1
|
Li Z, Hu F, Xiong L, Zhou X, Dong C, Zheng Y. Underlying mechanisms of traditional Chinese medicine in the prevention and treatment of diabetic retinopathy: Evidences from molecular and clinical studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118641. [PMID: 39084273 DOI: 10.1016/j.jep.2024.118641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
As one of the most serious microvascular complications of diabetes mellitus (DM), diabetic retinopathy (DR) can cause visual impairment and even blindness. With the rapid increase in the prevalence of DM, the incidence of DR is also rising year by year. Preventing and effectively treating DR has become a major focus in the medical field. Traditional Chinese medicine (TCM) has a wealth of experience in treating DR and has achieved significant results with various herbs and TCM prescriptions. Traditional Chinese Medicine (TCM) provides a comprehensive therapeutic strategy for diabetic retinopathy (DR), encompassing anti-inflammatory and antioxidant actions, anti-neovascularization, neuroprotection, regulation of glucose metabolism, and inhibition of apoptosis. This review provides an overview of the current status of TCM treatment for DR in recent years, including experimental studies and clinical researches, to explore the clinical efficacy and the underlying modern mechanisms of herbs and TCM prescriptions. Besides, we also discussed the challenges TCM faces in treating DR, such as drug-drug interactions among TCM components and the lack of high-quality evidence-based medicine practice, which pose significant obstacles to TCM's application in DR.
Collapse
Affiliation(s)
- Zhengpin Li
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Faquan Hu
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Liyuan Xiong
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Xuemei Zhou
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China
| | - Changwu Dong
- The Second Clinical Medical School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yujiao Zheng
- Anhui University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Hefei, China.
| |
Collapse
|
2
|
Lin Z, Wang S, Cao Y, Lin J, Sun A, Huang W, Zhou J, Hong Q. Bioinformatics and validation reveal the potential target of curcumin in the treatment of diabetic peripheral neuropathy. Neuropharmacology 2024; 260:110131. [PMID: 39179172 DOI: 10.1016/j.neuropharm.2024.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is a common nerve-damaging complication of diabetes mellitus. Effective treatments are needed to alleviate and reverse diabetes-associated damage to the peripheral nerves. Curcumin is an effective neuroprotectant that plays a protective role in DPN promoted by Schwann cells (SCs) lesions. However, the potential molecular mechanism of curcumin remains unclear. Therefore, our aim is to study the detailed molecular mechanism of curcumin-mediated SCs repair in order to improve the efficacy of curcumin in the clinical treatment of DPN. First, candidate target genes of curcumin in rat SC line RSC96 cells stimulated by high glucose were identified by RNA sequencing and bioinformatic analyses. Enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was carried out by Metascape, followed by 8 algorithms on Cytoscape to determine 4 hub genes, namly Hmox1, Pten, Vegfa and Myc. Next, gene set enrichment analysis (GSEA) and Pearson function showed that Hmox1 was significantly correlated with apoptosis. Subsequently, qRT-PCR, MTT assay, flow cytometry, caspase-3 activity detection and westernblot showed that curcumin treatment increased RSC96 cell viability, reduced cell apoptosis, increased Hmox1, Pten, Vegfa and Myc expression, and up-regulated Akt phosphorylation level under high glucose environment. Finally, molecular docking predicted the binding site of curcumin to Hmox1. These results suggest that curcumin can reduce the apoptosis of SCs induced by high glucose, and Hmox1 is a potential target for curcumin. Our findings provide new insights about the mechanism of action of curcumin on SC as a potential treatment in DPN.
Collapse
Affiliation(s)
- Ziqiang Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, Guangdong, 510000, China; Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, No. 183 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong, 510000, China
| | - Suo Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, Guangdong, 510000, China
| | - Yu Cao
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, No. 183 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong, 510000, China
| | - Jialing Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, Guangdong, 510000, China
| | - Ailing Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, Guangdong, 510000, China
| | - Wei Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, Guangdong, 510000, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, No. 183 Zhongshan Avenue West, Tianhe District, Guangzhou, Guangdong, 510000, China.
| | - Qingxiong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
3
|
Liu M, Li Z, Zhang H, Cao T, Feng X, Wang X, Wang Z. Inhibition of BMP4 alleviates diabetic retinal vascular dysfunction via the VEGF and smad1/5 signalling. Arch Physiol Biochem 2024; 130:529-536. [PMID: 37074680 DOI: 10.1080/13813455.2023.2190054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/25/2022] [Accepted: 03/01/2023] [Indexed: 04/20/2023]
Abstract
Objective:The aim of our study was to determine the molecular mechanism of BMP4 (bone morphogenetic protein 4) in DR (diabetic retinopathy).Methods: Human retinal endothelial cell (HRECs) induced by high glucose to simulate one of the pathogenesis in the diabetic retinopathy (DR) model. RT-qPCR and western blot were used to detect the mRNA and protein levels of BMP4 in the STZ/HG group. Flow cytometry and TUNEL staining were performed to detect the apoptosis. Angiogenesis was evaluated by tube formation assay. Transwell assay and wound healing assay were used to detect cell migration ability. H&E staining was used to evaluate the pathological changes.Results: BMP4 was significantly upregulated in the STZ/HG group. Sh-BMP4 significantly inhibited the migration and angiogenesis of RVECs induced by HG. In addition, both in vivo and in vitro experiments confirmed that sh-BMP4 could significantly promote RVECs apoptosis in the HG/STZ group. Western blot results showed that sh-BMP4 could down-regulate the expressions of p-smad1, p-smad5 and VEGF.Conclusions: Inhibition of BMP4 could alleviate the damage of diabetic retinopathy by regulating the p-smad1/5/VEGF signaling axis, inhibiting angiogenesis and promoting apoptosis.
Collapse
Affiliation(s)
- Mingyuan Liu
- Anesthesiology Department, Cangzhou Central Hospital, Cangzhou, Hebei Province, P.R. China
| | - Zhaoxia Li
- Ophthalmology Department, Cangzhou Central Hospital, Cangzhou, Hebei Province, P.R. China
| | - Huiqin Zhang
- Ophthalmology Department, Cangzhou Central Hospital, Cangzhou, Hebei Province, P.R. China
| | - Tingting Cao
- Ophthalmology Department, Cangzhou Central Hospital, Cangzhou, Hebei Province, P.R. China
| | - Xueyan Feng
- Ophthalmology Department, Cangzhou Central Hospital, Cangzhou, Hebei Province, P.R. China
| | - Xi Wang
- Pneumology Department, Cangzhou Central Hospital, Cangzhou, Hebei Province, P.R. China
| | - Zhixue Wang
- Ophthalmology Department, Cangzhou Central Hospital, Cangzhou, Hebei Province, P.R. China
| |
Collapse
|
4
|
Wang D, Chen Y, Li J, Wu E, Tang T, Singla RK, Shen B, Zhang M. Natural products for the treatment of age-related macular degeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155522. [PMID: 38820665 DOI: 10.1016/j.phymed.2024.155522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a chronic retinal disease that significantly influences the vision of the elderly. PURPOSE There is no effective treatment and prevention method. The pathogenic process behind AMD is complex, including oxidative stress, inflammation, and neovascularization. It has been demonstrated that several natural products can be used to manage AMD, but systematic summaries are lacking. STUDY DESIGN AND METHODS PubMed, Web of Science, and ClinicalTrials.gov were searched using the keywords "Biological Products" AND "Macular Degeneration" for studies published within the last decade until May 2023 to summarize the latest findings on the prevention and treatment of age-related macular degeneration through the herbal medicines and functional foods. RESULTS The eligible studies were screened, and the relevant information about the therapeutic action and mechanism of natural products used to treat AMD was extracted. Our findings demonstrate that natural substances, including retinol, phenols, and other natural products, prevent the development of new blood vessels and protect the retina from oxidative stress in cells and animal models. However, they have barely been examined in clinical studies. CONCLUSION Natural products could be highly prospective candidate drugs used to treat AMD, and further preclinical and clinical research is required to validate it to control the disease.
Collapse
Affiliation(s)
- Dongyue Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yi Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Jiakun Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Erman Wu
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Tong Tang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India.
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China.
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
5
|
Huang L, Wang J, Yu J, Bian M, Xiang X, Han G, Chen W, Wang N, Ge J, Lu S, Zhang J. Picein alleviates oxidative stress and promotes bone regeneration in osteoporotic bone defect by inhibiting ferroptosis via Nrf2/HO-1/GPX4 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:4066-4085. [PMID: 38727095 DOI: 10.1002/tox.24239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/23/2024] [Accepted: 03/14/2024] [Indexed: 06/12/2024]
Abstract
Osteoporosis (OP) can result in slower bone regeneration than the normal condition due to abnormal oxidative stress and high levels of reactive oxygen species (ROS), a condition detrimental for bone formation, making the OP-related bone healing a significant clinical challenge. As the osteogenic differentiation ability of bone marrow mesenchymal stem cells (BMSCs) is closely related to bone regeneration; currently, this study assessed the effects of Picein on BMSCs in vitro and bone regeneration in osteoporotic bone defect in vivo. Cell viability was determined by CCK-8 assay. The production of (ROS), malonaldehyde, superoxide dismutase activities, and glutathione was evaluated by using commercially available kits, and a flow cytometry analysis was adopted to detect macrophage polarization. Osteogenic capacity of BMSCs was evaluated by alkaline phosphatase (ALP) activity, ALP staining, and Alizarin red S staining. The expression of osteogenic-related proteins (OPN, Runx-2, OCN) and osteogenic-related genes (ALP, BMP-4, COL-1, and Osterix) were evaluated by Western blotting and real-time PCR (RT-PCR). In addition, proliferation, migration ability, and angiogenic capacity of human umbilical vein endothelial cells (HUVECs) were evaluated by EdU staining, scratch test, transwell assay, and tube formation assay, respectively. Angiogenic-related genes (VEGF, vWF, CD31) were also evaluated by RT-PCR. Results showed that Picein alleviated erastin-induced oxidative stress, enhanced osteogenic differentiation capacity of BMSCs, angiogenesis of HUVECs, and protects cells against ferroptosis through Nrf2/HO-1/GPX4 axis. Moreover, Picein regulate immune microenvironment by promoting the polarization of M2 macrophages in vitro. In addition, Picein also reduce the inflammation levels and promotes bone regeneration in osteoporotic bone defect in OP rat models in vivo. Altogether, these results suggested that Picein can promote bone regeneration and alleviate oxidative stress via Nrf2/HO-1/GPX4 pathway, offering Picein as a novel antioxidant agent for treating osteoporotic bone defect.
Collapse
Affiliation(s)
- Lei Huang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiayi Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jieqin Yu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xingdong Xiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guanjie Han
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weisin Chen
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ning Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Ge
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shunyi Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jian Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Ye X, Fung NSK, Lam WC, Lo ACY. Nutraceuticals for Diabetic Retinopathy: Recent Advances and Novel Delivery Systems. Nutrients 2024; 16:1715. [PMID: 38892648 PMCID: PMC11174689 DOI: 10.3390/nu16111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Diabetic retinopathy (DR) is a major vision-threatening disease among the working-age population worldwide. Present therapeutic strategies such as intravitreal injection of anti-VEGF and laser photocoagulation mainly target proliferative DR. However, there is a need for early effective management in patients with early stage of DR before its progression into the more severe sight-threatening proliferative stage. Nutraceuticals, natural functional foods with few side effects, have been proposed to be beneficial in patients with DR. Over the decades, many studies, either in vitro or in vivo, have demonstrated the advantages of a number of nutraceuticals in DR with their antioxidative, anti-inflammatory, neuroprotective, or vasoprotective effects. However, only a few clinical trials have been conducted, and their outcomes varied. The low bioavailability and instability of many nutraceuticals have indeed hindered their utilization in clinical use. In this context, nanoparticle carriers have been developed to deliver nutraceuticals and to improve their bioavailability. Despite its preclinical nature, research of interventive nutraceuticals for DR may yield promising information in their clinical applications.
Collapse
Affiliation(s)
- Xiaoyuan Ye
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
| | - Nicholas Siu Kay Fung
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
| | - Wai Ching Lam
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
- Department of Ophthalmology, University of British Columbia, 2550 Willow Street, Room 301, Vancouver, BC V5Z 3N9, Canada
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
| |
Collapse
|
7
|
Cheng YW, Huang YC, Chang KF, Huang XF, Sheu GT, Tsai NM. Protective Effect of Curcumin on the Tight Junction Integrity and Cellular Senescence in Human Retinal Pigment Epithelium of Early Diabetic Retinopathy. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:107-117. [PMID: 38857204 DOI: 10.4103/ejpi.ejpi-d-23-00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/05/2024] [Indexed: 06/12/2024]
Abstract
Diabetic retinopathy (DR) is a secondary complication of diabetes that can lead to visual impairment and blindness. The retinal pigment epithelium (RPE) is a monolayer of pigment cells that forms the blood-retinal barrier (BRB) via tight junction (TJ) proteins and plays a crucial role in the physiological function of the retina. Hyperglycemia induces RPE death and BRB breakdown, which accelerates the process of DR. Curcumin, an active extract of Curcuma longa , has anti-inflammatory, antioxidant, antiapoptotic, and neuroprotective properties. However, the effect of Curcumin on the BRB under high glucose conditions remains unknown. This study aimed to investigate the protective effects of Curcumin on RPE physiology in vitro and in vivo . Curcumin significantly alleviated cell viability inhibition under high glucose conditions. Moreover, high glucose reduced extracellular signal-regulated kinase and Akt pathways activation to diminish RPE cell growth but reversed by Curcumin treatment. Curcumin protected not only TJ integrity but also retinoid regeneration through TJ proteins and isomerase modulation in diabetic retina. Furthermore, Curcumin decreased the expression of angiogenic factor to inhibit retinal neovascularization. Finally, Curcumin treatment markedly reduced apoptosis during hyperglycemia. In conclusion, Curcumin can alleviate the progression of DR by promoting RPE survival, TJ integrity, retinoid isomerase activity, RPE senescence inhibition, and neovascularization. Therefore, Curcumin exhibits high potential for use as a therapeutic agent for early DR.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- Department of Internal Medicine, Lee's General Hospital, Miaoli, Taiwan
| | - Ya-Chih Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Kai-Fu Chang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Xiao-Fan Huang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Gwo-Tarng Sheu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Nu-Man Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Life-and-Death Studies, Nanhua University, Chiayi, Taiwan
| |
Collapse
|
8
|
Cai L, Xia M, Zhang F. Redox Regulation of Immunometabolism in Microglia Underpinning Diabetic Retinopathy. Antioxidants (Basel) 2024; 13:423. [PMID: 38671871 PMCID: PMC11047590 DOI: 10.3390/antiox13040423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment and blindness among the working-age population. Microglia, resident immune cells in the retina, are recognized as crucial drivers in the DR process. Microglia activation is a tightly regulated immunometabolic process. In the early stages of DR, the M1 phenotype commonly shifts from oxidative phosphorylation to aerobic glycolysis for energy production. Emerging evidence suggests that microglia in DR not only engage specific metabolic pathways but also rearrange their oxidation-reduction (redox) system. This redox adaptation supports metabolic reprogramming and offers potential therapeutic strategies using antioxidants. Here, we provide an overview of recent insights into the involvement of reactive oxygen species and the distinct roles played by key cellular antioxidant pathways, including the NADPH oxidase 2 system, which promotes glycolysis via enhanced glucose transporter 4 translocation to the cell membrane through the AKT/mTOR pathway, as well as the involvement of the thioredoxin and nuclear factor E2-related factor 2 antioxidant systems, which maintain microglia in an anti-inflammatory state. Therefore, we highlight the potential for targeting the modulation of microglial redox metabolism to offer new concepts for DR treatment.
Collapse
Affiliation(s)
- Luwei Cai
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.C.); (M.X.)
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Mengxue Xia
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.C.); (M.X.)
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Fang Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.C.); (M.X.)
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| |
Collapse
|
9
|
Zhang H, Song T, Kang R, Ren F, Liu J, Wang J. Plant bioactive compounds alleviate photoinduced retinal damage and asthenopia: Mechanisms, synergies, and bioavailability. Nutr Res 2023; 120:115-134. [PMID: 37980835 DOI: 10.1016/j.nutres.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
The retina, an important tissue of the eye, is essential in visual transmission and sustaining adequate eyesight. However, oxidative stress and inflammatory reactions can harm retinal structure and function. Recent studies have demonstrated that exposure to light can induce oxidative stress and inflammatory reactions in retinal cells, thereby facilitating the progression of retinal damage-related diseases and asthenopia. Plant bioactive compounds such as anthocyanin, curcumin, resveratrol, lutein, zeaxanthin, epigallocatechin gallate, and quercetin are effective in alleviating retinal damage and asthenopia. Their strong oxidation resistance and unique chemical structure can prevent the retina from producing reactive oxygen species and regulating eye muscle relaxation, thus alleviating retinal damage and asthenopia. Additionally, the combination of these active ingredients produces a stronger antioxidant effect. Consequently, understanding the mechanism of retinal damage caused by light and the regulation mechanism of bioactive compounds can better protect the retina and reduce asthenopia.
Collapse
Affiliation(s)
- Huijuan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| | - Tiancong Song
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Rui Kang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Feiyue Ren
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
10
|
Rofaeil RR, Ibrahim MA, Mohyeldin RH, El-Tahawy NF, Abdelzaher WY. Role of EGF/ERK1/2/HO-1 axis in mediating methotrexate induced testicular damage in rats and the ameliorative effect of xanthine oxidase inhibitors. Immunopharmacol Immunotoxicol 2023; 45:511-520. [PMID: 36883686 DOI: 10.1080/08923973.2023.2181684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/11/2023] [Indexed: 03/09/2023]
Abstract
Objectives: Methotrexate (MTX) is commonly used in the management of several malignancies and autoimmune disorders; however, testicular damage is one of the most detrimental effects of MTX administration. The current the protective effect of xanthine oxidase inhibitors either purine analogue; allopurinol (ALL) or non-purine analogue; febuxostat (FEB) in testicular injury induced by MTX in rats.Materials and methods: Thirty-two rats were randomly allocated to four groups; control (received vehicles), MTX (received single dose, 20 mg/kg, i.p.), MTX + ALL (received MTX plus ALL) and MTX + FEB (received MTX plus ALL). ALL and FEB were administered orally at 100- and 10 mg/kg, respectively for 15 days. Total and free testosterone were measured in serum. In addition, total antioxidant capacity (TAC), epidermal growth factor (EGF), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), extracellular signal-regulating kinase1/2 (ERK1/2), and total nitrite/nitrate (NOx) end products were measured in testicular tissues. At the same time, immunoexpression of HO-1in testicular tissue was measured. Histopathological examination was done.Results: ALL and FEB increased total and free serum testosterone. Both drugs showed a significant reduction in testicular MDA, NOx, TNF-α levels with an increase in TAC, EGF, and ERK1/2 levels in testicular tissue. Furthermore, both drugs enhanced HO-1 immunoexpression in testicular tissue. All these findings were parallel to the preservation of normal testicular architecture in rats treated with ALL and FEB.Conclusion: All and FEB were equally protective against testicular damage induced by MTX through anti-inflammatory, anti-apoptotic, and antioxidant actions. Their effects might be through activation of the EGF/ERK1/2/HO-1 pathway.
Collapse
Affiliation(s)
- Remon Roshdy Rofaeil
- Department of Pharmacology, Minia University, Minia, Egypt
- Department of Pharmacology, Deraya University, New Minia, Minia, Egypt
| | | | - Reham H Mohyeldin
- Department of Pharmacology, Deraya University, New Minia, Minia, Egypt
| | - Nashwa F El-Tahawy
- Department of Histology and Cell Biology, Minia University, Minia, Egypt
| | | |
Collapse
|
11
|
You H, Li H, Gou W. lncRNA HOTAIR promotes ROS generation and NLRP3 inflammasome activation by inhibiting Nrf2 in diabetic retinopathy. Medicine (Baltimore) 2023; 102:e35155. [PMID: 37713847 PMCID: PMC10508377 DOI: 10.1097/md.0000000000035155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/18/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a microvascular complication associated with damage to the retina due to inflammation induced by high glucose. Activation of the NLRP3 inflammasome plays a critical role in DR and its prevention is beneficial to patients. However, the regulation of long non-coding RNA (lncRNA) in NLRP3 inflammasome activation of DR is incompletely understood. So, this study aimed to uncover the functional and regulatory mechanism of the lncRNA HOTAIR in NLRP3 inflammasome activation in Dr. METHODS The vitreous humor was collected from the patients and detected the inflammatory and oxidative stress makers. Human retinal endothelial cells (HRECs) were cultured and stimulated in low D-glucose (5 mmol/L) or high D-glucose (20 mmol/L). Additionally, HRECs were knocked down HOTAIR with a si-RNA. Then, the NLRP3 inflammasome activation was analyzed by western blotting and pyroptosis cell imaging. The ROS was measured by specific probe. The activation of Nrf2 measured by Immunofluorescent staining. The interaction between HOTAIR and Nrf2 was evaluated by co-immunoprecipitation and RNA immunoprecipitation. RESULTS The expression of HOTAIR was significantly increased in the vitreous of patients with DR and in HRECs stimulated with high glucose. Furthermore, HOTAIR knockdown relieved NLRP3 inflammasome activation. More specifically, HOTAIR knockdown suppressed the expression of NLRP3, pro-caspase-1, and pro-IL-1β, as well as IL-1β maturation and pyroptosis. HOTAIR knockdown also interfered with the ROS generation induced by high glucose. Moreover, HOTAIR promoted the interaction between Nrf2 and Keap1 by binding and inactivating Nrf2. CONCLUSION The lncRNA HOTAIR promotes NLRP3 inflammasome activation and ROS generation by inhibiting Nrf2 in Dr.
Collapse
Affiliation(s)
- Hui You
- Department of Ophthalmology, Suining Central Hospital, Suining, China
| | - Hongyu Li
- Department of gynaecology, Suining Central Hospital, Suining, China
| | - Wenjun Gou
- Department of Ophthalmology, Suining Central Hospital, Suining, China
| |
Collapse
|
12
|
Huang L, Lu S, Bian M, Wang J, Yu J, Ge J, Zhang J, Xu Q. Punicalagin attenuates TNF-α-induced oxidative damage and promotes osteogenic differentiation of bone mesenchymal stem cells by activating the Nrf2/HO-1 pathway. Exp Cell Res 2023:113717. [PMID: 37429372 DOI: 10.1016/j.yexcr.2023.113717] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Oxidative stress is one of the most important factors in changing bone homeostasis. Redox homeostasis plays a key role in the osteogenic differentiation of bone mesenchymal stem cells (BMSCs) and the angiogenesis ability of human umbilical vein endothelial cells (HUVECs) for bone regeneration. Currently, this study assessed the effects of punicalagin (PUN) on BMSCs and HUVECs. Cell viability was determined by CCK-8 assay. A flow cytometry analysis was adopted to detect macrophage polarization. The production of reactive oxygen stress (ROS), glutathione (GSH), malonaldehyde (MDA) and superoxide dismutase (SOD) activities were evaluated by using commercially-available kits. Osteogenic capacity of BMSCs was evaluated by ALP activity, ALP staining and ARS staining. The expression of osteogenic-related proteins (OCN, Runx-2, OPN) and Nrf/HO-1 levles were evaluated by Western blotting. Osteogenic-related genes (Osterix, COL-1, BMP-4, ALP) were evaluated by RT-PCR. Migration ability and invasion ability of HUVECs were evaluated by wound healing assay and Transwell assay. Angiogenic ability was detected by tube formation assay and the expression of angiogenic-related genes (VEGF, vWF, CD31) were evaluated by RT-PCR. Results showed that PUN alleviated oxidative stress by TNF-α, enhanced osteogenic differentiation in BMSCs and angiogenesis in HUVECs. Moreover, PUN regulate immune microenvironment by promoting the polarization of M2 macrophages and reduce the oxidative stress related products by activating Nrf2/HO-1 pathway. Altogether, these results suggested that PUN can promote osteogenic capacity of BMSCs, angiogenesis of HUVECs, alleviate oxidative stress via Nrf2/HO-1 pathway, offering PUN as a novel antioxidant agent for treating bone loss diseases.
Collapse
Affiliation(s)
- Lei Huang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shunyi Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiayi Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jieqin Yu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun Ge
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jian Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Qintong Xu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Fanaro GB, Marques MR, Calaza KDC, Brito R, Pessoni AM, Mendonça HR, Lemos DEDA, de Brito Alves JL, de Souza EL, Cavalcanti Neto MP. New Insights on Dietary Polyphenols for the Management of Oxidative Stress and Neuroinflammation in Diabetic Retinopathy. Antioxidants (Basel) 2023; 12:1237. [PMID: 37371967 PMCID: PMC10295526 DOI: 10.3390/antiox12061237] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic retinopathy (DR) is a neurodegenerative and vascular pathology that is considered one of the leading causes of blindness worldwide, resulting from complications of advanced diabetes mellitus (DM). Current therapies consist of protocols aiming to alleviate the existing clinical signs associated with microvascular alterations limited to the advanced disease stages. In response to the low resolution and limitations of the DR treatment, there is an urgent need to develop more effective alternative therapies to optimize glycemic, vascular, and neuronal parameters, including the reduction in the cellular damage promoted by inflammation and oxidative stress. Recent evidence has shown that dietary polyphenols reduce oxidative and inflammatory parameters of various diseases by modulating multiple cell signaling pathways and gene expression, contributing to the improvement of several chronic diseases, including metabolic and neurodegenerative diseases. However, despite the growing evidence for the bioactivities of phenolic compounds, there is still a lack of data, especially from human studies, on the therapeutic potential of these substances. This review aims to comprehensively describe and clarify the effects of dietary phenolic compounds on the pathophysiological mechanisms involved in DR, especially those of oxidative and inflammatory nature, through evidence from experimental studies. Finally, the review highlights the potential of dietary phenolic compounds as a prophylactic and therapeutic strategy and the need for further clinical studies approaching the efficacy of these substances in DR management.
Collapse
Affiliation(s)
- Gustavo Bernardes Fanaro
- Institute of Health and Biotechnology, Federal University of Amazonas, Manaus 69460000, Amazonas, Brazil;
| | | | - Karin da Costa Calaza
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói 24210201, Rio de Janeiro, Brazil;
| | - Rafael Brito
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niterói 24210201, Rio de Janeiro, Brazil;
| | | | - Henrique Rocha Mendonça
- Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 27965045, Rio de Janeiro, Brazil; (H.R.M.); (M.P.C.N.)
| | | | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraíba, Brazil; (D.E.d.A.L.); (J.L.d.B.A.)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051900, Paraíba, Brazil; (D.E.d.A.L.); (J.L.d.B.A.)
| | - Marinaldo Pacífico Cavalcanti Neto
- Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 27965045, Rio de Janeiro, Brazil; (H.R.M.); (M.P.C.N.)
| |
Collapse
|
14
|
Rondanelli M, Gasparri C, Riva A, Petrangolini G, Barrile GC, Cavioni A, Razza C, Tartara A, Perna S. Diet and ideal food pyramid to prevent or support the treatment of diabetic retinopathy, age-related macular degeneration, and cataracts. Front Med (Lausanne) 2023; 10:1168560. [PMID: 37324128 PMCID: PMC10265999 DOI: 10.3389/fmed.2023.1168560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Many eye diseases, such as diabetic retinopathy (DR), age-related macular degeneration (AMD), and cataracts are preventable and treatable with lifestyle. The objective of this review is to assess the most recent research on the ideal dietary approach to prevent or support the treatment of DR, AMD, and cataracts, as well as to construct a food pyramid that makes it simple for people who are at risk of developing these pathologies to decide what to eat. The food pyramid presented here proposes what should be consumed every day: 3 portions of low glycemic index (GI) grains (for fiber and zinc content), 5 portions (each portion: ≥200 g/day) of fruits and vegetables (spinach, broccoli, zucchini cooked, green leafy vegetables, orange, kiwi, grapefruit for folic acid, vitamin C, and lutein/zeaxanthin content, at least ≥42 μg/day, are to be preferred), extra virgin olive (EVO) oil (almost 20 mg/day for vitamin E and polyphenols content), nuts or oil seeds (20-30 g/day, for zinc content, at least ≥15.8 mg/day); weekly: fish (4 portions, for omega-3 content and eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) 0.35-1.4 g/day), white meat (3 portions for vitamin B12 content), legumes (2 portions for vegetal proteins), eggs (2 portions for lutein/zeaxanthin content), light cheeses (2 portions for vitamin B6 content), and almost 3-4 times/week microgreen and spices (saffron and curcumin). At the top of the pyramid, there are two pennants: one green, which indicates the need for personalized supplementation (if daily requirements cannot be met through diet, omega-3, and L-methylfolate supplementation), and one red, which indicates that certain foods are prohibited (salt and sugar). Finally, 3-4 times per week, 30-40 min of aerobic and resistance exercises are required.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy
- Unit of Human and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia, Italy
| | | | | | - Gaetan Claude Barrile
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia, Italy
| | - Alessandro Cavioni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia, Italy
| | - Claudia Razza
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia, Italy
| | - Alice Tartara
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, Pavia, Italy
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Zallaq, Bahrain
| |
Collapse
|
15
|
Sun X, Zhang X, Yan H, Wu H, Cao S, Zhao W, Dong T, Zhou A. Protective effect of curcumin on hepatolenticular degeneration through copper excretion and inhibition of ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154539. [PMID: 36898256 DOI: 10.1016/j.phymed.2022.154539] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/05/2022] [Accepted: 11/01/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Hepatolenticular degeneration (HLD) is an autosomal recessive disorder concerning copper metabolism. Copper overload is also accompanied by iron overload in HLD patients, which can lead to ferroptosis. Curcumin, the active component in turmeric, has the potential to inhibit ferroptosis. PURPOSE The current study proposed a systematic investigation of the protective effects of curcumin against HLD and the underlying mechanisms. METHODS The protective effect of curcumin on toxic milk (TX) mice was studied. Liver tissue was observed via hematoxylin-eosin (H&E) staining and the ultrastructure of the liver tissue was observed through transmission electron microscopy. Copper levels in the tissues, serum, and metabolites were measured by atomic absorption spectrometry (AAS). In addition, serum and liver indicators were evaluated. In cellular experiments, the effect of curcumin on the viability of rat normal liver cells (BRL-3A) was determined via the 3-[4,5-dimethylthiazol-2-yl)]-2,5-diphenyltetrazolium bromide (MTT) assay. Cell and mitochondrial morphology were observed in curcumin-mediated HLD model cells. The intracellular copper ion fluorescence intensity was observed via fluorescence microscopy, and intracellular copper iron content was detected using AAS. Further, oxidative stress indicators were evaluated. Cellular reactive oxygen species (ROS) and cellular mitochondrial membrane potential were examined via flow cytometry. Furthermore, the expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and glutathione peroxidase 4 (GPX4) were determined via western blotting (WB). RESULTS The histopathology of the liver confirmed the hepatoprotective effects of curcumin. Curcumin improved copper metabolism in TX mice. Both serum liver enzyme markers and antioxidant enzyme levels indicated the protective effect of curcumin against HLD-related liver injury. The MTT assay results showed that curcumin was protective against excess copper-induced injury. Curcumin improved the morphology of HLD model cells and their mitochondrial morphology. The Cu2+ fluorescent probe and the AAS results indicated that curcumin reduced Cu2+ content in HLD hepatocytes. In addition, curcumin improved oxidative stress levels and prevented the decline of mitochondrial membrane potential in HLD model cells. The ferroptosis inducer Erastin reversed these effects of curcumin. WB revealed that curcumin promoted Nrf2, HO-1, and GPX4 protein expression in HLD model cells, and the Nrf2 inhibitor ML385 reversed the effects of curcumin. CONCLUSION Curcumin demonstrates a protective role by expelling copper and inhibiting ferroptosis, activating the Nrf2/HO-1/GPX4 signaling pathway in HLD.
Collapse
Affiliation(s)
- Xun Sun
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Xinyu Zhang
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Hui Yan
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230038, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230038, China.
| | - Shijian Cao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Wenchen Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh 15219, United States
| | - Ting Dong
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - An Zhou
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, 230038, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230038, China.
| |
Collapse
|
16
|
Antioxidant Phytochemicals as Potential Therapy for Diabetic Complications. Antioxidants (Basel) 2023; 12:antiox12010123. [PMID: 36670985 PMCID: PMC9855127 DOI: 10.3390/antiox12010123] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The global prevalence of diabetes continues to increase partly due to rapid urbanization and an increase in the aging population. Consequently, this is associated with a parallel increase in the prevalence of diabetic vascular complications which significantly worsen the burden of diabetes. For these diabetic vascular complications, there is still an unmet need for safe and effective alternative/adjuvant therapeutic interventions. There is also an increasing urge for therapeutic options to come from natural products such as plants. Hyperglycemia-induced oxidative stress is central to the development of diabetes and diabetic complications. Furthermore, oxidative stress-induced inflammation and insulin resistance are central to endothelial damage and the progression of diabetic complications. Human and animal studies have shown that polyphenols could reduce oxidative stress, hyperglycemia, and prevent diabetic complications including diabetic retinopathy, diabetic nephropathy, and diabetic peripheral neuropathy. Part of the therapeutic effects of polyphenols is attributed to their modulatory effect on endogenous antioxidant systems. This review attempts to summarize the established effects of polyphenols on endogenous antioxidant systems from the literature. Moreover, potential therapeutic strategies for harnessing the potential benefits of polyphenols for diabetic vascular complications are also discussed.
Collapse
|
17
|
Wu H, Nakamura T, Guo Y, Matsumoto R, Munemasa S, Murata Y, Nakamura Y. Cycloartenyl Ferulate Is the Predominant Compound in Brown Rice Conferring Cytoprotective Potential against Oxidative Stress-Induced Cytotoxicity. Int J Mol Sci 2023; 24:ijms24010822. [PMID: 36614263 PMCID: PMC9821627 DOI: 10.3390/ijms24010822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
Since brown rice extract is a rich source of biologically active compounds, the present study is aimed to quantify the major compounds in brown rice and to compare their cytoprotective potential against oxidative stress. The content of the main hydrophobic compounds in brown rice followed the order of cycloartenyl ferulate (CAF) (89.00 ± 8.07 nmol/g) >> α-tocopherol (αT) (19.73 ± 2.28 nmol/g) > γ-tocotrienol (γT3) (18.24 ± 1.41 nmol/g) > α-tocotrienol (αT3) (16.02 ± 1.29 nmol/g) > γ-tocopherol (γT) (3.81 ± 0.40 nmol/g). However, the percent contribution of CAF to the radical scavenging activity of one gram of whole brown rice was similar to those of αT, αT3, and γT3 because of its weaker antioxidant activity. The CAF pretreatment displayed a significant cytoprotective effect on the hydrogen peroxide-induced cytotoxicity from 10 µM, which is lower than the minimal concentrations of αT and γT required for a significant protection. CAF also enhanced the nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation coincided with the enhancement of the heme oxygenase-1 (HO-1) mRNA level. An HO-1 inhibitor, tin protoporphyrin IX (SnPP), significantly impaired the cytoprotection of CAF. The cytoprotective potential of CAF is attributable to its cycloartenyl moiety besides the ferulyl moiety. These results suggested that CAF is the predominant cytoprotector in brown rice against hydrogen peroxide-induced cytotoxicity.
Collapse
Affiliation(s)
- Hongyan Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Yingnan Guo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Riho Matsumoto
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
- Correspondence:
| |
Collapse
|
18
|
Kovoor E, Chauhan SK, Hajrasouliha A. Role of inflammatory cells in pathophysiology and management of diabetic retinopathy. Surv Ophthalmol 2022; 67:1563-1573. [PMID: 35914582 PMCID: PMC11082823 DOI: 10.1016/j.survophthal.2022.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023]
Abstract
Diabetic retinopathy (DR) is a sight-threatening complication of diabetes mellitus. Several inflammatory cells and proteins, including macrophages and microglia, cytokines, and vascular endothelial growth factors, are found to play a significant role in the development and progression of DR. Inflammatory cells play a significant role in the earliest changes seen in DR including the breakdown of the blood retinal barrier leading to leakage of blood into the retina. They also have an important role in the pathogenesis of more advanced stage of proliferative diabetic retinopathy, leading to neovascularization, vitreous hemorrhage, and tractional retinal detachment. In this review, we examine the function of numerous inflammatory cells involved in the pathogenesis, progression, and role as a potential therapeutic target in DR. Additionally, we explore the role of inflammation following treatment of DR.
Collapse
Affiliation(s)
- Elias Kovoor
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sunil K Chauhan
- Schepens Eye Institute, Harvard Medical School, Boston, MA, USA
| | - Amir Hajrasouliha
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
19
|
Liang F, Zhang K, Ma W, Zhan H, Sun Q, Xie L, Zhao Z. Impaired autophagy and mitochondrial dynamics are involved in Sorafenib-induced cardiomyocyte apoptosis. Toxicology 2022; 481:153348. [DOI: 10.1016/j.tox.2022.153348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 02/04/2023]
|
20
|
Casciano F, Zauli E, Rimondi E, Mura M, Previati M, Busin M, Zauli G. The role of the mTOR pathway in diabetic retinopathy. Front Med (Lausanne) 2022; 9:973856. [PMID: 36388931 PMCID: PMC9663464 DOI: 10.3389/fmed.2022.973856] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/05/2022] [Indexed: 07/30/2023] Open
Abstract
The retina, the part of the eye, translates the light signal into an electric current that can be sent to the brain as visual information. To achieve this, the retina requires fine-tuned vascularization for its energy supply. Diabetic retinopathy (DR) causes alterations in the eye vascularization that reduce the oxygen supply with consequent retinal neurodegeneration. During DR, the mammalian target of rapamycin (mTOR) pathway seems to coordinate retinal neurodegeneration with multiple anabolic and catabolic processes, such as autophagy, oxidative stress, cell death, and the release of pro-inflammatory cytokines, which are closely related to chronic hyperglycemia. This review outlines the normal anatomy of the retina and how hyperglycemia can be involved in the neurodegeneration underlying this disease through over activation or inhibition of the mTOR pathway.
Collapse
Affiliation(s)
- Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Erika Rimondi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Marco Mura
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Maurizio Previati
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Massimo Busin
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
D'Agata V, D'Amico AG, Maugeri G, Bucolo C, Rossi S, Giunta S. Carnosol attenuates high glucose damage in human retinal endothelial cells through regulation of ERK/Nrf2/HO-1 pathway. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022:1-13. [PMID: 36300534 DOI: 10.1080/10286020.2022.2137022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Carnosol is a natural compound with antioxidant properties. Based on this evidence, in the present study we investigated whether this compound can protect retinal vascular endothelium from hyperglycemic insult responsible for diabetic retinopathy development. We performed in vitro study on human retinal endothelial cells (HREC) cultured both in normal and high glucose conditions to assess the effects of carnosol on cell viability, Nrf2 expression, HO-1 activity, and ERK1/2 expression. HREC exposed to high glucose insult were treated with carnosol. Data indicated that carnosol treatment is able to induce HO-1 expression via Nrf2 activation and counteracts the damage elicited by high glucose. Further, carnosol activation of Nrf2/HO-1 signaling axis involves ERK1/2 pathway. These data confirm the therapeutic value of carnosol by suggesting its use to treat diabetic retinopathy.
Collapse
Affiliation(s)
- Velia D'Agata
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95100, Italy
| | - Agata Grazia D'Amico
- Department of Drug and Health Sciences, University of Catania, Catania 95100, Italy
| | - Grazia Maugeri
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95100, Italy
| | - Claudio Bucolo
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95100, Italy
- Center for Research in Ocular Pharmacology (CERFO), University of Catania, Catania 95100, Italy
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Napoli 80138, Italy
| | - Salvatore Giunta
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95100, Italy
| |
Collapse
|
22
|
Development of surface modified nanoparticles of curcumin for topical treatment of diabetic retinopathy: In vitro, ex vivo and in vivo investigation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Therapeutic Effect of Gypenosides on Antioxidant Stress Injury in Orbital Fibroblasts of Graves’ Orbitopathy. J Immunol Res 2022; 2022:4432584. [PMID: 36157877 PMCID: PMC9499793 DOI: 10.1155/2022/4432584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Purpose To examine the impact of gypenosides (Gyps) on oxidative stress damage of orbital fibroblasts (OFs) from Graves' ophthalmopathy (GO) patients. Methods The relationship between Gyps and GO oxidative stress was understood by bioinformatics analysis. Orbital connective tissues of GO and non-GO patients were obtained for primary OF culture. The proliferation level of OFs was measured by Cell Counting Kit-8 method, and the appropriate intervention concentration of Gyps and H2O2 was obtained. The expression of apoptosis-related protein mRNA was analyzed by RT-qPCR technique. ROS and SOD test suites were employed to detect the oxidative stress level in OFs. Flow cytometry apoptosis detection, TUNEL detection, and lactate dehydrogenase detection were used to analyze the level of apoptosis. Western blotting detection was utilized to examine the regulatory pathway of oxidative stress, apoptosis, and autophagy-related proteins. The changes of cell morphology, autophagosome, and autophagy lysosome were observed by transmission electron microscope. Results The suitable intervention concentration of Gyps is 100 μg/mL, and the suitable intervention concentration of high concentration H2O2 is 350 μM. In comparison with the blank control group, the H2O2 intervention group enhanced the expression of apoptosis-related mRNA, the expression of ROS and SOD, the apoptosis rate, the expression of autophagy activation-related protein and Nrf2/ERK/HO-1 protein, and the number of autophagosomes and autophagy lysosomes. Compared with H2O2 intervention group, the expression of apoptosis-related mRNA decreased, ROS expression decreased, SOD expression increased, apoptosis rate decreased, autophagy activation-related protein expression decreased, Nrf2/ERK/HO-1 protein expression increased, and the quantity of autophagosomes and autophagy lysosomes decreased in H2O2 + Gyps intervention group. Conclusion Gyps can decrease the oxidative stress level of OFs generated by H2O2, reduce cell autophagy, and reduce apoptosis. Gyps may regulate the oxidative stress response of OFs in GO patients via the Nrf2/ERK/HO-1 signaling pathway.
Collapse
|
24
|
Wu J, Hu J, Zhang F, Jin Q, Sun X. High glucose promotes IL-17A-induced gene expression through histone acetylation in retinal pigment epithelium cells. Int Immunopharmacol 2022; 110:108893. [DOI: 10.1016/j.intimp.2022.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/05/2022]
|
25
|
Wang D, Li Y, Dai L, Wang Y, Zhao C, Wang W, Zhang Y, Zhao Y, Yu T. 1,2,3,4,6‑penta‑O‑galloyl‑β‑D‑glucose alleviates inflammation and oxidative stress in diabetic nephropathy rats through MAPK/NF‑κB and ERK/Nrf2/HO‑1 signaling pathways. Exp Ther Med 2022; 24:639. [PMID: 36160883 PMCID: PMC9468796 DOI: 10.3892/etm.2022.11576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/05/2022] [Indexed: 11/22/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the main causes of chronic renal failure, which is also the final cause of mortality in ~30% of diabetic patients. 1, 2, 3, 4, 6-penta-O-galloyl-β-D-glucose (PGG) from Galla rhois has anti-inflammation, anti-oxidation and angiogenesis effects. The present study aimed to explore the protective effects on diabetic nephropathy rats by alleviating inflammation and oxidative stress and the underlying mechanism. High-fat diet/STZ induced rats and high glucose (HG) induced podocytes (MPC5) were used to simulate the DN in vivo and in vitro. The blood glucose level was measured using a blood glucose meter and renal function was determined by an automatic biochemical analyzer. The pathological changes and renal fibrosis were observed through hematoxylin and eosin, periodic acid-Schiff and Masson staining. The expression of nephrin in tissues, fibrosis-related proteins in tissues, MAPK/NF-κB and ERK/nuclear factor erythroid-derived 2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) signaling pathway related proteins in tissues and apoptosis related proteins in tissues and podocytes was detected by western blotting. The inflammatory response and oxidative stress in tissues and podocytes were determined by respective commercial kits and apoptosis in tissues and podocytes was detected by TUNEL assay. The viability of podocytes treated with PGG with or without HG was analyzed by CCK-8 assay. As a result, the blood glucose level, urinary albumin/creatinine ratio, blood urea nitrogen and serum creatinine in blood were all increased and nephrin expression was decreased. The pathological changes and renal fibrosis were aggravated and the inflammation, oxidative stress and apoptosis in renal tissues were enhanced. The above effects were reversed by PGG treatment dose-dependently. MAPK/NF-κB and ERK/Nrf2/HO-1 signaling pathways were activated in DN rats and were suppressed by PGG treatment. The reduced viability and increased apoptosis, inflammation and oxidative stress in MPC5 cells were shown in HG induction, which was reversed by PGG treatment. However, P79350 (p38 agonist) and LM22B-10 (ERK1/2 agonist) weakened the effect of PGG. In conclusion, PGG protects against DN kidney injury by alleviating inflammation and oxidative stress by suppressing the MAPK/NF-κB and ERK/Nrf2/HO-1 signaling pathways.
Collapse
Affiliation(s)
- Dong Wang
- Department of Nephrology, Beichen District Hospital of Traditional Chinese Medicine, Tianjin 300400, P.R. China
| | - Yan Li
- Department of Traditional Chinese Medicine, the Eighth People's Hospital of Qingdao, Shandong, Qingdao 266000, P.R. China
| | - Liheng Dai
- Department of Nephrology, Beichen District Hospital of Traditional Chinese Medicine, Tianjin 300400, P.R. China
| | - Yanxia Wang
- Department of Nephrology, Beichen District Hospital of Traditional Chinese Medicine, Tianjin 300400, P.R. China
| | - Congna Zhao
- Department of Nephrology, Beichen District Hospital of Traditional Chinese Medicine, Tianjin 300400, P.R. China
| | - Wangang Wang
- Department of Nephrology, Beichen District Hospital of Traditional Chinese Medicine, Tianjin 300400, P.R. China
| | - Yu Zhang
- Department of Nephrology, Beichen District Hospital of Traditional Chinese Medicine, Tianjin 300400, P.R. China
| | - Yinrui Zhao
- Department of Nephrology, Beichen District Hospital of Traditional Chinese Medicine, Tianjin 300400, P.R. China
| | - Tingting Yu
- Medical Department, Beichen District Hospital of Traditional Chinese Medicine, Tianjin 300400, P.R. China
| |
Collapse
|
26
|
Ren J, Zhang S, Pan Y, Jin M, Li J, Luo Y, Sun X, Li G. Diabetic retinopathy: Involved cells, biomarkers, and treatments. Front Pharmacol 2022; 13:953691. [PMID: 36016568 PMCID: PMC9396039 DOI: 10.3389/fphar.2022.953691] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic retinopathy (DR), a leading cause of vision loss and blindness worldwide, is caused by retinal neurovascular unit dysfunction, and its cellular pathology involves at least nine kinds of retinal cells, including photoreceptors, horizontal and bipolar cells, amacrine cells, retinal ganglion cells, glial cells (Müller cells, astrocytes, and microglia), endothelial cells, pericytes, and retinal pigment epithelial cells. Its mechanism is complicated and involves loss of cells, inflammatory factor production, neovascularization, and BRB impairment. However, the mechanism has not been completely elucidated. Drug treatment for DR has been gradually advancing recently. Research on potential drug targets relies upon clear information on pathogenesis and effective biomarkers. Therefore, we reviewed the recent literature on the cellular pathology and the diagnostic and prognostic biomarkers of DR in terms of blood, protein, and clinical and preclinical drug therapy (including synthesized molecules and natural molecules). This review may provide a theoretical basis for further DR research.
Collapse
Affiliation(s)
- Jiahui Ren
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yunfeng Pan
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Meiqi Jin
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Jiaxin Li
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| | - Guang Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| |
Collapse
|
27
|
Bucolo C, Sanderson J, Rossi S. Editorial: Chronic Inflammation and Neurodegeneration in Retinal Disease, Volume II. Front Pharmacol 2022; 13:915960. [PMID: 35712725 PMCID: PMC9197437 DOI: 10.3389/fphar.2022.915960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Julie Sanderson
- University of East Anglia, School of Pharmacy, Faculty of Science, Norwich, United Kingdom
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
28
|
Vallée A. Curcumin and Wnt/β‑catenin signaling in exudative age‑related macular degeneration (Review). Int J Mol Med 2022; 49:79. [PMID: 35445729 PMCID: PMC9083851 DOI: 10.3892/ijmm.2022.5135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 11/06/2022] Open
Abstract
Curcumin is a natural product widely used due to its pharmacological effects. Nevertheless, only a limited number of studies concerning the effects of curcumin on exudative age‑related macular degeneration (AMD) is currently available. Since ophthalmic diseases, including exudative AMD, have a marked impact on public health, the prevention and therapy of ophthalmic disorders remain of increasing concern. Exudative AMD is characterized by choroidal neovascularization (CNV) invading the subretinal space, ultimately enhancing exudation and hemorrhaging. The exudative AMD subtype corresponds to 10 to 15% of cases of macular degeneration; however, the occurrence of this subtype has been reported as the major cause of vision loss and blindness, with the occurrence of CNV being responsible for 80% of the cases with vision loss. In CNV increased expression of VEGF has been observed, stimulated by the overactivation of Wnt/β‑catenin signaling pathway. The stimulation of the Wnt/β‑catenin signaling pathway is responsible for the activation of several cellular mechanisms, simultaneously enhancing inflammation, oxidative stress and angiogenesis in numerous diseases, including ophthalmic disorders. Some studies have previously demonstrated the possible advantage of the use of curcumin for the inhibition of Wnt/β‑catenin signaling. In the present review article, the different mechanisms of curcumin are described concerning its effects on oxidative stress, inflammation and angiogenesis in exudative AMD, by interacting with Wnt/β‑catenin signaling.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology-Data-Biostatistics, Delegation of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
29
|
Zhu D, Zou W, Cao X, Xu W, Lu Z, Zhu Y, Hu X, Hu J, Zhu Q. Ferulic acid attenuates high glucose-induced apoptosis in retinal pigment epithelium cells and protects retina in db/db mice. PeerJ 2022; 10:e13375. [PMID: 35669949 PMCID: PMC9165606 DOI: 10.7717/peerj.13375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 04/13/2022] [Indexed: 01/13/2023] Open
Abstract
Background Herein, we aimed to present evidence that Ferulic acid (FA), a phenolic acid, can alleviate high glucose (HG)-induced retinal pigment epithelium (RPE) cell apoptosis and protect retina in db/db mice. Methods ARPE-19 cells (a human RPE cell line) were divided into four groups: control group; HG group (30 mmol/L glucose); HG+FA group (30 mmol/L glucose and 10 mmol/L FA). Cell viability and apoptosis were detected using CCK-8 and Annexin-5 staining, respectively. Apoptosis-related markers including P53, BAX and Bcl2 were examined by RT-qPCR, western blot and immunohistochemistry. Totally, 30 male db/db mice were randomly divided into db/db group (5 ml/kg saline) and FA group (0.05 g/kg FA). After treatment for 2 months, retinal samples were subjected to hematoxylin and eosin (H&E) and Masson staining. Moreover, immunofluorescence was used to detect apoptosis-related markers. Blood samples were collected for measuring cholesterol, triglyceride (TG), low-density lipoprotein (LDL) and high-density lipoprotein (HDL) levels. Results FA treatment markedly increased cell viability and suppressed cell apoptosis of ARPE-19 cells compared to the HG-exposed group. Furthermore, FA ameliorated the abnormal expression levels of P53, BAX and Bcl2 in HG-induced ARPE-19 cells. In animal models, FA attenuated pathological changes in the retina tissues of diabetic mice. Consistent with in vitro models, FA significantly ameliorated the expression of apoptosis-related markers in retina tissues. Biochemical test results showed that FA reduced hyperlipidemia in diabetic mice. Conclusion Our findings suggest that FA alleviates HG-induced apoptosis in RPE cells and protects retina in db/db mice, which can be associated with P53 and BAX inactivation and Bcl2 activation.
Collapse
Affiliation(s)
- Dejun Zhu
- Department of Ophthalmology, Ning Xia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye), Yinchuan, Ningxia, China
| | - Wenqing Zou
- Department of Ophthalmology, Ning Xia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye), Yinchuan, Ningxia, China
| | - Xiangmei Cao
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Weigang Xu
- Department of Ophthalmology, Ning Xia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye), Yinchuan, Ningxia, China
| | - Zhaogang Lu
- Department of Pharmacy, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yan Zhu
- Department of Ophthalmology, Ning Xia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye), Yinchuan, Ningxia, China
| | - Xiaowen Hu
- Department of Ophthalmology, Ning Xia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye), Yinchuan, Ningxia, China
| | - Jin Hu
- Department of Ophthalmology, Ning Xia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye), Yinchuan, Ningxia, China
| | - Qing Zhu
- Department of Ophthalmology, Ning Xia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye), Yinchuan, Ningxia, China
| |
Collapse
|
30
|
Hanif M, Ameer N, Ahmad QUA, Aziz M, Mahmood K, Ramzan N, Abdur Rahman HM. Improved solubility and corneal permeation of PEGylated curcumin complex used for the treatment of ophthalmic bacterial infections. PLoS One 2022; 17:e0258355. [PMID: 35389989 PMCID: PMC8989353 DOI: 10.1371/journal.pone.0258355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/26/2021] [Indexed: 11/18/2022] Open
Abstract
Naturally occurring curcumin can be used for the treatment of corneal bacterial infections with its limitation of poor solubility. Aim of the present study was to enhance solubility and permeation of curcumin for the treatment of corneal bacterial infections. For increasing solubility, curcumin and polyethylene glycol (PEG 6000) complex (1:3) was prepared by fusion melting method. Phase solubility studies were used for the calculation of Gibbs free energy of curcumin. Central composite rotatable design (CCRD) was applied for optimization of Curcumin (CUR), PEGylated Curcumin (PEG-CUR), penetration enhancer cremophore (CR). Optimized ointments were further evaluated by mucous permeation, membrane permeability and cell toxicity studies by Transwell cell, ussing chamber and Caco-2 cells respectively. Antibacterial test was also performed by agar well diffusion method. Solubility of PEG-CUR was increased up to 93±3.2% as compared to pure curcumin and content uniformity was in the range of 95-110%. Curcumin permeation from PEG-CUR ointment was increased up to 12 folds. No toxicity of Caco-2 cells for PEG-CUR even after 24h was observed. Activity index of pure CUR, PEG-CUR ointment with or without CR against S. aureus and P. aeruginosa was 97±2.3, 96±1.6, 95±2.5% respectively. Ointment with solubility enhanced PEG-CUR and cremophore can be used as a promising tool for the treatment of corneal bacterial infections.
Collapse
Affiliation(s)
- Muhammad Hanif
- Faculty of Pharmacy, Department of Pharmaceutics, Bahauddin Zakariya University, Multan, Pakistan
| | - Nabeela Ameer
- Faculty of Pharmacy, Department of Pharmaceutics, Bahauddin Zakariya University, Multan, Pakistan
| | - Qurat-ul-Ain Ahmad
- Faculty of Pharmacy, Department of Pharmaceutics, Bahauddin Zakariya University, Multan, Pakistan
| | - Mubashir Aziz
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Nasreen Ramzan
- Faculty of Pharmacy, Department of Pharmaceutics, Bahauddin Zakariya University, Multan, Pakistan
| | | |
Collapse
|
31
|
Tang X, Li X, Zhang D, Han W. Astragaloside-IV alleviates high glucose-induced ferroptosis in retinal pigment epithelial cells by disrupting the expression of miR-138-5p/Sirt1/Nrf2. Bioengineered 2022; 13:8240-8254. [PMID: 35302431 PMCID: PMC9162003 DOI: 10.1080/21655979.2022.2049471] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Astragaloside-IV (AS-IV) (C41H68O14) is a high-purity natural product extracted from Astragalus, which has demonstrated biological activities. However, the effect of AS-IV on retinal pigment epithelial (RPE) cells in diabetic retinopathy (DR) remains unclear. In this study, high glucose (HG) was shown to promote ARPE-19 RPE cell death, increase the contents of reactive oxygen species (ROS) and oxidized glutathione (GSSG), and enhance lipid peroxidation density of mitochondrial membrane. In contrast, AS-IV decreased glutathione (GSH) content, mitochondria size and ridge. Addition of iron death inhibitor Ferrostatin-1 (Fer-1) to RPE cells decreased cell dead rate, thus indicating that HG-induced mitochondrial damage occurred due to ferroptosis. AS-IV alleviated HG-induced RPE cell damage. Furthermore, HG decreased levels of silent information regulator 1 (Sirt1) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in the nucleus of RPE cells; AS-IV could alleviate these effects and increased expression of glutathione peroxidase 4 (GPX4), glutamate cysteine ligase (GCLM) and glutamate cysteine ligase catalytic subunit (GCLC), which are Nrf2 downstream genes. Mechanistically, AS-IV was shown to alleviate the effects of HG by increasing mir-138-5p expression in RPE cells and promoting expression of Sirt1 and Nrf2 in the nucleus. Transfection of mir-138-5p agonist inhibited the regulatory effects of AS-IV on Sirt1 and Nrf2, accompanied by decreased GPX4, GCLM and GCLC levels, and restoration of ferroptosis-related changes. Collectively, HG increased ferroptosis rate in RPE cells. In addition, AS-IV inhibited miR-138-5p expression, subsequently increasing Sirt1/Nrf2 activity and cellular antioxidant capacity to alleviate ferroptosis, resulting decreased cell death, which potentially inhibits the DR pathological process.
Collapse
Affiliation(s)
- Xuyuan Tang
- Department of Ophthalmology, the First Affiliated Hospital of Medical College of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiuyi Li
- Department of Ophthalmology, the First Affiliated Hospital of Medical College of Zhejiang University, Hangzhou, Zhejiang, China
| | - Dongyan Zhang
- Department of Ophthalmology, the First Affiliated Hospital of Medical College of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Han
- Department of Ophthalmology, the Second Affiliated Hospital of Medical College of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
Zhang XX, Ji YL, Zhu LP, Wang ZH, Fang CQ, Jiang CH, Pan K, Zhang J, Yin ZQ. Arjunolic acid from Cyclocarya paliurus ameliorates diabetic retinopathy through AMPK/mTOR/HO-1 regulated autophagy pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114772. [PMID: 34688801 DOI: 10.1016/j.jep.2021.114772] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cyclocarya paliurus (CP) is a traditional Chinese herb and possesses a variety of biological activities including anti-hyperglycemia, anti-hyperlipidemia, antioxidant and anti-inflammation. Arjunolic acid (AA) is an abundant and bioactive ingredient in CP that shows significant protection against many metabolic diseases such as diabetic complication. Diabetic retinopathy (DR) is a serious complication of diabetes and may lead to vision loss. However, the protective effects and underlying mechanisms of AA against DR is not still understood. AIM OF THE STUDY We aimed to investigate whether AA activates AMPK/mTOR/HO-1 regulated autophagy pathway to alleviate DR. MATERIALS AND METHODS In the study, the STZ-induced diabetic model of rats was established, and AA with 10 and 30 mg/kg dosages was given orally for ten weeks to investigate their effect on retinal injury of DR. H2O2-induced ARPE-19 cells were applied to evaluate anti-apoptosis and anti-oxidant effect of AA. RESULTS The results revealed that AA could prevent STZ-induced weight loss and increase the retinal thickness and nuclei counts. The level of HO-1 protein was upregulated both in vivo and in vitro. In addition, AA prevented retinal damage and cell apoptosis through the AMPK-mTOR-regulated autophagy pathway. Furthermore, anti-apoptosis capacity, as well as the expression of HO-1 and LC3 protein, were effectively locked by AMPK inhibitor dorsomorphin dihydrochloride (compound C). CONCLUSIONS This finding implies that AA may be a promising candidate drug by protecting retinal cells from STZ-induced oxidative stress and inflammation through the AMPK/mTOR/HO-1 regulated autophagy pathway.
Collapse
Affiliation(s)
- Xuan-Xuan Zhang
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 211198, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China; Department of Endocrinology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China
| | - Ya-Li Ji
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 211198, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Li-Ping Zhu
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zi-Han Wang
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 211198, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Chang-Qian Fang
- Department of Endocrinology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China
| | - Cui-Hua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Ke Pan
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China.
| | - Zhi-Qi Yin
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
33
|
Suppression of JNK/ERK dependent autophagy enhances Jaspine B derivative-induced gastric cancer cell death via attenuation of p62/Keap1/Nrf2 pathways. Toxicol Appl Pharmacol 2022; 438:115908. [DOI: 10.1016/j.taap.2022.115908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 01/24/2023]
|
34
|
Role of Curcumin in Retinal Diseases-A review. Graefes Arch Clin Exp Ophthalmol 2022; 260:1457-1473. [PMID: 35015114 PMCID: PMC8748528 DOI: 10.1007/s00417-021-05542-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To review the role of curcumin in retinal diseases, COVID era, modification of the molecule to improve bioavailability and its future scope. METHODS PubMed and MEDLINE searches were pertaining to curcumin, properties of curcumin, curcumin in retinal diseases, curcumin in diabetic retinopathy, curcumin in age-related macular degeneration, curcumin in retinal and choroidal diseases, curcumin in retinitis pigmentosa, curcumin in retinal ischemia reperfusion injury, curcumin in proliferative vitreoretinopathy and curcumin in current COVID era. RESULTS In experimental models, curcumin showed its pleiotropic effects in retinal diseases like diabetic retinopathy by increasing anti-oxidant enzymes, upregulating HO-1, nrf2 and reducing or inhibiting inflammatory mediators, growth factors and by inhibiting proliferation and migration of retinal endothelial cells in a dose-dependent manner in HRPC, HREC and ARPE-19 cells. In age-related macular degeneration, curcumin acts by reducing ROS and inhibiting apoptosis inducing proteins and cellular inflammatory genes and upregulating HO-1, thioredoxin and NQO1. In retinitis pigmentosa, curcumin has been shown to delay structural defects of P23H gene in P23H-rhodopsin transgenic rats. In proliferative vitreoretinopathy, curcumin inhibited the action of EGF in a dose- and time-dependent manner. In retinal ischemia reperfusion injury, curcumin downregulates IL-17, IL-23, NFKB, STAT-3, MCP-1 and JNK. In retinoblastoma, curcumin inhibits proliferation, migration and apoptosis of RBY79 and SO-RB50. Curcumin has already proven its efficacy in inhibiting viral replication, coagulation and cytokine storm in COVID era. CONCLUSION Curcumin is an easily available spice used traditionally in Indian cooking. The benefits of curcumin are manifold, and large randomized controlled trials are required to study its effects not only in treating retinal diseases in humans but in their prevention too.
Collapse
|
35
|
Ghafouri-Fard S, Shoorei H, Bahroudi Z, Hussen BM, Talebi SF, Taheri M, Ayatollahi SA. Nrf2-Related Therapeutic Effects of Curcumin in Different Disorders. Biomolecules 2022; 12:82. [PMID: 35053230 PMCID: PMC8773597 DOI: 10.3390/biom12010082] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/18/2021] [Accepted: 12/25/2021] [Indexed: 12/12/2022] Open
Abstract
Curcumin is a natural polyphenol with antioxidant, antibacterial, anti-cancer, and anti-inflammation effects. This substance has been shown to affect the activity of Nrf2 signaling, a pathway that is activated in response to stress and decreases levels of reactive oxygen species and electrophilic substances. Nrf2-related effects of curcumin have been investigated in different contexts, including gastrointestinal disorders, ischemia-reperfusion injury, diabetes mellitus, nervous system diseases, renal diseases, pulmonary diseases, cardiovascular diseases as well as cancers. In the current review, we discuss the Nrf2-mediated therapeutic effects of curcumin in these conditions. The data reviewed in the current manuscript indicates curcumin as a potential activator of Nrf2 and a therapeutic substance for the protection of cells in several pathological conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 16666-63111, Iran;
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran;
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Kurdistan Region, Iraq;
| | - Seyedeh Fahimeh Talebi
- Department of Pharmacology, College of Pharmacy, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, 07743 Jena, Germany
| | | |
Collapse
|
36
|
Shahcheraghi SH, Salemi F, Peirovi N, Ayatollahi J, Alam W, Khan H, Saso L. Nrf2 Regulation by Curcumin: Molecular Aspects for Therapeutic Prospects. Molecules 2021; 27:167. [PMID: 35011412 PMCID: PMC8746993 DOI: 10.3390/molecules27010167] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor erythroid 2 p45-related factor (2Nrf2) is an essential leucine zipper protein (bZIP) that is primarily located in the cytoplasm under physiological conditions. Nrf2 principally modulates endogenous defense in response to oxidative stress in the brain.In this regard, Nrf2 translocates into the nucleus and heterodimerizes with the tiny Maf or Jun proteins. It then attaches to certain DNA locations in the nucleus, such as electrophile response elements (EpRE) or antioxidant response elements (ARE), to start the transcription of cytoprotective genes. Many neoplasms have been shown to have over activated Nrf2, strongly suggesting that it is responsible for tumors with a poor prognosis. Exactly like curcumin, Zinc-curcumin Zn (II)-curc compound has been shown to induce Nrf2 activation. In the cancer cell lines analyzed, Zinc-curcumin Zn (II)-curc compound can also display anticancer effects via diverse molecular mechanisms, including markedly increasing heme oxygenase-1 (HO-1) p62/SQSTM1 and the Nrf2 protein levels along with its targets. It also strikingly decreases the levels of Nrf2 inhibitor, Kelch-like ECH-associated protein 1 (Keap1) protein.As a result, the crosstalk between p62/SQSTM1 and Nrf2 could be used to improve cancer patient response to treatments. The interconnected anti-inflammatory and antioxidative properties of curcumin resulted from its modulatory effects on Nrf2 signaling pathway have been shown to improve insulin resistance. Curcumin exerts its anti-inflammatory impact through suppressing metabolic reactions and proteins such as Keap1 that provoke inflammation and oxidation. A rational amount of curcumin-activated antioxidant Nrf2 HO-1 and Nrf2-Keap1 pathways and upregulated the modifier subunit of glutamate-cysteine ligase involved in the production of the intracellular antioxidant glutathione. Enhanced expression of glutamate-cysteine ligase, a modifier subunit (GLCM), inhibited transcription of glutamate-cysteine ligase, a catalytic subunit (GCLC). A variety of in vivo, in vitro and clinical studies has been done so far to confirm the protective role of curcumin via Nrf2 regulation. This manuscript is designed to provide a comprehensive review on the molecular aspects of curcumin and its derivatives/analogs via regulation of Nrf2 regulation.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd 8916978477, Iran; (S.H.S.); (J.A.)
| | - Fateme Salemi
- School of Medicine, Islamic Azad University of Medical Sciences, Yazd 19395/1495, Iran;
| | - Niloufar Peirovi
- School of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | - Jamshid Ayatollahi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd 8916978477, Iran; (S.H.S.); (J.A.)
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
37
|
Ghareghomi S, Rahban M, Moosavi-Movahedi Z, Habibi-Rezaei M, Saso L, Moosavi-Movahedi AA. The Potential Role of Curcumin in Modulating the Master Antioxidant Pathway in Diabetic Hypoxia-Induced Complications. Molecules 2021; 26:molecules26247658. [PMID: 34946740 PMCID: PMC8706440 DOI: 10.3390/molecules26247658] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is the leading player in the onset and development of various diseases. The Keap1-Nrf2 pathway is a pivotal antioxidant system that preserves the cells' redox balance. It decreases inflammation in which the nuclear trans-localization of Nrf2 as a transcription factor promotes various antioxidant responses in cells. Through some other directions and regulatory proteins, this pathway plays a fundamental role in preventing several diseases and reducing their complications. Regulation of the Nrf2 pathway occurs on transcriptional and post-transcriptional levels, and these regulations play a significant role in its activity. There is a subtle correlation between the Nrf2 pathway and the pivotal signaling pathways, including PI3 kinase/AKT/mTOR, NF-κB and HIF-1 factors. This demonstrates its role in the development of various diseases. Curcumin is a yellow polyphenolic compound from Curcuma longa with multiple bioactivities, including antioxidant, anti-inflammatory, anti-tumor, and anti-viral activities. Since hyperglycemia and increased reactive oxygen species (ROS) are the leading causes of common diabetic complications, reducing the generation of ROS can be a fundamental approach to dealing with these complications. Curcumin can be considered a potential treatment option by creating an efficient therapeutic to counteract ROS and reduce its detrimental effects. This review discusses Nrf2 pathway regulation at different levels and its correlation with other important pathways and proteins in the cell involved in the progression of diabetic complications and targeting these pathways by curcumin.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (M.R.)
| | - Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (M.R.)
| | | | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran 1417466191, Iran
- Center of Excellence in NanoBiomedicine, University of Tehran, Tehran 1417466191, Iran
- Correspondence: (M.H.-R.); (A.A.M.-M.); Tel.: +98-21-6111-3214 (M.H.-R.); +98-21-6111-3381 (A.A.M.-M.); Fax: +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680 (A.A.M.-M.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer,” Sapienza University of Rome, 00185 Rome, Italy;
| | - Ali Akbar Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (M.R.)
- UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran 1417466191, Iran
- Correspondence: (M.H.-R.); (A.A.M.-M.); Tel.: +98-21-6111-3214 (M.H.-R.); +98-21-6111-3381 (A.A.M.-M.); Fax: +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680 (A.A.M.-M.)
| |
Collapse
|
38
|
Rodríguez ML, Millán I, Ortega ÁL. Cellular targets in diabetic retinopathy therapy. World J Diabetes 2021; 12:1442-1462. [PMID: 34630899 PMCID: PMC8472497 DOI: 10.4239/wjd.v12.i9.1442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the existence of treatment for diabetes, inadequate metabolic control triggers the appearance of chronic complications such as diabetic retinopathy. Diabetic retinopathy is considered a multifactorial disease of complex etiology in which oxidative stress and low chronic inflammation play essential roles. Chronic exposure to hyperglycemia triggers a loss of redox balance that is critical for the appearance of neuronal and vascular damage during the development and progression of the disease. Current therapies for the treatment of diabetic retinopathy are used in advanced stages of the disease and are unable to reverse the retinal damage induced by hyperglycemia. The lack of effective therapies without side effects means there is an urgent need to identify an early action capable of preventing the development of the disease and its pathophysiological consequences in order to avoid loss of vision associated with diabetic retinopathy. Therefore, in this review we propose different therapeutic targets related to the modulation of the redox and inflammatory status that, potentially, can prevent the development and progression of the disease.
Collapse
Affiliation(s)
- María Lucía Rodríguez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot 46100, Valencia, Spain
| | - Iván Millán
- Neonatal Research Group, Health Research Institute La Fe, Valencia 46026, Valencia, Spain
| | - Ángel Luis Ortega
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot 46100, Valencia, Spain
| |
Collapse
|
39
|
Synergistic Protective Effect of Curcumin and Resveratrol against Oxidative Stress in Endothelial EAhy926 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2661025. [PMID: 34518768 PMCID: PMC8434903 DOI: 10.1155/2021/2661025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023]
Abstract
Curcumin (C) and resveratrol (R) are two well-known nutraceuticals with strong antioxidant activity that can protect cells from oxidative stress. This study aims to investigate the synergy of CR combinations in protecting human endothelial EAhy926 cells against H2O2-induced oxidative stress and its related mechanisms. C and R as individual compounds as well as CR combinations at different ratios were screened for their protective effects against H2O2 (2.5 mM) induced cell death assessed by cell viability assays. The synergistic interaction was analysed using the combination index model. The effects of optimal CR combinations on caspase-3 activity, ROS level, SOD activity, NAD cellular production, expression of Nrf2 and HO-1, and Nrf2 translocation were determined. CR combinations produced a synergistic protection against that of H2O2-induced changes in cell viability, caspase-3 activity, and ROS production. The strongest effect was observed for CR with the ratio of 8 : 2. Further experiments showed that CR 8 : 2 exhibited significantly greater effects in increasing Nrf2 translocation and expressions of Nrf2 and HO-1 proteins, as well as SOD activity and total cellular NAD production, than that of C or R alone. The findings demonstrate that combination of C and R produced a strong synergy in activity against H2O2-induced oxidative stress in EAhy926 cells. The mechanism of this synergy involves the activation of Nrf2-HO-1 signaling pathway and promotion of antioxidant enzymes. Further studies on CR synergy may help develop a new combination therapy for endothelial dysfunction and other conditions related to oxidative stress.
Collapse
|
40
|
Rossino MG, Amato R, Amadio M, Rosini M, Basagni F, Cammalleri M, Dal Monte M, Casini G. A Nature-Inspired Nrf2 Activator Protects Retinal Explants from Oxidative Stress and Neurodegeneration. Antioxidants (Basel) 2021; 10:1296. [PMID: 34439544 PMCID: PMC8389314 DOI: 10.3390/antiox10081296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023] Open
Abstract
Oxidative stress (OS) plays a key role in retinal dysfunctions and acts as a major trigger of inflammatory and neurodegenerative processes in several retinal diseases. To prevent OS-induced retinal damage, approaches based on the use of natural compounds are actively investigated. Recently, structural features from curcumin and diallyl sulfide have been combined in a nature-inspired hybrid (NIH1), which has been described to activate transcription nuclear factor erythroid-2-related factor-2 (Nrf2), the master regulator of the antioxidant response, in different cell lines. We tested the antioxidant properties of NIH1 in mouse retinal explants. NIH1 increased Nrf2 nuclear translocation, Nrf2 expression, and both antioxidant enzyme expression and protein levels after 24 h or six days of incubation. Possible toxic effects of NIH1 were excluded since it did not alter the expression of apoptotic or gliotic markers. In OS-treated retinal explants, NIH1 strengthened the antioxidant response inducing a massive and persistent expression of antioxidant enzymes up to six days of incubation. These effects resulted in prevention of the accumulation of reactive oxygen species, of apoptotic cell death, and of gliotic reactivity. Together, these data indicate that a strategy based on NIH1 to counteract OS could be effective for the treatment of retinal diseases.
Collapse
Affiliation(s)
- Maria Grazia Rossino
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.G.R.); (R.A.); (M.C.)
| | - Rosario Amato
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.G.R.); (R.A.); (M.C.)
| | - Marialaura Amadio
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Michela Rosini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (M.R.); (F.B.)
| | - Filippo Basagni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (M.R.); (F.B.)
| | - Maurizio Cammalleri
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.G.R.); (R.A.); (M.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.G.R.); (R.A.); (M.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.G.R.); (R.A.); (M.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
41
|
Curcumin Decreases Hippocampal Neurodegeneration and Nitro-Oxidative Damage to Plasma Proteins and Lipids Caused by Short-Term Exposure to Ozone. Molecules 2021; 26:molecules26134075. [PMID: 34279415 PMCID: PMC8272084 DOI: 10.3390/molecules26134075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 11/25/2022] Open
Abstract
Neurodegeneration is the consequence of harmful events affecting the nervous system that lead to neuronal death. Toxic substances, including air pollutants, are capable of inducing neurodegeneration. Ozone (O3) is the most oxidative toxic pollutant. O3 reacts with cellular components and forms reactive oxygen and nitrogen species, triggering nitro-oxidative damage during short-term exposure. Curcumin (CUR) is a natural phenolic molecule bearing well-documented antioxidant and anti-inflammatory biological activities in diverse experimental models. The aim of this work was to evaluate the effect of preventive dietary administration of CUR against hippocampal neurodegeneration and nitro-oxidative damage caused by short-term exposure to O3. Eighty Wistar male rats were distributed into four experimental groups, twenty rats each: intact control; CUR dietary supplementation without O3 exposure; exposure to 0.7 ppm of O3; and exposed to O3 with CUR dietary supplementation. Five rats from each group were sacrificed at 1, 2, 4, and 8 h of exposure. The CUR dose was 5.6 mg/kg and adjusted according to food consumption. CUR significantly decreased oxidative damage to plasma lipids and proteins, as well as neurodegeneration in CA1 and CA3 hippocampal regions. Concluding, CUR proved effective protection in decreasing neurodegeneration in the hippocampus and prevented systemic oxidative damage.
Collapse
|
42
|
Liu W, Qaed E, Zhu HG, Dong MX, Tang Z. Non-energy mechanism of phosphocreatine on the protection of cell survival. Biomed Pharmacother 2021; 141:111839. [PMID: 34174505 DOI: 10.1016/j.biopha.2021.111839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
If mitochondrial energy availability or oxidative metabolism is altered, patients will suffer from insufficient energy supply Phosphocreatine (PCr) not only acts as an energy carrier, but also acts as an antioxidant and defensive agent to maintain the integrity and stability of the membrane, to maintain ATP homeostasis through regulating mitochondrial respiration. Meanwhile, PCr can enhance calcium balance and reduce morphological pathological changes, ultimately, PCr helps to reduce apoptosis. On the other aspect, the activities of ATP synthase and MitCK play a crucial role in the maintenance of cellular energy metabolic function. It is interesting to note, PCr not only rises the activities of ATP synthase as well as MitCK, but also promotes these two enzymatic reactions. Additionally, PCr can also inhibit mitochondrial permeability transition in a concentration-dependent manner, prevent ROS and CytC from spilling into the cytoplasm, thereby inhibit the release of proapoptotic factors caspase-3 and caspase-9, and eventually, effectively prevent LPS-induced apoptosis of cells. Understandably, PCr prevents the apoptosis caused by abnormal mitochondrial energy metabolism and has a protective role in a non-energy manner. Moreover, recent studies have shown that PCr protects cell survival through PI3K/Akt/eNOS, MAPK pathway, and inhibition of Ang II-induced NF-κB activation. Furthermore, PCr antagonizes oxidative stress through the activation of PI3K/Akt/GSK3b intracellular pathway, PI3K/AKT-PGC1α signaling pathway, while through the promotion of SIRT3 expression to maintain normal cell metabolism. Interestingly, PCr results in delaying the time to enter pathological metabolism through the delayed activation of AMPK pathway, which is different from previous studies, now we propose the hypothesis that the "miRNA-JAK2/STAT3 -CypD pathway" may take part in protecting cells from apoptosis, PCr may be further be involved in the dynamic relationship between CypD and STAT3. Furthermore, we believe that PCr and CypD would be the central link to maintain cell survival and maintain cell stability and mitochondrial repair under the mitochondrial dysfunction caused by oxidative stress. This review provides the modern progress knowledge and views on the molecular mechanism and molecular targets of PCr in a non-energy way.
Collapse
Affiliation(s)
- Wu Liu
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044 Dalian, China
| | - Eskandar Qaed
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044 Dalian, China
| | - Han Guo Zhu
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044 Dalian, China
| | - Ma Xiao Dong
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044 Dalian, China
| | - ZeYao Tang
- Department of Pharmacology, Dalian Medical University, 9 West Section, South Road of Lushun, 116044 Dalian, China.
| |
Collapse
|
43
|
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Farkhondeh T, Samarghandian S. Curcumin Activates the Nrf2 Pathway and Induces Cellular Protection Against Oxidative Injury. Curr Mol Med 2021; 20:116-133. [PMID: 31622191 DOI: 10.2174/1566524019666191016150757] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenol that is isolated from the rhizome of Curcuma longa (turmeric). This medicinal compound has different biological activities, including antioxidant, antibacterial, antineoplastic, and anti-inflammatory. It also has therapeutic effects on neurodegenerative disorders, renal disorders, and diabetes mellitus. Curcumin is safe and well-tolerated at high concentrations without inducing toxicity. It seems that curcumin is capable of targeting the Nrf2 signaling pathway in protecting the cells against oxidative damage. Besides, this strategy is advantageous in cancer therapy. Accumulating data demonstrates that curcumin applies four distinct ways to stimulate the Nrf2 signaling pathway, including inhibition of Keap1, affecting the upstream mediators of Nrf2, influencing the expression of Nrf2 and target genes, and finally, improving the nuclear translocation of Nrf2. In the present review, the effects of curcumin on the Nrf2 signaling pathway to exert its therapeutic and biological activities has been discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Veterinary Medicine Faculty, Shushtar University, Khuzestan, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
44
|
Franzone F, Nebbioso M, Pergolizzi T, Attanasio G, Musacchio A, Greco A, Limoli PG, Artico M, Spandidos DA, Taurone S, Agostinelli E. Anti-inflammatory role of curcumin in retinal disorders (Review). Exp Ther Med 2021; 22:790. [PMID: 34055089 PMCID: PMC8145690 DOI: 10.3892/etm.2021.10222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
Curcumin [1,7-bis-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione], the main component of turmeric (Curcuma longa, a flowering plant of the ginger family, Zingiberaceae), is known to possess different pharmacological activities, particularly anti-inflammatory and antioxidant properties. Since an underlying inflammatory process exists in several ocular conditions, such as anterior uveitis, glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR), the aim of the present review was to summarize the pleiotropic effects exerted by this molecule, focusing in particular on its beneficial role in retinal diseases. The anti-inflammatory activity of curcumin has also been described in numerous systemic inflammatory pathologies and tumors. Specifically, the biological, pharmaceutical and nutraceutical properties of curcumin are associated with its ability to downregulate the expression of the following genes: IκBα, cyclooxygenase 2, prostaglandin E2, interleukin (IL)-1, IL-6, IL-8 and tumor necrosis factor-α. According to this finding, curcumin may be useful in the treatment of some retinal disorders. In DR, proliferative vitreoretinopathy and AMD, beneficial effects have been observed following treatment with curcumin, including slowing down of the inflammatory process. Despite the aforementioned evidence, the main disadvantage of this substance is that it possesses a low solubility, as well as poor oral bioavailability due to its reduced absorption, rapid metabolism and rapid elimination. Therefore, several curcumin analogues have been synthesized and tested over the years, in order to improve the possible obtainable therapeutic effects. The purpose of the present review was to identify new aspects that could guide future research on this important traditional medicine, which is a well-tolerated natural product, and is widely considered safe and economical.
Collapse
Affiliation(s)
- Federica Franzone
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Marcella Nebbioso
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Tiziano Pergolizzi
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Giuseppe Attanasio
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Angela Musacchio
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Antonio Greco
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy
| | | | - Marco Artico
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | | | - Enzo Agostinelli
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy.,International Polyamines Foundation ETS-ONLUS, I-00159 Rome, Italy
| |
Collapse
|
45
|
Anitha RE, Janani R, Peethambaran D, Baskaran V. Lactucaxanthin protects retinal pigment epithelium from hyperglycemia-regulated hypoxia/ER stress/VEGF pathway mediated angiogenesis in ARPE-19 cell and rat model. Eur J Pharmacol 2021; 899:174014. [PMID: 33705802 DOI: 10.1016/j.ejphar.2021.174014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
Hyperglycemia mediated perturbations in biochemical pathways induce angiogenesis in diabetic retinopathy (DR) pathogenesis. The present study aimed to investigate the protective effects of lactucaxanthin, a predominant lettuce carotenoid, on hyperglycemia-mediated activation of angiogenesis in vitro and in vivo diabetic model. ARPE-19 cells cultured in 30 mM glucose concentration were treated with lactucaxanthin (5 μM and 10 μM) for 48 h. They were assessed for antioxidant enzyme activity, mitochondrial membrane potential, reactive oxygen species, and cell migration. In the animal experiment, streptozotocin-induced diabetic male Wistar rats were gavaged with lactucaxanthin (200 μM) for 8 weeks. Parameters like animal weight gain, feed intake, water intake, urine output, and fasting blood glucose level were monitored. In both models, lutein-treated groups were considered as a positive control. Hyperglycemia-mediated angiogenic marker expressions in ARPE-19 and retina of diabetic rats were quantified through the western blot technique. Expression of hypoxia, endoplasmic reticulum stress markers, and vascular endothelial growth factor were found to be augmented in the hyperglycemia group compared to control (P < 0.05). Hyperglycemia plays a crucial role in increasing cellular migration and reactive oxygen species besides disrupting tight junction protein. Compared to lutein, lactucaxanthin aids retinal pigment epithelium (RPE) function from hyperglycemia-induced stress conditions via downregulating angiogenesis markers expression. Lactucaxanthin potentiality observed in protecting tight junction protein expression via modulating reactive oxygen species found to conserve RPE integrity. Results demonstrate that lactucaxanthin exhibits robust anti-angiogenic activity for the first time and, therefore, would be useful as an alternative therapy to prevent or delay DR progression.
Collapse
Affiliation(s)
- Rani Elavarasan Anitha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Rajasekar Janani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Divya Peethambaran
- CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
| | - Vallikannan Baskaran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.
| |
Collapse
|
46
|
Maugeri G, Bucolo C, Drago F, Rossi S, Di Rosa M, Imbesi R, D'Agata V, Giunta S. Attenuation of High Glucose-Induced Damage in RPE Cells through p38 MAPK Signaling Pathway Inhibition. Front Pharmacol 2021; 12:684680. [PMID: 34025440 PMCID: PMC8138305 DOI: 10.3389/fphar.2021.684680] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
This study aimed to investigate the high glucose damage on human retinal pigment epithelial (RPE) cells, the role of p38 MAPK signaling pathway and how dimethyl fumarate can regulate that. We carried out in vitro studies on ARPE-19 cells exposed to physiological and high glucose (HG) conditions, to evaluate the effects of DMF on cell viability, apoptosis, and expression of inflammatory and angiogenic biomarkers such as COX-2, iNOS, IL-1β, and VEGF. Our data have demonstrated that DMF treatment attenuated HG-induced apoptosis, as confirmed by reduction of BAX/Bcl-2 ratio. Furthermore, in RPE cells exposed to HG we observed a significant increase of iNOS, COX-2, and IL-1β expression, that was reverted by DMF treatment. Moreover, DMF reduced the VEGF levels elicited by HG, inhibiting p38 MAPK signaling pathway. The present study demonstrated that DMF provides a remarkable protection against high glucose-induced damage in RPE cells through p38 MAPK inhibition and the subsequent down-regulation of VEGF levels, suggesting that DMF is a small molecule that represents a good candidate for diabetic retinopathy treatment and warrants further in vivo and clinical evaluation.
Collapse
Affiliation(s)
- Grazia Maugeri
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology (CERFO), University of Catania, Catania, Italy
| | - Filippo Drago
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology (CERFO), University of Catania, Catania, Italy
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Michelino Di Rosa
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosa Imbesi
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Velia D'Agata
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Giunta
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
47
|
Yang J, Miao X, Yang FJ, Cao JF, Liu X, Fu JL, Su GF. Therapeutic potential of curcumin in diabetic retinopathy (Review). Int J Mol Med 2021; 47:75. [PMID: 33693955 PMCID: PMC7949626 DOI: 10.3892/ijmm.2021.4908] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) is a type of retinal microangiopathy caused by diabetes mellitus. It has become the leading cause of blindness among working individuals worldwide. DR is becoming increasingly common among younger diabetic patients and there is a need for lifelong treatment. The pathogenic mechanisms of DR are influenced by a number of factors, such as hyperglycemia, hyperlipidemia, inflammatory response and oxidative stress, among others. Currently, the treatment methods for DR mainly include retinal photocoagulation, vitrectomy, or anti‑vascular endothelial growth factor (VEGF) therapy. However, these methods have some disadvantages and limitations. Therefore, it is a matter of great interest and urgency to discover drugs that can target the pathogenesis of DR. Since ancient times, traditional Chinese medicine practitioners have accumulated extensive experiences in the use of Chinese herbal medicine for the prevention and treatment of diseases. In the theory of traditional Chinese medicine, curcumin has the effects of promoting blood circulation and relieving pain. A number of studies have also demonstrated that curcumin has multiple biological activities, including exerting anti‑apoptotic, anti‑inflammatory, antioxidant and antitumor properties. In recent years, studies have also confirmed that curcumin can prevent a variety of diabetic complications, including diabetic nephropathy (DN). However, the preventive and curative effects of curcumin on DR and its mechanisms of action have not yet been fully elucidated. The present review aimed to explore the therapeutic potential of curcumin in diabetes mellitus and DR.
Collapse
Affiliation(s)
- Jian Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xiao Miao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Feng-Juan Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jin-Feng Cao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xin Liu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jin-Ling Fu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Guan-Fang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
48
|
Trotta MC, Gesualdo C, Platania CBM, De Robertis D, Giordano M, Simonelli F, D'Amico M, Drago F, Bucolo C, Rossi S. Circulating miRNAs in diabetic retinopathy patients: Prognostic markers or pharmacological targets? Biochem Pharmacol 2021; 186:114473. [PMID: 33607073 DOI: 10.1016/j.bcp.2021.114473] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
In this study we analyzed the expression of circulating miRNAs, in the serum of diabetic retinopathy (DR) patients. Five miRNAs (hsa-miR-195-5p, hsa-miR-20a-5p, hsa-miR-20b-5p, hsa-miR-27b-3p and hsa-miR-451a) were validated as biomarkers for stratification of DR stages, from the early non-proliferative (NPDR) to the late proliferative (PDR) phase. Furthermore, circulating levels of these miRNAs correlated with retinal hyper-reflective spots (HRS), assessed by optical coherence tomography (OCT). The number of HRS increased with worsening of DR stages. On the contrary, no significant vascular density differences between NPDR and PDR patients were detected by angio-OCT (OCTA). A post-hoc bioinformatics analysis associated these five miRNAs to target genes belonging to the "Tumor Necrosis Factor alfa signaling" pathway, and several molecules were predicted to modify miRNAs expression. In conclusion, correlation between specific circulating miRNAs and intraretinal hyper-reflective spots was demonstrated, confirming that these miRNAs were validated as prognostic biomarkers, and also as potential pharmacological targets, warranting further clinical evaluation to explore novel therapeutics for diabetic retinopathy.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Domenico De Robertis
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mauro Giordano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology, CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology, CERFO, University of Catania, Catania, Italy.
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
49
|
Food-Derived Pharmacological Modulators of the Nrf2/ARE Pathway: Their Role in the Treatment of Diseases. Molecules 2021; 26:molecules26041016. [PMID: 33671866 PMCID: PMC7918973 DOI: 10.3390/molecules26041016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/28/2022] Open
Abstract
Oxidative stress, which refers to unbalanced accumulation of reactive oxygen species (ROS) levels in cells, has been linked to acute and chronic diseases. Nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays a vital role in regulating cytoprotective genes and enzymes in response to oxidative stress. Therefore, pharmacological regulation of Nrf2/ARE pathway is an effective method to treat several diseases that are mainly characterized by oxidative stress and inflammation. Natural products that counteract oxidative stress by modulating Nrf2 have contributed significantly to disease treatment. In this review, we focus on bioactive compounds derived from food that are Nrf2/ARE pathway regulators and describe the molecular mechanisms for regulating Nrf2 to exert favorable effects in experimental models of diseases.
Collapse
|
50
|
Sharma DS, Wadhwa S, Gulati M, Kadukkattil Ramanunny A, Awasthi A, Singh SK, Khursheed R, Corrie L, Chitranshi N, Gupta VK, Vishwas S. Recent advances in intraocular and novel drug delivery systems for the treatment of diabetic retinopathy. Expert Opin Drug Deliv 2020; 18:553-576. [PMID: 33143473 DOI: 10.1080/17425247.2021.1846518] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Diabetic retinopathy (DR) is associated with damage to the retinal blood vessels that lead eventually to vision loss. The existing treatments of DR are invasive, expensive, and cumbersome. To overcome challenges associated with existing therapies, various intraocular sustained release and novel drug delivery systems (NDDS) have been explored.Areas covered: The review discusses recently developed intraocular devices for sustained release of drugs as well as novel noninvasive drug delivery systems that have met a varying degree of success in local delivery of drugs to retinal circulation.Expert opinion: The intraocular devices have got very good success in providing sustained release of drugs in patients. The development of NDDS and their application through the ocular route has certainly provided an edge to treat DR over existing therapies such as anti-VEGF administration but their success rate is quite low. Moreover, most of them have proved to be effective only in animal models. In addition, the extent of targeting the drug to the retina still remains variable and unpredictable. The toxicity aspect of the NDDS has generally been neglected. In order to have successful commercialization of nanotechnology-based innovations well-designed clinical research studies need to be conducted to evaluate their clinical superiority over that of the existing formulations.
Collapse
Affiliation(s)
- Deep Shikha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | | | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Australia
| | - Vivek Kumar Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|