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/29/2019] [Accepted: 09/16/2019] [Indexed: 01/01/2023] Open
Abstract
Type 2 diabetes (T2D) has become a major health problem worldwide. Skeletal muscle (SKM) is the key tissue for whole-body glucose disposal and utilization. New drugs aimed at improving insulin sensitivity of SKM would greatly expand available therapeutic options. β-arrestin-1 and -2 (Barr1 and Barr2, respectively) are two intracellular proteins best known for their ability to mediate the desensitization and internalization of G protein-coupled receptors (GPCRs). Recent studies suggest that Barr1 and Barr2 regulate several important metabolic functions including insulin release and hepatic glucose production. Since SKM expresses many GPCRs, including the metabolically important β2-adrenergic receptor, the goal of this study was to examine the potential roles of Barr1 and Barr2 in regulating SKM and whole-body glucose metabolism. Using SKM-specific knockout (KO) mouse lines, we showed that the loss of SKM Barr2, but not of SKM Barr1, resulted in mild improvements in glucose tolerance in diet-induced obese mice. SKM-specific Barr1- and Barr2-KO mice did not show any significant differences in exercise performance. However, lack of SKM Barr2 led to increased glycogen breakdown following a treadmill exercise challenge. Interestingly, mice that lacked both Barr1 and Barr2 in SKM showed no significant metabolic phenotypes. Thus, somewhat surprisingly, our data indicate that SKM β-arrestins play only rather subtle roles (SKM Barr2) in regulating whole-body glucose homeostasis and SKM insulin sensitivity.
Collapse
Affiliation(s)
- Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States of America
- * E-mail: (JM); (JW)
| | - Derek B. J. Bone
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States of America
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States of America
| | - Ziyi Liu
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States of America
| | - Regina J. Lee
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States of America
| | | | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
| | - Danielle Springer
- Murine Phenotyping Core, National Heart, Lung, and Blood Institute, Bethesda, MD, United States of America
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States of America
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States of America
- * E-mail: (JM); (JW)
| |
Collapse
|
13
|
Huang W, Guo L, Zhao M, Zhang D, Xu H, Nie Q. The Inhibition on MDFIC and PI3K/AKT Pathway Caused by miR-146b-3p Triggers Suppression of Myoblast Proliferation and Differentiation and Promotion of Apoptosis. Cells 2019; 8:cells8070656. [PMID: 31261950 PMCID: PMC6678156 DOI: 10.3390/cells8070656] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 01/30/2023] Open
Abstract
Accumulating studies report that microRNAs (miRNAs) are actively involved in skeletal myogenesis. Previously, our study revealed that miR-146b-3p was related to the growth of skeletal muscle. Here, we further report that miR-146b-3p is essential for the proliferation, differentiation, and apoptosis of chicken myoblast. Elevated expression of miR-146b-3p can dramatically suppress proliferation and differentiation, and facilitate apoptosis of chicken myoblast. Besides, we identified two target genes of miR-146b-3p, AKT1 and MDFIC, and found that miR-146b-3p can inhibit the PI3K/AKT pathway. Our study also showed that both AKT1 and MDFIC can promote the proliferation and differentiation while inhibit the apoptosis of myoblast in chicken. Overall, our results demonstrate that miR-146b-3p, directly suppressing PI3K/AKT pathway and MDFIC, acts in the proliferation, differentiation, and apoptosis of myoblast in chicken.
Collapse
Affiliation(s)
- Weiling Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Lijin Guo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Minxing Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Dexiang Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| |
Collapse
|
14
|
Zheng R, Huang S, Zhu J, Lin W, Xu H, Zheng X. Leucine attenuates muscle atrophy and autophagosome formation by activating PI3K/AKT/mTOR signaling pathway in rotator cuff tears. Cell Tissue Res 2019; 378:113-125. [PMID: 31020406 DOI: 10.1007/s00441-019-03021-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/25/2019] [Indexed: 12/22/2022]
Abstract
Rotator cuff tears (RCTs), the most common tendon injury, are always accompanied by muscle atrophy, which is characterized by excessive protein degradation. Autophagy-lysosome systems are the crucial proteolytic pathways and are activated in atrophying muscle. Thus, inhibition of the autophagy-lysosome pathway might be an alternative way to minimize skeletal muscle atrophy. In this present study, combined with a tendon transection-induced rat model of massive rotator cuff tears, HE staining and transmission electron microscopy methods, we found leucine supplementation effectively prevented muscle atrophy, muscle injury and autophagosome formation. Utilizing immunoblotting, we discovered that leucine supplementation is able to inhibit the rise in autophagy-related protein expression (including LC3, Atrogin-1, MuRF1, Bnip3 and FoxO3) driven by tendon transection. The PI3K/AKT/mTOR pathway that was essential in autophagosome formation and autophagy was blocked in atrophying muscle and reactivated in the presence of leucine. Once administrated with LY294002 (PI3K inhibitor) and Rapamycin (mTOR inhibitor), leucine mediated by the anti-atrophic effects was nearly blunted. These results suggest that leucine potentially attenuates tendon transection-induced muscle atrophy through autophagy inhibition via activating the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Rongzong Zheng
- Department of Orthopaedic Surgery, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People's Republic of China
| | - Shuming Huang
- Department of Orthopaedic Surgery, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People's Republic of China.
| | - Junkun Zhu
- Department of Orthopaedic Rehabilitation, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People's Republic of China
| | - Wei Lin
- Department of Orthopaedic Surgery, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People's Republic of China
| | - Huan Xu
- Department of Orthopaedic Surgery, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People's Republic of China
| | - Xiang Zheng
- Department of Orthopaedic Surgery, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People's Republic of China
| |
Collapse
|
15
|
Zhang H, Forman HJ. 4-hydroxynonenal-mediated signaling and aging. Free Radic Biol Med 2017; 111:219-225. [PMID: 27876535 PMCID: PMC5438786 DOI: 10.1016/j.freeradbiomed.2016.11.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023]
Abstract
4-Hydroxy-2-nonenal (HNE), one of the major α, β-unsaturated aldehydes produced during lipid peroxidation, is a potent messenger in mediating signaling pathways. Lipid peroxidation and HNE production appear to increase with aging. Although the cause and effect relation remains arguable, aging is associated with significant changes in diverse signaling events, characterized by enhanced or diminished responses of specific signaling pathways. In this review we will discuss how HNE may contribute to aging-related alterations of signaling pathways.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089-0191, USA
| | - Henry Jay Forman
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089-0191, USA.
| |
Collapse
|
16
|
HUANG J, ZHU X. The Molecular Mechanisms of Calpains Action on Skeletal Muscle Atrophy. Physiol Res 2016; 65:547-560. [DOI: 10.33549/physiolres.933087] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle atrophy is associated with a loss of muscle protein which may result from both increased proteolysis and decreased protein synthesis. Investigations on cell signaling pathways that regulate muscle atrophy have promoted our understanding of this complicated process. Emerging evidence implicates that calpains play key roles in dysregulation of proteolysis seen in muscle atrophy. Moreover, studies have also shown that abnormally activated calpain results muscle atrophy via its downstream effects on ubiquitin-proteasome pathway (UPP) and Akt phosphorylation. This review will discuss the role of calpains in regulation of skeletal muscle atrophy mainly focusing on its collaboration with either UPP or Akt in atrophy conditions in hope to stimulate the interest in development of novel therapeutic interventions for skeletal muscle atrophy.
Collapse
Affiliation(s)
| | - X. ZHU
- Department of Respiratory Diseases, YangPu Hospital of Tongji University, Shanghai, China
| |
Collapse
|
17
|
Woo JH, Shin KO, Lee YH, Jang KS, Bae JY, Roh HT. Effects of treadmill exercise on skeletal muscle mTOR signaling pathway in high-fat diet-induced obese mice. J Phys Ther Sci 2016; 28:1260-5. [PMID: 27190464 PMCID: PMC4868224 DOI: 10.1589/jpts.28.1260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/08/2016] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The aim of this study was to investigate the effects of regular treadmill
exercise on skeletal muscle Rictor-Akt and mTOR-Raptor-S6K1 signaling pathway in high-fat
diet-induced obese mice. [Subjects and Methods] Four- week-old C57BL/6 mice were adopted
and classified into normal diet group (ND, n = 10), normal diet and training group (NDT, n
= 10), high-fat diet group (HF, n = 10), and high-fat diet and training group (HFT, n =
10). The exercise program consisted of a treadmill exercise provided at low intensity for
1–4 weeks, and moderate intensity for 5–8 weeks. [Results] The Western blot method was
used to measure the expression of mTOR, Raptor, S6K1, Rictor, and Akt proteins in the
soleus muscle. mTOR levels were significantly higher in the HF group than in the ND and
NDT groups. Raptor/mTORC1 and S6K1 levels were significantly higher in the HF group than
in all the other groups. Akt levels were significantly lower in the HF group than in the
NDT group. The risk of obesity may be associated with the overactivation of
the mTOR-Raptor-S6K1 signaling pathway and a decrease in Akt levels. [Conclusion] This
study also indicates that performing aerobic exercise may be associated with the
downregulation of the mTOR-Raptor-S6K1 pathway.
Collapse
Affiliation(s)
- Jin Hee Woo
- Department of Physical Education, College of Arts and Physical Education, Dong-A University, Republic of Korea
| | - Ki Ok Shin
- Department of Physical Education, College of Arts and Physical Education, Dong-A University, Republic of Korea
| | - Yul Hyo Lee
- Department of Physical Education, College of Arts and Physical Education, Dong-A University, Republic of Korea
| | - Ki Soeng Jang
- Department of Physical Education, College of Arts and Physical Education, Dong-A University, Republic of Korea
| | - Ju Yong Bae
- Department of Physical Education, College of Arts and Physical Education, Dong-A University, Republic of Korea
| | - Hee Tae Roh
- Department of Physical Education, College of Arts and Physical Education, Dong-A University, Republic of Korea
| |
Collapse
|
18
|
Bond P. Regulation of mTORC1 by growth factors, energy status, amino acids and mechanical stimuli at a glance. J Int Soc Sports Nutr 2016; 13:8. [PMID: 26937223 PMCID: PMC4774173 DOI: 10.1186/s12970-016-0118-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/18/2016] [Indexed: 12/05/2022] Open
Abstract
The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) plays a pivotal role in the regulation of skeletal muscle protein synthesis. Activation of the complex leads to phosphorylation of two important sets of substrates, namely eIF4E binding proteins and ribosomal S6 kinases. Phosphorylation of these substrates then leads to an increase in protein synthesis, mainly by enhancing translation initiation. mTORC1 activity is regulated by several inputs, such as growth factors, energy status, amino acids and mechanical stimuli. Research in this field is rapidly evolving and unraveling how these inputs regulate the complex. Therefore this review attempts to provide a brief and up-to-date narrative on the regulation of this marvelous protein complex. Additionally, some sports supplements which have been shown to regulate mTORC1 activity are discussed.
Collapse
Affiliation(s)
- Peter Bond
- PeterBond.nl, Waterhoenlaan 25, Zeist, Netherlands
| |
Collapse
|
19
|
Santos-Zas I, Gurriarán-Rodríguez U, Cid-Díaz T, Figueroa G, González-Sánchez J, Bouzo-Lorenzo M, Mosteiro CS, Señarís J, Casanueva FF, Casabiell X, Gallego R, Pazos Y, Mouly V, Camiña JP. β-Arrestin scaffolds and signaling elements essential for the obestatin/GPR39 system that determine the myogenic program in human myoblast cells. Cell Mol Life Sci 2016; 73:617-35. [PMID: 26211463 PMCID: PMC11108386 DOI: 10.1007/s00018-015-1994-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/08/2015] [Accepted: 07/16/2015] [Indexed: 12/27/2022]
Abstract
Obestatin/GPR39 signaling stimulates skeletal muscle repair by inducing the expansion of satellite stem cells as well as myofiber hypertrophy. Here, we describe that the obestatin/GPR39 system acts as autocrine/paracrine factor on human myogenesis. Obestatin regulated multiple steps of myogenesis: myoblast proliferation, cell cycle exit, differentiation and recruitment to fuse and form multinucleated hypertrophic myotubes. Obestatin-induced mitogenic action was mediated by ERK1/2 and JunD activity, being orchestrated by a G-dependent mechanism. At a later stage of myogenesis, scaffolding proteins β-arrestin 1 and 2 were essential for the activation of cell cycle exit and differentiation through the transactivation of the epidermal growth factor receptor (EGFR). Upon obestatin stimulus, β-arrestins are recruited to the membrane, where they functionally interact with GPR39 leading to Src activation and signalplex formation to EGFR transactivation by matrix metalloproteinases. This signalplex regulated the mitotic arrest by p21 and p57 expression and the mid- to late stages of differentiation through JNK/c-Jun, CAMKII, Akt and p38 pathways. This finding not only provides the first functional activity for β-arrestins in myogenesis but also identify potential targets for therapeutic approaches by triggering specific signaling arms of the GPR39 signaling involved in myogenesis.
Collapse
Affiliation(s)
- Icía Santos-Zas
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Uxía Gurriarán-Rodríguez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Canada
| | - Tania Cid-Díaz
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Gabriela Figueroa
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Jessica González-Sánchez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Mónica Bouzo-Lorenzo
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Carlos S Mosteiro
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - José Señarís
- Servicio de Cirugía Ortopédica y Traumatología, CHUS, SERGAS, Santiago de Compostela, Spain
| | - Felipe F Casanueva
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
- Departamento de Medicina, USC, Santiago de Compostela, Spain
| | - Xesús Casabiell
- Departamento de Fisiología, USC, Santiago de Compostela, Spain
| | - Rosalía Gallego
- Departamento de Ciencias Morfológicas, USC, Santiago de Compostela, Spain
| | - Yolanda Pazos
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Vincent Mouly
- Institut de Myologie, INSERM, and Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Jesús P Camiña
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain.
| |
Collapse
|
20
|
Beaudry M, Hidalgo M, Launay T, Bello V, Darribère T. Regulation of myogenesis by environmental hypoxia. J Cell Sci 2016; 129:2887-96. [DOI: 10.1242/jcs.188904] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
In aerobic organisms, oxygen is a critical factor for tissue and organ morphogenesis from embryonic development throughout the adult life. It regulates various intracellular pathways involved in cellular metabolism, proliferation, cell survival and fate. Organisms or tissues rapidly respond to changes in oxygen availability by activating complex signalling networks, which culminate in the control of mRNA translation and/or gene expression. This Commentary presents the effects of hypoxia during embryonic development, myoblasts and satellite cell proliferation and differentiation in vertebrates. We also outline the relationship between Notch, Wnt and growth factor signalling pathways, as well as the post-transcriptional regulation of myogenesis under conditions of hypoxia.
Collapse
Affiliation(s)
- Michèle Beaudry
- Université Paris13 Sorbonne Paris Cité, EA2363, UFR-SMBH, Laboratoire Hypoxie et poumons, Bobigny 93017, Cedex, France
| | - Magdalena Hidalgo
- Université Paris13 Sorbonne Paris Cité, EA2363, UFR-SMBH, Laboratoire Hypoxie et poumons, Bobigny 93017, Cedex, France
- UPMC Sorbonne Universités (Université Pierre et Marie Curie), UMR CNRS 7622, Laboratoire de Biologie du Développement, Paris 75252, Cedex 05, France
| | - Thierry Launay
- Université Paris-Descartes Sorbonne Paris cité, 75015 Paris, France
- Université d’Evry, Unité de Biologie Intégrative Appliquée à l’Exercice EA 7372, 9100 Evry, France
| | - Valérie Bello
- UPMC Sorbonne Universités (Université Pierre et Marie Curie), UMR CNRS 7622, Laboratoire de Biologie du Développement, Paris 75252, Cedex 05, France
| | - Thierry Darribère
- UPMC Sorbonne Universités (Université Pierre et Marie Curie), UMR CNRS 7622, Laboratoire de Biologie du Développement, Paris 75252, Cedex 05, France
| |
Collapse
|
21
|
Musclin is an activity-stimulated myokine that enhances physical endurance. Proc Natl Acad Sci U S A 2015; 112:16042-7. [PMID: 26668395 DOI: 10.1073/pnas.1514250112] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exercise remains the most effective way to promote physical and metabolic wellbeing, but molecular mechanisms underlying exercise tolerance and its plasticity are only partially understood. In this study we identify musclin-a peptide with high homology to natriuretic peptides (NP)-as an exercise-responsive myokine that acts to enhance exercise capacity in mice. We use human primary myoblast culture and in vivo murine models to establish that the activity-related production of musclin is driven by Ca(2+)-dependent activation of Akt1 and the release of musclin-encoding gene (Ostn) transcription from forkhead box O1 transcription factor inhibition. Disruption of Ostn and elimination of musclin secretion in mice results in reduced exercise tolerance that can be rescued by treatment with recombinant musclin. Reduced exercise capacity in mice with disrupted musclin signaling is associated with a trend toward lower levels of plasma atrial NP (ANP) and significantly smaller levels of cyclic guanosine monophosphate (cGMP) and peroxisome proliferator-activated receptor gamma coactivator 1-α in skeletal muscles after exposure to exercise. Furthermore, in agreement with the established musclin ability to interact with NP clearance receptors, but not with NP guanyl cyclase-coupled signaling receptors, we demonstrate that musclin enhances cGMP production in cultured myoblasts only when applied together with ANP. Elimination of the activity-related musclin-dependent boost of ANP/cGMP signaling results in significantly lower maximum aerobic capacity, mitochondrial protein content, respiratory complex protein expression, and succinate dehydrogenase activity in skeletal muscles. Together, these data indicate that musclin enhances physical endurance by promoting mitochondrial biogenesis.
Collapse
|
22
|
Tsuda S, Egawa T, Kitani K, Oshima R, Ma X, Hayashi T. Caffeine and contraction synergistically stimulate 5'-AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle. Physiol Rep 2015; 3:3/10/e12592. [PMID: 26471759 PMCID: PMC4632959 DOI: 10.14814/phy2.12592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
5′-Adenosine monophosphate-activated protein kinase (AMPK) has been identified as a key mediator of contraction-stimulated insulin-independent glucose transport in skeletal muscle. Caffeine acutely stimulates AMPK in resting skeletal muscle, but it is unknown whether caffeine affects AMPK in contracting muscle. Isolated rat epitrochlearis muscle was preincubated and then incubated in the absence or presence of 3 mmol/L caffeine for 30 or 120 min. Electrical stimulation (ES) was used to evoke tetanic contractions during the last 10 min of the incubation period. The combination of caffeine plus contraction had additive effects on AMPKα Thr172 phosphorylation, α-isoform-specific AMPK activity, and 3-O-methylglucose (3MG) transport. In contrast, caffeine inhibited basal and contraction-stimulated Akt Ser473 phosphorylation. Caffeine significantly delayed muscle fatigue during contraction, and the combination of caffeine and contraction additively decreased ATP and phosphocreatine contents. Caffeine did not affect resting tension. Next, rats were given an intraperitoneal injection of caffeine (60 mg/kg body weight) or saline, and the extensor digitorum longus muscle was dissected 15 min later. ES of the sciatic nerve was performed to evoke tetanic contractions for 5 min before dissection. Similar to the findings from isolated muscles incubated in vitro, the combination of caffeine plus contraction in vivo had additive effects on AMPK phosphorylation, AMPK activity, and 3MG transport. Caffeine also inhibited basal and contraction-stimulated Akt phosphorylation in vivo. These findings suggest that caffeine and contraction synergistically stimulate AMPK activity and insulin-independent glucose transport, at least in part by decreasing muscle fatigue and thereby promoting energy consumption during contraction.
Collapse
Affiliation(s)
- Satoshi Tsuda
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Tatsuro Egawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, 440-0016, Japan
| | - Kazuto Kitani
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Rieko Oshima
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Xiao Ma
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, China
| | - Tatsuya Hayashi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
23
|
Konishi M, Pelgrim L, Tschirner A, Baumgarten A, von Haehling S, Palus S, Doehner W, Anker SD, Springer J. Febuxostat improves outcome in a rat model of cancer cachexia. J Cachexia Sarcopenia Muscle 2015; 6:174-80. [PMID: 26136193 PMCID: PMC4458083 DOI: 10.1002/jcsm.12017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/16/2015] [Accepted: 02/24/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Activity of xanthine oxidase is induced in cancer cachexia, and its inhibition by allopurinol or oxypurinol improves survival and reduces wasting in the Yoshida hepatoma cancer cachexia model. Here, we tested the effects of the second-generation xanthine oxidase inhibitor febuxostat compared with placebo in the same model as used previously by our group. METHODS Wistar rats (~200 g) were treated daily with febuxostat at 5 mg/kg/day or placebo via gavage for a maximum of 17 days. Weight change, quality of life, and body composition were analysed. After sacrifice, proteasome activity in the gastrocnemius muscle was measured. Muscle-specific proteins involved in metabolism were analysed by western blotting. RESULTS Treatment of the tumour-bearing rats with febuxostat led to a significantly improved survival compared with placebo (hazard ratio: 0.45, 95% confidence interval: 0.22-0.93, P = 0.03). Loss of body weight was reduced (-26.3 ± 12.4 g) compared with placebo (-50.2 ± 2.1 g, P < 0.01). Wasting of lean mass was attenuated (-12.7 ± 10.8 g) vs. placebo (-31.9 ± 2.1 g, P < 0.05). While we did not see an effect of febuxostat on proteasome activity at the end of the study, the pAkt/Akt ratio was improved by febuxostat (0.94 ± 0.09) vs. placebo (0.41 ± 0.05, P < 0.01), suggesting an increase in protein synthesis. CONCLUSIONS Febuxostat attenuated cachexia progression and improved survival of tumour-bearing rats.
Collapse
Affiliation(s)
- Masaaki Konishi
- Division of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany
| | - Loes Pelgrim
- Applied Cachexia Research, Center for Cardiovascular Research, Charité Medical School, Berlin, Germany.,Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Anika Tschirner
- Applied Cachexia Research, Center for Cardiovascular Research, Charité Medical School, Berlin, Germany
| | - Anna Baumgarten
- Applied Cachexia Research, Center for Cardiovascular Research, Charité Medical School, Berlin, Germany
| | - Stephan von Haehling
- Division of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany
| | - Sandra Palus
- Division of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany
| | - Wolfram Doehner
- Center for Stroke Research Berlin, Charité Medical School, Berlin, Germany
| | - Stefan D Anker
- Division of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany
| | - Jochen Springer
- Division of Innovative Clinical Trials, University Medical Centre Göttingen, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
24
|
Gurriarán-Rodríguez U, Santos-Zas I, González-Sánchez J, Beiroa D, Moresi V, Mosteiro CS, Lin W, Viñuela JE, Señarís J, García-Caballero T, Casanueva FF, Nogueiras R, Gallego R, Renaud JM, Adamo S, Pazos Y, Camiña JP. Action of obestatin in skeletal muscle repair: stem cell expansion, muscle growth, and microenvironment remodeling. Mol Ther 2015; 23:1003-1021. [PMID: 25762009 DOI: 10.1038/mt.2015.40] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/29/2015] [Indexed: 12/14/2022] Open
Abstract
The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration.
Collapse
Affiliation(s)
- Uxía Gurriarán-Rodríguez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain; Current address: Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Canada
| | - Icía Santos-Zas
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - Jessica González-Sánchez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - Daniel Beiroa
- CIBER Fisiopatología de la Obesidad y Nutrición, Spain; Departamento de Fisiología, Universidad de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Viviana Moresi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy; Interuniversity Institute of Myology, Rome, Italy
| | - Carlos S Mosteiro
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - Wei Lin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Juan E Viñuela
- Unidad de Inmunología, CHUS, Santiago de Compostela, Spain
| | - José Señarís
- Servicio de Cirugía Ortopédica y Traumatología, CHUS, SERGAS, Santiago de Compostela, Spain
| | | | - Felipe F Casanueva
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain; Departamento de Medicina, USC, Santiago de Compostela, Spain
| | - Rubén Nogueiras
- CIBER Fisiopatología de la Obesidad y Nutrición, Spain; Departamento de Fisiología, Universidad de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Rosalía Gallego
- Departamento de Ciencias Morfológicas, USC, Santiago de Compostela, Spain
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Sergio Adamo
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy; Interuniversity Institute of Myology, Rome, Italy
| | - Yolanda Pazos
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - Jesús P Camiña
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain.
| |
Collapse
|
25
|
Carroll CC, Martineau K, Arthur KA, Huynh RT, Volper BD, Broderick TL. The effect of chronic treadmill exercise and acetaminophen on collagen and cross-linking in rat skeletal muscle and heart. Am J Physiol Regul Integr Comp Physiol 2015; 308:R294-9. [DOI: 10.1152/ajpregu.00374.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The purpose of this study was to determine whether exercise and/or acetaminophen (APAP) alter collagen and cross-linking in the rat gastrocnemius muscle, soleus muscle, and heart. Male Wistar rats ( n = 50; 8 wk old) were divided into placebo (PLA) or APAP groups and sedentary (SED) or exercised (RUN) groups. APAP (200 mg/kg) was administered daily by oral gavage. Exercised groups ran on a treadmill 5 days/wk for 8 wk with progression to 60 min/day, 20 m/min, and 8° incline. Tissues were assayed for collagen (hydroxyproline) and hydroxylyslpyridinoline (HP) and lysylpyridinoline (LP) cross-links by HPLC. Collagen content (μg/mg dry weight) was greater in both the gastrocnemius (SED-PLA: 114 ± 16 vs. RUN-PLA: 244 ± 32; P < 0.001) and soleus (SED-PLA: 51 ± 7 vs. RUN-PLA: 99 ± 27; P = 0.005) of exercised animals. In contrast, collagen content was not significantly greater in exercised animals treated with APAP (SED-APAP: 113 ± 16 vs. RUN-APAP: 145 ± 21) and soleus (SED-APAP: 55 ± 8 vs. RUN-APAP: 57 ± 10). HP cross-linking (mmol/mol collagen) in the gastrocnemius (SED-PLA: 126 ± 28, RUN-PLA: 50 ± 7, SED-APAP: 41 ± 7, and RUN-APAP: 30 ± 4) and soleus muscles (SED-PLA: 547 ± 107, RUN-PLA: 318 ± 92, SED-APAP: 247 ± 64, and RUN-APAP: 120 ± 17) was lower in exercised rats compared with sedentary rats ( P < 0.05). Cross-linking was further reduced in animals treated with APAP ( P < 0.05). Neither heart collagen nor cross-linking was influenced by exercise or APAP ( P > 0.05). Our findings suggest that exercise and APAP have tissue-specific effects on muscle collagen. Given the widespread use of APAP as an analgesic and antipyretic, further work in humans is warranted.
Collapse
Affiliation(s)
- Chad C. Carroll
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona
| | - Karl Martineau
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona
| | - Kathryn A. Arthur
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona
| | - Richard T. Huynh
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona
| | - Brent D. Volper
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona
| | - Tom L. Broderick
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona
| |
Collapse
|
26
|
Muscle-specific GSK-3β ablation accelerates regeneration of disuse-atrophied skeletal muscle. Biochim Biophys Acta Mol Basis Dis 2014; 1852:490-506. [PMID: 25496993 DOI: 10.1016/j.bbadis.2014.12.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 01/08/2023]
Abstract
Muscle wasting impairs physical performance, increases mortality and reduces medical intervention efficacy in chronic diseases and cancer. Developing proficient intervention strategies requires improved understanding of the molecular mechanisms governing muscle mass wasting and recovery. Involvement of muscle protein- and myonuclear turnover during recovery from muscle atrophy has received limited attention. The insulin-like growth factor (IGF)-I signaling pathway has been implicated in muscle mass regulation. As glycogen synthase kinase 3 (GSK-3) is inhibited by IGF-I signaling, we hypothesized that muscle-specific GSK-3β deletion facilitates the recovery of disuse-atrophied skeletal muscle. Wild-type mice and mice lacking muscle GSK-3β (MGSK-3β KO) were subjected to a hindlimb suspension model of reversible disuse-induced muscle atrophy and followed during recovery. Indices of muscle mass, protein synthesis and proteolysis, and post-natal myogenesis which contribute to myonuclear accretion, were monitored during the reloading of atrophied muscle. Early muscle mass recovery occurred more rapidly in MGSK-3β KO muscle. Reloading-associated changes in muscle protein turnover were not affected by GSK-3β ablation. However, coherent effects were observed in the extent and kinetics of satellite cell activation, proliferation and myogenic differentiation observed during reloading, suggestive of increased myonuclear accretion in regenerating skeletal muscle lacking GSK-3β. This study demonstrates that muscle mass recovery and post-natal myogenesis from disuse-atrophy are accelerated in the absence of GSK-3β.
Collapse
|
27
|
Kocsis T, Baán J, Müller G, Mendler L, Dux L, Keller-Pintér A. Skeletal muscle cellularity and glycogen distribution in the hypermuscular Compact mice. Eur J Histochem 2014; 58:2353. [PMID: 25308840 PMCID: PMC4194388 DOI: 10.4081/ejh.2014.2353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/07/2014] [Accepted: 04/18/2014] [Indexed: 12/02/2022] Open
Abstract
The TGF-beta member myostatin acts as a negative regulator of skeletal muscle mass. The Compact mice were selected for high protein content and hypermuscularity, and carry a naturally occurring 12-bp deletion in the propeptide region of the myostatin precursor. We aimed to investigate the cellular characteristics and the glycogen distribution of the Compact tibialis anterior (TA) muscle by quantitative histochemistry and spectrophotometry. We have found that the deficiency in myostatin resulted in significantly increased weight of the investigated hindlimb muscles compared to wild type. Although the average glycogen content of the individual fibers kept unchanged, the total amount of glycogen in the Compact TA muscle increased two-fold, which can be explained by the presence of more fibers in Compact compared to wild type muscle. Moreover, the ratio of the most glycolytic IIB fibers significantly increased in the Compact TA muscle, of which glycogen content was the highest among the fast fibers. In summary, myostatin deficiency caused elevated amount of glycogen in the TA muscle but did not increase the glycogen content of the individual fibers despite the marked glycolytic shift observed in Compact mice.
Collapse
|
28
|
Reversal of muscle atrophy by Zhimu-Huangbai herb-pair via Akt/mTOR/FoxO3 signal pathway in streptozotocin-induced diabetic mice. PLoS One 2014; 9:e100918. [PMID: 24968071 PMCID: PMC4072704 DOI: 10.1371/journal.pone.0100918] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/02/2014] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle atrophy is one of the serious complications of diabetes. Zhimu-Huangbai herb-pair (ZB) is widely used in Chinese traditional medicine formulas for treating Xiaoke (known as diabetes) and its complications. However, the effect of ZB on reversal of muscle atrophy and the underlying mechanisms remain unknown. In this research, we investigated the effect and possible mechanisms of ZB on skeletal muscle atrophy in diabetic mice. Animal model of diabetic muscle atrophy was developed by high fat diet (HFD) feeding plus streptozotocin (STZ) injection. After oral adminstration of ZB for 6 weeks, the effects of ZB on reversal of muscle atrophy and the underlying mechanisms were evaluated by biochemical, histological and western blot methods. The skeletal muscle weight, strength, and cross-sectional area of diabetic mice were significantly increased by ZB treatment. Biochemical results showed that ZB treatment reduced the serum glucose level, and elevated the serum insulin-like growth factor 1 (IGF-1) and insulin levels significantly compared with untreated diabetic group. The western blot results showed that ZB activated the mTOR signal pathway, shown as increased phosphorylations (p-) of Akt, mTOR, Raptor, S6K1 and reduced Foxo3 expression compared with the model group. ZB could reverse muscle atrophy in diabetic mice. This may be through activation of mTOR signaling pathway that promotes protein synthesis, and inactivation foxo3 protein that inhibits protein degradation. These findings suggested that ZB may be considered as a potential candidate drug in treatment of diabetic muscle atrophy.
Collapse
|
29
|
Pereira MG, Baptista IL, Carlassara EOC, Moriscot AS, Aoki MS, Miyabara EH. Leucine supplementation improves skeletal muscle regeneration after cryolesion in rats. PLoS One 2014; 9:e85283. [PMID: 24416379 PMCID: PMC3885703 DOI: 10.1371/journal.pone.0085283] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/25/2013] [Indexed: 12/31/2022] Open
Abstract
This study was undertaken in order to provide further insight into the role of leucine supplementation in the skeletal muscle regeneration process, focusing on myofiber size and strength recovery. Young (2-month-old) rats were subjected or not to leucine supplementation (1.35 g/kg per day) started 3 days prior to cryolesion. Then, soleus muscles were cryolesioned and continued receiving leucine supplementation until 1, 3 and 10 days later. Soleus muscles from leucine-supplemented animals displayed an increase in myofiber size and a reduction in collagen type III expression on post-cryolesion day 10. Leucine was also effective in reducing FOXO3a activation and ubiquitinated protein accumulation in muscles at post-cryolesion days 3 and 10. In addition, leucine supplementation minimized the cryolesion-induced decrease in tetanic strength and increase in fatigue in regenerating muscles at post-cryolesion day 10. These beneficial effects of leucine were not accompanied by activation of any elements of the phosphoinositide 3-kinase/Akt/mechanistic target of rapamycin signalling pathway in the regenerating muscles. Our results show that leucine improves myofiber size gain and strength recovery in regenerating soleus muscles through attenuation of protein ubiquitination. In addition, leucine might have therapeutic effects for muscle recovery following injury and in some muscle diseases.
Collapse
Affiliation(s)
- Marcelo G. Pereira
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Igor L. Baptista
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Eduardo O. C. Carlassara
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Anselmo S. Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo S. Aoki
- School of Arts, Sciences and Humanities, University of Sao Paulo, Sao Paulo, Brazil
| | - Elen H. Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
30
|
Alway SE, Bennett BT, Wilson JC, Edens NK, Pereira SL. Epigallocatechin-3-gallate improves plantaris muscle recovery after disuse in aged rats. Exp Gerontol 2013; 50:82-94. [PMID: 24316035 DOI: 10.1016/j.exger.2013.11.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/20/2013] [Accepted: 11/22/2013] [Indexed: 12/21/2022]
Abstract
Aging exacerbates muscle loss and slows the recovery of muscle mass and function after disuse. In this study we investigated the potential that epigallocatechin-3-gallate (EGCg), an abundant catechin in green tea, would reduce signaling for apoptosis and promote skeletal muscle recovery in the fast plantaris muscle and the slow soleus muscle after hindlimb suspension (HLS) in senescent animals. Fischer 344 × Brown Norway inbred rats (age 34 months) received either EGCg (50 mg/kg body weight), or water daily by gavage. One group of animals received HLS for 14 days and a second group of rats received 14 days of HLS, then the HLS was removed and they recovered from this forced disuse for 2 weeks. Animals that received EGCg over the HLS followed by 14 days of recovery, had a 14% greater plantaris muscle weight (p<0.05) as compared to the animals treated with the vehicle over this same period. Plantaris fiber area was greater after recovery in EGCg (2715.2±113.8 μm(2)) vs. vehicle treated animals (1953.0±41.9 μm(2)). In addition, activation of myogenic progenitor cells was improved with EGCg over vehicle treatment (7.5% vs. 6.2%) in the recovery animals. Compared to vehicle treatment, the apoptotic index was lower (0.24% vs. 0.52%), and the abundance of pro-apoptotic proteins Bax (-22%), and FADD (-77%) was lower in EGCg treated plantaris muscles after recovery. While EGCg did not prevent unloading-induced atrophy, it improved muscle recovery after the atrophic stimulus in fast plantaris muscles. However, this effect was muscle specific because EGCg had no major impact in reversing HLS-induced atrophy in the slow soleus muscle of old rats.
Collapse
Affiliation(s)
- Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States; West Virginia Center for Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States.
| | - Brian T Bennett
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States
| | - Joseph C Wilson
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506-9227, United States
| | - Neile K Edens
- Discovery R&D, Abbott Nutrition, Columbus, OH, United States
| | | |
Collapse
|
31
|
Jellyman JK, Martin-Gronert MS, Cripps RL, Giussani DA, Ozanne SE, Shen QW, Du M, Fowden AL, Forhead AJ. Effects of cortisol and dexamethasone on insulin signalling pathways in skeletal muscle of the ovine fetus during late gestation. PLoS One 2012; 7:e52363. [PMID: 23300651 PMCID: PMC3530600 DOI: 10.1371/journal.pone.0052363] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 11/16/2012] [Indexed: 01/22/2023] Open
Abstract
Before birth, glucocorticoids retard growth, although the extent to which this is mediated by changes in insulin signalling pathways in the skeletal muscle of the fetus is unknown. The current study determined the effects of endogenous and synthetic glucocorticoid exposure on insulin signalling proteins in skeletal muscle of fetal sheep during late gestation. Experimental manipulation of fetal plasma glucocorticoid concentration was achieved by fetal cortisol infusion and maternal dexamethasone treatment. Cortisol infusion significantly increased muscle protein levels of Akt2 and phosphorylated Akt at Ser473, and decreased protein levels of phosphorylated forms of mTOR at Ser2448 and S6K at Thr389. Muscle GLUT4 protein expression was significantly higher in fetuses whose mothers were treated with dexamethasone compared to those treated with saline. There were no significant effects of glucocorticoid exposure on muscle protein abundance of IR-β, IGF-1R, PKCζ, Akt1, calpastatin or muscle glycogen content. The present study demonstrated that components of the insulin signalling pathway in skeletal muscle of the ovine fetus are influenced differentially by naturally occurring and synthetic glucocorticoids. These findings may provide a mechanism by which elevated concentrations of endogenous glucocorticoids retard fetal growth.
Collapse
Affiliation(s)
- Juanita K. Jellyman
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Malgorzata S. Martin-Gronert
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Roselle L. Cripps
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Dino A. Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Susan E. Ozanne
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Qingwu W. Shen
- Department of Animal Science, University of Wyoming, Laramie, United States of America
| | - Min Du
- Department of Animal Science, University of Wyoming, Laramie, United States of America
| | - Abigail L. Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alison J. Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
32
|
Lambertucci AC, Lambertucci RH, Hirabara SM, Curi R, Moriscot AS, Alba-Loureiro TC, Guimarães-Ferreira L, Levada-Pires AC, Vasconcelos DAA, Sellitti DF, Pithon-Curi TC. Glutamine supplementation stimulates protein-synthetic and inhibits protein-degradative signaling pathways in skeletal muscle of diabetic rats. PLoS One 2012; 7:e50390. [PMID: 23239980 PMCID: PMC3519752 DOI: 10.1371/journal.pone.0050390] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 10/24/2012] [Indexed: 11/29/2022] Open
Abstract
In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes.
Collapse
Affiliation(s)
- Adriana C. Lambertucci
- Institute of Physical Activity Sciences and Sports, Post-Graduate Program in Human Movement Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Rafael H. Lambertucci
- Institute of Physical Activity Sciences and Sports, Post-Graduate Program in Human Movement Sciences, Cruzeiro do Sul University, São Paulo, Brazil
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sandro M. Hirabara
- Institute of Physical Activity Sciences and Sports, Post-Graduate Program in Human Movement Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anselmo S. Moriscot
- Department of Cell Biology and Development, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tatiana C. Alba-Loureiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lucas Guimarães-Ferreira
- Center of Physical Education and Sports, Federal University of Espirito Santo, Espirito Santo, Brazil
| | - Adriana C. Levada-Pires
- Institute of Physical Activity Sciences and Sports, Post-Graduate Program in Human Movement Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Diogo A. A. Vasconcelos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Donald F. Sellitti
- Department of Medicine, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - Tania C. Pithon-Curi
- Institute of Physical Activity Sciences and Sports, Post-Graduate Program in Human Movement Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| |
Collapse
|
33
|
Martelli AM, Tabellini G, Bressanin D, Ognibene A, Goto K, Cocco L, Evangelisti C. The emerging multiple roles of nuclear Akt. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2168-78. [PMID: 22960641 DOI: 10.1016/j.bbamcr.2012.08.017] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 12/26/2022]
|
34
|
Gurriarán-Rodríguez U, Santos-Zas I, Al-Massadi O, Mosteiro CS, Beiroa D, Nogueiras R, Crujeiras AB, Seoane LM, Señarís J, García-Caballero T, Gallego R, Casanueva FF, Pazos Y, Camiña JP. The obestatin/GPR39 system is up-regulated by muscle injury and functions as an autocrine regenerative system. J Biol Chem 2012; 287:38379-89. [PMID: 22992743 DOI: 10.1074/jbc.m112.374926] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The maintenance and repair of skeletal muscle are attributable to an elaborate interaction between extrinsic and intrinsic regulatory signals that regulate the myogenic process. In the present work, we showed that obestatin, a 23-amino acid peptide encoded by the ghrelin gene, and the GPR39 receptor are expressed in rat skeletal muscle and are up-regulated upon experimental injury. To define their roles in muscle regeneration, L6E9 cells were used to perform in vitro assays. For the in vivo assays, skeletal muscle tissue was obtained from male rats and maintained under continuous subcutaneous infusion of obestatin. In differentiating L6E9 cells, preproghrelin expression and correspondingly obestatin increased during myogenesis being sustained throughout terminal differentiation. Autocrine action was demonstrated by neutralization of the endogenous obestatin secreted by differentiating L6E9 cells using a specific anti-obestatin antibody. Knockdown experiments by preproghrelin siRNA confirmed the contribution of obestatin to the myogenic program. Furthermore, GPR39 siRNA reduced obestatin action and myogenic differentiation. Exogenous obestatin stimulation was also shown to regulate myoblast migration and proliferation. Furthermore, the addition of obestatin to the differentiation medium increased myogenic differentiation of L6E9 cells. The relevance of the actions of obestatin was confirmed in vivo by the up-regulation of Pax-7, MyoD, Myf5, Myf6, myogenin, and myosin heavy chain (MHC) in obestatin-infused rats when compared with saline-infused rats. These data elucidate a novel mechanism whereby the obestatin/GPR39 system is coordinately regulated as part of the myogenic program and operates as an autocrine signal regulating skeletal myogenesis.
Collapse
Affiliation(s)
- Uxía Gurriarán-Rodríguez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Choi YJ, Kim DH, Lee EK, Kim JM, Ha YM, Kim ND, Jung JH, Choi JS, Yu BP, Chung HY. Attenuation of age-related changes in FOXO3a activity and the PI3K/Akt pathway by short-term feeding of ferulate. AGE (DORDRECHT, NETHERLANDS) 2012; 34:317-327. [PMID: 21468671 PMCID: PMC3312622 DOI: 10.1007/s11357-011-9235-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/10/2011] [Indexed: 05/30/2023]
Abstract
Ferulate (4-hydroxy-3-methoxycinnamic acid) is a well-known phenolic compound that scavenges free radicals and exerts anti-inflammatory effects. Forkhead box O3a (FOXO3a), a transcription factor that plays important roles in aging processes, decreases with age and is negatively regulated through phosphorylation by phosphatidylinositol 3-kinase (PI3K)/Akt signaling. The present study investigated the efficacy of short-term ferulate feeding on age-related changes in PI3K/Akt/FOXO3a and upstream insulin signaling pathways in aged rats. In addition, changes in manganese superoxide dismutase (MnSOD) and catalase expression were examined because of their dependence on PI3K/Akt/FOXO3a activity. Short-term feeding experiments were done with a diet containing ferulate that was given to aged rats at doses of 3 or 6 mg kg(-1) day(-1) for 10 days. Results showed that FOXO3a activity was increased in the ferulate-fed old group compared with the control old group. Also, ferulate suppressed the PI3K/Akt signaling pathway that is responsible for FOXO3a inhibition in aged rats. Plasma insulin levels and the upstream insulin signaling pathway were also modulated by ferulate correspondingly with PI3K/Akt/FOXO3a activity. The age-related decrease in two major antioxidant enzymes, MnSOD and catalase, was blunted by ferulate, which was accompanied by FOXO3a transcriptional activity. The significance of the present study is the finding that short-term feeding of ferulate effectively modulates age-related renal FOXO3a, PI3K/Akt and insulin signaling pathways, and MnSOD and catalase expression, all of which may be beneficial for attenuating the aging process.
Collapse
Affiliation(s)
- Yeon Ja Choi
- Department of Pharmacy, College of Pharmacy, Pusan National University, San 30, JangJeon-dong, GeumJeong-gu, Busan, 609-735 South Korea
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan, 609-735 South Korea
| | - Dae Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, San 30, JangJeon-dong, GeumJeong-gu, Busan, 609-735 South Korea
| | - Eun Kyeong Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, San 30, JangJeon-dong, GeumJeong-gu, Busan, 609-735 South Korea
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 619-953 Republic of Korea
| | - Ji Min Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, San 30, JangJeon-dong, GeumJeong-gu, Busan, 609-735 South Korea
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan, 609-735 South Korea
| | - Young Mi Ha
- Department of Pharmacy, College of Pharmacy, Pusan National University, San 30, JangJeon-dong, GeumJeong-gu, Busan, 609-735 South Korea
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan, 609-735 South Korea
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, San 30, JangJeon-dong, GeumJeong-gu, Busan, 609-735 South Korea
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan, 609-735 South Korea
| | - Jee H. Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, San 30, JangJeon-dong, GeumJeong-gu, Busan, 609-735 South Korea
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan, 609-735 South Korea
| | - Jae Sue Choi
- Faculty of Food Science and Biotechnology, Pukyong National University, Nam-gu, Busan, 608-737 South Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900 USA
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, San 30, JangJeon-dong, GeumJeong-gu, Busan, 609-735 South Korea
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan, 609-735 South Korea
| |
Collapse
|
36
|
Hidalgo M, Le Bouffant R, Bello V, Buisson N, Cormier P, Beaudry M, Darribère T. The translational repressor 4E-BP mediates the hypoxia-induced defects in myotome cells. J Cell Sci 2012; 125:3989-4000. [DOI: 10.1242/jcs.097998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cell growth, proliferation, differentiation, and survival are influenced by the availability of oxygen. The effect of hypoxia on embryonic cells and the underlying molecular mechanisms to maintain cellular viability are still poorly understood. In this study, we show that hypoxia during Xenopus embryogenesis rapidly leads to a significant developmental delay and to cell apoptosis after prolonged exposure. We provide strong evidence that hypoxia does not affect somitogenesis but affects the number of mitotic cells and muscle-specific protein accumulation in somites, without interfering with the expression of MyoD and MRF4 transcription factors. We also demonstrate that hypoxia reversibly decreases Akt phosphorylation and increases the total amount of the translational repressor 4E-BP, in combination with an increase of the 4E-BP associated with eIF4E. Interestingly, the inhibition of PI3-Kinase or mTOR, with LY29002 or rapamycin respectively, triggers the 4E-BP accumulation in Xenopus embryos. Finally, the overexpression of the non-phosphorylatable 4E-BP protein induces, similar to hypoxia, a decrease in mitotic cells and a decrease in muscle-specific protein accumulation in somites. Taken together, our studies suggest that 4E-BP plays a central role under hypoxia in promoting the cap-independent translation at the expense of cap-dependent translation and triggers specific defects in muscle development.
Collapse
|
37
|
Liu H, Blough ER, Arvapalli R, Wang Y, Reiser PJ, Paturi S, Katta A, Harris R, Nepal N, Wu M. Regulation of Contractile Proteins and Protein Translational Signaling in Disused Muscle. Cell Physiol Biochem 2012; 30:1202-14. [DOI: 10.1159/000343310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2012] [Indexed: 11/19/2022] Open
|
38
|
Huang MB, Xu H, Xie SJ, Zhou H, Qu LH. Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis. PLoS One 2011; 6:e29173. [PMID: 22195016 PMCID: PMC3240640 DOI: 10.1371/journal.pone.0029173] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 11/22/2011] [Indexed: 12/16/2022] Open
Abstract
Background The insulin-like growth factor (IGF) signaling pathway has long been established as playing critical roles in skeletal muscle development. However, the underlying regulatory mechanism is poorly understood. Recently, a large family of small RNAs, named microRNAs (miRNAs), has been identified as key regulators for many developmental processes. Because miRNAs participate in the regulation of various signaling pathways, we hypothesized that miRNAs may be involved in the regulation of IGF signaling in skeletal myogenesis. Methodology/Principal Findings In the present study, we determined that the cell-surface receptor IGF-1R is directly regulated by a muscle-specific miRNA, microRNA-133 (miR-133). A conserved and functional binding site for miR-133 was identified in the 3′untranslated region (3′UTR) of IGF-1R. During differentiation of C2C12 myoblasts, IGF-1R protein, but not messenger RNA (mRNA) expression, was gradually reduced, concurrent with the upregulation of miR-133. Overexpression of miR-133 in C2C12 cells significantly suppressed IGF-1R expression at the posttranscriptional level. We also demonstrated that both overexpression of miR-133 and knockdown of IGF-1R downregulated the phosphorylation of Akt, the central mediator of the PI3K/Akt signaling pathway. Furthermore, upregulation of miR-133 during C2C12 differentiation was significantly accelerated by the addition of IGF-1. Mechanistically, we found that the expression of myogenin, a myogenic transcription factor reported to transactivate miR-133, was increased by IGF-1 stimulation. Conclusion/Significance Our results elucidate a negative feedback circuit in which IGF-1-stimulated miR-133 in turn represses IGF-1R expression to modulate the IGF-1R signaling pathway during skeletal myogenesis. These findings also suggest that miR-133 may be a potential therapeutic target in muscle diseases.
Collapse
Affiliation(s)
- Mian-Bo Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hui Xu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shu-Juan Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, People's Republic of China
- * E-mail:
| |
Collapse
|
39
|
Blough ER, Wu M. Acetaminophen: beyond pain and Fever-relieving. Front Pharmacol 2011; 2:72. [PMID: 22087105 PMCID: PMC3213427 DOI: 10.3389/fphar.2011.00072] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 10/24/2011] [Indexed: 11/28/2022] Open
Abstract
Acetaminophen, also known as APAP or paracetamol, is one of the most widely used analgesics (pain reliever) and antipyretics (fever reducer). According to the U.S. Food and Drug Administration, currently there are 235 approved prescription and over-the-counter drug products containing acetaminophen as an active ingredient. When used as directed, acetaminophen is very safe and effective; however when taken in excess or ingested with alcohol hepatotoxicity and irreversible liver damage can arise. In addition to well known use pain relief and fever reduction, recent laboratory and pre-clinical studies have demonstrated that acetaminophen may also have beneficial effects on blood glucose levels, skeletal muscle function, and potential use as cardioprotective and neuroprotective agents. Extensive laboratory and pre-clinical studies have revealed that these off-label applications may be derived from the ability of acetaminophen to function as an antioxidant. Herein, we will highlight these novel applications of acetaminophen, and attempt, where possible, to highlight how these findings may lead to new directions of inquiry and clinical relevance of other disorders.
Collapse
Affiliation(s)
- Eric R Blough
- Center for Diagnostic Nanosystems, Marshall University Huntington, WV, USA
| | | |
Collapse
|
40
|
Wang Y, Wu M, Al-Rousan R, Liu H, Fannin J, Paturi S, Arvapalli RK, Katta A, Kakarla SK, Rice KM, Triest WE, Blough ER. Iron-Induced Cardiac Damage: Role of Apoptosis and Deferasirox Intervention. J Pharmacol Exp Ther 2010; 336:56-63. [DOI: 10.1124/jpet.110.172668] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|