1
|
Holper S, Loveland P, Churilov L, Italiano D, Watson R, Yassi N. Blood Astrocyte Biomarkers in Alzheimer Disease: A Systematic Review and Meta-Analysis. Neurology 2024; 103:e209537. [PMID: 38986050 PMCID: PMC11314950 DOI: 10.1212/wnl.0000000000209537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/05/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Neuroinflammation, particularly early astrocyte reactivity, is a significant driver of Alzheimer disease (AD) pathogenesis. It is unclear how the levels of astrocyte biomarkers change in patients across the AD continuum and which best reflect AD-related change. We performed a systematic review and meta-analysis of 3 blood astrocyte biomarkers (glial fibrillary acidic protein [GFAP], chitinase-3-like protein 1 [YKL-40], and S100B) in patients clinically diagnosed with AD. METHODS MEDLINE and Web of Science were searched on March 23, 2023, without restrictions on language, time, or study design, for studies reporting blood levels of the astrocyte biomarkers GFAP, YKL-40, or S100B in patients on the AD continuum (including those with mild cognitive impairment [MCI] and dementia) and a cognitively unimpaired (CU) control population. AD diagnosis was based on established diagnostic criteria and/or comprehensive multidisciplinary clinical consensus. Studies reporting indirect biomarker measures (e.g., levels of biomarker autoantibodies) were excluded. Risk of bias assessment was performed using the revised Quality Assessment of Diagnostic Accuracy Studies tool. Pooled effect sizes were determined using the Hedge g method with a random-effects model. The review was prospectively registered on PROSPERO (registration number CRD42023458305). RESULTS The search identified 1,186 studies; 36 met inclusion criteria (AD continuum n = 3,366, CU n = 4,115). No study was assessed to have a high risk of bias. Compared with CU individuals, patients on the AD continuum had higher GFAP and YKL-40 levels (GFAP effect size 1.15, 95% CI 0.94-1.36, p < 0.0001; YKL-40 effect size 0.38, 95% CI 0.28-0.49, p < 0.0001). Both biomarkers were elevated in more advanced clinical stages of the disease (i.e., in AD dementia compared with MCI due to AD: GFAP effect size 0.48, 95% CI 0.19-0.76, p = 0.0009; YKL-40 effect size 0.34, 95% CI 0.10-0.57, p = 0.0048). No significant differences in blood S100B levels were identified. DISCUSSION We demonstrated significant elevations in blood GFAP and YKL-40 levels in patients on the AD continuum compared with CU individuals. Furthermore, within the AD clinical spectrum, significant elevation correlated with more advanced disease stage. Our findings suggest that both biomarkers reflect AD-related pathology. Our findings are limited by the lack of cultural and linguistic diversity in the study populations meta-analyzed. Future meta-analyses using a biomarker-defined AD population are warranted.
Collapse
Affiliation(s)
- Sarah Holper
- From the Population Health and Immunity Division (S.H., P.L., R.W., N.Y.), The Walter and Eliza Hall Institute of Medical Research; Department of Medicine (S.H., P.L., L.C., D.I., R.W., N.Y.), The Royal Melbourne Hospital, and Department of Neurology (N.Y.), Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Paula Loveland
- From the Population Health and Immunity Division (S.H., P.L., R.W., N.Y.), The Walter and Eliza Hall Institute of Medical Research; Department of Medicine (S.H., P.L., L.C., D.I., R.W., N.Y.), The Royal Melbourne Hospital, and Department of Neurology (N.Y.), Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Leonid Churilov
- From the Population Health and Immunity Division (S.H., P.L., R.W., N.Y.), The Walter and Eliza Hall Institute of Medical Research; Department of Medicine (S.H., P.L., L.C., D.I., R.W., N.Y.), The Royal Melbourne Hospital, and Department of Neurology (N.Y.), Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Dominic Italiano
- From the Population Health and Immunity Division (S.H., P.L., R.W., N.Y.), The Walter and Eliza Hall Institute of Medical Research; Department of Medicine (S.H., P.L., L.C., D.I., R.W., N.Y.), The Royal Melbourne Hospital, and Department of Neurology (N.Y.), Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Rosie Watson
- From the Population Health and Immunity Division (S.H., P.L., R.W., N.Y.), The Walter and Eliza Hall Institute of Medical Research; Department of Medicine (S.H., P.L., L.C., D.I., R.W., N.Y.), The Royal Melbourne Hospital, and Department of Neurology (N.Y.), Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Nawaf Yassi
- From the Population Health and Immunity Division (S.H., P.L., R.W., N.Y.), The Walter and Eliza Hall Institute of Medical Research; Department of Medicine (S.H., P.L., L.C., D.I., R.W., N.Y.), The Royal Melbourne Hospital, and Department of Neurology (N.Y.), Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| |
Collapse
|
2
|
Kempuraj D, Aenlle KK, Cohen J, Mathew A, Isler D, Pangeni RP, Nathanson L, Theoharides TC, Klimas NG. COVID-19 and Long COVID: Disruption of the Neurovascular Unit, Blood-Brain Barrier, and Tight Junctions. Neuroscientist 2024; 30:421-439. [PMID: 37694571 DOI: 10.1177/10738584231194927] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), could affect brain structure and function. SARS-CoV-2 can enter the brain through different routes, including the olfactory, trigeminal, and vagus nerves, and through blood and immunocytes. SARS-CoV-2 may also enter the brain from the peripheral blood through a disrupted blood-brain barrier (BBB). The neurovascular unit in the brain, composed of neurons, astrocytes, endothelial cells, and pericytes, protects brain parenchyma by regulating the entry of substances from the blood. The endothelial cells, pericytes, and astrocytes highly express angiotensin converting enzyme 2 (ACE2), indicating that the BBB can be disturbed by SARS-CoV-2 and lead to derangements of tight junction and adherens junction proteins. This leads to increased BBB permeability, leakage of blood components, and movement of immune cells into the brain parenchyma. SARS-CoV-2 may also cross microvascular endothelial cells through an ACE2 receptor-associated pathway. The exact mechanism of BBB dysregulation in COVID-19/neuro-COVID is not clearly known, nor is the development of long COVID. Various blood biomarkers could indicate disease severity and neurologic complications in COVID-19 and help objectively diagnose those developing long COVID. This review highlights the importance of neurovascular and BBB disruption, as well as some potentially useful biomarkers in COVID-19, and long COVID/neuro-COVID.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Kristina K Aenlle
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
- Miami Veterans Affairs Healthcare System, Miami, FL, USA
| | - Jessica Cohen
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Annette Mathew
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Dylan Isler
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Rajendra P Pangeni
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Lubov Nathanson
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, School of Medicine, Tufts University, Boston, MA, USA
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
- Miami Veterans Affairs Healthcare System, Miami, FL, USA
| |
Collapse
|
3
|
Sullivan MA, Lane SD, McKenzie ADJ, Ball SR, Sunde M, Neely GG, Moreno CL, Maximova A, Werry EL, Kassiou M. iPSC-derived PSEN2 (N141I) astrocytes and microglia exhibit a primed inflammatory phenotype. J Neuroinflammation 2024; 21:7. [PMID: 38178159 PMCID: PMC10765839 DOI: 10.1186/s12974-023-02951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/07/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Widescale evidence points to the involvement of glia and immune pathways in the progression of Alzheimer's disease (AD). AD-associated iPSC-derived glial cells show a diverse range of AD-related phenotypic states encompassing cytokine/chemokine release, phagocytosis and morphological profiles, but to date studies are limited to cells derived from PSEN1, APOE and APP mutations or sporadic patients. The aim of the current study was to successfully differentiate iPSC-derived microglia and astrocytes from patients harbouring an AD-causative PSEN2 (N141I) mutation and characterise the inflammatory and morphological profile of these cells. METHODS iPSCs from three healthy control individuals and three familial AD patients harbouring a heterozygous PSEN2 (N141I) mutation were used to derive astrocytes and microglia-like cells and cell identity and morphology were characterised through immunofluorescent microscopy. Cellular characterisation involved the stimulation of these cells by LPS and Aβ42 and analysis of cytokine/chemokine release was conducted through ELISAs and multi-cytokine arrays. The phagocytic capacity of these cells was then indexed by the uptake of fluorescently-labelled fibrillar Aβ42. RESULTS AD-derived astrocytes and microglia-like cells exhibited an atrophied and less complex morphological appearance than healthy controls. AD-derived astrocytes showed increased basal expression of GFAP, S100β and increased secretion and phagocytosis of Aβ42 while AD-derived microglia-like cells showed decreased IL-8 secretion compared to healthy controls. Upon immunological challenge AD-derived astrocytes and microglia-like cells showed exaggerated secretion of the pro-inflammatory IL-6, CXCL1, ICAM-1 and IL-8 from astrocytes and IL-18 and MIF from microglia. CONCLUSION Our study showed, for the first time, the differentiation and characterisation of iPSC-derived astrocytes and microglia-like cells harbouring a PSEN2 (N141I) mutation. PSEN2 (N141I)-mutant astrocytes and microglia-like cells presented with a 'primed' phenotype characterised by reduced morphological complexity, exaggerated pro-inflammatory cytokine secretion and altered Aβ42 production and phagocytosis.
Collapse
Affiliation(s)
- Michael A Sullivan
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Samuel D Lane
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - André D J McKenzie
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Sarah R Ball
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Margaret Sunde
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - G Gregory Neely
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Cesar L Moreno
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Alexandra Maximova
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Eryn L Werry
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
- School of Chemistry, The Faculty of Science, The University of Sydney, Camperdown, Australia.
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
| | - Michael Kassiou
- School of Chemistry, The Faculty of Science, The University of Sydney, Camperdown, Australia.
| |
Collapse
|
4
|
Rodríguez JJ, Gardenal E, Zallo F, Arrue A, Cabot J, Busquets X. Astrocyte S100β expression and selective differentiation to GFAP and GS in the entorhinal cortex during ageing in the 3xTg-Alzheimer's disease mouse model. Acta Histochem 2024; 126:152131. [PMID: 38159478 DOI: 10.1016/j.acthis.2023.152131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The study of astrocytes and its role in the development and evolution of neurodegenerative diseases, including Alzheimer's disease (AD) is essential to fully understand their aetiology. The aim if this study is to deepen into the concept of the heterogeneity of astrocyte subpopulations in the EC and in particular the identification of differentially functioning astrocyte subpopulations that respond differently to AD progression. S100β protein belongs to group of small calcium regulators of cell membrane channels and pumps that are expressed by astrocytes and is hypothesised to play and have a relevant role in AD development. We analysed the selective differentiation of S100β-positive astrocytes into Glutamine synthetase (GS) and Glial fibrillary acidic protein (GFAP)-positive sub-groups in the entorhinal cortex (EC) of AD triple transgenic animal model (3xTg-AD). EC is the brain region earliest affected in humans AD but also in this closest animal model regarding their pathology and time course. We observed no changes in the number of S100β-positive astrocytes between 1 and 18 months of age in the EC of 3xTg-AD mice. However, we identified relevant morphological changes in S100β/GFAP positive astrocytes showing a significant reduction in their surface and volume whilst an increase in number and percentage. Furthermore, the percentage of S100β/GS positive astrocyte population was also increased in 18 months old 3xTg-AD mice compared to the non-Tg mice. Our findings reveal the presence of differentially controlled astrocyte populations that respond differently to AD progression in the EC of 3xTg-AD mice. These results highpoints the major astrocytic role together with its early and marked affection in AD and arguing in favour of its importance in neurogenerative diseases and potential target for new therapeutic approaches.
Collapse
Affiliation(s)
- J J Rodríguez
- Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009 Bilbao, 48940 Leioa, Bizkaia, Spain
| | - E Gardenal
- Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009 Bilbao, 48940 Leioa, Bizkaia, Spain
| | - F Zallo
- Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009 Bilbao, 48940 Leioa, Bizkaia, Spain
| | - A Arrue
- Neurochemical Research Unit, Bizkaia Mental Health Network, Osakidetza-Basque Health Service, Barakaldo 48903, Spain
| | - Joan Cabot
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, 07122 Palma, Spain
| | - X Busquets
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, 07122 Palma, Spain.
| |
Collapse
|
5
|
Rodríguez JJ, Zallo F, Gardenal E, Cabot J, Busquets X. Prominent and conspicuous astrocyte atrophy in human sporadic and familial Alzheimer's disease. Brain Struct Funct 2023; 228:2103-2113. [PMID: 37730895 PMCID: PMC10587264 DOI: 10.1007/s00429-023-02707-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Pathophysiology of sporadic Alzheimer's disease (SAD) and familial Alzheimer's disease (FAD) remains poorly known, including the exact role of neuroglia and specifically astroglia, in part because studies of astrocytes in human Alzheimer's disease (AD) brain samples are scarce. As far as we know, this is the first study of a 3-D immunohistochemical and microstructural analysis of glial fibrillary acidic protein (GFAP)- and glutamine synthetase (GS)-positive astrocytes performed in the entorhinal cortex (EC) of human SAD and FAD samples. In this study, we report prominent atrophic changes in GFAP and GS astrocytes in the EC of both SAD and FAD characterised by a decrease in area and volume when compared with non-demented control samples (ND). Furthermore, we did not find neither astrocytic loss nor astrocyte proliferation or hypertrophy (gliosis). In contrast with the astrogliosis classically accepted hypothesis, our results show a highly marked astrocyte atrophy that could have a major relevance in AD pathological processes being fundamental and key for AD mnesic and cognitive alterations equivalent in both SAD and FAD.
Collapse
Affiliation(s)
- J J Rodríguez
- Functional Neuroanatomy Group; IKERBASQUE, Basque Foundation for Science, Department of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009/48940, Bilbao/Leioa, Vizcaya, Spain.
| | - F Zallo
- Functional Neuroanatomy Group; IKERBASQUE, Basque Foundation for Science, Department of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009/48940, Bilbao/Leioa, Vizcaya, Spain
| | - E Gardenal
- Functional Neuroanatomy Group; IKERBASQUE, Basque Foundation for Science, Department of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009/48940, Bilbao/Leioa, Vizcaya, Spain
| | - Joan Cabot
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, 07122, Palma, Spain
| | - X Busquets
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, 07122, Palma, Spain
| |
Collapse
|
6
|
Wang M, Wang Y, Wang Z, Ren Q. The Abnormal Alternations of Brain Imaging in Patients with Chronic Obstructive Pulmonary Disease: A Systematic Review. J Alzheimers Dis Rep 2023; 7:901-919. [PMID: 37662615 PMCID: PMC10473125 DOI: 10.3233/adr-220083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/11/2023] [Indexed: 09/05/2023] Open
Abstract
Background Cognitive impairment (CI) is an important extrapulmonary complication in patients with chronic obstructive pulmonary disease (COPD). Multimodal Neuroimaging Examination can display changes in brain structure and functions in patients with COPD. Objective The purpose of this systematic review is to provide an overview of the variations in brain imaging in patients with COPD and their potential relationship with CI. Furthermore, we aim to provide new ideas and directions for future research. Methods Literature searches were performed using the electronic databases PubMed, Scopus, and ScienceDirect. All articles published between January 2000 and November 2021 that met the eligibility criteria were included. Results Twenty of the 23 studies focused on changes in brain structure and function. Alterations in the brain's macrostructure are manifested in the bilateral frontal lobe, hippocampus, right temporal lobe, motor cortex, and supplementary motor area. The white matter microstructural changes initially appear in the bilateral frontal subcortical region. Regarding brain function, patients with COPD exhibited reduced frontal cerebral perfusion and abnormal alterations in intrinsic brain activity in the bilateral posterior cingulate cortex, precuneus, right lingual gyrus, and left anterior central gyrus. Currently, there is limited research related to brain networks. Conclusion CI in patients with COPD may present as a type of dementia different from Alzheimer's disease, which tends to manifest as frontal cognitive decline early in the disease. Further studies are required to clarify the neurobiological pathways of CI in patients with COPD from the perspective of brain connectomics based on the whole-brain system in the future.
Collapse
Affiliation(s)
- Mengxue Wang
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, China
| | - Yanjuan Wang
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, China
| | - Zan Wang
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, China
| | - Qingguo Ren
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, China
| |
Collapse
|
7
|
Moreira GG, Gomes CM. Tau liquid-liquid phase separation is modulated by the Ca 2+ -switched chaperone activity of the S100B protein. J Neurochem 2023; 166:76-86. [PMID: 36621842 DOI: 10.1111/jnc.15756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/03/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023]
Abstract
Aggregation of the microtubule-associated protein tau is implicated in several neurodegenerative tauopathies including Alzheimer's disease (AD). Recent studies evidenced tau liquid-liquid phase separation (LLPS) into droplets as an early event in tau pathogenesis with the potential to enhance aggregation. Tauopathies like AD are accompanied by sustained neuroinflammation and the release of alarmins at early stages of inflammatory responses encompass protective functions. The Ca2+ -binding S100B protein is an alarmin augmented in AD that was recently implicated as a proteostasis regulator acting as a chaperone-type protein, inhibiting aggregation and toxicity through interactions of amyloidogenic clients with a regulatory surface exposed upon Ca2+ -binding. Here we expand the regulatory functions of S100B over protein condensation phenomena by reporting its Ca2+ -dependent activity as a modulator of tau LLPS induced by crowding agents (PEG) and metal ions (Zn2+ ). We observe that apo S100B has a negligible effect on PEG-induced tau demixing but that Ca2+ -bound S100B prevents demixing, resulting in a shift of the phase diagram boundary to higher crowding concentrations. Also, while incubation with apo S100B does not compromise tau LLPS, addition of Ca2+ results in a sharp decrease in turbidity, indicating that interactions with S100B-Ca2+ promote transition of tau to the mixed phase. Further, electrophoretic analysis and FLIM-FRET studies revealed that S100B incorporates into tau liquid droplets, suggesting an important stabilizing and chaperoning role contributing to minimize toxic tau aggregates. Resorting to Alexa488-labeled tau we observed that S100B-Ca2+ reduces the formation of tau fluorescent droplets, without compromising liquid-like behavior and droplet fusion events. The Zn2+ -binding properties of S100B also contribute to regulate Zn2+ -promoted tau LLPS as droplets are decreased by Zn2+ buffering by S100B, in addition to the Ca2+ -triggered interactions with tau. Altogether this work uncovers the versatility of S100B as a proteostasis regulator acting on protein condensation phenomena of relevance across the neurodegeneration continuum.
Collapse
Affiliation(s)
- Guilherme G Moreira
- BioISI-Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudio M Gomes
- BioISI-Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
8
|
Rodríguez JJ, Terzieva S, Yeh CY, Gardenal E, Zallo F, Verkhratsky A, Busquets X. Neuroanatomical and morphometric study of S100β positive astrocytes in the entorhinal cortex during ageing in the 3xTg-Alzehimer's disease mouse model. Neurosci Lett 2023; 802:137167. [PMID: 36894021 DOI: 10.1016/j.neulet.2023.137167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Astrocytes contribute to the progression of neurodegenerative diseases, including Alzheimer's disease (AD). Here, we report the neuroanatomical and morphometric analysis of astrocytes in the entorhinal cortex (EC) of the aged wild type (WT) and triple transgenic (3xTg-AD) mouse model of AD. Using 3D confocal microscopy, we determined the surface area and volume of positive astrocytic profiles in male mice (WT and 3xTg-AD) from 1 to 18 months of age. We showed that S100β-positive astrocytes were equally distributed throughout the entire EC in both animal types and showed no changes in Nv (number of cells/mm3) nor in their distribution at the different ages studied. These positive astrocytes, demonstrated an age-dependent gradual increase in their surface area and in their volume starting at 3 months of age, in both WT and 3xTg-AD mice. This last group demonstrated a large increase in both surface area and volume at 18 months of age when the burden of pathological hallmarks of AD is present (69.74% to 76.73% in the surface area and the volume, for WT and 3xTg-AD mice respectively). We observed that these changes were due to the enlargement of the cell processes and to less extend the somata. In fact, the volume of the cell body was increased by 35.82% in 18-month-old 3xTg-AD compared to WT. On the other hand, the increase on the astrocytic processes were detected as soon as 9 months of age where we found an increase of surface area and volume (36.56% and 43.73%, respectively) sustained till 18 month of age (93.6% and 113.78%, respectively) when compared age-matched non-Tg mice. Moreover, we demonstrated that these hypertrophic S100β-positive astrocytes were mainly associated with Aβ plaques. Our results show a severe atrophy in GFAP cytoskeleton in all cognitive areas; whilst within the EC astrocytes independent to this atrophy show no changes in GS and S100β; which can play a key role in the memory impairment.
Collapse
Affiliation(s)
- J J Rodríguez
- Biocruces Health Research Institute, Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), Barakaldo, Spain.
| | - S Terzieva
- Biocruces Health Research Institute, Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), Barakaldo, Spain
| | - C Y Yeh
- Biocruces Health Research Institute, Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), Barakaldo, Spain
| | - E Gardenal
- Biocruces Health Research Institute, Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), Barakaldo, Spain
| | - F Zallo
- Biocruces Health Research Institute, Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), Barakaldo, Spain
| | - A Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - X Busquets
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, 07122 Palma, Spain
| |
Collapse
|
9
|
Brown TG, Thayer MN, VanTreeck JG, Zarate N, Hart DW, Heilbronner S, Gomez-Pastor R. Striatal spatial heterogeneity, clustering, and white matter association of GFAP + astrocytes in a mouse model of Huntington's disease. Front Cell Neurosci 2023; 17:1094503. [PMID: 37187609 PMCID: PMC10175581 DOI: 10.3389/fncel.2023.1094503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Huntington's disease (HD) is a neurodegenerative disease that primarily affects the striatum, a brain region that controls movement and some forms of cognition. Neuronal dysfunction and loss in HD is accompanied by increased astrocyte density and astrocyte pathology. Astrocytes are a heterogeneous population classified into multiple subtypes depending on the expression of different gene markers. Studying whether mutant Huntingtin (HTT) alters specific subtypes of astrocytes is necessary to understand their relative contribution to HD. Methods Here, we studied whether astrocytes expressing two different markers; glial fibrillary acidic protein (GFAP), associated with astrocyte activation, and S100 calcium-binding protein B (S100B), a marker of matured astrocytes and inflammation, were differentially altered in HD. Results First, we found three distinct populations in the striatum of WT and symptomatic zQ175 mice: GFAP+, S100B+, and dual GFAP+S100B+. The number of GFAP+ and S100B+ astrocytes throughout the striatum was increased in HD mice compared to WT, coinciding with an increase in HTT aggregation. Overlap between GFAP and S100B staining was expected, but dual GFAP+S100B+ astrocytes only accounted for less than 10% of all tested astrocytes and the number of GFAP+S100B+ astrocytes did not differ between WT and HD, suggesting that GFAP+ astrocytes and S100B+ astrocytes are distinct types of astrocytes. Interestingly, a spatial characterization of these astrocyte subtypes in HD mice showed that while S100B+ were homogeneously distributed throughout the striatum, GFAP+ preferentially accumulated in "patches" in the dorsomedial (dm) striatum, a region associated with goal-directed behaviors. In addition, GFAP+ astrocytes in the dm striatum of zQ175 mice showed increased clustering and association with white matter fascicles and were preferentially located in areas with low HTT aggregate load. Discussion In summary, we showed that GFAP+ and S100B+ astrocyte subtypes are distinctly affected in HD and exist in distinct spatial arrangements that may offer new insights to the function of these specific astrocytes subtypes and their potential implications in HD pathology.
Collapse
|
10
|
Longterm Increased S100B Enhances Hippocampal Progenitor Cell Proliferation in a Transgenic Mouse Model. Int J Mol Sci 2022; 23:ijms23179600. [PMID: 36076994 PMCID: PMC9455494 DOI: 10.3390/ijms23179600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/13/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022] Open
Abstract
(1) The neurotrophic protein S100B is a marker of brain injury and has been associated with neuroregeneration. In S100Btg mice rendering 12 copies of the murine S100B gene we evaluated whether S100B may serve as a treatment option. (2) In juvenile, adult, and one-year-old S100Btg mice (female and male; n = 8 per group), progenitor cell proliferation was quantified in the subgranular zone (SGZ) and the granular cell layer (GCL) of the dentate gyrus with the proliferative marker Ki67 and BrdU (50 mg/kg). Concomitant signaling was quantified utilizing glial fibrillary acidic protein (GFAP), apolipoprotein E (ApoE), brain-derived neurotrophic factor (BDNF), and the receptor for advanced glycation end products (RAGE) immunohistochemistry. (3) Progenitor cell proliferation in the SGZ and migration to the GCL was enhanced. Hippocampal GFAP was reduced in one-year-old S100Btg mice. ApoE in the hippocampus and frontal cortex of male and BDNF in the frontal cortex of female S100Btg mice was reduced. RAGE was not affected. (4) Enhanced hippocampal neurogenesis in S100Btg mice was not accompanied by reactive astrogliosis. Sex- and brain region-specific variations of ApoE and BDNF require further elucidations. Our data reinforce the importance of this S100Btg model in evaluating the role of S100B in neuroregenerative medicine.
Collapse
|
11
|
Katsipis G, Tzekaki EE, Tsolaki M, Pantazaki AA. Salivary GFAP as a potential biomarker for diagnosis of mild cognitive impairment and Alzheimer's disease and its correlation with neuroinflammation and apoptosis. J Neuroimmunol 2021; 361:577744. [PMID: 34655990 DOI: 10.1016/j.jneuroim.2021.577744] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Glial fibrillary acidic protein (GFAP) is the main constituent of the astrocytic cytoskeleton, overexpressed during reactive astrogliosis-a hallmark of Alzheimer's Disease (AD). GFAP and established biomarkers of neurodegeneration, inflammation, and apoptosis have been determined in the saliva of amnestic-single-domain Mild Cognitive Impairment (MCI) (Ν = 20), AD (Ν = 20) patients, and cognitively healthy Controls (Ν = 20). Salivary GFAP levels were found significantly decreased in MCI and AD patients and were proven an excellent biomarker for discriminating Controls from MCI or AD patients. GFAP levels correlate with studied biomarkers and Aβ42, IL-1β, and caspase-8 are its main predictors.
Collapse
Affiliation(s)
- Georgios Katsipis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece
| | - Elena E Tzekaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece
| | - Magda Tsolaki
- First Neurology Department, "AHEPA" University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Greek Association of Alzheimer's Disease and Related Disorders - GAADRD, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece.
| |
Collapse
|
12
|
Moreira GG, Cantrelle FX, Quezada A, Carvalho FS, Cristóvão JS, Sengupta U, Puangmalai N, Carapeto AP, Rodrigues MS, Cardoso I, Fritz G, Herrera F, Kayed R, Landrieu I, Gomes CM. Dynamic interactions and Ca 2+-binding modulate the holdase-type chaperone activity of S100B preventing tau aggregation and seeding. Nat Commun 2021; 12:6292. [PMID: 34725360 PMCID: PMC8560819 DOI: 10.1038/s41467-021-26584-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/15/2021] [Indexed: 11/21/2022] Open
Abstract
The microtubule-associated protein tau is implicated in the formation of oligomers and fibrillar aggregates that evade proteostasis control and spread from cell-to-cell. Tau pathology is accompanied by sustained neuroinflammation and, while the release of alarmin mediators aggravates disease at late stages, early inflammatory responses encompass protective functions. This is the case of the Ca2+-binding S100B protein, an astrocytic alarmin which is augmented in AD and which has been recently implicated as a proteostasis regulator, acting over amyloid β aggregation. Here we report the activity of S100B as a suppressor of tau aggregation and seeding, operating at sub-stoichiometric conditions. We show that S100B interacts with tau in living cells even in microtubule-destabilizing conditions. Structural analysis revealed that tau undergoes dynamic interactions with S100B, in a Ca2+-dependent manner, notably with the aggregation prone repeat segments at the microtubule binding regions. This interaction involves contacts of tau with a cleft formed at the interface of the S100B dimer. Kinetic and mechanistic analysis revealed that S100B inhibits the aggregation of both full-length tau and of the microtubule binding domain, and that this proceeds through effects over primary and secondary nucleation, as confirmed by seeding assays and direct observation of S100B binding to tau oligomers and fibrils. In agreement with a role as an extracellular chaperone and its accumulation near tau positive inclusions, we show that S100B blocks proteopathic tau seeding. Together, our findings establish tau as a client of the S100B chaperone, providing evidence for neuro-protective functions of this inflammatory mediator across different tauopathies. The calcium binding protein S100B is an abundantly expressed protein in the brain and has neuro-protective functions by inhibiting Aβ aggregation and metal ion toxicity. Here, the authors combine cell biology and biochemical experiments with chemical kinetics and NMR measurements and show that S100B protein is an extracellular Tau chaperone and further characterize the interactions between S100B and Tau.
Collapse
Affiliation(s)
- Guilherme G Moreira
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - François-Xavier Cantrelle
- CNRS ERL9002 Integrative Structural Biology, F-59000, Lille, France.,Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
| | - Andrea Quezada
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa S Carvalho
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Joana S Cristóvão
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX, 77555-1045, USA.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX, 77555-1045, USA.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ana P Carapeto
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mário S Rodrigues
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Isabel Cardoso
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-013, Porto, Portugal
| | - Güenter Fritz
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Stuttgart, 70599, Germany
| | - Federico Herrera
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX, 77555-1045, USA.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Isabelle Landrieu
- CNRS ERL9002 Integrative Structural Biology, F-59000, Lille, France.,Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
| | - Cláudio M Gomes
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal. .,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
13
|
Wartchow KM, Rodrigues L, Swierzy I, Buchfelder M, de Souza DO, Gonçalves CA, Kleindienst A. Amyloid-β Processing in Aged S100B Transgenic Mice Is Sex Dependent. Int J Mol Sci 2021; 22:ijms221910823. [PMID: 34639161 PMCID: PMC8509484 DOI: 10.3390/ijms221910823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Calcium-binding protein S100B is involved in neuroregeneration but has also been associated with neurodegeneration. These contrasting effects may result from concentration or duration of exposure. We investigated the effect of long-term increased S100B levels on amyloid-β processing in one-year-old transgenic (tg) mice with 12 copies of the murine S100B gene with specific consideration of sex and specific brain regions. (2) Methods: S100B and amyloid-β 42 (Aβ42) were quantified in serum, cerebrospinal fluid (CSF), adipose tissue, and different brain regions by ELISA in wild-type (wt) and S100Btg mice (each n = 7 per group). Thioflavin T (ThT) and Aβ immunostaining were performed for visualization of Aβ deposition. (3) Results: S100B in serum, CSF, and brain was significantly increased in S100Btg mice of both sexes. Aβ42 was significantly increased in the hippocampus of male S100Btg mice (p = 0.0075), and the frontal cortex of female S100Btg mice (p = 0.0262). ThT and Aβ immunostaining demonstrated Aβ deposition in different brain regions in S100Btg mice of both sexes and female wt. (4) Conclusion: Our data validate this experimental model for studying the role of S100B in neurodegeneration and indicate that Aβ processing is sex-dependent and brain region-specific, which deserves further investigation of signaling pathways and behavioral responses.
Collapse
Affiliation(s)
- Krista Minéia Wartchow
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil; (K.M.W.); (L.R.); (D.O.d.S.); (C.-A.G.)
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany; (I.S.); (M.B.)
| | - Leticia Rodrigues
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil; (K.M.W.); (L.R.); (D.O.d.S.); (C.-A.G.)
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany; (I.S.); (M.B.)
| | - Izabela Swierzy
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany; (I.S.); (M.B.)
| | - Michael Buchfelder
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany; (I.S.); (M.B.)
| | - Diogo Onofre de Souza
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil; (K.M.W.); (L.R.); (D.O.d.S.); (C.-A.G.)
| | - Carlos-Alberto Gonçalves
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil; (K.M.W.); (L.R.); (D.O.d.S.); (C.-A.G.)
| | - Andrea Kleindienst
- Department of Neurosurgery, Friedrich-Alexander University, 91054 Erlangen, Germany; (I.S.); (M.B.)
- Correspondence:
| |
Collapse
|
14
|
Peak SL, Gracia L, Lora G, Jinwal UK. Hsp90-interacting Co-chaperones and their Family Proteins in Tau Regulation: Introducing a Novel Role for Cdc37L1. Neuroscience 2020; 453:312-323. [PMID: 33246057 DOI: 10.1016/j.neuroscience.2020.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Tau is a microtubule-associated protein that serves as a promoter of microtubule assembly and stability in neuron cells. In a collective group of neurodegenerative diseases called tauopathies, tau processing is altered as a result of gene mutations and post-translational modifications. In particular, in Alzheimer's disease (AD) or AD-like conditions, tau becomes hyperphosphorylated and forms toxic aggregates inside the cell. The chaperone heat shock protein 90 (Hsp90) plays an important role in the proper folding, degradation, and recycling of tau proteins and tau kinases. Hsp90 has many co-chaperones that aid in tau processing. In particular, a few of these co-chaperones, such as FK506-binding protein (FKBP) 51, protein phosphatase (PP) 5, cell division cycle 37 (Cdc37), and S100A1 have family members that are reported to affect Hsp90-mediated tau processing in either a similar or an opposite manner. Here, we provide a holistic review of these selected co-chaperones and their family proteins and introduce a novel Hsp90-binding Cdc37 relative, Cdc37-like-1 (Cdc37L1 or L1) in tau regulation. Overall, the proteins discussed here highlight the importance of studying family proteins in order to fully understand the mechanism of tau pathogenesis and to establish drug targets for the treatment of tauopathies.
Collapse
Affiliation(s)
- Stephanie L Peak
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Liam Gracia
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA; Department of Orthopedic Surgery, Duke University, 308 Research Dr, Durham NC 27710, NC, USA
| | - Gabriella Lora
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Umesh K Jinwal
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
15
|
Bjorkli C, Sandvig A, Sandvig I. Bridging the Gap Between Fluid Biomarkers for Alzheimer's Disease, Model Systems, and Patients. Front Aging Neurosci 2020; 12:272. [PMID: 32982716 PMCID: PMC7492751 DOI: 10.3389/fnagi.2020.00272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is a debilitating neurodegenerative disease characterized by the accumulation of two proteins in fibrillar form: amyloid-β (Aβ) and tau. Despite decades of intensive research, we cannot yet pinpoint the exact cause of the disease or unequivocally determine the exact mechanism(s) underlying its progression. This confounds early diagnosis and treatment of the disease. Cerebrospinal fluid (CSF) biomarkers, which can reveal ongoing biochemical changes in the brain, can help monitor developing AD pathology prior to clinical diagnosis. Here we review preclinical and clinical investigations of commonly used biomarkers in animals and patients with AD, which can bridge translation from model systems into the clinic. The core AD biomarkers have been found to translate well across species, whereas biomarkers of neuroinflammation translate to a lesser extent. Nevertheless, there is no absolute equivalence between biomarkers in human AD patients and those examined in preclinical models in terms of revealing key pathological hallmarks of the disease. In this review, we provide an overview of current but also novel AD biomarkers and how they relate to key constituents of the pathological cascade, highlighting confounding factors and pitfalls in interpretation, and also provide recommendations for standardized procedures during sample collection to enhance the translational validity of preclinical AD models.
Collapse
Affiliation(s)
- Christiana Bjorkli
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Axel Sandvig
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Institute of Neuromedicine and Movement Science, Department of Neurology, St. Olavs Hospital, Trondheim, Norway.,Department of Pharmacology and Clinical Neurosciences, Division of Neuro, Head, and Neck, University Hospital of Umeå, Umeå, Sweden
| | - Ioanna Sandvig
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
16
|
Cristóvão JS, Figueira AJ, Carapeto AP, Rodrigues MS, Cardoso I, Gomes CM. The S100B Alarmin Is a Dual-Function Chaperone Suppressing Amyloid-β Oligomerization through Combined Zinc Chelation and Inhibition of Protein Aggregation. ACS Chem Neurosci 2020; 11:2753-2760. [PMID: 32706972 DOI: 10.1021/acschemneuro.0c00392] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Amyloid beta (Aβ) aggregation and imbalance of metal ions are major hallmarks of Alzheimer's disease (AD). Indeed, amyloid plaques of AD patients are enriched in zinc and Aβ42, and AD related-cognitive decline is dependent on extracellular zinc concentration. In vitro, zinc induces the formation of polymorphic Aβ42 oligomers that delay the formation of amyloid fibers at the expense of increased cellular toxicity. S100B is an inflammatory alarmin and one of the most abundant proteins in the brain and is upregulated in AD and associated with amyloid plaques, where it exerts extracellular functions. Recent findings have uncovered novel neuroprotective functions for S100B as a suppressor of Aβ aggregation and toxicity and in the regulation of zinc homeostasis in neurons. Here we combine biophysical and kinetic approaches to demonstrate that such S100B protective functions converge, making the protein a dual-function chaperone capable of suppressing the formation of toxic Aβ oligomers through both chelation of zinc and inhibition of protein aggregation. From detailed kinetic analysis of Aβ42 aggregation monitoring ThT fluorescence, we show that substoichiometric S100B prevents the formation of toxic off-pathway oligomers that are formed by monomeric Aβ42 in the presence of zinc. Indeed, S100B is effective when added during the lag and transition phases of Aβ42 aggregation, and its action under these circumstances results from its ability to buffer zinc, as it perfectly mimics the effect obtained with the chelating agent EDTA. Further, bioimaging analysis combining transmission electron microscopy and atomic force microscopy confirms that catalytic amounts of S100B partly revert the formation of toxic oligomers. Taken together these results indicate a new role for S100B as a dual chaperone whose distinct functions are interrelated and depend on the relative levels of zinc, S100B, and Aβ, which dynamically evolve during AD.
Collapse
Affiliation(s)
- Joana S. Cristóvão
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - António J. Figueira
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Ana P. Carapeto
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Mário S. Rodrigues
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Isabel Cardoso
- i3S−Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4150-180, Portugal
- IBMC−Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150-180, Portugal
| | - Cláudio M. Gomes
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| |
Collapse
|
17
|
Moreno-Rodriguez M, Perez SE, Nadeem M, Malek-Ahmadi M, Mufson EJ. Frontal cortex chitinase and pentraxin neuroinflammatory alterations during the progression of Alzheimer's disease. J Neuroinflammation 2020; 17:58. [PMID: 32066474 PMCID: PMC7025403 DOI: 10.1186/s12974-020-1723-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/20/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chitinase 3-like 1 (CHI3L1), chitinase 3-like 2 (CHI3L2), and neuronal pentraxin II (NPTX2) are inflammatory biomarkers of Alzheimer's disease (AD). Although studies have demonstrated that cerebrospinal fluid levels of these proteins are changed in AD, no studies have undertaken a detailed examination of alterations in protein levels, cellular expression, and interaction with amyloid in the brain during the progression of AD. METHODS The study evaluated levels of both CHI3L1 and CHI3L2, NPTX2, ionized calcium-binding adapter molecule 1 (Iba1), complement component 1q (C1q), glial fibrillary acidic protein (GFAP), and CD44, in the frontal cortex of people who died with an antemortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), mild/moderate AD (mAD), and severe AD (sAD) using immunoblot and immunohistochemical techniques. RESULTS CHI3L1-immunoreactive (-ir) astrocyte numbers were increased in the frontal cortex and white matter in sAD compared to NCI. On the other hand, increases in GFAP and Iba1-ir cell numbers were observed in MCI compared to NCI but only in white matter. Western blot analyses revealed significantly lower frontal cortex CHI3L2 levels, whereas CD44 levels were increased in sAD. No significant differences for CHI3L1, GFAP, C1q, and NPTX2 protein levels were detected between clinical groups. Strong significant correlations were found between frontal cortex CHI3L1 and Iba1-ir cell numbers in white matter and CHI3L1 and C1q protein levels in the early stages of the disease. C1q and Iba1, CD44 with CHI3L2, and GFAP protein levels were associated during disease progression. CHI3L1 and Iba1 cell numbers in white matter showed a significant associations with episodic memory and perceptual speed. CONCLUSIONS White matter CHI3L1 inflammatory response is associated with cognitive impairment early in the onset of AD.
Collapse
Affiliation(s)
- Marta Moreno-Rodriguez
- Department of Neurobiology and Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
| | - Sylvia E Perez
- Department of Neurobiology and Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
| | - Muhammad Nadeem
- Department of Neurobiology and Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
| | | | - Elliott J Mufson
- Department of Neurobiology and Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA.
| |
Collapse
|
18
|
Sreejit G, Flynn MC, Patil M, Krishnamurthy P, Murphy AJ, Nagareddy PR. S100 family proteins in inflammation and beyond. Adv Clin Chem 2020; 98:173-231. [PMID: 32564786 DOI: 10.1016/bs.acc.2020.02.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The S100 family proteins possess a variety of intracellular and extracellular functions. They interact with multiple receptors and signal transducers to regulate pathways that govern inflammation, cell differentiation, proliferation, energy metabolism, apoptosis, calcium homeostasis, cell cytoskeleton and microbial resistance. S100 proteins are also emerging as novel diagnostic markers for identifying and monitoring various diseases. Strategies aimed at targeting S100-mediated signaling pathways hold a great potential in developing novel therapeutics for multiple diseases. In this chapter, we aim to summarize the current knowledge about the role of S100 family proteins in health and disease with a major focus on their role in inflammatory conditions.
Collapse
Affiliation(s)
| | - Michelle C Flynn
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
19
|
Hagmeyer S, Romão MA, Cristóvão JS, Vilella A, Zoli M, Gomes CM, Grabrucker AM. Distribution and Relative Abundance of S100 Proteins in the Brain of the APP23 Alzheimer's Disease Model Mice. Front Neurosci 2019; 13:640. [PMID: 31281238 PMCID: PMC6596341 DOI: 10.3389/fnins.2019.00640] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence links proteins of the S100 family to the pathogenesis of Alzheimer's disease (AD). S100 proteins are EF-hand calcium-binding proteins with intra- and extracellular functions related to regulation of proliferation, differentiation, apoptosis, and trace metal homeostasis, and are important modulators of inflammatory responses. For example, S100A6, S100A8, and S100B expression levels were found increased in inflammatory diseases, but also neurodegenerative disorders, and S100A8/A9 complexes may provide a mechanistic link between amyloid-beta (Aβ) plaque formation and neuroinflammation. On the other hand, S100B, a proinflammatory protein that is chronically up-regulated in AD and whose elevation precedes plaque formation, was recently shown to suppress Aβ aggregation. Here, we report expression of S100A6 and S100B in astrocytes and less so in neurons, and low level of expression of S100A8 in both neurons and glial cells in vitro. In vivo, S100A8 expression is almost absent in the brain of aged wildtype mice, while S100A6 and S100B are expressed in all brain regions and most prominently in the cortex and cerebellum. S100B seems to be enriched in Purkinje cells of the cerebellum. In contrast, in the brain of APP23 mice, a mouse model for Alzheimer's disease, S100B, S100A6, and S100A8 show co-localization with Aβ plaques, compatible with astrocyte activation, and the expression level of S100A8 is increased in neural cells. While S100A6 and S100B are enriched in the periphery of plaques where less fibrillar Aβ is found, S100A8 is more intense within the center of the inclusion. In vitro assays show that, similarly to S100B, S100A6, and S100A8 also delay Aβ aggregation suggesting a regulatory action over protein aggregation. We posit that elevated expression levels and overlapping spatial distribution of brain S100 proteins and plaques translates functional relationships between these inflammatory mediators and AD pathophysiology processes that uncover important molecular mechanisms linking the aggregation and neuroinflammation cascades.
Collapse
Affiliation(s)
- Simone Hagmeyer
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, Limerick, Ireland
- WG Molecular Analysis of Synaptopathies, Department of Neurology, Neurocenter of Ulm University, Ulm, Germany
| | - Mariana A. Romão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S. Cristóvão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Cláudio M. Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| | - Andreas M. Grabrucker
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| |
Collapse
|
20
|
Cristóvão JS, Gomes CM. S100 Proteins in Alzheimer's Disease. Front Neurosci 2019; 13:463. [PMID: 31156365 PMCID: PMC6532343 DOI: 10.3389/fnins.2019.00463] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/24/2019] [Indexed: 01/05/2023] Open
Abstract
S100 proteins are calcium-binding proteins that regulate several processes associated with Alzheimer's disease (AD) but whose contribution and direct involvement in disease pathophysiology remains to be fully established. Due to neuroinflammation in AD patients, the levels of several S100 proteins are increased in the brain and some S100s play roles related to the processing of the amyloid precursor protein, regulation of amyloid beta peptide (Aβ) levels and Tau phosphorylation. S100 proteins are found associated with protein inclusions, either within plaques or as isolated S100-positive puncta, which suggests an active role in the formation of amyloid aggregates. Indeed, interactions between S100 proteins and aggregating Aβ indicate regulatory roles over the aggregation process, which may either delay or aggravate aggregation, depending on disease stage and relative S100 and Aβ levels. Additionally, S100s are also known to influence AD-related signaling pathways and levels of other cytokines. Recent evidence also suggests that metal-ligation by S100 proteins influences trace metal homeostasis in the brain, particularly of zinc, which is also a major deregulated process in AD. Altogether, this evidence strongly suggests a role of S100 proteins as key players in several AD-linked physiopathological processes, which we discuss in this review.
Collapse
Affiliation(s)
- Joana S. Cristóvão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudio M. Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Abstract
Sports-related traumatic brain injuries (TBIs) range in severity from severe to subconcussive. Although technologies exist for clinical diagnosis of more severe injuries, methods for diagnosis of milder forms of brain injury are limited. Developing objective measures to indicate pathogenic processes after a suspected mild TBI is challenging for multiple reasons. The field of biomarker discovery for diagnosing TBI continues to expand, with newly identified candidate biomarkers being reported regularly. Brain-specific biomarkers include proteins derived from neurons and glia, and are often measured to assess neural injury and repair, and to predict outcomes. Ideally, changes in biomarker levels should indicate pathologic events and answer critical questions for accurate diagnosis and prognosis. For example, does the presence or a change in the biomarker level suggest greater vulnerability for sustaining a second concussion or show that the window of increased vulnerability has passed? Likewise, do changes in biomarker levels predict postconcussion syndrome or recovery/repair? Although there are numerous promising candidates for fluid biomarkers that may diagnose mild TBI or concussion, none has reached the clinic to date. In this chapter, we will define biomarkers, discuss the importance of understanding their normal and pathologic functions, and outline some considerations for interpreting detection assay results in TBI. We will then review five proposed blood and cerebrospinal fluid biomarkers (tau, neurofilament, ubiquitin carboxyl-terminal hydrolase L1, S100β, and glial fibrillary acidic protein) used currently to address TBI. Lastly, we will discuss a future trajectory for developing new, clinically useful fluid biomarkers.
Collapse
|
22
|
Michetti F, D'Ambrosi N, Toesca A, Puglisi MA, Serrano A, Marchese E, Corvino V, Geloso MC. The S100B story: from biomarker to active factor in neural injury. J Neurochem 2018; 148:168-187. [DOI: 10.1111/jnc.14574] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/19/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Fabrizio Michetti
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
- IRCCS San Raffaele Scientific Institute; Università Vita-Salute San Raffaele; Milan Italy
| | - Nadia D'Ambrosi
- Department of Biology; Università degli Studi di Roma Tor Vergata; Rome Italy
| | - Amelia Toesca
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | | | - Alessia Serrano
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Valentina Corvino
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Maria Concetta Geloso
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| |
Collapse
|
23
|
Cristóvão JS, Morris VK, Cardoso I, Leal SS, Martínez J, Botelho HM, Göbl C, David R, Kierdorf K, Alemi M, Madl T, Fritz G, Reif B, Gomes CM. The neuronal S100B protein is a calcium-tuned suppressor of amyloid-β aggregation. SCIENCE ADVANCES 2018; 4:eaaq1702. [PMID: 29963623 PMCID: PMC6025902 DOI: 10.1126/sciadv.aaq1702] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/22/2018] [Indexed: 05/23/2023]
Abstract
Amyloid-β (Aβ) aggregation and neuroinflammation are consistent features in Alzheimer's disease (AD) and strong candidates for the initiation of neurodegeneration. S100B is one of the most abundant proinflammatory proteins that is chronically up-regulated in AD and is found associated with senile plaques. This recognized biomarker for brain distress may, thus, play roles in amyloid aggregation which remain to be determined. We report a novel role for the neuronal S100B protein as suppressor of Aβ42 aggregation and toxicity. We determined the structural details of the interaction between monomeric Aβ42 and S100B, which is favored by calcium binding to S100B, possibly involving conformational switching of disordered Aβ42 into an α-helical conformer, which locks aggregation. From nuclear magnetic resonance experiments, we show that this dynamic interaction occurs at a promiscuous peptide-binding region within the interfacial cleft of the S100B homodimer. This physical interaction is coupled to a functional role in the inhibition of Aβ42 aggregation and toxicity and is tuned by calcium binding to S100B. S100B delays the onset of Aβ42 aggregation by interacting with Aβ42 monomers inhibiting primary nucleation, and the calcium-bound state substantially affects secondary nucleation by inhibiting fibril surface-catalyzed reactions through S100B binding to growing Aβ42 oligomers and fibrils. S100B protects cells from Aβ42-mediated toxicity, rescuing cell viability and decreasing apoptosis induced by Aβ42 in cell cultures. Together, our findings suggest that molecular targeting of S100B could be translated into development of novel approaches to ameliorate AD neurodegeneration.
Collapse
Affiliation(s)
- Joana S. Cristóvão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Química e Bioquímica, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Vanessa K. Morris
- Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Isabel Cardoso
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sónia S. Leal
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Química e Bioquímica, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Javier Martínez
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Química e Bioquímica, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Hugo M. Botelho
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Christoph Göbl
- Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Rodrigo David
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Química e Bioquímica, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Katrin Kierdorf
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Mobina Alemi
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Tobias Madl
- Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Günter Fritz
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Bernd Reif
- Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Cláudio M. Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Química e Bioquímica, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
24
|
Ferguson SA, Panos JJ, Sloper D, Varma V. Neurodegenerative Markers are Increased in Postmortem BA21 Tissue from African Americans with Alzheimer's Disease. J Alzheimers Dis 2018; 59:57-66. [PMID: 28582866 DOI: 10.3233/jad-170204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) presents with an earlier onset age and increased symptom severity in African Americans and Hispanics. OBJECTIVE Although the prevalence of plaques and tangles may not exhibit ethnicity-related differences, levels of neurodegenerative proteins have not been described. METHODS Here, levels of five proteins (i.e., S100B, sRAGE, GDNF, Aβ40, and Aβ42) and the Aβ42/Aβ40 ratio were measured in postmortem samples of the middle temporal gyrus (BA21) from age-matched African Americans and Caucasians with AD (n = 6/gender/ethnicity). RESULTS S100B levels were increased 17% in African Americans (p < 0.003) while sRAGE was mildly decreased (p < 0.09). Aβ42 levels were increased 121% in African Americans (p < 0.02), leading to a 493% increase in the Aβ42/Aβ40 ratio (p < 0.002). Analysis of GDNF levels did not indicate any significant effects. There were no significant effects of gender and no significant ethnicity with gender interactions on any analyte. Effect size calculations indicated "medium" to "very large" effects. CONCLUSION S100B is typically elevated in AD cases; however, the increased levels in African Americans here may be indicative of increased severity in specific populations. Increased Aβ42/Aβ40 ratios in the current study are compatible with increased disease severity and might indicate increased AD pathogenesis in African Americans. Overall, these results are compatible with a hypothesis of increased neuroinflammation in African Americans with AD.
Collapse
Affiliation(s)
- Sherry A Ferguson
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, USA
| | - John J Panos
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, USA
| | - Daniel Sloper
- Division of Systems Biology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, USA
| | - Vijayalakshmi Varma
- Division of Systems Biology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
25
|
Sun X, Wang T, Zhang C, Ning K, Guan ZR, Chen SX, Hong TT, Hua D. S100A16 is a prognostic marker for colorectal cancer. J Surg Oncol 2017; 117:275-283. [PMID: 28876468 DOI: 10.1002/jso.24822] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND S100 is a superfamily of calcium-binding proteins that regulate multiple biological processes and are involved in many diseases. S100A16 has recently been identified to be involved in several cancers such as bladder cancer, lung cancer, and oral squamous cell carcinoma. However, the role of S100A16 expression in the colorectal cancer (CRC) has not been investigated. METHODS S100A16 protein expression was detected by immunohistochemistry in 296 cases of CRC. Kaplan-Meier survival analysis and Cox regression analysis were performed to evaluate the prognostic significance of S100A16. RESULT The results showed that the overall survival (OS) of patients with low membrane S100A16 expression was significantly shorter than patients with high expression (P < 0.05). Chi-square analysis showed that S100A16 expression had a positive correlation with tumor grade (P = 0.02). Multivariate analysis identified membrane S100A16 expression as an independent prognostic marker for OS in CRC patients. (P < 0.05). Univariate analysis showed no significant association between cytoplasmic/nuclear S100A16 expression and OS. CONCLUSION Membrane S100A16 is associated with the prognosis of CRC patients, indicating that S100A16 may be a potential prognostic biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Xu Sun
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu, China
| | - Teng Wang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Chun Zhang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu, China
| | - Kuan Ning
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhang-Rui Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Shu-Xian Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu, China
| | - Ting-Ting Hong
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Dong Hua
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
26
|
Dossi E, Vasile F, Rouach N. Human astrocytes in the diseased brain. Brain Res Bull 2017; 136:139-156. [PMID: 28212850 PMCID: PMC5766741 DOI: 10.1016/j.brainresbull.2017.02.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/23/2022]
Abstract
Astrocytes are key active elements of the brain that contribute to information processing. They not only provide neurons with metabolic and structural support, but also regulate neurogenesis and brain wiring. Furthermore, astrocytes modulate synaptic activity and plasticity in part by controlling the extracellular space volume, as well as ion and neurotransmitter homeostasis. These findings, together with the discovery that human astrocytes display contrasting characteristics with their rodent counterparts, point to a role for astrocytes in higher cognitive functions. Dysfunction of astrocytes can thereby induce major alterations in neuronal functions, contributing to the pathogenesis of several brain disorders. In this review we summarize the current knowledge on the structural and functional alterations occurring in astrocytes from the human brain in pathological conditions such as epilepsy, primary tumours, Alzheimer's disease, major depressive disorder and Down syndrome. Compelling evidence thus shows that dysregulations of astrocyte functions and interplay with neurons contribute to the development and progression of various neurological diseases. Targeting astrocytes is thus a promising alternative approach that could contribute to the development of novel and effective therapies to treat brain disorders.
Collapse
Affiliation(s)
- Elena Dossi
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Flora Vasile
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
27
|
Blood biomarkers for brain injury: What are we measuring? Neurosci Biobehav Rev 2016; 68:460-473. [PMID: 27181909 DOI: 10.1016/j.neubiorev.2016.05.009] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 12/28/2022]
Abstract
Accurate diagnosis for mild traumatic brain injury (mTBI) remains challenging, as prognosis and return-to-play/work decisions are based largely on patient reports. Numerous investigations have identified and characterized cellular factors in the blood as potential biomarkers for TBI, in the hope that these factors may be used to gauge the severity of brain injury. None of these potential biomarkers have advanced to use in the clinical setting. Some of the most extensively studied blood biomarkers for TBI include S100β, neuron-specific enolase, glial fibrillary acidic protein, and Tau. Understanding the biological function of each of these factors may be imperative to achieve progress in the field. We address the basic question: what are we measuring? This review will discuss blood biomarkers in terms of cellular origin, normal and pathological function, and possible reasons for increased blood levels. Considerations in the selection, evaluation, and validation of potential biomarkers will also be addressed, along with mechanisms that allow brain-derived proteins to enter the bloodstream after TBI. Lastly, we will highlight perspectives and implications for repetitive neurotrauma in the field of blood biomarkers for brain injury.
Collapse
|
28
|
Agresta AM, De Palma A, Bardoni A, Salvini R, Iadarola P, Mauri PL. Proteomics as an innovative tool to investigate frontotemporal disorders. Proteomics Clin Appl 2015; 10:457-69. [DOI: 10.1002/prca.201500090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/14/2015] [Accepted: 10/28/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Anna Maria Agresta
- Proteomics and Metabolomics Unit; Institute for Biomedical Technologies (ITB-CNR); Segrate (MI) Italy
- Department of Biology and Biotechnologies; Biochemistry Unit; University of Pavia; Pavia Italy
- Doctorate School of Molecular and Translational Medicine; University of Milan; Segrate (MI) Italy
| | - Antonella De Palma
- Proteomics and Metabolomics Unit; Institute for Biomedical Technologies (ITB-CNR); Segrate (MI) Italy
| | - Anna Bardoni
- Biochemistry Unit; Department of Molecular Medicine; University of Pavia; Pavia Italy
| | - Roberta Salvini
- Biochemistry Unit; Department of Molecular Medicine; University of Pavia; Pavia Italy
| | - Paolo Iadarola
- Department of Biology and Biotechnologies; Biochemistry Unit; University of Pavia; Pavia Italy
| | - Pier Luigi Mauri
- Proteomics and Metabolomics Unit; Institute for Biomedical Technologies (ITB-CNR); Segrate (MI) Italy
| |
Collapse
|
29
|
Choong XY, Tosh JL, Pulford LJ, Fisher EMC. Dissecting Alzheimer disease in Down syndrome using mouse models. Front Behav Neurosci 2015; 9:268. [PMID: 26528151 PMCID: PMC4602094 DOI: 10.3389/fnbeh.2015.00268] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/21/2015] [Indexed: 11/13/2022] Open
Abstract
Down syndrome (DS) is a common genetic condition caused by the presence of three copies of chromosome 21 (trisomy 21). This greatly increases the risk of Alzheimer disease (AD), but although virtually all people with DS have AD neuropathology by 40 years of age, not all develop dementia. To dissect the genetic contribution of trisomy 21 to DS phenotypes including those relevant to AD, a range of DS mouse models has been generated which are trisomic for chromosome segments syntenic to human chromosome 21. Here, we consider key characteristics of human AD in DS (AD-DS), and our current state of knowledge on related phenotypes in AD and DS mouse models. We go on to review important features needed in future models of AD-DS, to understand this type of dementia and so highlight pathogenic mechanisms relevant to all populations at risk of AD.
Collapse
Affiliation(s)
- Xun Yu Choong
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| | - Justin L Tosh
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| | - Laura J Pulford
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| | - Elizabeth M C Fisher
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| |
Collapse
|
30
|
Wiseman FK, Al-Janabi T, Hardy J, Karmiloff-Smith A, Nizetic D, Tybulewicz VLJ, Fisher EMC, Strydom A. A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat Rev Neurosci 2015; 16:564-74. [PMID: 26243569 PMCID: PMC4678594 DOI: 10.1038/nrn3983] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Down syndrome, which arises in individuals carrying an extra copy of chromosome 21, is associated with a greatly increased risk of early-onset Alzheimer disease. It is thought that this risk is conferred by the presence of three copies of the gene encoding amyloid precursor protein (APP)--an Alzheimer disease risk factor--although the possession of extra copies of other chromosome 21 genes may also play a part. Further study of the mechanisms underlying the development of Alzheimer disease in people with Down syndrome could provide insights into the mechanisms that cause dementia in the general population.
Collapse
Affiliation(s)
- Frances K Wiseman
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Tamara Al-Janabi
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London W1T 7NF, UK
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Annette Karmiloff-Smith
- Centre for Brain and Cognitive Development, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Dean Nizetic
- Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, 11 Mandalay Road, Singapore 308232; and the Blizard Institute, Barts and the London School of Medicine, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | | | - Elizabeth M C Fisher
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - André Strydom
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London W1T 7NF, UK
| |
Collapse
|
31
|
Aging causes morphological alterations in astrocytes and microglia in human substantia nigra pars compacta. Neurobiol Aging 2015; 36:3321-3333. [PMID: 26433682 DOI: 10.1016/j.neurobiolaging.2015.08.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/30/2015] [Accepted: 08/25/2015] [Indexed: 12/20/2022]
Abstract
Age being a risk factor for Parkinson's disease, assessment of age-related changes in the human substantia nigra may elucidate its pathogenesis. Increase in Marinesco bodies, α-synuclein, free radicals and so forth in the aging nigral neurons are clear indicators of neurodegeneration. Here, we report the glial responses in aging human nigra. The glial numbers were determined on Nissl-stained sections. The expression of glial fibrillary acidic protein, S100β, 2', 3'-cyclic nucleotide 3' phosphodiesterase, and Iba1 was assessed on cryosections of autopsied midbrains by immunohistochemistry and densitometry. The glial counts showed a biphasic increase, of which, the first prominent phase from fetal age to birth could be physiological gliogenesis whereas the second one after middle age may reflect mild age-related gliosis. Astrocytic morphology was altered, but glial fibrillary acidic protein expression increased only mildly. Presence of type-4 microglia suggests possibility of neuroinflammation. Mild reduction in 2', 3'-cyclic nucleotide 3' phosphodiesterase-labeled area denotes subtle demyelination. Stable age-related S100β expression indicates absence of calcium overload. Against the expected prominent gliosis, subtle age-related morphological alterations in human nigral glia attribute them a participatory role in aging.
Collapse
|
32
|
S100B Inhibitor Pentamidine Attenuates Reactive Gliosis and Reduces Neuronal Loss in a Mouse Model of Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:508342. [PMID: 26295040 PMCID: PMC4532807 DOI: 10.1155/2015/508342] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/12/2014] [Accepted: 12/22/2014] [Indexed: 11/24/2022]
Abstract
Among the different signaling molecules released during reactive gliosis occurring in Alzheimer's disease (AD), the astrocyte-derived S100B protein plays a key role in neuroinflammation, one of the hallmarks of the disease. The use of pharmacological tools targeting S100B may be crucial to embank its effects and some of the pathological features of AD. The antiprotozoal drug pentamidine is a good candidate since it directly blocks S100B activity by inhibiting its interaction with the tumor suppressor p53. We used a mouse model of amyloid beta- (Aβ-) induced AD, which is characterized by reactive gliosis and neuroinflammation in the brain, and we evaluated the effect of pentamidine on the main S100B-mediated events. Pentamidine caused the reduction of glial fibrillary acidic protein, S100B, and RAGE protein expression, which are signs of reactive gliosis, and induced p53 expression in astrocytes. Pentamidine also reduced the expression of proinflammatory mediators and markers, thus reducing neuroinflammation in AD brain. In parallel, we observed a significant neuroprotection exerted by pentamidine on CA1 pyramidal neurons. We demonstrated that pentamidine inhibits Aβ-induced gliosis and neuroinflammation in an animal model of AD, thus playing a role in slowing down the course of the disease.
Collapse
|
33
|
Kong H, Yin F, He F, Omran A, Li L, Wu T, Wang Y, Peng J. The Effect of miR-132, miR-146a, and miR-155 on MRP8/TLR4-Induced Astrocyte-Related Inflammation. J Mol Neurosci 2015; 57:28-37. [PMID: 25957996 DOI: 10.1007/s12031-015-0574-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/28/2015] [Indexed: 01/20/2023]
Abstract
Astrocyte activation, associated with the release of pro-inflammatory cytokines interleukin 1-β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α), is a hallmark of multiple brain diseases, including mesial temporal lobe epilepsy. In recent years, several microRNAs have emerged as important controllers of Toll-like receptor (TLR) signaling. In this study, we investigated the effect of miR-132, miR-146a, and miR-155 on myeloid-related protein-8 (MRP8) induced astrocyte-related inflammation. Using quantitative polymerase chain reaction (qPCR) and western blot, we found clear upregulation of TLR4 and downstream inflammatory cytokines, along with dysregulation of miR-132, miR-146a, and miR-155 in in vitro astrocytes after exposing them to different concentrations of MRP8. In addition, we focused on the effect of miR-132 on astrocyte-related inflammation induced by MRP8 via lentiviral infection then evaluated the expression of its possible target genes: acetylcholinesterase (AChE) and interleukin-1 receptor-associated kinase (IRAK4). Our results show that miR-132 is a negative feedback regulator of IL-1β and IL-6, but not TNF-α, by targeting IRAK4. Together, our findings demonstrate the novel role of TLR4-related microRNAs, especially miR-132, in the regulation of MRP8-induced astrocyte activation and highlight the importance of miR-132 in the modulation of innate immune response induced by endogenous ligands in neurological diseases.
Collapse
Affiliation(s)
- Huimin Kong
- Department of Pediatrics, Xiangya Hospital of Central South University, No. 87 Xiangya Road, Changsha, Hunan, 410008, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Edwards MM, Rodríguez JJ, Gutierrez-Lanza R, Yates J, Verkhratsky A, Lutty GA. Retinal macroglia changes in a triple transgenic mouse model of Alzheimer's disease. Exp Eye Res 2014; 127:252-60. [PMID: 25149907 DOI: 10.1016/j.exer.2014.08.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 11/18/2022]
Abstract
The retinas of Alzheimer's disease (AD) patients and transgenic AD animal models display amyloid beta deposits and degeneration of ganglion cells. Little is known, however, about the glial changes in the AD retina. The present study used a triple transgenic mouse model (3xTG-AD), which carries mutated human amyloid precursor protein, tau, and presenilin 1 genes and closely mimics the human brain pathology, to investigate retinal glial changes in AD. AD cognitive symptoms are known to begin in the 3xTG-AD mice at four months of age but plaques and tangles are not seen until six to twelve months. Müller cells in 3xTG-AD animals were GFAP-positive, indicating activation, at the earliest time point investigated, nine months. Astrocyte activation was also suggested in the 3xTG-AD mice by an apparent increase in size and process number. Another glial marker, S100, was expressed by astrocytes in both the non-transgenic (NTG) controls and 3xTG-AD retinas. Labeling was predominantly nuclear in nine month non-transgenic (NTG) control mice but was also seen in the cytoplasm and processes at 18 months of age. Interestingly, the nuclear localization was not as prominent in the 3xTG-AD retina even at nine months with labeling observed in astrocyte processes. The diffusion of S100 suggests the possible secretion of this protein, as is seen in the brain, with age and, more profoundly, associated with AD. Several dense, abnormally shaped, opaque structures were noted in all 3xTG-AD mice investigated. These structures, which were enveloped by GFAP and S100-positive astrocytes and Müller cells, were positive for amyloid beta, suggesting that they are amyloid plaques. Staining control retinas with amyloid showed similar structures in 30% of NTG animals but these were fewer in number and not associated with glial activation. The results herein indicate retinal glia activation in the 3xTG-AD mouse retina.
Collapse
Affiliation(s)
- Malia M Edwards
- Wilmer Eye Institute, Johns Hopkins Hospital, M023 Smith Building, 400 N. Broadway, Baltimore, MD 21287, USA.
| | - José J Rodríguez
- Department of Neurosciences, University of Basque Country, UPV/EHU, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | | | - Joseph Yates
- Wilmer Eye Institute, Johns Hopkins Hospital, M023 Smith Building, 400 N. Broadway, Baltimore, MD 21287, USA.
| | - Alexei Verkhratsky
- Department of Neurosciences, University of Basque Country, UPV/EHU, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | - Gerard A Lutty
- Wilmer Eye Institute, Johns Hopkins Hospital, M023 Smith Building, 400 N. Broadway, Baltimore, MD 21287, USA.
| |
Collapse
|
35
|
Li J, Fei GH. The unique alterations of hippocampus and cognitive impairment in chronic obstructive pulmonary disease. Respir Res 2013; 14:140. [PMID: 24359080 PMCID: PMC3878035 DOI: 10.1186/1465-9921-14-140] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/13/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cognitive impairment has been found in chronic obstructive pulmonary disease (COPD) patients. However, the structural alteration of the brain and underlying mechanisms are poorly understood. METHODS Thirty-seven mild-to-moderate COPD patients, forty-eight severe COPD patients, and thirty-one control subjects were recruited for cognitive test and neuroimaging studies. Serum levels of S100B,pulmonary function and arterial blood gas levels were also evaluated in each subject. RESULTS The hippocampal volume was significantly smaller in COPD patients compared to the control group. It is positively correlated with a mini mental state examination (MMSE) score, SaO2 in mild-to-moderate COPD patients, the levels of PaO2 in both mild-to-moderate and severe COPD patients. Higher S100B concentrations were observed in mild-to-moderate COPD patients, while the highest S100B level was found in severe COPD patients when compared to the control subjects. S100B levels are negatively associated with MMSE in both mild-to-moderate and severe COPD patients and also negatively associated with the hippocampal volume in the total COPD patients. CONCLUSIONS Hippocampal atrophy based on quantitative assessment by magnetic resonance imaging does occur in COPD patients, which may be associated with cognitive dysfunction and the most prevalent mechanism accountable for hippocampal atrophy is chronic hypoxemia in COPD. Higher serum S100B levels may be peripheral biochemical marker for cognitive impairment in COPD.
Collapse
Affiliation(s)
- Jing Li
- Pulmonary Department, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Guang-He Fei
- Pulmonary Department, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| |
Collapse
|
36
|
Liu XP, Zheng HY, Qu M, Zhang Y, Cao FY, Wang Q, Ke D, Liu GP, Wang JZ. Upregulation of astrocytes protein phosphatase-2A stimulates astrocytes migration via inhibiting p38 MAPK in tg2576 mice. Glia 2012; 60:1279-88. [PMID: 22729898 DOI: 10.1002/glia.22347] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/13/2012] [Indexed: 12/30/2022]
Abstract
One of the earliest neuropathological changes in Alzheimer disease (AD) is the accumulation of astrocytes at sites of β-amyloid (Aβ) deposits, but the cause of this cellular response is unclear. As the activity of protein phosphatase 2A (PP2A) is significantly decreased in the AD brains, we studied the role of PP2A in astrocytes migration. We observed unexpectedly that PP2A activity associated with glial fibrillary acidic protein, an astrocyte marker, was significantly upregulated in tg2576 mice, demonstrated by an increased enzyme activity, a decreased demethylation at leucine-309 (DM-PP2Ac), and a decreased phosphorylation at tyrosine-307 of PP2A (pY307-PP2Ac). Further studies by using in vitro wound-healing model and transwell assay demonstrated that upregulation of PP2A pharmacologically and genetically could stimulate astrocytes migration. Activation of PP2A promotes actin organization and inhibits p38 mitogen-activated protein kinases (p38 MAPK), while simultaneous activation of p38 MAPK partially abolishes the PP2A-induced astrocytes migration. Our data suggest that activation of astrocytes PP2A in tg2567 mice may stimulate the migration of astrocytes to the amyloid plaques by p38 MAPK inhibition, implying that PP2A deficits observed in AD may cause Aβ accumulation via hindering the astrocytes migration.
Collapse
Affiliation(s)
- Xiu-Ping Liu
- Pathophysiology Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, HuBei, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Reali C, Pillai R, Saba F, Cabras S, Michetti F, Sogos V. S100B modulates growth factors and costimulatory molecules expression in cultured human astrocytes. J Neuroimmunol 2012; 243:95-9. [DOI: 10.1016/j.jneuroim.2011.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 11/24/2011] [Accepted: 11/25/2011] [Indexed: 12/18/2022]
|
38
|
Michetti F, Corvino V, Geloso MC, Lattanzi W, Bernardini C, Serpero L, Gazzolo D. The S100B protein in biological fluids: more than a lifelong biomarker of brain distress. J Neurochem 2012; 120:644-59. [PMID: 22145907 DOI: 10.1111/j.1471-4159.2011.07612.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
S100B is a calcium-binding protein concentrated in glial cells, although it has also been detected in definite extra-neural cell types. Its biological role is still debated. When secreted, S100B is believed to have paracrine/autocrine trophic effects at physiological concentrations, but toxic effects at higher concentrations. Elevated S100B levels in biological fluids (CSF, blood, urine, saliva, amniotic fluid) are thus regarded as a biomarker of pathological conditions, including perinatal brain distress, acute brain injury, brain tumors, neuroinflammatory/neurodegenerative disorders, psychiatric disorders. In the majority of these conditions, high S100B levels offer an indicator of cell damage when standard diagnostic procedures are still silent. The key question remains as to whether S100B is merely leaked from injured cells or is released in concomitance with both physiological and pathological conditions, participating at high concentrations in the events leading to cell injury. In this respect, S100B levels in biological fluids have been shown to increase in physiological conditions characterized by stressful physical and mental activity, suggesting that it may be physiologically regulated and raised during conditions of stress, with a putatively active role. This possibility makes this protein a candidate not only for a biomarker but also for a potential therapeutic target.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica Sacro Cuore, Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Mounting evidence shows that inflammation plays a critical role in causing Alzheimer’s disease. Over the last few decades we have gone from a situation where inflammation was generally believed to have no role in the disease to the current picture where chronic activation of IL-1 inflammation has been shown to account for many of the hallmarks of the disease. This review is a personal account of the quest to prove that inflammation plays a critical role in causing Alzheimer’s disease.
Collapse
Affiliation(s)
- W Sue T Griffin
- Geriatric Research, Education and Clinical Center, Neurobiology, Physiology, and Psychiatry, University of Arkansas for Medical Sciences, and the Geriatrics, Education Clinical Center, Central Arkansas Veterans Healthcare System Little Rock, Arkansas 72205 USA
| |
Collapse
|
40
|
Steiner J, Bogerts B, Schroeter ML, Bernstein HG. S100B protein in neurodegenerative disorders. Clin Chem Lab Med 2011; 49:409-24. [PMID: 21303299 DOI: 10.1515/cclm.2011.083] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
"Classic" neurodegenerative disorders, such as Alzheimer's disease and amyotrophic lateral sclerosis share common pathophysiological features and involve progressive loss of specific neuronal populations, axonal or synaptic loss and dysfunction, reactive astrogliosis, and reduction in myelin. Furthermore, despite the absence of astrogliosis, impaired expression of astrocyte- and oligodendrocyte-related genes has been observed in patients with major psychiatric disorders, including schizophrenia and mood disorders. Because S100B is expressed in astrocytes and oligodendrocytes, its concentration in cerebrospinal fluid (CSF) or serum has been considered a suitable surrogate marker for the diagnostic or prognostic assessment of neurodegeneration. This review summarizes previous postmortem, CSF and serum studies regarding the role of S100B in this context. A general drawback is that only small single-center studies have been performed. Many potential confounding factors exist because of the wide extra-astrocytic and extracerebral expression of S100B. Due to lack of disease specificity, reliance on S100B concentrations for differential diagnostic purposes in cases of suspected neurodegenerative disorders is not recommended. Moreover, there is no consistent evidence for a correlation between disease severity and concentrations of S100B in CSF or serum. Therefore, S100B has limited usefulness for monitoring disease progression.
Collapse
Affiliation(s)
- Johann Steiner
- Department of Psychiatry, University of Magdeburg, Magdeburg, Germany.
| | | | | | | |
Collapse
|
41
|
Stozicka Z, Zilka N, Novak P, Kovacech B, Bugos O, Novak M. Genetic background modifies neurodegeneration and neuroinflammation driven by misfolded human tau protein in rat model of tauopathy: implication for immunomodulatory approach to Alzheimer's disease. J Neuroinflammation 2010; 7:64. [PMID: 20937161 PMCID: PMC2958906 DOI: 10.1186/1742-2094-7-64] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 10/12/2010] [Indexed: 11/25/2022] Open
Abstract
Background Numerous epidemiological studies demonstrate that genetic background modifies the onset and the progression of Alzheimer's disease and related neurodegenerative disorders. The efficacious influence of genetic background on the disease pathway of amyloid beta has been meticulously described in rodent models. Since the impact of genetic modifiers on the neurodegenerative and neuroinflammatory cascade induced by misfolded tau protein is yet to be elucidated, we have addressed the issue by using transgenic lines expressing the same human truncated tau protein in either spontaneously hypertensive rat (SHR) or Wistar-Kyoto (WKY) genetic background. Methods Brains of WKY and SHR transgenic rats in the terminal stage of phenotype and their age-matched non-transgenic littermates were examined by means of immunohistochemistry and unbiased stereology. Basic measures of tau-induced neurodegeneration (load of neurofibrillary tangles) and neuroinflammation (number of Iba1-positive microglia, their activated morphology, and numbers of microglia immunoreactive for MHCII and astrocytes immunoreactive for GFAP) were quantified with an optical fractionator in brain areas affected by neurofibrillary pathology (pons, medulla oblongata). The stereological data were evaluated using two-way ANOVA and Student's t-test. Results Tau neurodegeneration (neurofibrillary tangles (NFTs), axonopathy) and neuroinflammation (microgliosis, astrocytosis) appeared in both WKY and SHR transgenic rats. Although identical levels of transgene expression in both lines were present, terminally-staged WKY transgenic rats displayed significantly lower final NFT loads than their SHR transgenic counterparts. Interestingly, microglial responses showed a striking difference between transgenic lines. Only 1.6% of microglia in SHR transgenic rats expressed MHCII in spite of having a robust phagocytic phenotype, whereas in WKY transgenic rats, 23.2% of microglia expressed MHCII despite displaying a considerably lower extent of transformation into phagocytic phenotype. Conclusions These results show that the immune response represents a pivotal and genetically variable modifying factor that is able to influence vulnerability to neurodegeneration. Therefore, targeted immunomodulation could represent a prospective therapeutic approach to Alzheimer's disease.
Collapse
Affiliation(s)
- Zuzana Stozicka
- Institute of Neuroimmunology, Slovak Academy of Sciences, AD Centre, Dubravska cesta 9, 845 10 Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
42
|
Effects of S100B on Serotonergic Plasticity and Neuroinflammation in the Hippocampus in Down Syndrome and Alzheimer's Disease: Studies in an S100B Overexpressing Mouse Model. Cardiovasc Psychiatry Neurol 2010; 2010. [PMID: 20827311 PMCID: PMC2933893 DOI: 10.1155/2010/153657] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 06/01/2010] [Accepted: 07/02/2010] [Indexed: 12/17/2022] Open
Abstract
S100B promotes development and maturation in the mammalian brain. However, prolonged or extensive exposure can lead to neurodegeneration. Two important functions of S100B in this regard, are its role in the development and plasticity of the serotonergic neurotransmitter system, and its role in the cascade of glial changes associated with neuroinflammation. Both of these processes are therefore accelerated towards degeneration in disease processes wherein S100B is increased, notably, Alzheimer's disease (AD) and Down syndrome (DS).
In order to study the role of S100B in this context, we have examined S100B overexpressing transgenic mice. Similar to AD and DS, the transgenic animals show a profound change in serotonin innervation. By 28 weeks of age, there is a significant loss of terminals in the hippocampus. Similarly, the transgenic animals show neuroinflammatory changes analogous with AD and DS. These include decreased numbers of mature, stable astroglial cells, increased numbers of activated microglial cells and increased microglial expression of the cell surface receptor RAGE. Eventually, the S100B transgenic animals show neurodegeneration and the appearance of hyperphosphorylated tau structures, as seen in late stage DS and AD. The role of S100B in these conditions is discussed.
Collapse
|
43
|
Modi PK, Kanungo MS. Age-dependent expression of S100beta in the brain of mice. Cell Mol Neurobiol 2010; 30:709-16. [PMID: 20099023 PMCID: PMC11498891 DOI: 10.1007/s10571-009-9495-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 12/28/2009] [Indexed: 10/19/2022]
Abstract
S100beta is a soluble calcium binding protein released by glial cells. It has been reported as a neurotrophic factor that promotes neurite maturation and outgrowth during development. This protein also plays a role in axonal stability and in long term potentiation in the adult brain. The ability of S100beta to modulate neuronal morphology raises the important question whether there is an age-related difference in the expression of S100beta in the cerebral and cerebellar cortices of AKR strain mice and is this change is region specific. Our RT-PCR and Western blotting experiments show that the expression of S100beta gene in the cerebral and cerebellar cortices starts from 0 day, peaks at about 45 days. However, in 70-week old mice its expression is significantly up-regulated as compared to that of 20-week old mice. S100beta follows the same age-related pattern in both cerebral and cerebellar cortices. These results suggest that S100beta is important for brain development and establishment of proper brain functions. Up-regulation of S100beta in old age may have some role in development of age-related pathological systems in the brain.
Collapse
Affiliation(s)
- Prashant K. Modi
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh India
| | - M. S. Kanungo
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh India
| |
Collapse
|
44
|
Shobha K, Alladi PA, Nalini A, Sathyaprabha TN, Raju TR. Exposure to CSF from sporadic amyotrophic lateral sclerosis patients induces morphological transformation of astroglia and enhances GFAP and S100beta expression. Neurosci Lett 2010; 473:56-61. [PMID: 20170712 DOI: 10.1016/j.neulet.2010.02.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 02/05/2010] [Accepted: 02/10/2010] [Indexed: 11/27/2022]
Abstract
We have earlier shown that cerebrospinal fluid (CSF) of amyotrophic lateral sclerosis (ALS) patients' produces selective degeneration of motor neurons, both in vitro as well as in vivo. The present study further evaluates the effect of ALS-CSF on the astrocytes in embryonic rat spinal cord cultures. We quantified the number of flat and process-bearing astrocytes in spinal cord cultures exposed to ALS-CSF and compared them against controls. In addition, GFAP and S100beta expression were quantified by Western blot and measurement of immunofluorescence intensity respectively. We found higher number of process-bearing astrocytes in the cultures exposed to ALS-CSF. Both these proteins increased significantly in cultures exposed to ALS-CSF. Our results provide evidence that astroglia respond to toxic factor(s) present in ALS-CSF by undergoing morphological transformation from flat to process bearing which is further confirmed by elevated expression of GFAP and S100beta. The above changes could possibly alter the microenvironment hastening the motor neuron degeneration.
Collapse
Affiliation(s)
- K Shobha
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bangalore 560029, Karnataka, India
| | | | | | | | | |
Collapse
|
45
|
Chaves ML, Camozzato AL, Ferreira ED, Piazenski I, Kochhann R, Dall'Igna O, Mazzini GS, Souza DO, Portela LV. Serum levels of S100B and NSE proteins in Alzheimer's disease patients. J Neuroinflammation 2010; 7:6. [PMID: 20105309 PMCID: PMC2832635 DOI: 10.1186/1742-2094-7-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 01/27/2010] [Indexed: 12/04/2022] Open
Abstract
Background Alzheimer's disease is the most common dementia in the elderly, and the potential of peripheral biochemical markers as complementary tools in the neuropsychiatric evaluation of these patients has claimed further attention. Methods We evaluated serum levels of S100B and neuron-specific enolase (NSE) in 54 mild, moderate and severe Alzheimer's disease (AD) patients and in 66 community-dwelling elderly. AD patients met the probable NINCDS-ADRDA criteria. Severity of dementia was ascertained by the Clinical Dementia Rating (CDR) scale, cognitive function by the Mini Mental State Examination (MMSE), and neuroimage findings with magnetic resonance imaging. Serum was obtained from all individuals and frozen at -70°C until analysis. Results By comparing both groups, serum S100B levels were lower in AD group, while serum NSE levels were the same both groups. In AD patients, S100B levels were positively correlated with CDR scores (rho = 0.269; p = 0.049) and negatively correlated with MMSE scores (rho = -0.33; P = 0.048). NSE levels decreased in AD patients with higher levels of brain atrophy. Conclusions The findings suggest that serum levels of S100B may be a marker for brain functional condition and serum NSE levels may be a marker for morphological status in AD.
Collapse
Affiliation(s)
- Márcia L Chaves
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, 90035-003 Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiol Aging 2008; 31:578-90. [PMID: 18586353 DOI: 10.1016/j.neurobiolaging.2008.05.015] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/29/2008] [Accepted: 05/18/2008] [Indexed: 01/08/2023]
Abstract
Astrocyte pathology occurs in association with Alzheimer's disease (AD) and in brain ageing, but is poorly characterised. We sought to define the detailed cellular pathology of astrocytes, the extent of population variation and the relationship to Alzheimer-type changes in a population-based cohort. Three staining patterns were associated with GFAP and excitatory amino acid transporter 2 (EAAT2): minimal, moderate or extensive immunoreactivity. GFAP and EAAT2 expression were inversely related (p=0.015), with trends to increased expression of GFAP (p=0.019) and decreased expression of EAAT2 (p=ns) with increasing Braak stage. GFAP and EAAT2 correlated incompletely with beta-amyloid and tau immunoreactivity. However, gliosis increased with increasing burden of neuritic (p=0.011), but not diffuse (p=ns), plaques. Double-staining revealed distinct subsets of astrocytes; GFAP(+)EAAT(-), GFAP(-)EAAT(+), or GFAP(+)EAAT(+). In contrast to the variation in GFAP and EAAT2, levels of EAAT1 and S100B showed consistent staining patterns. Alzheimer-type pathology only partially explains the variation in gliosis and astrocyte functional markers, suggesting that other factors contribute to the population variance in astrocyte pathology.
Collapse
|
47
|
Shang X, Cheng H, Zhou R. Chromosomal mapping, differential origin and evolution of theS100gene family. Genet Sel Evol 2008. [DOI: 10.1051/gse:2008013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Steiner J, Bernstein HG, Bogerts B, Gos T, Richter-Landsberg C, Wunderlich MT, Keilhoff G. S100B is expressed in, and released from, OLN-93 oligodendrocytes: Influence of serum and glucose deprivation. Neuroscience 2008; 154:496-503. [PMID: 18472341 DOI: 10.1016/j.neuroscience.2008.03.060] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/18/2008] [Accepted: 03/13/2008] [Indexed: 11/18/2022]
Abstract
S100B (member of a family of proteins that are 100% soluble in ammonium sulfate at neutral pH) has been widely used as astrocyte marker in animal models and in human brain diseases. Recent studies revealed S100B-immunopositivity in oligodendrocytes and O2A oligodendroglial progenitor cells. It is unknown, however, if oligodendrocytes produce S100B themselves, or if the S100B-immunolabeling is caused by binding or absorption of the protein. To address this question, S100B expression and protein release were analyzed in a highly pure oligodendrocytic OLN-93 cell line (from rat), in the astrocytic C6 cell line (from rat) and primary astrocytes. S100B was gene expressed in all cultures, as revealed by reverse transcriptase polymerase chain reaction (RT-PCR) analysis. OLN-93 cells and glial fibrillary acidic protein (GFAP)-negative astrocytes expressed the multiligand receptor for advanced glycation end products (RAGE). S100B protein levels were determined in supernatants and cell homogenates by immunoluminometry under normal conditions and after serum and glucose deprivation (SGD). SGD led to a several-fold increased release of S100B (after 6 and 24 h), which was particularly pronounced in primary astrocytes. Increased S100B in cell homogenates was most notable in OLN-93 cells under SGD, indicating activated S100B synthesis. These cells also showed the highest percentage of dead cells, as determined by propidium iodide-positivity, after SGD. Incubation with 0.5, 2 and 5 microg/l exogenous S100B was not toxic to OLN-93 cells. In conclusion, OLN-93 cells produce more S100B under SGD than astrocytes and are more susceptible to cell death upon SGD, which provokes leakage of S100B. Our data indicate active S100B secretion from astrocytes under SGD since highly elevated levels of S100B were detected in the supernatant despite a low percentage of dead cells. The experimental results provide further evidence for a production/release of S100B in/from oligodendrocytes, e.g. in metabolic stress conditions like cerebral ischemia. Studies on S100B in bodily fluids should be carefully interpreted in order to avoid misleading hypotheses concerning the specific involvement of astrocytes, due to the various cellular sources of S100B.
Collapse
Affiliation(s)
- J Steiner
- Department of Psychiatry, University of Magdeburg, Leipziger Strasse 44, Magdeburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Farfara D, Lifshitz V, Frenkel D. Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of Alzheimer's disease. J Cell Mol Med 2008; 12:762-80. [PMID: 18363841 PMCID: PMC4401126 DOI: 10.1111/j.1582-4934.2008.00314.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) affects more than 18 million people worldwide and is characterized by progressive memory deficits, cognitive impairment and personality changes. The main cause of AD is generally attributed to the increased production and accumulation of amyloid-β (Aβ), in association with neurofibrillary tangle (NFT) formation. Increased levels of pro-inflammatory factors such as cytokines and chemokines, and the activation of the complement cascade occurs in the brains of AD patients and contributes to the local inflammatory response triggered by senile plaque. The existence of an inflammatory component in AD is now well known on the basis of epidemiological findings showing a reduced prevalence of the disease upon long-term medication with anti-inflammatory drugs, and evidence from studies of clinical materials that shows an accumulation of activated glial cells, particularly microglia and astrocytes, in the same areas as amyloid plaques. Glial cells maintain brain plasticity and protect the brain for functional recovery from injuries. Dysfunction of glial cells may promote neurodegeneration and, eventually, the retraction of neuronal synapses, which leads to cognitive deficits. The focus of this review is on glial cells and their diversity properties in AD.
Collapse
Affiliation(s)
- D Farfara
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
50
|
Lambert JC, Ferreira S, Gussekloo J, Christiansen L, Brysbaert G, Slagboom E, Cottel D, Petit T, Hauw JJ, DeKosky ST, Richard F, Berr C, Lendon C, Kamboh MI, Mann D, Christensen K, Westendorp R, Amouyel P. Evidence for the association of the S100beta gene with low cognitive performance and dementia in the elderly. Mol Psychiatry 2007; 12:870-80. [PMID: 17579612 DOI: 10.1038/sj.mp.4001974] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Variations in the S100beta gene may be instrumental in producing a continuum from mild cognitive decline to overt dementia. After screening 25 single nucleotide polymorphisms (SNPs) in S100beta, we observed association of the rs2300403 intron 2 SNP with poorer cognitive function in three independent populations. Moreover, we detected a significant association of this SNP with increased risk of developing dementia or Alzheimer's disease (AD) in six independent populations, especially in women and in the oldest. Furthermore, we characterised a new primate-specific exon within intron 2 (the corresponding mRNA isoform was called S100beta2). S100beta2 expression was increased in AD brain compared with controls, and the rs2300403 SNP was associated with elevated levels of S100beta2 mRNA in AD brains, especially in women. Therefore, this genetic variant in S100beta increases the risk of low cognitive performance and dementia, possibly by favouring a splicing event increasing S100beta2 isoform expression in the brain.
Collapse
Affiliation(s)
- J-C Lambert
- INSERM U744, Institut Pasteur de Lille, Université de Lille 2, Lille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|