1
|
Baker JM, Nakayama JY, O’Hegarty M, McGowan A, Teran RA, Bart SM, Sosa LE, Brockmeyer J, English K, Mosack K, Bhattacharyya S, Khubbar M, Yerkes NR, Campos B, Paegle A, McGee J, Herrera R, Pearlowitz M, Williams TW, Kirking HL, Tate JE. Household transmission of SARS-CoV-2 in five US jurisdictions: Comparison of Delta and Omicron variants. PLoS One 2025; 20:e0313680. [PMID: 39787187 PMCID: PMC11717262 DOI: 10.1371/journal.pone.0313680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/29/2024] [Indexed: 01/12/2025] Open
Abstract
Households are a significant source of SARS-CoV-2 transmission, even during periods of low community-level spread. Comparing household transmission rates by SARS-CoV-2 variant may provide relevant information about current risks and prevention strategies. This investigation aimed to estimate differences in household transmission risk comparing the SARS-CoV-2 Delta and Omicron variants using data from contact tracing and interviews conducted from November 2021 through February 2022 in five U.S. public health jurisdictions (City of Chicago, Illinois; State of Connecticut; City of Milwaukee, Wisconsin; State of Maryland; and State of Utah). Generalized estimating equations were used to estimate attack rates and relative risks for index case and household contact characteristics. Data from 848 households, including 2,622 individuals (median household size = 3), were analyzed. Overall transmission risk was similar in households with Omicron (attack rate = 47.0%) compared to Delta variant (attack rate = 48.0%) circulation. In the multivariable model, a pattern of increased transmission risk was observed with increased time since a household contact's last COVID-19 vaccine dose in Delta households, although confidence intervals overlapped (0-3 months relative risk = 0.8, confidence interval: 0.5-1.2; 4-7 months relative risk = 1.3, 0.9-1.8; ≥8 months relative risk = 1.2, 0.7-1.8); no pattern was observed in Omicron households. Risk for household contacts of symptomatic index cases was twice that of household contacts of asymptomatic index cases (relative risk = 2.0, 95% confidence interval: 1.4-2.9), emphasizing the importance of symptom status, regardless of variant. Uniquely, this study adjusted risk estimates for several index case and household contact characteristics and demonstrates that few characteristics strongly dictate risk, likely reflecting the complexity of the biological and social factors which combine to impact SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Julia M. Baker
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jasmine Y. Nakayama
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Michelle O’Hegarty
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Andrea McGowan
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Richard A. Teran
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Chicago Department of Public Health, Chicago, Illinois, United States of America
| | - Stephen M. Bart
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Connecticut Department of Public Health, Hartford, Connecticut, United States of America
| | - Lynn E. Sosa
- Connecticut Department of Public Health, Hartford, Connecticut, United States of America
| | - Jessica Brockmeyer
- Connecticut Department of Public Health, Hartford, Connecticut, United States of America
| | - Kayla English
- Chicago Department of Public Health, Chicago, Illinois, United States of America
| | - Katie Mosack
- Milwaukee Health Department, Milwaukee, Wisconsin, United States of America
| | | | - Manjeet Khubbar
- Milwaukee Health Department, Milwaukee, Wisconsin, United States of America
| | - Nicole R. Yerkes
- Utah Department of Health and Human Services, Salt Lake City, Utah, United States of America
| | - Brooke Campos
- Utah Department of Health and Human Services, Salt Lake City, Utah, United States of America
| | - Alina Paegle
- Utah Department of Health and Human Services, Salt Lake City, Utah, United States of America
| | - John McGee
- Utah Department of Health and Human Services, Salt Lake City, Utah, United States of America
| | - Robert Herrera
- Utah Department of Health and Human Services, Salt Lake City, Utah, United States of America
| | - Marcia Pearlowitz
- Maryland Department of Health, Baltimore, Maryland, United States of America
| | | | - Hannah L. Kirking
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jacqueline E. Tate
- COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
2
|
Wan Shuaib WMA, Badaruddin IA, Mansor M, Salleh SA, Hassan MR, Lindong S, Samad SN, Othman H. SARS-CoV-2 S-RBD IgG & Neutralizing antibodies among different categories of health care workers post third dose BNT162b2 mRNA COVID-19 vaccine. Hum Vaccin Immunother 2023; 19:2266931. [PMID: 37828861 PMCID: PMC10578183 DOI: 10.1080/21645515.2023.2266931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Neutralizing antibodies (NTAb) play a significant role in preventing and protecting against SARS-CoV-2 virus infection. Identifying NTAb is undoubtedly imperative in understanding the immunity toward COVID-19 better. However, it is interesting to note that the production of NTAb varies among individuals, especially among healthcare workers (HCWs), as they are exposed to the virus daily. Hence, we would like to investigate factors affecting the production of S-RBD IgG and NTAb among different categories of HCWs, particularly after receiving the third dose of the BNT162b2 mRNA COVID-19 Vaccine. A total of 361 HCWs from our hospital were prospectively enrolled and had their S-RBD IgG and NTAb titers measured. They were studied in relation to the degree of exposure to COVID-19, breakthrough infections, gender, age, race, household income, housing type, household number, and education levels. HCWs with the highest risk of exposure to COVID-19, breakthrough infections, and male gender displayed the highest median titers of both S-RBD IgG and NTAb, and the differences were statistically significant (p < .05). Age, race, household income, housing type, household number, and education levels were revealed to be insignificant. We concluded that the degree of exposure to COVID-19, breakthrough infections, and male gender are significant factors in NTAb production among HCWs.
Collapse
Affiliation(s)
- Wan Muhammad Azfar Wan Shuaib
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, UKMMC, Kuala Lumpur, Malaysia
| | - Izzatul Aliaa Badaruddin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, UKMMC, Kuala Lumpur, Malaysia
| | - Munirah Mansor
- Department of Laboratory Diagnostic Services (JPMD), Hospital Canselor Tuanku Muhriz, UKMMC, Kuala Lumpur, Malaysia
| | - Sharifah Azura Salleh
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, UKMMC, Kuala Lumpur, Malaysia
| | - Mohd Rohaizat Hassan
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, UKMMC, Kuala Lumpur, Malaysia
| | - Steward Lindong
- Department of Laboratory Diagnostic Services (JPMD), Hospital Canselor Tuanku Muhriz, UKMMC, Kuala Lumpur, Malaysia
| | - Shahril Nizam Samad
- Department of Laboratory Diagnostic Services (JPMD), Hospital Canselor Tuanku Muhriz, UKMMC, Kuala Lumpur, Malaysia
| | - Hanita Othman
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, UKMMC, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Leomanni L, Collatuzzo G, Sansone E, Sala E, De Palma G, Porru S, Spiteri G, Monaco MGL, Basso D, Pavanello S, Scapellato ML, Larese Filon F, Cegolon L, Mauro M, Lodi V, Lazzarotto T, Noreña I, Reinkemeyer C, Giang LTT, Fabiánová E, Strhársky J, Dell’Omo M, Murgia N, Carrasco-Ribelles LA, Violán C, Mates D, Rascu A, Vimercati L, De Maria L, Asafo SS, Ditano G, Abedini M, Boffetta P. Determinants of Anti-S Immune Response at 12 Months after SARS-CoV-2 Vaccination in a Multicentric European Cohort of Healthcare Workers-ORCHESTRA Project. Vaccines (Basel) 2023; 11:1527. [PMID: 37896931 PMCID: PMC10610704 DOI: 10.3390/vaccines11101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The effectiveness of the immunity provided by SARS-CoV-2 vaccines is an important public health issue. We analyzed the determinants of 12-month serology in a multicenter European cohort of vaccinated healthcare workers (HCW). METHODS We analyzed the sociodemographic characteristics and levels of anti-SARS-CoV-2 spike antibodies (IgG) in a cohort of 16,101 vaccinated HCW from eleven centers in Germany, Italy, Romania, Slovakia and Spain. Considering the skewness of the distribution, the serological levels were transformed using log or cubic standardization and normalized by dividing them by center-specific standard errors. We fitted center-specific multivariate regression models to estimate the cohort-specific relative risks (RR) of an increase of one standard deviation of log or cubic antibody level and the corresponding 95% confidence interval (CI) for different factors and combined them in random-effects meta-analyses. RESULTS We included 16,101 HCW in the analysis. A high antibody level was positively associated with age (RR = 1.04, 95% CI = 1.00-1.08 per 10-year increase), previous infection (RR = 1.78, 95% CI 1.29-2.45) and use of Spikevax [Moderna] with combinations compared to Comirnaty [BioNTech/Pfizer] (RR = 1.07, 95% CI 0.97-1.19) and was negatively associated with the time since last vaccine (RR = 0.94, 95% CI 0.91-0.98 per 30-day increase). CONCLUSIONS These results provide insight about vaccine-induced immunity to SARS-CoV-2, an analysis of its determinants and quantification of the antibody decay trend with time since vaccination.
Collapse
Affiliation(s)
- Ludovica Leomanni
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (L.L.)
| | - Giulia Collatuzzo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (L.L.)
| | - Emanuele Sansone
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy
| | - Emma Sala
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy
| | - Giuseppe De Palma
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy
| | - Stefano Porru
- Section of Occupational Medicine, Department of Diagnostics and Public Health, University of Verona, 37129 Verona, Italy
- Clinical Unit of Occupational Medicine, University Hospital of Verona, 37100 Verona, Italy
| | - Gianluca Spiteri
- Clinical Unit of Occupational Medicine, University Hospital of Verona, 37100 Verona, Italy
| | | | - Daniela Basso
- Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy
- Laboratory Medicine Unit, University Hospital of Padova, 35128 Padova, Italy
| | - Sofia Pavanello
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
- Occupational Medicine Unit, University Hospital of Padova, 35128 Padova, Italy
| | - Maria Luisa Scapellato
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
- Occupational Medicine Unit, University Hospital of Padova, 35128 Padova, Italy
| | - Francesca Larese Filon
- Occupational Medicine Unit, Department of Medicine, Surgery and Health Sciences, University of Trieste, 34100 Trieste, Italy
| | - Luca Cegolon
- Occupational Medicine Unit, Department of Medicine, Surgery and Health Sciences, University of Trieste, 34100 Trieste, Italy
| | - Marcella Mauro
- Occupational Medicine Unit, Department of Medicine, Surgery and Health Sciences, University of Trieste, 34100 Trieste, Italy
| | - Vittorio Lodi
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (L.L.)
- SSD Health Surveillance, IRCCS University Hospital, 40139 Bologna, Italy
| | - Tiziana Lazzarotto
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (L.L.)
- Microbiology Unit, IRCCS University Hospital, 40139 Bologna, Italy
| | - Ivan Noreña
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, 81377 Munich, Germany
| | - Christina Reinkemeyer
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, 81377 Munich, Germany
| | - Le Thi Thu Giang
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, LMU University Hospital, 81377 Munich, Germany
| | - Eleonóra Fabiánová
- Occupational Health Department, Regional Authority of Public Health, 497556 Banská Bystrica, Slovakia
| | - Jozef Strhársky
- Medical Microbiology Department, Regional Authority of Public Health, 497556 Banská Bystrica, Slovakia
| | - Marco Dell’Omo
- Unit of Occupational Medicine, Department on Medicine and Surgery, University of Perugia, 06125 Perugia, Italy
| | - Nicola Murgia
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Lucía A. Carrasco-Ribelles
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), 08303 Mataró, Spain
- Direcció d’Atenció Primària Metropolitana Nord Institut Català de Salut, 08007 Barcelona, Spain
- Grup de Recerca en Impacte de les Malalties Cròniques i les seves Trajectòries (GRIMTra), Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAPJGol), 08303 Barcelona, Spain
- Network for Research on Chronicity, Primary Care and Health Promotion (RICAPPS), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Concepción Violán
- Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), 08303 Mataró, Spain
- Direcció d’Atenció Primària Metropolitana Nord Institut Català de Salut, 08007 Barcelona, Spain
- Grup de Recerca en Impacte de les Malalties Cròniques i les seves Trajectòries (GRIMTra), Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAPJGol), 08303 Barcelona, Spain
- Network for Research on Chronicity, Primary Care and Health Promotion (RICAPPS), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Universitat Autónoma de Barcelona, 08193 Bellaterra, Spain
| | - Dana Mates
- National Institute of Public Health, 050463 Bucharest, Romania
| | - Agripina Rascu
- Department of Internal Medicine-Occupational Medicine, Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Luigi Vimercati
- Interdisciplinary Department of Medicine, University of Bari, 70121 Bari, Italy
| | - Luigi De Maria
- Interdisciplinary Department of Medicine, University of Bari, 70121 Bari, Italy
| | - Shuffield S. Asafo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (L.L.)
| | - Giorgia Ditano
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (L.L.)
| | - Mahsa Abedini
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (L.L.)
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy; (L.L.)
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Family, Population and Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
4
|
Bohn MK, Steele S, Adeli K. SARS-CoV-2 serology in pediatrics: Seroprevalence studies in unvaccinated children and humoral antibody response post vaccination. Clin Biochem 2023; 119:110630. [PMID: 37549823 DOI: 10.1016/j.clinbiochem.2023.110630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Humoral response against SARS-CoV-2 is increasingly accepted as the central correlate of immune protection. Recent pediatric seroprevalence data are extremely limited. Significant knowledge gaps also exist in immune response to mRNA SARS-CoV-2 vaccination in children. As children demonstrate distinct response to naïve infection relative to adults, it is essential to investigate age-specific differences in seroprevalence and antibody response to SARS-CoV-2 vaccination. METHODS Seroprevalence was assessed through two cross-sectional serosurveys prior to COVID-19 vaccination approval in children <5 years using residual patient specimens (n = 2902). To assess antibody response post-vaccination, 842 participants (580 children, 262 adults) were prospectively recruited with informed consent. Participation required completion of a health questionnaire and blood donation. Samples were collected at varying times post-vaccination and assayed using the Abbott AdviseDx SARS-CoV-2 IgG II and DiaSorin LIAISON SARS-CoV-2 TrimericS IgG assays. RESULTS Significant increases in seroprevalence were observed between the first and second serosurveys in unvaccinated children <6 months to 5 years (38-75%). In the prospective vaccination cohort, serokinetic response decreased with time post-dose of an mRNA vaccine. Measured IgG titres were significantly higher in children relative to adults across all time points. CONCLUSIONS This is the largest evaluation of quantitative SARS-CoV-2 antibody assays in a cohort of Canadian children, adolescents, and adults. Findings suggest high rates of SARS-CoV-2 exposure among unvaccinated young children in the Toronto community. Additional data supports children have higher antibody titres relative to adults post-vaccination.
Collapse
Affiliation(s)
- Mary Kathryn Bohn
- CALIPER Program, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Shannon Steele
- CALIPER Program, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Khosrow Adeli
- CALIPER Program, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Goenka MK, Goenka U, Patil VU, Das SS, Afzalpurkar S, Jajodia S, Mukherjee M, Shah BB, Moitra S. Kinetics of Covid-19 antibodies in terms of titre and duration among healthcare workers: A longitudinal study. THE NATIONAL MEDICAL JOURNAL OF INDIA 2023; 35:201-205. [PMID: 36715043 DOI: 10.25259/nmji_109_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Most individuals with Covid-19 infection develop antibodies specific to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the dynamics of these antibodies is variable and not well-studied. We aimed to determine the titres of naturally acquired antibodies over a 12-week follow-up. Methods We recruited healthcare workers who had tested positive on a specific quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for SARS-CoV-2, and then tested for the presence of immunoglobulin G (IgG) antibody against the same virus at baseline and again at 6 and 12 weeks. The antibody titre was determined by a semi-quantitative assay based on signal/cut-off ratio. Healthcare workers with antibody positivity were divided into those with high titre (ratio ≥12) and low titre (<12). Their demographic details and risk factors were surveyed through a Google form and analysed in relation to the antibody titres at three time-points. Results Of the 286 healthcare workers, 10.48% had high antibody titres. Healthcare workers who had tested positive by qRT-PCR and those who had received the Bacille Calmette-Guérin (BCG) vaccination or other immune-boosters had a higher frequency of high antibody titres. While there was a significant decline in antibody titres at 6 and 12 weeks, 87.46% of individuals positive for IgG antibody persisted to have the antibody even at 12 weeks. Conclusion Healthcare workers who tested positive for SARS-CoV-2 on qRT-PCR had a high positivity for the specific antibody, which continued to express in them even at 12 weeks. Further follow-up is likely to enhance our understanding of antibody kinetics following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mahesh Kumar Goenka
- Department of Clinical Imaging and Interventional Radiology, Apollo Multispeciality Hospitals, Institute of Gastrosciences and Liver, Kolkata, West Bengal, India
| | - Usha Goenka
- Department of Clinical Imaging and Interventional Radiology, Apollo Multispeciality Hospitals, Institute of Gastrosciences and Liver, Kolkata, West Bengal, India
| | - Vikram Uttam Patil
- Department of Clinical Imaging and Interventional Radiology, Apollo Multispeciality Hospitals, Institute of Gastrosciences and Liver, Kolkata, West Bengal, India
| | - Sudipta Sekhar Das
- Department of Transfusion Medicine and Blood Bank, Apollo Multispeciality Hospitals, Institute of Gastrosciences and Liver, Kolkata, West Bengal, India
| | - Shivaraj Afzalpurkar
- Department of Clinical Imaging and Interventional Radiology, Apollo Multispeciality Hospitals, Institute of Gastrosciences and Liver, Kolkata, West Bengal, India
| | - Surabhi Jajodia
- Department of Clinical Imaging and Interventional Radiology, Apollo Multispeciality Hospitals, Institute of Gastrosciences and Liver, Kolkata, West Bengal, India
| | - Muhuya Mukherjee
- Department of Biostatistics, Apollo Multispeciality Hospitals, Institute of Gastrosciences and Liver, Kolkata, West Bengal, India
| | - Bhavik Bharat Shah
- Department of Clinical Imaging and Interventional Radiology, Apollo Multispeciality Hospitals, Institute of Gastrosciences and Liver, Kolkata, West Bengal, India
| | - Saibal Moitra
- Department of Allergy and Asthma Research Centre, Apollo Multispeciality Hospitals, Institute of Gastrosciences and Liver, Kolkata, West Bengal, India
| |
Collapse
|
6
|
De Rose DU, Pace PG, Ceccherini-Silberstein F, Dotta A, Andreoni M, Sarmati L, Iannetta M. T Lymphocyte Subset Counts and Interferon-Gamma Production in Adults and Children with COVID-19: A Narrative Review. J Pers Med 2023; 13:jpm13050755. [PMID: 37240926 DOI: 10.3390/jpm13050755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Adults and children exhibit a broad range of clinical outcomes from SARS-CoV-2 infection, with minimal to mild symptoms, especially in the pediatric age. However, some children present with a severe hyperinflammatory post-infectious complication named multisystem inflammatory syndrome in children (MIS-C), mainly affecting previously healthy subjects. Understanding these differences is still an ongoing challenge, that can lead to new therapeutic strategies and avoid unfavorable outcomes. In this review, we discuss the different roles of T lymphocyte subsets and interferon-γ (IFN-γ) in the immune responses of adults and children. Lymphopenia can influence these responses and represent a good predictor for the outcome, as reported by most authors. The increased IFN-γ response exhibited by children could be the starting point for the activation of a broad response that leads to MIS-C, with a significantly higher risk than in adults, although a single IFN signature has not been identified. Multicenter studies with large cohorts in both age groups are still needed to study SARS-CoV-2 pathogenesis with new tools and to understand how is possible to better modulate immune responses.
Collapse
Affiliation(s)
- Domenico Umberto De Rose
- Neonatal Intensive Care Unit, "Bambino Gesù" Children's Hospital IRCCS, 00165 Rome, Italy
- PhD Course in Microbiology, Immunology, Infectious Diseases, and Transplants (MIMIT), Faculty of Medicine and Surgery, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Pier Giorgio Pace
- Infectious Disease Unit, Department of System Medicine, "Tor Vergata" University and Hospital, 00133 Rome, Italy
| | | | - Andrea Dotta
- Neonatal Intensive Care Unit, "Bambino Gesù" Children's Hospital IRCCS, 00165 Rome, Italy
| | - Massimo Andreoni
- Infectious Disease Unit, Department of System Medicine, "Tor Vergata" University and Hospital, 00133 Rome, Italy
| | - Loredana Sarmati
- Infectious Disease Unit, Department of System Medicine, "Tor Vergata" University and Hospital, 00133 Rome, Italy
| | - Marco Iannetta
- Infectious Disease Unit, Department of System Medicine, "Tor Vergata" University and Hospital, 00133 Rome, Italy
| |
Collapse
|
7
|
Impact of MERS-CoV and SARS-CoV-2 Viral Infection on Immunoglobulin-IgG Cross-Reactivity. Vaccines (Basel) 2023; 11:vaccines11030552. [PMID: 36992136 DOI: 10.3390/vaccines11030552] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has posed a considerable threat to public health and global economies. SARS-CoV-2 has largely affected a vast world population and was declared a COVID-19 pandemic outbreak, with a substantial surge of SARS-CoV-2 infection affecting all aspects of the virus’ natural course of infection and immunity. The cross-reactivity between the different coronaviruses is still a knowledge gap in the understanding of the SARS-CoV-2 virus. This study aimed to investigate the impact of MERS-CoV and SARS-CoV-2 viral infections on immunoglobulin-IgG cross-reactivity. Our retrospective cohort study hypothesized the possible reactivation of immunity in individuals with a history of infection to Middle East Respiratory Syndrome coronavirus (MERS-CoV) when infected with SARS-CoV-2. The total number of participants included was 34; among them, 22 (64.7%) were males, and 12 (35.29%) were females. The mean age of the participants was 40.3 ± 12.9 years. This study compared immunoglobulin (IgG) levels against SARS-CoV-2 and MERS-CoV across various groups with various histories of infection. The results showed that a reactive borderline IgG against both MERS-CoV and SARS-CoV-2 in participants with past infection to both viruses was 40% compared with 37.5% among those with past infection with MERS-CoV alone. Our study results establish that individuals infected with both SARS-CoV-2 and MERS-CoV showed higher MERS-CoV IgG levels compared with those of individuals infected previously with MERS-CoV alone and compared with those of individuals in the control. The results further highlight cross-adaptive immunity between MERS-CoV and SARS-CoV. Our study concludes that individuals with previous infections with both MERS-CoV and SARS-CoV-2 showed significantly higher MERS-CoV IgG levels compared with those of individuals infected only with MERS-CoV and compared with those of individuals in the control, suggesting cross-adaptive immunity between MERS-CoV and SARS-CoV.
Collapse
|
8
|
Khoo WH, Jackson K, Phetsouphanh C, Zaunders JJ, Alquicira-Hernandez J, Yazar S, Ruiz-Diaz S, Singh M, Dhenni R, Kyaw W, Tea F, Merheb V, Lee FXZ, Burrell R, Howard-Jones A, Koirala A, Zhou L, Yuksel A, Catchpoole DR, Lai CL, Vitagliano TL, Rouet R, Christ D, Tang B, West NP, George S, Gerrard J, Croucher PI, Kelleher AD, Goodnow CG, Sprent JD, Powell JE, Brilot F, Nanan R, Hsu PS, Deenick EK, Britton PN, Phan TG. Tracking the clonal dynamics of SARS-CoV-2-specific T cells in children and adults with mild/asymptomatic COVID-19. Clin Immunol 2023; 246:109209. [PMID: 36539107 PMCID: PMC9758763 DOI: 10.1016/j.clim.2022.109209] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop less severe coronavirus disease 2019 (COVID-19) than adults. The mechanisms for the age-specific differences and the implications for infection-induced immunity are beginning to be uncovered. We show by longitudinal multimodal analysis that SARS-CoV-2 leaves a small footprint in the circulating T cell compartment in children with mild/asymptomatic COVID-19 compared to adult household contacts with the same disease severity who had more evidence of systemic T cell interferon activation, cytotoxicity and exhaustion. Children harbored diverse polyclonal SARS-CoV-2-specific naïve T cells whereas adults harbored clonally expanded SARS-CoV-2-specific memory T cells. A novel population of naïve interferon-activated T cells is expanded in acute COVID-19 and is recruited into the memory compartment during convalescence in adults but not children. This was associated with the development of robust CD4+ memory T cell responses in adults but not children. These data suggest that rapid clearance of SARS-CoV-2 in children may compromise their cellular immunity and ability to resist reinfection.
Collapse
Affiliation(s)
- Weng Hua Khoo
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | | | | | - John J Zaunders
- Centre for Applied Medical Research, St Vincent's Hospital, Sydney, Australia
| | - José Alquicira-Hernandez
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Seyhan Yazar
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia
| | | | - Mandeep Singh
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Rama Dhenni
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Wunna Kyaw
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Fiona Tea
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia
| | - Vera Merheb
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia
| | - Fiona X Z Lee
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia
| | - Rebecca Burrell
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | | | - Archana Koirala
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Li Zhou
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Aysen Yuksel
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Daniel R Catchpoole
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
| | - Catherine L Lai
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | | | - Romain Rouet
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Benjamin Tang
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia; Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, Australia; Respiratory Tract Infection Research Node, Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney, Australia
| | - Nicholas P West
- Systems Biology and Data Science, Menzies Health Institute QLD, Griffith University, Parklands, Australia
| | - Shane George
- Departments of Emergency Medicine and Children's Critical Care, Gold Coast University Hospital, Southport, QLD, Australia; School of Medicine and Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - John Gerrard
- Department of Infectious Diseases and Immunology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Peter I Croucher
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | | | - Christopher G Goodnow
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia; UNSW Cellular Genomics Futures Institute, UNSW Sydney, Sydney, Australia
| | - Jonathan D Sprent
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia; UNSW Cellular Genomics Futures Institute, UNSW Sydney, Sydney, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia; Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, Australia; Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Ralph Nanan
- Charles Perkins Centre Nepean, University of Sydney, Sydney, Australia
| | - Peter S Hsu
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
| | - Elissa K Deenick
- Garvan Institute of Medical Research, Sydney, Australia; Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Philip N Britton
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
9
|
Abulsoud AI, El-Husseiny HM, El-Husseiny AA, El-Mahdy HA, Ismail A, Elkhawaga SY, Khidr EG, Fathi D, Mady EA, Najda A, Algahtani M, Theyab A, Alsharif KF, Albrakati A, Bayram R, Abdel-Daim MM, Doghish AS. Mutations in SARS-CoV-2: Insights on structure, variants, vaccines, and biomedical interventions. Biomed Pharmacother 2023; 157:113977. [PMID: 36370519 PMCID: PMC9637516 DOI: 10.1016/j.biopha.2022.113977] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
COVID-19 is a worldwide pandemic caused by SARS-coronavirus-2 (SARS-CoV-2). Less than a year after the emergence of the Covid-19 pandemic, many vaccines have arrived on the market with innovative technologies in the field of vaccinology. Based on the use of messenger RNA (mRNA) encoding the Spike SARS-Cov-2 protein or on the use of recombinant adenovirus vectors enabling the gene encoding the Spike protein to be introduced into our cells, these strategies make it possible to envisage the vaccination in a new light with tools that are more scalable than the vaccine strategies used so far. Faced with the appearance of new variants, which will gradually take precedence over the strain at the origin of the pandemic, these new strategies will allow a much faster update of vaccines to fight against these new variants, some of which may escape neutralization by vaccine antibodies. However, only a vaccination policy based on rapid and massive vaccination of the population but requiring a supply of sufficient doses could make it possible to combat the emergence of these variants. Indeed, the greater the number of infected individuals, the faster the virus multiplies, with an increased risk of the emergence of variants in these RNA viruses. This review will discuss SARS-CoV-2 pathophysiology and evolution approaches in altered transmission platforms and emphasize the different mutations and how they influence the virus characteristics. Also, this article summarizes the common vaccines and the implication of the mutations and genetic variety of SARS-CoV-2 on the COVID-19 biomedical arbitrations.
Collapse
Affiliation(s)
- Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Doaa Fathi
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants University of Life Sciences, Lublin 50A Doświadczalna Street, 20-280, Lublin, Poland.
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, P.O. Box 14799, Mecca 21955, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory & Blood Bank, Security Forces Hospital, P.O. Box 14799, Mecca 21955, Saudi Arabia; College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory sciences, College of Applied medical sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Roula Bayram
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
10
|
Li L, Gao M, Li J, Xie X, Zhao H, Wang Y, Xu X, Zu S, Chen C, Wan D, Duan J, Wang J, Aliyari SR, Gold S, Zhang J, Qin CF, Shi PY, Yang H, Cheng G. Identification of an immunogenic epitope and protective antibody against the furin cleavage site of SARS-CoV-2. EBioMedicine 2022; 87:104401. [PMID: 36508877 PMCID: PMC9732504 DOI: 10.1016/j.ebiom.2022.104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the global coronavirus disease 2019 (COVID-19) pandemic, contains a unique, four amino acid (aa) "PRRA" insertion in the spike (S) protein that creates a transmembrane protease serine 2 (TMPRSS2)/furin cleavage site and enhances viral infectivity. More research into immunogenic epitopes and protective antibodies against this SARS-CoV-2 furin cleavage site is needed. METHODS Combining computational and experimental methods, we identified and characterized an immunogenic epitope overlapping the furin cleavage site that detects antibodies in COVID-19 patients and elicits strong antibody responses in immunized mice. We also identified a high-affinity monoclonal antibody from COVID-19 patient peripheral blood mononuclear cells; the antibody directly binds the furin cleavage site and protects against SARS-CoV-2 infection in a mouse model. FINDINGS The presence of "PRRA" amino acids in the S protein of SARS-CoV-2 not only creates a furin cleavage site but also generates an immunogenic epitope that elicits an antibody response in COVID-19 patients. An antibody against this epitope protected against SARS-CoV-2 infection in mice. INTERPRETATION The immunogenic epitope and protective antibody we have identified may augment our strategy in handling COVID-19 epidemic. FUNDING The National Natural Science Foundation of China (82102371, 91542201, 81925025, 82073181, and 81802870), the Chinese Academy of Medical Sciences Initiative for Innovative Medicine (2021-I2M-1-047 and 2022-I2M-2-004), the Non-profit Central Research Institute Fund of the Chinese Academy of Medical Sciences (2020-PT310-006, 2019XK310002, and 2018TX31001), the National Key Research and Development Project of China (2020YFC0841700), US National Institute of Health (NIH) funds grant AI158154, University of California Los Angeles (UCLA) AI and Charity Treks, and UCLA DGSOM BSCRC COVID-19 Award Program. H.Y. is supported by Natural Science Foundation of Jiangsu Province (BK20211554 andBE2022728).
Collapse
Affiliation(s)
- Lili Li
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Meiling Gao
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Jie Li
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xuping Xie
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Hui Zhao
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | | | - Xin Xu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Shulong Zu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,Suzhou Institute of Systems Medicine, Suzhou, China
| | | | - Dingyi Wan
- AtaGenix Laboratories (Wuhan) Co., Ltd., Wuhan, China
| | - Jing Duan
- AtaGenix Laboratories (Wuhan) Co., Ltd., Wuhan, China
| | - Jingfeng Wang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,Suzhou Institute of Systems Medicine, Suzhou, China,Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Saba R. Aliyari
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Sarah Gold
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Jicai Zhang
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China,Corresponding author.
| | - Pei-Yong Shi
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA,Corresponding author.
| | - Heng Yang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,Suzhou Institute of Systems Medicine, Suzhou, China,Corresponding author.
| | - Genhong Cheng
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA,Corresponding author.
| |
Collapse
|
11
|
Field CJ, Heinly TA, Patel DR, Sim DG, Luley E, Gupta SL, Vanderford TH, Wrammert J, Sutton TC. Immune durability and protection against SARS-CoV-2 re-infection in Syrian hamsters. Emerg Microbes Infect 2022; 11:1103-1114. [PMID: 35333692 PMCID: PMC9037228 DOI: 10.1080/22221751.2022.2058419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/22/2022] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a pandemic. As immunity to endemic human coronaviruses (i.e. NL63 or OC43) wanes leading to re-infection, it was unknown if SARS-CoV-2 immunity would also decline permitting repeat infections. Recent case reports confirm previously infected individuals can become re-infected; however, re-infection may be due to heterogeneity in the initial infection or the host immune response, or may be the result of infection with a variant strain that escapes pre-existing immunity. To control these variables, we utilized the Syrian hamster model to evaluate the duration of immunity and susceptibility to re-infection with SARS-CoV-2. Hamsters were given a primary mock or SARS-CoV-2 infection (culture media or 105 TCID50 USA/WA1/2020 isolate, respectively). Mock and SARS-CoV-2 infected hamsters were then given a secondary SARS-CoV-2 infection at 1, 2, 4, or 6 months post-primary infection (n = 14/time point/group). After the primary SARS-CoV-2 infection, hamsters developed anti-spike protein IgG, IgA, and neutralizing antibodies, and these antibodies were maintained for at least 6 months. Upon secondary SARS-CoV-2 challenge, previously SARS-CoV-2 infected animals were protected from weight loss, while all previously mock-infected animals became infected and lost weight. Importantly, despite having high titres of antibodies, one SARS-CoV-2 infected animal re-challenged at 4 months had a breakthrough infection with replicating virus in the upper and lower respiratory tract. These studies demonstrate immunity to SARS-CoV-2 is maintained for 6 months; however, protection may be incomplete and, even in the presence of high antibody titres, previously infected hosts may become re-infected.
Collapse
Affiliation(s)
- C. J. Field
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), University Park, PA, USA
| | - T. A. Heinly
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), University Park, PA, USA
| | - D. R. Patel
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - D. G. Sim
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - E. Luley
- Animal Diagnostic Lab, The Pennsylvania State University, University Park, PA, USA
| | - S. L. Gupta
- Department of Pediatrics, Division of Infectious Disease, School of Medicine, Emory University, Atlanta, GA, USA
| | - T. H. Vanderford
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - J. Wrammert
- Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), University Park, PA, USA
- Department of Pediatrics, Division of Infectious Disease, School of Medicine, Emory University, Atlanta, GA, USA
| | - T. C. Sutton
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Emory-UGA Center of Excellence of Influenza Research and Surveillance (CEIRS), University Park, PA, USA
| |
Collapse
|
12
|
Nonspecific Effects of Infant Vaccines Make Children More Resistant to SARS-CoV-2 Infection. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9121858. [PMID: 36553302 PMCID: PMC9777511 DOI: 10.3390/children9121858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
A myriad of reasons, or a combination of them, have been alluded to in order to explain the lower susceptibility of children to SARS-CoV-2 infection and the development of severe forms of COVID-19. This document explores an additional factor, still little addressed in the medical literature related to the matter: nonspecific resistance to SARS-CoV-2 that could be generated by vaccines administered during childhood. The analysis carried out allows one to conclude that a group of vaccines administered during childhood is associated with a lower incidence and severity of SARS-CoV-2 infection among pediatric ages. Looking from an epidemiological perspective, this conclusion must be taken into consideration in order to ensure greater rationality in the design and implementation of prevention and control actions, including the administration of the COVID-19 vaccine, for these ages.
Collapse
|
13
|
Noto A, Joo V, Mancarella A, Suffiotti M, Pellaton C, Fenwick C, Perreau M, Pantaleo G. CXCL12 and CXCL13 Cytokine Serum Levels Are Associated with the Magnitude and the Quality of SARS-CoV-2 Humoral Responses. Viruses 2022; 14:2665. [PMID: 36560669 PMCID: PMC9785906 DOI: 10.3390/v14122665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
A better understanding of the immunological markers associated with long-lasting immune responses to SARS-CoV-2 infection is of paramount importance. In the present study, we characterized SARS-CoV-2-specific humoral responses in hospitalized (ICU and non-ICU) and non-hospitalized individuals at six months post-onset of symptoms (POS) (N = 95). We showed that the proportion of individuals with detectable anti-SARS-CoV-2 IgG or neutralizing (NAb) responses and the titers of antibodies were significantly reduced in non-hospitalized individuals, compared to ICU- or non-ICU-hospitalized individuals at 6 months POS. Interestingly, SARS-CoV-2-specific memory B cells persist at 6 months POS in both ICU and non-ICU patients and were enriched in cells harboring an activated and/or exhausted phenotype. The frequency/phenotype of SARS-CoV-2-specific memory B cells and the magnitude of IgG or NAb responses at 6 months POS correlated with the serum immune signature detected at patient admission. In particular, the serum levels of CXCL13, IL-1RA, and G-CSF directly correlated with the frequency of Spike-specific B cells and the magnitude of Spike-specific IgG or NAb, while the serum levels of CXCL12 showed an antagonizing effect. Our results indicate that the balance between CXCL12 and CXCL13 is an early marker associated with the magnitude and the quality of the SARS-CoV-2 humoral memory.
Collapse
Affiliation(s)
- Alessandra Noto
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Victor Joo
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Antonio Mancarella
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Madeleine Suffiotti
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Celine Pellaton
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Craig Fenwick
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
- Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
14
|
Sandybayev N, Beloussov V, Strochkov V, Solomadin M, Granica J, Yegorov S. Next Generation Sequencing Approaches to Characterize the Respiratory Tract Virome. Microorganisms 2022; 10:microorganisms10122327. [PMID: 36557580 PMCID: PMC9785614 DOI: 10.3390/microorganisms10122327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic and heightened perception of the risk of emerging viral infections have boosted the efforts to better understand the virome or complete repertoire of viruses in health and disease, with a focus on infectious respiratory diseases. Next-generation sequencing (NGS) is widely used to study microorganisms, allowing the elucidation of bacteria and viruses inhabiting different body systems and identifying new pathogens. However, NGS studies suffer from a lack of standardization, in particular, due to various methodological approaches and no single format for processing the results. Here, we review the main methodological approaches and key stages for studies of the human virome, with an emphasis on virome changes during acute respiratory viral infection, with applications for clinical diagnostics and epidemiologic analyses.
Collapse
Affiliation(s)
- Nurlan Sandybayev
- Kazakhstan-Japan Innovation Center, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan
- Correspondence: ; Tel.: +7-778312-2058
| | - Vyacheslav Beloussov
- Kazakhstan-Japan Innovation Center, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan
- Molecular Genetics Laboratory TreeGene, Almaty 050009, Kazakhstan
| | - Vitaliy Strochkov
- Kazakhstan-Japan Innovation Center, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan
| | - Maxim Solomadin
- School of Pharmacy, Karaganda Medical University, Karaganda 100000, Kazakhstan
| | - Joanna Granica
- Molecular Genetics Laboratory TreeGene, Almaty 050009, Kazakhstan
| | - Sergey Yegorov
- Michael G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4LB, Canada
| |
Collapse
|
15
|
Yaugel-Novoa M, Bourlet T, Paul S. Role of the humoral immune response during COVID-19: guilty or not guilty? Mucosal Immunol 2022; 15:1170-1180. [PMID: 36195658 PMCID: PMC9530436 DOI: 10.1038/s41385-022-00569-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/07/2022] [Accepted: 09/19/2022] [Indexed: 02/04/2023]
Abstract
Systemic and mucosal humoral immune responses are crucial to fight respiratory viral infections in the current pandemic of COVID-19 caused by the SARS-CoV-2 virus. During SARS-CoV-2 infection, the dynamics of systemic and mucosal antibody infections are affected by patient characteristics, such as age, sex, disease severity, or prior immunity to other human coronaviruses. Patients suffering from severe disease develop higher levels of anti-SARS-CoV-2 antibodies in serum and mucosal tissues than those with mild disease, and these antibodies are detectable for up to a year after symptom onset. In hospitalized patients, the aberrant glycosylation of anti-SARS-CoV-2 antibodies enhances inflammation-associated antibody Fc-dependent effector functions, thereby contributing to COVID-19 pathophysiology. Current vaccines elicit robust humoral immune responses, principally in the blood. However, they are less effective against new viral variants, such as Delta and Omicron. This review provides an overview of current knowledge about the humoral immune response to SARS-CoV-2, with a particular focus on the protective and pathological role of humoral immunity in COVID-19 severity. We also discuss the humoral immune response elicited by COVID-19 vaccination and protection against emerging viral variants.
Collapse
Affiliation(s)
- Melyssa Yaugel-Novoa
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Université Claude Bernard Lyon 1, Lyon, France
| | - Thomas Bourlet
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Université Claude Bernard Lyon 1, Lyon, France
| | - Stéphane Paul
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Université Claude Bernard Lyon 1, Lyon, France,CIC Inserm 1408 Vaccinology, Saint-Etienne, France
| |
Collapse
|
16
|
Shah MM, Winn A, Dahl RM, Kniss KL, Silk BJ, Killerby ME. Seasonality of Common Human Coronaviruses, United States, 2014-2021 1. Emerg Infect Dis 2022; 28:1970-1976. [PMID: 36007923 PMCID: PMC9514339 DOI: 10.3201/eid2810.220396] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The 4 common types of human coronaviruses (HCoVs)-2 alpha (HCoV-NL63 and HCoV-229E) and 2 beta (HCoV-HKU1 and HCoV-OC43)-generally cause mild upper respiratory illness. Seasonal patterns and annual variation in predominant types of HCoVs are known, but parameters of expected seasonality have not been defined. We defined seasonality of HCoVs during July 2014-November 2021 in the United States by using a retrospective method applied to National Respiratory and Enteric Virus Surveillance System data. In the 6 HCoV seasons before 2020-21, season onsets occurred October 21-November 12, peaks January 6-February 13, and offsets April 18-June 27; most (>93%) HCoV detection was within the defined seasonal onsets and offsets. The 2020-21 HCoV season onset was 11 weeks later than in prior seasons, probably associated with COVID-19 mitigation efforts. Better definitions of HCoV seasonality can be used for clinical preparedness and for determining expected patterns of emerging coronaviruses.
Collapse
|
17
|
SARS-CoV-2 infection: Pathogenesis, Immune Responses, Diagnosis. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
COVID-19 has emerged as the most alarming infection of the present time instigated by the virus SARS-CoV-2. In spite of advanced research technologies, the exact pathophysiology and treatment of the condition still need to be explored. However, SARS-CoV-2 has several structural and functional similarities that resemble SARS-CoV and MERS-CoV which may be beneficial in exploring the possible treatment and diagnostic strategies for SARS-CoV-2. This review discusses the pathogen phenotype, genotype, replication, pathophysiology, elicited immune response and emerging variants of SARS-CoV-2 and their similarities with other similar viruses. SARS-CoV-2 infection is detected by a number of diagnostics techniques, their advantages and limitations are also discussed in detail. The review also focuses on nanotechnology-based easy and fast detection of SARS-CoV-2 infection. Various pathways which might play a vital role during SARS-CoV-2 infection have been elaborately discussed since immune response plays a major role during viral infections.
Collapse
|
18
|
Alharbi AA, Alshomrani MK, Alharbi AA, Almaeen AH, AlAsiri S, Al-Omari A, Alishat I, Dolgom S. Immunoglobulin Rapid Test Sensitivity in PCR-Positive COVID-19 Patients. DR. SULAIMAN AL HABIB MEDICAL JOURNAL 2022. [PMCID: PMC9263031 DOI: 10.1007/s44229-022-00014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Diagnostic assays aimed at the identification of immunoglobulin G (IgG) and immunoglobulin M (IgM) offer a rapid and adjunct modality to conventional real-time reverse transcription polymerase chain reaction (rRT-PCR) assays for the diagnosis of coronavirus disease 2019 (COVID-19). Aim To analyze the sensitivity of IgG and IgM-based serological assays in rRT-PCR-positive COVID-19 subjects. Methods A consecutive cohort of 69 patients with COVID-19-related symptoms or recent exposure to COVID-19-positive individuals were included after taking informed consent. Nasopharyngeal swabs for SARS-CoV-2 rRT-PCR analysis and venous blood samples for the COVID-19 IgG/IgM rapid test were simultaneously collected from each subject on day 0. Then, in the case of positive PCR results, subsequent blood samples for COVID-19 IgG/IgM analysis were collected on days 7, 10 and 14. Samples were statistically analyzed to determine the sensitivity of the serology-based assays. Results No correlation was found between age or sex and the rRT-PCR, IgG and IgM results; 65.2% of subjects tested positive by rRT-PCR. The sensitivity of the IgM and IgG rapid test increased gradually with time, reaching the highest level on day 14 (22.2% and 72%, respectively). Conclusion Serological assays for the detection of infection with SARS-CoV-2 were compared to rRT-PCR. These assays yielded lower sensitivities than rRT-PCR-based assays. However, given that these immunoassays are more affordable, faster, and easier to execute, they could be recommended for epidemiological research or characterizing the immune status of post-infection or post-vaccination subjects.
Collapse
Affiliation(s)
- Ahmad A. Alharbi
- Department of Pathology, College of Medicine, Majmaah University and Dr. Sulaiman Al-Habib Hospital in AL Takhassusi, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad K. Alshomrani
- Microbiology Department, Riyadh Regional Laboratory and Blood Bank, Riyadh, Kingdom of Saudi Arabia
| | - Abdullah A. Alharbi
- Pathology Department, College of Medicine, Imam Muhammad Ibn Saud Islamic University, Riyadh, Kingdom of Saudi Arabia
| | - Abdulrahman H. Almaeen
- Department of Pathology, College of Medicine, Jouf University, Al-Jouf, Kingdom of Saudi Arabia
| | - Saad AlAsiri
- Emergency Medicine, Dr. Sulaiman Al-Habib Medical Group, Riyadh, Kingdom of Saudi Arabia
| | - Awad Al-Omari
- Dr. Sulaiman Al Habib Medical Group and Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Imad Alishat
- Emergency Department, Takhassusi Hospital, Dr. Sulaiman AlHabib Medical Group, Riyadh, Kingdom of Saudi Arabia
| | - Saeed Dolgom
- Pediatric Infectious Diseases, Dr.Suliman ALhabib Hospital, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
19
|
SARS-CoV-2 Infection in Health Care Workers of Trieste (North-Eastern Italy), 1 October 2020–7 February 2022: Occupational Risk and the Impact of the Omicron Variant. Viruses 2022; 14:v14081663. [PMID: 36016284 PMCID: PMC9413002 DOI: 10.3390/v14081663] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
Vaccination coverage against COVID-19 among health care workers (HCWs) of the University Health Agency Giuliano-Isontina (ASUGI) of Trieste (North-eastern Italy) by 1 January 2022 was 90.4% with at least one vaccine dose, 84.9% with at least 2 doses, and 75.1% with 3 doses, 98.2% with Comirnaty (Pfizer BioNtech, New York, NY, USA) versus 1.8% with Spikevax (Moderna, Cambridge, MA, USA). From 1 October 2020 to 7 February 2022, 1652 SARS-CoV-2 infections were notified in HCWs of ASUGI Trieste. Although the overall risk of SARS-CoV-2 contagion increased over time, the rate of occupational infections progressively declined, from 42.5% during the second COVID-19 wave to 15.6% in the fifth. Between 1 January–7 February 2022 (a period dominated by the Omicron variant), albeit no COVID-19-associated hospitalizations were recorded in HCWs of ASUGI Trieste, 669 SARS-CoV-2 infections were counted against 367 cases observed from 1 October to 31 December 2020, the 3 months preceding the implementation of the vaccination campaign against COVID-19. Job tasks and health care settings turned out to be the most significant risk factors for SARS-CoV-2 infection. However, the effect of workplace prevailed over job task on the biological risk, with greater rates of SARS-CoV-2 infections observed among HCWs operating in areas with higher levels of circulation of the virus, particularly COVID-19 dedicated units.
Collapse
|
20
|
Colton H, Hodgson D, Hornsby H, Brown R, Mckenzie J, Bradley KL, James C, Lindsey BB, Birch S, Marsh L, Wood S, Bayley M, Dickson G, James DC, Nicklin MJ, Sayers JR, Zafred D, Rowland-Jones SL, Kudesia G, Kucharski A, Darton TC, de Silva TI, Collini PJ. Risk factors for SARS-CoV-2 seroprevalence following the first pandemic wave in UK healthcare workers in a large NHS Foundation Trust. Wellcome Open Res 2022; 6:220. [PMID: 35600250 PMCID: PMC9091808 DOI: 10.12688/wellcomeopenres.17143.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 11/22/2022] Open
Abstract
Background: We aimed to measure SARS-CoV-2 seroprevalence in a cohort of healthcare workers (HCWs) during the first UK wave of the COVID-19 pandemic, explore risk factors associated with infection, and investigate the impact of antibody titres on assay sensitivity. Methods: HCWs at Sheffield Teaching Hospitals NHS Foundation Trust were prospectively enrolled and sampled at two time points. We developed an in-house ELISA for testing participant serum for SARS-CoV-2 IgG and IgA reactivity against Spike and Nucleoprotein. Data were analysed using three statistical models: a seroprevalence model, an antibody kinetics model, and a heterogeneous sensitivity model. Results: Our in-house assay had a sensitivity of 99·47% and specificity of 99·56%. We found that 24·4% (n=311/1275) of HCWs were seropositive as of 12th June 2020. Of these, 39·2% (n=122/311) were asymptomatic. The highest adjusted seroprevalence was measured in HCWs on the Acute Medical Unit (41·1%, 95% CrI 30·0-52·9) and in Physiotherapists and Occupational Therapists (39·2%, 95% CrI 24·4-56·5). Older age groups showed overall higher median antibody titres. Further modelling suggests that, for a serological assay with an overall sensitivity of 80%, antibody titres may be markedly affected by differences in age, with sensitivity estimates of 89% in those over 60 years but 61% in those ≤30 years. Conclusions: HCWs in acute medical units and those working closely with COVID-19 patients were at highest risk of infection, though whether these are infections acquired from patients or other staff is unknown. Current serological assays may underestimate seroprevalence in younger age groups if validated using sera from older and/or more severe COVID-19 cases.
Collapse
Affiliation(s)
- Hayley Colton
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - David Hodgson
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Hailey Hornsby
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Rebecca Brown
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Joanne Mckenzie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Kirsty L. Bradley
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Cameron James
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Benjamin B. Lindsey
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Sarah Birch
- Academic Directorate of Communicable Diseases and Specialised Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - Louise Marsh
- Academic Directorate of Communicable Diseases and Specialised Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - Steven Wood
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - Martin Bayley
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - Gary Dickson
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - David C. James
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S10 2TN, UK
| | - Martin J. Nicklin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jon R. Sayers
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
- Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, S10 2TN, UK
| | - Domen Zafred
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Sarah L. Rowland-Jones
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
| | - Goura Kudesia
- Department of Virology, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S5 7AU, UK
| | - Adam Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - CMMID COVID-19 Working Group
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Academic Directorate of Communicable Diseases and Specialised Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
- Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Virology, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S5 7AU, UK
| | - Thomas C. Darton
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
| | - Thushan I. de Silva
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
| | - Paul J. Collini
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
21
|
Hachim A, Gu H, Kavian O, Mori M, Kwan MYW, Chan WH, Yau YS, Chiu SS, Tsang OTY, Hui DSC, Mok CKP, Ma FNL, Lau EHY, Amarasinghe GK, Qavi AJ, Cheng SMS, Poon LLM, Peiris JSM, Valkenburg SA, Kavian N. SARS-CoV-2 accessory proteins reveal distinct serological signatures in children. Nat Commun 2022; 13:2951. [PMID: 35618731 PMCID: PMC9135746 DOI: 10.1038/s41467-022-30699-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/13/2022] [Indexed: 12/14/2022] Open
Abstract
The antibody response magnitude and kinetics may impact clinical severity, serological diagnosis and long-term protection of COVID-19, which may play a role in why children experience lower morbidity. We therefore tested samples from 122 children in Hong Kong with symptomatic (n = 78) and asymptomatic (n = 44) SARS-CoV-2 infections up to 200 days post infection, relative to 71 infected adults (symptomatic n = 61, and asymptomatic n = 10), and negative controls (n = 48). We assessed serum IgG antibodies to a 14-wide antigen panel of structural and accessory proteins by Luciferase Immuno-Precipitation System (LIPS) assay and circulating cytokines. Infected children have lower levels of Spike, Membrane, ORF3a, ORF7a, ORF7b antibodies, comparable ORF8 and elevated E-specific antibodies than adults. Combination of two unique antibody targets, ORF3d and ORF8, can accurately discriminate SARS-CoV-2 infection in children. Principal component analysis reveals distinct pediatric serological signatures, and the highest contribution to variance from adults are antibody responses to non-structural proteins ORF3d, NSP1, ORF3a and ORF8. From a diverse panel of cytokines that can modulate immune priming and relative inflammation, IL-8, MCP-1 and IL-6 correlate with the magnitude of pediatric antibody specificity and severity. Antibodies to SARS-CoV-2 internal proteins may become an important sero surveillance tool of infection with the roll-out of vaccines in the pediatric population.
Collapse
Affiliation(s)
- Asmaa Hachim
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Haogao Gu
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Otared Kavian
- Department of Mathematics, Université de Versailles Saint-Quentin, Versailles, France
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Mike Y W Kwan
- Department of Pediatric and Adolescent Medicine, Princess Margaret Hospital, Hospital Authority of Hong Kong, Hong Kong SAR, China
| | - Wai Hung Chan
- Department of Pediatrics, Queen Elizabeth Hospital, Hospital Authority of Hong Kong, Hong Kong SAR, China
| | - Yat Sun Yau
- Department of Pediatrics, Queen Elizabeth Hospital, Hospital Authority of Hong Kong, Hong Kong SAR, China
| | - Susan S Chiu
- Department of Pediatric and Adolescent Medicine, The University of Hong Kong and Queen Mary Hospital, Hospital Authority of Hong Kong, Hong Kong SAR, China
| | - Owen T Y Tsang
- Infectious Diseases Centre, Princess Margaret Hospital, Hospital Authority of Hong Kong, Hong Kong SAR, China
| | - David S C Hui
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chris K P Mok
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fionn N L Ma
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Eric H Y Lau
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Abraham J Qavi
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Samuel M S Cheng
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo L M Poon
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - J S Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sophie A Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Doherty Institute of Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia.
| | - Niloufar Kavian
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Faculté de Médecine Université Paris Descartes, Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire Cochin, Service d'Immunologie Biologique, Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
22
|
Nakayama EE, Kubota-Koketsu R, Sasaki T, Suzuki K, Uno K, Shimizu J, Okamoto T, Matsumoto H, Matsuura H, Hashimoto S, Tanaka T, Harada H, Tomita M, Kaneko M, Yoshizaki K, Shioda T. Anti-nucleocapsid antibodies enhance the production of IL-6 induced by SARS-CoV-2 N protein. Sci Rep 2022; 12:8108. [PMID: 35577892 PMCID: PMC9109953 DOI: 10.1038/s41598-022-12252-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/09/2022] [Indexed: 12/21/2022] Open
Abstract
A cytokine storm induces acute respiratory distress syndrome, the main cause of death in coronavirus disease 2019 (COVID-19) patients. However, the detailed mechanisms of cytokine induction due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain unclear. To examine the cytokine production in COVID-19, we mimicked the disease in SARS-CoV-2-infected alveoli by adding the lysate of SARS-CoV-2-infected cells to cultured macrophages or induced pluripotent stem cell-derived myeloid cells. The cells secreted interleukin (IL)-6 after the addition of SARS-CoV-2-infected cell lysate. Screening of 25 SARS-CoV-2 protein-expressing plasmids revealed that the N protein-coding plasmid alone induced IL-6 production. The addition of anti-N antibody further enhanced IL-6 production, but the F(ab')2 fragment did not. Sera from COVID-19 patients also enhanced IL-6 production, and sera from patients with severer disease induced higher levels of IL-6. These results suggest that anti-N antibody promotes IL-6 production in SARS-CoV-2-infected alveoli, leading to the cytokine storm of COVID-19.
Collapse
Affiliation(s)
- Emi E Nakayama
- Research Institute for Microbial Diseases and Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Ritsuko Kubota-Koketsu
- Research Institute for Microbial Diseases and Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tadahiro Sasaki
- Research Institute for Microbial Diseases and Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Keita Suzuki
- Research Institute for Microbial Diseases and Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, 565-0871, Japan.,TANAKA Kikinzoku Kogyo K.K, Hiratsuka, Kanagawa, 254-0076, Japan
| | - Kazuko Uno
- Division of Basic Research, Louis Pasteur Center for Medical Research, Kyoto, 606-8225, Japan
| | - Jun Shimizu
- MiCAN Technologies Inc., Kyoto, 615-8245, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0781, Japan
| | - Hisatake Matsumoto
- Trauma and Acute Critical Care Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Matsuura
- Osaka Prefectural Nakakawachi Emergency and Critical Care Center, Higashiosaka, Osaka, 678-0947, Japan
| | - Shoji Hashimoto
- Osaka Prefectural Hospital Organization Osaka Habikino Medical Center, Habikino, Osaka, 583-8588, Japan
| | - Toshio Tanaka
- Osaka Prefectural Hospital Organization Osaka Habikino Medical Center, Habikino, Osaka, 583-8588, Japan
| | - Hiromasa Harada
- Yao Tokushukai General Hospital, Yao, Osaka, 581-0011, Japan
| | | | | | - Kazuyuki Yoshizaki
- Institute of Scientific and Industry Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Tatsuo Shioda
- Research Institute for Microbial Diseases and Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
23
|
Michailidou E, Poulopoulos A, Tzimagiorgis G. Salivary diagnostics of the novel coronavirus SARS-CoV-2 (COVID-19). Oral Dis 2022; 28 Suppl 1:867-877. [PMID: 33211392 PMCID: PMC7753835 DOI: 10.1111/odi.13729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Laboratory testing for the SARS-CoV-2 virus and the consequent respiratory coronavirus disease 2019 (COVID-19) is categorized into methods that detect the viral presence and methods that detect antibodies produced in the host as a response to infection. Methods that detect viral presence into the host excretions measure current infection by SARS-CoV-2, whereas the detection of human antibodies exploited against SARS-CoV-2 evaluates the past exposure to the virus. OBJECTIVE This review provides a comprehensive overview for the use of saliva as a specimen for the detection of SARS-CoV-2, the methods for the salivary diagnostics utilized till very recently, and the arisen considerations for the diagnosis of COVID-19 disease. CONCLUSION The major advantage of using saliva as a specimen for the detection of SARS-CoV-2 is that saliva collection is a non-invasive method which produces no discomfort to the patient and permits the patients to utilize home self-sampling techniques in order to protect health providers from the exposure to the pathogen. There is an urgent need to increase the active research for the detection of SARS-CoV-2 in the saliva because the non-invasive salivary diagnostics may provide a reliable and cost-effective method suitable for the fast and early detection of COVID-19 infection.
Collapse
Affiliation(s)
- Evangelia Michailidou
- Department of Oral Medicine and Maxillofacial PathologySchool of DentistryAristotle UniversityThessalonikiGreece
| | - Athanasios Poulopoulos
- Department of Oral Medicine and Maxillofacial PathologySchool of DentistryAristotle UniversityThessalonikiGreece
| | - Georgios Tzimagiorgis
- Laboratory of Biological ChemistryMedical SchoolAristotle University of ThessalonikiThessalonikiGreece
| |
Collapse
|
24
|
Colton H, Hodgson D, Hornsby H, Brown R, Mckenzie J, Bradley KL, James C, Lindsey BB, Birch S, Marsh L, Wood S, Bayley M, Dickson G, James DC, Nicklin MJ, Sayers JR, Zafred D, Rowland-Jones SL, Kudesia G, Kucharski A, Darton TC, de Silva TI, Collini PJ. Risk factors for SARS-CoV-2 seroprevalence following the first pandemic wave in UK healthcare workers in a large NHS Foundation Trust. Wellcome Open Res 2022; 6:220. [PMID: 35600250 PMCID: PMC9091808 DOI: 10.12688/wellcomeopenres.17143.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2022] [Indexed: 11/20/2022] Open
Abstract
Background: We aimed to measure SARS-CoV-2 seroprevalence in a cohort of healthcare workers (HCWs) during the first UK wave of the COVID-19 pandemic, explore risk factors associated with infection, and investigate the impact of antibody titres on assay sensitivity. Methods: HCWs at Sheffield Teaching Hospitals NHS Foundation Trust were prospectively enrolled and sampled at two time points. We developed an in-house ELISA for testing participant serum for SARS-CoV-2 IgG and IgA reactivity against Spike and Nucleoprotein. Data were analysed using three statistical models: a seroprevalence model, an antibody kinetics model, and a heterogeneous sensitivity model. Results: Our in-house assay had a sensitivity of 99·47% and specificity of 99·56%. We found that 24·4% (n=311/1275) of HCWs were seropositive as of 12th June 2020. Of these, 39·2% (n=122/311) were asymptomatic. The highest adjusted seroprevalence was measured in HCWs on the Acute Medical Unit (41·1%, 95% CrI 30·0-52·9) and in Physiotherapists and Occupational Therapists (39·2%, 95% CrI 24·4-56·5). Older age groups showed overall higher median antibody titres. Further modelling suggests that, for a serological assay with an overall sensitivity of 80%, antibody titres may be markedly affected by differences in age, with sensitivity estimates of 89% in those over 60 years but 61% in those ≤30 years. Conclusions: HCWs in acute medical units and those working closely with COVID-19 patients were at highest risk of infection, though whether these are infections acquired from patients or other staff is unknown. Current serological assays may underestimate seroprevalence in younger age groups if validated using sera from older and/or more severe COVID-19 cases.
Collapse
Affiliation(s)
- Hayley Colton
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - David Hodgson
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Hailey Hornsby
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Rebecca Brown
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Joanne Mckenzie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Kirsty L. Bradley
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Cameron James
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Benjamin B. Lindsey
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Sarah Birch
- Academic Directorate of Communicable Diseases and Specialised Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - Louise Marsh
- Academic Directorate of Communicable Diseases and Specialised Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - Steven Wood
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - Martin Bayley
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - Gary Dickson
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - David C. James
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S10 2TN, UK
| | - Martin J. Nicklin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jon R. Sayers
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
- Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, S10 2TN, UK
| | - Domen Zafred
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Sarah L. Rowland-Jones
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
| | - Goura Kudesia
- Department of Virology, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S5 7AU, UK
| | - Adam Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - CMMID COVID-19 Working Group
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Academic Directorate of Communicable Diseases and Specialised Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
- Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Virology, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S5 7AU, UK
| | - Thomas C. Darton
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
| | - Thushan I. de Silva
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
| | - Paul J. Collini
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
25
|
Saglik I, Turkkan A, Turan C, Kara A, Akalin H, Ener B, Sahin A, Yesil E, Celebi S, Kazak E, Heper Y, Yilmaz E, Korkmaz MF, Ture E, Hacimustafaoglu M. Comparison of SARS-CoV-2 Antibodies and Six Immunoassays in Pediatric and Adult Patients 12 Weeks After COVID-19. Cureus 2022; 14:e22195. [PMID: 35308741 PMCID: PMC8924986 DOI: 10.7759/cureus.22195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific humoral immune persistence has been proposed to be affected by patients’ characteristics. Moreover, available conflicting assay results are needed to be settled through comparative research with defined clinical specimens. Methods This prospective study investigated SARS-CoV-2-specific antibodies among 43 adults and 34 children at a mean of 12 weeks after the onset of COVID-19 symptoms using six serological assays and compared their performance. We used two Euroimmun (Euroimmun, Luebeck, Germany), two automated Roche Elecsys (Basel, Switzerland), and two rapid immuno-chromatographic Ecotest (Matrix Diagnostics, Assure Tech. (Hangzhou) Co., L, China) assays to investigate SARS-CoV-2 antibodies. Results The findings showed that the Roche Elecsys anti-S total test yielded the best positivity/sensitivity (children 94.1% and adults 93.0%; p = 0.877) while five immunoglobulin IgG targeting assays had similar positivity/sensitivity between children (88.2% to 94.1%) and adults (88.4% to 93.0%) (p > 0.05). Although IgM positivity was relatively low (p < 0.001), it was found in the majority of our pediatric and adult patients (67.6% and 86.0%, respectively; p = 0.098). SARS-CoV-2 S IgG titers were found to be higher among males in pediatric and adult groups compared to females (p = 0.027 and p = 0.041, respectively). Furthermore, we observed significantly higher antibody titers among pneumonia patients (p = 0.001). Conclusion Overall, we concluded SARS-CoV-2 antibody persistence over an average of 12 weeks after the onset of COVID-19 symptoms. While automated Roche Elecsys total antibody assays yielded the best sensitivity (> 90%) and five assays targeting IgG had acceptable performance. Patients with pneumonia and males have higher antibody titers. The effect of antibody persistence on re-infections should be monitored in longitudinal studies.
Collapse
|
26
|
Zimmermann P, Curtis N. Why Does the Severity of COVID-19 Differ With Age?: Understanding the Mechanisms Underlying the Age Gradient in Outcome Following SARS-CoV-2 Infection. Pediatr Infect Dis J 2022; 41:e36-e45. [PMID: 34966142 PMCID: PMC8740029 DOI: 10.1097/inf.0000000000003413] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 11/26/2022]
Abstract
Although there are many hypotheses for the age-related difference in the severity of COVID-19, differences in innate, adaptive and heterologous immunity, together with differences in endothelial and clotting function, are the most likely mechanisms underlying the marked age gradient. Children have a faster and stronger innate immune response to SARS-CoV-2, especially in the nasal mucosa, which rapidly controls the virus. In contrast, adults can have an overactive, dysregulated and less effective innate response that leads to uncontrolled pro-inflammatory cytokine production and tissue injury. More recent exposure to other viruses and routine vaccines in children might be associated with protective cross-reactive antibodies and T cells against SARS-CoV-2. There is less evidence to support other mechanisms that have been proposed to explain the age-related difference in outcome following SARS-CoV-2 infection, including pre-existing immunity from exposure to common circulating coronaviruses, differences in the distribution and expression of the entry receptors ACE2 and TMPRSS2, and difference in viral load.
Collapse
Affiliation(s)
- Petra Zimmermann
- From the Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Paediatrics, Fribourg Hospital HFR, Fribourg, Switzerland
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
- Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, Australia
| |
Collapse
|
27
|
Mechanistic Insights from the Review and Evaluation of Ayurvedic Herbal Medicines for the Prevention and Management of COVID-19 Patients. J Herb Med 2022; 32:100554. [PMID: 35251909 PMCID: PMC8885324 DOI: 10.1016/j.hermed.2022.100554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 12/31/2022]
Abstract
Introduction The need for specific therapeutics against infectious diseases is made very important at this moment by the COVID-19 pandemic caused by SARS-COV-2. Vaccines containing live attenuated or heat-inactivated pathogens elicit robust immune responses, but their safety is sometimes not assured. Subunit vaccines consisting of the most potent antigenic protein or carbohydrates of the pathogen are safer but often induce a weak immune response. Traditional Ayurveda medicines have a long history of safety and may act as immuno-modulators or vaccine adjuvants. They can reduce the amount of vaccine booster doses required to elicit an immune response against any pathogen. The main objective of this review is a mechanistic evaluation of the antiviral potential of Ayurveda herbal compositions for their ability to increase cytokine expression and enhance NK cell activity, activate CD4/ CD8 + T cells, and increase the formation of IL-2 and IFNγ against SARS-CoV-2 infection. Methods Various peer-reviewed publications, books, monographs, and reputed search engines were reviewed in depth. Information available from the Ayurvedic Pharmacopoeia and in recent in silico analyses were compared in order to understand the mechanism of action of herbal components against SARS-CoV-2. Results It was found in various molecular docking and molecular dynamics studies that many bioactive natural components of Ayurvedic medicines could prevent viral entry or multiplication within a human host. Conclusion Ayurvedic herbal medicines can be used either independently as therapeutics or as a complement to the modern-day recombinant vaccines with immediate effect. Ayurveda-based adjuvant therapy can also efficiently manage the secondary symptoms of COVID 19 patients.
Collapse
|
28
|
Current clinical testing approach of COVID. SENSING TOOLS AND TECHNIQUES FOR COVID-19 2022. [PMCID: PMC9334984 DOI: 10.1016/b978-0-323-90280-9.00003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Bontzos G, Gkiala A, Karakosta C, Maliotis N, Detorakis ET. COVID-19 in Ophthalmology. Current Disease Status and Challenges during Clinical Practice. MAEDICA 2021; 16:668-680. [PMID: 35261670 PMCID: PMC8897783 DOI: 10.26574/maedica.2020.16.4.668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Purpose: The novel coronavirus disease 2019 (COVID-19) has raised a global public health concern. The purpose of this review is to summarize the evidence currently available on COVID-19 for its ocular implications and manifestations from both pathogenetic and clinical standpoints. Methods: For this narrative review, more than 100 relevant scientific articles were considered from various databases (PubMed, Google Scholar, and Science Direct) using keywords such as coronavirus outbreak, COVID-19, ophthalmology, ocular symptoms. Results:Daily healthcare both from patient and physician perspective, as well as on some guidelines regarding prevention and management have dramatically changed over the last few months. Although COVID-19 infection mainly affects the respiratory system as well as the gastrointestinal, cardiovascular, and urinary systems, it may cause a wide spectrum of ocular manifestations. Various challenges have to be faced to minimize exposure for both patients and physicians. Conclusion:The risk of COVID-19 infection should be considered and medical care should be prioritized for urgent cases. Appropriate management for patients with chronic cases that may result in adverse outcomes should not be neglected, while patients that can be monitored remotely should be identified.
Collapse
Affiliation(s)
- Georgios Bontzos
- Department of Ophthalmology, 'Korgialenio-Benakio' General Hospital, 11526 Athens, Greece
| | - Anastasia Gkiala
- Department of Ophthalmology, 'Korgialenio-Benakio' General Hospital, 11526 Athens, Greece
| | - Christina Karakosta
- Department of Ophthalmology, 'Korgialenio-Benakio' General Hospital, 11526 Athens, Greece
| | - Neofytos Maliotis
- Department of Ophthalmology, General Hospital of Nikaia "Agios Panteleimon", 18454 Athens, Greece
| | | |
Collapse
|
30
|
Erlichster M, Chana G, Zantomio D, Goudey B, Skafidas E. Pan-Family Assays for Rapid Viral Screening: Reducing Delays in Public Health Responses During Pandemics. Clin Infect Dis 2021; 73:e3047-e3052. [PMID: 32687168 PMCID: PMC7454384 DOI: 10.1093/cid/ciaa1028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 has highlighted deficiencies in the testing capacity of many developed countries during the early stages of pandemics. Here we describe a strategy using pan-family viral assays to improve early accessibility of large-scale nucleic acid testing. METHODS Coronaviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were used as a case study for assessing utility of pan-family viral assays during the early stages of a novel pandemic. Specificity of a pan-coronavirus (Pan-CoV) assay for a novel pathogen was assessed using the frequency of common human coronavirus (HCoV) species in key populations. A reported Pan-CoV assay was assessed to determine sensitivity to 60 reference coronaviruses, including SARS-CoV-2. The resilience of the primer target regions of this assay to mutation was assessed in 8893 high-quality SARS-CoV-2 genomes to predict ongoing utility during pandemic progression. RESULTS Because of common HCoV species, a Pan-CoV assay would return false positives for as few as 1% of asymptomatic adults, but up to 30% of immunocompromised patients with respiratory disease. One-half of reported Pan-CoV assays identify SARS-CoV-2 and with small adjustments can accommodate diverse variation observed in animal coronaviruses. The target region of 1 well-established Pan-CoV assay is highly resistant to mutation compared to species-specific SARS-CoV-2 reverse transcriptase-polymerase chain reaction assays. CONCLUSIONS Despite cross-reactivity with common pathogens, pan-family assays may greatly assist management of emerging pandemics through prioritization of high-resolution testing or isolation measures. Targeting highly conserved genomic regions make pan-family assays robust and resilient to mutation. A strategic stockpile of pan-family assays may improve containment of novel diseases before the availability of species-specific assays.
Collapse
Affiliation(s)
| | - Gursharan Chana
- MX3 Diagnostics, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Daniela Zantomio
- Department of Haematology, Austin Health, Heidelberg, Victoria, Australia
| | - Benjamin Goudey
- IBM Research Australia, Southbank, Victoria, Australia.,Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Efstratios Skafidas
- MX3 Diagnostics, Melbourne, Victoria, Australia.,Department of Electrical and Electronic Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Dalle Carbonare L, Valenti MT, Bisoffi Z, Piubelli C, Pizzato M, Accordini S, Mariotto S, Ferrari S, Minoia A, Bertacco J, Li Vigni V, Dorelli G, Crisafulli E, Alberti D, Masin L, Tiberti N, Longoni SS, Lopalco L, Beretta A, Zipeto D. Serology study after BTN162b2 vaccination in participants previously infected with SARS-CoV-2 in two different waves versus naïve. COMMUNICATIONS MEDICINE 2021; 1:38. [PMID: 35602204 PMCID: PMC9053253 DOI: 10.1038/s43856-021-00039-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background The antibody response to SARS-CoV-2 mRNA vaccines in individuals with waning immunity generated by a previous SARS-CoV-2 infection, as well as the patterns of IgA and IgM responses in previously infected and in naïve individuals are still poorly understood. Methods We performed a serology study in a cohort of BTN162b2 mRNA vaccine recipients who were immunologically naïve (N, n = 50) or had been previously infected with SARS-CoV-2 (P.I., n = 51) during the first (n = 25) or second (n = 26) pandemic waves in Italy, respectively. We measured IgG, IgM and IgA antibodies against the SARS-CoV-2 Spike (S) and IgG against the nucleocapsid (N) proteins, as well as the neutralizing activity of sera collected before vaccination, after the first and second dose of vaccine. Results Most P.I. individuals from the first pandemic wave who showed declining antibody titres responded to the first vaccine dose with IgG-S and pseudovirus neutralization titres that were significantly higher than those observed in N individuals after the second vaccine dose. In all recipients, a single dose of vaccine was sufficient to induce a potent IgA response that was not associated with serum neutralization titres. We observed an unconventional pattern of IgM responses that were elicited in only half of immunologically naïve subjects even after the second vaccine dose. Conclusions The response to a single dose of vaccine in P.I. individuals is more potent than that observed in N individuals after two doses. Vaccine-induced IgA are not associated with serum neutralization.
Collapse
Grants
- FUR 2020 Department of Excellence 2018-2022, MIUR, Italy, and the Brain Research Foundation Verona (D.Z.), the Italian Ministry of Health under “Fondi Ricerca Corrente – L1P5” and “Progetto COVID Ricerca Finalizzata 2020 12371675” to IRCCS Sacro Cuore Don Calabria Hospital (Z.B., C.P., N.T., S.L.), Fondazione VRT/CARITRO (M.P., S.A.), the COVID Research Projects 2020, Italian Ministry of Health, COVID2020-12371617 (L.L.).
Collapse
Affiliation(s)
| | | | - Zeno Bisoffi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar (Verona), Italy
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar (Verona), Italy
| | - Massimo Pizzato
- Department of Cellular, Computational and Integrative Biology, University of Trento, Povo (Trento), Italy
| | - Silvia Accordini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Povo (Trento), Italy
| | - Sara Mariotto
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sergio Ferrari
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Arianna Minoia
- Department of Medicine, University of Verona, Verona, Italy
| | | | | | | | | | - Daniela Alberti
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Laura Masin
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Natalia Tiberti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar (Verona), Italy
| | - Silvia Stefania Longoni
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar (Verona), Italy
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | - Donato Zipeto
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
32
|
Chauhan N, Soni S, Jain U. Optimizing testing regimes for the detection of COVID-19 in children and older adults. Expert Rev Mol Diagn 2021; 21:999-1016. [PMID: 34324823 PMCID: PMC8425447 DOI: 10.1080/14737159.2021.1962708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
Introduction: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is a major pandemic and continuously emerging due to unclear prognosis and unavailability of reliable detection tools. Older adults are more susceptible to COVID-19 than children showing mature Angiotensin-Converting Enzyme 2 (ACE2), low concentration of immune targets, and comorbid conditions. Several detection platforms have been commercialized to date and more are in pipeline, however, the rate of false-positive results and rapid mutation of SARS-CoV-2 is increasing. Additionally, physiological, and geographical variations of affected individuals are also calling for diagnostic methods optimization.Areas Covered: Extensive information related to the optimization and usefulness of SARS-CoV-2 diagnostic methods based on sensitivity and specificity as definitive and feasible investigative tools is discussed. Moreover, an option of combining laboratory diagnostic methods to improve diagnostic strategies is also proposed and discussed in the comparative section of optimization studies.Expert Opinion: The review article explains the importance of optimization strategies for SARS-CoV-2 detection in children and older adults. There are advancements in COVID-19 detection including CRISPR-based, electrochemical, and optical-based sensing systems. However, the lack of sufficient studies on a comparative evaluation of standardized SARS-CoV-2 diagnostic methods among children and older adults, limit the authentication of commercialized kits.
Collapse
Affiliation(s)
- Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida, India
| | - Shringika Soni
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida, India
| | - Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida, India
| |
Collapse
|
33
|
Ivanov A, Semenova E. Long-term monitoring of the development and extinction of IgA and IgG responses to SARS-CoV-2 infection. J Med Virol 2021; 93:5953-5960. [PMID: 34185312 PMCID: PMC8426671 DOI: 10.1002/jmv.27166] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022]
Abstract
Despite the great interest of the scientific community in the behavior of the human body after contact with the new coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), long-term (more than 6 months) monitoring of the immunological status of patients with coronavirus disease 2019 (COVID-19) having varying severity degrees and of the people with a low SARS-CoV-2 viral load is practically absent. The aim of this study is a 9-month monitoring of SARS-CoV-2 infection immune response development and extinction using quantitative assessment of IgA and IgG levels in the blood of healthy donors living in the context of the coronavirus pandemic and of the patients who have undergone COVID-19. The project involved 180 volunteers, of whom 51 persons (28.33%) fell ill with COVID-19 during the observation period. All people who underwent COVID-19 developed a stable humoral immune response but their individual immune status had a number of features. Approximately 39.22% (20 of 51 people) of project participants diagnosed with COVID-19 showed an unusual change in plasma anti-SARS-CoV-2 IgA levels. Relatively high levels of IgA (ratio ~ 3) after recovery persisted for a long time (more than 6 months). In one-third (17 of 51 people) of patients with COVID-19, the IgA level exceeded the IgG level. IgA antibodies appeared earlier and showed a stronger and more robust response to the SARS-CoV-2 virus than IgG. Increased levels of anti-SARS-CoV-2 IgA (ratio from 0.8 to 2.36) throughout the observation period were recorded in 28 of 180 project participants (15.56%) of whom only one person fell ill with COVID-19.
Collapse
Affiliation(s)
- Andrei Ivanov
- Department of Human GeneticsSaint‐Petersburg State University HospitalSt. PetersburgRussia
- North‐West Centre for Evidence‐Based Medicine JSCSt. PetersburgRussia
| | - Elena Semenova
- Division of Molecular and Radiation BiophysicsNational Research Center "Kurchatov Institute" B.P.Konstantinov St Petersburg Nuclear Physics InstituteGatchinaRussia
| |
Collapse
|
34
|
Blanchard-Rohner G, Didierlaurent A, Tilmanne A, Smeesters P, Marchant A. Pediatric COVID-19: Immunopathogenesis, Transmission and Prevention. Vaccines (Basel) 2021; 9:1002. [PMID: 34579240 PMCID: PMC8473426 DOI: 10.3390/vaccines9091002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
Children are unique in the context of the COVID-19 pandemic. Overall, SARS-CoV-2 has a lower medical impact in children as compared to adults. A higher proportion of children than adults remain asymptomatic following SARS-CoV-2 infection and severe disease and death are also less common. This relative resistance contrasts with the high susceptibility of children to other respiratory tract infections. The mechanisms involved remain incompletely understood but could include the rapid development of a robust innate immune response. On the other hand, children develop a unique and severe complication, named multisystem inflammatory syndrome in children, several weeks after the onset of symptoms. Although children play an important role in the transmission of many pathogens, their contribution to the transmission of SARS-CoV-2 appears lower than that of adults. These unique aspects of COVID-19 in children must be considered in the benefit-risk analysis of vaccination. Several COVID-19 vaccines have been authorized for emergency use in adolescents and clinical studies are ongoing in children. As the vaccination of adolescents is rolled out in several countries, we shall learn about the impact of this strategy on the health of children and on transmission within communities.
Collapse
Affiliation(s)
- Geraldine Blanchard-Rohner
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Pediatric Immunology and Vaccinology Unit, Division of General Pediatrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, University of Geneva, 1205 Geneva, Switzerland;
- Children’s Hospital of Geneva, 6, Rue Willy-Donzé, 1211 Geneva, Switzerland
| | - Arnaud Didierlaurent
- Pediatric Immunology and Vaccinology Unit, Division of General Pediatrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, University of Geneva, 1205 Geneva, Switzerland;
| | - Anne Tilmanne
- Children’s Hospital Queen Fabiola, Université libre de Bruxelles, 1020 Brussels, Belgium; (A.T.); (P.S.)
| | - Pierre Smeesters
- Children’s Hospital Queen Fabiola, Université libre de Bruxelles, 1020 Brussels, Belgium; (A.T.); (P.S.)
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles, 1050 Charleroi, Belgium;
| |
Collapse
|
35
|
Colton H, Hodgson D, Hornsby H, Brown R, Mckenzie J, Bradley KL, James C, Lindsey BB, Birch S, Marsh L, Wood S, Bayley M, Dickson G, James DC, Nicklin MJ, Sayers JR, Zafred D, Rowland-Jones SL, Kudesia G, Kucharski A, Darton TC, de Silva TI, Collini PJ. Risk factors for SARS-CoV-2 seroprevalence following the first pandemic wave in UK healthcare workers in a large NHS Foundation Trust. Wellcome Open Res 2021; 6:220. [PMID: 35600250 PMCID: PMC9091808 DOI: 10.12688/wellcomeopenres.17143.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/23/2022] Open
Abstract
Background: We aimed to measure SARS-CoV-2 seroprevalence in a cohort of healthcare workers (HCWs) during the first UK wave of the COVID-19 pandemic, explore risk factors associated with infection, and investigate the impact of antibody titres on assay sensitivity. Methods: HCWs at Sheffield Teaching Hospitals NHS Foundation Trust were prospectively enrolled and sampled at two time points. SARS-CoV-2 antibodies were tested using an in-house assay for IgG and IgA reactivity against Spike and Nucleoprotein (sensitivity 99·47%, specificity 99·56%). Data were analysed using three statistical models: a seroprevalence model, an antibody kinetics model, and a heterogeneous sensitivity model. Results: As of 12th June 2020, 24·4% (n=311/1275) of HCWs were seropositive. Of these, 39·2% (n=122/311) were asymptomatic. The highest adjusted seroprevalence was measured in HCWs on the Acute Medical Unit (41·1%, 95% CrI 30·0-52·9) and in Physiotherapists and Occupational Therapists (39·2%, 95% CrI 24·4-56·5). Older age groups showed overall higher median antibody titres. Further modelling suggests that, for a serological assay with an overall sensitivity of 80%, antibody titres may be markedly affected by differences in age, with sensitivity estimates of 89% in those over 60 years but 61% in those ≤30 years. Conclusions: HCWs in acute medical units working closely with COVID-19 patients were at highest risk of infection, though whether these are infections acquired from patients or other staff is unknown. Current serological assays may underestimate seroprevalence in younger age groups if validated using sera from older and/or more symptomatic individuals.
Collapse
Affiliation(s)
- Hayley Colton
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - David Hodgson
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Hailey Hornsby
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Rebecca Brown
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Joanne Mckenzie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Kirsty L. Bradley
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Cameron James
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Benjamin B. Lindsey
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Sarah Birch
- Academic Directorate of Communicable Diseases and Specialised Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - Louise Marsh
- Academic Directorate of Communicable Diseases and Specialised Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - Steven Wood
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - Martin Bayley
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - Gary Dickson
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - David C. James
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S10 2TN, UK
| | - Martin J. Nicklin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jon R. Sayers
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
- Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, S10 2TN, UK
| | - Domen Zafred
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Sarah L. Rowland-Jones
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
| | - Goura Kudesia
- Department of Virology, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S5 7AU, UK
| | - Adam Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - CMMID COVID-19 Working Group
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Academic Directorate of Communicable Diseases and Specialised Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
- Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Virology, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S5 7AU, UK
| | - Thomas C. Darton
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
| | - Thushan I. de Silva
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
| | - Paul J. Collini
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
36
|
Zayed RA, Omran D, Zayed AA. COVID-19 clinical and laboratory diagnosis overview. J Egypt Public Health Assoc 2021; 96:25. [PMID: 34406520 PMCID: PMC8371420 DOI: 10.1186/s42506-021-00087-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 07/09/2021] [Indexed: 12/24/2022]
Abstract
Background COVID-19 was identified in Wuhan, China, in December 2019, and rapidly spread worldwide, being declared global pandemic on the 11th of March 2020. Since its emergence, COVID-19 has raised global concerns associated with drastic measures that were never adopted in any previous outbreak, to contain the situation as early as possible. Main body The 2019 novel corona virus (2019-nCoV) or SARS-CoV-2 is the causative agent of COVID-19. 2019-nCoV genetic sequence was rapidly identified within few days since the first reported cases and RT-PCR kits became available for COVID-19 diagnosis. However, RT-PCR diagnosis carries a risk of false-negative results; therefore, additional serologic tests are needed. In this review, we summarize the clinical scenario that raises suspicion of COVID-19 and available laboratory diagnostics. Conclusion The most important approach in the battle against COVID-19 is rapid diagnosis of suspicious cases, timely therapeutic intervention and isolation to avoid community spread. Diagnosis depends mainly on PCR testing and serological tests. However, even in the context of negative lab test results and clinical suspicion of COVID-19 infection, clinical decision should be based on clinical suspicion.
Collapse
Affiliation(s)
- Rania A Zayed
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Dalia Omran
- Department of Endemic Medicine and Hepatogastroentrology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Abeer A Zayed
- Department of Forensic Medicine and Toxicology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
37
|
Sampson AT, Heeney J, Cantoni D, Ferrari M, Sans MS, George C, Di Genova C, Mayora Neto M, Einhauser S, Asbach B, Wagner R, Baxendale H, Temperton N, Carnell G. Coronavirus Pseudotypes for All Circulating Human Coronaviruses for Quantification of Cross-Neutralizing Antibody Responses. Viruses 2021; 13:1579. [PMID: 34452443 PMCID: PMC8402765 DOI: 10.3390/v13081579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/17/2021] [Accepted: 08/01/2021] [Indexed: 12/23/2022] Open
Abstract
The novel coronavirus SARS-CoV-2 is the seventh identified human coronavirus. Understanding the extent of pre-existing immunity induced by seropositivity to endemic seasonal coronaviruses and the impact of cross-reactivity on COVID-19 disease progression remains a key research question in immunity to SARS-CoV-2 and the immunopathology of COVID-2019 disease. This paper describes a panel of lentiviral pseudotypes bearing the spike (S) proteins for each of the seven human coronaviruses (HCoVs), generated under similar conditions optimized for high titre production allowing a high-throughput investigation of antibody neutralization breadth. Optimal production conditions and most readily available permissive target cell lines were determined for spike-mediated entry by each HCoV pseudotype: SARS-CoV-1, SARS-CoV-2 and HCoV-NL63 best transduced HEK293T/17 cells transfected with ACE2 and TMPRSS2, HCoV-229E and MERS-CoV preferentially entered HUH7 cells, and CHO cells were most permissive for the seasonal betacoronavirus HCoV-HKU1. Entry of ACE2 using pseudotypes was enhanced by ACE2 and TMPRSS2 expression in target cells, whilst TMPRSS2 transfection rendered HEK293T/17 cells permissive for HCoV-HKU1 and HCoV-OC43 entry. Additionally, pseudotype viruses were produced bearing additional coronavirus surface proteins, including the SARS-CoV-2 Envelope (E) and Membrane (M) proteins and HCoV-OC43/HCoV-HKU1 Haemagglutinin-Esterase (HE) proteins. This panel of lentiviral pseudotypes provides a safe, rapidly quantifiable and high-throughput tool for serological comparison of pan-coronavirus neutralizing responses; this can be used to elucidate antibody dynamics against individual coronaviruses and the effects of antibody cross-reactivity on clinical outcome following natural infection or vaccination.
Collapse
Affiliation(s)
- Alexander Thomas Sampson
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (J.H.); (M.F.); (M.S.S.); (C.G.); (G.C.)
| | - Jonathan Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (J.H.); (M.F.); (M.S.S.); (C.G.); (G.C.)
- DIOSynVax Ltd., Cambridge CB3 0ES, UK
| | - Diego Cantoni
- Viral Pseudotype Unit, University of Kent, Chatham ME4 4TB, UK; (D.C.); (C.D.G.); (M.M.N.); (N.T.)
| | - Matteo Ferrari
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (J.H.); (M.F.); (M.S.S.); (C.G.); (G.C.)
- DIOSynVax Ltd., Cambridge CB3 0ES, UK
| | - Maria Suau Sans
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (J.H.); (M.F.); (M.S.S.); (C.G.); (G.C.)
| | - Charlotte George
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (J.H.); (M.F.); (M.S.S.); (C.G.); (G.C.)
| | - Cecilia Di Genova
- Viral Pseudotype Unit, University of Kent, Chatham ME4 4TB, UK; (D.C.); (C.D.G.); (M.M.N.); (N.T.)
| | - Martin Mayora Neto
- Viral Pseudotype Unit, University of Kent, Chatham ME4 4TB, UK; (D.C.); (C.D.G.); (M.M.N.); (N.T.)
| | - Sebastian Einhauser
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; (S.E.); (B.A.); (R.W.)
| | - Benedikt Asbach
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; (S.E.); (B.A.); (R.W.)
| | - Ralf Wagner
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; (S.E.); (B.A.); (R.W.)
- Institute for Clinical Microbiology and Hygiene, University Hospital, 93053 Regensburg, Germany
| | - Helen Baxendale
- Royal Papworth Hospital NHS Foundation Trust, Cambridge CB2 0AY, UK;
| | - Nigel Temperton
- Viral Pseudotype Unit, University of Kent, Chatham ME4 4TB, UK; (D.C.); (C.D.G.); (M.M.N.); (N.T.)
| | - George Carnell
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (J.H.); (M.F.); (M.S.S.); (C.G.); (G.C.)
| |
Collapse
|
38
|
Hodgson D, Colton H, Hornsby H, Brown R, Mckenzie J, Bradley KL, James C, Lindsey BB, Birch S, Marsh L, Wood S, Bayley M, Dickson G, James DC, Nicklin MJH, Sayers JR, Zafred D, Rowland-Jones SL, Kudesia G, Kucharski A, Darton TC, de Silva TI, Collini PJ. Risk factors for SARS-CoV-2 seroprevalence following the first pandemic wave in UK healthcare workers in a large NHS Foundation Trust. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.07.07.21260151. [PMID: 34268521 PMCID: PMC8282110 DOI: 10.1101/2021.07.07.21260151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND We aimed to measure SARS-CoV-2 seroprevalence in a cohort of healthcare workers (HCWs) during the first UK wave of the COVID-19 pandemic, explore risk factors associated with infection, and investigate the impact of antibody titres on assay sensitivity. METHODS HCWs at Sheffield Teaching Hospitals NHS Foundation Trust (STH) were prospectively enrolled and sampled at two time points. SARS-CoV-2 antibodies were tested using an in-house assay for IgG and IgA reactivity against Spike and Nucleoprotein (sensitivity 99·47%, specificity 99·56%). Data were analysed using three statistical models: a seroprevalence model, an antibody kinetics model, and a heterogeneous sensitivity model. FINDINGS As of 12th June 2020, 24·4% (n=311/1275) HCWs were seropositive. Of these, 39·2% (n=122/311) were asymptomatic. The highest adjusted seroprevalence was measured in HCWs on the Acute Medical Unit (41·1%, 95% CrI 30·0-52·9) and in Physiotherapists and Occupational Therapists (39·2%, 95% CrI 24·4-56·5). Older age groups showed overall higher median antibody titres. Further modelling suggests that, for a serological assay with an overall sensitivity of 80%, antibody titres may be markedly affected by differences in age, with sensitivity estimates of 89% in those over 60 years but 61% in those ≤30 years. INTERPRETATION HCWs in acute medical units working closely with COVID-19 patients were at highest risk of infection, though whether these are infections acquired from patients or other staff is unknown. Current serological assays may underestimate seroprevalence in younger age groups if validated using sera from older and/or more symptomatic individuals. RESEARCH IN CONTEXT Evidence before this study: We searched PubMed for studies published up to March 6th 2021, using the terms "COVID", "SARS-CoV-2", "seroprevalence", and "healthcare workers", and in addition for articles of antibody titres in different age groups against coronaviruses using "coronavirus", "SARS-CoV-2, "antibody", "antibody tires", "COVID" and "age". We included studies that used serology to estimate prevalence in healthcare workers. SARS-CoV-2 seroprevalence has been shown to be greater in healthcare workers working on acute medical units or within domestic services. Antibody levels against seasonal coronaviruses, SARS-CoV and SARS-CoV-2 were found to be higher in older adults, and patients who were hospitalised.Added value of this study: In this healthcare worker seroprevalence modelling study at a large NHS foundation trust, we confirm that those working on acute medical units, COVID-19 "Red Zones" and within domestic services are most likely to be seropositive. Furthermore, we show that physiotherapists and occupational therapists have an increased risk of COVID-19 infection. We also confirm that antibody titres are greater in older individuals, even in the context of non-hospitalised cases. Importantly, we demonstrate that this can result in age-specific sensitivity in serological assays, where lower antibody titres in younger individuals results in lower assay sensitivity.Implications of all the available evidence: There are distinct occupational roles and locations in hospitals where the risk of COVID-19 infection to healthcare workers is greatest, and this knowledge should be used to prioritise infection prevention control and other measures to protect healthcare workers. Serological assays may have different sensitivity profiles across different age groups, especially if assay validation was undertaken using samples from older and/or hospitalised patients, who tend to have higher antibody titres. Future seroprevalence studies should consider adjusting for age-specific assay sensitivities to estimate true seroprevalence rates. AUTHOR CONTRIBUTIONS
Collapse
Affiliation(s)
- David Hodgson
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, UK
| | - Hayley Colton
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Hailey Hornsby
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Rebecca Brown
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Joanne Mckenzie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Kirsty L Bradley
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Cameron James
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Benjamin B Lindsey
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Sarah Birch
- Academic Directorate of Communicable Diseases and Specialised Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | - Louise Marsh
- Academic Directorate of Communicable Diseases and Specialised Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | - Steven Wood
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | - Martin Bayley
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | - Gary Dickson
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, UK
| | - Martin J H Nicklin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Jon R Sayers
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, UK
- Sheffield Institute for Nucleic Acids, University of Sheffield, UK
| | - Domen Zafred
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Sarah L Rowland-Jones
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, UK
| | - Goura Kudesia
- Department of Virology, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | - Adam Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, UK
| | - Thomas C Darton
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, UK
| | - Thushan I de Silva
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, UK
| | - Paul J Collini
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, UK
| |
Collapse
|
39
|
Taherkhani R, Taherkhani S, Farshadpour F. Dynamics of host immune responses to SARS-CoV-2. World J Clin Cases 2021; 9:4480-4490. [PMID: 34222416 PMCID: PMC8223819 DOI: 10.12998/wjcc.v9.i18.4480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the most recent global health threat, is spreading throughout the world with worrisome speed, and the current wave of coronavirus disease 2019 (COVID-19) seems to have no mercy. While this mysterious virus challenges our ability to control viral infections, our opportunities to control the COVID-19 pandemic are gradually fading. Currently, pandemic management relies on preventive interventions. Although prevention is a good strategy to mitigate SARS-CoV-2 transmission, it still cannot be considered an absolute solution to eliminate this pandemic. Currently, developing a potent immunity against this viral infection seems to be the most promising strategy to drive down this ongoing global tragedy. However, with the emergence of new challenges in the context of immune responses to COVID-19, the road to control this devastating pandemic seems bumpier; thus, it is pivotal to characterize the dynamics of host immune responses to COVID-19, in order to develop efficient prophylactic and therapeutic tools. This begs the question of whether the effector mechanisms of the immune system are indeed potent or a possible contributing factor to developing more severe and lethal forms of COVID-19. In this review, the possible role of the immunopathologic phenomena including antibody-dependent enhancement, cytokine storm, and original antigenic sin in severity and mortality of COVID-19 will be discussed.
Collapse
Affiliation(s)
- Reza Taherkhani
- Department of Virology, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
- Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| | - Sakineh Taherkhani
- School of Medicine, Arak University of Medical Sciences, Arak 3848176589, Iran
| | - Fatemeh Farshadpour
- Department of Virology, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
- Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran
| |
Collapse
|
40
|
Lu S, Lin S, Zhang H, Liang L, Shen S. Methods of Respiratory Virus Detection: Advances towards Point-of-Care for Early Intervention. MICROMACHINES 2021; 12:mi12060697. [PMID: 34203612 PMCID: PMC8232111 DOI: 10.3390/mi12060697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023]
Abstract
Respiratory viral infections threaten human life and inflict an enormous healthcare burden worldwide. Frequent monitoring of viral antibodies and viral load can effectively help to control the spread of the virus and make timely interventions. However, current methods for detecting viral load require dedicated personnel and are time-consuming. Additionally, COVID-19 detection is generally relied on an automated PCR analyzer, which is highly instrument-dependent and expensive. As such, emerging technologies in the development of respiratory viral load assays for point-of-care (POC) testing are urgently needed for viral screening. Recent advances in loop-mediated isothermal amplification (LAMP), biosensors, nanotechnology-based paper strips and microfluidics offer new strategies to develop a rapid, low-cost, and user-friendly respiratory viral monitoring platform. In this review, we summarized the traditional methods in respiratory virus detection and present the state-of-art technologies in the monitoring of respiratory virus at POC.
Collapse
Affiliation(s)
- Siming Lu
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou 310003, China; (S.L.); (H.Z.)
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China;
| | - Sha Lin
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China;
| | - Hongrui Zhang
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou 310003, China; (S.L.); (H.Z.)
| | - Liguo Liang
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China;
- Centre for Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, China
- Correspondence: (L.L.); (S.S.); Tel.: +86-15861481568 (L.L.)
| | - Shien Shen
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou 310003, China; (S.L.); (H.Z.)
- Correspondence: (L.L.); (S.S.); Tel.: +86-15861481568 (L.L.)
| |
Collapse
|
41
|
Steffes LC, Cornfield DN. Coronavirus disease 2019 respiratory disease in children: clinical presentation and pathophysiology. Curr Opin Pediatr 2021; 33:302-310. [PMID: 33938476 DOI: 10.1097/mop.0000000000001013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Pediatric coronavirus disease 2019 (COVID-19) respiratory disease is a distinct entity from adult illness, most notable in its milder phenotype. This review summarizes the current knowledge of the clinical patterns, cellular pathophysiology, and epidemiology of COVID-19 respiratory disease in children with specific attention toward factors that account for the maturation-related differences in disease severity. RECENT FINDINGS Over the past 14 months, knowledge of the clinical presentation and pathophysiology of COVID-19 pneumonia has rapidly expanded. The decreased disease severity of COVID-19 pneumonia in children was an early observation. Differences in the efficiency of viral cell entry and timing of immune recognition and response between children and adults remain at the center of ongoing research. SUMMARY The clinical spectrum of COVID-19 respiratory disease in children is well defined. The age-related differences protecting children from severe disease and death remain incompletely understood.
Collapse
Affiliation(s)
- Lea C Steffes
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University Medical School, Stanford, California, USA
| | | |
Collapse
|
42
|
Rai PK, Mueed Z, Chowdhury A, Deval R, Kumar D, Kamal MA, Negi YS, Pareek S, Poddar NK. Current Overviews on COVID-19 Management Strategies. Curr Pharm Biotechnol 2021; 23:361-387. [PMID: 33966618 DOI: 10.2174/1389201022666210509022313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/02/2021] [Accepted: 02/08/2021] [Indexed: 02/08/2023]
Abstract
The coronavirus pandemic has hit the world lately and caused acute respiratory syndrome in humans. The causative agent of the disease was soon brought to focus by scientists as SARS-CoV-2 and later called a novel coronavirus by the general public. Due to the severity and rapid spread of the disease, WHO classifies the COVID-19 pandemic as the 6th public health emergency even after taking efforts like worldwide quarantine and restrictions. Since only symptomatic treatment is available, the best way to control the spread of the virus is by taking preventive measures. Various types of antigen/antibody detection kits and diagnostic methods are available for the diagnosis of COVID-19 patients. In recent years, various phytochemicals and repurposing drugs are showing a broad range of anti-viral activities with different modes of action have been identified. Repurposing drugs such as arbidol, hydroxychloroquine, chloroquine, lopinavir, favipiravir, remdesivir, hexamethylene amiloride, and dexamethasone, tocilizumab, interferon-β, neutralizing antibodies exhibit in vitro anti-coronaviral properties by inhibiting multiple processes in the virus life cycle. Various research groups are involved in drug trials and vaccine development. Plant-based anti-viral compounds such as baicalin, calanolides, curcumin, oxymatrine, matrine, and resveratrol exhibit different modes of action against a wide range of positive/negative sense-RNA/DNA virus, and future researches need to be conducted to ascertain their role, use in managing SARS-CoV-2. Thus, this article is an attempt to review the current understanding of COVID-19 acute respiratory disease and summarize its clinical features with their prospective control and various aspects of the therapeutic approach.
Collapse
Affiliation(s)
- Pankaj Kumar Rai
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Zeba Mueed
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Abhiroop Chowdhury
- School of Environment & Sustainability, O.P. Jindal Global University, Sonipat, Haryana, India
| | - Ravi Deval
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Dinesh Kumar
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Mohammad A Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan. China
| | - Yogeshwar Singh Negi
- Department of Biosciences, Manipal University Jaipur, DehmiKalan, Jaipur-Ajmer Expressway, Jaipur-303007, Rajasthan, India
| | - Shubhra Pareek
- Department of Chemistry, Manipal University Jaipur, DehmiKalan, Jaipur-Ajmer Expressway, Jaipur-303007, Rajasthan, India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, DehmiKalan, Jaipur-Ajmer Expressway, Jaipur-303007, Rajasthan, India
| |
Collapse
|
43
|
Falahi S, Abdoli A, Kenarkoohi A. Claims and reasons about mild COVID-19 in children. New Microbes New Infect 2021; 41:100864. [PMID: 33747533 PMCID: PMC7963516 DOI: 10.1016/j.nmni.2021.100864] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 12/22/2022] Open
Abstract
The elderly form the main risk group in the coronavirus disease 2019 (COVID-19) pandemic, and age is recognized as a major risk factor for the severity of infection and mortality of COVID-19. The severity of the infection in children is milder than in adults. Although the pathophysiology of COVID-19 is not fully understood, several possible factors and mechanisms have been suggested for the lower severity of infection in children.
Collapse
Affiliation(s)
- S. Falahi
- Zoonotic Diseases Research Centre, Ilam University of Medical Sciences, Ilam, Iran
| | - A. Abdoli
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - A. Kenarkoohi
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
44
|
Al-Tawfiq JA, Rabaan AA, Al-Omari A, Al Mutair A, Al-Qahtani M, Tirupathi R. Learning from SARS and MERS: COVID-19 reinfection where do we stand? Travel Med Infect Dis 2021; 41:102024. [PMID: 33741499 PMCID: PMC7962586 DOI: 10.1016/j.tmaid.2021.102024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 01/28/2023]
Affiliation(s)
- Jaffar A Al-Tawfiq
- Specialty Internal Medicine and Quality Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Division of Infectious Diseases, Department of Medicine Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Awad Al-Omari
- Research Center, Dr. Sulaiman Al Habib Medical Group, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al Hasa, Saudi Arabia; College of Nursing, prince Nora University, Riyadh, Saudi Arabia; School of Nursing, Wollongong University, Australia
| | - Manaf Al-Qahtani
- Bahrain National Taskforce to Combat COVID-19, Bahrain Defense Force Hospital, Bahrain
| | - Raghavendra Tirupathi
- Penn State University School of Medicine, Hershey, PA, USA; Wellspan Chambersburg and Waynesboro (Pa.) Hospitals, Chambersburg, PA, USA
| |
Collapse
|
45
|
Zimmermann P, Curtis N. Why is COVID-19 less severe in children? A review of the proposed mechanisms underlying the age-related difference in severity of SARS-CoV-2 infections. Arch Dis Child 2021; 106:429-439. [PMID: 33262177 DOI: 10.1136/archdischild-2020-320338] [Citation(s) in RCA: 290] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022]
Abstract
In contrast to other respiratory viruses, children have less severe symptoms when infected with the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, we discuss proposed hypotheses for the age-related difference in severity of coronavirus disease 2019 (COVID-19).Factors proposed to explain the difference in severity of COVID-19 in children and adults include those that put adults at higher risk and those that protect children. The former include: (1) age-related increase in endothelial damage and changes in clotting function; (2) higher density, increased affinity and different distribution of angiotensin converting enzyme 2 receptors and transmembrane serine protease 2; (3) pre-existing coronavirus antibodies (including antibody-dependent enhancement) and T cells; (4) immunosenescence and inflammaging, including the effects of chronic cytomegalovirus infection; (5) a higher prevalence of comorbidities associated with severe COVID-19 and (6) lower levels of vitamin D. Factors that might protect children include: (1) differences in innate and adaptive immunity; (2) more frequent recurrent and concurrent infections; (3) pre-existing immunity to coronaviruses; (4) differences in microbiota; (5) higher levels of melatonin; (6) protective off-target effects of live vaccines and (7) lower intensity of exposure to SARS-CoV-2.
Collapse
Affiliation(s)
- Petra Zimmermann
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Paediatrics, Fribourg Hospital HFR, Fribourg, Switzerland
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Nigel Curtis
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
46
|
Farshadpour F, Taherkhani R. Antibody-Dependent Enhancement and the Critical Pattern of COVID-19: Possibilities and Considerations. Med Princ Pract 2021; 30:422-429. [PMID: 33882487 PMCID: PMC8339023 DOI: 10.1159/000516693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), a pandemic infection with profound effects on human society, has challenged our ability to control viral infections. Although at the beginning of the COVID-19 outbreak, the epidemic seemed controllable in Southern Iran, the disease presented a critical pattern as of May 2020. After a few months of the emergence of COVID-19, its severity and mortality increased dramatically. It has been proposed that antibodies produced during previous exposure to local circulating human coronaviruses or possibly severe acute respiratory syndrome coronavirus 2 might contribute to the development of more severe and lethal presentations of COVID-19 possibly by triggering antibody-dependent enhancement. The binding of virions complexed with antibodies to Fcγ receptors on the target cells initiates receptor-mediated signaling events, leading to enhanced expression of inflammatory cytokines and suppression of intracellular antiviral responses at the transcriptome level, followed by endocytosis of the virus and subsequent activation of immune cells. The activated immune cells might accumulate in the lung and promote cytokine storm and lymphopenia. Furthermore, the formation of immune complexes can promote complement activation and subsequent tissue damage. Although there are currently no clinical data to support this hypothesis, a better understanding of these immunopathologic phenomena and their relation to the disease course and severity might give insights into the development of the most efficient prophylactic and therapeutic approaches. This review demonstrates the critical pattern of COVID-19 in Southern Iran and highlights the possible interplay of factors leading to this condition.
Collapse
Affiliation(s)
- Fatemeh Farshadpour
- Department of Virology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
- Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Taherkhani
- Department of Virology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
- Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
47
|
Wong SS, Oshansky CM, Guo XZJ, Ralston J, Wood T, Reynolds GE, Seeds R, Jelley L, Waite B, Jeevan T, Zanin M, Widdowson MA, Huang QS, Thomas PG, Webby RJ. Activated CD4 + T cells and CD14 hiCD16 + monocytes correlate with antibody response following influenza virus infection in humans. Cell Rep Med 2021; 2:100237. [PMID: 33948570 PMCID: PMC8080109 DOI: 10.1016/j.xcrm.2021.100237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/25/2021] [Accepted: 03/10/2021] [Indexed: 12/19/2022]
Abstract
The failure to mount an antibody response following viral infection or seroconversion failure is a largely underappreciated and poorly understood phenomenon. Here, we identified immunologic markers associated with robust antibody responses after influenza virus infection in two independent human cohorts, SHIVERS and FLU09, based in Auckland, New Zealand and Memphis, Tennessee, USA, respectively. In the SHIVERS cohort, seroconversion significantly associates with (1) hospitalization, (2) greater numbers of proliferating, activated CD4+ T cells, but not CD8+ T cells, in the periphery during the acute phase of illness, and (3) fewer inflammatory monocytes (CD14hiCD16+) by convalescence. In the FLU09 cohort, fewer CD14hiCD16+ monocytes during early illness in the nasal mucosa were also associated with the generation of influenza-specific mucosal immunoglobulin A (IgA) and IgG antibodies. Our study demonstrates that seroconversion failure after infection is a definable immunological phenomenon, associated with quantifiable cellular markers that can be used to improve diagnostics, vaccine efficacy, and epidemiologic efforts.
Collapse
Affiliation(s)
- Sook-San Wong
- State Key Laboratory for Respiratory Diseases, Guangzhou Medical University, 151 Dongfengxi Road, Yuexiu District, Guangzhou 510000, China
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- School of Public Health, The University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Christine M. Oshansky
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), US Department of Health and Human Services (DHHS), 200 C Street, SW, Washington, DC 20201, USA
| | - Xi-Zhi J. Guo
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Jacqui Ralston
- Institute for Environmental Science and Research, NCBID Wallaceville, 66 Ward Street, Upper Hutt 5018, New Zealand
| | - Timothy Wood
- Institute for Environmental Science and Research, NCBID Wallaceville, 66 Ward Street, Upper Hutt 5018, New Zealand
| | - Gary E. Reynolds
- Immunisation Advisory Centre, University of Auckland, Auckland, New Zealand
| | - Ruth Seeds
- Institute for Environmental Science and Research, NCBID Wallaceville, 66 Ward Street, Upper Hutt 5018, New Zealand
- Minsitry for Primary Industries, 66 Ward Street, Upper Hutt 5140, New Zealand
| | - Lauren Jelley
- Institute for Environmental Science and Research, NCBID Wallaceville, 66 Ward Street, Upper Hutt 5018, New Zealand
| | - Ben Waite
- Institute for Environmental Science and Research, NCBID Wallaceville, 66 Ward Street, Upper Hutt 5018, New Zealand
| | - Trushar Jeevan
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mark Zanin
- State Key Laboratory for Respiratory Diseases, Guangzhou Medical University, 151 Dongfengxi Road, Yuexiu District, Guangzhou 510000, China
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- School of Public Health, The University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Marc-Alain Widdowson
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
- Institute of Tropical Medicine (ITM), Nationalestraat 155, 2000 Antwerp, Belgium
| | - Q. Sue Huang
- Institute for Environmental Science and Research, NCBID Wallaceville, 66 Ward Street, Upper Hutt 5018, New Zealand
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
48
|
Characteristics of Anti-SARS-CoV-2 Antibodies in Recovered COVID-19 Subjects. Viruses 2021; 13:v13040697. [PMID: 33923828 PMCID: PMC8073159 DOI: 10.3390/v13040697] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/02/2021] [Accepted: 04/10/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is a global pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While detection of SARS-CoV-2 by polymerase chain reaction with reverse transcription (RT-PCR) is currently used to diagnose acute COVID-19 infection, serological assays are needed to study the humoral immune response to SARS-CoV-2. Anti-SARS-CoV-2 immunoglobulin (Ig)G/A/M antibodies against spike (S) protein and its receptor-binding domain (RBD) were characterized in recovered subjects who were RT-PCR-positive (n = 153) and RT-PCR-negative (n = 55) using an enzyme-linked immunosorbent assay (ELISA). These antibodies were also further assessed for their ability to neutralize live SARS-CoV-2 virus. Anti-SARS-CoV-2 antibodies were detected in 90.9% of resolved subjects up to 180 days post-symptom onset. Anti-S protein and anti-RBD IgG titers correlated (r = 0.5157 and r = 0.6010, respectively) with viral neutralization. Of the RT-PCR-positive subjects, 22 (14.3%) did not have anti-SARS-CoV-2 antibodies; and of those, 17 had RT-PCR cycle threshold (Ct) values > 27. These high Ct values raise the possibility that these indeterminate results are from individuals who were not infected or had mild infection that failed to elicit an antibody response. This study highlights the importance of serological surveys to determine population-level immunity based on infection numbers as determined by RT-PCR.
Collapse
|
49
|
Chvatal-Medina M, Mendez-Cortina Y, Patiño PJ, Velilla PA, Rugeles MT. Antibody Responses in COVID-19: A Review. Front Immunol 2021; 12:633184. [PMID: 33936045 PMCID: PMC8081880 DOI: 10.3389/fimmu.2021.633184] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/25/2021] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread worldwide as a severe pandemic. Although its seroprevalence is highly variable among territories, it has been reported at around 10%, but higher in health workers. Evidence regarding cross-neutralizing response between SARS-CoV and SARS-CoV-2 is still controversial. However, other previous coronaviruses may interfere with SARS-CoV-2 infection, since they are phylogenetically related and share the same target receptor. Further, the seroconversion of IgM and IgG occurs at around 12 days post onset of symptoms and most patients have neutralizing titers on days 14-20, with great titer variability. Neutralizing antibodies correlate positively with age, male sex, and severity of the disease. Moreover, the use of convalescent plasma has shown controversial results in terms of safety and efficacy, and due to the variable immune response among individuals, measuring antibody titers before transfusion is mostly required. Similarly, cellular immunity seems to be crucial in the resolution of the infection, as SARS-CoV-2-specific CD4+ and CD8+ T cells circulate to some extent in recovered patients. Of note, the duration of the antibody response has not been well established yet.
Collapse
Affiliation(s)
- Mateo Chvatal-Medina
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | | | - Pablo J. Patiño
- Grupo Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Paula A. Velilla
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Maria T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
50
|
Teymouri M, Mollazadeh S, Mortazavi H, Naderi Ghale-Noie Z, Keyvani V, Aghababaei F, Hamblin MR, Abbaszadeh-Goudarzi G, Pourghadamyari H, Hashemian SMR, Mirzaei H. Recent advances and challenges of RT-PCR tests for the diagnosis of COVID-19. Pathol Res Pract 2021; 221:153443. [PMID: 33930607 PMCID: PMC8045416 DOI: 10.1016/j.prp.2021.153443] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023]
Abstract
Since the outbreak of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the control of virus spread has remained challenging given the pitfalls of the current diagnostic tests. Nevertheless, RNA amplification techniques have been the gold standard among other diagnostic methods for monitoring clinical samples for the presence of the virus. In the current paper, we review the shortcomings and strengths of RT-PCR (real-time polymerase chain reaction) techniques for diagnosis of coronavirus disease (COVID)-19. We address the repercussions of false-negative and false-positive rates encountered in the test, summarize approaches to improve the overall sensitivity of this method. We discuss the barriers to the widespread use of the RT-PCR test, and some technical advances, such as RT-LAMP (reverse-transcriptase-loop mediated isothermal amplification). We also address how other molecular techniques, such as immunodiagnostic tests can be used to avoid incorrect interpretation of RT-PCR tests.
Collapse
Affiliation(s)
- Manoucher Teymouri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Hamed Mortazavi
- Geriatric Care Research Center, Department of Geriatric Nursing, School of Nursing and Midwifery, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahideh Keyvani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Farzaneh Aghababaei
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Ghasem Abbaszadeh-Goudarzi
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|