1
|
Zhang X, Yuan X, Li X, Yu H, Wang T, Zhang C, Wu J, You X. Sodium Danshensu alleviates bone cancer pain by inhibiting the osteoclast differentiation and CGRP expression. Eur J Pharmacol 2025; 992:177296. [PMID: 39900329 DOI: 10.1016/j.ejphar.2025.177296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/05/2025]
Abstract
CONTEXT The morbidity of bone cancer pain (BCP) is on the rise, yet current treatments have limited analgesic efficacy. Sodium Danshensu (SDSS), or sodium 3-(3,4-dihydroxyphenyl)-DL-lactate, exhibits anti-inflammatory, anti-osteoporotic properties. Current research shows that bone cancer pain is closely related to the development of osteoclasts. OBJECTIVE To investigate the analgesic effects of SDSS on BCP in mice and explore the underlying mechanisms. MATERIALS & METHODS Nociceptive behaviors in BCP mice were evaluated by paw withdrawal threshold (PWT) and limb using score (LUS). Network pharmacology, Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation, and molecular docking identified potential targets. Histological analyses, Western blot, RT-qPCR, ELISA, and immunofluorescence staining were performed on mice femurs. RESULTS SDSS significantly increased PWT and LUS in BCP mice. Forty-three common targets were identified, with the estrogen signaling pathway showing the highest enrichment. Molecular docking analysis suggested a potential binding affinity between SDSS and ESRα. SDSS administration up-regulated ESRα expression and down-regulated RANKL, RANK, NFATc1, c-fos, TRAP, and Cathepsin K (CTSK). In addition, SDSS suppressed the abnormal increase of calcitonin gene-related peptide-positive (CGRP+) neural budding and expression in nerve endings, effects which were reversed by ESRa inhibitor ICI-182780. CONCLUSIONS SDSS relieves bone cancer pain by inhibiting osteoclast activity, providing a potential new drug option for cancer pain patients.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China; Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China
| | - Xinru Yuan
- School of Medicine, Shanghai University, Shanghai, 200444, China; Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China
| | - Xin Li
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China; School of Medical Instrument and Food Engineering USST, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Haonan Yu
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Tingfang Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Chuan Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China.
| | - Xingji You
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Shin SY, Kang IS, Kim C. ERK inhibits osteoclast differentiation in RAW 264.7 cells through the osteoprotegerin-mediated autophagy. Bone 2025; 193:117424. [PMID: 39947572 DOI: 10.1016/j.bone.2025.117424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/22/2025] [Accepted: 02/09/2025] [Indexed: 02/25/2025]
Abstract
Osteoclasts (OCs) are bone-resorbing cells derived from the monocyte/macrophage lineage. The extracellular signal-regulated kinase (ERK) pathway controls cellular responses such as proliferation, differentiation, and survival, including those of OCs. In the present study, ERK inhibitors reduced the proliferation of bone marrow-derived macrophages (BMMs) and RAW 264.7 cells. However, ERK inhibitors decreased OC differentiation in BMMs but increased it in RAW 264.7 cells. ERK downregulation using small interfering RNA transfection also increased the OC differentiation and the expression of receptor activator of nuclear factor-κB, OC-specific markers, and OC-associated transcription factors in RAW 264.7 cells. These findings suggest ERK regulates OC differentiation in RAW 264.7 cells differently than in BMMs. Thus, we further investigated the mechanism by which ERK negatively regulates OC differentiation in RAW 264.7 cells. ERK inhibition decreased the expression of osteoprotegerin (OPG), a negative regulator of OC differentiation. OPG knockdown increased OC formation. ERK inhibitors activated the Akt/mammalian target of the rapamycin (mTOR) signaling pathway while inhibiting unc-51-like autophagy activating kinase 1 (ULK1). This resulted in decreased levels of microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and increased levels of p62, thereby reducing autophagy. In addition, OPG knockdown reduced autophagy by activating Akt/mTOR and inhibiting ULK1, resulting in decreased LC3-II and accumulated p62. Therefore, ERK inhibition promoted OC differentiation by downregulating OPG-mediated inhibition of osteoclastogenesis and autophagy in RAW 264.7 cells. These findings highlight ERK's complex role in OC differentiation and suggest that understanding ERK's dual impact on OC differentiation can provide insights into novel treatment strategies for bone-related disorders.
Collapse
Affiliation(s)
- Soo-Young Shin
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea; BK21, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - In-Soon Kang
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Chaekyun Kim
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea; BK21, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
3
|
Moura SR, Sousa AB, Olesen JB, Barbosa MA, Søe K, Almeida MI. Stage-specific modulation of multinucleation, fusion, and resorption by the long non-coding RNA DLEU1 and miR-16 in human primary osteoclasts. Cell Death Dis 2024; 15:741. [PMID: 39389940 PMCID: PMC11467329 DOI: 10.1038/s41419-024-06983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 10/12/2024]
Abstract
Osteoclasts are the only cells able to resorb all the constituents of the bone matrix. While the modulation of osteoclast activity is well established for preventing bone-related diseases, there is an increasing demand for novel classes of anti-resorption agents. Herein, we investigated non-coding RNA molecules and proposed DLEU1 and miR-16 as potential candidates for modulating osteoclast functions. DLEU1 and miR-16 target cell fusion at both the early and late stages of osteoclastogenesis but operate through independent pathways. DLEU1 silencing hinders the fusion process, leading to abrogation of the phagocytic cup fusion modality and a reduction in the fusion events between mononucleated precursors and multinucleated osteoclasts, while miR-16 influences monocyte-to-osteoclast differentiation, impairing osteoclasts formation but not the number of nuclei at early stages. On the other hand, using these non-coding RNAs to engineer mature osteoclasts has implications for bone resorption. Both DLEU1 and miR-16 influence the speed of resorption in pit-forming osteoclasts, without affecting the resorbed area. However, the impact of increasing miR-16 levels extends more broadly, affecting trench-forming osteoclasts as well, leading to a reduction in their percentage, speed, and resorbed area. These findings offer potential new therapeutic targets to ameliorate bone destruction in skeletal diseases.
Collapse
Affiliation(s)
- Sara Reis Moura
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Beatriz Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jacob Bastholm Olesen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mário Adolfo Barbosa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Kent Søe
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Maria Inês Almeida
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
4
|
Xiang Q, Li L, Ji W, Gawlitta D, Walboomers XF, van den Beucken JJJP. Beyond resorption: osteoclasts as drivers of bone formation. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:22. [PMID: 39392536 PMCID: PMC11469995 DOI: 10.1186/s13619-024-00205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Emerging evidence illustrates that osteoclasts (OCs) play diverse roles beyond bone resorption, contributing significantly to bone formation and regeneration. Despite this, OCs remain mysterious cells, with aspects of their lifespan-from origin, fusion, alterations in cellular characteristics, to functions-remaining incompletely understood. Recent studies have identified that embryonic osteoclastogenesis is primarily driven by osteoclast precursors (OCPs) derived from erythromyeloid progenitors (EMPs). These precursor cells subsequently fuse into OCs essential for normal bone development and repair. Postnatally, hematopoietic stem cells (HSCs) become the primary source of OCs, gradually replacing EMP-derived OCs and assuming functional roles in adulthood. The absence of OCs during bone development results in bone structure malformation, including abnormal bone marrow cavity formation and shorter long bones. Additionally, OCs are reported to have intimate interactions with blood vessels, influencing bone formation and repair through angiogenesis regulation. Upon biomaterial implantation, activation of the innate immune system ensues immediately. OCs, originating from macrophages, closely interact with the immune system. Furthermore, evidence from material-induced bone formation events suggests that OCs are pivotal in these de novo bone formation processes. Nevertheless, achieving a pure OC culture remains challenging, and interpreting OC functions in vivo faces difficulties due to the presence of other multinucleated cells around bone-forming biomaterials. We here describe the fusion characteristics of OCPs and summarize reliable markers and morphological changes in OCs during their fusion process, providing guidance for researchers in identifying OCs both in vitro and in vivo. This review focuses on OC formation, characterization, and the roles of OCs beyond resorption in various bone pathophysiological processes. Finally, therapeutic strategies targeting OCs are discussed.
Collapse
Affiliation(s)
- Qianfeng Xiang
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
| | - Lei Li
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, GA, 3508, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, CT, 3584, The Netherlands
| | - X Frank Walboomers
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, the Netherlands
| | - Jeroen J J P van den Beucken
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands.
| |
Collapse
|
5
|
Prins CM, Ceylan M, Hogervorst JMA, Jansen IDC, Schimmel IM, Schoenmaker T, de Vries TJ. Osteogenic differentiation of periodontal ligament fibroblasts inhibits osteoclast formation. Eur J Cell Biol 2024; 103:151440. [PMID: 38954934 DOI: 10.1016/j.ejcb.2024.151440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/02/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
One of the deficits of knowledge on bone remodelling, is to what extent cells that are driven towards osteogenic differentiation can contribute to osteoclast formation. The periodontal ligament fibroblast (PdLFs) is an ideal model to study this, since they play a role in osteogenesis, and can also orchestrate osteoclastogenesis.when co-cultured with a source of osteoclast-precursor such as peripheral blood mononuclear cells (PBMCs). Here, the osteogenic differentiation of PdLFs and the effects of this process on the formation of osteoclasts were investigated. PdLFs were obtained from extracted teeth and exposed to osteogenic medium for 0, 7, 14, or 21 out of 21 days. After this 21-day culturing period, the cells were co-cultured with peripheral blood mononuclear cells (PBMCs) for an additional 21 days to study osteoclast formation. Alkaline phosphatase (ALP) activity, calcium concentration, and gene expression of osteogenic markers were assessed at day 21 to evaluate the different stages of osteogenic differentiation. Alizarin red staining and scanning electron microscopy were used to visualise mineralisation. Tartrate-resistant acid phosphatase (TRAcP) activity, TRAcP staining, multinuclearity, the expression of osteoclastogenesis-related genes, and TNF-α and IL-1β protein levels were assessed to evaluate osteoclastogenesis. The osteogenesis assays revealed that PdLFs became more differentiated as they were exposed to osteogenic medium for a longer period of time. Mineralisation by these osteogenic cells increased with the progression of differentiation. Culturing PdLFs in osteogenic medium before co-culturing them with PMBCs led to a significant decrease in osteoclast formation. qPCR revealed significantly lower DCSTAMP expression in cultures that had been supplemented with osteogenic medium. Protein levels of osteoclastogenesis stimulator TNF-α were also lower in these cultures. The present study shows that the osteogenic differentiation of PdLFs reduces the osteoclastogenic potential of these cells. Immature cells of the osteoblastic lineage may facilitate osteoclastogenesis, whereas mature mineralising cells may suppress the formation of osteoclasts. Therefore, mature and immature osteogenic cells may have different roles in maintaining bone homeostasis.
Collapse
Affiliation(s)
- Caya M Prins
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, the Netherlands; Amsterdam University College (University of Amsterdam and Vrije Universiteit), Amsterdam, the Netherlands
| | - Merve Ceylan
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, the Netherlands
| | - Jolanda M A Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, the Netherlands
| | - Ineke D C Jansen
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, the Netherlands
| | - Irene M Schimmel
- Department of Medical Biology, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, the Netherlands
| | - Teun J de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Jiménez-Ortega RF, Ortega-Meléndez AI, Patiño N, Rivera-Paredez B, Hidalgo-Bravo A, Velázquez-Cruz R. The Involvement of microRNAs in Bone Remodeling Signaling Pathways and Their Role in the Development of Osteoporosis. BIOLOGY 2024; 13:505. [PMID: 39056698 PMCID: PMC11273958 DOI: 10.3390/biology13070505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Bone remodeling, crucial for maintaining the balance between bone resorption and formation, relies on the coordinated activity of osteoclasts and osteoblasts. During osteoclastogenesis, hematopoietic stem cells (HSCs) differentiate into the osteoclast lineage through the signaling pathways OPG/RANK/RANKL. On the other hand, during osteoblastogenesis, mesenchymal stem cells (MSCs) differentiate into the osteoblast lineage through activation of the signaling pathways TGF-β/BMP/Wnt. Recent studies have shown that bone remodeling is regulated by post-transcriptional mechanisms including microRNAs (miRNAs). miRNAs are small, single-stranded, noncoding RNAs approximately 22 nucleotides in length. miRNAs can regulate virtually all cellular processes through binding to miRNA-response elements (MRE) at the 3' untranslated region (3'UTR) of the target mRNA. miRNAs are involved in controlling gene expression during osteogenic differentiation through the regulation of key signaling cascades during bone formation and resorption. Alterations of miRNA expression could favor the development of bone disorders, including osteoporosis. This review provides a general description of the miRNAs involved in bone remodeling and their significance in osteoporosis development.
Collapse
Affiliation(s)
- Rogelio F. Jiménez-Ortega
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
- Unidad de Acupuntura Humana Rehabilitatoria, Universidad Estatal del Valle de Ecatepec (UNEVE), Ecatepec de Morelos 55210, Mexico
| | - Alejandra I. Ortega-Meléndez
- Unidad Académica de Ciencias de la Salud, Universidad ETAC Campus Coacalco, Coacalco de Berriozábal 55700, Mexico;
| | - Nelly Patiño
- Unidad de Citometría de Flujo (UCiF), Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Berenice Rivera-Paredez
- Centro de Investigación en Políticas, Población y Salud, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Alberto Hidalgo-Bravo
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación, Mexico City 14389, Mexico;
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| |
Collapse
|
7
|
Ceylan M, Schoenmaker T, Hogervorst JMA, Jansen IDC, Schimmel IM, Prins CM, Laine ML, de Vries TJ. Osteogenic Differentiation of Human Gingival Fibroblasts Inhibits Osteoclast Formation. Cells 2024; 13:1090. [PMID: 38994943 PMCID: PMC11240541 DOI: 10.3390/cells13131090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Gingival fibroblasts (GFs) can differentiate into osteoblast-like cells and induce osteoclast precursors to differentiate into osteoclasts. As it is unclear whether these two processes influence each other, we investigated how osteogenic differentiation of GFs affects their osteoclast-inducing capacity. To establish step-wise mineralization, GFs were cultured in four groups for 3 weeks, without or with osteogenic medium for the final 1, 2, or all 3 weeks. The mineralization was assessed by ALP activity, calcium concentration, scanning electron microscopy (SEM), Alizarin Red staining, and quantitative PCR (qPCR). To induce osteoclast differentiation, these cultures were then co-cultured for a further 3 weeks with peripheral blood mononuclear cells (PBMCs) containing osteoclast precursors. Osteoclast formation was assessed at different timepoints with qPCR, enzyme-linked immunosorbent assay (ELISA), TRAcP activity, and staining. ALP activity and calcium concentration increased significantly over time. As confirmed with the Alizarin Red staining, SEM images showed that the mineralization process occurred over time. Osteoclast numbers decreased in the GF cultures that had undergone osteogenesis. TNF-α secretion, a costimulatory molecule for osteoclast differentiation, was highest in the control group. GFs can differentiate into osteoblast-like cells and their degree of differentiation reduces their osteoclast-inducing capacity, indicating that, with appropriate stimulation, GFs could be used in regenerative periodontal treatments.
Collapse
Affiliation(s)
- Merve Ceylan
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Jolanda M. A. Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Ineke D. C. Jansen
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Irene M. Schimmel
- Department of Medical Biology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam and Vrije University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Caya M. Prins
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Marja L. Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Teun J. de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
8
|
Choi M, Toscano C, Edman MC, de Paiva CS, Hamm-Alvarez SF. The Aging Lacrimal Gland of Female C57BL/6J Mice Exhibits Multinucleate Macrophage Infiltration Associated With Lipid Dysregulation. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 38829671 PMCID: PMC11156205 DOI: 10.1167/iovs.65.6.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose Loss of function of the lacrimal gland (LG), which produces the aqueous tear film, is implicated in age-related dry eye. To better understand this deterioration, we evaluated changes in lipid metabolism and inflammation in LGs from an aging model. Methods LG sections from female C57BL/6J mice of different ages (young, 2-3 months; intermediate, 10-14 months; old, ≥24 months) were stained with Oil Red-O or Toluidine blue to detect lipids. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis and western blotting of LG lysates determined differences in the expression of genes and proteins related to lipid metabolism. A photobleaching protocol to quench age-related autofluorescence was used in LG sections to evaluate changes in immunofluorescence associated with NPC1, NPC2, CTSL, and macrophages (F4/80, CD11b) with age using confocal fluorescence microscopy. Results Old LGs showed increased lipids prominent in basal aggregates in acinar cells and in extra-acinar sites. LG gene expression of Npc1, Npc2, Lipa, and Mcoln2, encoding proteins involved in lipid metabolism, was increased with age. NPC1 was also significantly increased in old LGs by western blotting. In photobleached LG sections, confocal fluorescence microscopy imaging of NPC1, NPC2, and CTSL immunofluorescence showed age-associated enrichment in macrophages labeled to detect F4/80. Although mononuclear macrophages were detectable in LG at all ages, this novel multinucleate macrophage population containing NPC1, NPC2, and CTSL and enriched in F4/80 and some CD11b was increased with age at extra-acinar sites. Conclusions Lipid-metabolizing proteins enriched in F4/80-positive multinucleated macrophages are increased in old LGs adjacent to sites of lipid deposition in acini.
Collapse
Affiliation(s)
- Minchang Choi
- Department of Pharmacology and Pharmaceutical Sciences, USC Alfred E. Mann School of Pharmacy, Los Angeles, California, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Cindy Toscano
- Department of Pharmacology and Pharmaceutical Sciences, USC Alfred E. Mann School of Pharmacy, Los Angeles, California, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Maria C. Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, California, United States
- Department of Ophthalmology, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Cintia S. de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, USC Alfred E. Mann School of Pharmacy, Los Angeles, California, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, California, United States
- Department of Ophthalmology, Keck School of Medicine of USC, Los Angeles, California, United States
| |
Collapse
|
9
|
Liu X, Wang X, Ma X, Li H, Miao C, Tian Z, Hu Y. Genetic disruption of Ano5 leads to impaired osteoclastogenesis for gnathodiaphyseal dysplasia. Oral Dis 2024; 30:1403-1415. [PMID: 36989132 DOI: 10.1111/odi.14562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023]
Abstract
OBJECTIVES Gnathodiaphyseal dysplasia (GDD; OMIM#166260) is a rare skeletal genetic disorder characterized by sclerosis of tubular bones and cemento-osseous lesions in mandibles. TMEM16E/ANO5 gene mutations have been identified in patients with GDD. Here, Ano5 knockout (Ano5-/-) mice with enhanced osteoblastogenesis were used to investigate whether Ano5 disruption affects osteoclastogenesis. SUBJECTS AND METHODS The maturation of osteoclasts, formation of F-actin ring and bone resorption were detected by immunohistochemistry, TRAP, phalloidin staining and Coming Osteo assays. The expression of osteoclast-related factors was measured by qRT-PCR. Early signaling pathways were verified by western blot. RESULTS Ano5-/- mice exhibited inhibitory formation of multinucleated osteoclasts with a reduction of TRAP activity. The expression of Nfatc1, c-Fos, Trap, Ctsk, Mmp9, Rank and Dc-stamp was significantly decreased in bone tissues and bone marrow-derived macrophages (BMMs) of Ano5-/- mice. Ano5-/- osteoclasts manifested disrupted actin ring and less mineral resorption. RANKL-induced early signaling pathways were suppressed in Ano5-/- osteoclasts and Ano5 knockdown RAW264.7 cells. Moreover, the inhibitory effects of NF-κB signalling pathway on osteoclastogenesis were partially attenuated with NF-κB signalling activator. CONCLUSIONS Ano5 deficiency impairs osteoclastogenesis, which leads to enhanced osteogenic phenotypes mediated by bone homeostasis dysregulation.
Collapse
Affiliation(s)
- Xiu Liu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiaoyu Wang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Xinrong Ma
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Hongyu Li
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Congcong Miao
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhenchuan Tian
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Ying Hu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
10
|
Blümke A, Simon J, Leber E, Scatena M, Giachelli CM. Differentiation and Characterization of Osteoclasts from Human Induced Pluripotent Stem Cells. J Vis Exp 2024:10.3791/66527. [PMID: 38587386 PMCID: PMC11108805 DOI: 10.3791/66527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
This protocol details the propagation and passaging of human iPSCs and their differentiation into osteoclasts. First, iPSCs are dissociated into a single-cell suspension for further use in embryoid body induction. Following mesodermal induction, embryoid bodies undergo hematopoietic differentiation, producing a floating hematopoietic cell population. Subsequently, the harvested hematopoietic cells undergo a macrophage colony-stimulating factor maturation step and, finally, osteoclast differentiation. After osteoclast differentiation, osteoclasts are characterized by staining for TRAP in conjunction with a methyl green nuclear stain. Osteoclasts are observed as multinucleated, TRAP+ polykaryons. Their identification can be further supported by Cathepsin K staining. Bone and mineral resorption assays allow for functional characterization, confirming the identity of bona fide osteoclasts. This protocol demonstrates a robust and versatile method to differentiate human osteoclasts from iPSCs and allows for easy adoption in applications requiring large quantities of functional human osteoclasts. Applications in the areas of bone research, cancer research, tissue engineering, and endoprosthesis research could be envisioned.
Collapse
Affiliation(s)
- Alexander Blümke
- Department of Bioengineering, Department of Medicine, University of Washington; Department of Orthopedics and Trauma Surgery, Medical Faculty Mannheim, Heidelberg University
| | - Jessica Simon
- Department of Bioengineering, Department of Medicine, University of Washington
| | - Elizabeth Leber
- Department of Bioengineering, Department of Medicine, University of Washington
| | - Marta Scatena
- Department of Bioengineering, Department of Medicine, University of Washington
| | - Cecilia M Giachelli
- Department of Bioengineering, Department of Medicine, University of Washington;
| |
Collapse
|
11
|
Chandrabalan S, Dang L, Hansen U, Timmen M, Wehmeyer C, Stange R, Beißbarth T, Binder C, Bleckmann A, Menck K. A novel method to efficiently differentiate human osteoclasts from blood-derived monocytes. Biol Proced Online 2024; 26:7. [PMID: 38504200 PMCID: PMC10949786 DOI: 10.1186/s12575-024-00233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/09/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Osteoclasts are the tissue-specific macrophage population of the bone and unique in their bone-resorbing activity. Hence, they are fundamental for bone physiology in health and disease. However, efficient protocols for the isolation and study of primary human osteoclasts are scarce. In this study, we aimed to establish a protocol, which enables the efficient differentiation of functional human osteoclasts from monocytes. RESULTS Human monocytes were isolated through a double-density gradient from donor blood. Compared to standard differentiation schemes in polystyrene cell culture dishes, the yield of multinuclear osteoclasts was significantly increased upon initial differentiation of monocytes to macrophages in fluorinated ethylene propylene (FEP) Teflon bags. This initial differentiation phase was then followed by the development of terminal osteoclasts by addition of Receptor Activator of NF-κB Ligand (RANKL). High concentrations of RANKL and Macrophage colony-stimulating factor (M-CSF) as well as an intermediate cell density further supported efficient cell differentiation. The generated cells were highly positive for CD45, CD14 as well as the osteoclast markers CD51/ITGAV and Cathepsin K/CTSK, thus identifying them as osteoclasts. The bone resorption of the osteoclasts was significantly increased when the cells were differentiated from macrophages derived from Teflon bags compared to macrophages derived from conventional cell culture plates. CONCLUSION Our study has established a novel protocol for the isolation of primary human osteoclasts that improves osteoclastogenesis in comparison to the conventionally used cultivation approach.
Collapse
Affiliation(s)
- Suganja Chandrabalan
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Muenster, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, Muenster, Germany
| | - Linh Dang
- Department of Medical Bioinformatics, University Medical Center Goettingen, Goettingen, Germany
| | - Uwe Hansen
- Institute of Musculoskeletal Medicine (IMM), University of Muenster, Muenster, Germany
| | - Melanie Timmen
- Institute of Musculoskeletal Medicine (IMM), University of Muenster, Muenster, Germany
| | - Corinna Wehmeyer
- Institute of Musculoskeletal Medicine (IMM), University of Muenster, Muenster, Germany
| | - Richard Stange
- Institute of Musculoskeletal Medicine (IMM), University of Muenster, Muenster, Germany
| | - Tim Beißbarth
- Department of Medical Bioinformatics, University Medical Center Goettingen, Goettingen, Germany
| | - Claudia Binder
- Department of Hematology/Medical Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Annalen Bleckmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Muenster, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, Muenster, Germany
| | - Kerstin Menck
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Muenster, Muenster, Germany.
- West German Cancer Center, University Hospital Muenster, Muenster, Germany.
| |
Collapse
|
12
|
Yu X, Hu J, Yang X, Xu Q, Chen H, Zhan P, Zhang B. Sesamin inhibits RANKL-induced osteoclastogenesis and attenuates LPS-induced osteolysis via suppression of ERK and NF-κB signalling pathways. J Cell Mol Med 2024; 28:e18056. [PMID: 37988238 PMCID: PMC10828734 DOI: 10.1111/jcmm.18056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023] Open
Abstract
Infection by bacterial products in the implant and endotoxin introduced by wear particles activate immune cells, enhance pro-inflammatory cytokines production, and ultimately promote osteoclast recruitment and activity. These factors are known to play an important role in osteolysis as well as potential targets for the treatment of osteolysis. Sesamin has been shown to have a variety of biological functions, such as inhibiting inflammation, anti-tumour and involvement in the regulation of fatty acid and cholesterol metabolism. However, the therapeutic effect of sesamin on osteolysis and its mechanism remain unclear. Present studies shown that in the condition of in vitro, sesamin could inhibit osteoclastogenesis and bone resorption, as well as suppressing the expression of osteoclast-specific genes. Further studies on the mechanism suggest that the effect of sesamin on human osteoclasts was mediated by blocking the ERK and NF-κB signalling pathways. Besides, sesamin was found to be effective in treating LPS-induced osteolysis by decreasing the production of pro-inflammatory cytokines and inhibiting osteoclastogenesis in vivo. Sesamin was non-toxic to heart, liver, kidney, lung and spleen. Therefore, sesamin is a promising phytochemical agent for the therapy of osteolysis-related diseases caused by inflammation and excessive osteoclast activation.
Collapse
Affiliation(s)
- Xiaolong Yu
- Orthopedics DepartmentThe First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research CenterNanchangChina
| | - Jiawei Hu
- Orthopedics DepartmentThe First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research CenterNanchangChina
| | - Xinming Yang
- Orthopedics DepartmentThe First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research CenterNanchangChina
| | - Qiang Xu
- Orthopedics DepartmentThe First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research CenterNanchangChina
| | - Hangjun Chen
- Orthopedics DepartmentThe First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research CenterNanchangChina
| | - Ping Zhan
- Orthopedics DepartmentThe First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research CenterNanchangChina
| | - Bin Zhang
- Orthopedics DepartmentThe First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research CenterNanchangChina
| |
Collapse
|
13
|
Gao YM, Pei Y, Zhao FF, Wang L. Osteoclasts in Osteosarcoma: Mechanisms, Interactions, and Therapeutic Prospects. Cancer Manag Res 2023; 15:1323-1337. [PMID: 38027241 PMCID: PMC10661907 DOI: 10.2147/cmar.s431213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Osteosarcoma is an extremely malignant tumor, and its pathogenesis is complex and remains incompletely understood. Most cases of osteosarcoma are accompanied by symptoms of bone loss or result in pathological fractures due to weakened bones. Enhancing the survival rate of osteosarcoma patients has proven to be a long-standing challenge. Numerous studies mentioned in this paper, including in-vitro, in-vivo, and in-situ studies have consistently indicated a close association between the symptoms of bone loss associated with osteosarcoma and the presence of osteoclasts. As the sole cells capable of bone resorption, osteoclasts participate in a malignant cycle within the osteosarcoma microenvironment. These cells interact with osteoblasts and osteosarcoma cells, secreting various factors that further influence these cells, disrupting bone homeostasis, and shifting the balance toward bone resorption, thereby promoting the onset and progression of osteosarcoma. Moreover, the interaction between osteoclasts and various other cells types, such as tumor-associated macrophages, myeloid-derived suppressor cells, DCs cells, T cells, and tumor-associated fibroblasts in the osteosarcoma microenvironment plays a crucial role in disease progression. Consequently, understanding the role of osteoclasts in osteosarcoma has sparked significant interest. This review primarily examines the physiological characteristics and functional mechanisms of osteoclasts in osteosarcoma, and briefly discusses potential therapies targeting osteoclasts for osteosarcoma treatment. These studies provide fresh ideas and directions for future research on the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yi-Ming Gao
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Yan Pei
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Fei-Fei Zhao
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Ling Wang
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
14
|
Quaresma TC, de Aguiar Valentim L, de Sousa JR, de Souza Aarão TL, Fuzii HT, Duarte MIS, de Souza J, Quaresma JAS. Immunohistochemical Characterization of M1, M2, and M4 Macrophages in Leprosy Skin Lesions. Pathogens 2023; 12:1225. [PMID: 37887741 PMCID: PMC10610015 DOI: 10.3390/pathogens12101225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Mycobacterium leprae is the etiological agent of leprosy. Macrophages (Mφs) are key players involved in the pathogenesis of leprosy. In this study, immunohistochemical analysis was performed to examine the phenotype of Mφ subpopulations, namely M1, M2, and M4, in the skin lesions of patients diagnosed with leprosy. Based on the database of treatment-naïve patients treated between 2015 and 2019 at the Department of Dermatology of the University of the State of Pará, Belém, routine clinical screening samples were identified. The monolabeling protocol was used for M1 macrophages (iNOS, IL-6, TNF-α) and M2 macrophages (IL-10, IL-13, CD163, Arginase 1, TGF-β, FGFb), and the double-labeling protocol was used for M4 macrophages (IL-6, MMP7, MRP8, TNF-α e CD68). To confirm the M4 macrophage lineage, double labeling of the monoclonal antibodies CD68 and MRP8 was also performed. Our results demonstrated a statistically significant difference for the M1 phenotype among the Virchowian (VV) (4.5 ± 1.3, p < 0.0001), Borderline (1.6 ± 0.4, p < 0.0001), and tuberculoid (TT) (12.5 ± 1.8, p < 0.0001) clinical forms of leprosy. Additionally, the M2 phenotype showed a statistically significant difference among the VV (12.5 ± 2.3, p < 0.0001), Borderline (1.3 ± 0.2, p < 0.0001), and TT (3.2 ± 0.7, p < 0.0001) forms. For the M4 phenotype, a statistically significant difference was observed in the VV (9.8 ± 1.7, p < 0.0001), Borderline (1.2 ± 0.2, p < 0.0001), and TT (2.6 ± 0.7, p < 0.0001) forms. A significant correlation was observed between the VV M1 and M4 (r = 0.8712; p = 0.0000) and between the VV M2 × TT M1 (r = 0.834; p = 0.0002) phenotypes. The M1 Mφs constituted the predominant Mφ subpopulation in the TT and Borderline forms of leprosy, whereas the M2 Mφs showed increased immunoexpression and M4 was the predominant Mφ phenotype in VV leprosy. These results confirm the relationship of the Mφ profile with chronic pathological processes of the inflammatory response in leprosy.
Collapse
Affiliation(s)
- Tatiane Costa Quaresma
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Lívia de Aguiar Valentim
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Jorge Rodrigues de Sousa
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Tinara Leila de Souza Aarão
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
- School of Medicine, Federal University of Para-UFPA, Altamira 68440-000, Brazil
| | - Hellen Thais Fuzii
- Health Department, Tropical Medicine Center, Federal University of Para-NMT-UFPA, Belem 66055-240, Brazil
| | | | - Juarez de Souza
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Juarez Antônio Simões Quaresma
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
- School of Medicine, Federal University of Para-UFPA, Altamira 68440-000, Brazil
- Health Department, Tropical Medicine Center, Federal University of Para-NMT-UFPA, Belem 66055-240, Brazil
- School of Medicine, Sao Paulo University, Sao Paulo 01246-903, Brazil
| |
Collapse
|
15
|
Cho CY, Kang SH, Kim BC, Kim TK, Kim JH, Kim M, Sohn Y, Jung HS. Gleditsiae fructus regulates osteoclastogenesis by inhibiting the c‑Fos/NFATc1 pathway and alleviating bone loss in an ovariectomy model. Mol Med Rep 2023; 28:187. [PMID: 37594079 PMCID: PMC10463233 DOI: 10.3892/mmr.2023.13074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023] Open
Abstract
Medical and economic developments have allowed the human lifespan to extend and, as a result, the elderly population has increased worldwide. Osteoporosis is a common geriatric disease that has no symptoms and even a small impact can cause fractures in patients, leading to a serious deterioration in the quality of life. Osteoporosis treatment typically involves bisphosphonates and selective estrogen receptor modulators. However, these treatments are known to cause severe side effects, such as mandibular osteonecrosis and breast cancer, if used for an extended period of time. Therefore, it is essential to develop therapeutic agents from natural products that have fewer side effects. Gleditsiae fructus (GF) is a dried or immature fruit of Gleditsia sinensis Lam. and is composed of various triterpenoid saponins. The anti‑inflammatory effect of GF has been confirmed in various diseases, and since the anti‑inflammatory effect plays a major role in inhibiting osteoclast differentiation, GF was expected to be effective in osteoclast differentiation and menopausal osteoporosis; however, to the best of our knowledge, it has not yet been studied. Therefore, the present study was designed to examine the effect of GF on osteoclastogenesis and to investigate the mechanism underlying inhibition of osteoclast differentiation. The effects of GF on osteoclastogenesis were determined in vitro by tartrate‑resistant acid phosphatase (TRAP) staining, pit formation assays, filamentous actin (F‑actin) ring formation assays, western blotting and reverse transcription‑quantitative PCR analyses. Furthermore, the administration of GF to an animal model exhibiting menopausal osteoporosis allowed for the analysis of alterations in the bone microstructure of the femur using micro‑CT. Additionally, assessments of femoral tissue and serum were conducted. The present study revealed that the administration of GF resulted in a reduction in osteoclast levels, F‑actin rings, TRAP activity and pit area. Furthermore, GF showed a dose‑dependent suppression of nuclear factor of activated T‑cells cytoplasmic, c‑Fos and other osteoclastogenesis‑related markers.
Collapse
Affiliation(s)
- Chang-Young Cho
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02-447, Republic of Korea
| | - Se Hwang Kang
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02-447, Republic of Korea
| | - Byung-Chan Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02-447, Republic of Korea
| | - Tae-Kyu Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02-447, Republic of Korea
| | - Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02-447, Republic of Korea
| | - Minsun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02-447, Republic of Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02-447, Republic of Korea
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02-447, Republic of Korea
| |
Collapse
|
16
|
Lee JJ, Hsu YC, Huang WC, Cheng SP. Upregulation of dendrocyte-expressed seven transmembrane protein is associated with unfavorable outcomes in differentiated thyroid cancer. Endocrine 2023; 81:513-520. [PMID: 37058220 DOI: 10.1007/s12020-023-03364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Abstract
PURPOSE Dendritic cell infiltrates are increased in thyroid cancer but may have a defective ability to provoke effective immune responses. In this study, we aimed to identify potential thyroid cancer biomarkers linked to dendritic cell development and evaluate their prognostic relevance. METHODS Through a bioinformatics search, we identified the dendrocyte-expressed seven transmembrane protein (DCSTAMP) as a prognostic gene involved in dendritic cell differentiation for thyroid cancer. Immunohistochemical analyses of DCSTAMP expression were performed and correlated with clinical outcomes. RESULTS DCSTAMP was overexpressed in a variety of types of thyroid cancers, while normal thyroid tissue or benign thyroid lesions exhibited low or undetectable DCSTAMP immunoreactivity. The results of automated quantification were consistent with subjective semiquantitative scoring. Among 144 patients with differentiated thyroid cancer, high DCSTAMP expression was associated with papillary tumor type (p < 0.001), extrathyroidal extension (p = 0.007), lymph node metastasis (p < 0.001), and BRAF V600E mutation (p = 0.029). Patients with tumors showing high DCSTAMP expression had shorter overall (p = 0.027) and recurrence-free (p = 0.042) survival. CONCLUSION This study provides the first evidence of DCSTAMP overexpression in thyroid cancer. Apart from the prognostic implications, studies are needed to explore its potential immunomodulatory role in thyroid cancer.
Collapse
Affiliation(s)
- Jie-Jen Lee
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Wen-Chien Huang
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan.
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan.
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
17
|
Valerio MS, Pace WA, Dolan CP, Edwards JB, Janakiram NB, Potter BK, Dearth CL, Goldman SM. Development and characterization of an intra-articular fracture mediated model of post-traumatic osteoarthritis. J Exp Orthop 2023; 10:68. [PMID: 37400744 DOI: 10.1186/s40634-023-00625-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/26/2023] [Indexed: 07/05/2023] Open
Abstract
PURPOSE This study aimed to develop and characterize a closed intra-articular fracture (IAF) mediated post-traumatic osteoarthritis (PTOA) model in rats to serve as a testbed for putative disease modifying interventions. METHODS Male rats were subject to a 0 Joule (J), 1 J, 3 J, or 5 J blunt-force impact to the lateral aspect of the knee and allowed to heal for 14 and 56 days. Micro-CT was performed at time of injury and at the specified endpoints to assess bone morphometry and bone mineral density measurements. Cytokines and osteochondral degradation markers were assayed from serum and synovial fluid via immunoassays. Histopathological analyses were performed on decalcified tissues and assessed for evidence of osteochondral degradation. RESULTS High-energy (5 J) blunt impacts consistently induced IAF to the proximal tibia, distal femur, or both while lower energy (1 J and 3 J) impacts did not. CCL2 was found to be elevated in the synovial fluid of rats with IAF at both 14- and 56-days post-injury while COMP and NTX-1 were upregulated chronically relative to sham controls. Histological analysis showed increased immune cell infiltration, increased osteoclasts and osteochondral degradation with IAF relative to sham. CONCLUSION Based on results from the current study, our data indicates that a 5 J blunt-forced impact adequately and consistently induces hallmark osteoarthritic changes to the articular surface and subchondral bone at 56 days after IAF. Marked development of PTOA pathobiology suggest this model will provide a robust testbed for screening putative disease modifying interventions that might be translated to the clinic for militarily relevant, high-energy joint injuries.
Collapse
Affiliation(s)
- Michael S Valerio
- Research and Surveillance Division DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, USA
- Department of Surgery, Uniformed Services University of the Health Sciences-Walter Reed National Military Medical Center, Bethesda, USA
| | - William A Pace
- Department of Biomedical Engineering, Vanderbilt University, Nashville, USA
| | - Connor P Dolan
- Research and Surveillance Division DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, USA
- Department of Surgery, Uniformed Services University of the Health Sciences-Walter Reed National Military Medical Center, Bethesda, USA
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX, USA
| | - Jorge B Edwards
- Research and Surveillance Division DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, USA
- Department of Surgery, Uniformed Services University of the Health Sciences-Walter Reed National Military Medical Center, Bethesda, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, USA
| | - Naveena B Janakiram
- Research and Surveillance Division DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, USA
- Department of Surgery, Uniformed Services University of the Health Sciences-Walter Reed National Military Medical Center, Bethesda, USA
- Translational Research Program, Division of Cancer Treatment and Diagnosis (DCTD), National Cancer Institute (NCI), Rockville, MD, USA
| | - Benjamin K Potter
- Department of Surgery, Uniformed Services University of the Health Sciences-Walter Reed National Military Medical Center, Bethesda, USA
- Department of Orthopedic Surgery, Walter Reed National Military Medical Center, Bethesda, USA
| | - Christopher L Dearth
- Research and Surveillance Division DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, USA
- Department of Surgery, Uniformed Services University of the Health Sciences-Walter Reed National Military Medical Center, Bethesda, USA
| | - Stephen M Goldman
- Research and Surveillance Division DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, USA.
- Department of Surgery, Uniformed Services University of the Health Sciences-Walter Reed National Military Medical Center, Bethesda, USA.
| |
Collapse
|
18
|
Cellular and Molecular Mechanisms Associating Obesity to Bone Loss. Cells 2023; 12:cells12040521. [PMID: 36831188 PMCID: PMC9954309 DOI: 10.3390/cells12040521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Obesity is an alarming disease that favors the upset of other illnesses and enhances mortality. It is spreading fast worldwide may affect more than 1 billion people by 2030. The imbalance between excessive food ingestion and less energy expenditure leads to pathological adipose tissue expansion, characterized by increased production of proinflammatory mediators with harmful interferences in the whole organism. Bone tissue is one of those target tissues in obesity. Bone is a mineralized connective tissue that is constantly renewed to maintain its mechanical properties. Osteoblasts are responsible for extracellular matrix synthesis, while osteoclasts resorb damaged bone, and the osteocytes have a regulatory role in this process, releasing growth factors and other proteins. A balanced activity among these actors is necessary for healthy bone remodeling. In obesity, several mechanisms may trigger incorrect remodeling, increasing bone resorption to the detriment of bone formation rates. Thus, excessive weight gain may represent higher bone fragility and fracture risk. This review highlights recent insights on the central mechanisms related to obesity-associated abnormal bone. Publications from the last ten years have shown that the main molecular mechanisms associated with obesity and bone loss involve: proinflammatory adipokines and osteokines production, oxidative stress, non-coding RNA interference, insulin resistance, and changes in gut microbiota. The data collection unveils new targets for prevention and putative therapeutic tools against unbalancing bone metabolism during obesity.
Collapse
|
19
|
Garcia-Hernandez MDLL, Rangel-Moreno J, Garcia-Castaneda M, Kenney HM, Paine A, Thullen M, Anandarajah AP, Schwarz EM, Dirksen RT, Ritchlin CT. Dendritic cell-specific transmembrane protein is required for synovitis and bone resorption in inflammatory arthritis. Front Immunol 2022; 13:1026574. [PMID: 36420272 PMCID: PMC9677122 DOI: 10.3389/fimmu.2022.1026574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022] Open
Abstract
Objective Dendritic Cell-Specific Transmembrane Protein (DC-STAMP) is essential for the formation of fully functional multinucleated osteoclasts. DC-STAMP deficient mice, under physiological conditions, exhibit osteopetrosis and develop systemic autoimmunity with age. However, the function of DC-STAMP in inflammation is currently unknown. We examined whether genetic ablation of DC-STAMP attenuates synovitis and bone erosion in TNF transgenic (Tg) and K/BxN serum-induced murine rheumatoid arthritis. Methods We evaluated arthritis onset in Tg(hTNF) mice lacking DC-STAMP and 50:50 chimeric mice by visual examination, measurement of ankle width, micro-CT-scan analysis and quantitation of the area occupied by osteoclasts in bone sections. To further investigate the cellular and molecular events modulated by DC-STAMP, we measured serum cytokines, determined changes in cytokine mRNA expression by monocytes activated with IL4 or LPS/IFNγ and enumerated immune cells in inflamed mouse joints. Results Synovitis, bone loss and matrix destruction are markedly reduced in Dcstamp-/-;Tg(hTNF) mice. These mice had significantly lower CCL2 and murine TNF serum levels and exhibited impaired monocyte joint migration compared to Tg(hTNF) mice. The reduced arthritic severity in Dcstamp deficient mice was associated with compromised monocyte chemotaxis, cytokine production, and M2 polarization. Conclusion These results reveal that DC-STAMP modulates both bone resorption and inflammation and may serve as an activity biomarker and therapeutic target in inflammatory arthritis and metabolic bone disease.
Collapse
Affiliation(s)
| | - Javier Rangel-Moreno
- Division of Allergy/Immunology and Rheumatology, University of Rochester, Rochester, NY, United States
| | - Maricela Garcia-Castaneda
- Department of Pharmacology and Physiology (SMD), University of Rochester Medical Center, Rochester, NY, United States
| | - H. Mark Kenney
- Center for Musculoskeletal Research. University of Rochester, Rochester, NY, United States
| | - Ananta Paine
- Division of Allergy/Immunology and Rheumatology, University of Rochester, Rochester, NY, United States
| | - Michael Thullen
- Center for Musculoskeletal Research. University of Rochester, Rochester, NY, United States
| | - Allen P. Anandarajah
- Division of Allergy/Immunology and Rheumatology, University of Rochester, Rochester, NY, United States
| | - Edward M. Schwarz
- Center for Musculoskeletal Research. University of Rochester, Rochester, NY, United States
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology (SMD), University of Rochester Medical Center, Rochester, NY, United States
| | - Christopher T. Ritchlin
- Division of Allergy/Immunology and Rheumatology, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research. University of Rochester, Rochester, NY, United States
| |
Collapse
|
20
|
Elson A, Anuj A, Barnea-Zohar M, Reuven N. The origins and formation of bone-resorbing osteoclasts. Bone 2022; 164:116538. [PMID: 36028118 DOI: 10.1016/j.bone.2022.116538] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Osteoclasts (OCLs) are hematopoietic cells whose physiological function is to degrade bone. OCLs are key players in the processes that determine and maintain the mass, shape, and physical properties of bone. OCLs adhere to bone tightly and degrade its matrix by secreting protons and proteases onto the underlying surface. The combination of low pH and proteases degrades the mineral and protein components of the matrix and forms a resorption pit; the degraded material is internalized by the cell and then secreted into the circulation. Insufficient or excessive activity of OCLs can lead to significant changes in bone and either cause or exacerbate symptoms of diseases, as in osteoporosis, osteopetrosis, and cancer-induced bone lysis. OCLs are derived from monocyte-macrophage precursor cells whose origins are in two distinct embryonic cell lineages - erythromyeloid progenitor cells of the yolk sac, and hematopoietic stem cells. OCLs are formed in a multi-stage process that is induced by the cytokines M-CSF and RANKL, during which the cells differentiate, fuse to form multi-nucleated cells, and then differentiate further to become mature, bone-resorbing OCLs. Recent studies indicate that OCLs can undergo fission in vivo to generate smaller cells, called "osteomorphs", that can be "re-cycled" by fusing with other cells to form new OCLs. In this review we describe OCLs and discuss their cellular origins and the cellular and molecular events that drive osteoclastogenesis.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anuj Anuj
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
21
|
Zhang Y, Jiang B, Zhang P, Chiu SK, Lee MH. Complete abrogation of key osteoclast markers with a membrane-anchored tissue inhibitor of metalloproteinase. Bone Joint Res 2022; 11:763-776. [DOI: 10.1302/2046-3758.1111.bjr-2022-0147.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aims Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the zinc-dependent matrix metalloproteinases (MMP) and A disintegrin and metalloproteinases (ADAM) involved in extracellular matrix modulation. The present study aims to develop the TIMPs as biologics for osteoclast-related disorders. Methods We examine the inhibitory effect of a high affinity, glycosyl-phosphatidylinositol-anchored TIMP variant named ‘T1PrαTACE’ on receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced osteoclast differentiation. Results Osteoclast progenitor cells transduced with T1PrαTACE failed to form tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts or exhibit bone-resorbing activity following treatment with RANKL. At the messenger RNA level, T1PrαTACE strongly attenuated expression of key osteoclast marker genes that included TRAP, cathepsin K, osteoclast stimulatory transmembrane protein ( OC-STAMP), dendritic cell-specific transmembrane protein ( DC-STAMP), osteoclast-associated receptor ( OSCAR) , and ATPase H+-transporting V0 subunit d2 ( ATP6V0D2) by blocking autoamplification of nuclear factor of activated T cells 1 (NFATc1), the osteoclastogenic transcription factor. T1PrαTACE selectively extended p44/42 mitogen-activated protein kinase activation, an action that may have interrupted terminal differentiation of osteoclasts. Inhibition studies with broad-spectrum hydroxamate inhibitors confirmed that the anti-resorptive activity of T1PrαTACE was not reliant on its metalloproteinase-inhibitory activity. Conclusion T1PrαTACE disrupts the RANKL-NFATc1 signalling pathway, which leads to osteoclast dysfunction. As a novel candidate in the prevention of osteoclastogenesis, the TIMP could potentially be developed for the treatment of osteoclast-related disorders such as osteoporosis. Cite this article: Bone Joint Res 2022;11(11):763–776.
Collapse
Affiliation(s)
- Yihe Zhang
- Department of Biological Sciences/Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Bingjie Jiang
- Department of Biological Sciences/Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Pengyuan Zhang
- Department of Biological Sciences/Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | | | - Meng H. Lee
- Department of Biological Sciences/Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
22
|
Zhou M, Graves DT. Impact of the host response and osteoblast lineage cells on periodontal disease. Front Immunol 2022; 13:998244. [PMID: 36304447 PMCID: PMC9592920 DOI: 10.3389/fimmu.2022.998244] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
Periodontitis involves the loss of connective tissue attachment and alveolar bone. Single cell RNA-seq experiments have provided new insight into how resident cells and infiltrating immune cells function in response to bacterial challenge in periodontal tissues. Periodontal disease is induced by a combined innate and adaptive immune response to bacterial dysbiosis that is initiated by resident cells including epithelial cells and fibroblasts, which recruit immune cells. Chemokines and cytokines stimulate recruitment of osteoclast precursors and osteoclastogenesis in response to TNF, IL-1β, IL-6, IL-17, RANKL and other factors. Inflammation also suppresses coupled bone formation to limit repair of osteolytic lesions. Bone lining cells, osteocytes and periodontal ligament cells play a key role in both processes. The periodontal ligament contains cells that exhibit similarities to tendon cells, osteoblast-lineage cells and mesenchymal stem cells. Bone lining cells consisting of mesenchymal stem cells, osteoprogenitors and osteoblasts are influenced by osteocytes and stimulate formation of osteoclast precursors through MCSF and RANKL, which directly induce osteoclastogenesis. Following bone resorption, factors are released from resorbed bone matrix and by osteoclasts and osteal macrophages that recruit osteoblast precursors to the resorbed bone surface. Osteoblast differentiation and coupled bone formation are regulated by multiple signaling pathways including Wnt, Notch, FGF, IGF-1, BMP, and Hedgehog pathways. Diabetes, cigarette smoking and aging enhance the pathologic processes to increase bone resorption and inhibit coupled bone formation to accelerate bone loss. Other bone pathologies such as rheumatoid arthritis, post-menopausal osteoporosis and bone unloading/disuse also affect osteoblast lineage cells and participate in formation of osteolytic lesions by promoting bone resorption and inhibiting coupled bone formation. Thus, periodontitis involves the activation of an inflammatory response that involves a large number of cells to stimulate bone resorption and limit osseous repair processes.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dana T. Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Dana T. Graves,
| |
Collapse
|
23
|
Long F, Chen R, Su Y, Liang J, Xian Y, Yang F, Lian H, Xu J, Zhao J, Liu Q. Epoxymicheliolide inhibits osteoclastogenesis and resists OVX-induced osteoporosis by suppressing ERK1/2 and NFATc1 signaling. Int Immunopharmacol 2022; 107:108632. [DOI: 10.1016/j.intimp.2022.108632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/30/2022] [Accepted: 02/13/2022] [Indexed: 02/02/2023]
|
24
|
He F, Luo S, Liu S, Wan S, Li J, Chen J, Zuo H, Pei X. Zanthoxylum bungeanum seed oil inhibits RANKL-induced osteoclastogenesis by suppressing ERK/c-JUN/NFATc1 pathway and regulating cell cycle arrest in RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115094. [PMID: 35149133 DOI: 10.1016/j.jep.2022.115094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/26/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum bungeanum Maxim (ZBM), a traditional Chinese medicine, is traditionally used for osteoporosis treatment recorded in ancient Chinese medicine work Benjingshuzheng and reported to have the anti-bone loss activity in recent studies. However, the anti-osteoporotic activities of the seed of ZBM have not been elucidated yet. Our previous study found that Zanthoxylum bungeanum Maxim seed oil (ZBSO) was rich in polyunsaturated fatty acids (PUFAs), which were reported to prevent bone loss. Thus, we propose a hypothesis that ZBSO could be a potential natural resource for anti-bone loss. AIM OF THE STUDY To investigate whether ZBSO could prevent bone loss by targeting osteoclastogenesis and investigate the potential mechanisms in receptor-activator of nuclear factor κB ligand (RANKL)-induced RAW264.7 cells. MATERIALS AND METHODS RAW264.7 cells were treated with RANKL in the presence or absence of ZBSO. The effect of ZBSO on osteoclast differentiation and bone resorption activity of RAW264.7 cells were evaluated by tartrate-resistant acid phosphatase (TRAP) staining, F-actin ring staining, and bone resorption assay. Differentially expression genes (DEGs) and relevant pathways of different cell groups were obtained from RNA sequencing and protein-protein interaction (PPI) network analysis followed by KEGG pathway enrichment analysis. The effect of ZBSO on the RANKL-induced cell cycle change was analyzed by flow cytometry assay, and the expression of genes and proteins related to the selected pathways was further verified by RT-qPCR and western blot analysis. RESULTS The inhibitory effects of ZBSO on osteoclast differentiation and bone resorption activity in a dose-dependent manner were demonstrated by TRAP staining, F-actin ring staining, and bone resorption assay in RANKL-induced RAW264.7 cells. Osteoclast differentiation and cell cycle pathways were the most enriched pathways based on DEGs enrichment analysis among different cell groups. The reversion effect of ZBSO on the RANKL-induced RAW264.7 cell cycle arrest at the G1 phase was observed by flow cytometry assay. Western blot results showed that ZBSO markedly decreased RANKL-induced activation of ERK, as well as the phosphorylation of c-JUN and NFATc1 expression, and subsequently suppressed osteoclast-specific genes, such as Ctsk, Trap, and Dc-stamp. CONCLUSIONS ZBSO exhibited an inhibitory effect on osteoclastogenesis via suppressing the ERK/c-JUN/NFATc1 pathway and regulating cell cycle arrest induced by RANKL, suggesting that ZBSO may serve as a promising agent for anti-bone loss.
Collapse
Affiliation(s)
- Fangting He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China.
| | - Shuhan Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China.
| | - Sijing Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Siqi Wan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China.
| | - Jingjing Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China.
| | - Jiayi Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China.
| | - Haojiang Zuo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China.
| | - Xiaofang Pei
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China; Non-communicable Diseases Research Center, West China-PUMC C.C Chen Institute of Health, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
25
|
Effects of Type 2 Diabetes Mellitus on Osteoclast Differentiation, Activity, and Cortical Bone Formation in POSTmenopausal MRONJ Patients. J Clin Med 2022; 11:jcm11092377. [PMID: 35566506 PMCID: PMC9102751 DOI: 10.3390/jcm11092377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/22/2023] Open
Abstract
Osteoporosis is a common metabolic bone disease in patients with diabetes, which can develop simultaneously with type 2 diabetes (T2D) in postmenopausal women. Bisphosphonate (BP) is administered to patients with both conditions and may cause medication-related osteonecrosis of the jaw (MRONJ). It affects the differentiation and function of osteoclasts as well as the thickness of the cortical bone through bone mineralization. Therefore, this study aimed to investigate the effects of T2D on osteoclast differentiation and activity as well as cortical bone formation in postmenopausal patients with MRONJ. Tissue samples were collected from 10 patients diagnosed with T2D and stage III MRONJ in the experimental group and from 10 patients without T2D in the control group. A histological examination was conducted, and the expression of dendritic cell-specific transmembrane protein (DC-STAMP) and tartrate-resistant acid phosphatase (TRAP) was assessed. Cortical bone formation was analyzed using CBCT images. The number of TRAP-positive osteoclasts and DC-STAMP-positive mononuclear cells was significantly less in the experimental group (p < 0.05). Furthermore, the thickness and ratio of cortical bone were significantly greater in the experimental group (p < 0.05). In conclusion, T2D decreased the differentiation and function of osteoclasts and increased cortical bone formation in postmenopausal patients with MRONJ.
Collapse
|
26
|
Tan Y, Ke M, Li Z, Chen Y, Zheng J, Wang Y, Zhou X, Huang G, Li X. A Nitrobenzoyl Sesquiterpenoid Insulicolide A Prevents Osteoclast Formation via Suppressing c-Fos-NFATc1 Signaling Pathway. Front Pharmacol 2022; 12:753240. [PMID: 35111044 PMCID: PMC8801808 DOI: 10.3389/fphar.2021.753240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
It is a viable strategy to inhibit osteoclast differentiation for the treatment of osteolytic diseases such as osteoporosis, rheumatoid arthritis and tumor bone metastases. Here we assessed the effects of insulicolide A, a natural nitrobenzoyl sesquiterpenoid derived from marine fungus, on receptor activator of nuclear factor-κB ligand (RANKL)-stimulated osteoclastogenesis in vitro and its protective effects on LPS-induced osteolysis mice model in vivo. The results demonstrated that insulicolide A inhibited osteoclastogenesis from 1 μM in vitro. Insulicolide A could prevent c-Fos and nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) nuclear translocation and attenuate the expression levels of osteoclast-related genes and DC-STAMP during RANKL-stimulated osteoclastogenesis but have no effects on NF-κB and MAPKs. Insulicolide A can also protect the mice from LPS-induced osteolysis. Our research provides the first evidence that insulicolide A may inhibit osteoclastogenesis both in vitro and in vivo, and indicates that it may have potential for the treatment of osteoclast-related diseases.
Collapse
Affiliation(s)
- Yanhui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China.,Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Minhong Ke
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhichao Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Yan Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiehuang Zheng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yiyuan Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Gang Huang
- Integrated Traditional Chinese and Western Medicine Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Protein tyrosine phosphatases in skeletal development and diseases. Bone Res 2022; 10:10. [PMID: 35091552 PMCID: PMC8799702 DOI: 10.1038/s41413-021-00181-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Skeletal development and homeostasis in mammals are modulated by finely coordinated processes of migration, proliferation, differentiation, and death of skeletogenic cells originating from the mesoderm and neural crest. Numerous molecular mechanisms are involved in these regulatory processes, one of which is protein posttranslational modifications, particularly protein tyrosine phosphorylation (PYP). PYP occurs mainly through the action of protein tyrosine kinases (PTKs), modifying protein enzymatic activity, changing its cellular localization, and aiding in the assembly or disassembly of protein signaling complexes. Under physiological conditions, PYP is balanced by the coordinated action of PTKs and protein tyrosine phosphatases (PTPs). Dysregulation of PYP can cause genetic, metabolic, developmental, and oncogenic skeletal diseases. Although PYP is a reversible biochemical process, in contrast to PTKs, little is known about how this equilibrium is modulated by PTPs in the skeletal system. Whole-genome sequencing has revealed a large and diverse superfamily of PTP genes (over 100 members) in humans, which can be further divided into cysteine (Cys)-, aspartic acid (Asp)-, and histidine (His)-based PTPs. Here, we review current knowledge about the functions and regulatory mechanisms of 28 PTPs involved in skeletal development and diseases; 27 of them belong to class I and II Cys-based PTPs, and the other is an Asp-based PTP. Recent progress in analyzing animal models that harbor various mutations in these PTPs and future research directions are also discussed. Our literature review indicates that PTPs are as crucial as PTKs in supporting skeletal development and homeostasis.
Collapse
|
28
|
Xue Y, Zhao C, Liu T. Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) accelerates osteoclast formation by regulating signal transducer and activator of transcription 3 (STAT3) signalling. Bioengineered 2022; 13:2285-2295. [PMID: 35034537 PMCID: PMC8973581 DOI: 10.1080/21655979.2021.2024333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Osteoclasts (OCs), the main cause of bone resorption irregularities, may ultimately cause various bone diseases, including osteoarthritis. The objective of this study was to investigate the effect of interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) on OC formation induced by receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) and to further explore its underlying mechanism. IFIT1 expression in Raw264.7 cells treated with macrophage colony-stimulating factor (M-CSF) and RANKL was determined by qRT-PCR. OC formation was detected using tartrate-resistant acid phosphatase (TRAP) staining. The effect of IFIT1 on STAT3 activation was detected using Western blotting. Additionally, Western blotting was used to measure the change in the expression of OC-specific proteins. IFIT1 was highly expressed in Raw264.7 cells after stimulation with M-CSF and RANKL. IFIT1 overexpression accelerated the formation of OCs, as evidenced by the increased number and size of multinuclear cells, and the upregulation of OC-specific proteins, and activated the STAT3 pathway, by inducing phosphorylation of JAK1 and STAT3. However, silencing of IFIT1 inhibited the formation of OCs and a STAT3 inhibitor Stattic weakened the effects of IFIT1. In conclusion, IFIT1 accelerates the formation of OCs, which is caused by RANKL by STAT3 pathway regulation. This study provides a potential basis for further research and for development of drugs for treating bone resorption-related diseases.
Collapse
Affiliation(s)
- Yuanliang Xue
- Department of Orthopedics, Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chuanliang Zhao
- Department of Radiology, Laoling People's Hospital, Dezhou, Shandong, China
| | - Tao Liu
- Department of Pediatric Surgery, Dezhou People's Hospital of Shandong, Dezhou, Shandong, China
| |
Collapse
|
29
|
Wang Q, Xie J, Zhou C, Lai W. Substrate stiffness regulates the differentiation profile and functions of osteoclasts via cytoskeletal arrangement. Cell Prolif 2021; 55:e13172. [PMID: 34953003 PMCID: PMC8780927 DOI: 10.1111/cpr.13172] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives Aging and common diseases alter the stiffness of bone tissue, causing changes to the microenvironment of the mechanosensitive bone cells. Osteoclasts, the sole bone‐resorbing cells, play a vital role in bone remodeling. This study was performed to elucidate the mechanism through which osteoclasts sense and react to substrate stiffness signals. Materials and methods We fabricated polydimethylsiloxane (PDMS) substrates of different stiffness degrees for osteoclast formation progressed from osteoclast precursors including bone marrow‐derived macrophages (BMMs) and RAW264.7 monocytes. Osteoclast differentiation in response to the stiffness signals was determined by examining the cell morphology, fusion/fission activities, transcriptional profile, and resorption function. Cytoskeletal changes and mechanosensitive adhesion molecules were also assessed. Results Stiffer PDMS substrates accelerated osteoclast differentiation, firstly observed by variations in their morphology and fusion/fission activities. Upregulation of canonical osteoclast markers (Nfatc1, Acp5, Ctsk, Camk2a, Mmp9, Rela, and Traf6) and the fusion master regulator DC‐stamp were detected on stiffer substrates, with similar increases in their bone resorption functions. Additionally, the activation of cytoskeleton‐associated adhesion molecules, including fibronectin and integrin αvβ3, followed by biochemical signaling cascades of paxillin, FAK, PKC, and RhoA, was detected on the stiffer substrates. Conclusions This is the first study to provide evidence proving that extracellular substrate stiffness is a strong determinant of osteoclast differentiation and functions. Higher stiffness upregulated the differentiation profile and activity of osteoclasts, revealing the mechanical regulation of osteoclast activity in bone homeostasis and diseases.
Collapse
Affiliation(s)
- Qingxuan Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Anti-Osteoporotic Effects of n-trans-Hibiscusamide and Its Derivative Alleviate Ovariectomy-Induced Bone Loss in Mice by Regulating RANKL-Induced Signaling. Molecules 2021; 26:molecules26226820. [PMID: 34833909 PMCID: PMC8623072 DOI: 10.3390/molecules26226820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Osteoporosis is characterized by the deterioration of bone structures and decreased bone mass, leading to an increased risk of fracture. Estrogen deficiency in postmenopausal women and aging are major factors of osteoporosis and are some of the reasons for reduced quality of life. In this study, we investigated the effects of n-trans-hibiscusamide (NHA) and its derivative 4-O-(E)-feruloyl-N-(E)-hibiscusamide (HAD) on receptor activator of nuclear factor kappa-Β (NF-κB) ligand (RANKL)-induced osteoclast differentiation and an ovariectomized osteoporosis mouse model. NHA and HAD significantly inhibited the differentiation of osteoclasts from bone marrow-derived macrophages (BMMs) and the expression of osteoclast differentiation-related genes. At the molecular level, NHA and HAD significantly downregulated the phosphorylation of mitogen-activated protein kinase (MAPK) signaling molecules. However, Akt and NF-κB phosphorylation was inhibited only after NHA or HAD treatment. In the ovariectomy (OVX)-induced osteoporosis model, both NHA and HAD effectively improved trabecular bone structure. C-terminal telopeptide (CTX), a bone resorption marker, and RANKL, an osteoclast stimulation factor, were significantly reduced by NHA and HAD. The tartrate-resistant acid phosphatase (TRAP)-stained area, which indicates the osteoclast area, was also decreased by these compounds. These results show the potential of NHA and HAD as therapeutic agents for osteoporosis.
Collapse
|
31
|
Wu H, Yin G, Pu X, Wang J, Liao X, Huang Z. Inhibitory Effects of Combined Bone Morphogenetic Protein 2, Vascular Endothelial Growth Factor, and Basic Fibroblast Growth Factor on Osteoclast Differentiation and Activity. Tissue Eng Part A 2021; 27:1387-1398. [PMID: 33632010 DOI: 10.1089/ten.tea.2020.0325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP-2), vascular endothelial growth factor (VEGF), and basic fibroblast growth factors (bFGF) are important regulators of bone development and bone remodeling involving the coordination of osteoblast-mediated bone formation and osteoclast-mediated bone resorption. The synergistic promotions of these growth factors on osteogenesis in the appropriate combination have been confirmed by a lot of studies, but the effect of this combined application on osteoclastogenesis still remains ambiguous. On the basis of comparing the osteoclastic potentials under stimulation of BMP-2, VEGF, or bFGF alone, this study focused on their combined effects on the differentiation and activity of osteoclasts. Our results showed that osteoclastogenesis was enhanced to some extent under the stimulation of BMP-2, VEGF, or bFGF alone, and the potential of these three growth factors to stimulate osteoclastogenesis was VEGF > BMP-2 > bFGF. However, the treatment with the combination of BMP-2 (50 ng/mL), VEGF (1 ng/mL), and bFGF (10 ng/mL), the most suitable dose combination for osteogenesis optimized in our previous study, weakened osteoclast differentiation confirmed by smaller tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells, lower TRAP activity, and lower expression of dendritic cell-specific transmembrane protein, an important molecule regulating osteoclast fusion. Moreover, BMP-2, VEGF, and bFGF in combination also moderately inhibited the bone-resorbing activity of mature osteoclasts by suppressing the expression of osteoclast-specific genes cathepsin K, and matrix metalloproteinase-9. The underlying molecular mechanisms involved the suppression of the receptor activator of nuclear factor-κB ligand-induced c-Fos levels and the activation of nuclear factor of activated T cells c1, two major transcription factors in osteoclast differentiation. Taken together, our study showed that the combination of BMP-2 (50 ng/mL), VEGF (1 ng/mL), and bFGF (10 ng/mL) promoted osteoblastogenesis but inhibited osteoclastogenesis. Thus, the simultaneous use of BMP-2 (50 ng/mL), VEGF (1 ng/mL), and bFGF (10 ng/mL) in an appropriate combination might improve efficacious bone regeneration in a clinical setting. Impact statement Few studies have addressed the combined effects of multiple growth factors on osteoclasts. This study demonstrated that the simultaneous use of bone morphogenetic protein 2 (BMP-2; 50 ng/mL), vascular endothelial growth factor (VEGF; 1 ng/mL), and basic fibroblast growth factors (bFGF; 10 ng/mL), the most suitable dose combination for osteogenesis optimized in our previous study, showed inhibitory effects on the differentiation and activity of osteoclasts. Our results suggest that the growth factor signaling pathways in osteoclasts may interact with each other. Furthermore, this study could provide new insights into the optimal application of BMP-2, VEGF, and bFGF for bone repair and regeneration.
Collapse
Affiliation(s)
- Huan Wu
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
32
|
Loo-Kirana R, Gilijamse M, Hogervorst J, Schoenmaker T, de Vries TJ. Although Anatomically Micrometers Apart: Human Periodontal Ligament Cells Are Slightly More Active in Bone Remodeling Than Alveolar Bone Derived Cells. Front Cell Dev Biol 2021; 9:709408. [PMID: 34616725 PMCID: PMC8488427 DOI: 10.3389/fcell.2021.709408] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023] Open
Abstract
The periodontal ligament (PDL) and the alveolar bone are part of the periodontium, a complex structure that supports the teeth. The alveolar bone is continuously remodeled and is greatly affected by several complex oral events, like tooth extraction, orthodontic movement, and periodontitis. Until now, the role of PDL cells in terms of osteogenesis and osteoclastogenesis has been widely studied, whereas surprisingly little is known about the bone remodeling capacity of alveolar bone. Therefore, the purpose of this study was to compare the biological character of human alveolar bone cells and PDL cells in terms of osteogenesis and osteoclastogenesis in vitro. Paired samples of PDL cells and alveolar bone cells from seven patients with compromised general and oral health were collected and cultured. Bone A (early outgrowth) and bone B (late outgrowth) were included. PDL, bone A, bone B cell cultures all had a fibroblast appearance with similar expression pattern of six mesenchymal markers. These cultures were subjected to osteogenesis and osteoclastogenesis assays. For osteoclastogenesis assays, the cells were co-cultured with peripheral blood mononuclear cells, a source for osteoclast precursor cells. The total duration of the experiments was 21 days. Osteogenesis was slightly favored for PDL compared to bone A and B as shown by stronger Alizarin red staining and higher expression of RUNX2 and Collagen I at day 7 and for ALP at day 21. PDL induced approximately two times more osteoclasts than alveolar bone cells. In line with these findings was the higher expression of cell fusion marker DC-STAMP in PDL-PBMC co-cultures compared to bone B at day 21. In conclusion, alveolar bone contains remodeling activity, but to a different extent compared to PDL cells. We showed that human alveolar bone cells can be used as an in vitro model to study bone remodeling.
Collapse
Affiliation(s)
- Rebecca Loo-Kirana
- Department of Periodontology, Academic Centre For Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Marjolijn Gilijamse
- Department of Oral and Maxillofacial Surgery and Oral Pathology, Amsterdam UMC, Location VUmc, Amsterdam, Netherlands.,Department of Oral and Maxillofacial Surgery, Onze Lieve Vrouwe Gasthuis, Amsterdam, Netherlands
| | - Jolanda Hogervorst
- Department of Oral Cell Biology, Academic Centre For Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre For Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Teun J de Vries
- Department of Periodontology, Academic Centre For Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
33
|
Zanaty MI, Abdel-Moneim A, Kitani Y, Sekiguchi T, Suzuki N. Effect of Omeprazole on Osteoblasts and Osteoclasts in vivo and in the in vitro Model Using Fish Scales. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1192-1200. [PMID: 34903151 DOI: 10.1134/s0006297921100035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/27/2021] [Accepted: 08/06/2021] [Indexed: 06/14/2023]
Abstract
Omeprazole suppresses excessive secretion of gastric acid via irreversible inhibition of H+/K+-ATPase in the gastric parietal cells. Recent meta-analysis of data revealed an association between the use of proton pump inhibitors (PPIs) and increased risk of bone fractures, but the underlying molecular mechanism of PPI action remains unclear. In this study, we demonstrated that omeprazole directly influences bone metabolism using a unique in vitro bioassay system with teleost scales, as well as the in vivo model. The in vitro study showed that omeprazole significantly increased the activities of alkaline phosphatase and tartrate-resistant acid phosphatase after 6 h of incubation with this PPI. Expression of mRNAs for several osteoclastic markers was upregulated after 3-h incubation of fish scales with 10-7 M omeprazole. The in vivo experiments revealed that the plasma calcium levels significantly increased in the omeprazole-treated group. The results of in vitro and in vivo studies suggest that omeprazole affects bone cells by increasing bone resorption by upregulating expression of osteoclastic genes and promoting calcium release to the circulation. The suggested in vitro bioassay in fish scales is a practical model that can be used to study the effects of drugs on bone metabolism.
Collapse
Affiliation(s)
- Mohamed I Zanaty
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Yoichiro Kitani
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Noto-Cho, Ishikawa, 927-0553, Japan.
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Noto-Cho, Ishikawa, 927-0553, Japan.
| | - Nobuo Suzuki
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Noto-Cho, Ishikawa, 927-0553, Japan.
| |
Collapse
|
34
|
Visconti RJ, Kolaja K, Cottrell JA. A functional three-dimensional microphysiological human model of myeloma bone disease. J Bone Miner Res 2021; 36:1914-1930. [PMID: 34173283 DOI: 10.1002/jbmr.4404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022]
Abstract
Human myeloma bone disease (MBD) occurs when malignant plasma cells migrate to the bone marrow and commence inimical interactions with stromal cells, disrupting the skeletal remodeling process. The myeloma cells simultaneously suppress osteoblastic bone formation while promoting excessive osteoclastic resorption. This bone metabolism imbalance produces osteolytic lesions that cause chronic bone pain and reduce trabecular and cortical bone structural integrity, and often culminate in pathological fractures. Few bone models exist that enable scientists to study MBD and the effect therapies have on restoring the bone metabolism imbalance. The purpose of this research was to develop a well characterized three-dimensional (3D) bone organoid that could be used to study MBD and current or potential treatment options. First, bone marrow stromal cell-derived osteoblasts (OBs) mineralized an endosteal-like extracellular matrix (ECM) over 21 days. Multiple analyses confirmed the generation of hydroxyapatite (HA)-rich bone-like tissue fragments that were abundant in alkaline phosphatase, calcium, and markers of osteoblastic gene expression. On day 22, bone marrow macrophage (BMM)-derived osteoclasts (OCs) were introduced to enhance the resorptive capability of the model and recapitulate the balanced homeostatic nature of skeletal remodeling. Tartrate-resistant acid phosphatase 5b (TRAcP-5b), type I collagen C-telopeptide (CTX-1), and gene expression analysis confirmed OC activity in the normal 3D organoid (3D in vitro model of normal bonelike fragments [3D-NBF]). On day 30, a human multiple myeloma (MM)-derived plasmacytoma cell line was introduced to the 3D-NBF to generate the 3D-myeloma bone disease organoid (3D-MBD). After 12 days, the 3D-MBD had significantly reduced total HA, increased TRAcP-5b levels, increases levels of CTX-1, and decreased expression of osteoblastic genes. Therapeutic intervention with pharmaceutical agents including an immunomodulatory drug, a bisphosphonate, and monoclonal restored HA content and reduced free CTX-1 in a dose-dependent manner. This osteogenically functional model of MBD provides a novel tool to study biological mechanisms guiding the disease and to screen potential therapeutics. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Richard J Visconti
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA.,Investigative Toxicology, Nonclinical Research and Development, Bristol Myers Squibb, Summit, New Jersey, USA
| | - Kyle Kolaja
- Investigative Toxicology, Nonclinical Research and Development, Bristol Myers Squibb, Summit, New Jersey, USA
| | - Jessica A Cottrell
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA
| |
Collapse
|
35
|
Qu Y, Liu X, Zong S, Sun H, Liu S, Zhao Y. Protocatechualdehyde Inhibits the Osteoclast Differentiation of RAW264.7 and BMM Cells by Regulating NF- κB and MAPK Activity. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6108999. [PMID: 34327232 PMCID: PMC8302381 DOI: 10.1155/2021/6108999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022]
Abstract
Protocatechualdehyde (PCA), an important component of Salvia miltiorrhiza, has many activities, such as anti-inflammatory and antisepsis activities. However, the role of PCA in osteoclasts is not clear. We used RAW264.7 cells (a mouse leukemic monocyte/macrophage cell line) and bone marrow macrophages (BMMs) to probe the role of PCA in osteoclasts and the underlying mechanism. The effects of PCA on cell activity were evaluated with CCK-8 assays. TRAP staining detected mature osteoclasts. Corning Osteo Assay Surface plates were used to examine absorption. The levels of RNA and protein were analyzed, respectively, using RT-PCR and Western blotting. PCA (5 μg/ml) was not toxic to the two cell types but reduced the formation of osteoclasts and bone absorption. Furthermore, PCA restrained the expression of mRNAs encoding proteins associated with osteoclasts and reduced the phosphorylation of proteins in important signaling pathways. The results indicate that PCA inhibits osteoclast differentiation by suppressing NF-κB and MAPK activity.
Collapse
Affiliation(s)
- Yunyun Qu
- Department of Central Lab, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Liu
- Department of Central Lab, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Shuai Zong
- Department of Central Lab, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Huanxin Sun
- Department of Central Lab, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Shuang Liu
- Department of Central Lab, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yueran Zhao
- Department of Central Lab, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| |
Collapse
|
36
|
Kim HJ, Lee J, Lee GR, Kim N, Lee HI, Kwon M, Kim NY, Park JH, Kang YH, Song HJ, Kim T, Shin DM, Jeong W. Flunarizine inhibits osteoclastogenesis by regulating calcium signaling and promotes osteogenesis. J Cell Physiol 2021; 236:8239-8252. [PMID: 34192358 DOI: 10.1002/jcp.30496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 11/12/2022]
Abstract
Many bone diseases such as osteoporosis and periodontitis are caused by hyperactivation of osteoclasts. Calcium (Ca2+ ) signals are crucial for osteoclast differentiation and function. Thus, the blockade of Ca2+ signaling may be a strategy for regulating osteoclast activity and has clinical implications. Flunarizine (FN) is a Ca2+ channel antagonist that has been used for reducing migraines. However, the role of FN in osteoclast differentiation and function remains unknown. Here, we investigated whether FN regulates osteoclastogenesis and elucidated the molecular mechanism. FN inhibited osteoclast differentiation along with decreased expression of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), and attenuated osteoclast maturation and bone resorption. FN inhibition of osteoclast differentiation was restored by ectopic expression of constitutively active NFATc1. FN reduced calcium oscillations and its inhibition of osteoclast differentiation and resorption function was reversed by ionomycin, an ionophore that binds Ca2+ . FN also inhibited Ca2+ /calmodulin-dependent protein kinase IV (CaMKIV) and calcineurin leading to a decrease in the cAMP-responsive element-binding protein-dependent cFos and peroxisome proliferator-activated receptor-γ coactivator 1β expression, and NFATc1 nuclear translocation. These results indicate that FN inhibits osteoclastogenesis via regulating CaMKIV and calcineurin as a Ca2+ channel blocker. In addition, FN-induced apoptosis in osteoclasts and promoted osteogenesis. Furthermore, FN protected lipopolysaccharide- and ovariectomy-induced bone destruction in mouse models, suggesting that it has therapeutic potential for treating inflammatory bone diseases and postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Jiae Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Gong-Rak Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Narae Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Hye In Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Minjeong Kwon
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Nam Young Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Jin Ha Park
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Ye Hee Kang
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Hyeong Ju Song
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - TaeSoo Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Dong Min Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | - Woojin Jeong
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| |
Collapse
|
37
|
Barnea-Zohar M, Winograd-Katz SE, Shalev M, Arman E, Reuven N, Roth L, Golani O, Stein M, Thalji F, Kanaan M, Tuckermann J, Geiger B, Elson A. An SNX10-dependent mechanism downregulates fusion between mature osteoclasts. J Cell Sci 2021; 134:261809. [PMID: 33975343 PMCID: PMC8182410 DOI: 10.1242/jcs.254979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/19/2021] [Indexed: 01/13/2023] Open
Abstract
Homozygosity for the R51Q mutation in sorting nexin 10 (SNX10) inactivates osteoclasts (OCLs) and induces autosomal recessive osteopetrosis in humans and in mice. We show here that the fusion of wild-type murine monocytes to form OCLs is highly regulated, and that its extent is limited by blocking fusion between mature OCLs. In contrast, monocytes from homozygous R51Q SNX10 mice fuse uncontrollably, forming giant dysfunctional OCLs that can become 10- to 100-fold larger than their wild-type counterparts. Furthermore, mutant OCLs display reduced endocytotic activity, suggesting that their deregulated fusion is due to alterations in membrane homeostasis caused by loss of SNX10 function. This is supported by the finding that the R51Q SNX10 protein is unstable and exhibits altered lipid-binding properties, and is consistent with a key role for SNX10 in vesicular trafficking. We propose that OCL size and functionality are regulated by a cell-autonomous SNX10-dependent mechanism that downregulates fusion between mature OCLs. The R51Q mutation abolishes this regulatory activity, leading to excessive fusion, loss of bone resorption capacity and, consequently, to an osteopetrotic phenotype in vivo. This article has an associated First Person interview with the joint first authors of the paper. Summary: Fusion of monocytes to become bone-resorbing osteoclasts is limited by an SNX10-dependent cell-autonomous mechanism. Loss of SNX10 function deregulates fusion and generates giant inactive osteoclasts.
Collapse
Affiliation(s)
- Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Moran Shalev
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Esther Arman
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lee Roth
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Merle Stein
- Department of Biology, Institute of Comparative Molecular Endocrinology, University of Ulm, 89081 Ulm, Germany
| | - Fadi Thalji
- Department of Orthopedics, Istishari Arab Hospital, Ramallah, Palestine
| | - Moien Kanaan
- Hereditary Research Laboratory and Department of Life Sciences, Bethlehem University, Bethlehem 0045866, Palestine
| | - Jan Tuckermann
- Department of Biology, Institute of Comparative Molecular Endocrinology, University of Ulm, 89081 Ulm, Germany
| | - Benjamin Geiger
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
38
|
Huang J, Li YY, Xia K, Wang YY, Chen CY, Chen ML, Cao J, Liu ZZ, Wang ZX, Yin H, Hu XK, Wang ZG, Zhou Y, Xie H. Harmine targets inhibitor of DNA binding-2 and activator protein-1 to promote preosteoclast PDGF-BB production. J Cell Mol Med 2021; 25:5525-5533. [PMID: 33960660 PMCID: PMC8184727 DOI: 10.1111/jcmm.16562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
Osteoporosis is one of the most common metabolic bone diseases affecting millions of people. We previously found that harmine prevents bone loss in ovariectomized mice via increasing preosteoclast platelet‐derived growth factor‐BB (PDGF‐BB) production and type H vessel formation. However, the molecular mechanisms by which harmine promotes preosteoclast PDGF‐BB generation are still unclear. In this study, we revealed that inhibitor of DNA binding‐2 (Id2) and activator protein‐1 (AP‐1) were important factors implicated in harmine‐enhanced preosteoclast PDGF‐BB production. Exposure of RANKL‐induced Primary bone marrow macrophages (BMMs), isolated from tibiae and femora of mice, to harmine increased the protein levels of Id2 and AP‐1. Knockdown of Id2 by Id2‐siRNA reduced the number of preosteoclasts as well as secretion of PDGF‐BB in RANKL‐stimulated BMMs administrated with harmine. Inhibition of c‐Fos or c‐Jun (components of AP‐1) both reversed the stimulatory effect of harmine on preosteoclast PDGF‐BB production. Dual‐luciferase reporter assay analyses determined that PDGF‐BB was the direct target of AP‐1 which was up‐regulated by harmine treatment. In conclusion, our data demonstrated a novel mechanism involving in the production of PDGF‐BB increased by harmine, which may provide potential therapeutic targets for bone loss diseases.
Collapse
Affiliation(s)
- Jie Huang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - You-You Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Kun Xia
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Yi-Yi Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Chun-Yuan Chen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Meng-Lu Chen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jia Cao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng-Zhao Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen-Xing Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Yin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xiong-Ke Hu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng-Guang Wang
- Department of Orthopaedics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Yong Zhou
- Department of Orthopaedics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Hui Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, China.,Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, China
| |
Collapse
|
39
|
Oridonin ameliorates inflammation-induced bone loss in mice via suppressing DC-STAMP expression. Acta Pharmacol Sin 2021; 42:744-754. [PMID: 32753731 PMCID: PMC8115576 DOI: 10.1038/s41401-020-0477-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/06/2020] [Indexed: 02/01/2023] Open
Abstract
Currently, dendritic cell-specific transmembrane protein (DC-STAMP), a multipass transmembrane protein, is considered as the master regulator of cell-cell fusion, which underlies the formation of functional multinucleated osteoclasts. Thus, DC-STAMP has become a promising target for osteoclast-associated osteolytic diseases. In this study, we investigated the effects of oridonin (ORI), a natural tetracyclic diterpenoid compound isolated from the traditional Chinese herb Rabdosia rubescens, on osteoclastogenesis in vivo and ex vivo. ICR mice were injected with LPS (5 mg/kg, ip, on day 0 and day 4) to induce inflammatory bone destruction. Administration of ORI (2, 10 mg·kg-1·d-1, ig, for 8 days) dose dependently ameliorated inflammatory bone destruction and dramatically decreased DC-STAMP protein expression in BMMs isolated from LPS-treated mice. Treatment of preosteoclast RAW264.7 cells with ORI (0.78-3.125 μM) dose dependently inhibited both mRNA and protein levels of DC-STAMP, and suppressed the following activation of NFATc1 during osteoclastogenesis. Knockdown of DC-STAMP in RAW264.7 cells abolished the inhibitory effects of ORI on RANKL-induced NFATc1 activity and osteoclast formation. In conclusion, we show for the first time that ORI effectively attenuates inflammation-induced bone loss by suppressing DC-STAMP expression, suggesting that ORI is a potential agent against inflammatory bone diseases.
Collapse
|
40
|
Sun K, Zhu J, Deng Y, Xu X, Kong F, Sun X, Huan L, Ren C, Sun J, Shi J. Gamabufotalin Inhibits Osteoclastgenesis and Counteracts Estrogen-Deficient Bone Loss in Mice by Suppressing RANKL-Induced NF-κB and ERK/MAPK Pathways. Front Pharmacol 2021; 12:629968. [PMID: 33967763 PMCID: PMC8104077 DOI: 10.3389/fphar.2021.629968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/04/2021] [Indexed: 11/25/2022] Open
Abstract
Osteolytic bone disease is a condition of imbalanced bone homeostasis, characterized mainly by excessive bone-resorptive activity, which could predispose these populations, such as the old and postmenopausal women, to developing high risk of skeletal fragility and fracture. The nature of bone homeostasis is the coordination between the osteoblasts (OBs) and osteoclasts (OCs). Abnormal activation of osteoclasts (OCs) could compromise the bone homeostasis, constantly followed by a clutch of osteolytic diseases, including postmenopausal osteoporosis, osteoarthritis, and rheumatoid arthritis. Thus, it is imperatively urgent to explore effective medical interventions for patients. The traditional Chinese medicine (TCM) gamabufotalin (CS-6) is a newly identified natural product from Chansu and has been utilized for oncologic therapies owing to its good clinical efficacy with less adverse events. Previous study suggested that CS-6 could be a novel anti-osteoporotic agent. Nevertheless, whether CS-6 suppresses RANK-(receptor activator of nuclear factor-κ B ligand)/TRAF6 (TNF receptor-associated factor 6)-mediated downstream signaling activation in OCs, as well as the effects of CS-6 on OC differentiation in vivo, remains elusive. Therefore, in this present study, we aimed to explore the biological effects of CS-6 on osteoclastogenesis and RANKL-induced activation of related signaling pathways, and further to examine the potential therapeutic application in estrogen-deficient bone loss in the mice model. The results of in vitro experiment showed that CS-6 can inhibit RANKL-induced OC formation and the ability of bone resorption in a dose-dependent manner at both the early and late stages of osteoclastogenesis. The gene expression of OC-related key genes such as tartrate-resistant acid phosphatase (TRAP), CTSK, DC-STAMP, MMP9, and β3 integrin was evidently reduced. In addition, CS-6 could mitigate the systemic estrogen-dependent bone loss and pro-inframammary cytokines in mice in vivo. The molecular mechanism analysis suggested that CS-6 can suppress RANKL/TRAF6-induced early activation of NF-κB and ERK/MAPK signaling pathways, which consequently suppressed the transcription activity of c-Fos and NFATc1. Taken together, this present study provided ample evidence that CS-6 has the promise to become a therapeutic candidate in treating osteolytic conditions mediated by elevated OC formation and bone resorption.
Collapse
Affiliation(s)
- Kaiqiang Sun
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jian Zhu
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yi Deng
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ximing Xu
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fanqi Kong
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaofei Sun
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Le Huan
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Changzhen Ren
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jingchuan Sun
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiangang Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
41
|
Kolb AD, Dai J, Keller ET, Bussard KM. 'Educated' Osteoblasts Reduce Osteoclastogenesis in a Bone-Tumor Mimetic Microenvironment. Cancers (Basel) 2021; 13:cancers13020263. [PMID: 33445695 PMCID: PMC7828118 DOI: 10.3390/cancers13020263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/01/2021] [Accepted: 01/08/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer (BC) metastases to bone disrupt the balance between osteoblasts and osteoclasts, leading to excessive bone resorption. We identified a novel subpopulation of osteoblasts with tumor-inhibitory properties, called educated osteoblasts (EOs). Here we sought to examine the effect of EOs on osteoclastogenesis during tumor progression. We hypothesized that EOs affect osteoclast development in the bone-tumor niche, leading to suppressed pre-osteoclast fusion and bone resorption. Conditioned media (CM) was analyzed for protein expression of osteoclast factors receptor activator of nuclear factor kappa-β ligand (RANKL), osteoprotegerin (OPG), and tumor necrosis factor alpha (TNFα) via ELISA. EOs were co-cultured with pre-osteoclasts on a bone mimetic matrix to assess osteoclast resorption. Pre-osteoclasts were tri-cultured with EOs plus metastatic BC cells and assessed for tartrate-resistance acid phosphatase (TRAP)-positive, multinucleated (≥3 nuclei), mature osteoclasts. Tumor-bearing murine tibias were stained for TRAP to determine osteoclast number in-vivo. EO CM expressed reduced amounts of soluble TNFα and OPG compared to naïve osteoblast CM. Osteoclasts formed in the presence of EOs were smaller and less in number. Upon co-culture on a mimetic bone matrix, a 50% reduction in the number of TRAP-positive osteoclasts formed in the presence of EOs was observed. The tibia of mice inoculated with BC cells had less osteoclasts per bone surface in bones with increased numbers of EO cells. These data suggest EOs reduce osteoclastogenesis and bone resorption. The data imply EOs provide a protective effect against bone resorption in bone metastatic BC.
Collapse
Affiliation(s)
- Alexus D. Kolb
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Jinlu Dai
- Department of Urology and Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; (J.D.); (E.T.K.)
| | - Evan T. Keller
- Department of Urology and Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; (J.D.); (E.T.K.)
| | - Karen M. Bussard
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
- Correspondence:
| |
Collapse
|
42
|
Zhu M, Xu W, Jiang J, Wang Y, Guo Y, Yang R, Chang Y, Zhao B, Wang Z, Zhang J, Wang T, Shangguan L, Wang S. Peiminine Suppresses RANKL-Induced Osteoclastogenesis by Inhibiting the NFATc1, ERK, and NF-κB Signaling Pathways. Front Endocrinol (Lausanne) 2021; 12:736863. [PMID: 34630331 PMCID: PMC8498341 DOI: 10.3389/fendo.2021.736863] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022] Open
Abstract
Osteoclasts (OCs) play an important role in osteoporosis, a disease that is mainly characterized by bone loss. In our research, we aimed to identify novel approach for regulating osteoclastogenesis and thereby treating osteoporosis. Previous studies have set a precedent for screening traditional Chinese herbal extracts for effective inhibitors. Peiminine is an alkaloid extracted from the bulb of Fritillaria thunbergii Miq that reportedly has anticancer and anti-inflammatory effects. Thus, the potential inhibitory effect of peiminine on OC differentiation was investigated via a series of experiments. According to the results, peiminine downregulated the levels of specific genes and proteins in vitro and consequently suppressed OC differentiation and function. Based on these findings, we further investigated the underlying molecular mechanisms and identified the NF-κB and ERK1/2 signaling pathways as potential targets of peiminine. In vivo, peiminine alleviated bone loss in an ovariectomized mouse model.
Collapse
Affiliation(s)
- Mengbo Zhu
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Wenbin Xu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Jiuzhou Jiang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Yining Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanjing Guo
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Biochemistry, Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Ruijia Yang
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Biochemistry, Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Yaqiong Chang
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Bin Zhao
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhenyu Wang
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianfeng Zhang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Te Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Shaowei Wang, ; Liqin Shangguan, ; Te Wang,
| | - Liqin Shangguan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- *Correspondence: Shaowei Wang, ; Liqin Shangguan, ; Te Wang,
| | - Shaowei Wang
- Department of Orthopedic, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Biochemistry, Basic Medical College, Shanxi Medical University, Taiyuan, China
- *Correspondence: Shaowei Wang, ; Liqin Shangguan, ; Te Wang,
| |
Collapse
|
43
|
Letrozole Suppresses the Fusion of Osteoclast Precursors through Inhibition of p38-Mediated DC-STAMP Pathway. Int J Mol Sci 2020; 21:ijms21218396. [PMID: 33182361 PMCID: PMC7664929 DOI: 10.3390/ijms21218396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 01/28/2023] Open
Abstract
Letrozole is a reversible nonsteroidal aromatase inhibitor that is widely used in postmenopausal breast cancer patients. It is well established that letrozole decreases bone density owing to estrogen depletion; however, few studies have reported its direct effect on bone cells in vitro. Therefore, we investigated the effect of letrozole on bone metabolism, focusing on osteoclastogenesis. Letrozole did not affect the viability, proliferation, or migration of bone marrow-derived macrophages (BMMs); however, it reduced the multinucleation of immature osteoclasts and subsequent bone resorption in vitro. Overall, letrozole inhibited the expression of dendritic cell-specific transmembrane protein (DC-STAMP), tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K. Among them, the reduced expression of DC-STAMP was the most prominent. However, this downregulation of DC-STAMP expression following letrozole treatment was not related to the inhibition of major osteoclastogenesis pathways, such as the nuclear factor-κB (NF-κB), c-Fos, and nuclear factor of activated T cell c1 (NFATc1) pathways, but was attributed to the inhibition of p38, which is known to reside upstream of DC-STAMP expression. Notably, the anti-osteoclastogenic effect of letrozole was abolished following treatment with the p38 activator anisomycin. Contrary to our expectations, these results strongly suggest a previously unknown anti-osteoclastogenic activity of letrozole, mediated by the downregulation of the p38/DC-STAMP pathway.
Collapse
|
44
|
Søe K. Osteoclast Fusion: Physiological Regulation of Multinucleation through Heterogeneity-Potential Implications for Drug Sensitivity. Int J Mol Sci 2020; 21:E7717. [PMID: 33086479 PMCID: PMC7589811 DOI: 10.3390/ijms21207717] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Classically, osteoclast fusion consists of four basic steps: (1) attraction/migration, (2) recognition, (3) cell-cell adhesion, and (4) membrane fusion. In theory, this sounds like a straightforward simple linear process. However, it is not. Osteoclast fusion has to take place in a well-coordinated manner-something that is not simple. In vivo, the complex regulation of osteoclast formation takes place within the bone marrow-in time and space. The present review will focus on considering osteoclast fusion in the context of physiology and pathology. Special attention is given to: (1) regulation of osteoclast fusion in vivo, (2) heterogeneity of osteoclast fusion partners, (3) regulation of multi-nucleation, (4) implications for physiology and pathology, and (5) implications for drug sensitivity and side effects. The review will emphasize that more attention should be given to the human in vivo reality when interpreting the impact of in vitro and animal studies. This should be done in order to improve our understanding of human physiology and pathology, as well as to improve anti-resorptive treatment and reduce side effects.
Collapse
Affiliation(s)
- Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark; ; Tel.: +45-65-41-31-90
- Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
45
|
Quercetin as an Agent for Protecting the Bone: A Review of the Current Evidence. Int J Mol Sci 2020; 21:ijms21176448. [PMID: 32899435 PMCID: PMC7503351 DOI: 10.3390/ijms21176448] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 01/02/2023] Open
Abstract
Quercetin is a flavonoid abundantly found in fruits and vegetables. It possesses a wide spectrum of biological activities, thus suggesting a role in disease prevention and health promotion. The present review aimed to uncover the bone-sparing effects of quercetin and its mechanism of action. Animal studies have found that the action of quercetin on bone is largely protective, with a small number of studies reporting negative outcomes. Quercetin was shown to inhibit RANKL-mediated osteoclastogenesis, osteoblast apoptosis, oxidative stress and inflammatory response while promoting osteogenesis, angiogenesis, antioxidant expression, adipocyte apoptosis and osteoclast apoptosis. The possible underlying mechanisms involved are regulation of Wnt, NF-κB, Nrf2, SMAD-dependent, and intrinsic and extrinsic apoptotic pathways. On the other hand, quercetin was shown to exert complex and competing actions on the MAPK signalling pathway to orchestrate bone metabolism, resulting in both stimulatory and inhibitory effects on bone in parallel. The overall interaction is believed to result in a positive effect on bone. Considering the important contributions of quercetin in regulating bone homeostasis, it may be considered an economical and promising agent for improving bone health. The documented preclinical findings await further validation from human clinical trials.
Collapse
|
46
|
Yu J, Canalis E. Notch and the regulation of osteoclast differentiation and function. Bone 2020; 138:115474. [PMID: 32526405 PMCID: PMC7423683 DOI: 10.1016/j.bone.2020.115474] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/30/2022]
Abstract
Notch 1 through 4 are transmembrane receptors that play a pivotal role in cell differentiation and function; this review addresses the role of Notch signaling in osteoclastogenesis and bone resorption. Notch receptors are activated following interactions with their ligands of the Jagged and Delta-like families. In the skeleton, Notch signaling controls osteoclast differentiation and bone-resorbing activity either directly acting on osteoclast precursors, or indirectly acting on cells of the osteoblast lineage and cells of the immune system. NOTCH1 inhibits osteoclastogenesis, whereas NOTCH2 enhances osteoclast differentiation and function by direct and indirect mechanisms. NOTCH3 induces the expression of RANKL in osteoblasts and osteocytes and as a result induces osteoclast differentiation. There is limited expression of NOTCH4 in skeletal cells. Selected congenital disorders and skeletal malignancies are associated with dysregulated Notch signaling and enhanced bone resorption. In conclusion, Notch signaling is a critical pathway that controls osteoblast and osteoclast differentiation and function and regulates skeletal homeostasis in health and disease.
Collapse
Affiliation(s)
- Jungeun Yu
- Departments of Orthopaedic Surgery, UConn Musculoskeletal Institute, Farmington, CT 06030, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, USA
| | - Ernesto Canalis
- Departments of Orthopaedic Surgery, UConn Musculoskeletal Institute, Farmington, CT 06030, USA; Medicine, UConn Musculoskeletal Institute, Farmington, CT 06030, USA; UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
47
|
Hua P, Cui H, Xu J, Cai R, She Z, Gu Q. Diaporisoindole E inhibits RANKL-induced osteoclastogenesis via suppression of PI3K/AKT and MAPK signal pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 75:153234. [PMID: 32510335 DOI: 10.1016/j.phymed.2020.153234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/10/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Diaporisoindole E (SA8), an isoprenylisoindole alkaloids isolated from the mangrove endophytic fungus Diaporthe sp. SYSU-HQ3, was reported with anti-inflammatory activity in RAW264.7 cells. However, the effect of SA8 in bone metabolism is unknown. PURPOSE The purpose of this study is to investigate the inhibitory effect of SA8 in RANKL-induced osteoclastogenesis and to explore its mechanism of action. METHODS Osteoclastogenesis was assayed by TRAP staining. Expression of osteoclast specific genes was evaluated by real time-PCR. The inhibition of phosphorylation of the protein was measured by western blot analysis. The transcription activity of NF-κB was conducted using luciferase reporter gene assays. Osteoblast differentiation was assayed by alkaline phosphatase and Alizarin Red staining. RESULTS SA8 significantly inhibited the osteoclast differentiation in a dose- and time-dependent manner, which is consistent with the suppression of osteoclast specific genes including TRAP, DC-stamp, NFATc1, MMP-9, and ATP6v0d2. Further study on the mechanism of action revealed that SA8 inhibited osteoclast differentiation by attenuating PI3K/AKT and MAPK but not through NF-κB signaling pathways. Moreover, SA8 also suppressed bone resorption activity in a hydroxyapatite-coated plate without affecting osteoblast differentiation in C3H10T1/2 using alkaline phosphatase and Alizarin Red staining. CONCLUSIONS These findings suggest that SA8 (Diaporisoindole E) is the potential anti-osteoporosis agent.
Collapse
Affiliation(s)
- Pei Hua
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hui Cui
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Runlin Cai
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhigang She
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
48
|
Tan Y, Deng W, Zhang Y, Ke M, Zou B, Luo X, Su J, Wang Y, Xu J, Nandakumar KS, Liu Y, Zhou X, Li X. A marine fungus-derived nitrobenzoyl sesquiterpenoid suppresses receptor activator of NF-κB ligand-induced osteoclastogenesis and inflammatory bone destruction. Br J Pharmacol 2020; 177:4242-4260. [PMID: 32608081 DOI: 10.1111/bph.15179] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 05/15/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Osteoclasts are unique cells to absorb bone. Targeting osteoclast differentiation is a therapeutic strategy for osteolytic diseases. Natural marine products have already become important sources of new drugs. The naturally occurring nitrobenzoyl sesquiterpenoids first identified from marine fungi in 1998 are bioactive compounds with a special structure, but their pharmacological functions are largely unknown. Here, we investigated six marine fungus-derived nitrobenzoyl sesquiterpenoids on osteoclastogenesis and elucidated the mechanisms. EXPERIMENTAL APPROACH Compounds were first tested by RANKL-induced NF-κB luciferase activity and osteoclastic TRAP assay, followed by molecular docking to characterize the structure-activity relationship. The effects and mechanisms of the most potent nitrobenzoyl sesquiterpenoid on RANKL-induced osteoclastogenesis and bone resorption were further evaluated in vitro. Micro-CT and histology analysis were used to assess the prevention of bone destruction by nitrobenzoyl sesquiterpenoids in vivo. KEY RESULTS Nitrobenzoyl sesquiterpenoid 4, with a nitrobenzoyl moiety at C-14 and a hydroxyl group at C-9, was the most active compound on NF-κB activity and osteoclastogenesis. Consequently, nitrobenzoyl sesquiterpenoid 4 exhibited suppression of RANKL-induced osteoclastogenesis and bone resorption from 0.5 μM. It blocked RANKL-induced IκBa phosphorylation, NF-κB p65 and RelB nuclear translocation, NFATc1 activation, reduced DC-STAMP but not c-Fos expression during osteoclastogenesis in vitro. Nitrobenzoyl sesquiterpenoid 4 also ameliorated LPS-induced osteolysis in vivo. CONCLUSION AND IMPLICATIONS These results highlighted nitrobenzoyl sesquiterpenoid 4 as a novel inhibitor of osteoclast differentiation. This marine-derived sesquiterpenoid is a promising lead compound for the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- Yanhui Tan
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wende Deng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yueyang Zhang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Minhong Ke
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Binhua Zou
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaowei Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jianbin Su
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yiyuan Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jialan Xu
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Kutty Selva Nandakumar
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
49
|
Lu J, Ye C, Huang Y, Huang D, Tang L, Hou W, Kuang Z, Chen Y, Xiao S, Yishake M, He R. Corilagin suppresses RANKL-induced osteoclastogenesis and inhibits oestrogen deficiency-induced bone loss via the NF-κB and PI3K/AKT signalling pathways. J Cell Mol Med 2020; 24:10444-10457. [PMID: 32681612 PMCID: PMC7521306 DOI: 10.1111/jcmm.15657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Over‐activated osteoclastogenesis, which is initiated by inflammation, has been implicated in osteoporosis. Corilagin, a natural compound extracted from various medicinal herbaceous plants, such as Cinnamomum cassia, has antioxidant and anti‐inflammatory activities. We found that Corilagin suppressed osteoclast differentiation in a dose‐dependent manner, significantly decreased osteoclast‐related gene expression and impaired bone resorption by osteoclasts. Moreover, phosphorylation of members of the nuclear factor‐kappaB (NF‐κB) and PI3K/AKT signalling pathways was reduced by Corilagin. In a murine model of osteoporosis, Corilagin inhibited osteoclast functions in vivo and restored oestrogen deficiency‐induced bone loss. In conclusion, our findings suggested that Corilagin inhibited osteoclastogenesis by down‐regulating the NF‐κB and PI3K/AKT signalling pathways, thus showing its potential possibility for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Jinwei Lu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Chenyi Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Yanyong Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Department of Orthopedic Surgery, The First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Donghui Huang
- Department of Orthopedic Surgery, Hangzhou Third Hospital, Hangzhou, China
| | - Lan Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Weiduo Hou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Zhihui Kuang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Yazhou Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Shining Xiao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Mumingjiang Yishake
- Orthopedics Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Rongxin He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
Møller AMJ, Delaissé JM, Olesen JB, Madsen JS, Canto LM, Bechmann T, Rogatto SR, Søe K. Aging and menopause reprogram osteoclast precursors for aggressive bone resorption. Bone Res 2020; 8:27. [PMID: 32637185 PMCID: PMC7329827 DOI: 10.1038/s41413-020-0102-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/06/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022] Open
Abstract
Women gradually lose bone from the age of ~35 years, but around menopause, the rate of bone loss escalates due to increasing bone resorption and decreasing bone formation levels, rendering these individuals more prone to developing osteoporosis. The increased osteoclast activity has been linked to a reduced estrogen level and other hormonal changes. However, it is unclear whether intrinsic changes in osteoclast precursors around menopause can also explain the increased osteoclast activity. Therefore, we set up a protocol in which CD14+ blood monocytes were isolated from 49 female donors (40-66 years old). Cells were differentiated into osteoclasts, and data on differentiation and resorption activity were collected. Using multiple linear regression analyses combining in vitro and in vivo data, we found the following: (1) age and menopausal status correlate with aggressive osteoclastic bone resorption in vitro; (2) the type I procollagen N-terminal propeptide level in vivo inversely correlates with osteoclast resorption activity in vitro; (3) the protein level of mature cathepsin K in osteoclasts in vitro increases with age and menopause; and (4) the promoter of the gene encoding the dendritic cell-specific transmembrane protein is less methylated with age. We conclude that monocytes are "reprogrammed" in vivo, allowing them to "remember" age, the menopausal status, and the bone formation status in vitro, resulting in more aggressive osteoclasts. Our discovery suggests that this may be mediated through DNA methylation. We suggest that this may have clinical implications and could contribute to understanding individual differences in age- and menopause-induced bone loss.
Collapse
Affiliation(s)
- Anaïs Marie Julie Møller
- Clinical Cell Biology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Clinical Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Jean-Marie Delaissé
- Clinical Cell Biology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5230 Odense M, Denmark
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| | - Jacob Bastholm Olesen
- Clinical Cell Biology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark
| | - Jonna Skov Madsen
- Department of Regional Health Research, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Clinical Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Luisa Matos Canto
- Department of Clinical Genetics, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Troels Bechmann
- Department of Regional Health Research, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Oncology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Silvia Regina Rogatto
- Department of Regional Health Research, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Clinical Genetics, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Kent Søe
- Clinical Cell Biology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5230 Odense M, Denmark
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, 5000 Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
- OPEN, Odense Patient data Explorative Network, Odense University Hospital, 5000 Odense C, Denmark
| |
Collapse
|