1
|
Western diet-induced obesity disrupts the diurnal rhythmicity of hippocampal core clock gene expression in a mouse model. Brain Behav Immun 2020; 88:815-825. [PMID: 32454134 DOI: 10.1016/j.bbi.2020.05.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/17/2020] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
Western diet (WD) feeding disrupts core clock gene expression in peripheral tissues and contributes to WD-induced metabolic disease. The hippocampus, the mammalian center for memory, is also sensitive to WD feeding, but whether the WD disrupts its core clock is unknown. To this end, male mice were maintained on a WD for 16 weeks and diurnal metabolism, gene expression and memory were assessed. WD-induced obesity disrupted the diurnal rhythms of whole-body metabolism, markers of inflammation and hepatic gene expression, but did not disrupt diurnal expression of hypothalamic Bmal1, Npas2 and Per2. However, all measured core clock genes were disrupted in the hippocampus after WD feeding and the expression pattern of genes implicated in Alzheimer's disease and synaptic function were altered. Finally, WD feeding disrupted hippocampal memory in a task- and time-dependent fashion. Our results implicate WD-induced alterations in the rhythmicity of hippocampal gene expression in the etiology of diet-induced memory deficits.
Collapse
|
2
|
Donat CK, Schuhmann MU, Voigt C, Nieber K, Deuther-Conrad W, Brust P. Time-dependent alterations of cholinergic markers after experimental traumatic brain injury. Brain Res 2008; 1246:167-77. [PMID: 18848922 DOI: 10.1016/j.brainres.2008.09.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/15/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability. Cognitive deficits are believed to be connected with impairments of the cholinergic system. The present study was conducted to evaluate the cholinergic system in a model of focal brain injury with special attention to the time course of posttraumatic events in critical brain regions. Three groups of male Sprague-Dawley rats (post-TBI survival time: 2 h, 24 h and 72 h) were subjected to sham-operation (control) or controlled cortical impact injury. Receptor densities were determined on frozen ipsilateral sagittal brain sections with [(3)H]epibatidine (nicotinic acetylcholine receptors) and [(3)H]QNB (muscarinic acetylcholine receptors). The density of the vesicular acetylcholine transporter (vAChT) was evaluated with (-)[(3)H]vesamicol. Compared to control, vAChT was lowered (up to 50%) at each time point after trauma, with reductions in olfactory tubercle, basal forebrain, motor cortex, putamen, thalamic and hypothalamic areas and the gigantocellular reticular nucleus. Time-dependent reductions of about 20% of nAChR-density in the thalamus, hypothalamus, olfactory tubercle, gigantocellular reticular nucleus and motor cortex were observed post-TBI at 24 and 72 h. The same brain regions showed reductions of mAChR at 24 and 72 h after trauma with additional decreases in the corpus callosum, basal forebrain and anterior olfactory nucleus. In conclusion, cholinergic markers showed significant time-dependent impairments after TBI. Considering the role of the cholinergic system for cognitive processes in the brain, it seems likely that these impairments contribute to clinically relevant cognitive deficits.
Collapse
Affiliation(s)
- Cornelius K Donat
- Institute of Interdisciplinary Isotope Research, Permoserstrasse 15, 04318 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
3
|
Bai ZT, Zhao R, Zhang XY, Chen J, Liu T, Ji YH. The epileptic seizures induced by BmK I, a modulator of sodium channels. Exp Neurol 2005; 197:167-76. [PMID: 16229835 DOI: 10.1016/j.expneurol.2005.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 08/27/2005] [Accepted: 09/08/2005] [Indexed: 11/23/2022]
Abstract
In the present study, the susceptibility to rat epileptic seizures induced by the intrahippocampal administration of BmK I, a modulator of sodium channels purified from the venom of Chinese scorpion, has been investigated. The results showed that the strong epileptic behaviors and discharges in the hippocampus were evoked by BmK I dose-dependently. The hippocampal c-Fos expression displayed two peak waves in a specific spatio-temporal pattern elicited by BmK I. The whole cell patch clamp recordings showed that the inactivation of sodium currents in rat cultured hippocampal neurons was prolonged significantly by BmK I, and restored partially after washing. These results indicated that the rat hippocampus is a susceptible target for the proconvulsant effects of BmK I, and the induction of epileptic seizures may be ascribed to the modulation of BmK I on the inactivation of voltage-gated sodium channels distributing in the rat hippocampal neurons.
Collapse
Affiliation(s)
- Zhan-Tao Bai
- Graduate School of the Chinese Academy of Sciences, Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China
| | | | | | | | | | | |
Collapse
|
4
|
Gerlach R, Beck M, Zeitschel U, Seifert V. MK 801 attenuates c-Fos and c-Jun expression after in vitro ischemia in rat neuronal cell cultures but not in PC 12 cells. Neurol Res 2002; 24:725-9. [PMID: 12392213 DOI: 10.1179/016164102101200654] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Cellular homeostatic adaptation to cerebral ischemia is complex and contains changes in receptor mediated gene expression and signaling pathways. The proteins of the immediate early genes c-Fos and c-Jun are thought to be involved in coupling neuronal excitation to target gene expression, due to formation of heterodimers and binding to the AP1 promotor region. We used an in vitro model to compare ischemia induced c-Fos and c-Jun expression in rat neuronal cell cultures and nerve growth factor (NGF) differentiated PC 12 cells. Since activation of glutamate receptors is known to mediate ischemic injury we determined the effect of the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist MK 801 on c-Fos and c-Jun expression in both cell culture systems during ischemia. Neuron rich cultures and NGF differentiated PC 12 cells were exposed to sublethal in vitro ischemia using an hypoxic chamber flushed with argon/CO2 (95 %/5%). C-Fos and c-Jun mRNA expression was analyzed by competitive reverse transcription-polymerase chain reaction using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as internal standard. One hour of in vitro ischemia significantly increased c-Fos and c-Jun mRNA levels in both cell culture systems. In neuron rich cultures a 10-fold (c-Fos) and 7-fold (c-Jun) mRNA increase was observed. The mRNA rise was less pronounced in PC 12 cells (5.5-fold and 2-fold) for c-Fos and c-Jun, respectively. The addition of MK 801 significantly reduced the expression of c-Fos and c-Jun mRNA in neuronal cultures, whereas no effect was detectable in PC 12 cells. Since MK 801 failed to reduce the c-Fos and c-Jun expression in NGF differentiated PC 12 cells different signaling pathways may initiate c-Fos and c-Jun expression in both cell culture systems.
Collapse
Affiliation(s)
- Rüdiger Gerlach
- Department of Neurosurgery, Johann Wolfgang Goethe-University of Frankfurt/Main, Germany.
| | | | | | | |
Collapse
|
5
|
MacGibbon GA, Hamilton LC, Crocker SF, Costain WJ, Murphy KM, Robertson HA, Denovan-Wright EM. Immediate-early gene response to methamphetamine, haloperidol, and quinolinic acid is not impaired in Huntington's disease transgenic mice. J Neurosci Res 2002; 67:372-8. [PMID: 11813242 DOI: 10.1002/jnr.10100] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Striatal neurons in symptomatic Huntington's disease (HD) transgenic mice are resistant to a variety of toxic insults, including quinolinic acid (QA), kainic acid and 3-nitropropionic acid. The basis for this resistance is currently unknown. To investigate the possibility that the immediate-early gene (IEG) response is defective in symptomatic HD mice leading to a lack of response to these compounds, we examined the expression of c-Fos and Krox 24 after administration of the indirect dopamine agonist methamphetamine, the dopamine D(2) receptor antagonist haloperidol and the neurotoxin QA in 5- and 10-week-old R6/2 transgenic HD and wild-type mice. Unlike wild-type and pre-symptomatic R6/2 transgenic HD mice, 10-week-old symptomatic HD mice were resistant to methamphetamine-induced gliosis and QA lesion. There was, however, no difference in the number or distribution of c-Fos-immunoreactive nuclei 2 hr after single injections of methamphetamine or haloperidol among 5- and 10-week-old wild-type mice and 5- and 10-week-old R6/2 HD mice. Similarly, despite their resistance to QA-induced lesioning and lower basal levels of krox-24 mRNA, the symptomatic R6/2 mice had equivalent increases in the amount of c-fos and krox-24 mRNA compared to wild-type and pre-symptomatic R6/2 HD mice as determined by in situ hybridization and densitometry 2 hr after QA administration. These data demonstrate that the c-Fos and Krox 24 IEG response to dopamine agonists, dopamine antagonists and neurotoxic insult is functional in symptomatic R6/2 HD mice. Resistance to toxic insult in R6/2 mice may be conferred by interactions of mutant huntingtin with proteins or transcriptional processes further along the toxic cascade.
Collapse
Affiliation(s)
- G A MacGibbon
- Laboratory of Molecular Neuroscience, Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | |
Collapse
|
6
|
Lidwell K, Griffiths R. Possible role for the FosB/JunD AP-1 transcription factor complex in glutamate-mediated excitotoxicity in cultured cerebellar granule cells. J Neurosci Res 2000; 62:427-39. [PMID: 11054812 DOI: 10.1002/1097-4547(20001101)62:3<427::aid-jnr13>3.0.co;2-o] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The potent excitatory and neurotoxic actions of glutamate are known to influence the expression of a variety of genes, including those encoding the AP-1 transcription factor, which comprises proteins belonging to the Fos and Jun families. However, the precise role of Fos- and Jun-like transcription factors in these events remains elusive. Here we demonstrate, using primary cultures of mouse brain cerebellar granule cells as an in vitro model system, a possible involvement of the FosB/JunD heterodimer in excitotoxicity. Granule cells were grown for either 2 or 7 days in vitro (DIV) before exposure to varying concentrations (1-3000 microM) of the excitotoxin glutamate. In 7-DIV cells, glutamate induced a concentration-dependent neuronal death, whereas, in 2-DIV cells, no glutamate-induced neuronal damage was seen. We were particularly interested in comparing the protein composition of the AP-1 transcription factor complex in cells exposed to excitotoxic and to nontoxic conditions. AP-1 DNA binding activity was demonstrated by gel shift analysis in nuclear extracts derived from 7-DIV cells following exposure to either a nontoxic (10 microM) or an excitotoxic (250 microM) dose of glutamate and was similarly observed in extracts of 2-DIV cells exposed to the same levels of glutamate. Gel supershift analysis using antibodies against the different Fos and Jun family members allowed differentiation between AP-1 DNA binding in nuclear extracts as a function of both 1) viability status and 2) the stage of development. Of major significance was the finding that FosB could be detected as a component of AP-1 in 7-DIV cells only under excitotoxic conditions, whereas c-Fos, Fra-2, and JunD proteins were detectable under both excitotoxic and nontoxic conditions in cells of this age. In 2-DIV cells (in which glutamate is nontoxic), AP-1 comprised combinations of only Fra-1, Fra-2, c-Jun, and JunD. Because Fos family members are unable to form homodimers, this finding raises the possibility that the FosB/JunD heterodimer may have special significance in the mechanism of excitotoxic neuronal death.
Collapse
Affiliation(s)
- K Lidwell
- School of Biology, University of St. Andrews, Fife, Scotland, United Kingdom
| | | |
Collapse
|
7
|
McAllister JP, Wood AS, Johnson MJ, Connelly RW, Skarupa DJ, Secic M, Luciano MG, Harris NG, Jones HC. Decreased c-fos expression in experimental neonatal hydrocephalus: evidence for reduced neuronal activation. Neurosurg Focus 1999. [DOI: 10.3171/foc.1999.7.4.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although neonatal hydrocephalus often results in residual neurological impairments, little is known about the cellular mechanisms responsible for these deficits. The immediate early gene, fos (c-fos), functions as a “third messenger” to regulate protein synthesis and is a good marker for neuronal activation. To identify functional changes in neurons at the cellular level, the authors quantified fos RNA expression and localized fos protein in the H-Tx rat model of congenital hydrocephalus. Tissue samples from sensorimotor and auditory regions were obtained from hydrocephalic rats and age-matched, normal litter mates at 1, 6, 12, and 21 days of age (four-six animals in each group) and processed for immunohistochemical analysis of fos and Northern blot analysis of RNA. At 12 days of age, hydrocephalic animals exhibited significant decreases in the ratio of fos immunoreactive cells to Nissl-stained neurons from both cortical regions, but no statistical differences were noted in fos expression. At 21 days of age, both the ratio of fos immunoreactive cells to Nissl-stained neurons and fos expression decreased significantly. The number of fos-positive neurons decreased in all cortical layers but was most prominent in layers V through VI. This decrease did not appear to be caused by neuronal death because examination of Nissl-stained sections revealed many viable neurons within the areas where fos immunoreactivity was absent. These results suggest that progressive neonatal hydrocephalus reduces the capacity for neuronal activation in the cerebral cortex, primarily in those neurons that provide corticofugal projections, and that this impairment may begin during relatively early stages of ventriculomegaly.
Collapse
|
8
|
Herdegen T, Leah JD. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 28:370-490. [PMID: 9858769 DOI: 10.1016/s0165-0173(98)00018-6] [Citation(s) in RCA: 1061] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article reviews findings up to the end of 1997 about the inducible transcription factors (ITFs) c-Jun, JunB, JunD, c-Fos, FosB, Fra-1, Fra-2, Krox-20 (Egr-2) and Krox-24 (NGFI-A, Egr-1, Zif268); and the constitutive transcription factors (CTFs) CREB, CREM, ATF-2 and SRF as they pertain to gene expression in the mammalian nervous system. In the first part we consider basic facts about the expression and activity of these transcription factors: the organization of the encoding genes and their promoters, the second messenger cascades converging on their regulatory promoter sites, the control of their transcription, the binding to dimeric partners and to specific DNA sequences, their trans-activation potential, and their posttranslational modifications. In the second part we describe the expression and possible roles of these transcription factors in neural tissue: in the quiescent brain, during pre- and postnatal development, following sensory stimulation, nerve transection (axotomy), neurodegeneration and apoptosis, hypoxia-ischemia, generalized and limbic seizures, long-term potentiation and learning, drug dependence and withdrawal, and following stimulation by neurotransmitters, hormones and neurotrophins. We also describe their expression and possible roles in glial cells. Finally, we discuss the relevance of their expression for nervous system functioning under normal and patho-physiological conditions.
Collapse
Affiliation(s)
- T Herdegen
- Institute of Pharmacology, University of Kiel, Hospitalstrasse 4, 24105, Kiel,
| | | |
Collapse
|
9
|
Dutcher SA, Underwood BD, Walker PD, Diaz FG, Michael DB. Patterns of heat-shock protein 70 biosynthesis following human traumatic brain injury. J Neurotrauma 1998; 15:411-20. [PMID: 9624626 DOI: 10.1089/neu.1998.15.411] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heat-shock protein 70 (hsp70) is activated upon cellular stress/injury and participates in the folding and intracellular transport of damaged proteins. The expression of hsp70 following CNS trauma has been speculated to be part of a cellular response which is involved in the repair of damaged proteins. In this study, we measured hsp70 mRNA and protein levels within human cerebral cortex subjected to traumatic brain injury. Specimens were obtained during routine neurosurgery for trauma and processed for Northern mRNA and Western protein analysis. The largest increase in hsp70 mRNA levels was detected in trauma tissue obtained 4-6 h following injury. By 24 h, hsp70 mRNA levels were similar to nontrauma comparison tissues. hsp70 protein expression exhibited its greatest increases at 12-20 h post-injury. Immunocytological techniques revealed hsp70 protein expression in cells with neuronal-like morphology at 12 h after injury. These results suggest a role for hsp70 in human cortex following TBI. Moreover, since the temporal induction pattern of hsp70 biosynthesis is similar to that reported in the rodent, our observations validate the importance of rodent brain injury models in providing useful information directly applicable to human brain injury.
Collapse
Affiliation(s)
- S A Dutcher
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
10
|
Figueredo-Cardenas G, Chen Q, Reiner A. Age-dependent differences in survival of striatal somatostatin-NPY-NADPH-diaphorase-containing interneurons versus striatal projection neurons after intrastriatal injection of quinolinic acid in rats. Exp Neurol 1997; 146:444-57. [PMID: 9270055 DOI: 10.1006/exnr.1997.6549] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Some authors have reported greater sparing of neurons containing somatostatin (SS)-neuropeptide Y (NPY)-NADPH-diaphorase (NADPHd) than projection neurons after intrastriatal injection of quinolinic acid (QA), an excitotoxin acting at NMDA receptors. Such findings have been used to support the NMDA receptor excitotoxin hypothesis of Huntington's disease (HD) and to claim that intrastriatal QA produces an animal model of HD. Other studies have, however, reported that SS/NPY/NADPHd interneurons are highly vulnerable to QA. We examined the influence of animal age (young versus mature), QA concentration (225 mM versus 50 mM), and injection speed (3 min versus 15 min) on the relative SS/NPY/NADPHd neuron survival in eight groups of rats that varied along these parameters to determine the basis of such prior discrepancies. Two weeks after QA injection, we analyzed the relative survival of neurons labeled by NADPHd histochemistry, SS/NPY immunohistochemistry, or cresyl violet staining (which stains all striatal neurons, the majority of which are projection neurons) in the so-called lesion transition zone (i.e., the zone of 40-60% neuronal survival). We found that age, and to a lesser extent injection speed, had a significant effect on relative SS/NPY/NADPHd interneuron survival. The NADPHd- and SS/NPY-labeled neurons typically survived better than projection neurons in young rats and more poorly in mature rats. This trend was greatly accentuated with fast QA injection. Age-related differences may be attributable to declines in projection neuron sensitivity to QA with age. Since rapid QA injections result in excitotoxin efflux, we interpret the effect of injection speed to suggest that brief exposure to a large dose of QA (with fast injection) may better accentuate the differential vulnerabilities of NADPHd/SS/NPY interneurons and projection neurons than does exposure to the same total amount of QA delivered more gradually (slow injection). These findings reconcile the discordant results found by previous authors and suggest that QA injected into rat striatum does reproduce the neurochemical traits of HD under some circumstances. These findings are consistent with a role of excitotoxicity in HD pathogenesis, and they also have implications for the basis of the more pernicious nature of striatal neuron loss in juvenile onset HD.
Collapse
Affiliation(s)
- G Figueredo-Cardenas
- Department of Anatomy and Neurobiology, The University of Tennessee Health Sciences Center, Memphis 38163, USA
| | | | | |
Collapse
|
11
|
Hollen KM, Nakabeppu Y, Davies SW. Changes in expression of delta FosB and the Fos family proteins following NMDA receptor activation in the rat striatum. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 47:31-43. [PMID: 9221899 DOI: 10.1016/s0169-328x(97)00034-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Receptor-induced expression of transcription factors of the activator protein-1 (AP-1) family in neurons occurs in a unique temporal pattern which regulates subsequent downstream gene expression. We investigated the expression of the Fos family proteins following injection of the NMDA receptor agonist quinolinic acid (QA) into the rat striatum. The c-Fos protein is rapidly and transiently expressed, followed by the sequential and overlapping expression in the same striatal neurons of FosB, from 4 to 8 h post-lesion and delta FosB from 6 h to beyond 30 h post-lesion. Analysis confirms that mRNA transcripts of both fosB and alternatively spliced delta fosB are expressed in the striatum after QA lesion. The Fos-related antigens Fra-1 and Fra-2 and three previously uncharacterized c-Fos-related proteins were additionally found in the striatum which do not increase following lesion. These proteins are related to the highly conserved DNA-binding domain of c-Fos but are not immunologically related to the FosB protein as has been previously reported for proteins induced following chronic stimulation of the striatum. We additionally demonstrate that the c-Fos and delta FosB proteins expressed following QA lesion bind to the functional AP-1 site in the promoter of the nerve growth factor (NGF) gene, the regulation of which temporally and spatially coincides with the AP-1 protein increases in the QA-lesioned striatum. However, the levels of binding to the NGF AP-1 site do not increase throughout time following lesion despite the induced expression of Fos family proteins, suggesting that the regulation of the NGF gene in this paradigm does not simply involve increased binding to the AP-1 site in the NGF gene promoter.
Collapse
Affiliation(s)
- K M Hollen
- Department of Anatomy and Developmental Biology, University College London, UK
| | | | | |
Collapse
|
12
|
Rich KA, Zhan Y, Blanks JC. Aberrant expression of c-Fos accompanies photoreceptor cell death in the rd mouse. JOURNAL OF NEUROBIOLOGY 1997; 32:593-612. [PMID: 9183740 DOI: 10.1002/(sici)1097-4695(19970605)32:6<593::aid-neu5>3.0.co;2-v] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Selective degeneration of rod photoreceptor cells in the retinal degenerative (rd) mouse prior to their complete maturation is thought to result from elevated cyclic guanosine monophosphate (cGMP) levels owing to the inherited defect in cGMP-phosphodiesterase. To investigate potential signaling pathways which might lead to apoptotic death of photoreceptors in the rd retina, the expression of immediate-early genes (IEG) of the activating protein-1 transcription factor (AP-1) family was examined. Increasing numbers of apoptotic photoreceptor nuclei were observed in the outer nuclear layer of the rd mouse beginning at postnatal day (P) 10. The peak incidence of apoptotic cells was observed at P13; by P16, almost the entire population of photoreceptors had been lost. Although c-Fos-like immunoreactivity was absent in photoreceptors of normal retinas, we observed that commencing at around P10, increasing numbers of rod photoreceptors in the rd retina exhibited nuclear staining for c-Fos protein. While no change in the distribution patterns of other members of the AP-1 family (c-Jun, JunB, and JunD) was observed in photoreceptors, Müller cell nuclei were transiently immunoreactive for c-Jun on P11. The incidence of c-Fos-positive photoreceptors peaked sharply at P12, 1 day earlier than the peak in apoptosis. Furthermore, the population of c-Fos-positive photoreceptors was distinct from apoptotic photoreceptors exhibiting chromatin condensation. The aberrant expression of c-Fos protein in rod photoreceptors immediately prior to their death in the rd mouse raises the possibility that c-Fos may be directly or indirectly involved in triggering the apoptotic cascade. Furthermore, the additional finding of c-Jun induction in Müller glia suggests that the IEG response to photoreceptor degeneration involves both intra- and intercellular signal transduction pathways.
Collapse
Affiliation(s)
- K A Rich
- Department of Pathology, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | | | |
Collapse
|
13
|
Shan Y, Carlock LR, Walker PD. NMDA receptor overstimulation triggers a prolonged wave of immediate early gene expression: relationship to excitotoxicity. Exp Neurol 1997; 144:406-15. [PMID: 9168840 DOI: 10.1006/exnr.1997.6427] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Exposure of the rodent striatum to quinolinic acid (QA, N-methyl-D-aspartate receptor agonist) induces immediate early gene (IEG; c-fos, c-jun, jun-B, zif/268) expression that may extend 12-24 h after injection. In order to determine the specificity of the prolonged IEG response to the QA injection, the temporal pattern of c-fos mRNA expression was examined during the first 4 h after administration of saline or QA (40 micrograms). As early as 30 min after intrastriatal injection, both saline and QA increased c-fos mRNA levels. In the saline group, this increase in IEG expression was only transient and returned to baseline by 1 h. In contrast, c-fos mRNA levels within QA-injected animals continued to rise significantly at 1 and 4 h. In a second experiment, rats received 4 ng to 40-micrograms injections of QA followed by sacrifice at 6 h to determine if increasing QA doses caused the appearance of the prolonged IEG response phase. The prolonged IEG response was evident at 6 h only in animal groups that received higher dose ranges (4-40 micrograms) of QA. A final experiment was undertaken to determine if blockage of NMDA receptor stimulation would also inhibit the prolonged IEG response at 6 h in relationship to neuronal sparing evidenced at 24 h post-QA injection. The NMDA receptor antagonist, MK-801, blocked the prolonged IEG response at 6 h following QA (40 micrograms) injection while also preventing striatal neuropeptide mRNA decline by 24 h. Delaying the MK-801 administration for 1-2 h post-QA injection revealed that the intensity of the prolonged IEG mRNA response may be predictive of neuronal demise within the QA lesion site. These results suggest that prolonged IEG expression is associated with QA excitotoxicity of the rodent striatum and subsequent neuronal degeneration.
Collapse
Affiliation(s)
- Y Shan
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
14
|
Cummings TJ, Walker PD. Serotonin depletion exacerbates changes in striatal gene expression following quinolinic acid injection. Brain Res 1996; 743:240-8. [PMID: 9017251 DOI: 10.1016/s0006-8993(96)01053-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Controversy exists as to whether serotonin (5-HT) plays a neuroprotective role during brain injury. We sought to determine if prior 5-HT depletion alters gene expression patterns normally associated with NMDA receptor-mediated excitotoxicity of the rodent striatum. Adult male Sprague-Dawley rats were treated systemically with saline or p-chlorophenylalanine (pCPA, 350 mg/kg) to block 5-HT synthesis. After 3 days, these rats received unilateral injection (1 microliter) of quinolinic acid (QA, 40 micrograms in 0.1 M phosphate buffered saline, pH 7.4) or saline vehicle directly into the anterior striatum. All rats were sacrificed 6 or 48 h later. Striatal tissues containing the saline or QA injection site were subjected to Northern analysis of preprotachykinin (PPT), preproenkephalin (PPE), and zif/268 mRNAs, as well as HPLC-EC detection of monoamines. At the time of the intrastriatal injection, 5-HT levels were depleted greater than 95% by pCPA as compared to saline controls. At 48 h post-QA injection, PPT and PPE mRNAs were markedly reduced within the striatal lesion site of saline/QA and pCPA/QA groups with respect to their contralateral uninjected control sides. In the pCPA/QA group, striatal PPE and PPT mRNA levels were further reduced as compared to the saline/QA group with PPE mRNA reductions reaching statistical significance at 95% (ANOVA with Scheffe F-test). Exacerbation of the excitotoxic lesion in the 5-HT depleted rat was further exemplified by a larger increase in zif/268 mRNA measured at 6 h post-intrastriatal injection in the pCPA/QA group as compared to saline/QA animals (P < 0.05 by ANOVA with Scheffe F-test). These results suggest that 5-HT depletion may adversely affect neuronal survival following intrastriatal QA exposure and lend support to the hypothesis that increasing 5-HT levels during NMDA receptor-mediated excitotoxicity may spare neurons destined to degenerate.
Collapse
Affiliation(s)
- T J Cummings
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | |
Collapse
|
15
|
Carlock L, Vo T, Lorincz M, Walker PD, Bessert D, Wisniewski D, Dunbar JC. Variable subcellular localization of a neuron-specific protein during NTera 2 differentiation into post-mitotic human neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 42:202-12. [PMID: 9013775 DOI: 10.1016/s0169-328x(96)00115-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The current report describes the molecular characterization of the human (the D4S234 locus) and mouse (the m234) homologs of a gene that was isolated during our genomic analysis of the Huntington disease gene region. Sequence comparisons of full-length cDNA clones revealed that the mouse and human homologs encoded evolutionarily conserved 21-kDa proteins with greater than 90% amino acid sequence identity. Extensive sequence identity between the D4S234 gene and the rat p1A75 gene (a previously identified rat neuron-specific gene) showed that these genes are interspecies homologs. Furthermore, the D4S234 protein exhibited significant amino acid similarity to a 19-kDa mouse protein that localizes to the Golgi apparatus of embryonic neurons. However, nonconservative sequence differences suggested that these genes are independent members of a multigene family. Northern analyses revealed that rodent D4S234 expression occurred predominantly in the brain and included all brain regions. Neuron-specific expression was demonstrated using Northern analysis of cultured glial cells and quinolinic acid-treated rat brain samples. Minimal amounts of the rodent D4S234 mRNA were detected prenatally; however, elevated adult levels were detected within 1 month of birth. Sequence analyses of the human and mouse D4S234 proteins identified an evolutionarily conserved hydrophobic sequence and a consensus nuclear localization signal in both genes. Immunofluorescence microscopy, using an antipeptide antibody, established that the human D4S234 protein preferentially localized to the nucleus of mitotic cultured cells. Since the rat p1A75 protein was previously mapped to the neuronal cytoplasm by in situ hybridization, the subcellular localization of the D4S234 protein was subsequently examined during differentiation of the NTera 2 (NT2) cell line. Following differentiation into postmitotic NT2-N neurons, the D4S234 protein demonstrated cytoplasmic staining and reduced or undetectable nuclear staining in many cells. The variation in the intracellular localization of the D4S234 protein in mitotic and nonmitotic cells suggests that the subcellular localization of this protein is developmentally regulated and provides clues about the biochemical function of this protein.
Collapse
Affiliation(s)
- L Carlock
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Gillardon F, Bäurle J, Wickert H, Grüsser-Cornehls U, Zimmermann M. Differential regulation of bcl-2, bax, c-fos, junB, and krox-24 expression in the cerebellum of Purkinje cell degeneration mutant mice. J Neurosci Res 1995; 41:708-15. [PMID: 7563251 DOI: 10.1002/jnr.490410517] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Purkinje cell degeneration (pcd) is an autosomal recessive mutation in the mouse characterized by an almost complete loss of cerebellar Purkinje neurons between postnatal days 22 and 28. The pcd gene has not been identified, however, a relationship between activation of specific genes and cell death has been suggested in other models of neuronal cell death. In the present study we analyzed the expression of several candidate cell death effector genes (bax, c-fos, junB, krox-24) and a cell death repressor gene (bcl-2) in the cerebellum of pcd homozygotes and wild-type mice. At postnatal day 22, when Purkinje cells start to degenerate, levels of c-fos, junB, and krox-24 mRNA increased about 5-fold in mutants. To the contrary, the amount of bcl-2 mRNA declined and bax transcripts remained unchanged compared to wild-type animals. Immunoreactivity for c-Fos and Jun could be detected exclusively in cerebellar Purkinje neurons of pcd mice but not in wild-types, whereas the number of Bcl-2 immunopositive Purkinje cells decreased significantly in mutants. Both double labeling experiments and immunostaining of consecutive sections revealed lack of colocalization of Jun with Bcl-2. These results demonstrate an induction of members of the fos and jun family and a downregulation of antiapoptotic bcl-2 in cerebellar Purkinje neurons that are destined to die. Fos and Jun transcription factor proteins may be implicated in the regulation of bcl-2 expression and in the signal cascade leading to Purkinje cell death.
Collapse
Affiliation(s)
- F Gillardon
- Universität Heidelberg, II. Physiologisches Institut, Germany
| | | | | | | | | |
Collapse
|
17
|
Carlock L, Walker PD, Shan Y, Gutridge K. Transcription of the Huntington disease gene during the quinolinic acid excitotoxic cascade. Neuroreport 1995; 6:1121-4. [PMID: 7662891 DOI: 10.1097/00001756-199505300-00012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although Huntington disease (HD) is characterized by the selective neurodegeneration of the basal ganglia and cerebral cortex, efforts to define the disease pathology have been complicated by the widespread expression of the disease gene (IT15) throughout the body. In this study, we examined IT15 mRNA levels during the quinolinic acid (QA) excitotoxic cascade to determine whether neuronal and/or glial expression is regulated by neurodegeneration. Following an initial increase between 1 h and 6 h, IT15 mRNA levels declined in a pattern homologous to a group of neuron-specific genes. Decreased mRNA levels after 24 h demonstrated that glial transcription is not activated by neurodegeneration or gliosis. The 1 h and 24 h mRNA levels strongly suggest that IT15 transcription preferentially localizes to degenerating neurons.
Collapse
Affiliation(s)
- L Carlock
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
18
|
Zabłocka B, Lukasiuk K, Lazarewicz JW, Domańska-Janik K. Modulation of ischemic signal by antagonists of N-methyl-D-aspartate, nitric oxide synthase, and platelet-activating factor in gerbil hippocampus. J Neurosci Res 1995; 40:233-40. [PMID: 7745616 DOI: 10.1002/jnr.490400212] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cerebral ischemia in the gerbil results in early hippocampal changes, which include transient activation and/or translocation of protein kinase C (PKC), increased enzymatic activity of ornithine decarboxylase (ODC), and elevated DNA binding ability of activator protein-1 (AP1). The time-course of all three of these postischemic responses was found to be almost parallel, peaking at 3 hr after the ischemic insult. The effectiveness of known modulators of postischemic morphological outcome (MK-801, L-NAME, and gingkolides BN 52020 and BN 52021) in counteracting the induction of PKC, ODC, and AP1 formation was tested. These drugs were administrated as followed: MK-801 (a noncompetitive inhibitor of NMDA channel), 0.8 mg/kg i.p., 30 min before ischemia, and 5 min after the insult; L-NAME (competitive inhibitor of NO synthase), 10 mg/kg i.p., 30 min before ischemia, and 5 mg/kg, 5 min after ischemia; BN52020 and BN52021 (inhibitors of platelet-activating factor: PAF receptors) were administered as a suspension in 5% ethanol in water by oral route, 10 mg/kg for 3 days before ischemia. Three of these drugs, MK-801, L-NAME, and BN52021, significantly reduced ischemia-elevated activity of PKC and ODC, whereas AP1 formation was only partially attenuated. Our observations implicate the existence of different mechanism(s) for postischemic PKC and ODC activation, which in turn is engaged in AP1 induction.
Collapse
Affiliation(s)
- B Zabłocka
- Department of Neurochemistry, Polish Academy of Sciences, Warsaw
| | | | | | | |
Collapse
|