1
|
Wu A, Yu Q, Lu H, Lou Z, Zhao Y, Luo T, Fu Z, Jin Y. Developmental toxicity of procymidone to larval zebrafish based on physiological and transcriptomic analysis. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109081. [PMID: 34004283 DOI: 10.1016/j.cbpc.2021.109081] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
As a broad-spectrum with low toxicity, procymidone (PCM), is widely used in agriculture and frequently observed in aquatic system, which may cause some impacts on aquatic organisms. Here, to determine the developmental toxicity of PCM, embryonic and larval zebrafish were exposed to PCM at 0, 1, 10, 100 μg/L in dehydrogenated natural water containing 0.01% acetone for 7 days. The results showed that high concentration of PCM could cause the pericardial edema and increase the heart rates in larval zebrafish, suggesting that PCM had developmental toxicity to zebrafish. We also observed that PCM exposure not only changed the physiological parameters including TBA, GLU and pyruvic acid, but also changed the transcriptional levels of glycolipid metabolism related genes. In addition, after transcriptomics analysis, a total of 1065 differentially expressed genes, including 456 up-regulated genes and 609 down-regulated genes, changed significantly in 100 μg/L PCM treated larval zebrafish. Interestingly, after GO (Gene Ontology) analysis, the different expression genes (DEGs) were mainly enriched to the three different biology processes including GABA-nervous, lipid Metabolism and response to drug. We also observed that the levels of GABA receptor related genes including gabrg2, gabbr1α, gabbr1 and gabra6α were inhibited by PCM exposure. Interestingly, the swimming distance of larval zebrafish had the tendency to decrease after PCM exposure, indicating that the nervous system was affected by PCM. Taken together, the results confirmed that the fungicide PCM could cause developmental toxicity by influencing the lipid metabolism and GABA mediated nervous system and behavior in larval zebrafish. We believed that the results could provide an important data for the influence of PCM on aquatic animals.
Collapse
Affiliation(s)
- Anyi Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qianxuan Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Huahui Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ze Lou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yao Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Luo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
2
|
WeiWei Y, WenDi F, Mengru C, Tuo Y, Chen G. The cellular mechanism by which the rostral ventromedial medulla acts on the spinal cord during chronic pain. Rev Neurosci 2021; 32:545-558. [PMID: 33565739 DOI: 10.1515/revneuro-2020-0121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/18/2020] [Indexed: 11/15/2022]
Abstract
Clinical therapies for chronic pain are limited. While targeted drugs are promising therapies for chronic pain, they exhibit insufficient efficacy and poor targeting. The occurrence of chronic pain partly results from central changes caused by alterations in neurons in the rostral ventromedial medulla (RVM) in the brainstem regulatory pathway. The RVM, which plays a key role in the descending pain control pathway, greatly contributes to the development and maintenance of pain. However, the exact roles of the RVM in chronic pain remain unclear, making it difficult to develop new drugs targeting the RVM and related pathways. Here, we first discuss the roles of the RVM and related circuits in chronic pain. Then, we analyze synaptic transmission between RVM neurons and spinal cord neurons, specifically focusing on the release of neurotransmitters, to explore the cellular mechanisms by which the RVM regulates chronic pain. Finally, we propose some ideas for the development of drugs targeting the RVM.
Collapse
Affiliation(s)
- Yu WeiWei
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| | - Fei WenDi
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| | - Cui Mengru
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong226001, China
| | - Yang Tuo
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun130033, China
| | - Gang Chen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong226001, China.,Department of Tissue and Embryology, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong University, Nantong226001, China
| |
Collapse
|
3
|
Chen L, Zhang X, Hu C, Zhang Y, Zhang L, Kan J, Li B, Du J. Regulation of GABA A and 5-HT Receptors Involved in Anxiolytic Mechanisms of Jujube Seed: A System Biology Study Assisted by UPLC-Q-TOF/MS and RT-qPCR Method. Front Pharmacol 2020; 11:01320. [PMID: 33178009 PMCID: PMC7593408 DOI: 10.3389/fphar.2020.01320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/07/2020] [Indexed: 11/24/2022] Open
Abstract
The increase of the prevalence of anxiety greatly impacts the quality of life in China and globally. As the most popular traditional Chinese medicinal ingredient for nourishing health and tranquilizing mind, Jujube seed (Ziziphus jujuba Mill., Rhamnaceae) (SZJ) has been proved to exert anxiolytic effects in previous reports. In this study, a system biology method assisted by UPLC-Q-TOF/MS and RT-qPCR was developed to systematically demonstrate the anxiolytic mechanisms of SZJ. A total of 35 phytochemicals were identified from SZJ extract (Ziziphus jujuba Mill. var. spinosa [Bunge] Hu ex H.F. Chow), which interact with 71 anxiolytic targets. Protein-protein interaction, genes cluster, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis were subsequently conducted, and results demonstrated that regulation of serotonergic and GABAergic synapse pathways were dominantly involved in the anxiolytic mechanisms of SZJ extract. The effects of SZJ extract on mRNA expressions of multiple GABAA (gamma-aminobutyric acid type A) and 5-HT (serotonin) receptors subtypes were further validated in human neuroblastoma SH-SY5Y cells using RT-qPCR. Results showed that SZJ extract (250 μg/mL) significantly up-regulated the mRNA level of GABRA1 and GABRA3 as well as HTR1A, HTR2A, and HTR2B in non-H2O2 treated SH-SY5Y cells. However, it exerted an inhibitive effect on the overexpressed mRNA of GABRA1, GABRA2, HTR1A, and HTR2A in H2O2 treated SH-SY5Y cells. Taken together, our findings suggest that anxiolytic mechanisms of SZJ mostly involve the regulation of GABAergic and serotonergic synapse pathways, especially a two-way modulation of GABRA1, HTR1A, and HTR2A. Our current results provide potential direction for future investigation of SZJ as an anxiolytic agent.
Collapse
Affiliation(s)
- Liang Chen
- Nutrilite Health Institute, Amway (China) R&D Center, Shanghai, China
| | - Xue Zhang
- Nutrilite Health Institute, Amway (China) R&D Center, Shanghai, China
| | - Chun Hu
- Nutrilite Health Institute, Amway Innovation and Science, Buena Park, CA, United States
| | - Yi Zhang
- Nutrilite Health Institute, Amway (China) R&D Center, Shanghai, China
| | - Lu Zhang
- Nutrilite Health Institute, Amway (China) R&D Center, Shanghai, China
| | - Juntao Kan
- Nutrilite Health Institute, Amway (China) R&D Center, Shanghai, China
| | - Bo Li
- Nutrilite Health Institute, Amway (China) R&D Center, Shanghai, China
| | - Jun Du
- Nutrilite Health Institute, Amway (China) R&D Center, Shanghai, China
| |
Collapse
|
4
|
Kanbara K, Otsuki Y, Watanabe M, Yokoe S, Mori Y, Asahi M, Neo M. GABA B receptor regulates proliferation in the high-grade chondrosarcoma cell line OUMS-27 via apoptotic pathways. BMC Cancer 2018. [PMID: 29514603 PMCID: PMC5842535 DOI: 10.1186/s12885-018-4149-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND High-grade chondrosarcoma, which has a high incidence of local recurrence and pulmonary metastasis despite surgical resection, is associated with poor prognosis. Therefore, new and effective adjuvant therapies are urgently required for this disease. Gamma-aminobutyric acid (GABA), which acts as a neurotrophic factor during nervous system development, is related to the proliferation and migration of certain cancer cells. The GABAergic system, which is composed of GABA, the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD), and GABA receptors, has an important function in nerve growth and development of neural crest. Therefore, the GABAergic system may play important functional roles in the proliferation of chondrosarcoma cells, which are derived from neural crest cells. We examined the anti-tumor effects of the GABAergic system on a chondrosarcoma cell line. METHODS We evaluated the underlying mechanisms of the anti-tumor effects of the GABAergic system, such as the involvement of different signaling pathways, apoptosis, and cell cycle arrest, in the high-grade chondrosarcoma cell line OUMS-27. In addition, we performed whole-cell patch-clamp recordings for Ca2+ currents and evaluated the changes in intracellular Ca2+ concentration via Ca2+ channels, which are related to the GABAB receptor in high-grade chondrosarcoma cells. RESULTS The GABAB receptor antagonist CGP had anti-tumor effects on high-grade chondrosarcoma cells in a dose-dependent manner. The activities of caspase 3 and caspase 9 were significantly elevated in CGP-treated cells compared to in untreated cells. The activity of caspase 8 did not differ significantly between untreated cells and CGP-treated cells. However, caspase 8 tended to be up-regulated in CGP-treated cells. The GABAB receptor antagonist exhibited anti-tumor effects at the G1/S cell cycle checkpoint and induced apoptosis via dual inhibition of the PI3/Akt/mTOR and MAPK signaling pathways. Furthermore, the changes in intracellular Ca2+ via GABAB receptor-related Ca2+ channels inhibited the proliferation of high-grade chondrosarcoma cells by inducing and modulating apoptotic pathways. CONCLUSIONS The GABAB receptor antagonist may improve the prognosis of high-grade chondrosarcoma by exerting anti-tumor effects via different signaling pathways, apoptosis, cell cycle arrest, and Ca2+ channels in high-grade chondrosarcoma cells.
Collapse
Affiliation(s)
- Kiyoto Kanbara
- Department of Orthopedics, Osaka Medical College Takatsuki, Daigaku-machi 2-7, Takatsuki, Osaka, 569-8686, Japan.
| | - Yoshinori Otsuki
- President of Osaka Medical College, Daigaku-machi, Takatsuki, Osaka, Japan
| | - Masahito Watanabe
- Department of Rehabilitation Sciences, Faculty of Allied Health Sciences, Kansai University of Welfare Sciences, Asahigaoka, Kashihara, Osaka, Japan
| | - Syunichi Yokoe
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Daigaku-machi, Takatsuki, Osaka, Japan
| | - Yoshiaki Mori
- Department of Rehabilitation Sciences, Faculty of Allied Health Sciences, Kansai University of Welfare Sciences, Asahigaoka, Kashihara, Osaka, Japan
| | - Michio Asahi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Daigaku-machi, Takatsuki, Osaka, Japan
| | - Masashi Neo
- Department of Orthopedics, Osaka Medical College Takatsuki, Daigaku-machi 2-7, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
5
|
Patel M, Rangan A. Role of the locus coeruleus in the emergence of power law wake bouts in a model of the brainstem sleep-wake system through early infancy. J Theor Biol 2017; 426:82-95. [PMID: 28552556 DOI: 10.1016/j.jtbi.2017.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/10/2017] [Accepted: 05/22/2017] [Indexed: 01/02/2023]
Abstract
Infant rats randomly cycle between the sleeping and waking states, which are tightly correlated with the activity of mutually inhibitory brainstem sleep and wake populations. Bouts of sleep and wakefulness are random; from P2-P10, sleep and wake bout lengths are exponentially distributed with increasing means, while during P10-P21, the sleep bout distribution remains exponential while the distribution of wake bouts gradually transforms to power law. The locus coeruleus (LC), via an undeciphered interaction with sleep and wake populations, has been shown experimentally to be responsible for the exponential to power law transition. Concurrently during P10-P21, the LC undergoes striking physiological changes - the LC exhibits strong global 0.3 Hz oscillations up to P10, but the oscillation frequency gradually rises and synchrony diminishes from P10-P21, with oscillations and synchrony vanishing at P21 and beyond. In this work, we construct a biologically plausible Wilson Cowan-style model consisting of the LC along with sleep and wake populations. We show that external noise and strong reciprocal inhibition can lead to switching between sleep and wake populations and exponentially distributed sleep and wake bout durations as during P2-P10, with the parameters of inhibition between the sleep and wake populations controlling mean bout lengths. Furthermore, we show that the changing physiology of the LC from P10-P21, coupled with reciprocal excitation between the LC and wake population, can explain the shift from exponential to power law of the wake bout distribution. To our knowledge, this is the first study that proposes a plausible biological mechanism, which incorporates the known changing physiology of the LC, for tying the developing sleep-wake circuit and its interaction with the LC to the transformation of sleep and wake bout dynamics from P2-P21.
Collapse
Affiliation(s)
- Mainak Patel
- Department of Mathematics, College of William and Mary, Williamsburg, VA, USA.
| | - Aaditya Rangan
- Courant Institute of Mathematical Sciences, New York University, NYC, USA.
| |
Collapse
|
6
|
Patel M. A Simplified model of mutually inhibitory sleep-active and wake-active neuronal populations employing a noise-based switching mechanism. J Theor Biol 2016; 394:127-136. [DOI: 10.1016/j.jtbi.2016.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 11/08/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
|
7
|
Raza S, Harker A, Richards S, Kolb B, Gibb R. Tactile stimulation improves neuroanatomical pathology but not behavior in rats prenatally exposed to valproic acid. Behav Brain Res 2014; 282:25-36. [PMID: 25557797 DOI: 10.1016/j.bbr.2014.12.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/20/2014] [Accepted: 12/25/2014] [Indexed: 12/11/2022]
Abstract
Autism is a severe neurodevelopmental disorder with a population prevalence of 1 in 68, and dramatically increasing. While no single pharmacologic intervention has successfully targeted the core symptoms of autism, emerging evidence suggests that postnatal environmental manipulations may offer greater therapeutic efficacy. Massage therapy, or tactile stimulation (TS), early in life has repeatedly been shown to be an effective, low-cost, therapeutic approach in ameliorating the cognitive, social, and emotional symptoms of autism. While early TS treatment attenuates many of the behavioral aberrations among children with autism, the neuroanatomical correlates driving such changes are unknown. The present study assessed the therapeutic effects of early TS treatment on behavior and neuroanatomy using the valproic acid (VPA) rodent model of autism. Rats were prenatally exposed to VPA on gestational day 12.5 and received TS shortly following birth. Whereas TS reversed almost all the VPA-induced alterations in neuroanatomy, it failed to do so behaviorally. The TS VPA animals, when compared to VPA animals, did not exhibit altered or improved behavior in the delayed non-match-to-sample T-maze, Whishaw tray reaching, activity box, or elevated plus maze tasks. Anatomically, however, there were significant increases in dendritic branching and spine density in the medial prefrontal cortex, orbital frontal cortex, and amygdala in VPA animals following early TS treatment, suggesting a complete reversal or remediation of the VPA-induced effects in these regions. The results suggest that postnatal TS, during a critical period in development, acts as a powerful reorganization tool that can ameliorate the neuroanatomical consequences of prenatal VPA exposure.
Collapse
Affiliation(s)
- S Raza
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Canada.
| | - A Harker
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Canada
| | - S Richards
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Canada
| | - B Kolb
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Canada; Canadian Institute for Advanced Research Program in Child Brain Development, Canada
| | - R Gibb
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Canada
| |
Collapse
|
8
|
Comparing GABAergic cell populations in the thalamic reticular nucleus of normal and genetic absence epilepsy rats from Strasbourg (GAERS). Neurol Sci 2013; 34:1991-2000. [PMID: 23595547 DOI: 10.1007/s10072-013-1435-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/06/2013] [Indexed: 12/21/2022]
Abstract
The GABAergic neurons of the thalamic reticular nucleus (TRN) play a critical role in the generation and control of spike-and-wave discharges (SWDs) in absence epilepsy. We have used the disector method to count the GABA+ve and GABA-ve neurons in the intermediate TRN sector of genetic absence epilepsy rats from Strasbourg (GAERS) and of Wistar rats during postnatal (P) development at P10, P20, P30, and P60 days. The same part of TRN was removed from each animal, the GABAergic neurons were labelled using light-microscopical GABA immunohistochemistry and the data were statistically analysed. Both the GAERS and Wistar animals showed an increase in the density of GABA+ve and GABA-ve cells from P10 to P20. From P20 to P60, Wistar animals showed no significant differences for either cell type, but in the GAERS a progressive decrease from P20 to P60 was observed in both GABA+ve and GABA-ve cells. The decrease of the GABA-ve cells was more pronounced than that of the GABA+ve cells. There were no significant differences between cell sizes for GAERS and Wistar rats at any developmental age. The lower density GABA+ve and GABA-ve neurons at P30 and P60 of GAERS compared to Wistar animals may contribute to the generation of SWDs in absence epilepsy.
Collapse
|
9
|
Lelevich VV, Vinitskaya AG, Lelevich SV. Modern conception on metabolism of γ-aminobutyric acid in the brain. NEUROCHEM J+ 2009. [DOI: 10.1134/s1819712409040023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Szárics E, Simon A, Visy J, Simon-Trompler E, Banka Z, Héja L, Hársing LG, Blaskó G, Kardos J. Cyclothiazide binding to the GABAA receptor. Neurosci Lett 2008; 439:66-9. [PMID: 18502046 DOI: 10.1016/j.neulet.2008.04.092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/22/2008] [Accepted: 04/29/2008] [Indexed: 11/19/2022]
Abstract
In order to explore the molecular interaction between cyclothiazide (CTZ) and gamma-aminobutyric acidA (GABAA) receptors, possibly underlying inhibition of GABAA receptor currents, [3H]-CTZ was synthesized. Binding of [3H]-CTZ to rat brain synaptic membranes could be observed only in the presence of the GABAA receptor antagonist (-)[1S,9R]-bicuculline methiodide (BMI) (EC(50,BMI)=500+/-80microM). GABA decreased [(3)H]-CTZ binding induced by the presence 300microM and 3mM BMI with IC(50,GABA) values of 300+/-50microM and 5.0+/-0.7mM, respectively. Binding of CTZ to [3H]-CTZ labeled sites was characterized by IC(50,CTZ) values of 0.16+/-0.03muM ([BMI]=300microM) and 7.0+/-0.5microM ([BMI]=3mM). Binding of the diastereomeric fraction [3H]-(3R,1'S,4'S,5'R+3S,1'R,4'R,5'S)-CTZ induced by 3mM BMI was quantitatively the more significant in cerebrocortical and hippocampal membranes. It was characterized by IC(50,CTZ)=80+/-15nM and IC(50,GABA)=13+/-3mcapital EM, Cyrillic. In the absence of BMI, CTZ (1mM) significantly decreased GABA-induced enhancement of [3H]-flunitrazepam binding. Our findings suggest that functional inhibition may occur through binding of CTZ to an allosteric site of GABAA receptors. This allosteric site is possibly emerged in the receptor conformation, stabilized by BMI binding.
Collapse
Affiliation(s)
- Eva Szárics
- Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kinkead R, Balon N, Genest SE, Gulemetova R, Laforest S, Drolet G. Neonatal maternal separation and enhancement of the inspiratory (phrenic) response to hypoxia in adult rats: disruption of GABAergic neurotransmission in the nucleus tractus solitarius. Eur J Neurosci 2008; 27:1174-88. [DOI: 10.1111/j.1460-9568.2008.06082.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Schneider T, Ziòłkowska B, Gieryk A, Tyminska A, Przewłocki R. Prenatal exposure to valproic acid disturbs the enkephalinergic system functioning, basal hedonic tone, and emotional responses in an animal model of autism. Psychopharmacology (Berl) 2007; 193:547-55. [PMID: 17497229 DOI: 10.1007/s00213-007-0795-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 04/03/2007] [Indexed: 12/25/2022]
Abstract
RATIONALE It has been suggested that behavioral aberrations observed in autism could be the result of dysfunction of the neuroregulatory role performed by the endogenous opioid peptides. Many of those aberrations have been recently modeled in rats exposed to valproic acid (VPA) on the 12th day of gestation (VPA rats). OBJECTIVES The aim of the present study was to elucidate functioning of the enkephalinergic system, one of the endogenous opioid peptide systems strongly involved in emotional responses, in VPA rats using both biochemical and behavioral methods. MATERIALS AND METHODS In situ hybridization was used to measure proenkephalin mRNA expression in adult VPA rats' central nucleus of the amygdala, the dorsal striatum, and the nucleus accumbens. Additional groups of animals were examined in a conditioned place aversion to naloxone, the elevated plus maze, and object recognition tests to assess their basal hedonic tone, anxiety, learning and memory, respectively. RESULTS Prenatal exposure to VPA decreased proenkephalin mRNA expression in the dorsal striatum and the nucleus accumbens but not in the central nucleus of the amygdala. It also increased anxiety and attenuated conditioned place aversion to naloxone but had no impact on learning and memory. CONCLUSIONS The present results suggest that prenatal exposure to VPA may lead to the decreased activity of the striatal enkephalinergic system and in consequence to increased anxiety and disregulated basal hedonic tone observed in VPA rats. Presented results are discussed in light of interactions between enkephalinergic, GABAergic, and dopaminergic systems in the striatum and mesolimbic areas of the brain.
Collapse
Affiliation(s)
- Tomasz Schneider
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | | | | | | | |
Collapse
|
13
|
Genest SE, Balon N, Laforest S, Drolet G, Kinkead R. Neonatal maternal separation and enhancement of the hypoxic ventilatory response in rat: the role of GABAergic modulation within the paraventricular nucleus of the hypothalamus. J Physiol 2007; 583:299-314. [PMID: 17569732 PMCID: PMC2277229 DOI: 10.1113/jphysiol.2007.135160] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neonatal maternal separation (NMS) affects respiratory control development as adult male (but not female) rats previously subjected to NMS show a hypoxic ventilatory response 25% greater than controls. The paraventricular nucleus of the hypothalamus (PVN) is an important modulator of respiratory activity. In the present study, we hypothesized that in awake rats, altered GABAergic inhibition within the PVN contributes to the enhancement of hypoxic ventilatory response observed in rats previously subjected to NMS. During normoxia, the increase in minute ventilation following microinjection of bicuculline (1 mm) within the PVN is greater in NMS versus control rats. These data show that regulation of ventilatory activity related to tonic inhibition of the PVN is more important in NMS than control rats. Microinjection of GABA or muscimol (1 mM) attenuated the ventilatory response to hypoxia (12% O2) in NMS rats only. The higher efficiency of microinjections in NMS rats is supported by results from GABAA receptor autoradiography which revealed a 22% increase in GABAA receptor binding sites within the PVN of NMS rats versus controls. Despite this increase, however, NMS rats still show a larger hypoxic ventilatory response than controls, suggesting that within the PVN the larger number of GABAA receptors either compensate for (1) a deficient GABAergic modulation, (2) an increase in the efficacy of excitatory inputs converging onto this structure, or (3) both. Together, these results show that the life-long consequences of NMS are far reaching as they can compromise the development of vital homeostatic function in a way that may predispose to respiratory disorders.
Collapse
Affiliation(s)
- Sophie-Emmanuelle Genest
- Pediatrics, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université LavalQuébec, QC, Canada
- Neuroscience Research Units, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université LavalQuébec, QC, Canada
| | - Norbert Balon
- Pediatrics, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université LavalQuébec, QC, Canada
| | - Sylvie Laforest
- Neuroscience Research Units, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université LavalQuébec, QC, Canada
| | - Guy Drolet
- Neuroscience Research Units, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université LavalQuébec, QC, Canada
| | - Richard Kinkead
- Pediatrics, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université LavalQuébec, QC, Canada
| |
Collapse
|
14
|
Silveira ACD, Gardino PF, Bevilaqua MCN, Hokoç JN. Neurogenesis of GABAergic cells in the retina of malnourished rats. Int J Dev Neurosci 2007; 25:325-33. [PMID: 17560752 DOI: 10.1016/j.ijdevneu.2007.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 04/04/2007] [Accepted: 04/23/2007] [Indexed: 11/20/2022] Open
Abstract
The present study investigated how prenatal protein malnutrition affects the neurogenesis of GABAergic cells in the retina. Rats were treated with a multi-deficient diet, with only 8% of protein that was administered during the gestational and suckling periods. Pregnant mothers and pups from malnourished and control (fed with 22% protein) groups received a single intra-peritoneal injection of [3H]-thymidine at six developmental ages, from E14 to PN4, and the pups were sacrificed at PN18. Eyes were enucleated and cryosections of the retina were double labeled for GABA-immunocytochemistry and for autoradiography. The percentage of double labeled cells, in the retinal inner nuclear and ganglion cell layers, was determined for both groups. Qualitative and quantitative results showed that double labeled cells [GABA+/thymidine+] were present since E14, when mitotic activity for GABAergic cells starts, in both GCL and INL layers. The peak rate of GABAergic cell generation was reached in control animals injected with [3H]-thymidine at E18 in both central and peripheral sectors of the retina, but only at E20 in the malnourished group. The generation of cells of GABA phenotype showed a significant delay in both layers of the retina in the malnourished group. At PN4, close to the age that GABAergic mitotic activity ends in the control group, double labeled cells were significantly higher in the malnourished group. Our data showed a delay in GABAergic cell generation in the malnourished group when compared to the control group that might result in significant functional consequences in the developing retina.
Collapse
Affiliation(s)
- A C D Silveira
- Laboratório de Neurobiologia da Retina, Instituto de Biofísica Carlos Chagas Filho-UFRJ, CCS, Ilha do Fundão, Rio de Janeiro 21941-902, RJ, Brazil
| | | | | | | |
Collapse
|
15
|
Kögler G, Sensken S, Airey JA, Trapp T, Müschen M, Feldhahn N, Liedtke S, Sorg RV, Fischer J, Rosenbaum C, Greschat S, Knipper A, Bender J, Degistirici O, Gao J, Caplan AI, Colletti EJ, Almeida-Porada G, Müller HW, Zanjani E, Wernet P. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. ACTA ACUST UNITED AC 2004; 200:123-35. [PMID: 15263023 PMCID: PMC2212008 DOI: 10.1084/jem.20040440] [Citation(s) in RCA: 805] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here a new, intrinsically pluripotent, CD45-negative population from human cord blood, termed unrestricted somatic stem cells (USSCs) is described. This rare population grows adherently and can be expanded to 1015 cells without losing pluripotency. In vitro USSCs showed homogeneous differentiation into osteoblasts, chondroblasts, adipocytes, and hematopoietic and neural cells including astrocytes and neurons that express neurofilament, sodium channel protein, and various neurotransmitter phenotypes. Stereotactic implantation of USSCs into intact adult rat brain revealed that human Tau-positive cells persisted for up to 3 mo and showed migratory activity and a typical neuron-like morphology. In vivo differentiation of USSCs along mesodermal and endodermal pathways was demonstrated in animal models. Bony reconstitution was observed after transplantation of USSC-loaded calcium phosphate cylinders in nude rat femurs. Chondrogenesis occurred after transplanting cell-loaded gelfoam sponges into nude mice. Transplantation of USSCs in a noninjury model, the preimmune fetal sheep, resulted in up to 5% human hematopoietic engraftment. More than 20% albumin-producing human parenchymal hepatic cells with absence of cell fusion and substantial numbers of human cardiomyocytes in both atria and ventricles of the sheep heart were detected many months after USSC transplantation. No tumor formation was observed in any of these animals.
Collapse
Affiliation(s)
- Gesine Kögler
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pericić D, Strac DS, Jembrek MJ, Rajcan I. Prolonged exposure to γ-aminobutyric acid up-regulates stably expressed recombinant α1β2γ2s GABAA receptors. Eur J Pharmacol 2003; 482:117-25. [PMID: 14660012 DOI: 10.1016/j.ejphar.2003.10.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to better understand the mechanisms that underlie adaptive changes in GABA(A) receptors following their prolonged exposure to drugs. Exposure (48 and/or 96 h) of human embryonic kidney (HEK 293) cells stably expressing recombinant alpha1beta2gamma2s GABA(A) receptors for gamma-aminobutyric (GABA, 1 mM) and muscimol (100 microM), but not for diazepam (1 microM), enhanced the maximum number (B(max)) of [3H]flunitrazepam binding sites without affecting their affinity (K(d)). The GABA-induced enhancement in B(max) was reduced by the GABA receptor antagonist, bicuculline (100 microM), and by cycloheximide (10 microl/ml), a protein synthesis inhibitor. GABA (100 microM) enhanced the affinity of [3H]flunitrazepam binding to vehicle- and GABA-pretreated, but not to diazepam-pretreated, HEK 293 cells. The results suggest that chronic GABA treatment up-regulates stably expressed GABA(A) receptors, presumably by stimulating their synthesis. Unlike chronic diazepam, which produced functional uncoupling of GABA and benzodiazepine binding sites, chronic GABA failed to produce this effect.
Collapse
Affiliation(s)
- Danka Pericić
- Ruder Bosković Institute, Laboratory for Molecular Neuropharmacology, Division of Molecular Medicine, P.O. Box 180, 10002, Zagreb, Croatia.
| | | | | | | |
Collapse
|
17
|
Heck WL, Basaraba AM, Slusarczyk A, Schweitzer L. Early GABA(A) receptor clustering during the development of the rostral nucleus of the solitary tract. J Anat 2003; 202:387-96. [PMID: 12739616 PMCID: PMC1571086 DOI: 10.1046/j.1469-7580.2003.00169.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While there is an abundance of gamma-aminobutyric acid (GABA) in the gustatory zone of the nucleus of the solitary tract of the perinatal rat, we know that GABAergic synapse formation is not complete until well after birth. Our recent results have shown that GABA(B) receptors are present at birth in the cells of the nucleus; however, they do not redistribute and cluster at synaptic sites until after PND10. The present study examined the time course of appearance and redistribution of GABA(A) receptors in the nucleus. GABA(A) receptors were also present at birth. However, in comparison to GABA(B) receptors, GABA(A) receptors underwent an earlier translocation to synaptic sites. Extrasynaptic label, for example, of GABA(A) receptors was non-existent compared to GABA(B) receptors at PND10 and well-defined clusters of GABA(A) receptors could be seen as early as PND1. We propose that while GABA(A), receptors may play an early neurotransmitter role at the synapse, GABA(B) receptors may play a non-transmitter neurotrophic role.
Collapse
Affiliation(s)
- W L Heck
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
18
|
Shumsky JS, Wu Y, Murphy EH, Nissanov J, O'Brien-Jenkins A, Grayson DR. Differential effects of prenatal cocaine exposure on selected subunit mRNAs of the GABA(A) receptor in rabbit anterior cingulate cortex. J Chem Neuroanat 2002; 24:243-55. [PMID: 12406500 DOI: 10.1016/s0891-0618(02)00067-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have previously shown that in the dopamine-rich anterior cingulate cortex (ACC), significant changes in gamma-aminobutyric acid (GABA) immunoreactivity occur in the offspring of rabbits given intravenous injections of cocaine (3 mg/kg) twice daily during pregnancy. In the present study, the effects of prenatal cocaine exposure on the developmental expression of specific GABA(A) receptor subunit mRNAs were investigated. We compared the distribution of the alpha1, beta2, and gamma2 subunit mRNAs in cocaine- and saline-treated offspring aged postnatal days 20 and 60 (P20, P60). At P20, prenatal cocaine exposure resulted in a significant increase in alpha1 subunit mRNA in ACC lamina III and a significant reduction in the amounts of the beta2 subunit mRNA in ACC lamina II. No differences between cocaine- and saline-treated controls were detected for gamma2 subunit mRNA levels in ACC. Although the pattern of labeling was altered in cocaine-exposed animals, Nissl sections revealed no differences in lamination, indicating that the changes in GABA(A) subunit mRNAs could not be attributed to abnormal cytoarchitectonics. In P60 brains, no significant differences were observed between cocaine- and saline-treated material, indicating that the observed differences were transient. Collectively, our data show that prenatal cocaine exposure elicits differential, lamina-specific changes in mRNA levels encoding selected subunits of the GABA(A) receptor. Since these changes occur during a critical period when fine tuning of synaptic organization is achieved by processes of selective elimination or stabilization of synapses, we suggest that specific subunit mRNAs of the GABA(A) receptor play a role in cortical development.
Collapse
Affiliation(s)
- Jed S Shumsky
- Department of Neurobiology and Anatomy, MCP Hahnemann University, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Harkany T, Abrahám I, Kónya C, Nyakas C, Zarándi M, Penke B, Luiten PG. Mechanisms of beta-amyloid neurotoxicity: perspectives of pharmacotherapy. Rev Neurosci 2001; 11:329-82. [PMID: 11065280 DOI: 10.1515/revneuro.2000.11.4.329] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
One of the characteristic neuropathological hallmarks of Alzheimer's disease (AD) is the extracellular accumulation of beta-amyloid peptides (Abeta) in neuritic plaques. Experimental data indicate that different molecular forms of Abeta affect a wide array of neuronal and glial functions and thereby may lead to neuronal death in the nervous system. Whereas the fatal outcome of Abeta overproduction in transgenic cell lines, and of exogenous Abeta administration in numerous neurotoxicity models, is well established, particular facets of a complex molecular cascade by which Abeta attack neural cells are still elusive. In the present review we summarize recent knowledge on mechanisms of Abeta aggregation, its role in Abeta neurotoxicity, and binding of Abeta peptides to putative neuronal and glial receptors. Additionally, an integrative view on the interactions of Ca2+ -mediated excitotoxicity and free radical-induced oxidative stress in Abeta toxicity is provided. Furthermore, we survey advances of pharmacological investigations attempting to prevent and antagonize Abeta toxicity, or to promote neuronal regeneration following Abeta-induced neurotoxic insults. We distinguish two major classes of therapeutic approaches: conventional pharmacotherapy that employs blockade of known receptors, signal transduction pathways, and re-uptake of neurotransmitters, and direct targeting of neurotoxic Abeta by means of beta-sheet breakers, functional anti-Abeta peptides, and antibodies. Although a clinically relevant neuroprotective strategy is not yet available, sequential combination of drug regimens may provide prospects for effective antagonism of late-life Abeta burden and subsequent development of dementia.
Collapse
Affiliation(s)
- T Harkany
- Department of Animal Physiology, University of Groningen, Haren, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
20
|
Núñez-Abades PA, Pattillo JM, Hodgson TM, Cameron WE. Role of synaptic inputs in determining input resistance of developing brain stem motoneurons. J Neurophysiol 2000; 84:2317-29. [PMID: 11067975 DOI: 10.1152/jn.2000.84.5.2317] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The contribution of synaptic input to input resistance was examined in 208 developing genioglossal motoneurons in 3 postnatal age groups (5-7 day, 13-16 day, and 18-24 day) using sharp electrode recording in a slice preparation of the rat brain stem. High magnesium (Mg(2+); 6 mM) media generated significant increases (21-38%) in both the input resistance (R(n)) and the first time constant (tau(0)) that were reversible. A large percent of the conductance blocked by high Mg(2+) was also sensitive to tetrodotoxin (TTX). Little increase in resistance was attained by adding blockers of specific amino acid (glutamate, glycine, and GABA) transmission over that obtained with the high Mg(2+). Comparing across age groups, there was a significantly larger percent change in R(n) with the addition of high Mg(2+) at postnatal days 13 to 15 (P13-15; 36%) than that found at P5-6 (21%). Spontaneous postsynaptic potentials were sensitive to the combined application of glycine receptor antagonist, strychnine, and the GABA(A) receptor antagonist, bicuculline. Application of either 10 microM strychnine or bicuculline separately produced a reversible increase in both R(n) and tau(0). Addition of 10 microM bicuculline to a strychnine perfusate failed to further increase either R(n) or tau(0). The strychnine/bicuculline-sensitive component of the total synaptic conductance increased with age so that this form of neurotransmission constituted the majority (>60%) of the observed percent decrease in R(n) and tau(0) in the oldest age group. The proportion of change in tau(0) relative to R(n) following strychnine or high magnesium perfusate varied widely from cell to cell and from age to age without pattern. Based on a model from the literature, this pattern indicates a nonselective distribution of the blocked synaptic conductances over the cell body and dendrites. Taken together, the fast inhibitory synapses (glycine, GABA(A)) play a greater role in determining cell excitability in developing brain stem motoneurons as postnatal development progresses. These findings suggest that synaptically mediated conductances effect the membrane behavior of developing motoneurons.
Collapse
Affiliation(s)
- P A Núñez-Abades
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
21
|
Nadeson R, Goodchild CS. Antinociceptive properties of neurosteroids II. Experiments with Saffan and its components alphaxalone and alphadolone to reveal separation of anaesthetic and antinociceptive effects and the involvement of spinal cord GABA(A) receptors. Pain 2000; 88:31-39. [PMID: 11098097 DOI: 10.1016/s0304-3959(00)00300-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Studies have shown that the steroid anaesthetic alphaxalone positively modulates gamma-aminobutyric acid (GABA) receptors in vitro. It has also been reported that positive modulation of GABA(A) receptors in the rat spinal cord can produce antinociception in vivo. This present study looks at the interaction of an intraperitoneal injection (i.p.) of the steroid anaesthetic combination Saffan (alphaxalone 9 mg/ml, alphadolone acetate 3 mg/ml) with GABA(A) receptors in the spinal cord. Full recovery from anaesthesia induced by Saffan 2 ml/kg i.p., as assessed by the rotarod test, occurred after 28.78 +/- 0.86 min. Residual antinociceptive effects were assessed by application of electrical current at two skin sites (neck and tail) and also tail withdrawal from noxious heat. Residual antinociception was observed at both skin sites assessed by the electrical test but not when assessed by noxious heat. The antinociceptive effects in the tail but not the neck were suppressed by intrathecal administration of GABA(A) antagonists (bicuculline and SR-95531). In a separate group of experiments alphaxalone and alphadolone were given i.p. individually at the same doses that were given when formulated in Saffan. Alphaxalone produced sedative and anaesthetic effects with no antinociception. Alphadolone caused no sedation but it did cause antinociceptive effects equal in magnitude to those produced by Saffan. We conclude that Saffan produces antinociception in rats when given i.p. by an interaction with spinal GABA(A) receptors. Furthermore, this antinociception is due to the alphadolone content of the neurosteroid anaesthetic and not the alphaxalone.
Collapse
Affiliation(s)
- R Nadeson
- Department of Anaesthesia, Monash University, Level 5, Block E, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | | |
Collapse
|
22
|
Abstract
Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward current, hyperpolarization-activated inward current, Ca(2+) channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior.
Collapse
Affiliation(s)
- J C Rekling
- Department of Neurobiology, University of California, Los Angeles, California 90095-1763, USA
| | | | | | | | | |
Collapse
|
23
|
Waagepetersen HS, Sonnewald U, Schousboe A. The GABA paradox: multiple roles as metabolite, neurotransmitter, and neurodifferentiative agent. J Neurochem 1999; 73:1335-42. [PMID: 10501176 DOI: 10.1046/j.1471-4159.1999.0731335.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
GABA, which is present in the brain in large amounts, is distributed among distinctly different cellular pools, possibly reflecting its multiple functions as metabolite, neurotransmitter, and neurotrophin. Its metabolic enzymes also exhibit heterogeneity, because glutamate decarboxylase exists in two isoforms with different subcellular distribution and regulatory properties. Moreover, recent evidence points to a more pronounced regulatory role of the tricarboxylic acid cycle than hitherto anticipated in the biosynthetic machinery responsible for formation of GABA from glutamine. Additionally, GABAergic neurons may contain distinct populations of mitochondria having different turnover rates of the tricarboxylic acid cycle with different levels of association with GABA synthesis from 2-oxoglutarate via glutamate. These aspects are discussed in relation to the different functional roles of GABA and its prominent involvement in epileptogenic activity.
Collapse
Affiliation(s)
- H S Waagepetersen
- PharmaBiotec Research Center, Department of Pharmacology, Royal Danish School of Pharmacy, Copenhagen
| | | | | |
Collapse
|
24
|
Schousboe A. Pharmacologic and therapeutic aspects of the developmentally regulated expression of GABA(A) and GABA(B) receptors: cerebellar granule cells as a model system. Neurochem Int 1999; 34:373-7. [PMID: 10397364 DOI: 10.1016/s0197-0186(99)00044-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cerebellar granule neurons can be conveniently kept in culture. They constitute a useful model to study regulation of glutamatergic activity, in particular the inhibitory action of GABA (7-aminobutyrate). GABA exerts an inhibitory action on evoked transmitter release acting on both GABA(A) and GABA(B) receptors. The functional properties of these receptors are dependent upon the environment of the neurons during early development in culture as the expression of both receptor subtypes is enhanced by exposure of the neurons to GABA(A) receptor agonists. Thus, the inducible GABA(A) receptors are of low affinity and lack benzodiazepine sensitivity, and the G-protein coupling differs among the native and the inducible GABA(B) receptors. Moreover, the GABA(A) and the GABA(B) receptors are functionally coupled, leading to a disinhibitory action of GABA. Therefore drugs exhibiting selective agonist or antagonist action on subclasses of GABA(A) and GABA(B) may be of potential use as regulators of glutamatergic excitatory activity.
Collapse
Affiliation(s)
- A Schousboe
- PharmaBiotec Research Centre, Department of Pharmacology, Royal Danish School of Pharmacy, Copenhagen.
| |
Collapse
|
25
|
Tobet SA, Henderson RG, Whiting PJ, Sieghart W. Special relationship of gamma-aminobutyric acid to the ventromedial nucleus of the hypothalamus during embryonic development. J Comp Neurol 1999; 405:88-98. [PMID: 10022198 DOI: 10.1002/(sici)1096-9861(19990301)405:1<88::aid-cne7>3.0.co;2-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ventromedial nucleus of the hypothalamus (VMH) is a key nucleus for regulating homeostatic, neuroendocrine, and behavioral functions. We conducted immunocytochemical analyses by using antisera directed against gamma-aminobutyric acid (GABA), its synthetic enzyme glutamic acid decarboxylase (GAD67), GABA-A receptor subunits (alpha2, beta3, epsilon), estrogen receptor-alpha, and Neuropeptide Y (NPY) in the region of the VMH in embryonic mice to identify potential patterning elements for VMH formation. Cells and fibers containing GABA and GAD67 encircled the primordial VMH as early as embryonic day 13 (E13) when the cytoarchitecture of the VMH was not recognizable by Nissl stain. At E16-17 the cytoarchitecture of the VMH became recognizable by Nissl stain as GABAergic fibers invaded the nucleus, continued postnatally, and by adulthood the density of GABAergic fibers was greater inside than outside the VMH. GABA-A receptor subunit expression (beta3 by E13 and alpha2 by E15) within the primordial VMH suggested potential sensitivity to the surrounding GABA signal. Brain slices were used to test whether fibers from distal or proximal sites influenced VMH development. Coronal Vibratome slices were prepared and maintained in vitro for 0-3 days. Nissl stain analyses showed a uniform distribution of cells in the region of the VMH on the day of plating (E15). After 3 days in vitro, cellular aggregation suggesting VMH formation was seen. Nuclear formation in vitro suggests that key factors resided locally within the coronal plane of the slices. It is suggested that either GABA intrinsic to the region nearby the VMH directly influences the development and organization of the VMH, or along with other markers provides an early indicator of pattern determination that precedes the cellular organization of the VMH.
Collapse
Affiliation(s)
- S A Tobet
- Program in Neuroscience, The Shriver Center and Harvard Medical School, Waltham, Massachusetts 02154, USA.
| | | | | | | |
Collapse
|
26
|
Abstract
In rat hippocampal slices [3H]GABA release evoked by 25 mM KCI consisted of Ca2+-dependent and Ca2+-independent fractions. Angiotensin II (AngII) at a concentration of 1 microM inhibited K+-stimulated [3H]GABA release. The effect of AngII (20% inhibition) on [3H]GABA release was decreased by the addition of 0.01 mM nipecotic acid to the superfusion medium. AngII also decreased the Ca2+-independent carrier-mediated [3H]GABA release (25% inhibition at a concentration of 1 microM). Different mechanisms of the neuromodulatory action of AngII on GABA release are discussed.
Collapse
|
27
|
Fueshko SM, Key S, Wray S. Luteinizing hormone releasing hormone (LHRH) neurons maintained in nasal explants decrease LHRH messenger ribonucleic acid levels after activation of GABA(A) receptors. Endocrinology 1998; 139:2734-40. [PMID: 9607779 DOI: 10.1210/endo.139.6.6034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inhibition of the LHRH system appears to play an important role in preventing precocious activation of the hypothalamic-pituitary-gonadal axis. Evidence points to gamma-aminobutyric acid (GABA) as the major negative regulator of postnatal LHRH neuronal activity. Changes in LHRH messenger RNA (mRNA) levels after alterations of GABAergic activity have been reported in vivo. However, the extent to which GABA acts directly on LHRH neurons to effect LHRH mRNA levels has been difficult to ascertain. The present work evaluates the effect of GABAergic activity, via GABA(A) receptors, on LHRH neuropeptide gene expression in LHRH neurons maintained in olfactory explants generated from E11.5 mouse embryos. These explants maintain large numbers of primary LHRH neurons that migrate from bilateral olfactory pits in a directed manner. Using in situ hybridization histochemistry and single cell analysis, we report dramatic alterations in LHRH mRNA levels. Inhibition of spontaneous synaptic activity by GABA(A) antagonists, bicuculline (10(-5) M) or picrotoxin (10(-4) M), or of electrical activity by tetrodotoxin (TTX, 10(-6) M) significantly increased LHRH mRNA levels. In contrast, LHRH mRNA levels decreased in explants cultured with the GABA(A) receptor agonist, muscimol (10(-4) M), or KCl (50 mM). The observed responses suggest that LHRH neurons possess functional pathways linking GABA(A) receptors to repression of neuropeptide gene expression and indicate that gene expression in embryonic LHRH neurons, outside the CNS, is highly responsive to alterations in neuronal activity.
Collapse
Affiliation(s)
- S M Fueshko
- Laboratory of Neurochemistry, National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, Maryland 20892-4130, USA
| | | | | |
Collapse
|
28
|
GABA inhibits migration of luteinizing hormone-releasing hormone neurons in embryonic olfactory explants. J Neurosci 1998. [PMID: 9502815 DOI: 10.1523/jneurosci.18-07-02560.1998] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During development, a subpopulation of olfactory neurons transiently expresses GABA. The spatiotemporal pattern of GABAergic expression coincides with migration of luteinizing hormone-releasing hormone (LHRH) neurons from the olfactory pit to the CNS. In this investigation, we evaluated the role of GABAergic input on LHRH neuronal migration using olfactory explants, previously shown to exhibit outgrowth of olfactory axons, migration of LHRH neurons in association with a subset of these axons, and the presence of the olfactory-derived GABAergic neuronal population. GABAA receptor antagonists bicuculline (10(-5) M) or picrotoxin (10(-4) M) had no effect on the length of peripherin-immunoreactive olfactory fibers or LHRH cell number. However, LHRH cell migration, as determined by the distance immunopositive cells migrated from olfactory pits, was significantly increased by these perturbations. Addition of tetrodotoxin (10(-6) M), to inhibit Na+-transduced electrical activity, also significantly enhanced LHRH migration. The most robust effect observed was dramatic inhibition of LHRH cell migration in explants cultured in the presence of the GABAA receptor agonist muscimol (10(-4) M). This study demonstrates that GABAergic activity in nasal regions can have profound effects on migration of LHRH neurons and suggests that GABA participates in appropriate timing of LHRH neuronal migration into the developing brain.
Collapse
|
29
|
Reece LJ, Lim CH. Onset of optic nerve conduction and synaptic potentials in superior colliculus of fetal rats studied in vitro. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 106:25-38. [PMID: 9554940 DOI: 10.1016/s0165-3806(97)00171-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article describes the onset of electrical excitability and synaptic transmission in the retinocollicular pathway of the fetal and early postnatal rat, utilizing a novel in vitro preparation. Although the optic nerve is visible in embryonic day (E) 14 brain, its stimulation produced no response in the superior colliculus (SC) until E16 when a low voltage simple negative wave was evoked. At E17 these potentials were blocked rapidly, completely, and reversibly when choline was substituted for sodium or with the addition of cobalt ions. In the course of establishing the block with either of the above agents the latency of response increased, indicating an action on axonal transmission. By E20 the collicular evoked potential showed a short followed by a longer latency wave. The latter was blocked by the glutamate antagonist kynurenic acid, with latency unaffected. Further examination of potentials with the addition of glutamatergic receptor subtype blockers aminophosphonopentanoic acid (APV) and 6-cyano-7-nitroquinoxaline-2,3-dione/6,7-dinitroquinoxaline- 2,3-dione (CNQX/DNQX) showed a clear abolition of the elicited potentials by E20 and older. Thus, fetal rat optic nerve fibers are capable of conduction in response to electrical stimulation as soon as they reach the SC at E16. Both sodium and calcium are involved. GABA-mediated modulation of axonal conduction is evident by E18. Glutaminergic synaptic transmission is established by E20. The timetable of fetal onset of capability to conduct and support synaptic transmission in the retinocollicular pathway is earlier than had previously been reported in vivo in the rat in which the superior colliculus neurones are said not to be driven by the optic nerve until 6 days post natal. This has relevance to the possible role of impulse activity in development of the pathway.
Collapse
Affiliation(s)
- L J Reece
- Developmental Neurobiology Group, Research School of Biological Sciences, Australian National University, Canberra, Australia.
| | | |
Collapse
|
30
|
Jobst KA. Complementary and alternative medicine, science, acupuncture, transcranial electromagnetic stimulation, herbs, and communication: present challenges, possibilities from the past, and potential for the future. J Altern Complement Med 1998; 3:303-6. [PMID: 9449050 DOI: 10.1089/acm.1997.3.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
31
|
Schousboe A, Sonnewald U, Civenni G, Gegelashvili G. Role of astrocytes in glutamate homeostasis. Implications for excitotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 429:195-206. [PMID: 9413575 DOI: 10.1007/978-1-4757-9551-6_14] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- A Schousboe
- Department of Biological Sciences, Royal Danish School of Pharmacy, Copenhagen, Denmark
| | | | | | | |
Collapse
|
32
|
Carlson BX, Belhage B, Hansen GH, Elster L, Olsen RW, Schousboe A. Expression of the GABA(A) receptor alpha6 subunit in cultured cerebellar granule cells is developmentally regulated by activation of GABA(A) receptors. J Neurosci Res 1997; 50:1053-62. [PMID: 9452021 DOI: 10.1002/(sici)1097-4547(19971215)50:6<1053::aid-jnr17>3.0.co;2-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Primary cultures of cerebellar granule cells, prepared from cerebella of 7-day-old rats and cultured for 4 or 8 days, were used to study the neurodifferentiative effect of a GABA(A) receptor agonist, 4,5,6,7-tetrahydroisoxazol[5,4-c]pyridin-3-ol (THIP), on the expression of the alpha6 GABA(A) receptor subunit. Membranes prepared from these cultures were photolabeled with the imidazobenzodiazepine [3H]Ro15-4513. In THIP-treated cultures at 4 days in vitro (DIV), photolabeled [3H]Ro15-4513 binding in membranes was significantly increased for both the 51 kilodalton, kDa, (alpha1 subunit) and 56-kDa (alpha6 subunit) radioactive peaks in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In contrast, THIP-treated granule cells at 8 DIV demonstrated a small but significant decrease from control cultures in the photoincorporation of [3H]Ro15-4513 in the 51-kDa peak; however, no significant change in [3H]Ro15-4513 binding was observed for the 56-kDa polypeptide. Immunolabeling of the alpha6 subunit using silver-enhanced, immuno-gold staining of granule cells showed a significant effect with THIP treatment only at 4 DIV and not at 8 DIV. Examination by light microscopy demonstrated that the major effect of THIP was to increase alpha6 subunit clustering on granule cell bodies as well as neurites, 15-fold and sixfold, respectively. Using in situ hybridization, a small THIP-induced increase in alpha6 mRNA was detected at 4 DIV; however, no effect was apparent at 8 DIV. These data suggest that THIP has a trophic effect on alpha6 subunit expression, and this effect occurs only at an early developmental stage. Moreover, this study presents further evidence for the role of GABA(A) agonists, and thus the neurotransmitter, GABA, in regulating the expression of GABA(A) receptor subunits in the developing cerebellum.
Collapse
Affiliation(s)
- B X Carlson
- PharmaBiotec Research Center, Department of Biology, The Royal Danish School of Pharmacy, Copenhagen
| | | | | | | | | | | |
Collapse
|
33
|
Tobet SA, Hanna IK. Ontogeny of sex differences in the mammalian hypothalamus and preoptic area. Cell Mol Neurobiol 1997; 17:565-601. [PMID: 9442348 DOI: 10.1023/a:1022529918810] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. There are numerous sites in the nervous system where steroid hormones dramatically influence development. Increasing interest in mechanisms in neural development is providing avenues for understanding how gonadal steroids alter the ontogeny of these regions during sexual differentiation. 2. An increasing number of researchers are examining effects of gonadal steroids on neurite outgrowth, cell differentiation, cell death, cell migration, and synaptogenesis. The interrelated timing of these events may be a key aspect influenced by gonadal steroids throughout development. 3. The preoptic area and hypothalamus are characteristically heterogeneous in terms of cell type (e.g., different neuropeptides) and cell derivation. Perhaps a major reason for the ontogeny of sexual differences in the preoptic area and hypothalamus lies in the convergence of many different cell types from diverse sources (i.e., proliferative zones surrounding the lateral and third ventricles, and the olfactory placodes) that can be influenced in an interactive manner by gonadal steroid mechanisms. 4. The characterization of multiple mechanisms (e.g., trophic, migratory, apoptotic, fate, etc.,) that contribute to permanent changes in brain structure and ultimately function is essential for unraveling the process of sexual differentiation.
Collapse
Affiliation(s)
- S A Tobet
- Program in Neuroscience, Shriver Center, Waltham, Massachusetts 02254, USA
| | | |
Collapse
|
34
|
Liu J, Morrow AL, Devaud LL, Grayson DR, Lauder JM. Regulation of GABA(A) receptor subunit mRNA expression by the pesticide dieldrin in embryonic brainstem cultures: a quantitative, competitive reverse transcription-polymerase chain reaction study. J Neurosci Res 1997; 49:645-53. [PMID: 9302086 DOI: 10.1002/(sici)1097-4547(19970901)49:5<645::aid-jnr15>3.0.co;2-u] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cyclodiene organochlorine pesticides, such as dieldrin, inhibit gamma-aminobutyric acid (GABA)ergic neurotransmission by blocking the Cl- channel of GABA(A) receptors. This action may make the developing nervous system especially vulnerable to these neurotoxins, which could interfere with the trophic actions of GABA on developing neurons and alter expression of GABA(A) receptors. We have used an in vitro model to determine whether exposure to dieldrin alters developmental expression of GABA(A) receptor subunit mRNA transcripts. Dissociated cell cultures were prepared from embryonic day 14 (E14) brainstem and cultured in serum-containing medium for 1 day in vitro (DIV), then treated for 2 DIV with 10 microM dieldrin in serum-free medium. This dose was based on preliminary experiments and previous studies (Nagata et al.: Brain Res 645:19-26, 1994; Pomes et al.: J Pharmacol Exp Ther 271:1616-1623, 1994). Absolute amounts of alpha1, beta3, gamma1, gamma2S and gamma2L mRNA transcripts were quantified in these cultures by quantitative, competitive reverse transcription-polymerase chain reaction (RT-PCR) using subunit-selective internal standards. The most abundant GABA(A) subunit transcript was beta3, which was much more highly expressed than gamma2S, gamma1, gamma2L, or alpha1 subunit mRNAs. Dieldrin differentially regulated expression of these transcripts. Levels of beta3 subunit transcripts were significantly increased (by 300%) by dieldrin, whereas expression of gamma2S and gamma2L transcripts were decreased (by 50% and 40%, respectively). However, dieldrin did not alter the ratio of gamma2S to gamma2L transcripts, indicating that it did not affect alternative splicing of gamma2 transcripts. Dieldrin appeared to increase expression of alpha1 subunit transcripts, but this effect was not statistically significant. Dieldrin did not significantly alter expression of gamma1 subunit transcripts. These results support the hypothesis that in utero exposure to cyclodiene pesticides could pose a risk to the developing brain by virtue of their ability to alter gene expression of GABA(A) receptor subunits, which could produce GABA(A) receptors with altered functional properties.
Collapse
Affiliation(s)
- J Liu
- Department of Cell Biology and Anatomy, University of North Carolina School of Medicine, Chapel Hill 27599-7090, USA
| | | | | | | | | |
Collapse
|
35
|
Nag TC, Wadhwa S. Expression of GABA in the fetal, postnatal, and adult human retinas: an immunohistochemical study. Vis Neurosci 1997; 14:425-32. [PMID: 9194311 DOI: 10.1017/s0952523800012104] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The expression of GABA in the human fetal (12-25 weeks of gestation), postnatal (five-month-old), and adult (35-year-old) retinas was investigated by immunohistochemistry. GABA expression was seen as early as 12 weeks in the undifferentiated cells of the inner neuroblast zone; a few optic nerve fiber layer axons were clearly labeled, suggesting that some of the stained cell bodies were prospective ganglion cells, others could be displaced amacrine cells. From 16-17 to 24-25 weeks, intense labeling was found in the amacrine, displaced amacrine, and some ganglion cells. During this time period, horizontal cells (identified by calbindin immunohistochemistry), undergoing migration (periphery) and differentiation (center), expressed GABA prominently. In the postnatal retina, some horizontal cells were moderately labeled, but very weakly in a few cells, in the adult. The Müller cells developed immunoreactivity first weakly at 12 weeks and then moderately from 16-17 weeks onward. The staining was also evident in the postnatal and adult retinas, showing labeled processes of these glial cells. Virtually no axons in the adult optic nerve and nerve fiber layer were stained; the staining was restricted to a few, large ganglion cells and displaced amacrine cells: Some amacrines were also labeled. The possibility that GABA might play a role in horizontal cell differentiation and maturation is highlighted. Other evidences suggest that GABA might play a role in metabolism during retinal development.
Collapse
Affiliation(s)
- T C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
36
|
Canonaco M, Tavolaro R, Facciolo RM. Dimorphic distribution of the two main GABAA binding sites in cortical and limbic areas of a rodent living in natural environmental conditions. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970421)380:4<423::aid-cne1>3.0.co;2-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Platt KP, Zwartjes RE, Bristow DR. The effect of GABA stimulation on GABAA receptor subunit protein and mRNA expression in rat cultured cerebellar granule cells. Br J Pharmacol 1996; 119:1393-400. [PMID: 8968548 PMCID: PMC1915816 DOI: 10.1111/j.1476-5381.1996.tb16051.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. After 8 days in vitro, rat cerebellar granule cells were exposed to 1 mM gamma-aminobutyric acid (GABA) for periods of 1, 2, 4, 6, 8 and 10 days. The effect of the GABA exposure on GABAA receptor alpha 1, alpha 6 and beta 2,3 subunit protein expression and alpha 1 and alpha 6 subunit steady-state mRNA levels, was examined using Western blotting and reverse transcriptase-polymerase chain reaction (RT-PCR), respectively. 2. GABA exposure for 2 days decreased alpha 1 (35 +/- 10%, mean +/- s.e.mean), beta 2,3 (21 +/- 9%) and alpha 6 (28 +/- 10%) subunit protein expression compared to control levels. The GABA-mediated reduction in alpha 1 subunit expression after 2 days treatment was abolished in the presence of the GABAA receptor antagonist, Ru 5135 (10 microM). 3. GABA exposure for 8 days increased alpha 1 (26 +/- 10%, mean +/- s.e.mean) and beta 2,3 (56 +/- 23%) subunit protein expression over control levels, whereas alpha 6 subunit protein expression remained below control levels (by 38 +/- 10%). However, after 10 days GABA exposure, alpha 6 subunit protein expression was also increased over control levels by 65 +/- 29% (mean +/- s.e.mean). 4. GABA exposure did not change the alpha 1 or alpha 6 subunit steady-state mRNA levels over and 8 day period, nor did it alter the expression of cyclophilin mRNA over 1-8 days. 5. These results suggest that chronic GABA exposure of rat cerebellar granule cells has a bi-phasic effect on GABAA receptor subunit expression that is independent of changes to mRNA levels. Therefore, the regulation of the GABAA receptor expression by chronic agonist treatment appears to involve post-transcriptional and/or post-translational processes.
Collapse
Affiliation(s)
- K P Platt
- Neuroscience Division, School of Biological Sciences, University of Manchester
| | | | | |
Collapse
|
38
|
Marty S, Berninger B, Carroll P, Thoenen H. GABAergic stimulation regulates the phenotype of hippocampal interneurons through the regulation of brain-derived neurotrophic factor. Neuron 1996; 16:565-70. [PMID: 8785053 DOI: 10.1016/s0896-6273(00)80075-6] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gamma-Aminobutyric acid (GABA) switches from enhancing to repressing brain-derived neurotrophic factor (BDNF) mRNA synthesis during the maturation of hippocampal neurons in vitro. Interneurons do not produce BDNF themselves, but BDNF enhances their differentiation. Therefore, the question arose whether hippocampal interneurons regulate their phenotype by regulating BDNF expression and release from adjacent cells. The GABA(A) receptor agonist muscimol and BDNF increased the size and neuropeptide Y (NPY) immunoreactivity of hippocampal interneurons. However, GABAergic stimulation failed to increase NPY immunoreactivity in cultures from BDNF knockout embryos. At later developmental stages, when GABA represses BDNF synthesis, treatment with muscimol induced a decrease in cell size and NPY immunoreactivity of interneurons. Interneurons might thus control their phenotype through the regulation of BDNF synthesis in, and release from, their target neurons.
Collapse
Affiliation(s)
- S Marty
- Department of Neurochemistry, Max Planck Institute for Psychiatry, Martinsried, Federal Republic of Germany
| | | | | | | |
Collapse
|
39
|
Alvarez FJ, Taylor-Blake B, Fyffe RE, De Blas AL, Light AR. Distribution of immunoreactivity for the beta 2 and beta 3 subunits of the GABAA receptor in the mammalian spinal cord. J Comp Neurol 1996; 365:392-412. [PMID: 8822178 DOI: 10.1002/(sici)1096-9861(19960212)365:3<392::aid-cne5>3.0.co;2-#] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The localization of GABAA receptors in cat and rat spinal cord was analyzed using two monoclonal antibodies specific for an epitope shared by the beta 2 and beta 3 subunits of the receptor. beta 2/beta 3-subunit immunoreactivity was the most intense in inner lamina II, lamina III, and lamina X, and it was the least intense in lamina IX. In laminae I-III, generally, the staining had a rather diffuse appearance, but the surfaces of small cell bodies in these laminae were outlined clearly by discrete labeling, as were many cell bodies and dendrites in deeper laminae. Rhizotomy experiments and ultrastructural observations indicated that beta 2/beta 3-subunit immunoreactivity in the dorsal horn was largely localized in intrinsic neuropil elements rather than in the terminals of primary afferent fibers, even though labeling overlapped with the terminal fields of different types of primary afferents and was also detected on the membranes of dorsal root ganglion neurons. With few exceptions (most notably, a highly immunoreactive group of dorsolaterally located cells in the cat lumbar ventral horn), motoneurons expressed low levels of beta 2/beta 3-subunit immunoreactivity. Labeling of neuronal membranes was fairly continuous, but focal accumulations of beta 2/beta 3-subunit immunoreactivity were also detected using immunofluorescence. Focal "hot spots" correlated ultrastructurally with the presence of synaptic junctions. Dual-color immunofluorescence revealed that focal accumulations of beta 2/beta 3-subunit immunoreactivity were frequently apposed by glutamic acid decarboxylase (GAD)-immunoreactive terminals. However, the density of continuous-membrane beta 2/beta 3 immunolabeling and GAD terminal density were not correlated in many individual neurons. The results suggest the existence of "classical" (synaptic) and "nonclassical" (paracrine) actions mediated via spinal cord GABAA receptors. The study also revealed the relative paucity of beta 2/beta 3-subunit immunoreactivity postsynaptic to certain GABAergic terminals, particularly those presynaptic to motoneurons or primary afferent terminals.
Collapse
Affiliation(s)
- F J Alvarez
- Department of Anatomy, Wright State University, Dayton, Ohio 45435, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Prolonged occupancy of GABAA receptors by ligands, including GABA and benzodiazepine agonists, sets in motion a series of mechanisms that can be termed use-dependent regulation. These mechanisms can be subdivided into two distinct pathways, one for GABAA receptor downregulation and another for upregulation. Treatment of cortical neurons with GABA or benzodiazepines in cultures opens the pathway for GABAA receptor downregulation, which includes (in putative temporal order): (1) desensitization (tachyphylaxis), (2) sequestration (endocytosis) of subunit polypeptides and uncoupling of allosteric interactions between GABA and benzodiazepine binding sites, (3) subunit polypeptide degradation, and (4) repression of subunit gene expression. The end-point of GABAA receptor downregulation, a reduction in receptor number, is postulated to be established initially by degradation of the receptor protein and then maintained by a diminished level of de novo synthesis. Benzodiazepine treatment of many preparations, including cells expressing recombinant GABAA receptors, may elicit only desensitization, sequestration, or uncoupling, without a decline in receptor number. Components of the GABAA receptor downregulation pathway are also evoked by chronic administration of GABAmimetics, benzodiazepines, barbiturates, and neurosteroids in animals. This downregulation correlates with the establishment of tolerance to and physical dependence on the pharmacological effects of these drugs, suggesting a cellular model for this behavior. The upregulation of GABAA receptors is observed as one of the neurotrophic actions of GABA, primarily in cultured cerebellar granule cells. Upregulation in culture is caused by enhanced expression of genes for GABAA receptor subunits and correlates with the establishment of GABAergic circuitry in the developing cerebellum. Thus, both the upregulation and downregulation of GABAA receptors appear to represent use-dependent pathways for guiding synaptic plasticity in the vertebrate central nervous system.
Collapse
Affiliation(s)
- E M Barnes
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
41
|
Lauder JM. Ontogeny of neurotransmitter systems: Substrates for developmental disabilities? ACTA ACUST UNITED AC 1995. [DOI: 10.1002/mrdd.1410010303] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|