1
|
Pelz L, Dossou L, Kompier N, Jüttner R, Siemonsmeier G, Meyer N, Lowenstein ED, Lahmann I, Kettenmann H, Birchmeier C, Rathjen FG. The IgCAM BT-IgSF (IgSF11) is essential for connexin43-mediated astrocyte-astrocyte coupling in mice. eNeuro 2024; 11:ENEURO.0283-23.2024. [PMID: 38388443 PMCID: PMC10957231 DOI: 10.1523/eneuro.0283-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The type I transmembrane protein BT-IgSF is predominantly localized in the brain and testes. It belongs to the CAR subgroup of Ig cell adhesion proteins, that are hypothesized to regulate connexin expression or localization. Here, we studied the putative link between BT-IgSF and connexins in astrocytes, ependymal cells and neurons of the mouse. Global knockout of BT-IgSF caused an increase in the clustering of connexin43 (Gja1), but not of connexin30 (Gjb6), on astrocytes and ependymal cells. Additionally, knockout animals displayed reduced expression levels of connexin43 protein in the cortex and hippocampus. Importantly, analysis of biocytin spread in hippocampal or cortical slices from mature mice of either sex revealed a decrease in astrocytic cell-cell coupling in the absence of BT-IgSF. Blocking either protein biosynthesis or proteolysis showed that the lysosomal pathway increased connexin43 degradation in astrocytes. Localization of connexin43 in subcellular compartments was not impaired in astrocytes of BT-IgSF mutants. In contrast to connexin43 the localization and expression of connexin36 (Gjd2) on neurons was not affected by the absence of BT-IgSF. Overall, our data indicate that the IgCAM BT-IgSF is essential for correct gap junction-mediated astrocyte-to-astrocyte cell communication.Significance Statement Astrocytes regulate a variety of physiological processes in the developing and adult brain that are essential for proper brain function. Astrocytes form extensive networks in the brain and communicate via gap junctions. Disruptions of gap junction coupling are found in several diseases such as neurodegeneration or epilepsy. Here, we demonstrate that the cell adhesion protein BT-IgSF is essential for gap junction mediated coupling between astrocytes in the cortex and hippocampus.
Collapse
Affiliation(s)
- Laura Pelz
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | - Laura Dossou
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | - Nine Kompier
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | - René Jüttner
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | | | - Niklas Meyer
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | | | - Ines Lahmann
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | - Helmut Kettenmann
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Carmen Birchmeier
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Fritz G. Rathjen
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| |
Collapse
|
2
|
Duan Y, Zhang Y, Wang T, Sun J, Ali W, Ma Y, Yuan Y, Gu J, Bian J, Liu Z, Zou H. Interactive mechanism between connexin43 and Cd-induced autophagic flux blockage and gap junctional intercellular communication dysfunction in rat hepatocytes. Heliyon 2023; 9:e21052. [PMID: 37876489 PMCID: PMC10590978 DOI: 10.1016/j.heliyon.2023.e21052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
Cadmium (Cd) is a significant environmental contaminant known for its potential hepatotoxic effects. However, the precise mechanisms underlying Cd-induced hepatotoxicity have yet to be fully understood. Therefore, the purpose of this study was to investigate the dynamic role of connexin 43 (Cx43) in response to Cd exposure, particularly its impact on gap junctional intercellular communication (GJIC) and autophagy in hepatocytes. To establish an in vitro model of Cd-induced hepatocyte injury, the Buffalo rat liver 3A cell line (BRL3A) was utilized.In order to elucidate the mechanism by which Cx43 influences Cd-induced hepatocyte toxic injury, inhibitors of Cx43 (Dynasore) and P-Cx43 (Ro318220) were employed in the model. The findings revealed that inhibiting Cx43 and its phosphorylation further compromised GJIC function, exacerbating the impairment, while also intensifying the blockage of autophagic flux. To gain further insight into the role of Cx43, siRNA was utilized to knock down Cx43 expression, yielding similar results. The down-regulation of Cx43 expression was found to worsen the morphological damage induced by cadmium exposure, diminish the cell proliferation capacity of BRL3A cells, and exacerbate the disruption of GJIC and autophagic flow caused by Cd.These findings suggest that Cx43 may serve as a potential therapeutic target for the treatment of liver damage resulting from Cd exposure. By targeting Cx43, it may be possible to mitigate the adverse effects of Cd on hepatocytes.
Collapse
Affiliation(s)
- Yuntian Duan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yi Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri−Product Safety of the Ministry of Education of China, Yangzhou 225009, China
- Jiangsu Co−Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
3
|
Chen YL, Feng XL, Cheung CW, Liu JA. Mode of action of astrocytes in pain: From the spinal cord to the brain. Prog Neurobiol 2022; 219:102365. [DOI: 10.1016/j.pneurobio.2022.102365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
4
|
Zhang FF, Wang H, Zhou YM, Yu HY, Zhang M, Du X, Wang D, Zhang F, Xu Y, Zhang JG, Zhang HT. Inhibition of phosphodiesterase-4 in the spinal dorsal horn ameliorates neuropathic pain via cAMP-cytokine-Cx43 signaling in mice. CNS Neurosci Ther 2022; 28:749-760. [PMID: 35156776 PMCID: PMC8981432 DOI: 10.1111/cns.13807] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/13/2021] [Accepted: 12/28/2021] [Indexed: 01/21/2023] Open
Abstract
Background The spinal phosphodiesterase‐4 (PDE4) plays an important role in chronic pain. Inhibition of PDE4, an enzyme catalyzing the hydrolysis of cyclic adenosine monophosphate AMP (cAMP), produces potent antinociceptive activity. However, the antinociceptive mechanism remains largely unknown. Connexin43 (Cx43), a gap junction protein, has been shown to be involved in controlling pain transduction at the spinal level; restoration of Cx43 expression in spinal astrocytes to the normal levels reduces nerve injury‐induced pain. Here, we evaluate the novel mechanisms involving spinal cAMP‐Cx43 signaling by which PDE4 inhibitors produce antinociceptive activity. Methods First, we determined the effect of PDE4 inhibitors rolipram and roflumilast on partial sciatic nerve ligation (PSNL)‐induced mechanical hypersensitivity. Next, we observed the role of cAMP‐Cx43 signaling in the effect of PDE4 inhibitors on PSNL‐induced mechanical hypersensitivity. Results Single or repeated, intraperitoneal or intrathecal administration of rolipram or roflumilast significantly reduced mechanical hypersensitivity in mice following PSNL. In addition, repeated intrathecal treatment with either of PDE4 inhibitors reduced PSNL‐induced downregulation of cAMP and Cx43, and upregulation of proinflammatory cytokines tumor necrosis factor‐α (TNF‐α) and interleukin‐1β. Furthermore, the antinociceptive effects of PDE4 inhibitors were attenuated by the protein kinase A (PKA) inhibitor H89, TNF‐α, or Cx43 antagonist carbenoxolone. Finally, PSNL‐induced upregulation of PDE4B and PDE4D, especially the PDE4B subtype, was reduced by treatment with either of the PDE4 inhibitors. Conclusions The results suggest that the antinociceptive effect of PDE4 inhibitors is contributed by increasing Cx43 expression via cAMP‐PKA‐cytokine signaling in the spinal dorsal horn.
Collapse
Affiliation(s)
- Fang-Fang Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Hao Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Yan-Meng Zhou
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Hai-Yang Yu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Melanie Zhang
- Department of Neurobiology, Northwestern University Feinberg School of Medicine, Evanston, Illinois, USA
| | - Xian Du
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Dong Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Feng Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Ji-Guo Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Han-Ting Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China.,Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Chen R, Xue G, Hölscher C. The role of the TNFα-mediated astrocyte signaling pathway in epilepsy. ACTA EPILEPTOLOGICA 2021. [DOI: 10.1186/s42494-021-00059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractEpilepsy is a common disease in the central nervous system. There is growing evidence that epilepsy is associated with glial cells, including astrocytes. Tumor necrosis factor α (TNFα) is a “master regulator” of proinflammatory cytokine production and is secreted by microglia and astrocytes. TNFα secreted by microglia can activate astrocytes. Additionally, TNFα can regulate neuron activity and induce epilepsy by increasing the glutamate release, reducing the expression of γ-aminobutyric acid, inducing neuroinflammation and affecting the synaptic function in astrocytes. This review summarizes the signaling pathways and receptors of TNFα acting on astrocytes that are related to epilepsy and provides insights into the potential therapeutic strategies of epilepsy for clinical practice.
Collapse
|
6
|
Wang HQ, Yang SW, Gao Y, Liu YJ, Li X, Ai QD, Lin MY, Yang YT, Zeng Q, Zhang Y, Wang ZZ, Chen NH. Novel antidepressant mechanism of ginsenoside Rg1: Regulating biosynthesis and degradation of connexin43. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114212. [PMID: 34087399 DOI: 10.1016/j.jep.2021.114212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C. A. Meyer is a valuable medicinal herb and "alternative" remedy for the prevention and treatment of depression. Dysfunction of connexin43 (Cx43)-gap junction in astrocytes is predisposed to the precipitation of depression. Ginsenoside Rg1 (Rg1), the main bioactive constituent extracted from ginseng, is efficacious in the management of depression by upregulating the content of Cx43. Our previous results indicated that pretreatment with Rg1 significantly improved Cx43-gap junction in corticosterone (CORT)-treated astrocytes. However, the antidepressant mechanism underlying how Rg1 upregulates Cx43-gap junction in astrocytes hasn't been proposed. AIM OF THE STUDY To dissect the mechanisms of Rg1 controlling Cx43 levels in primary astrocytes. METHODS We examined the changes of the level of Cx43 mRNA, the degradation of Cx43, as well as the ubiquitin-proteasomal and autophagy-lysosomal degradation pathways of Cx43 followed by Rg1 prior to CORT in rat primary astrocytes isolated from prefrontal cortex and hippocampus. Furthermore, the recognized method of scrape loading/dye transfer was performed to detect Cx43-gap junctional function, an essencial indicator of the antidepressant effect. RESULTS Pretreatment with Rg1 could reverse CORT-induced downregulation of Cx43 biosynthesis, acceleration of Cx43 degradation, and upregulation of two Cx43 degradation pathways in primary astrocytes. CONCLUSION The findings in the present study provide the first evidence highlighting that Rg1 increases Cx43 protein levels through the upregulation of Cx43 mRNA and downregulation of Cx43 degradation, which may be attributed to the effect of Rg1 on the ubiquitin-proteasomal and autophagy-lysosomal degradation pathways of Cx43.
Collapse
Affiliation(s)
- Hui-Qin Wang
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Song-Wei Yang
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Yan Gao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying-Jiao Liu
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Xun Li
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Qi-Di Ai
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Mei-Yu Lin
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Yan-Tao Yang
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Qi Zeng
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
7
|
Morioka N, Kondo S, Harada N, Takimoto T, Tokunaga N, Nakamura Y, Hisaoka-Nakashima K, Nakata Y. Downregulation of connexin43 potentiates noradrenaline-induced expression of brain-derived neurotrophic factor in primary cultured cortical astrocytes. J Cell Physiol 2021; 236:6777-6792. [PMID: 33665818 DOI: 10.1002/jcp.30353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
Decreased expression of brain-derived neurotrophic factor (BDNF) is involved in the pathology of depressive disorders. Astrocytes produce BDNF following antidepressant treatment or stimulation of adrenergic receptors. Connexin43 (Cx43) is mainly expressed in central nervous system astrocytes and its expression is downregulated in patients with major depression. How changes in Cx43 expression affect astrocyte function, including BDNF production, is poorly understood. The current study examined the effect of Cx43 knockdown on BDNF expression in cultured cortical astrocytes after stimulation of adrenergic receptors. The expression of Cx43 in rat primary cultured cortical astrocytes was downregulated with RNA interference. Levels of messenger RNAs (mRNAs) or proteins were measured by real-time PCR and western blotting, respectively. Knockdown of Cx43 potentiated noradrenaline (NA)-induced expression of BDNF mRNA in cultured astrocytes. NA treatment induced proBDNF protein expression in astrocytes transfected with small interfering RNA (siRNA) targeting Cx43, but not with control siRNA. This potentiation was mediated by the Src tyrosine kinase-extracellular signal-regulated kinase (ERK) pathway through stimulation of adrenergic α1 and β receptors. Furthermore, the Gq/11 protein-Src-ERK pathway and the G-protein coupled receptor kinase 2-Src-ERK pathway were involved in α1 and β adrenergic receptor-mediated potentiation of BDNF mRNA expression, respectively. The current studies demonstrate a novel mechanism of BDNF expression in cortical astrocytes mediated by Cx43, in which downregulation of Cx43 increases, through adrenergic receptors, the expression of BDNF. The current findings indicate a potentially novel mechanism of action of antidepressants, via regulation of astrocytic Cx43 expression and subsequent BDNF expression.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Astrocytes/drug effects
- Astrocytes/metabolism
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Cells, Cultured
- Cerebral Cortex/cytology
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Connexin 43/genetics
- Connexin 43/metabolism
- Down-Regulation
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Gene Knockdown Techniques
- Male
- Norepinephrine/pharmacology
- Primary Cell Culture
- RNA Interference
- Rats, Wistar
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/metabolism
- Signal Transduction
- src-Family Kinases/metabolism
- Rats
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Syun Kondo
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Nanase Harada
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Tomoyo Takimoto
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Nozomi Tokunaga
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| |
Collapse
|
8
|
Lu R, Cui SS, Wang XX, Chen L, Liu F, Gao J, Wang W. Astrocytic c-Jun N-terminal kinase-histone deacetylase-2 cascade contributes to glutamate transporter-1 decrease and mechanical allodynia following peripheral nerve injury in rats. Brain Res Bull 2021; 175:213-223. [PMID: 34333051 DOI: 10.1016/j.brainresbull.2021.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/06/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022]
Abstract
Decrease of glutamate transporter-1 (GLT-1) in the spinal dorsal horn after nerve injury induces enhanced excitatory transmission and causes persistent pain. Histone deacetylases (HDACs)-catalyzed deacetylation might contribute to the decrease of GLT-1, while the detailed mechanisms have yet to be fully elaborated. Spinal nerve ligation (SNL) induced significant increases of HDAC2 and decreases of GLT-1 in spinal astrocytes. Intrathecal infusion of the HDAC2 inhibitors attenuated the decrease of GLT-1 and enhanced phosphorylation of glutamate receptors. GLT-1 and phosphorylated c-Jun N-terminal kinase (JNK) were highly colocalized in the spinal cord, and a large number of pJNK positive cells were HDAC2 positive. Intrathecally infusion of the JNK inhibitor SP600125 significantly inhibited SNL-induced upregulation of HDAC2. SNL-induced HDAC2 up-regulation could be inhibited by the neutralizing anti-tumor necrosis factor-α (TNF-α) binding protein etanercept or the microglial inhibitor minocycline. In cultured astrocytes, TNF-α induced enhanced phosphorylation of JNK and a significant increase of HDAC2, as well as a remarkable decrease of GLT-1, which could be prevented by SP600125 or the HDAC2 specific inhibitor CAY10683. Our data suggest that astrocytic JNK-HDAC2 cascade contributes to GLT-1 decrease and mechanical allodynia following peripheral nerve injury. Neuroimmune activation after peripheral nerve injury could induce epigenetic modification changes in astrocytes and contribute to chronic pain maintenance.
Collapse
Affiliation(s)
- Rui Lu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China
| | - Shan-Shan Cui
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei 430060, China
| | - Xiao-Xia Wang
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China
| | - Lei Chen
- Department of Pain Relief, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Fei Liu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China
| | - Jing Gao
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China.
| | - Wei Wang
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China.
| |
Collapse
|
9
|
Decreased connexin43 expression in the hippocampus is related to the antidepressant effect of amitriptyline in neuropathic pain mice. Biochem Biophys Res Commun 2021; 566:141-147. [PMID: 34126344 DOI: 10.1016/j.bbrc.2021.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022]
Abstract
Downregulation of astrocytic connexin43 (Cx43) has been observed in several brain regions in rodents and patients with depression. However, its specific role in this effect remains unknown. Moreover, chronic pain can induce depressive disorders. Therefore, the current study examined the relationship between Cx43 expression and depressive-like behavior in a neuropathic pain model. Neuropathic pain was induced by spared nerve injury (SNI) in mice. Depressive-like behavior was evaluated using the forced swim test. Expression of Cx43 in the hippocampus was evaluated using Western blotting and real-time PCR. SNI downregulated Cx43 protein in the contralateral hippocampus of mice, whereas expression of hippocampal Cx43 mRNA was not altered following SNI. Although SNI mice showed longer immobility time compared with sham mice during the forced swim test, duration of depressive-like behavior was not correlated with the expression of Cx43 in the hippocampus of SNI mice. Repeated intraperitoneal administration of amitriptyline ameliorated SNI-induced depressive-like behavior. Furthermore, the antidepressant effect of amitriptyline was correlated with decreased hippocampal Cx43 expression in SNI mice. The current findings suggest that the alteration of Cx43 expression in the hippocampus may not be involved in the induction of depressive disorder but may influence the efficacy of antidepressants. Therefore, the level of Cx43 expression in the hippocampus could be a key parameter to evaluate individual differences in antidepressant effects in patients with depressive disorder.
Collapse
|
10
|
Dai WL, Zhang L, Han L, Yang X, Hu L, Miao C, Song L, Xiao H, Liu JH, Liu WT. Regulation of the K ATP-JNK gap junction signaling pathway by immunomodulator astragaloside IV attenuates neuropathic pain. Reg Anesth Pain Med 2020; 45:955-963. [PMID: 32963077 DOI: 10.1136/rapm-2020-101411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Gap junctions play a pivotal role in contributing to the formation of astroglial networks and in chronic pain. However, the mechanisms underlying the dysfunction of astroglial gap junctions in chronic pain have not been fully elucidated. METHODS Chronic constriction injury (CCI) of the sciatic nerve was used to establish rat neuropathic pain model. C6 cells were used to perform experiments in vitro. Von Frey hairs and Hargreave's method were used to determine the withdrawal threshold of rats. Protein expression was detected by immunofluorescence and western blotting. RESULTS Astragaloside IV (AST IV) significantly attenuated neuropathic pain and suppressed the excitation of spinal astrocytes in rats with CCI. The antinociceptive effect of AST IV was reversed by the gap junction decoupler carbenoxolone (CBX). AST IV inhibited the high expression of phosphorylated connexin 43 (p-Cx43) and p-c-Jun N-terminal kinase (p-JNK) in spinal cord of rats with CCI. JNK inhibitor alleviated neuropathic pain, which was reversed by CBX. JNK inhibitor decreased the high expression of p-Cx43 in both rats with CCI and tumor necrosis factor-alpha (TNF-α)-treated C6 cells. Additionally, the analgesic effect of AST IV was reversed by the adenosine triphosphate-sensitive potassium (KATP) channel blocker, glibenclamide (Glib). Glib abolished the inhibitory effects of AST IV on p-JNK and p-Cx43 both in vivo and in vitro. KATP channel opener (KCO) mimicked the inhibitory effects of AST IV on p-JNK and p-Cx43 in TNF-α-treated C6 cells. CONCLUSION Our results indicate that the sciatic nerve CCI induces the dysfunction of gap junctions in the spinal cord by activating KATP/JNK signaling to contribute to neuropathic pain. AST IV attenuates neuropathic pain via regulating the KATP-JNK gap junction axis.
Collapse
Affiliation(s)
- Wen-Ling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Li Zhang
- Department of Anesthesiology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liu Han
- Department of Anesthesiology, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xing Yang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Miao
- Department of pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ling Song
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education; Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ji-Hua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wen-Tao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China .,Institute of Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Tanaka K, Osaka M, Takemori S, Watanabe M, Tanigaki S, Kobayashi Y. Contraction-associated proteins expression by human uterine smooth muscle cells depends on maternal serum and progranulin associated with gestational weight gain. Endocr J 2020; 67:819-825. [PMID: 32321883 DOI: 10.1507/endocrj.ej20-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pregnant women with obesity are at increased risk of parturition dysfunction; however, the biological mechanism has remained unknown. We hypothesized that molecules circulating in the serum of pregnant women with obesity may induce the aberrant expression of contraction-associated proteins (CAPs), leading to insufficient uterine contractions. This study aimed to investigate the effects of maternal serum on CAPs expression by human uterine smooth muscle cells (UtSMCs) and elucidate the influence of maternal obesity. Blood samples were collected from singleton pregnant women at 36-41 weeks of gestation before the onset of labor. UtSMCs were incubated in the serum, and the mRNA expressions of PTGFR, OXTR, GJA1, and PTGS2 were examined by RT-PCR. Progranulin (PGRN) is a circulating glycoprotein associated with insulin resistance characterized by the accumulation of visceral fat. The serum PGRN levels of the samples were measured by ELISA. After incubated with PGRN (100-1,000 ng/mL), mRNA expression of PTGFR, OXTR, and GJA1 and protein expression of CX43 were examined by RT-PCR and western blotting, respectively. The mRNA expressions of PTGFR, OXTR, and GJA1 showed significantly negative correlations with gestational weight gain (GWG). Serum PGRN levels showed a significantly positive correlation with GWG. High levels of PGRN suppressed the mRNA expression of GJA1 and the protein expression of CX43. The change in maternal serum induced by GWG suppressed the CAPs expression by UtSMCs. PGRN is one of the factors in the serum responsible for inhibiting the expression of CX43.
Collapse
Affiliation(s)
- Kei Tanaka
- Kyorin University School of Medicine, Department of Obstetrics and Gynecology, Tokyo 181-8611, Japan
| | - Makoto Osaka
- Kyorin University School of Medicine, Department of Obstetrics and Gynecology, Tokyo 181-8611, Japan
| | - Satoshi Takemori
- Kyorin University School of Medicine, Department of Obstetrics and Gynecology, Tokyo 181-8611, Japan
| | - Momoe Watanabe
- Kyorin University School of Medicine, Department of Obstetrics and Gynecology, Tokyo 181-8611, Japan
| | - Shinji Tanigaki
- Kyorin University School of Medicine, Department of Obstetrics and Gynecology, Tokyo 181-8611, Japan
| | - Yoichi Kobayashi
- Kyorin University School of Medicine, Department of Obstetrics and Gynecology, Tokyo 181-8611, Japan
| |
Collapse
|
12
|
Morioka N, Nakamura Y, Zhang FF, Hisaoka-Nakashima K, Nakata Y. Role of Connexins in Chronic Pain and Their Potential as Therapeutic Targets for Next-Generation Analgesics. Biol Pharm Bull 2019; 42:857-866. [PMID: 31155584 DOI: 10.1248/bpb.b19-00195] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic pain, including inflammatory, neuropathic pain, is a serious clinical issue. There are increasing numbers of patients with chronic pain due to the growing number of elderly and it is estimated that about 25% of the global population will develop chronic pain. Chronic pain patients are refractory to medications used to treat acute pain such as opioids and non-steroidal anti-inflammatory drugs. Furthermore, the complexity and diversity of chronic pain mechanisms hinder the development of new analgesics. Thus, a better understanding of the mechanism of chronic pain is needed, which would facilitate the development of novel analgesics based on novel mechanisms. With this goal, connexins (Cxs) could be targeted for the development of new analgesics. Connexins are proteins with 20 subtypes, and function as channels, gap junctions between cells, and hemichannels that sample the extracellular space and release molecules such as neurotransmitters. Furthermore, Cxs could have functions independent of channel activity. Recent studies have shown that Cxs could be crucial in the induction and maintenance of chronic pain, and modulation of the activity or the expression of Cxs ameliorates nociceptive hypersensitivity in multiple chronic pain models. This review will cite novel findings on the role of of Cxs in the nociceptive transduction pathway under the chronic pain state and antinociceptive effects of various molecules modulating activity or expression of Cxs. Also, the potential of Cx modulation as a therapeutic strategy for intractable chronic pain will be discussed.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| | - Yoki Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| | - Fang Fang Zhang
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences.,Institute of Pharmacology, Taishan Medical University
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| | - Yoshihiro Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences
| |
Collapse
|
13
|
Wang Q, Zhou C, Zhang D, Zou J, Liu W, Cai L, Cui Y, Lai W, Xie J. The involvement of the ERK-MAPK pathway in TGF-β1-mediated connexin43-gap junction formation in chondrocytes. Connect Tissue Res 2019; 60:477-486. [PMID: 30897973 DOI: 10.1080/03008207.2019.1593394] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Purposes: Gap junction intercellular communication (GJIC) exhibits a key role in maintaining the homeostasis of articular cartilage. Connexin43 (Cx43) protein is predominant in the structures that form gap junctions. We aim to determine the potential underlying mechanisms of TGF-β1 (Transforming growth factor-β1)-regulated cell communication in chondrocytes. Materials and methods: After exposure of chondrocytes to recombinant TGF-β1, quantitative real-time PCR was used to detect expression levels of Cx43 mRNA. Western blot analysis was used to check Cx43 and mitogen-activated protein kinase (MAPK) family components. Immunofluorescence staining was performed to confirm ERK-MAPK pathway activation and Cx43 protein distribution. MAPK inhibitors (ERK inhibitor U0126, JNK inhibitor SP 600125 and P38 inhibitor SP 203580) were applied to verify the specificity effects of ERK-MAPK pathway. GJIC between chondrocytes were evaluated using Scrape loading/dye transfer (SLDT) assay. Results: It was first found that TGF-β1modulatedthe Cx43protein expressions and its sub-cellular distribution. TGF-β1 promoted gap junction intercellular communication (GJIC) formations in chondrocytes, especially in a higher cell intensity. ERK-MAPK signaling pathway was activated in TGF-β1-mediated gap junctions among chondrocytes. Furthermore, the inhibitor of ERK attenuated the increases of Cx43 expressions and functional gap junction formations induced by TGF-β1, while cross-talk between ERK-MAPK and Smad signal pathways exists shown in the process. Conclusions: This study provides evidence to show the importance of the ERK-MAPK pathway in TGF-β1-mediated Cx43 expression and functional gap junction formation.
Collapse
Affiliation(s)
- Qingxuan Wang
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Chenchen Zhou
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Demao Zhang
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Jing Zou
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Wenjing Liu
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Linyi Cai
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Yujia Cui
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Wenli Lai
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Jing Xie
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| |
Collapse
|
14
|
Liang J, Chen P, Li C, Li D, Wang J, Xue R, Zhang S, Ruan J, Zhang X. IL-22 Down-Regulates Cx43 Expression and Decreases Gap Junctional Intercellular Communication by Activating the JNK Pathway in Psoriasis. J Invest Dermatol 2019; 139:400-411. [PMID: 30171832 DOI: 10.1016/j.jid.2018.07.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/29/2018] [Accepted: 07/17/2018] [Indexed: 12/27/2022]
Abstract
The roles of IL-22 in the pathomechanisms of psoriasis have been well demonstrated. Gap junctional intercellular communication (GJIC) is widely known for its involvement in multiple biological and pathological processes such as growth-related events, cell differentiation, and inflammation. Here, we show that IL-22 significantly decreased GJIC and down-regulated Cx43 expression in HaCaT cells. Cx43 overexpression markedly inhibited the proliferation of and increased GJIC in HaCaT cells, but the silencing of Cx43 exerted the opposite effects. Additionally, Cx43 overexpression effectively rescued the IL-22-induced decrease in GJIC in HaCaT cells. The IL-22-induced down-regulation of Cx43 expression and decrease in GJIC can be significantly blocked by the JNK inhibitor SP600125 and by the overexpression of IL-22RA2 (which specifically binds to IL-22 and inhibits its activity), but not by the NF-κB inhibitor BAY11-7082, in HaCaT cells. Furthermore, the IL-22-induced down-regulation of Cx43 expression mediated by the JNK signaling pathway was confirmed in a mouse model of IL-22-induced psoriasis-like dermatitis. Similarly, Cx43 expression was significantly lower in the lesional skin than in the nonlesional skin of patients with psoriasis. These results suggest that IL-22 decreases GJIC by activating the JNK signaling pathway, which down-regulates Cx43 expression; this process is a possible pathomechanism of keratinocyte hyperproliferation in psoriasis.
Collapse
Affiliation(s)
- Jingyao Liang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, People's Republic of China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, People's Republic of China
| | - Pingjiao Chen
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Changxing Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Jianqin Wang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, People's Republic of China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, People's Republic of China
| | - Rujun Xue
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, People's Republic of China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, People's Republic of China
| | - Sanquan Zhang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, People's Republic of China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, People's Republic of China
| | - Jianbo Ruan
- Department of Dermatology, Jinan University Medical School Affiliated Hospital of Dongguan, Dongguan, People's Republic of China.
| | - Xibao Zhang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, People's Republic of China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, People's Republic of China.
| |
Collapse
|
15
|
The Role of Connexin-43 in the Inflammatory Process: A New Potential Therapy to Influence Keratitis. J Ophthalmol 2019; 2019:9312827. [PMID: 30805212 PMCID: PMC6360563 DOI: 10.1155/2019/9312827] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
The studies outlined in this review highlight the relationship between inflammatory signaling molecules and connexin-43 (Cx43). Gap junction (GJ) channels and hemichannels (HCs) participate in the metabolic activity between intra- and extracellular space. Some ions and small molecules are exchanged from cell to cell or cell to extracellular space to affect the process of inflammation via GJ. We analyzed the effects of signaling molecules, such as innate immunity messengers, transcription factors, LPS, cytokine, inflammatory chemokines, and MMPs, on Cx43 expression during the inflammatory process. At the same time, we found that these signaling molecules play a critical role in the pathogenesis of keratitis. Thus, we assessed the function of Cx43 during inflammatory corneal disease. Corneal healing plays an essential role in the late stage of keratitis. We found that Cx43 is involved in wound healing. Studies have shown that the decrease of Cx43 can decrease the time of healing. We also report several Cx43 mimic peptides which can inhibit the activity of Cx43 Hc to mediate the releasing of adenosine triphosphate (ATP), which may in turn influence the inflammatory process.
Collapse
|
16
|
Regulation of connexin 43 expression in human gingival fibroblasts. Exp Cell Res 2018; 371:238-249. [PMID: 30118696 DOI: 10.1016/j.yexcr.2018.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/31/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022]
Abstract
AIMS Abundance of connexin 43 (Cx43), a transmembrane protein that forms hemichannels (HCs) and gap junctions (GJs), is dynamically regulated in human gingival fibroblasts (GFBLs) during wound healing. This may be important for fast and scarless gingival wound healing as Cx43 is involved in key cell functions important during this process. Our aim was to uncover the factors that regulate Cx43 expression and abundance in GFBLs. We hypothesized that cytokines and growth factors released during wound healing coordinately regulate Cx43 abundance in GFBLs. RESULTS TGF-β1, -β2, -β3, PGE2 and IL-1β significantly upregulated, while TNF-α and IFN-γ downregulated Cx43 in cultured GFBLs. TGF-β1, -β2, -β3, IL-1β and IFN-γ modulated Cx43 abundance at both mRNA and protein levels, while TNF-α and PGE2 regulated only Cx43 protein abundance, suggesting involvement of distinct transcriptional/post-transcriptional and translational/post-translational mechanisms, respectively. TGF-β1-induced upregulation of Cx43 was mediated by TGFβRI (ALK5) and SMAD2/3 signaling, and this was potently suppressed by PGE2, IL-1β, TNF-α and IFN-γ that inhibited SMAD2/3 phosphorylation. CONCLUSION Regulation of Cx43 abundance in GFBLs involves transcriptional/post-transcriptional and translational/post-translational mechanisms that are distinctly modulated by an interplay between TGF-β isoforms and PGE2, IL-1β, TNF-α and IFN-γ.
Collapse
|
17
|
Morioka N, Fujii S, Kondo S, Zhang FF, Miyauchi K, Nakamura Y, Hisaoka-Nakashima K, Nakata Y. Downregulation of spinal astrocytic connexin43 leads to upregulation of interleukin-6 and cyclooxygenase-2 and mechanical hypersensitivity in mice. Glia 2017; 66:428-444. [DOI: 10.1002/glia.23255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| | - Shiori Fujii
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| | - Syun Kondo
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| | - Fang Fang Zhang
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
- Institute of Pharmacology, Taishan Medical University, 619 Changcheng Road; Taian Shandong 271016 China
| | - Kazuki Miyauchi
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| | - Yoki Nakamura
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse IRP, Triad Suite 3305, 333 Cassell Drive; Baltimore MD 21224
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| | - Yoshihiro Nakata
- Department of Pharmacology; Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi; Minami-ku Hiroshima 734-8553 Japan
| |
Collapse
|
18
|
Pierozan P, Biasibetti-Brendler H, Schmitz F, Ferreira F, Pessoa-Pureur R, Wyse ATS. Kynurenic Acid Prevents Cytoskeletal Disorganization Induced by Quinolinic Acid in Mixed Cultures of Rat Striatum. Mol Neurobiol 2017; 55:5111-5124. [PMID: 28840509 DOI: 10.1007/s12035-017-0749-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/31/2017] [Indexed: 01/03/2023]
Abstract
Kynurenic acid (KYNA) is a neuroactive metabolite of tryptophan known to modulate a number of mechanisms involved in neural dysfunction. Although its activity in the brain has been widely studied, the effect of KYNA counteracting the actions of quinolinic acid (QUIN) remains unknown. The present study aims at describing the ability of 100 μM KYNA preventing cytoskeletal disruption provoked by QUIN in astrocyte/neuron/microglia mixed culture. KYNA totally preserved cytoskeletal organization, cell morphology, and redox imbalance in mixed cultures exposed to QUIN. However, KYNA partially prevented morphological alteration in isolated primary astrocytes and failed to protect the morphological alterations of neurons caused by QUIN exposure. Moreover, KYNA prevented QUIN-induced microglial activation and upregulation of ionized calcium-binding adapter molecule 1 (Iba-1) and partially preserved tumor necrosis factor-α (TNF-α) level in mixed cultures. TNF-α level was also partially preserved in astrocytes. In addition to the mechanisms dependent on redox imbalance and microglial activation, KYNA prevented downregulation of connexin-43 and the loss of functionality of gap junctions (GJs), preserving cell-cell contact, cytoskeletal organization, and cell morphology in QUIN-treated cells. Furthermore, the toxicity of QUIN targeting the cytoskeleton of mixed cultures was not prevented by the N-methyl-D-aspartate (NMDA) antagonist MK-801. We suggest that KYNA protects the integrity of the cytoskeleton of mixed cultures by complex mechanisms including modulating microglial activation preventing oxidative imbalance and misregulated GJs leading to disrupted cytoskeleton in QUIN-treated cells. This study contributed to elucidate the molecular basis of KYNA protection against QUIN toxicity.
Collapse
Affiliation(s)
- Paula Pierozan
- Laboratório de Neuroproteção e DoençasMetabólicas, Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil.
| | - Helena Biasibetti-Brendler
- Laboratório de Neuroproteção e DoençasMetabólicas, Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe Schmitz
- Laboratório de Neuroproteção e DoençasMetabólicas, Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Ferreira
- Laboratório de Neuroproteção e DoençasMetabólicas, Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Regina Pessoa-Pureur
- Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
- Laboratório de Citoesqueleto, Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Laboratório de Neuroproteção e DoençasMetabólicas, Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de CiênciasBásicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Connexin 43 enhances Bax activation via JNK activation in sunitinib-induced apoptosis in mesothelioma cells. J Pharmacol Sci 2017; 134:101-107. [DOI: 10.1016/j.jphs.2017.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/11/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
|
20
|
Du ZJ, Cui GQ, Zhang J, Liu XM, Zhang ZH, Jia Q, Ng JC, Peng C, Bo CX, Shao H. Inhibition of gap junction intercellular communication is involved in silica nanoparticles-induced H9c2 cardiomyocytes apoptosis via the mitochondrial pathway. Int J Nanomedicine 2017; 12:2179-2188. [PMID: 28356735 PMCID: PMC5367603 DOI: 10.2147/ijn.s127904] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gap junction intercellular communication (GJIC) between cardiomyocytes is essential for synchronous heart contraction and relies on connexin-containing channels. Connexin 43 (Cx43) is a major component involved in GJIC in heart tissue, and its abnormal expression is closely associated with various cardiac diseases. Silica nanoparticles (SNPs) are known to induce cardiovascular toxicity. However, the mechanisms through which GJIC plays a role in cardiomyocytes apoptosis induced by SNPs remain unknown. The aim of the present study is to determine whether SNPs-decreased GJIC promotes apoptosis in rat cardiomyocytes cell line (H9c2 cells) via the mitochondrial pathway using CCK-8 Kit, scrape-loading dye transfer technique, Annexin V/PI double-staining assays, and Western blot analysis. The results showed that SNPs elicited cytotoxicity in H9c2 cells in a time- and concentration-dependent manner. SNPs also reduced GJIC in H9c2 cells in a concentration-dependent manner through downregulation of Cx43 and upregulation of P-Cx43. Inhibition of gap junctions by gap junction blocker carbenoxolone disodium resulted in decreased survival and increased apoptosis, whereas enhancement of the gap junctions by retinoic acid led to enhanced survival but decreased apoptosis. Furthermore, SNPs-induced apoptosis through the disrupted functional gap junction was correlated with abnormal expressions of the proteins involved in the mitochondrial pathway-related apoptosis such as Bcl-2/Bax, cytochrome C, Caspase-9, and Caspase-3. Taken together, our results provide the first evidence that SNPs-decreased GJIC promotes apoptosis in cardiomyocytes via the mitochondrial pathway. In addition, downregulation of GJIC by SNPs in cardiomyocytes is mediated through downregulation of Cx43 and upregulation of P-Cx43. These results suggest that in rat cardiomyocytes cell line, GJIC plays a protective role in SNPs-induced apoptosis and that GJIC may be one of the targets for SNPs-induced biological effects.
Collapse
Affiliation(s)
- Zhong-Jun Du
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences
| | - Guan-Qun Cui
- Department of Respiratory Medicine, Qilu Children's Hospital of Shandong University, Jinan
| | - Juan Zhang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences
| | - Xiao-Mei Liu
- Department of Radiation Chemistry and Toxicology, School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Zhi-Hu Zhang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences
| | - Qiang Jia
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences
| | - Jack C Ng
- National Research Centre for Environmental Toxicology-Entox, The University of Queensland, Brisbane, QLD, Australia
| | - Cheng Peng
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences; National Research Centre for Environmental Toxicology-Entox, The University of Queensland, Brisbane, QLD, Australia
| | - Cun-Xiang Bo
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences
| | - Hua Shao
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences
| |
Collapse
|
21
|
The role of spinal interleukin-1β and astrocyte connexin 43 in the development of mirror-image pain in an inflammatory pain model. Exp Neurol 2017; 287:1-13. [DOI: 10.1016/j.expneurol.2016.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/06/2016] [Accepted: 10/18/2016] [Indexed: 01/01/2023]
|
22
|
Th1 cells downregulate connexin 43 gap junctions in astrocytes via microglial activation. Sci Rep 2016; 6:38387. [PMID: 27929069 PMCID: PMC5143974 DOI: 10.1038/srep38387] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/08/2016] [Indexed: 11/28/2022] Open
Abstract
We previously reported early and extensive loss of astrocytic connexin 43 (Cx43) in acute demyelinating lesions of multiple sclerosis (MS) patients. Because it is widely accepted that autoimmune T cells initiate MS lesions, we hypothesized that infiltrating T cells affect Cx43 expression in astrocytes, which contributes to MS lesion formation. Primary mixed glial cell cultures were prepared from newborn mouse brains, and microglia were isolated by anti-CD11b antibody-conjugated magnetic beads. Next, we prepared astrocyte-rich cultures and astrocyte/microglia-mixed cultures. Treatment of primary mixed glial cell cultures with interferon (IFN) γ, interleukin (IL)-4, or IL-17 showed that only IFNγ or IL-17 at high concentrations reduced Cx43 protein levels. Upon treatment of astrocyte-rich cultures and astrocyte/microglia-mixed cultures with IFNγ, Cx43 mRNA/protein levels and the function of gap junctions were reduced only in astrocyte/microglia-mixed cultures. IFNγ-treated microglia-conditioned media and IL-1β, which was markedly increased in IFNγ-treated microglia-conditioned media, reduced Cx43 protein levels in astrocyte-rich cultures. Finally, we confirmed that Th1 cell-conditioned medium decreased Cx43 protein levels in mixed glial cell cultures. These findings suggest that Th1 cell-derived IFNγ activates microglia to release IL-1β that reduces Cx43 gap junctions in astrocytes. Thus, Th1-dominant inflammatory states disrupt astrocytic intercellular communication and may exacerbate MS.
Collapse
|
23
|
Quinolinic acid neurotoxicity: Differential roles of astrocytes and microglia via FGF-2-mediated signaling in redox-linked cytoskeletal changes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3001-3014. [PMID: 27663072 DOI: 10.1016/j.bbamcr.2016.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/12/2016] [Accepted: 09/17/2016] [Indexed: 11/24/2022]
Abstract
QUIN is a glutamate agonist playing a role in the misregulation of the cytoskeleton, which is associated with neurodegeneration in rats. In this study, we focused on microglial activation, FGF2/Erk signaling, gap junctions (GJs), inflammatory parameters and redox imbalance acting on cytoskeletal dynamics of the in QUIN-treated neural cells of rat striatum. FGF-2/Erk signaling was not altered in QUIN-treated primary astrocytes or neurons, however cytoskeleton was disrupted. In co-cultured astrocytes and neurons, QUIN-activated FGF2/Erk signaling prevented the cytoskeleton from remodeling. In mixed cultures (astrocyte, neuron, microglia), QUIN-induced FGF-2 increased level failed to activate Erk and promoted cytoskeletal destabilization. The effects of QUIN in mixed cultures involved redox imbalance upstream of Erk activation. Decreased connexin 43 (Cx43) immunocontent and functional GJs, was also coincident with disruption of the cytoskeleton in primary astrocytes and mixed cultures. We postulate that in interacting astrocytes and neurons the cytoskeleton is preserved against the insult of QUIN by activation of FGF-2/Erk signaling and proper cell-cell interaction through GJs. In mixed cultures, the FGF-2/Erk signaling is blocked by the redox imbalance associated with microglial activation and disturbed cell communication, disrupting the cytoskeleton. Thus, QUIN signal activates differential mechanisms that could stabilize or destabilize the cytoskeleton of striatal astrocytes and neurons in culture, and glial cells play a pivotal role in these responses preserving or disrupting a combination of signaling pathways and cell-cell interactions. Taken together, our findings shed light into the complex role of the active interaction of astrocytes, neurons and microglia in the neurotoxicity of QUIN.
Collapse
|
24
|
Dodds KN, Beckett EAH, Evans SF, Grace PM, Watkins LR, Hutchinson MR. Glial contributions to visceral pain: implications for disease etiology and the female predominance of persistent pain. Transl Psychiatry 2016; 6:e888. [PMID: 27622932 PMCID: PMC5048206 DOI: 10.1038/tp.2016.168] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/14/2016] [Accepted: 07/22/2016] [Indexed: 12/27/2022] Open
Abstract
In the central nervous system, bidirectional signaling between glial cells and neurons ('neuroimmune communication') facilitates the development of persistent pain. Spinal glia can contribute to heightened pain states by a prolonged release of neurokine signals that sensitize adjacent centrally projecting neurons. Although many persistent pain conditions are disproportionately common in females, whether specific neuroimmune mechanisms lead to this increased susceptibility remains unclear. This review summarizes the major known contributions of glia and neuroimmune interactions in pain, which has been determined principally in male rodents and in the context of somatic pain conditions. It is then postulated that studying neuroimmune interactions involved in pain attributed to visceral diseases common to females may offer a more suitable avenue for investigating unique mechanisms involved in female pain. Further, we discuss the potential for primed spinal glia and subsequent neurogenic inflammation as a contributing factor in the development of peripheral inflammation, therefore, representing a predisposing factor for females in developing a high percentage of such persistent pain conditions.
Collapse
Affiliation(s)
- K N Dodds
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - E A H Beckett
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - S F Evans
- Discipline of Pharmacology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Pelvic Pain SA, Norwood, SA, Australia
| | - P M Grace
- Discipline of Pharmacology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - L R Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - M R Hutchinson
- Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
25
|
Willebrords J, Crespo Yanguas S, Maes M, Decrock E, Wang N, Leybaert L, Kwak BR, Green CR, Cogliati B, Vinken M. Connexins and their channels in inflammation. Crit Rev Biochem Mol Biol 2016; 51:413-439. [PMID: 27387655 PMCID: PMC5584657 DOI: 10.1080/10409238.2016.1204980] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammation may be caused by a variety of factors and is a hallmark of a plethora of acute and chronic diseases. The purpose of inflammation is to eliminate the initial cell injury trigger, to clear out dead cells from damaged tissue and to initiate tissue regeneration. Despite the wealth of knowledge regarding the involvement of cellular communication in inflammation, studies on the role of connexin-based channels in this process have only begun to emerge in the last few years. In this paper, a state-of-the-art overview of the effects of inflammation on connexin signaling is provided. Vice versa, the involvement of connexins and their channels in inflammation will be discussed by relying on studies that use a variety of experimental tools, such as genetically modified animals, small interfering RNA and connexin-based channel blockers. A better understanding of the importance of connexin signaling in inflammation may open up towards clinical perspectives.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| | - Michaël Maes
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| | - Elke Decrock
- Department of Basic Medical Sciences, Physiology Group, Ghent
University, De Pintelaan 185, 9000 Ghent, Belgium; Elke Decrock: Tel: +32 9 332 39
73, Nan Wang: Tel: +32 9 332 39 38, Luc Leybaert: Tel: +32 9 332 33 66
| | - Nan Wang
- Department of Basic Medical Sciences, Physiology Group, Ghent
University, De Pintelaan 185, 9000 Ghent, Belgium; Elke Decrock: Tel: +32 9 332 39
73, Nan Wang: Tel: +32 9 332 39 38, Luc Leybaert: Tel: +32 9 332 33 66
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology Group, Ghent
University, De Pintelaan 185, 9000 Ghent, Belgium; Elke Decrock: Tel: +32 9 332 39
73, Nan Wang: Tel: +32 9 332 39 38, Luc Leybaert: Tel: +32 9 332 33 66
| | - Brenda R. Kwak
- Department of Pathology and Immunology and Division of Cardiology,
University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland; Brenda R.
Kwak: Tel: +41 22 379 57 37
| | - Colin R. Green
- Department of Ophthalmology and New Zealand National Eye Centre,
University of Auckland, New Zealand; Colin R. Green: Tel: +64 9 923 61 35
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal
Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87,
05508-270 São Paulo, Brazil; Bruno Cogliati: Tel: +55 11 30 91 12 00
| | - Mathieu Vinken
- Department of In Vitro Toxicology and
Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels,
Belgium; Joost Willebrords: + Tel: 32 2 477 45 87, Michaël Maes: Tel: +32 2
477 45 87, Sara Crespo Yanguas: Tel: +32 2 477 45 87
| |
Collapse
|
26
|
Zhang FF, Morioka N, Kitamura T, Fujii S, Miyauchi K, Nakamura Y, Hisaoka-Nakashima K, Nakata Y. Lycopene ameliorates neuropathic pain by upregulating spinal astrocytic connexin 43 expression. Life Sci 2016; 155:116-22. [DOI: 10.1016/j.lfs.2016.05.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/02/2016] [Accepted: 05/14/2016] [Indexed: 12/16/2022]
|
27
|
Arnoldussen YJ, Anmarkrud KH, Skaug V, Apte RN, Haugen A, Zienolddiny S. Effects of carbon nanotubes on intercellular communication and involvement of IL-1 genes. J Cell Commun Signal 2016; 10:153-62. [PMID: 27101311 PMCID: PMC4882305 DOI: 10.1007/s12079-016-0323-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/16/2016] [Indexed: 01/01/2023] Open
Abstract
An increasing amount of products containing engineered nanoparticles is emerging. Among these particles are carbon nanotubes (CNTs) which are of interest for a wide range of industrial and biomedical applications. There have been raised concerns over the effects of CNTs on human health. Some types of CNTs are classified as group 2B carcinogens by the International Agency for Research on Cancer. CNTs may also induce pulmonary inflammatory and fibrotic effects. By utilizing CNTs of different lengths, we investigated the role of the proinflammatory cytokine, interleukin-1 (IL-1) on gap junctional intercellular communication (GJIC) by using IL-1 wild-type (IL1-WT) and IL-1 knock-out (IL1-KO) cells. GJIC decreased equally in both cell types after CNT exposure. Immunofluorescence staining showed Gja1 and Gjb2 in gap junctions and hemichannels for both cell types. Gjb1 and Gjb2 expression was low in IL1-KO cells, which was confirmed by protein analysis. Gja1 was upregulated with both CNTs, whereas Gjb1 was down-regulated by CNT-2 in IL1-WT cells. Connexin mRNA expression was regulated differently by the CNTs. CNT-1 affected Gja1 and Gjb2, whereas CNT-2 had an effect on Gjb1. CNTs negatively affect GJIC through gap junctions independently of the length of CNT and IL-1 status. Furthermore, connexin gene expression was affected by IL-1 at transcriptional and translational levels. As both CNTs used in this study are cytotoxic to the cells and reduce cell survival, we suggest that CNT-induced reduction in GJIC may be important for inhibiting transfer of cell survival signals between cells.
Collapse
Affiliation(s)
- Yke Jildouw Arnoldussen
- Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Pb 8149 Dep, N-0033, Oslo, Norway
| | - Kristine Haugen Anmarkrud
- Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Pb 8149 Dep, N-0033, Oslo, Norway
| | - Vidar Skaug
- Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Pb 8149 Dep, N-0033, Oslo, Norway
| | - Ron N Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, The Faculty of Health Sciences, Ben Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Aage Haugen
- Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Pb 8149 Dep, N-0033, Oslo, Norway
| | - Shanbeh Zienolddiny
- Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Pb 8149 Dep, N-0033, Oslo, Norway.
| |
Collapse
|
28
|
Microglial interleukin-1β in the ipsilateral dorsal horn inhibits the development of mirror-image contralateral mechanical allodynia through astrocyte activation in a rat model of inflammatory pain. Pain 2016; 156:1046-1059. [PMID: 25749305 DOI: 10.1097/j.pain.0000000000000148] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Damage on one side of the body can also result in pain on the contralateral unaffected side, called mirror-image pain (MIP). Currently, the mechanisms responsible for the development of MIP are unknown. In this study, we investigated the involvement of spinal microglia and interleukin-1β (IL-1β) in the development of MIP using a peripheral inflammatory pain model. After unilateral carrageenan injection, mechanical allodynia (MA) in both hind paws and the expression levels of spinal Iba-1, IL-1β, and GFAP were evaluated. Ipsilateral MA was induced beginning at 3 hours after carrageenan injection, whereas contralateral MA showed a delayed onset occurring 5 days after injection. A single intrathecal (i.t.) injection of minocycline, a tetracycline derivative that displays selective inhibition of microglial activation, or an interleukin-1 receptor antagonist (IL-1ra) on the day of carrageenan injection caused an early temporary induction of contralateral MA, whereas repeated i.t. treatment with these drugs from days 0 to 3 resulted in a long-lasting contralateral MA, which was evident in its advanced development. We further showed that IL-1β was localized to microglia and that minocycline inhibited the carrageenan-induced increases in spinal Iba-1 and IL-1β expression. Conversely, minocycline or IL-1ra pretreatment increased GFAP expression as compared with that of control rats. However, i.t. pretreatment with fluorocitrate, an astrocyte inhibitor, restored minocycline- or IL-1ra-induced contralateral MA. These results suggest that spinal IL-1β derived from activated microglia temporarily suppresses astrocyte activation, which can ultimately prevent the development of contralateral MA under inflammatory conditions. These findings imply that microglial IL-1β plays an important role in regulating the induction of inflammatory MIP.
Collapse
|
29
|
Kim Y, Davidson JO, Gunn KC, Phillips AR, Green CR, Gunn AJ. Role of Hemichannels in CNS Inflammation and the Inflammasome Pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 104:1-37. [DOI: 10.1016/bs.apcsb.2015.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Krabbe disease: involvement of connexin43 in the apoptotic effects of sphingolipid psychosine on mouse oligodendrocyte precursors. Apoptosis 2015; 21:25-35. [DOI: 10.1007/s10495-015-1183-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Morioka N, Zhang FF, Nakamura Y, Kitamura T, Hisaoka-Nakashima K, Nakata Y. Tumor necrosis factor-mediated downregulation of spinal astrocytic connexin43 leads to increased glutamatergic neurotransmission and neuropathic pain in mice. Brain Behav Immun 2015; 49:293-310. [PMID: 26116449 DOI: 10.1016/j.bbi.2015.06.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/05/2015] [Accepted: 06/16/2015] [Indexed: 11/29/2022] Open
Abstract
Spinal cord astrocytes are critical in the maintenance of neuropathic pain. Connexin 43 (Cx43) expressed on spinal dorsal horn astrocytes modulates synaptic neurotransmission, but its role in nociceptive transduction has yet to be fully elaborated. In mice, Cx43 is mainly expressed in astrocytes, not neurons or microglia, in the spinal dorsal horn. Hind paw mechanical hypersensitivity was observed beginning 3days after partial sciatic nerve ligation (PSNL), but a persistent downregulation of astrocytic Cx43 in ipsilateral lumbar spinal dorsal horn was not observed until 7days post-PSNL, suggesting that Cx43 downregulation mediates the maintenance and not the initiation of nerve injury-induced hypersensitivity. Downregulation of Cx43 expression by intrathecal treatment with Cx43 siRNA also induced mechanical hypersensitivity. Conversely, restoring Cx43 by an adenovirus vector expressing Cx43 (Ad-Cx43) ameliorated PSNL-induced mechanical hypersensitivity. The sensitized state following PSNL is likely maintained by dysfunctional glutamatergic neurotransmission, as Cx43 siRNA-induced mechanical hypersensitivity was attenuated with intrathecal treatment of glutamate receptor antagonists MK801 and CNQX, but not neurokinin-1 receptor antagonist CP96345 or the Ca(2+) channel subunit α2δ1 blocker gabapentin. The source of this dysfunctional glutamatergic neurotransmission is likely decreased clearance of glutamate from the synapse rather than increased glutamate release into the synapse. Astrocytic expression of glutamate transporter GLT-1, but not GLAST, and activity of glutamate transport were markedly decreased in mice intrathecally injected with Cx43-targeting siRNA but not non-targeting siRNA. Glutamate release from spinal synaptosomes prepared from mice treated with either Cx43-targeting siRNA or non-targeting siRNA was unchanged. Intrathecal injection of Ad-Cx43 in PSNL mice restored astrocytic GLT-1 expression. The cytokine tumor necrosis factor (TNF) has been implicated in the induction of central sensitization, particularly through its actions on astrocytes, in the spinal cord following peripheral injury. Intrathecal injection of TNF in naïve mice induced the downregulation of both Cx43 and GLT-1 in spinal dorsal horn, as well as hind paw mechanical hypersensitivity, as observed in PSNL mice. Conversely, intrathecal treatment of PSNL mice with the TNF inhibitor etanercept prevented not only mechanical hypersensitivity but also the downregulation of Cx43 and GLT-1 expression in astrocytes. The current findings indicate that spinal astrocytic Cx43 are essential for the maintenance of neuropathic pain following peripheral nerve injury and suggest modulation of Cx43 as a novel target for developing analgesics for neuropathic pain.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Fang Fang Zhang
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Tomoya Kitamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
32
|
O'Donnell LA, Henkins KM, Kulkarni A, Matullo CM, Balachandran S, Pattisapu AK, Rall GF. Interferon gamma induces protective non-canonical signaling pathways in primary neurons. J Neurochem 2015; 135:309-22. [PMID: 26190522 DOI: 10.1111/jnc.13250] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 06/12/2015] [Accepted: 07/13/2015] [Indexed: 12/29/2022]
Abstract
The signal transduction molecule, Stat1, is critical for the expression of type I and II interferon (IFN)-responsive genes in most cells; however, we previously showed that primary hippocampal mouse neurons express low basal Stat1, with delayed and attenuated expression of IFN-responsive genes. Moreover, IFNγ-dependent resolution of a neurotropic viral challenge in permissive mice is Stat1-independent. Here, we show that exogenous IFNγ has no deleterious impact on neuronal viability, and staurosporine-induced apoptosis in neurons is significantly blunted by the addition of IFNγ, suggesting that IFNγ confers a pro-survival signal in neurons. To identify the pathways induced by IFNγ in neurons, the activation of alternative signal transducers associated with IFNγ signaling was assessed. Rapid and pronounced activation of extracellular signal regulated kinase (Erk1/2) was observed in neurons, compared to a modest response in fibroblasts. Moreover, the absence of Stat1 in primary fibroblasts led to enhanced Erk activation following IFNγ addition, implying that the cell-specific availability of signal transducers can diversify the cellular response following IFN engagement.
Collapse
Affiliation(s)
- Lauren A O'Donnell
- Fox Chase Cancer Center, Program in Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA.,Duquesne University, Mylan School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Kristen M Henkins
- Fox Chase Cancer Center, Program in Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| | - Apurva Kulkarni
- Duquesne University, Mylan School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Christine M Matullo
- Fox Chase Cancer Center, Program in Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| | - Siddharth Balachandran
- Fox Chase Cancer Center, Program in Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| | - Anil K Pattisapu
- Duquesne University, Mylan School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Glenn F Rall
- Fox Chase Cancer Center, Program in Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
Decrock E, De Bock M, Wang N, Bultynck G, Giaume C, Naus CC, Green CR, Leybaert L. Connexin and pannexin signaling pathways, an architectural blueprint for CNS physiology and pathology? Cell Mol Life Sci 2015; 72:2823-51. [PMID: 26118660 PMCID: PMC11113968 DOI: 10.1007/s00018-015-1962-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 02/06/2023]
Abstract
The central nervous system (CNS) is composed of a highly heterogeneous population of cells. Dynamic interactions between different compartments (neuronal, glial, and vascular systems) drive CNS function and allow to integrate and process information as well as to respond accordingly. Communication within this functional unit, coined the neuro-glio-vascular unit (NGVU), typically relies on two main mechanisms: direct cell-cell coupling via gap junction channels (GJCs) and paracrine communication via the extracellular compartment, two routes to which channels composed of transmembrane connexin (Cx) or pannexin (Panx) proteins can contribute. Multiple isoforms of both protein families are present in the CNS and each CNS cell type is characterized by a unique Cx/Panx portfolio. Over the last two decades, research has uncovered a multilevel platform via which Cxs and Panxs can influence different cellular functions within a tissue: (1) Cx GJCs enable a direct cell-cell communication of small molecules, (2) Cx hemichannels and Panx channels can contribute to autocrine/paracrine signaling pathways, and (3) different structural domains of these proteins allow for channel-independent functions, such as cell-cell adhesion, interactions with the cytoskeleton, and the activation of intracellular signaling pathways. In this paper, we discuss current knowledge on their multifaceted contribution to brain development and to specific processes in the NGVU, including synaptic transmission and plasticity, glial signaling, vasomotor control, and blood-brain barrier integrity in the mature CNS. By highlighting both physiological and pathological conditions, it becomes evident that Cxs and Panxs can play a dual role in the CNS and that an accurate fine-tuning of each signaling mechanism is crucial for normal CNS physiology.
Collapse
Affiliation(s)
- Elke Decrock
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 (Block B, 3rd floor), 9000 Ghent, Belgium
| | - Marijke De Bock
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 (Block B, 3rd floor), 9000 Ghent, Belgium
| | - Nan Wang
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 (Block B, 3rd floor), 9000 Ghent, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium
| | - Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, 75231 Paris Cedex 05, France
- University Pierre et Marie
Curie, ED, N°158, 75005 Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005 Paris, France
| | - Christian C. Naus
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Colin R. Green
- Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| | - Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 (Block B, 3rd floor), 9000 Ghent, Belgium
| |
Collapse
|
34
|
Zhang FF, Morioka N, Kitamura T, Hisaoka-Nakashima K, Nakata Y. Proinflammatory cytokines downregulate connexin 43-gap junctions via the ubiquitin-proteasome system in rat spinal astrocytes. Biochem Biophys Res Commun 2015. [PMID: 26212436 DOI: 10.1016/j.bbrc.2015.07.105] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Astrocytic gap junctions formed by connexin 43 (Cx43) are crucial for intercellular communication between spinal cord astrocytes. Various neurological disorders are associated with dysfunctional Cx43-gap junctions. However, the mechanism modulating Cx43-gap junctions in spinal astrocytes under pathological conditions is not entirely clear. A previous study showed that treatment of spinal astrocytes in culture with pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) decreased both Cx43 expression and gap junction intercellular communication (GJIC) via a c-jun N-terminal kinase (JNK)-dependent pathway. The current study further elaborates the intracellular mechanism that decreases Cx43 under an inflammatory condition. Cycloheximide chase analysis revealed that TNF-α (10 ng/ml) alone or in combination with IFN-γ (5 ng/ml) accelerated the degradation of Cx43 protein in cultured spinal astrocytes. The reduction of both Cx43 expression and GJIC induced by a mixture of TNF-α and IFN-γ were blocked by pretreatment with proteasome inhibitors MG132 (0.5 μM) and epoxomicin (25 nM), a mixture of TNF-α and IFN-γ significantly increased proteasome activity and Cx43 ubiquitination. In addition, TNF-α and IFN-γ-induced activation of ubiquitin-proteasome systems was prevented by SP600125, a JNK inhibitor. Together, these results indicate that a JNK-dependent ubiquitin-proteasome system is induced under an inflammatory condition that disrupts astrocytic gap junction expression and function, leading to astrocytic dysfunction and the maintenance of the neuroinflammatory state.
Collapse
Affiliation(s)
- Fang Fang Zhang
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Tomoya Kitamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
35
|
Neuroprotective mechanisms activated in non-seizing rats exposed to sarin. Brain Res 2015; 1618:136-48. [PMID: 26049129 DOI: 10.1016/j.brainres.2015.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022]
Abstract
Exposure to organophosphate (OP) nerve agents, such as sarin, may lead to uncontrolled seizures and irreversible brain injury and neuropathology. In rat studies, a median lethal dose of sarin leads to approximately half of the animals developing seizures. Whereas previous studies analyzed transcriptomic effects associated with seizing sarin-exposed rats, our study focused on the cohort of sarin-exposed rats that did not develop seizures. We analyzed the genomic changes occurring in sarin-exposed, non-seizing rats and compared differentially expressed genes and pathway activation to those of seizing rats. At the earliest time point (0.25 h) and in multiple sarin-sensitive brain regions, defense response genes were commonly expressed in both groups of animals as compared to the control groups. All sarin-exposed animals activated the MAPK signaling pathway, but only the seizing rats activated the apoptotic-associated JNK and p38 MAPK signaling sub-pathway. A unique phenotype of the non-seizing rats was the altered expression levels of genes that generally suppress inflammation or apoptosis. Importantly, the early transcriptional response for inflammation- and apoptosis-related genes in the thalamus showed opposite trends, with significantly down-regulated genes being up-regulated, and vice versa, between the seizing and non-seizing rats. These observations lend support to the hypothesis that regulation of anti-inflammatory genes might be part of an active and sufficient response in the non-seizing group to protect against the onset of seizures. As such, stimulating or activating these responses via pretreatment strategies could boost resilience against nerve agent exposures.
Collapse
|
36
|
Nakamura Y, Morioka N, Zhang FF, Hisaoka-Nakashima K, Nakata Y. Downregulation of connexin36 in mouse spinal dorsal horn neurons leads to mechanical allodynia. J Neurosci Res 2015; 93:584-91. [PMID: 25400139 DOI: 10.1002/jnr.23515] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/24/2014] [Accepted: 10/13/2014] [Indexed: 11/08/2022]
Abstract
Connexin36 (Cx36), a component of neuronal gap junctions, is crucial for interneuronal communication and regulation. Gap junction dysfunction underlies neurological disorders, including chronic pain. Following a peripheral nerve injury, Cx36 expression in the ipsilateral spinal dorsal horn was markedly decreased over time, which paralleled the time course of hind paw tactile allodynia. Intrathecal (i.t.) injection of Cx36 siRNA (1 and 5 pg) significantly reduced the expression of Cx36 protein in the lumbar spinal cord, peaking 3 days after the injection, which corresponded with the onset of hind paw tactile allodynia. It is possible that some of the tactile allodynia resulting from Cx36 downregulation could be mediated through excitatory neuromodulators, such as glutamate and substance P. The Cx36 knockdown-evoked tactile allodynia was significantly attenuated by i.t. treatment with the N-methyl-D-aspartate glutamate receptor antagonist MK-801 but not the substance P receptor antagonist CP96345. Immunohistochemistry showed that Cx36 was colocalized with glycine transporter-2, a marker for inhibitory glycinergic spinal interneurons, but not with glutamate decarboxylase 67, a marker for inhibitory GABAergic spinal interneurons. The results indicate that spinal inhibition through glycinergic interneurons is reduced, leading to increased glutamatergic neurotransmission, as a result of Cx36 downregulation. The current data suggest that gap junction dysfunction underlies neuropathic pain and further suggest a novel target for the development of analgesics.
Collapse
Affiliation(s)
- Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
37
|
Zou H, Zhuo L, Han T, Hu D, Yang X, Wang Y, Yuan Y, Gu J, Bian J, Liu X, Liu Z. Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells. Biochem Biophys Res Commun 2015; 459:713-9. [PMID: 25778869 DOI: 10.1016/j.bbrc.2015.03.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/06/2015] [Indexed: 02/07/2023]
Abstract
Cadmium (Cd) is known to induce hepatotoxicity, yet the underlying mechanism of how this occurs is not fully understood. In this study, Cd-induced apoptosis was demonstrated in rat liver cells (BRL 3A) with apoptotic nuclear morphological changes and a decrease in cell index (CI) in a time- and concentration-dependent manner. The role of gap junctional intercellular communication (GJIC) and autophagy in Cd-induced apoptosis was investigated. Cd significantly induced GJIC inhibition as well as downregulation of connexin 43 (Cx43). The prototypical gap junction blocker carbenoxolone disodium (CBX) exacerbated the Cd-induced decrease in CI. Cd treatment was also found to cause autophagy, with an increase in mRNA expression of autophagy-related genes Atg-5, Atg-7, Beclin-1, and microtubule-associated protein light chain 3 (LC3) conversion from cytosolic LC3-I to membrane-bound LC3-II. The autophagic inducer rapamycin (RAP) prevented the Cd-induced CI decrease, while the autophagic inhibitor chloroquine (CQ) caused a further reduction in CI. In addition, CBX promoted Cd-induced autophagy, as well as changes in expression of Atg-5, Atg-7, Beclin-1 and LC3. CQ was found to block the Cd-induced decrease in Cx43 and GJIC inhibition, whereas RAP had opposite effect. These results demonstrate that autophagy plays a protective role during Cd-induced apoptosis in BRL 3A cells during 6 h of experiment, while autophagy exacerbates Cd-induced GJIC inhibition which has a negative effect on cellular fate.
Collapse
Affiliation(s)
- Hui Zou
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Liling Zhuo
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong, 277160, PR China
| | - Tao Han
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Di Hu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Xiaokang Yang
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Yi Wang
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
38
|
Zou H, Hu D, Han T, Zhao H, Xie J, Liu X, Wang Y, Gu J, Yuan Y, Bian J, Liu Z. Salidroside ameliorates Cd-induced calcium overload and gap junction dysfunction in BRL 3A rat liver cells. Biol Trace Elem Res 2015; 164:90-8. [PMID: 25524521 DOI: 10.1007/s12011-014-0201-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/02/2014] [Indexed: 01/25/2023]
Abstract
It is known that cadmium (Cd) induces cytotoxicity via Ca(2+) signaling, although the underlying mechanism is unclear. Here, we studied the molecular mechanisms of Cd-induced cytotoxicity in BRL 3A cells, a rat liver cell line. We observed that Cd treatment was associated with a time-dependent decrease in cell index (CI) in BRL 3A cells. Mechanistically, we observed that Cd exposure was associated with decreased expression of Cx43, P-Cx43, and Cx32. Specifically, Cx43 was decreased at the site of cell-cell junctions at the cell membrane, corresponding to a decrease in gap junctional intercellular connections (GJICs). We also found that Cd triggered a rise in the intracellular free Ca(2+) concentration ([Ca(2+)]i), and the intracellular calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis, acetoxymethyl ester (BAPTA-AM), prevented the Cd-induced decrease in CI. On the other hand, the gap junction blocker 18-β-glycyrrhetinic acid (GA) and the endoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin exacerbated cytotoxic injury induced by Cd via further elevating [Ca(2+)]i, The extracellular calcium chelator ethylene glycol tetraacetic acid could partly attenuate Cd-induced calcium elevation but had little effect on GA combined Cd. Furthermore, salidroside as a protective agent prevented Cd-induced GJIC inhibition and calcium overload. Our findings suggest that Cd triggers elevation of [Ca(2+)]i via mainly stimulating Ca(2+) release from intracellular Ca(2+) storage organelles and inhibiting GJIC, causing cytotoxic injury, and salidroside could be used to prevent Cd-induced cytotoxicity.
Collapse
Affiliation(s)
- Hui Zou
- College of Veterinary Medicine, Yangzhou University, 88 South University Ave., Yangzhou, Jiangsu, 225009, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Morioka N, Suekama K, Zhang FF, Kajitani N, Hisaoka-Nakashima K, Takebayashi M, Nakata Y. Amitriptyline up-regulates connexin43-gap junction in rat cultured cortical astrocytes via activation of the p38 and c-Fos/AP-1 signalling pathway. Br J Pharmacol 2014; 171:2854-67. [PMID: 24641259 DOI: 10.1111/bph.12614] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/09/2014] [Accepted: 01/25/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Intercellular communication via gap junctions, comprised of connexin (Cx) proteins, allow for communication between astrocytes, which in turn is crucial for maintaining CNS homeostasis. The expression of Cx43 is decreased in post-mortem brains from patients with major depression. A potentially novel mechanism of tricyclic antidepressants is to increase the expression and functioning of gap junctions in astrocytes. EXPERIMENTAL APPROACH The effect of amitriptyline on the expression of Cx43 and gap junction intercellular communication (GJIC) in rat primary cultured cortical astrocytes was investigated. We also investigated the role of p38 MAPK intracellular signalling pathway in the amitriptyline-induced expression of Cx43 and GJIC. KEY RESULTS Treatment with amitriptyline for 48 h significantly up-regulated Cx43 mRNA, protein and GJIC. The up-regulation of Cx43 was not monoamine-related since noradrenaline, 5-HT and dopamine did not induce Cx43 expression and pretreatment with α- and β-adrenoceptor antagonists had no effect. Intracellular signalling involved p38 MAPK, as amitriptyline significantly increased p38 MAPK phosphorylation and Cx43 expression and GJIC were significantly blocked by the p38 inhibitor SB 202190. Furthermore, amitriptyline-induced Cx43 expression and GJIC were markedly reduced by transcription factor AP-1 inhibitors (curcumin and tanshinone IIA). The translocation of c-Fos from the cytosol and the nucleus of cortical astrocytes was increased by amitriptyline, and this response was dependent on p38 activity. CONCLUSION AND IMPLICATION These findings indicate a novel mechanism of action of amitriptyline through cortical astrocytes, and further suggest that targeting this mechanism could lead to the development of a new class of antidepressants.
Collapse
Affiliation(s)
- N Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, Minami-ku, Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Nakamura Y, Izumi H, Fukushige R, Shimizu T, Watanabe K, Morioka N, Hama A, Takamatsu H, Nakata Y. Continuous infusion of substance P into rat striatum alleviates nociceptive behavior via phosphorylation of extracellular signal-regulated kinase 1/2. J Neurochem 2014; 131:755-66. [PMID: 25175638 DOI: 10.1111/jnc.12938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/12/2014] [Accepted: 08/22/2014] [Indexed: 12/21/2022]
Abstract
Intraplantar injection of 0.4% formalin into the rat hind paw leads to a biphasic nociceptive response; an 'acute' phase (0-15 min) and 'tonic' phase (16-120 min), which is accompanied by significant phosphorylation of extracellular signal-regulated kinase (ERK)1/2 in the contralateral striatum at 120 min post-formalin injection. To uncover a possible relationship between the slow-onset substance P (SP) release and increased ERK1/2 phosphorylation in the striatum, continuous infusion of SP into the striatum by reverse microdialysis (0.4 μg/mL in microdialysis fiber, 1 μL/min) was performed to mimic volume neurotransmission of SP. Continuous infusion for 3 h of SP reduced the duration of 'tonic' phase nociception, and this SP effect was mediated by neurokinin 1 (NK1) receptors since pre-treatment with NK1 receptor antagonist CP96345 (10 μM) blocked the effect of SP infusion. However, formalin-induced 'tonic' phase nociception was significantly prolonged following acute injection of the MAP/ERK kinase 1/2 inhibitor PD0325901 (100 pmol) by microinjection. The coinfusion of SP and PD0325901 significantly increased the 'tonic' phase of nociception. These data demonstrate that volume transmission of striatal SP triggered by peripheral nociceptive stimulation does not lead to pain facilitation but a significant decrease of tonic nociception by the activation of the SP-NK1 receptor-ERK1/2 system. Noxious stimulation induces a slow-onset substance P (SP) release as a volume transmitter, activating extra-synaptic NK1 receptors, and evokes phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. The SP-NK1-ERK1/2 system in the striatum decreases tonic nociception.
Collapse
Affiliation(s)
- Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bas DB, Abdelmoaty S, Sandor K, Codeluppi S, Fitzsimmons B, Steinauer J, Hua XY, Yaksh TL, Svensson CI. Spinal release of tumour necrosis factor activates c-Jun N-terminal kinase and mediates inflammation-induced hypersensitivity. Eur J Pain 2014; 19:260-70. [PMID: 24942612 PMCID: PMC4270961 DOI: 10.1002/ejp.544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2014] [Indexed: 12/12/2022]
Abstract
Background Mounting evidence points to individual contributions of tumour necrosis factor-alpha (TNF) and the c-Jun N-terminal kinase (JNK) pathway to the induction and maintenance of various pain states. Here we explore the role of spinal TNF and JNK in carrageenan-induced hypersensitivity. As links between TNF and JNK have been demonstrated in vitro, we investigated if TNF regulates spinal JNK activity in vivo. Methods TNF levels in lumbar cerebrospinal fluid (CSF) were measured by enzyme-linked immunosorbent assay, spinal TNF gene expression by real-time polymerase chain reaction and TNF protein expression, JNK and c-Jun phosphorylation by western blotting. The role of spinal TNF and JNK in inflammation-induced mechanical and thermal hypersensitivity was assessed by injecting the TNF inhibitor etanercept and the JNK inhibitors SP600125 and JIP-1 intrathecally (i.t.). TNF-mediated regulation of JNK activity was examined by assessing the effect of i.t. etanercept on inflammation-induced spinal JNK activity. Results TNF levels were increased in CSF and spinal cord following carrageenan-induced inflammation. While JNK phosphorylation followed the same temporal pattern as TNF, c-jun was only activated at later time points. Intrathecal injection of TNF and JNK inhibitors attenuated carrageenan-induced mechanical and thermal hypersensitivity. TNF stimulation induced JNK phosphorylation in cultured spinal astrocytes and blocking the spinal actions of TNF in vivo by i.t. injection of etanercept reduced inflammation-induced spinal JNK activity. Conclusions Here we show that spinal JNK activity is dependent on TNF and that both TNF and the JNK signalling pathways modulate pain-like behaviour induced by peripheral inflammation.
Collapse
Affiliation(s)
- D B Bas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
De Bock M, Decrock E, Wang N, Bol M, Vinken M, Bultynck G, Leybaert L. The dual face of connexin-based astroglial Ca(2+) communication: a key player in brain physiology and a prime target in pathology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2211-32. [PMID: 24768716 DOI: 10.1016/j.bbamcr.2014.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 12/21/2022]
Abstract
For decades, studies have been focusing on the neuronal abnormalities that accompany neurodegenerative disorders. Yet, glial cells are emerging as important players in numerous neurological diseases. Astrocytes, the main type of glia in the central nervous system , form extensive networks that physically and functionally connect neuronal synapses with cerebral blood vessels. Normal brain functioning strictly depends on highly specialized cellular cross-talk between these different partners to which Ca(2+), as a signaling ion, largely contributes. Altered intracellular Ca(2+) levels are associated with neurodegenerative disorders and play a crucial role in the glial responses to injury. Intracellular Ca(2+) increases in single astrocytes can be propagated toward neighboring cells as intercellular Ca(2+) waves, thereby recruiting a larger group of cells. Intercellular Ca(2+) wave propagation depends on two, parallel, connexin (Cx) channel-based mechanisms: i) the diffusion of inositol 1,4,5-trisphosphate through gap junction channels that directly connect the cytoplasm of neighboring cells, and ii) the release of paracrine messengers such as glutamate and ATP through hemichannels ('half of a gap junction channel'). This review gives an overview of the current knowledge on Cx-mediated Ca(2+) communication among astrocytes as well as between astrocytes and other brain cell types in physiology and pathology, with a focus on the processes of neurodegeneration and reactive gliosis. Research on Cx-mediated astroglial Ca(2+) communication may ultimately shed light on the development of targeted therapies for neurodegenerative disorders in which astrocytes participate. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Marijke De Bock
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Elke Decrock
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium.
| | - Nan Wang
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Mélissa Bol
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Center for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, B-1090 Brussels, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine, Laboratory of Molecular and Cellular Signalling, KULeuven, Campus Gasthuisberg O/N-I bus 802, B-3000 Leuven, Belgium
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
43
|
Clock gene Per1 regulates the production of CCL2 and interleukin-6 through p38, JNK1 and NF-κB activation in spinal astrocytes. Mol Cell Neurosci 2014; 59:37-46. [DOI: 10.1016/j.mcn.2014.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/06/2014] [Accepted: 01/10/2014] [Indexed: 12/20/2022] Open
|
44
|
Liao CK, Jeng CJ, Wang HS, Wang SH, Wu JC. Lipopolysaccharide induces degradation of connexin43 in rat astrocytes via the ubiquitin-proteasome proteolytic pathway. PLoS One 2013; 8:e79350. [PMID: 24236122 PMCID: PMC3827358 DOI: 10.1371/journal.pone.0079350] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/30/2013] [Indexed: 11/20/2022] Open
Abstract
The astrocytic syncytium plays a critical role in maintaining the homeostasis of the brain through the regulation of gap junction intercellular communication (GJIC). Changes to GJIC in response to inflammatory stimuli in astrocytes may have serious effects on the brain. We have previously shown that lipopolysaccharide (LPS) reduces connexin43 (Cx43) expression and GJIC in cultured rat astrocytes via a toll-like receptor 4-mediated signaling pathway. In the present study, treatment of astrocytes with LPS resulted in a significant increase in levels of the phosphorylated forms of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) -1, -2, and -3 for up to 18 h. An increase in nuclear transcription factor NF-κB levels was also observed after 8 h of LPS treatment and was sustained for up to 18 h. The LPS-induced decrease in Cx43 protein levels and inhibition of GJIC were blocked by the SAPK/JNK inhibitor SP600125, but not by the NF-κB inhibitor BAY11-7082. Following blockade of de novo protein synthesis by cycloheximide, LPS accelerated Cx43 degradation. Moreover, the LPS-induced downregulation of Cx43 was blocked following inhibition of 26S proteasome activity using the reversible proteasome inhibitor MG132 or the irreversible proteasome inhibitor lactacystin. Immunoprecipitation analyses revealed an increased association of Cx43 with both ubiquitin and E3 ubiquitin ligase Nedd4 in astrocytes after LPS stimulation for 6 h and this effect was prevented by SP600125. Taken together, these results suggest that LPS stimulation leads to downregulation of Cx43 expression and GJIC in rat astrocytes by activation of SAPK/JNK and the ubiquitin-proteasome proteolytic pathway.
Collapse
Affiliation(s)
- Chih-Kai Liao
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Jiuan Jeng
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hwai-Shi Wang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Huei Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jiahn-Chun Wu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|