1
|
Yakovlev AV, Detterer AS, Yakovleva OV, Hermann A, Sitdikova GF. H 2S prevents the disruption of the blood-brain barrier in rats with prenatal hyperhomocysteinemia. J Pharmacol Sci 2024; 155:131-139. [PMID: 38880547 DOI: 10.1016/j.jphs.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/18/2024] Open
Abstract
Elevation of the homocysteine concentration in the plasma called hyperhomocysteinemia (hHCY) during pregnancy causes a number of pre- and postnatal developmental disorders. The aim of our study was to analyze the effects of H2S donors -NaHS and N-acetylcysteine (NAC) on blood-brain barrier (BBB) permeability in rats with prenatal hHCY. In rats with mild hHCY BBB permeability assessed by Evans Blue extravasation in brain increased markedly throughout life. Administration of NaHS or NAC during pregnancy attenuated hHCY-associated damage and increased endogenous concentrations of sulfides in brain tissues. Acute application of dl-homocysteine thiolactone induced BBB leakage, which was prevented by the NMDA receptor antagonist MK-801 or H2S donors. Rats with hHCY demonstrated high levels of NO metabolite - nitrites and proinflammatory cytokines (IL-1β, TNF-α, IL-6) in brain. Lactate dehydrogenase (LDH) activity in the serum was higher in rats with hHCY. Mitochondrial complex-I activity was lower in brain of hHCY rats. NaHS treatment during pregnancy restored levels of proinflammatory cytokines, nitrites and activity of the respiratory chain complex in brain as well as the LDH activity in serum. Our data suggest that H2S has neuroprotective effects against prenatal hHCY-associated BBB disturbance providing a potential strategy for the prevention of developmental impairments in newborns.
Collapse
Affiliation(s)
- A V Yakovlev
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya str 18, Kazan, 420008, Russia
| | - A S Detterer
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya str 18, Kazan, 420008, Russia
| | - O V Yakovleva
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya str 18, Kazan, 420008, Russia
| | - A Hermann
- Department of Cell Biology, Division of Cellular and Molecular Neurobiology, University of Salzburg, Department of Biosciences, Hellbrunnerstr. 34, Salzburg, 5020, Austria
| | - G F Sitdikova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya str 18, Kazan, 420008, Russia.
| |
Collapse
|
2
|
Abelaira HM, de Moura AB, Cardoso MM, de Pieri E, Abel JS, Luiz GP, Sombrio EM, Borghezan LA, Anastácio RS, Cruz LA, de Souza TG, Meab C, Lima IR, da Costa C, Dal Bó AG, Pcl S, Machado-de-Ávila RA. Sertraline associated with gold nanoparticles reduce cellular toxicity and induce sex-specific responses in behavior and neuroinflammation biomarkers in a mouse model of anxiety. Pharmacol Biochem Behav 2023; 233:173661. [PMID: 37879445 DOI: 10.1016/j.pbb.2023.173661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
This study aimed to evaluate the effects of sertraline associated with gold nanoparticles (AuNPs) in vitro cell viability and in vivo behavior and inflammatory biomarkers in a mouse model of anxiety. Sertraline associated with AuNPs were synthesized and characterized. For the in vitro study, NIH3T3 and HT-22 cells were treated with different doses of sertraline, AuNPs, and sertraline + AuNPs and their viability was evaluated using the MTT assay. For the in vivo study, pregnant Swiss mice were administered a single dose of lipopolysaccharide (LPS) on the ninth day of gestation. The female and male offspring were divided into five treatment groups on PND 60 and administered chronic treatment for 28 days. The animals were subjected to behavioral testing and were subsequently euthanized. Their brains were collected and analyzed for inflammatory biomarkers. Sertraline associated with AuNPs exhibited significant changes in surface characteristics and increased diameters. Different doses of sertraline + AuNPs showed higher cell viability in NIH3T3 and HT-22 cells compared with sertraline alone. The offspring of LPS-treated dams exhibited anxiety-like behavior and neuroinflammatory biomarker changes during adulthood, which were ameliorated via sertraline + AuNPs treatment. The treatment response was sex-dependent and brain region-specific. These results suggest that AuNPs, which demonstrate potential to bind to other molecules, low toxicity, and reduced inflammation, can be synergistically used with sertraline to improve drug efficacy and safety by decreasing neuroinflammation and sertraline toxicity.
Collapse
Affiliation(s)
- H M Abelaira
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.
| | - A B de Moura
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - M M Cardoso
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - E de Pieri
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - J S Abel
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - G P Luiz
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - E M Sombrio
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - L A Borghezan
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - R S Anastácio
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - L A Cruz
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - T G de Souza
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Corrêa Meab
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - I R Lima
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - C da Costa
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - A G Dal Bó
- Laboratory of Advanced Polymer Processing, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Silveira Pcl
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - R A Machado-de-Ávila
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
3
|
Karanikas E. The Gordian knot of the immune-redox systems' interactions in psychosis. Int Clin Psychopharmacol 2023; 38:285-296. [PMID: 37351570 DOI: 10.1097/yic.0000000000000481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
During the last decades the attempt to enlighten the pathobiological substrate of psychosis, from merely focusing on neurotransmitters, has expanded into new areas like the immune and redox systems. Indeed, the inflammatory hypothesis concerning psychosis etiopathology has exponentially grown with findings reflecting dysfunction/aberration of the immune/redox systems' effector components namely cytokines, chemokines, CRP, complement system, antibodies, pro-/anti-oxidants, oxidative stress byproducts just to name a few. Yet, we still lie far from comprehending the underlying cellular mechanisms, their causality directions, and the moderating/mediating parameters affecting these systems; let alone the inter-systemic (between immune and redox) interactions. Findings from preclinical studies on the stress field have provided evidence indicative of multifaceted interactions among the immune and redox components so tightly intertwined as a Gordian knot. Interestingly the literature concerning the interactions between these same systems in the context of psychosis appears minimal (if not absent) and ambiguous. This review attempts to draw a frame of the immune-redox systems' interactions starting from basic research on the stress field and expanding on clinical studies with cohorts with psychosis, hoping to instigate new avenues of research.
Collapse
Affiliation(s)
- Evangelos Karanikas
- Department of Psychiatry, 424 General Military Hospital, Ring Road, Nea Efkarpia, Thessaloniki, Greece
| |
Collapse
|
4
|
Woods R, Lorusso J, Fletcher J, ElTaher H, McEwan F, Harris I, Kowash H, D'Souza SW, Harte M, Hager R, Glazier JD. Maternal immune activation and role of placenta in the prenatal programming of neurodevelopmental disorders. Neuronal Signal 2023; 7:NS20220064. [PMID: 37332846 PMCID: PMC10273029 DOI: 10.1042/ns20220064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Maternal infection during pregnancy, leading to maternal immune activation (mIA) and cytokine release, increases the offspring risk of developing a variety of neurodevelopmental disorders (NDDs), including schizophrenia. Animal models have provided evidence to support these mechanistic links, with placental inflammatory responses and dysregulation of placental function implicated. This leads to changes in fetal brain cytokine balance and altered epigenetic regulation of key neurodevelopmental pathways. The prenatal timing of such mIA-evoked changes, and the accompanying fetal developmental responses to an altered in utero environment, will determine the scope of the impacts on neurodevelopmental processes. Such dysregulation can impart enduring neuropathological changes, which manifest subsequently in the postnatal period as altered neurodevelopmental behaviours in the offspring. Hence, elucidation of the functional changes that occur at the molecular level in the placenta is vital in improving our understanding of the mechanisms that underlie the pathogenesis of NDDs. This has notable relevance to the recent COVID-19 pandemic, where inflammatory responses in the placenta to SARS-CoV-2 infection during pregnancy and NDDs in early childhood have been reported. This review presents an integrated overview of these collective topics and describes the possible contribution of prenatal programming through placental effects as an underlying mechanism that links to NDD risk, underpinned by altered epigenetic regulation of neurodevelopmental pathways.
Collapse
Affiliation(s)
- Rebecca M. Woods
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jarred M. Lorusso
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jennifer Fletcher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Heidi ElTaher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
- Department of Physiology, Faculty of Medicine, Alexandria University, Egypt
| | - Francesca McEwan
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Isabella Harris
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Hager M. Kowash
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Stephen W. D'Souza
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Michael Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Reinmar Hager
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
5
|
Lu J, Fan X, Lu L, Yu Y, Markiewicz E, Little JC, Sidebottom AM, Claud EC. Limosilactobacillus reuteri normalizes blood-brain barrier dysfunction and neurodevelopment deficits associated with prenatal exposure to lipopolysaccharide. Gut Microbes 2023; 15:2178800. [PMID: 36799469 PMCID: PMC9980478 DOI: 10.1080/19490976.2023.2178800] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/12/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Maternal immune activation (MIA) derived from late gestational infection such as seen in chorioamnionitis poses a significantly increased risk for neurodevelopmental deficits in the offspring. Manipulating early microbiota through maternal probiotic supplementation has been shown to be an effective means to improve outcomes; however, the mechanisms remain unclear. In this study, we demonstrated that MIA modeled by exposing pregnant dams to lipopolysaccharide (LPS) induced an underdevelopment of the blood vessels, an increase in permeability and astrogliosis of the blood-brain barrier (BBB) at prewean age. The BBB developmental and functional deficits early in life impaired spatial learning later in life. Maternal Limosilactobacillus reuteri (L. reuteri) supplementation starting at birth rescued the BBB underdevelopment and dysfunction-associated cognitive function. Maternal L. reuteri-mediated alterations in β-diversity of the microbial community and metabolic responses in the offspring provide mechanisms and potential targets for promoting BBB integrity and long-term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pediatrics, The University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Xiaobing Fan
- Magnetic Resonance Imaging and Spectroscopy Laboratory, The University of Chicago, Department of Radiology, Chicago, IL, USA
| | - Lei Lu
- Department of Pediatrics, The University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Yueyue Yu
- Department of Pediatrics, The University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Erica Markiewicz
- Magnetic Resonance Imaging and Spectroscopy Laboratory, The University of Chicago, Department of Radiology, Chicago, IL, USA
| | - Jessica C. Little
- Duchossois Family Institute, The University of Chicago, Host-Microbe Metabolomics Facility, Chicago, IL, USA
| | - Ashley M. Sidebottom
- Duchossois Family Institute, The University of Chicago, Host-Microbe Metabolomics Facility, Chicago, IL, USA
| | - Erika C. Claud
- Department of Pediatrics, The University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| |
Collapse
|
6
|
N-Acetylcysteine Administration Attenuates Sensorimotor Impairments Following Neonatal Hypoxic-Ischemic Brain Injury in Rats. Int J Mol Sci 2022; 23:ijms232416175. [PMID: 36555816 PMCID: PMC9783020 DOI: 10.3390/ijms232416175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hypoxic ischemic (HI) brain injury that occurs during neonatal period has been correlated with severe neuronal damage, behavioral deficits and infant mortality. Previous evidence indicates that N-acetylcysteine (NAC), a compound with antioxidant action, exerts a potential neuroprotective effect in various neurological disorders including injury induced by brain ischemia. The aim of the present study was to investigate the role of NAC as a potential therapeutic agent in a rat model of neonatal HI brain injury and explore its long-term behavioral effects. To this end, NAC (50 mg/kg/dose, i.p.) was administered prior to and instantly after HI, in order to evaluate hippocampal and cerebral cortex damage as well as long-term functional outcome. Immunohistochemistry was used to detect inducible nitric oxide synthase (iNOS) expression. The results revealed that NAC significantly alleviated sensorimotor deficits and this effect was maintained up to adulthood. These improvements in functional outcome were associated with a significant decrease in the severity of brain damage. Moreover, NAC decreased the short-term expression of iNOS, a finding implying that iNOS activity may be suppressed and that through this action NAC may exert its therapeutic action against neonatal HI brain injury.
Collapse
|
7
|
Cirulli F, De Simone R, Musillo C, Ajmone-Cat MA, Berry A. Inflammatory Signatures of Maternal Obesity as Risk Factors for Neurodevelopmental Disorders: Role of Maternal Microbiota and Nutritional Intervention Strategies. Nutrients 2022; 14:nu14153150. [PMID: 35956326 PMCID: PMC9370669 DOI: 10.3390/nu14153150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is a main risk factor for the onset and the precipitation of many non-communicable diseases. This condition, which is associated with low-grade chronic systemic inflammation, is of main concern during pregnancy leading to very serious consequences for the new generations. In addition to the prominent role played by the adipose tissue, dysbiosis of the maternal gut may also sustain the obesity-related inflammatory milieu contributing to create an overall suboptimal intrauterine environment. Such a condition here generically defined as “inflamed womb” may hold long-term detrimental effects on fetal brain development, increasing the vulnerability to mental disorders. In this review, we will examine the hypothesis that maternal obesity-related gut dysbiosis and the associated inflammation might specifically target fetal brain microglia, the resident brain immune macrophages, altering neurodevelopmental trajectories in a sex-dependent fashion. We will also review some of the most promising nutritional strategies capable to prevent or counteract the effects of maternal obesity through the modulation of inflammation and oxidative stress or by targeting the maternal microbiota.
Collapse
Affiliation(s)
- Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; or
- Correspondence: (F.C.); (A.B.)
| | - Roberta De Simone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.D.S.); (M.A.A.-C.)
| | - Chiara Musillo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; or
- PhD Program in Behavioral Neuroscience, Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Antonietta Ajmone-Cat
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.D.S.); (M.A.A.-C.)
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; or
- Correspondence: (F.C.); (A.B.)
| |
Collapse
|
8
|
Abiramalatha T, Ramaswamy VV, Ponnala AK, Kallem VR, Murkunde YV, Punnoose AM, Vivekanandhan A, Pullattayil AK, Amboiram P. Emerging neuroprotective interventions in periventricular leukomalacia: A systematic review of preclinical studies. Expert Opin Investig Drugs 2022; 31:305-330. [PMID: 35143732 DOI: 10.1080/13543784.2022.2040479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Periventricular leukomalacia (PVL) is a result of various antenatal, intrapartum, or postnatal insults to the developing brain and is an important harbinger of cerebral palsy in preterm neonates. There is no proven therapy for PVL. This calls for appraisal of targeted therapies that have been investigated in animal models to evaluate their relevance in clinical research context. AREAS COVERED This systematic review identifies interventions that were evaluated in preclinical studies for neuroprotective efficacy against PVL. We identified 142 studies evaluating various interventions in PVL animal models. (Search method is detailed in section 2). EXPERT OPINION Interventions that have yielded significant results in preclinical research, and that have been evaluated in a limited number of clinical trials include stem cells, erythropoietin, and melatonin. Many other therapeutic modalities evaluated in preclinical studies have been identified, but more data on their neuroprotective potential in PVL must be garnered before they can be considered for clinical trials. Because most of the tested interventions had only a partial efficacy, a combination of interventions that could be synergistic should be investigated in future preclinical studies. Furthermore, since the nature and pattern of perinatal insults to preterm brain predisposing it to PVL are substantially variable, individualised approaches for the choice of appropriate neuroprotective interventions tailored to different sub-groups of preterm neonates should be explored.
Collapse
Affiliation(s)
- Thangaraj Abiramalatha
- Consultant Neonatologist, Kovai Medical Center and Hospital (KMCH).,Department of Pediatrics and Neonatology, KMCH Institute of Health Sciences and Research, Coimbatore, India
| | | | - Andelsivj Kumar Ponnala
- Centre for Toxicology and Developmental Research (CEFTE), Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | - Yogeshkumar V Murkunde
- Centre for Toxicology and Developmental Research (CEFTE), Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Alan Mathew Punnoose
- Department of Stem Cell Research and Regenerative Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | | | - Prakash Amboiram
- Department of Neonatology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
9
|
Abiramalatha T, Bandyopadhyay T, Ramaswamy VV, Shaik NB, Thanigainathan S, Pullattayil AK, Amboiram P. Risk Factors for Periventricular Leukomalacia in Preterm Infants: A Systematic Review, Meta-analysis, and GRADE-Based Assessment of Certainty of Evidence. Pediatr Neurol 2021; 124:51-71. [PMID: 34537463 DOI: 10.1016/j.pediatrneurol.2021.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/20/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND We analyzed the certainty of evidence (CoE) for risk factors of periventricular leukomalacia (PVL) in preterm neonates, a common morbidity of prematurity. METHODS Medline, CENTRAL, Embase, and CINAHL were searched. Cohort and case-control studies and randomised randomized controlled trials were included. Data extraction was performed in duplicate. A random random-effects meta-analysis was utilizedused. CoE was evaluated as per Grading of Recommendations Assessment, Development and Evaluation (GRADE) guidelines. RESULTS One hundred eighty-six studies evaluating 95 risk factors for PVL were included. Of the 2,509,507 neonates assessed, 16,569 were diagnosed with PVL. Intraventricular hemorrhage [adjusted odds ratio: 3.22 (2.52-4.12)] had moderate CoE for its association with PVL. Other factors such as hypocarbia, chorioamnionitis, PPROM >48 hour, multifetal pregnancy reduction, antenatal indomethacin, lack of antenatal steroids, perinatal asphyxia, ventilation, shock/hypotension, patent ductus arteriosus requiring surgical ligation, late-onset circulatory collapse, sepsis, necrotizing enterocolitis, and neonatal surgery showed significant association with PVL after adjustment for confounders (CoE: very low to low). Amongst the risk factors associated with mother placental fetal (MPF) triad, there was paucity of literature related to genetic predisposition and defective placentation. Sensitivity analysis revealed that the strength of association between invasive ventilation and PVL decreased over time (P < 0.01), suggesting progress in ventilation strategies. Limited studies had evaluated diffuse PVL. CONCLUSION Despite decades of research, our findings indicate that the CoE is low to very low for most of the commonly attributed risk factors of PVL. Future studies should evaluate genetic predisposition and defective placentation in the MPF triad contributing to PVL. Studies evaluating exclusively diffuse PVL are warranted.
Collapse
Affiliation(s)
- Thangaraj Abiramalatha
- Department of Neonatology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Tapas Bandyopadhyay
- Department of Neonatology, Dr Ram Manohar Lohia Hospital & Post Graduate Institute of Medical Education and Research, New Delhi, India
| | | | - Nasreen Banu Shaik
- Department of Neonatology, Ankura Hospital for Women and Children, Hyderabad, India
| | - Sivam Thanigainathan
- Department of Neonatology, All India Institute of Medical Sciences, Jodhpur, India
| | | | - Prakash Amboiram
- Department of Neonatology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
10
|
Spaas J, van Veggel L, Schepers M, Tiane A, van Horssen J, Wilson DM, Moya PR, Piccart E, Hellings N, Eijnde BO, Derave W, Schreiber R, Vanmierlo T. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol Life Sci 2021; 78:4615-4637. [PMID: 33751149 PMCID: PMC8195802 DOI: 10.1007/s00018-021-03802-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) account for 5% of the resident parenchymal central nervous system glial cells. OPCs are not only a back-up for the loss of oligodendrocytes that occurs due to brain injury or inflammation-induced demyelination (remyelination) but are also pivotal in plastic processes such as learning and memory (adaptive myelination). OPC differentiation into mature myelinating oligodendrocytes is controlled by a complex transcriptional network and depends on high metabolic and mitochondrial demand. Mounting evidence shows that OPC dysfunction, culminating in the lack of OPC differentiation, mediates the progression of neurodegenerative disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Importantly, neurodegeneration is characterised by oxidative and carbonyl stress, which may primarily affect OPC plasticity due to the high metabolic demand and a limited antioxidant capacity associated with this cell type. The underlying mechanisms of how oxidative/carbonyl stress disrupt OPC differentiation remain enigmatic and a focus of current research efforts. This review proposes a role for oxidative/carbonyl stress in interfering with the transcriptional and metabolic changes required for OPC differentiation. In particular, oligodendrocyte (epi)genetics, cellular defence and repair responses, mitochondrial signalling and respiration, and lipid metabolism represent key mechanisms how oxidative/carbonyl stress may hamper OPC differentiation in neurodegenerative disorders. Understanding how oxidative/carbonyl stress impacts OPC function may pave the way for future OPC-targeted treatment strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jan Spaas
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lieve van Veggel
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Melissa Schepers
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Assia Tiane
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jack van Horssen
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - David M Wilson
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Pablo R Moya
- Facultad de Ciencias, Instituto de Fisiología, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Elisabeth Piccart
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Niels Hellings
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Faculty of Medicine and Life Sciences, SMRC-Sportsmedical Research Center, BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rudy Schreiber
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Tim Vanmierlo
- University MS Center (UMSC), Hasselt-Pelt, Belgium.
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
11
|
McMillen S, Lönnerdal B. Postnatal Iron Supplementation with Ferrous Sulfate vs. Ferrous Bis-Glycinate Chelate: Effects on Iron Metabolism, Growth, and Central Nervous System Development in Sprague Dawley Rat Pups. Nutrients 2021; 13:1406. [PMID: 33921980 PMCID: PMC8143548 DOI: 10.3390/nu13051406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 02/05/2023] Open
Abstract
Iron-fortified formulas and iron drops (both usually ferrous sulfate, FS) prevent early life iron deficiency, but may delay growth and adversely affect neurodevelopment by providing excess iron. We used a rat pup model to investigate iron status, growth, and development outcomes following daily iron supplementation (10 mg iron/kg body weight, representative of iron-fortified formula levels) with FS or an alternative, bioavailable form of iron, ferrous bis-glycinate chelate (FC). On postnatal day (PD) 2, sex-matched rat litters (n = 3 litters, 10 pups each) were randomly assigned to receive FS, FC, or vehicle control until PD 14. On PD 15, we evaluated systemic iron regulation and CNS mineral interactions and we interrogated iron loading outcomes in the hippocampus, in search of mechanisms by which iron may influence neurodevelopment. Body iron stores were elevated substantially in iron-supplemented pups. All pups gained weight normally, but brain size on PD 15 was dependent on iron source. This may have been associated with reduced hippocampal oxidative stress but was not associated with CNS mineral interactions, iron regulation, or myelination, as these were unchanged with iron supplementation. Additional studies are warranted to investigate iron form effects on neurodevelopment so that iron recommendations can be optimized for all infants.
Collapse
Affiliation(s)
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA 95616, USA;
| |
Collapse
|
12
|
Impact of prenatal maternal cytokine exposure on sex differences in brain circuitry regulating stress in offspring 45 years later. Proc Natl Acad Sci U S A 2021; 118:2014464118. [PMID: 33876747 DOI: 10.1073/pnas.2014464118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stress is associated with numerous chronic diseases, beginning in fetal development with in utero exposures (prenatal stress) impacting offspring's risk for disorders later in life. In previous studies, we demonstrated adverse maternal in utero immune activity on sex differences in offspring neurodevelopment at age seven and adult risk for major depression and psychoses. Here, we hypothesized that in utero exposure to maternal proinflammatory cytokines has sex-dependent effects on specific brain circuitry regulating stress and immune function in the offspring that are retained across the lifespan. Using a unique prenatal cohort, we tested this hypothesis in 80 adult offspring, equally divided by sex, followed from in utero development to midlife. Functional MRI results showed that exposure to proinflammatory cytokines in utero was significantly associated with sex differences in brain activity and connectivity during response to negative stressful stimuli 45 y later. Lower maternal TNF-α levels were significantly associated with higher hypothalamic activity in both sexes and higher functional connectivity between hypothalamus and anterior cingulate only in men. Higher prenatal levels of IL-6 were significantly associated with higher hippocampal activity in women alone. When examined in relation to the anti-inflammatory effects of IL-10, the ratio TNF-α:IL-10 was associated with sex-dependent effects on hippocampal activity and functional connectivity with the hypothalamus. Collectively, results suggested that adverse levels of maternal in utero proinflammatory cytokines and the balance of pro- to anti-inflammatory cytokines impact brain development of offspring in a sexually dimorphic manner that persists across the lifespan.
Collapse
|
13
|
Zhang Z, Lin YA, Kim SY, Su L, Liu J, Kannan RM, Kannan S. Systemic dendrimer-drug nanomedicines for long-term treatment of mild-moderate cerebral palsy in a rabbit model. J Neuroinflammation 2020; 17:319. [PMID: 33100217 PMCID: PMC7586697 DOI: 10.1186/s12974-020-01984-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/05/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Neuroinflammation mediated by microglia plays a central role in the pathogenesis of perinatal/neonatal brain injury, including cerebral palsy (CP). Therapeutics mitigating neuroinflammation potentially provide an effective strategy to slow the disease progression and rescue normal brain development. Building on our prior results which showed that a generation-4 hydroxyl poly(amidoamine) (PAMAM) dendrimer could deliver drugs specifically to activated glia from systemic circulation, we evaluated the sustained efficacy of a generation-6 (G6) hydroxyl-terminated PAMAM dendrimer that showed a longer blood circulation time and increased brain accumulation. N-acetyl-L-cysteine (NAC), an antioxidant and anti-inflammatory agent that has high plasma protein binding properties and poor brain penetration, was conjugated to G6-PAMAM dendrimer-NAC (G6D-NAC). The efficacy of microglia-targeted G6D-NAC conjugate was evaluated in a clinically relevant rabbit model of CP, with a mild/moderate CP phenotype to provide a longer survival of untreated CP kits, enabling the assessment of sustained efficacy over 15 days of life. METHODS G6D-NAC was conjugated and characterized. Cytotoxicity and anti-inflammatory assays were performed in BV-2 microglial cells. The efficacy of G6D-NAC was evaluated in a rabbit model of CP. CP kits were randomly divided into 5 groups on postnatal day 1 (PND1) and received an intravenous injection of a single dose of PBS, or G6D-NAC (2 or 5 mg/kg), or NAC (2 or 5 mg/kg). Neurobehavioral tests, microglia morphology, and neuroinflammation were evaluated at postnatal day 5 (PND5) and day 15 (PND15). RESULTS A single dose of systemic 'long circulating' G6D-NAC showed a significant penetration across the impaired blood-brain-barrier (BBB), delivered NAC specifically to activated microglia, and significantly reduced microglia-mediated neuroinflammation in both the cortex and cerebellum white matter areas. Moreover, G6D-NAC treatment significantly improved neonatal rabbit survival rate and rescued motor function to nearly healthy control levels at least up to 15 days after birth (PND15), while CP kits treated with free NAC died before PND9. CONCLUSIONS Targeted delivery of therapeutics to activated microglia in neonatal brain injury can ameliorate pro-inflammatory microglial responses to injury, promote survival rate, and improve neurological outcomes that can be sustained for a long period. Appropriate manipulation of activated microglia enabled by G6D-NAC can impact the injury significantly beyond inflammation.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Present address: Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, USA
| | - Yi-An Lin
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 North Broadway, Baltimore, MD, 21287, USA
| | - Soo-Young Kim
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 North Broadway, Baltimore, MD, 21287, USA
| | - Lilly Su
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jinhuan Liu
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 North Broadway, Baltimore, MD, 21287, USA.
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Anesthesiology and Critical Care Medicine, Charlotte Bloomberg Children's Center 6318D, 1800 Orleans Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
14
|
Abstract
Fetal neurodevelopment in utero is profoundly shaped by both systemic maternal immunity and local processes at the maternal-fetal interface. Immune pathways are a critical participant in the normal physiology of pregnancy and perturbations of maternal immunity due to infections during this period have been increasingly linked to a diverse array of poor neurological outcomes, including diseases that manifest much later in postnatal life. While experimental models of maternal immune activation (MIA) have provided groundbreaking characterizations of the maternal pathways underlying pathogenesis, less commonly examined are the immune factors that serve pathogen-independent developmental functions in the embryo and fetus. In this review, we explore what is known about the in vivo role of immune factors in fetal neurodevelopment during normal pregnancy and provide an overview of how MIA perturbs the proper orchestration of this sequence of events. Finally, we discuss how the dysregulation of immune factors may contribute to the manifestation of a variety of neurological disorders.
Collapse
Affiliation(s)
- Alice Lu-Culligan
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06519, USA; .,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06519, USA
| |
Collapse
|
15
|
Truttmann AC, Ginet V, Puyal J. Current Evidence on Cell Death in Preterm Brain Injury in Human and Preclinical Models. Front Cell Dev Biol 2020; 8:27. [PMID: 32133356 PMCID: PMC7039819 DOI: 10.3389/fcell.2020.00027] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Despite tremendous advances in neonatal intensive care over the past 20 years, prematurity carries a high burden of neurological morbidity lasting lifelong. The term encephalopathy of prematurity (EoP) coined by Volpe in 2009 encompasses all aspects of the now known effects of prematurity on the immature brain, including altered and disturbed development as well as specific lesional hallmarks. Understanding the way cells are damaged is crucial to design brain protective strategies, and in this purpose, preclinical models largely contribute to improve the comprehension of the cell death mechanisms. While neuronal cell death has been deeply investigated and characterized in (hypoxic–ischemic) encephalopathy of the newborn at term, little is known about the types of cell death occurring in preterm brain injury. Three main different morphological cell death types are observed in the immature brain, specifically in models of hypoxic–ischemic encephalopathy, namely, necrotic, apoptotic, and autophagic cell death. Features of all three types may be present in the same dying neuron. In preterm brain injury, description of cell death types is sparse, and cell loss primarily concerns immature oligodendrocytes and, infrequently, neurons. In the present review, we first shortly discuss the different main severe preterm brain injury conditions that have been reported to involve cell death, including periventricular leucomalacia (PVL), diffuse white matter injury (dWMI), and intraventricular hemorrhages, as well as potentially harmful iatrogenic conditions linked to premature birth (anesthesia and caffeine therapy). Then, we present an overview of current evidence concerning cell death in both clinical human tissue data and preclinical models by focusing on studies investigating the presence of cell death allowing discriminating between the types of cell death involved. We conclude that, to improve brain protective strategies, not only apoptosis but also other cell death (such as regulated necrotic and autophagic) pathways now need to be investigated together in order to consider all cell death mechanisms involved in the pathogenesis of preterm brain damage.
Collapse
Affiliation(s)
- Anita C Truttmann
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Vanessa Ginet
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,CURML, University Center of Legal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
16
|
The Evolving Dialogue of Microglia and Neurons in Alzheimer’s Disease: Microglia as Necessary Transducers of Pathology. Neuroscience 2019; 405:24-34. [DOI: 10.1016/j.neuroscience.2018.01.059] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 01/21/2023]
|
17
|
Frost PS, Barros-Aragão F, da Silva RT, Venancio A, Matias I, Lyra E Silva NM, Kincheski GC, Pimentel-Coelho PM, De Felice FG, Gomes FCA, Ferreira ST, Figueiredo CP, Clarke JR. Neonatal infection leads to increased susceptibility to Aβ oligomer-induced brain inflammation, synapse loss and cognitive impairment in mice. Cell Death Dis 2019; 10:323. [PMID: 30975983 PMCID: PMC6459845 DOI: 10.1038/s41419-019-1529-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 12/22/2022]
Abstract
Harmful environmental stimuli during critical stages of development can profoundly affect behavior and susceptibility to diseases. Alzheimer disease (AD) is the most frequent neurodegenerative disease, and evidence suggest that inflammatory conditions act cumulatively, contributing to disease onset. Here we investigated whether infection early in life can contribute to synapse damage and cognitive impairment induced by amyloid-β oligomers (AβOs), neurotoxins found in AD brains. To this end, wild-type mice were subjected to neonatal (post-natal day 4) infection by Escherichia coli (1 × 104 CFU/g), the main cause of infection in low-birth-weight premature infants in the US. E. coli infection caused a transient inflammatory response in the mouse brain starting shortly after infection. Although infected mice performed normally in behavioral tasks in adulthood, they showed increased susceptibility to synapse damage and memory impairment induced by low doses of AβOs (1 pmol; intracerebroventricular) in the novel object recognition paradigm. Using in vitro and in vivo approaches, we show that microglial cells from E. coli-infected mice undergo exacerbated activation when exposed to low doses of AβOs. In addition, treatment of infected pups with minocycline, an antibiotic that inhibits microglial pro-inflammatory polarization, normalized microglial response to AβOs and restored normal susceptibility of mice to oligomer-induced cognitive impairment. Interestingly, mice infected with by E. coli (1 × 104 CFU/g) during adolescence (post-natal day 21) or adulthood (post-natal day 60) showed normal cognitive performance even in the presence of AβOs (1 pmol), suggesting that only infections at critical stages of development may lead to increased susceptibility to amyloid-β-induced toxicity. Altogether, our findings suggest that neonatal infections can modulate microglial response to AβOs into adulthood, thus contributing to amyloid-β-induced synapse damage and cognitive impairment.
Collapse
Affiliation(s)
- Paula S Frost
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil
| | - Fernanda Barros-Aragão
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil
| | - Rachel T da Silva
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil
| | - Aline Venancio
- Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Isadora Matias
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil
| | - Natalia M Lyra E Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil
| | - Grasielle C Kincheski
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil
| | - Pedro M Pimentel-Coelho
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil.,Department of Psychiatry, Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Flávia C A Gomes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil
| | - Claudia P Figueiredo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil.
| | - Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil.
| |
Collapse
|
18
|
Therapeutic N-Acetyl-Cysteine (Nac) Following Initiation of Maternal Inflammation Attenuates Long-Term Offspring Cerebral Injury, as Evident in Magnetic Resonance Imaging (MRI). Neuroscience 2019; 403:118-124. [DOI: 10.1016/j.neuroscience.2018.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/26/2017] [Accepted: 01/03/2018] [Indexed: 11/21/2022]
|
19
|
Improvement in dysmyelination by the inhibition of microglial activation in a mouse model of Sandhoff disease. Neuroreport 2019; 29:962-967. [PMID: 29847465 DOI: 10.1097/wnr.0000000000001060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sandhoff disease (SD) is a genetic disorder caused by a mutation of the β-subunit gene β-hexosaminidase B (HexB) in humans, which results in the massive accumulation of the ganglioside GM2 and related glycosphingolipids in the nervous system. SD causes progressive neurodegeneration and changes in white matter in human infants. An animal model of SD has been established, Hexb-deficient (Hexb) mice, which shows abnormalities resembling the severe phenotype found in human infants. Previously, we reported that the activation state of microglia caused astrogliosis in the early stage of Hexb mouse development. To study how the symptoms of SD develop, we explored the difference in gene expression between 4-week-old Hexb and Hexb mouse cerebral cortices by microarray analysis. The data indicated not only the upregulation of immune system-related genes but also the downregulation of myelin-related genes in the 4-week-old Hexb mouse cerebral cortices. To test the correlation between inflammation and dysmyelination, we generated double-knockout mice of Hexb and the Fc receptor γ gene (Fcrγ), which is a regulator of autoimmune responses. Dysmyelination recovered in these double-knockout mice. The number of oligodendrocyte progenitors, which expressed platelet-derived growth factor receptor-α, did not change in the 2-week-old mouse brain. These results indicate that microglial activation plays an important role in the myelination process, without influencing the number of oligodendrocyte progenitors, in the development of Hexb mice.
Collapse
|
20
|
Glass R, Norton S, Fox N, Kusnecov AW. Maternal immune activation with staphylococcal enterotoxin A produces unique behavioral changes in C57BL/6 mouse offspring. Brain Behav Immun 2019; 75:12-25. [PMID: 29772261 DOI: 10.1016/j.bbi.2018.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 12/25/2022] Open
Abstract
Stimulation of the immune system during pregnancy, known as maternal immune activation (MIA), can cause long-lasting neurobiological and behavioral changes in the offspring. This phenomenon has been implicated in the etiology of developmental psychiatric disorders, such as autism and schizophrenia. Much of this evidence is predicated on animal models using bacterial agents such as LPS and/or viral mimics such as Poly I:C, both of which act through toll-like receptors. However, fewer studies have examined the role of direct activation of maternal T-cells during pregnancy using microbial agents. Bacterial superantigens, such as Staphylococcal Enterotoxin A and B (SEA; SEB), are microbial proteins that activate CD4+ T-cells and cause prominent T-cell proliferation and cytokine production. We injected pregnant and non-pregnant adult female C57BL/6 mice with 200 μg/Kg of SEA, SEB, or 0.9% saline, and measured splenic T-cell-derived cytokine concentrations (viz., IL-2, IFN-γ, IL-6, and IL-4) 2 h later; animals injected with SEA were also measured for splenic concentrations of TNF-α and IL-17A. Half of the injected pregnant animals were brought to term, and their offspring were tested on a series of behavioral tasks starting at six weeks of age (postnatal day 42 [P42]). These tasks included social interaction, the elevated plus maze (EPM), an open field and object recognition (OR) task, prepulse inhibition (PPI) of sensorimotor gating, and the Morris water maze (MWM). Results showed that SEA and SEB induced significant concentrations of all measured cytokines, and in particular IFN-γ, although cytokine responses were greater following SEA exposure. In addition, pregnancy induced an inhibitory effect on cytokine production. Behavioral results showed distinct phenotypes among offspring from SEA- or SEB-injected mothers, very likely due to differences in the magnitude of cytokines generated in response to each toxin. Offspring from SEA-injected mothers displayed modest decreases in social behavior, but increased anxiety, locomotion, interest in a novel object, and short-term spatial memory, while offspring of SEB-injected mothers only exhibited increased anxiety and locomotion. There were no deficits in PPI, which was actually pronounced in SEA and SEB offspring. Overall, the novel use of SEA and SEB as prenatal immune challenges elicited distinct behavioral profiles in the offspring that both mirrors and diverges from previous models of maternal immune activation in important ways. We conclude that superantigen-induced T-cell-mediated maternal immune activation is a valid and valuable model for studying and expanding our understanding of the effects of prenatal immune challenge on neurodevelopmental and behavioral alterations in offspring.
Collapse
Affiliation(s)
- Ruthy Glass
- Rutgers University, 152 Frelinghuysen Rd, Piscataway, NJ 08854, USA.
| | - Sara Norton
- Rutgers University, 152 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | - Nicholas Fox
- Rutgers University, 152 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | | |
Collapse
|
21
|
Labrousse VF, Leyrolle Q, Amadieu C, Aubert A, Sere A, Coutureau E, Grégoire S, Bretillon L, Pallet V, Gressens P, Joffre C, Nadjar A, Layé S. Dietary omega-3 deficiency exacerbates inflammation and reveals spatial memory deficits in mice exposed to lipopolysaccharide during gestation. Brain Behav Immun 2018; 73:427-440. [PMID: 29879442 DOI: 10.1016/j.bbi.2018.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/21/2018] [Accepted: 06/03/2018] [Indexed: 01/03/2023] Open
Abstract
Maternal immune activation (MIA) is a common environmental insult on the developing brain and represents a risk factor for neurodevelopmental disorders. Animal models of in utero inflammation further revealed a causal link between maternal inflammatory activation during pregnancy and behavioural impairment relevant to neurodevelopmental disorders in the offspring. Accumulating evidence point out that proinflammatory cytokines produced both in the maternal and fetal compartments are responsible for social, cognitive and emotional behavioral deficits in the offspring. Polyunsaturated fatty acids (PUFAs) are essential fatty acids with potent immunomodulatory activities. PUFAs and their bioactive derivatives can promote or inhibit many aspects of the immune and inflammatory response. PUFAs of the n-3 series ('n-3 PUFAs', also known as omega-3) exhibit anti-inflammatory/pro-resolution properties and promote immune functions, while PUFAs of the n-6 series ('n-6 PUFAs' or omega-6) favor pro-inflammatory responses. The present study aimed at providing insight into the effects of n-3 PUFAs on the consequences of MIA on brain development. We hypothesized that a reduction in n-3 PUFAs exacerbates both maternal and fetal inflammatory responses to MIA and later-life defects in memory in the offspring. Based on a lipopolysaccharide (LPS) model of MIA (LPS injection at embryonic day 17), we showed that n-3 PUFA deficiency 1) alters fatty acid composition of the fetal and adult offspring brain; 2) exacerbates maternal and fetal inflammatory processes with no significant alteration of microglia phenotype, and 3) induces spatial memory deficits in the adult offspring. We also showed a strong negative correlation between brain content in n-3 PUFA and cytokine production in MIA-exposed fetuses. Overall, our study is the first to address the deleterious effects of n-3 PUFA deficiency on brain lipid composition, inflammation and memory performances in MIA-exposed animals and indicates that it should be considered as a potent environmental risk factor for the apparition of neurodevelopmental disorders.
Collapse
Affiliation(s)
- V F Labrousse
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - Q Leyrolle
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, F-75019 Paris, France
| | - C Amadieu
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - A Aubert
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - A Sere
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - E Coutureau
- Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Uité Mixte de Recherche 5287, 33076 Bordeaux, France; Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, 33076 Bordeaux, France
| | - S Grégoire
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - L Bretillon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - V Pallet
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - P Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, F-75019 Paris, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - C Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - A Nadjar
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France.
| | - S Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France.
| |
Collapse
|
22
|
Role of astrocytic MeCP2 in regulation of CNS myelination by affecting oligodendrocyte and neuronal physiology and axo–glial interactions. Exp Brain Res 2018; 236:3015-3027. [DOI: 10.1007/s00221-018-5363-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/11/2018] [Indexed: 12/12/2022]
|
23
|
Sharma K, Singh J, Pillai PP. MeCP2 Differentially Regulate the Myelin MBP and PLP Protein Expression in Oligodendrocytes and C6 Glioma. J Mol Neurosci 2018; 65:343-350. [DOI: 10.1007/s12031-018-1112-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
|
24
|
Cattane N, Richetto J, Cattaneo A. Prenatal exposure to environmental insults and enhanced risk of developing Schizophrenia and Autism Spectrum Disorder: focus on biological pathways and epigenetic mechanisms. Neurosci Biobehav Rev 2018; 117:253-278. [PMID: 29981347 DOI: 10.1016/j.neubiorev.2018.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/11/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Abstract
When considering neurodevelopmental disorders (NDDs), Schizophrenia (SZ) and Autism Spectrum Disorder (ASD) are considered to be among the most severe in term of prevalence, morbidity and impact on the society. Similar features and overlapping symptoms have been observed at multiple levels, suggesting common pathophysiological bases. Indeed, recent genome-wide association studies (GWAS) and epidemiological data report shared vulnerability genes and environmental triggers across the two disorders. In this review, we will discuss the possible biological mechanisms, including glutamatergic and GABAergic neurotransmissions, inflammatory signals and oxidative stress related systems, which are targeted by adverse environmental exposures and that have been associated with the development of SZ and ASD. We will also discuss the emerging role of the gut microbiome as possible interplay between environment, immune system and brain development. Finally, we will describe the involvement of epigenetic mechanisms in the maintenance of long-lasting effects of adverse environments early in life. This will allow us to better understand the pathophysiology of these NDDs, and also to identify novel targets for future treatment strategies.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Fatebenefratelli San Giovanni di Dio, via Pilastroni 4, Brescia, Italy
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli San Giovanni di Dio, via Pilastroni 4, Brescia, Italy; Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, 125 Coldharbour Lane, SE5 9NU, London, UK.
| |
Collapse
|
25
|
Bernhardt LK, Bairy KL, Madhyastha S. Neuroprotective Role of N-acetylcysteine against Learning Deficits and Altered Brain Neurotransmitters in Rat Pups Subjected to Prenatal Stress. Brain Sci 2018; 8:E120. [PMID: 29958412 PMCID: PMC6071106 DOI: 10.3390/brainsci8070120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/16/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022] Open
Abstract
Prenatal adversaries like stress are known to harm the progeny and oxidative stress, which is known to be one of the causative factors. N-acetyl cysteine (NAC), which is a potent antioxidant, has been shown to play a neuroprotective role in humans and experimental animals. This study examines the benefits of NAC on the prenatal stress-induced learning and memory deficits and alteration in brain neurotransmitter in rat pups. Pregnant dams were restrained (45 min; 3 times/day) during the early or late gestational period. Other groups received early or late gestational restrain stress combined with NAC treatment throughout the gestational period. At postnatal day (PND) 28, offspring were tested in a shuttle box for assessing learning and memory, which was followed by a brain neurotransmitter (dopamine, norepinephrine, and serotonin) estimation on PND 36. Late gestational stress resulted in learning deficits, the inability to retain the memory, and reduced brain dopamine content while not affecting norepinephrine and serotonin. NAC treatment in prenatally stressed rats reversed learning and memory deficits as well as brain dopamine content in offspring. These findings suggest that NAC protect the progeny from an undesirable cognitive sequel associated with prenatal stress.
Collapse
Affiliation(s)
- Liegelin Kavitha Bernhardt
- Department of Physiology, Melaka Manipal Medical College, Manipal Academy of Higher Education; Manipal 576104, India.
| | - K Lakshminarayana Bairy
- Pharmacology, RAL College of Medical Sciences, Ras al-Khaimah Medical and Health Sciences University, Ras Al-Khaimah 11172, UAE.
| | - Sampath Madhyastha
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City 13060, Kuwait.
| |
Collapse
|
26
|
Chatterjee J, Nairy RK, Langhnoja J, Tripathi A, Patil RK, Pillai PP, Mustak MS. ER stress and genomic instability induced by gamma radiation in mice primary cultured glial cells. Metab Brain Dis 2018; 33:855-868. [PMID: 29429012 DOI: 10.1007/s11011-018-0183-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 01/04/2018] [Indexed: 11/28/2022]
Abstract
Ionizing radiation induces various pathophysiological conditions by altering central nervous system (CNS) homeostasis, leading to neurodegenerative diseases. However, the potential effect of ionizing radiation response on cellular physiology in glial cells is unclear. In the present study, micronucleus test, comet assay, and RT-PCR were performed to investigate the potential effect of gamma radiation in cultured oligodendrocytes and astrocytes with respect to genomic instability, Endoplasmic Reticulum (ER) stress, and inflammation. Further, we studied the effect of alteration in ER stress specific gene expression in cortex post whole body radiation in mice. Results showed that exposure of gamma radiation of 2Gy in-vitro cultured astrocytes and oligodendrocytes and 7Gy in-vivo induced ER stress and Inflammation along with profuse DNA damage and Chromosomal abnormality. Additionally, we observed downregulation of myelin basic protein levels in cultured oligodendrocytes exposed to radiation. The present data suggests that ER stress and pro inflammatory cytokines serve as the major players in inducing glial cell dysfunction post gamma irradiation along with induction of genomic instability. Taken together, these results indicate that ER stress, DNA damage, and inflammatory pathways may be critical events leading to glial cell dysfunction and subsequent cell death following exposure to ionizing radiation.
Collapse
Affiliation(s)
- Jit Chatterjee
- Department of Applied Zoology, Mangalore University, Mangalagangotri, Mangalore, Karnataka State, 574199, India
| | - Rajesha K Nairy
- Department of Physics, P.A College of Engineering, Mangalore, 574153, India
| | - Jaldeep Langhnoja
- Division of Neurobiology, Department of Zoology, Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - Ashutosh Tripathi
- Division of Neurobiology, Department of Zoology, Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - Rajashekhar K Patil
- Department of Applied Zoology, Mangalore University, Mangalagangotri, Mangalore, Karnataka State, 574199, India
| | - Prakash P Pillai
- Division of Neurobiology, Department of Zoology, Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - Mohammed S Mustak
- Department of Applied Zoology, Mangalore University, Mangalagangotri, Mangalore, Karnataka State, 574199, India.
| |
Collapse
|
27
|
Murphy NP, Lampe KJ. Fabricating PLGA microparticles with high loads of the small molecule antioxidant N-acetylcysteine that rescue oligodendrocyte progenitor cells from oxidative stress. Biotechnol Bioeng 2017; 115:246-256. [PMID: 28872660 DOI: 10.1002/bit.26443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/12/2017] [Accepted: 08/28/2017] [Indexed: 01/02/2023]
Abstract
Reactive oxygen species (ROS), encompassing all oxygen radical or non-radical oxidizing agents, play key roles in disease progression. Controlled delivery of antioxidants is therapeutically relevant in such oxidant-stressed environments. Encapsulating small hydrophilic molecules into hydrophobic polymer microparticles via traditional emulsion methods has long been a challenge due to rapid mass transport of small molecules out of particle pores. We have developed a simple alteration to the existing water-in-oil-in-water (W/O/W) drug encapsulation method that dramatically improves loading efficiency: doping external water phases with drug to mitigate drug diffusion out of the particle during fabrication. PLGA microparticles with diameters ranging from 0.6 to 0.9 micrometers were fabricated, encapsulating high loads of 0.6-0.9 µm diameter PLGA microparticles were fabricated, encapsulating high loads of the antioxidant N-acetylcysteine (NAC), and released active, ROS-scavenging NAC for up to 5 weeks. Encapsulation efficiencies, normalized to the theoretical load of traditional encapsulation without doping, ranged from 96% to 400%, indicating that NAC-loaded external water phases not only prevented drug loss due to diffusion, but also doped the particles with additional drug. Antioxidant-doped particles positively affected the metabolism of oligodendrocyte progenitor cells (OPCs) under H2 O2 -mediated oxidative stress when administered both before (protection) or after (rescue) injury. Antioxidant doped particles improved outcomes of OPCs experiencing multiple doses of H2 O2 by increasing the intracellular glutathione content and preserving cellular viability relative to the injury control. Furthermore, antioxidant-doped particles preserve cell number, number of process extensions, cytoskeletal morphology, and nuclear size of H2 O2 -stressed OPCs relative to the injury control. These NAC-doped particles have the potential to provide temporally-controlled antioxidant therapy in neurodegenerative disorders such as multiple sclerosis (MS) that are characterized by continuous oxidative stress.
Collapse
Affiliation(s)
- Nicholas P Murphy
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
28
|
Yavuz A, Sezik M, Ozmen O, Asci H. Fingolimod against endotoxin-induced fetal brain injury in a rat model. J Obstet Gynaecol Res 2017; 43:1708-1713. [DOI: 10.1111/jog.13444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/16/2017] [Accepted: 06/10/2017] [Indexed: 12/01/2022]
Affiliation(s)
- And Yavuz
- Department of Obstetrics and Gynecology; Süleyman Demirel University School of Medicine, SDU Campus; Isparta Turkey
| | - Mekin Sezik
- Department of Obstetrics and Gynecology; Süleyman Demirel University School of Medicine, SDU Campus; Isparta Turkey
| | - Ozlem Ozmen
- Department of Pathology; Mehmet Akif Ersoy University Faculty of Veterinary Medicine; Burdur Turkey
| | - Halil Asci
- Department of Pharmacology; Süleyman Demirel University School of Medicine, SDU Campus; Isparta Turkey
| |
Collapse
|
29
|
Zhang Y, Cui W, Zhai Q, Zhang T, Wen X. N-acetylcysteine ameliorates repetitive/stereotypic behavior due to its antioxidant properties without activation of the canonical Wnt pathway in a valproic acid-induced rat model of autism. Mol Med Rep 2017. [PMID: 28627665 DOI: 10.3892/mmr.2017.6787] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-acetylcysteine (NAC) is widely used as an antioxidant, and previous studies have suggested that it may have potential as an alternative therapeutic strategy for the treatment of patients with autism. However, the exact effects of NAC administration on the development of autism, as well as the molecular mechanisms underlying its actions, have yet to be fully elucidated. The present study aimed to investigate the effects of NAC on the oxidative status of rats in a valproic acid (VPA)‑induced model of autism, and to examine the involvement of the canonical Wnt signaling pathway in the actions of NAC. Rats exposed to VPA were monitored for behavioral changes, and oxidative stress indicators and key molecules of the canonical Wnt pathway were investigated using colorimetric and western blot analysis, respectively. The present results demonstrated that NAC ameliorated repetitive and stereotypic activity in autism model rats. Furthermore, NAC was revealed to relieve oxidative stress, as demonstrated by the increased glutathione and reduced malondialdehyde levels compared with VPA‑treated rats. However, NAC did not appear to affect the activity of the canonical Wnt signaling pathway. The present findings suggested that the beneficial effects of NAC in autism may be associated with its antioxidative properties, and may not be mediated by the canonical Wnt pathway. However, it may be hypothesized that the canonical Wnt pathway can be indirectly regulated by NAC through the activation of other signaling pathways or upstream factors. Taken together, the present study has contributed to the elucidation of the molecular mechanisms that underlie the actions of NAC in autism, suggesting its potential for the development of novel therapeutic strategies for the treatment of patients with autism.
Collapse
Affiliation(s)
- Yinghua Zhang
- Henan Key Laboratory of Medical Tissue Regeneration, Department of Human Anatomy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Weigang Cui
- Henan Key Laboratory of Medical Tissue Regeneration, Department of Human Anatomy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Qianqian Zhai
- Department of Endocrinology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Tianran Zhang
- Undergraduate Student of Basic Medicine School, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiaojun Wen
- Henan Key Laboratory of Medical Tissue Regeneration, Department of Human Anatomy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
30
|
Patra A, Huang H, Bauer JA, Giannone PJ. Neurological consequences of systemic inflammation in the premature neonate. Neural Regen Res 2017; 12:890-896. [PMID: 28761416 PMCID: PMC5514858 DOI: 10.4103/1673-5374.208547] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Despite substantial progress in neonatal care over the past two decades leading to improved survival of extremely premature infants, extreme prematurity continues to be associated with long term neurodevelopmental impairments. Cerebral white matter injury is the predominant form of insult in preterm brain leading to adverse neurological consequences. Such brain injury pattern and unfavorable neurologic sequelae is commonly encountered in premature infants exposed to systemic inflammatory states such as clinical or culture proven sepsis with or without evidence of meningitis, prolonged mechanical ventilation, bronchopulmonary dysplasia, necrotizing enterocolitis and chorioamnionitis. Underlying mechanisms may include cytokine mediated processes without direct entry of pathogens into the brain, developmental differences in immune response and complex neurovascular barrier system that play a critical role in regulating the cerebral response to various systemic inflammatory insults in premature infants. Understanding of these pathologic mechanisms and clinical correlates of such injury based on serum biomarkers or brain imaging findings on magnetic resonance imaging will pave way for future research and translational therapeutic opportunities for the developing brain.
Collapse
Affiliation(s)
- Aparna Patra
- OMNI Academic Service Line and Division of Neonatology, Department of Pediatrics, Kentucky Children's Hospital, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Hong Huang
- OMNI Academic Service Line and Division of Neonatology, Department of Pediatrics, Kentucky Children's Hospital, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - John A Bauer
- OMNI Academic Service Line and Division of Neonatology, Department of Pediatrics, Kentucky Children's Hospital, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Peter J Giannone
- OMNI Academic Service Line and Division of Neonatology, Department of Pediatrics, Kentucky Children's Hospital, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
31
|
Yıldız EP, Ekici B, Tatlı B. Neonatal hypoxic ischemic encephalopathy: an update on disease pathogenesis and treatment. Expert Rev Neurother 2016; 17:449-459. [PMID: 27830959 DOI: 10.1080/14737175.2017.1259567] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Hypoxic ischemic encephalopathy (HIE) is the most important reason for morbidity and mortality in term-born infants. Understanding pathophysiology of the brain damage is essential for the early detection of patients with high risk for HIE and development of strategies for their treatments. Areas covered: This review discusses pathophysiology of the neonatal HIE and its treatment options, including hypothermia, melatonin, allopurinol, topiramate, erythropoietin, N-acetylcyctein, magnesium sulphate and xenon. Expert commentary: Several clinical studies have been performed in order to decrease the risk of brain injury due to difficulties in the early diagnosis and treatment, and to develop strategies for better long-term outcomes. Although currently standard treatment methods include therapeutic hypothermia for neonates with moderate to severe HIE, new supportive options are needed to enhance neuroprotective effects of the hypothermia, which should aim to reduce production of the free radicals and to have anti-inflammatory and anti-apoptotic actions.
Collapse
Affiliation(s)
| | - Barış Ekici
- b Department of Pediatric Neurology , Liv Hospital , Istanbul , Turkey
| | - Burak Tatlı
- a Department of Pediatric Neurology , Istanbul University , Istanbul , Turkey
| |
Collapse
|
32
|
Neuroinflammation in Autism: Plausible Role of Maternal Inflammation, Dietary Omega 3, and Microbiota. Neural Plast 2016; 2016:3597209. [PMID: 27840741 PMCID: PMC5093279 DOI: 10.1155/2016/3597209] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/24/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
Several genetic causes of autism spectrum disorder (ASD) have been identified. However, more recent work has highlighted that certain environmental exposures early in life may also account for some cases of autism. Environmental insults during pregnancy, such as infection or malnutrition, seem to dramatically impact brain development. Maternal viral or bacterial infections have been characterized as disruptors of brain shaping, even if their underlying mechanisms are not yet fully understood. Poor nutritional diversity, as well as nutrient deficiency, is strongly associated with neurodevelopmental disorders in children. For instance, imbalanced levels of essential fatty acids, and especially polyunsaturated fatty acids (PUFAs), are observed in patients with ASD and other neurodevelopmental disorders (e.g., attention deficit hyperactivity disorder (ADHD) and schizophrenia). Interestingly, PUFAs, and specifically n-3 PUFAs, are powerful immunomodulators that exert anti-inflammatory properties. These prenatal dietary and immunologic factors not only impact the fetal brain, but also affect the microbiota. Recent work suggests that the microbiota could be the missing link between environmental insults in prenatal life and future neurodevelopmental disorders. As both nutrition and inflammation can massively affect the microbiota, we discuss here how understanding the crosstalk between these three actors could provide a promising framework to better elucidate ASD etiology.
Collapse
|
33
|
Hoeijmakers L, Heinen Y, van Dam AM, Lucassen PJ, Korosi A. Microglial Priming and Alzheimer's Disease: A Possible Role for (Early) Immune Challenges and Epigenetics? Front Hum Neurosci 2016; 10:398. [PMID: 27555812 PMCID: PMC4977314 DOI: 10.3389/fnhum.2016.00398] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is thought to contribute to Alzheimer's disease (AD) pathogenesis that is, to a large extent, mediated by microglia. Given the tight interaction between the immune system and the brain, peripheral immune challenges can profoundly affect brain function. Indeed, both preclinical and clinical studies have indicated that an aberrant inflammatory response can elicit behavioral impairments and cognitive deficits, especially when the brain is in a vulnerable state, e.g., during early development, as a result of aging, or under disease conditions like AD. However, how exactly peripheral immune challenges affect brain function and whether this is mediated by aberrant microglial functioning remains largely elusive. In this review, we hypothesize that: (1) systemic immune challenges occurring during vulnerable periods of life can increase the propensity to induce later cognitive dysfunction and accelerate AD pathology; and (2) that "priming" of microglial cells is instrumental in mediating this vulnerability. We highlight how microglia can be primed by both neonatal infections as well as by aging, two periods of life during which microglial activity is known to be specifically upregulated. Lasting changes in (the ratios of) specific microglial phenotypes can result in an exaggerated pro-inflammatory cytokine response to subsequent inflammatory challenges. While the resulting changes in brain function are initially transient, a continued and/or excess release of such pro-inflammatory cytokines can activate various downstream cellular cascades known to be relevant for AD. Finally, we discuss microglial priming and the aberrant microglial response as potential target for treatment strategies for AD.
Collapse
Affiliation(s)
- Lianne Hoeijmakers
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam Amsterdam, Netherlands
| | - Yvonne Heinen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam Amsterdam, Netherlands
| | - Anne-Marie van Dam
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center Amsterdam, Netherlands
| | - Paul J Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam Amsterdam, Netherlands
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
34
|
Samuvel DJ, Shunmugavel A, Singh AK, Singh I, Khan M. S-Nitrosoglutathione ameliorates acute renal dysfunction in a rat model of lipopolysaccharide-induced sepsis. ACTA ACUST UNITED AC 2016; 68:1310-9. [PMID: 27484743 DOI: 10.1111/jphp.12608] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/05/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Sepsis induces an inflammatory response that results in acute renal failure (ARF). The current study is to evaluate the role of S-Nitrosoglutathione (GSNO) in renoprotection from lipopolysaccharide (LPS)-induced sepsis. METHODS Rats were divided to three groups. First group received LPS (5 mg/kg body weight), second group was treated with LPS + GSNO (50 μg/kg body weight), and third group was administered with vehicle (saline). They were sacrificed on day 1 and 3 post-LPS injection. Serum levels of nitric oxide (NO), creatinine and blood urea nitrogen (BUN) were analysed. Tissue morphology, T lymphocyte infiltrations, and the expression of inflammatory (TNF-α, iNOS) and anti-inflammatory (IL-10) mediators as well as glutathione (GSH) levels were determined. KEY FINDING Lipopolysaccharide significantly decreased body weight and increased cellular T lymphocyte infiltration, caspase-3 and iNOS and decreased PPAR-γ in renal tissue. NO, creatinine and BUN were significantly elevated after LPS challenge, and they significantly decreased after GSNO treatment. TNF-α level was found significantly increased in LPS-treated serum and kidney. GSNO treatment of LPS-challenged rats decreased caspase-3, iNOS, TNF-α, T lymphocyte infiltration and remarkably increased levels of IL-10, PPAR-γ and GSH. CONCLUSION GSNO can be used as a renoprotective agent for the treatment of sepsis-induced acute kidney injury.
Collapse
Affiliation(s)
- Devadoss J Samuvel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
35
|
Vilmont V, Cadot B, Ouanounou G, Gomes ER. A system for studying mechanisms of neuromuscular junction development and maintenance. Development 2016; 143:2464-77. [PMID: 27226316 PMCID: PMC4958317 DOI: 10.1242/dev.130278] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 05/12/2016] [Indexed: 12/12/2022]
Abstract
The neuromuscular junction (NMJ), a cellular synapse between a motor neuron and a skeletal muscle fiber, enables the translation of chemical cues into physical activity. The development of this special structure has been subject to numerous investigations, but its complexity renders in vivo studies particularly difficult to perform. In vitro modeling of the neuromuscular junction represents a powerful tool to delineate fully the fine tuning of events that lead to subcellular specialization at the pre-synaptic and post-synaptic sites. Here, we describe a novel heterologous co-culture in vitro method using rat spinal cord explants with dorsal root ganglia and murine primary myoblasts to study neuromuscular junctions. This system allows the formation and long-term survival of highly differentiated myofibers, motor neurons, supporting glial cells and functional neuromuscular junctions with post-synaptic specialization. Therefore, fundamental aspects of NMJ formation and maintenance can be studied using the described system, which can be adapted to model multiple NMJ-associated disorders.
Collapse
Affiliation(s)
- Valérie Vilmont
- Myology Research Center, UM76-INSERM U974-CNRS FRE 3617 Sorbonne Universités, UPMC Université Paris 06, Paris, France
| | - Bruno Cadot
- Myology Research Center, UM76-INSERM U974-CNRS FRE 3617 Sorbonne Universités, UPMC Université Paris 06, Paris, France
| | - Gilles Ouanounou
- FRE CNRS 3693 (U.N.I.C), Unité de Neuroscience, Information et Complexité CNRS, Bât. 33, 1 Ave de la Terasse, Gif sur Yvette 91198, France
| | - Edgar R Gomes
- Myology Research Center, UM76-INSERM U974-CNRS FRE 3617 Sorbonne Universités, UPMC Université Paris 06, Paris, France Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
36
|
Toll-like receptor 4-mediated immune stress in pregnant rats activates STAT3 in the fetal brain: role of interleukin-6. Pediatr Res 2016; 79:781-7. [PMID: 25938734 DOI: 10.1038/pr.2015.86] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/28/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Prenatal exposure to pathogens induces long lasting effect on brain function and plasticity. It is unclear how maternal immune stress impacts fetal brain development. Immune challenged pregnant rats induce the production of inflammatory cytokines including tumor necrosis factor (TNF)α, interleukin (IL)1β, and IL-6. IL-6 crosses the placenta but its mechanism of action on fetal brain is unclear. METHODS Gestation day 15 (GD15) rats were given a single injection of lipopolysaccharide (LPS) (100 µg/kg) in the presence or the absence of an IL-6 neutralizing antibody (IL-6Ab, 10 µg/kg). The activation of the intracellular signal of IL-6; signal transducer and activator of transcription (STAT3) and levels of glucocorticoids (GCs) were monitored in fetal brains. RESULTS LPS administration to GD15 rats significantly increased the phosphorylation levels of STAT3 in fetal brains. Such activation was blunted by IL-6Ab. LPS induced a significant rise in GCs in the plasma of dams but not in fetal brains. IL-6Ab significantly reduced LPS-induced GCs in maternal plasma. CONCLUSION Toll-like receptor 4 (TLR4)-induced activation of the maternal innate immune system affects fetal brains likely via the mobilization of IL-6/STAT3 pathway. In contrast, TLR4-stimulated maternal GCs release is less likely to play a significant role in fetal brain development.
Collapse
|
37
|
Al-Amin MM, Sultana R, Sultana S, Rahman MM, Reza HM. Astaxanthin ameliorates prenatal LPS-exposed behavioral deficits and oxidative stress in adult offspring. BMC Neurosci 2016; 17:11. [PMID: 26856812 PMCID: PMC4746928 DOI: 10.1186/s12868-016-0245-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 01/28/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Prenatal maternal lipopolysaccharide (LPS) exposure leads to behavioral deficits such as depression, anxiety, and schizophrenia in the adult lives. LPS-exposure resulted in the production of cytokines and oxidative damage. On the contrary, astaxanthin is a carotenoid compound, showed neuroprotective properties via its antioxidant capacity. This study examines the effect of astaxanthin on the prenatal maternal LPS-induced postnatal behavioral deficit in mice. RESULTS We found that prenatal LPS-exposed mice showed extensive immobile phase in the tail suspension test, higher frequent head dipping in the hole-board test and greater hypolocomotion in the open field test. All these values were statistically significant (p < 0.05). In addition, a marked elevation of the level of lipid peroxidation, advanced protein oxidation product, nitric oxide, while a pronounced depletion of antioxidant enzymes (superoxide dismutase, catalase and glutathione) were observed in the adult offspring mice that were prenatally exposed to LPS. To the contrary, 6-weeks long treatment with astaxanthin significantly improved all behavioral deficits (p < 0.05) and diminished prenatal LPS-induced oxidative stress markers in the brain and liver. CONCLUSIONS Taken together, these results suggest that prenatal maternal LPS-exposure leads to behavioral deficits in the adults, while astaxanthin ameliorates the behavioral deficits presumably via its antioxidant property.
Collapse
Affiliation(s)
- Md Mamun Al-Amin
- Department of Pharmaceutical Sciences, North South University, Plot 15, Block B, Bashundhara, Dhaka, 1229, Bangladesh.
- The Queensland Brain Institute, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia.
| | - Rabeya Sultana
- Department of Pharmaceutical Sciences, North South University, Plot 15, Block B, Bashundhara, Dhaka, 1229, Bangladesh.
| | - Sharmin Sultana
- Department of Pharmaceutical Sciences, North South University, Plot 15, Block B, Bashundhara, Dhaka, 1229, Bangladesh.
| | - Md Mahbubur Rahman
- Department of Pharmaceutical Sciences, North South University, Plot 15, Block B, Bashundhara, Dhaka, 1229, Bangladesh.
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Plot 15, Block B, Bashundhara, Dhaka, 1229, Bangladesh.
| |
Collapse
|
38
|
Lipopolysaccharide Upregulates the Expression of CINC-3 and LIX in Primary NG2 Cells. Neurochem Res 2016; 41:1448-57. [PMID: 26842931 DOI: 10.1007/s11064-016-1856-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/01/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
Abstract
Numerous NG2 cells, also called oligodendrocyte progenitor cells (OPCs), exist ubiquitously in the gray and white matter in the adult central nervous system (CNS). Although NG2 cells could become active by upregulation of NG2 expression and hypertrophy or extension of their processes under various neuropathological conditions, their actual role in the brain remains to be illustrated. In view of the fact that the synergy of cytokine and chemokine networks plays an important role in CNS inflammation and immunity, we have assumed that the NG2 cells might take part in brain inflammation and immunity by making a contribution to the pool of cytokines or chemokines. In the current study, NG2-expressing OPCs were prepared from cerebral hemispheres of postnatal day 0 or 1 Sprague-Dawley rats. Our results showed that NG2-expressing OPCs, verified by immunohistological staining of anti-NG2 antibody and anti-platelet-derived growth factor receptor alpha (PDGFRα) antibody, presented binding affinity to lipopolysaccharide (LPS), a commonly used stimulator in a neuroinflammatory model. Using cytokine antibody array, QPCR and ELISA, we have further shown that LPS could upregulate the expression of cytokine induced neutrophil chemoattractant-3 (CINC-3) and LPS induced CXC chemokine (LIX) in primary NG2-expressing OPCs, without the alteration in cell number of NG2-expressing OPCs. In addition, the cells bearing the receptor for these two cytokines included microglia and OPCs. Taken together, our results suggest that NG2-expressing OPCs could response to LPS and may take part in neuroinflammatory process, through secreting cytokines and chemokines to exert an effect on target cells (OPCs and microglia).
Collapse
|
39
|
Nie X, Lowe DW, Rollins LG, Bentzley J, Fraser JL, Martin R, Singh I, Jenkins D. Sex-specific effects of N-acetylcysteine in neonatal rats treated with hypothermia after severe hypoxia-ischemia. Neurosci Res 2016; 108:24-33. [PMID: 26851769 DOI: 10.1016/j.neures.2016.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 12/16/2015] [Accepted: 01/24/2016] [Indexed: 12/29/2022]
Abstract
Approximately half of moderate to severely hypoxic-ischemic (HI) newborns do not respond to hypothermia, the only proven neuroprotective treatment. N-acetylcysteine (NAC), an antioxidant and glutathione precursor, shows promise for neuroprotection in combination with hypothermia, mitigating post-HI neuroinflammation due to oxidative stress. As mechanisms of HI injury and cell death differ in males and females, sex differences must be considered in translational research of neuroprotection. We assessed the potential toxicity and efficacy of NAC in combination with hypothermia, in male and female neonatal rats after severe HI injury. NAC 50mg/kg/d administered 1h after initiation of hypothermia significantly decreased iNOS expression and caspase 3 activation in the injured hemisphere versus hypothermia alone. However, only females treated with hypothermia +NAC 50mg/kg showed improvement in short-term infarct volumes compared with saline treated animals. Hypothermia alone had no effect in this severe model. When NAC was continued for 6 weeks, significant improvement in long-term neuromotor outcomes over hypothermia treatment alone was observed, controlling for sex. Antioxidants may provide insufficient neuroprotection after HI for neonatal males in the short term, while long-term therapy may benefit both sexes.
Collapse
Affiliation(s)
- Xingju Nie
- Center for Biomedical Imaging, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Danielle W Lowe
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Laura Grace Rollins
- Department of Psychology, University of Massachusetts, 100 Morrissey Blvd, Boston, MA 02125, United States.
| | - Jessica Bentzley
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Jamie L Fraser
- Medical Genetics Training Program, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-2152, United States.
| | - Renee Martin
- Department of Biostatistics and Epidemiology, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Dorothea Jenkins
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| |
Collapse
|
40
|
Jenkins DD, Wiest DB, Mulvihill DM, Hlavacek AM, Majstoravich SJ, Brown TR, Taylor JJ, Buckley JR, Turner RP, Rollins LG, Bentzley JP, Hope KE, Barbour AB, Lowe DW, Martin RH, Chang EY. Fetal and Neonatal Effects of N-Acetylcysteine When Used for Neuroprotection in Maternal Chorioamnionitis. J Pediatr 2016; 168:67-76.e6. [PMID: 26545726 PMCID: PMC4698030 DOI: 10.1016/j.jpeds.2015.09.076] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 08/25/2015] [Accepted: 09/29/2015] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To evaluate the clinical safety of antenatal and postnatal N-acetylcysteine (NAC) as a neuroprotective agent in maternal chorioamnionitis in a randomized, controlled, double-blinded trial. STUDY DESIGN Twenty-two mothers >24 weeks gestation presenting within 4 hours of diagnosis of clinical chorioamnionitis were randomized with their 24 infants to NAC or saline treatment. Antenatal NAC (100 mg/kg/dose) or saline was given intravenously every 6 hours until delivery. Postnatally, NAC (12.5-25 mg/kg/dose, n = 12) or saline (n = 12) was given every 12 hours for 5 doses. Doppler studies of fetal umbilical and fetal and infant cerebral blood flow, cranial ultrasounds, echocardiograms, cerebral oxygenation, electroencephalograms, and serum cytokines were evaluated before and after treatment, and 12, 24, and 48 hours after birth. Magnetic resonance spectroscopy and diffusion imaging were performed at term age equivalent. Development was followed for cerebral palsy or autism to 4 years of age. RESULTS Cardiovascular measures, cerebral blood flow velocity and vascular resistance, and cerebral oxygenation did not differ between treatment groups. Cerebrovascular coupling was disrupted in infants with chorioamnionitis treated with saline but preserved in infants treated with NAC, suggesting improved vascular regulation in the presence of neuroinflammation. Infants treated with NAC had higher serum anti-inflammatory interleukin-1 receptor antagonist and lower proinflammatory vascular endothelial growth factor over time vs controls. No adverse events related to NAC administration were noted. CONCLUSIONS In this cohort of newborns exposed to chorioamnionitis, antenatal and postnatal NAC was safe, preserved cerebrovascular regulation, and increased an anti-inflammatory neuroprotective protein. TRIAL REGISTRATION ClinicalTrials.gov: NCT00724594.
Collapse
Affiliation(s)
- Dorothea D. Jenkins
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Donald B. Wiest
- Department of Clinical Pharmacy and Outcome Science, Medical University of South Carolina, Charleston, SC
| | - Denise M. Mulvihill
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Anthony M. Hlavacek
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | | | - Truman R. Brown
- Department of Neuroscience’s Center for Advanced Imaging Research, Medical University of South Carolina, Charleston, SC
| | - Joseph J. Taylor
- Department of Neuroscience’s Center for Advanced Imaging Research, Medical University of South Carolina, Charleston, SC,Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| | - Jason R. Buckley
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Robert P. Turner
- Department of Clinical Pediatrics and Neurology, University of South Carolina School of Medicine and Palmetto Health Richland Children’s Hospital, Columbia, SC
| | | | - Jessica P. Bentzley
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Kathryn E. Hope
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Andrew B. Barbour
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Danielle W. Lowe
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Renee H. Martin
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Eugene Y. Chang
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
41
|
Kajimura I, Akaike T, Minamisawa S. Lipopolysaccharide Delays Closure of the Rat Ductus Arteriosus by Induction of Inducible Nitric Oxide Synthase But Not Prostaglandin E 2. Circ J 2016; 80:703-11. [DOI: 10.1253/circj.cj-15-1053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ichige Kajimura
- Department of Cell Physiology, The Jikei University School of Medicine
| | - Toru Akaike
- Department of Cell Physiology, The Jikei University School of Medicine
| | - Susumu Minamisawa
- Department of Cell Physiology, The Jikei University School of Medicine
| |
Collapse
|
42
|
Involvement of MeCP2 in Regulation of Myelin-Related Gene Expression in Cultured Rat Oligodendrocytes. J Mol Neurosci 2015; 57:176-84. [PMID: 26140854 DOI: 10.1007/s12031-015-0597-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/02/2015] [Indexed: 01/08/2023]
Abstract
Methyl CpG binding protein 2 (MeCP2) is a multifunctional protein which binds to methylated CpG, mutation of which cause a neurodevelopmental disorder, Rett syndrome. MeCP2 can function as both transcriptional activator and repressor of target gene. MeCP2 regulate gene expression in both neuron and glial cells in central nervous system (CNS). Oligodendrocytes, the myelinating cells of CNS, are required for normal functioning of neurons and are regulated by several transcription factors during their differentiation. In current study, we focused on the role of MeCP2 as transcription regulator of myelin genes in cultured rat oligodendrocytes. We have observed expression of MeCP2 at all stages of oligodendrocyte development. MeCP2 knockdown in cultured oligodendrocytes by small interference RNA (siRNA) has shown increase in myelin genes (myelin basic protein (MBP), proteolipid protein (PLP), myelin oligodendrocyte glycoprotein (MOG), and myelin-associated oligodendrocyte basic protein (MOBP)), neurotrophin (brain-derived neurotrophic factor (BDNF)), and transcriptional regulator (YY1) transcripts level, which are involved in regulation of oligodendrocyte differentiation and myelination. Further, we also found that protein levels of MBP, PLP, DM-20, and BDNF also significantly upregulated in MeCP2 knockdown oligodendrocytes. Our study suggests that the MeCP2 acts as a negative regulator of myelin protein expression.
Collapse
|
43
|
Maternal lipopolysaccharide alters the newborn oxidative stress and C-reactive protein levels in response to an inflammatory stress. J Dev Orig Health Dis 2015; 3:358-63. [PMID: 25102265 DOI: 10.1017/s204017441200027x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Maternal infection is associated with oxidative stress (OS) and inflammatory responses. We have previously shown that maternal exposure to lipopolysaccharide (LPS) at E18 alters the subsequent offspring immune response. As immune responses are mediated, in part, by OS, we sought to determine if maternal inflammation during pregnancy programs offspring OS and C-reactive protein (CRP) levels. Pregnant Sprague-Dawley rats received intraperitoneal (i.p.) injections of saline or LPS at 18 days' gestation (n = 4), and pups delivered spontaneously at term. At postnatal day 24, male and female offspring received i.p. injection of LPS. Serum lipid peroxides formation (PD) and CRP levels were determined before and at 4 h following the LPS injection. Pups of LPS-exposed dams had significantly higher basal OS (PD 29.4 ± 5.4 v. 10.1 ± 4.8 nmol/ml) compared with controls. In response to LPS, CRP levels (20.4 ± 2.8 v. 5.7 ± 1.0 ng/ml) were significantly higher among pups of LPS-exposed dams than controls. Prenatal maternal exposure to LPS increases baseline OS levels in neonates and CRP levels in response to LPS. These results suggest that maternal inflammation during the antenatal period may induce long-term sequelae in the offspring that may predispose to adult disease.
Collapse
|
44
|
Protective effects of N-acetyl-L-cysteine in human oligodendrocyte progenitor cells and restoration of motor function in neonatal rats with hypoxic-ischemic encephalopathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:764251. [PMID: 25918547 PMCID: PMC4396975 DOI: 10.1155/2015/764251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/15/2015] [Accepted: 03/16/2015] [Indexed: 12/29/2022]
Abstract
Objective. Since oligodendrocyte progenitor cells (OPCs) are the target cells of neonatal hypoxic-ischemic encephalopathy (HIE), the present study was aimed at investigating the protective effects of N-acetyl-l-cysteine (NAC), a well-known antioxidant and precursor of glutathione, in OPCs as well as in neonatal rats. Methods. In in vitro study, protective effects of NAC on KCN cytotoxicity in F3.Olig2 OPCs were investigated via MTT assay and apoptotic signal analysis. In in vivo study, NAC was administered to rats with HIE induced by hypoxia-ischemia surgery at postnatal day 7, and their motor functions and white matter demyelination were analyzed. Results. NAC decreased KCN cytotoxicity in F3.Olig2 cells and especially suppressed apoptosis by regulating Bcl2 and p-ERK. Administration of NAC recovered motor functions such as the using ratio of forelimb contralateral to the injured brain, locomotor activity, and rotarod performance of neonatal HIE animals. It was also confirmed that NAC attenuated demyelination in the corpus callosum, a white matter region vulnerable to HIE. Conclusion. The results indicate that NAC exerts neuroprotective effects in vitro and in vivo by preserving OPCs, via regulation of antiapoptotic signaling, and that F3.Olig2 human OPCs could be a good tool for screening of candidates for demyelinating diseases.
Collapse
|
45
|
Potential neuroprotective strategies for perinatal infection and inflammation. Int J Dev Neurosci 2015; 45:44-54. [DOI: 10.1016/j.ijdevneu.2015.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 02/16/2015] [Accepted: 02/16/2015] [Indexed: 01/17/2023] Open
|
46
|
New antioxidant drugs for neonatal brain injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:108251. [PMID: 25685254 PMCID: PMC4313724 DOI: 10.1155/2015/108251] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/19/2014] [Indexed: 11/17/2022]
Abstract
The brain injury concept covers a lot of heterogeneity in terms of aetiology involving multiple factors, genetic, hemodynamic, metabolic, nutritional, endocrinological, toxic, and infectious mechanisms, acting in antenatal or postnatal period. Increased vulnerability of the immature brain to oxidative stress is documented because of the limited capacity of antioxidant enzymes and the high free radicals (FRs) generation in rapidly growing tissue. FRs impair transmembrane enzyme Na+/K+-ATPase activity resulting in persistent membrane depolarization and excessive release of FR and excitatory aminoacid glutamate. Besides being neurotoxic, glutamate is also toxic to oligodendroglia, via FR effects. Neuronal cells die of oxidative stress. Excess of free iron and deficient iron/binding metabolising capacity are additional features favouring oxidative stress in newborn. Each step in the oxidative injury cascade has become a potential target for neuroprotective intervention. The administration of antioxidants for suspected or proven brain injury is still not accepted for clinical use due to uncertain beneficial effects when treatments are started after resuscitation of an asphyxiated newborn. The challenge for the future is the early identification of high-risk babies to target a safe and not toxic antioxidant therapy in combination with standard therapies to prevent brain injury and long-term neurodevelopmental impairment.
Collapse
|
47
|
Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol 2014; 10:643-60. [PMID: 25311587 DOI: 10.1038/nrneurol.2014.187] [Citation(s) in RCA: 618] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epidemiological studies have shown a clear association between maternal infection and schizophrenia or autism in the progeny. Animal models have revealed maternal immune activation (mIA) to be a profound risk factor for neurochemical and behavioural abnormalities in the offspring. Microglial priming has been proposed as a major consequence of mIA, and represents a critical link in a causal chain that leads to the wide spectrum of neuronal dysfunctions and behavioural phenotypes observed in the juvenile, adult or aged offspring. Such diversity of phenotypic outcomes in the mIA model are mirrored by recent clinical evidence suggesting that infectious exposure during pregnancy is also associated with epilepsy and, to a lesser extent, cerebral palsy in children. Preclinical research also suggests that mIA might precipitate the development of Alzheimer and Parkinson diseases. Here, we summarize and critically review the emerging evidence that mIA is a shared environmental risk factor across CNS disorders that varies as a function of interactions between genetic and additional environmental factors. We also review ongoing clinical trials targeting immune pathways affected by mIA that may play a part in disease manifestation. In addition, future directions and outstanding questions are discussed, including potential symptomatic, disease-modifying and preventive treatment strategies.
Collapse
|
48
|
Wiest DB, Chang E, Fanning D, Garner S, Cox T, Jenkins DD. Antenatal pharmacokinetics and placental transfer of N-acetylcysteine in chorioamnionitis for fetal neuroprotection. J Pediatr 2014; 165:672-7.e2. [PMID: 25064164 PMCID: PMC4177316 DOI: 10.1016/j.jpeds.2014.06.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 05/29/2014] [Accepted: 06/12/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine the pharmacokinetics (PK) and placental transfer of intravenous (i.v.) N-acetylcysteine (NAC) in mothers with a clinical diagnosis of chorioamnionitis (CA) and determine the PK of i.v. NAC in their infants. STUDY DESIGN In this prospective, double-blind study i.v. NAC 100 mg/kg/dose or saline was administered within 4 hours of CA diagnosis to pregnant women ≥24 weeks' gestation and then every 6 hours until delivery. Maternal PK and placental transfer were determined with maternal blood and matched maternal and cord venous blood. Neonatal PK estimates were determined from i.v. NAC (12.5-25 mg/kg/dose) administered every 12 hours for 5 doses. Noncompartmental analyses were performed for maternal and neonatal PK estimates. RESULTS Eleven mothers (5 preterm, 6 near-term) and 12 infants (1 set of twins) received NAC. Maternal clearance (CL) of NAC was faster than in nonpregnant adults, with a terminal elimination half-life of 1.2 ± 0.2 hours. The NAC cord to maternal ratio was 1.4 ± 0.8, suggesting rapid placental transfer and slower rate of fetal CL. Neonatal PK estimates for near-term compared with preterm infants showed a significantly shorter terminal elimination half-life (5.1 vs 7.5 hours, respectively) and greater CL (53.7 vs 45.0 mL/h/kg, respectively). CONCLUSIONS Maternal CL and placental transfer of NAC was rapid, with umbilical cord concentrations frequently exceeding maternal concentrations. The administration of NAC to mothers with CA achieves predictable NAC plasma concentrations in the fetus, indicating that antenatal neuroprotection may be possible for these newborns at high risk for neuroinflammation.
Collapse
Affiliation(s)
- Donald B. Wiest
- Department of Clinical Pharmacy & Outcome Sciences, Medical University of South Carolina, Charleston, SC
| | - Eugene Chang
- Department of Obstetrics & Gynecology, Medical University of South Carolina, Charleston, SC
| | - Deanna Fanning
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Sandra Garner
- Department of Clinical Pharmacy & Outcome Sciences, Medical University of South Carolina, Charleston, SC
| | - Toby Cox
- Department of Clinical Pharmacy & Outcome Sciences, Medical University of South Carolina, Charleston, SC
| | - Dorothea D. Jenkins
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
49
|
Pathologic role of glial nitric oxide in adult and pediatric neuroinflammatory diseases. Neurosci Biobehav Rev 2014; 45:168-82. [DOI: 10.1016/j.neubiorev.2014.06.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 05/28/2014] [Accepted: 06/05/2014] [Indexed: 01/22/2023]
|
50
|
Bénardais K, Gudi V, Gai L, Neßler J, Singh V, Prajeeth CK, Skripuletz T, Stangel M. Long-term impact of neonatal inflammation on demyelination and remyelination in the central nervous system. Glia 2014; 62:1659-70. [PMID: 24909143 DOI: 10.1002/glia.22706] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/12/2022]
Abstract
Perinatal inflammation causes immediate changes of the blood-brain barrier (BBB) and thus may have different consequences in adult life including an impact on neurological diseases such as demyelinating disorders. In order to determine if such a perinatal insult affects the course of demyelination in adulthood as "second hit," we simulated perinatal bacterial inflammation by systemic administration of lipopolysaccharide (LPS) to either pregnant mice or newborn animals. Demyelination was later induced in adult animals by cuprizone [bis(cyclohexylidenehydrazide)], which causes oligodendrocyte death with subsequent demyelination accompanied by strong microgliosis and astrogliosis. A single LPS injection at embryonic day 13.5 did not have an impact on demyelination in adulthood. In contrast, serial postnatal LPS injections (P0-P8) caused an early delay of myelin removal in the corpus callosum, which was paralleled by reduced numbers of activated microglia. During remyelination, postnatal LPS treatment enhanced early remyelination with a concomitant increase of mature oligodendrocytes. Furthermore, the postnatal LPS challenge impacts the phenotype of microglia since an elevated mRNA expression of microglia related genes such as TREM 2, CD11b, TNF-α, TGF-β1, HGF, FGF-2, and IGF-1 was found in these preconditioned mice during early demyelination. These data demonstrate that postnatal inflammation has long-lasting effects on microglia functions and modifies the course of demyelination and remyelination in adulthood.
Collapse
Affiliation(s)
- Karelle Bénardais
- Department of Neurology, Hannover Medical School, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|