1
|
Murthy MK, Khandayataray P, Padhiary S, Samal D. A review on chromium health hazards and molecular mechanism of chromium bioremediation. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:461-478. [PMID: 35537040 DOI: 10.1515/reveh-2021-0139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/19/2022] [Indexed: 05/13/2023]
Abstract
Living beings have been devastated by environmental pollution, which has reached its peak. The disastrous pollution of the environment is in large part due to industrial wastes containing toxic pollutants. The widespread use of chromium (Cr (III)/Cr (VI)) in industries, especially tanneries, makes it one of the most dangerous environmental pollutants. Chromium pollution is widespread due to ineffective treatment methods. Bioremediation of chromium (Cr) using bacteria is very thoughtful due to its eco-friendly and cost-effective outcome. In order to counter chromium toxicity, bacteria have numerous mechanisms, such as the ability to absorb, reduce, efflux, or accumulate the metal. In this review article, we focused on chromium toxicity on human and environmental health as well as its bioremediation mechanism.
Collapse
Affiliation(s)
| | | | - Samprit Padhiary
- Department of Biotechnology, Academy of Management and Information Technology, Khordha, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Academy of Management and Information Technology, Khordha, India
| |
Collapse
|
2
|
Liu C, Zhang L, Yu H, Zhang H, Niu H, Gai J. Bioreduction of Cr(VI) using a propane-based membrane biofilm reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32683-32695. [PMID: 36469275 DOI: 10.1007/s11356-022-24146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
The strong physiological toxicity of Cr(VI) makes it widely concerned in wastewater treatment. At present, the simplest and harmless method for treating Cr(VI) is known to be biologically reducing it to Cr(III), making it precipitate as Cr(OH)3(s), and then removing Cr(III) by solid separation technology. Studies have shown that Cr(VI) reduction bacteria can use CH4 and H2 as electron donors to reduce Cr(VI). Based on this, in this study, C3H8 was used as the only electron donor to investigate the potential of C3H8 matrix membrane bioreactor in the Cr(VI) wastewater treatment. The experiment was divided into three stages, each of which run stably for at least 30 days, and the whole process run for 120 days in total. The experiment is divided into three stages, each stage runs stably for at least 30 days, for a total of 120 days. With the increase of the Cr(VI) load, the removal rate gradually decreased. In stage 3, when Cr(VI) concentration was 2.0 mg·L-1, the removal rate was reduced from 90% in the first stage to 75%. According to X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis, it is known that Cr(III) is the main product during this process and it is adsorbed on the biofilm as Cr(OH)3 precipitate. During the experiment, the amount of extracellular polymeric substance (EPS) produced by microorganisms increased initially and then decreased, and the amount of polysaccharides (PS) was always more than protein (PN). By analyzing the microbial community structure after inoculating sludge and adding Cr(VI), Nocardia and Rhodococcus dominate the biofilm samples. Chromate reductase, cytochrome c, nitrate reductase, and other functional genes related to chromate reductase increased gradually during the experiment.
Collapse
Affiliation(s)
- Chunshuang Liu
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Qingdao, 266580, China.
| | - Luyao Zhang
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Haitong Yu
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Huijuan Zhang
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Hongzhe Niu
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Jianing Gai
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| |
Collapse
|
3
|
Mao HT, Chen LX, Zhang MY, Shi QY, Xu H, Zhang DY, Zhang ZW, Yuan M, Yuan S, Zhang HY, Su YQ, Chen YE. Melatonin improves the removal and the reduction of Cr(VI) and alleviates the chromium toxicity by antioxidative machinery in Rhodobacter sphaeroides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120973. [PMID: 36584859 DOI: 10.1016/j.envpol.2022.120973] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Bioremediation with photosynthetic bacteria (PSB) is thought to be a promising removal method for hexavalent chromium [Cr(VI)]-containing wastewater. In the present study, Rhodobacter sphaeroides (R. sphaeroides) SC01 was used for the investigation of Cr(VI) removal in Cr(VI)-contaminated solution in the presence of melatonin. It was found that exogenous melatonin alleviated oxidative damage to R. sphaeroides SC01, increased Cr (VI) absorption capacity of cell membrane, and improved the reduction efficiency of Cr(VI) via the activation of chromate reductants. The results showed that melatonin could further promote the increase in Cr(VI) removal efficiency, reaching up to 97.8%. Furthermore, melatonin application resulted in 296.9%, 44.4%, and 69.7% upregulation of ascorbic acid (AsA), glutathione (GSH), and cysteine (Cys) relative to non-melatioin treated R. sphaeroides SC01 at 48 h. In addition, the resting cells, cell-free supernatants (CFS), and cell-free extracts (CFE) with melatonin had a higher Cr(VI) removal rate of 18.6%, 82.0%, and 15.2% compared with non-melatonin treated R. sphaeroides SC01. Fourier transform infrared spectroscopy (FTIR) revealed that melatonin increased the binding of Cr(III) with PO43- and CO groups on cell membrane of R. sphaeroides SC01. X-ray diffractometer (XRD) analysis demonstrated that melatonin remarkably bioprecipitated the production of CrPO4·6H2O in R. sphaeroides SC01. Hence, these results indicated that melatonin plays the important role in the reduction and uptake of Cr(VI), demonstrating it is a great promising strategy for the management of Cr(VI) contaminated wastewater in photosynthetic bacteria.
Collapse
Affiliation(s)
- Hao-Tian Mao
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Lun-Xing Chen
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Meng-Ying Zhang
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Qiu-Yun Shi
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Hong Xu
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Da-Yan Zhang
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, 611130, Chengdu, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, 611130, Chengdu, China
| | - Huai-Yu Zhang
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Yan-Qiu Su
- College of Life Science, Sichuan Normal University, 610066, Chengdu, China
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China.
| |
Collapse
|
4
|
Yang X, Qin X, Xie J, Li X, Xu H, Zhao Y. Study on the effect of Cr(VI) removal by stimulating indigenous microorganisms using molasses. CHEMOSPHERE 2022; 308:136229. [PMID: 36041530 DOI: 10.1016/j.chemosphere.2022.136229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/05/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Molasses have a prominent effect on the bioremediation of Cr(VI) contaminated groundwater. However, its reaction mechanism is not detailed. In this paper, the removal of Cr(VI) with different carbon sources was compared to explore the effect and mechanism of the molasses. The addition of molasses can completely remove 25 mg/L Cr(VI), while the removal efficiency by glucose or emulsified vegetable oil was only 20%. Molasses could rapidly stimulate the reduction of Cr(VI) by indigenous microorganisms and weakened the toxicity on bacteria. The average removal rate of Cr(VI) was 0.42 mg/L·h, 10 times that of glucose system. Compared with glucose, molasses can remediate Cr(VI) at a higher concentration (50 mg/L), and the carbohydrate acted as microbial nutrients. Direct and indirect reduction acted together, the Fe(II) content in the aquifer medium increased from 1.7% to 4.7%. The addition of molasses extract into glucose system could increased the removal rate of Cr(VI) by 2-3 times, and the ions of molasses had no significant effect on the reduction. Excitation emission matrix fluorescence spectra and electrochemical analysis proved that the molasses contained humic acid-like substances, which had the ability of electron shuttle and improved the reduction rate of Cr(VI). In the process of bioreduction, the composition of molasses changed and the electron transport capacity increased from 104.2 to 446.5 μmol/(g C), but these substances could not be used as electron transport media to continuously enhance the reduction effect. This study is of great significance to fully understand the role and application of molasses.
Collapse
Affiliation(s)
- Xinru Yang
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Xueming Qin
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Jiayin Xie
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Xiaoyu Li
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Huichao Xu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
| | - Yongsheng Zhao
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
5
|
Yang W, Hong W, Huang Y, Li S, Li M, Zhong H, He Z. Exploration on the Cr(VI) resistance mechanism of a novel thermophilic Cr(VI)-reducing bacteria Anoxybacillus flavithermus ABF1 isolated from Tengchong geothermal region, China. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:795-803. [PMID: 35701897 DOI: 10.1111/1758-2229.13070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/02/2022] [Indexed: 06/15/2023]
Abstract
Hexavalent chromium resistance and reduction mechanisms of microorganism provide a critical guidance for Cr(VI) bioremediation. However, related researches are limited in mesophiles and deficient for thermophiles. In this work, a novel alkaline Cr(VI)-reducing thermophile Anoxybacillus flavithermus ABF1 was isolated from geothermal region. The mechanisms of Cr(VI) resistance and reduction were investigated. The results demonstrated that A. flavithermus ABF1 could survive in a wide temperature range from 50°C to 70°C and in pH range of 7.0-9.0. Strain ABF1 showed excellent growth activity and Cr(VI) removal performance when initial Cr(VI) concentration was lower than 200 mg L-1 . 93.71% of Cr(VI) was removed at initial concentration of 20 mg L-1 after 72 h. The majority of Cr(VI) was found to be reduced extracellularly by enzymes secreted by cells. XPS and Raman analysis further manifested that Cr2 O3 was the product of Cr(VI) reduction. Moreover, the Cr(VI) transportation-related gene cysP and Cr(VI) reduction-related gene azoR of A. flavithermus ABF1 played key roles in inhibiting Cr(VI) entering cells and promoting extracellular Cr(VI) reduction respectively. This work provides novel insight into the mechanisms of Cr(VI) resistance and detoxication of thermophiles, which leads to a promising alternative strategy for heavy metal bioremediation in areas with elevated temperature.
Collapse
Affiliation(s)
- Wenjing Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Wanqi Hong
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yongji Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Shuzhen Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Mengke Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Hui Zhong
- School of Life Sciences, Central South University, Changsha, China
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| |
Collapse
|
6
|
Kolhe N, Damle E, Pradhan A, Zinjarde S. A comprehensive assessment of Yarrowia lipolytica and its interactions with metals: Current updates and future prospective. Biotechnol Adv 2022; 59:107967. [PMID: 35489656 DOI: 10.1016/j.biotechadv.2022.107967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
The non-conventional yeast Yarrowia lipolytica has been popular as a model system for understanding biological processes such as dimorphism and lipid accumulation. The organism can efficiently utilize hydrophobic substrates (hydrocarbons and triglycerides) thereby rendering it relevant in bioremediation of oil polluted environments. The current review focuses on the interactions of this fungus with metal pollutants and its potential application in bioremediation of metal contaminated locales. This fungus is intrinsically equipped with a variety of physiological and biochemical features that enable it to tide over stress conditions induced by the presence of metals. Production of enzymes such as phosphatases, reductases and superoxide dismutases are worth a special mention. In the presence of metals, levels of inherently produced metal binding proteins (metallothioneins) and the pigment melanin are seen to be elevated. Morphological alterations with respect to biofilm formation and dimorphic transition from yeast to mycelial form are also induced by certain metals. The biomass of Y. lipolytica is inherently important as a biosorbent and cell surface modification, process optimization or whole cell immobilization techniques have aided in improving this capability. In the presence of metals such as mercury, cadmium, copper and uranium, the culture forms nanoparticulate deposits. In addition, on account of its intrinsic reductive ability, Y. lipolytica is being exploited for synthesizing nanoparticles of gold, silver, cadmium and selenium with applications as antimicrobial compounds, location agents for bioimaging and as feed supplements. This versatile organism thus has great potential in interacting with various metals and addressing problems related to their pollutant status.
Collapse
Affiliation(s)
- Nilesh Kolhe
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Eeshan Damle
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Aditya Pradhan
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Smita Zinjarde
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
7
|
Combined Application of Citric Acid and Cr Resistant Microbes Improved Castor Bean Growth and Photosynthesis while It Alleviated Cr Toxicity by Reducing Cr +6 to Cr 3. Microorganisms 2021; 9:microorganisms9122499. [PMID: 34946101 PMCID: PMC8705206 DOI: 10.3390/microorganisms9122499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 01/24/2023] Open
Abstract
Chromium is highly harmful to plants because of its detrimental effects on the availability of vital nutrients and secondary metabolites required for proper plant growth and development. A hydroponic experiment was carried out to analyze the effect of citric acid on castor bean plants under chromium stress. Furthermore, the role of two chromium-resistant microorganisms, Bacillus subtilis and Staphylococcus aureus, in reducing Cr toxicity was investigated. Different amounts of chromium (0 µM, 100 µM, 200 µM) and citric acid (0 mM, 2.5 mM, and 5 mM) were used both alone and in combination to analyze the remediation potential. Results showed that elevated amounts of chromium (specifically 200 µM) minimized the growth and biomass because the high concentration of Cr induced the oxidative markers. Exogenous citric acid treatment boosted plant growth and development by improving photosynthesis via enzymes such as superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase, which decreased Cr toxicity. The application of citric acid helped the plants to produce a high concentration of antioxidants which countered the oxidants produced due to chromium stress. It revealed that castor bean plants treated with citric acid could offset the stress injuries by decreasing the H2O2, electrolyte leakage, and malondialdehyde levels. The inoculation of plants with bacteria further boosted the plant growth parameters by improving photosynthesis and reducing the chromium-induced toxicity in the plants. The findings demonstrated that the combination of citric acid and metal-resistant bacteria could be a valuable technique for heavy metal remediation and mediating the adverse effects of metal toxicity on plants.
Collapse
|
8
|
Li J, Tang C, Zhang M, Fan C, Guo D, An Q, Wang G, Xu H, Li Y, Zhang W, Chen X, Zhao R. Exploring the Cr(VI) removal mechanism of Sporosarcina saromensis M52 from a genomic perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112767. [PMID: 34507039 DOI: 10.1016/j.ecoenv.2021.112767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/24/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Serious hexavalent chromium [Cr(VI)] pollution has continuously threatened ecological security and public health. Microorganism-assisted remediation technology has strong potential in the treatment of environmental Cr(VI) pollution due to its advantages of high efficiency, low cost, and low secondary pollution. Sporosarcina saromensis M52, a strain with strong Cr(VI) removal ability, isolated from coastal intertidal zone was used in this study. Scanning electron microscopy coupled with energy dispersive X-ray analysis indicated M52 was relatively stable under Cr(VI) stress and trace amount of Cr deposited on the cell surface. X-ray photoelectron spectroscopy and X-ray diffraction analyses exhibited M52 could reduce Cr(VI) into Cr(III). Fourier transform infrared spectroscopy showed the bacterial surface was mainly consisted of polysaccharides, phosphate groups, carboxyl groups, amide II (NH/CN) groups, alkyl groups, and hydroxyl groups, while functional groups involving in Cr(VI) bio-reduction were not detected. According to these characterization analyses, the removal of Cr(VI) was primarily depended on bio-reduction, instead of bio-adsorption by M52. Genome analyses further indicated the probable mechanisms of bio-reduction, including the active efflux of Cr(VI) by chromate transporter ChrA, enzymatic redox reactions mediated by reductases, DNA-repaired proteases ability to minimize the ROS damage, and the formation of specific cell components to minimize the biofilm injuries caused by Cr(VI). These studies provided a theoretical basis which was useful for Cr(VI) remediation, especially in terms of increasing its effectiveness. THE MAIN FINDING OF THE WORK: M52 realized the bioremediation of Cr(VI) majorly through bio-reduction, including Cr(VI) efflux, chromate reduction, DNA repair, and the formation of specific cell components, instead of bio-adsorption.
Collapse
Affiliation(s)
- Jiayao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Chen Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Min Zhang
- Department of Environmental and Occupational Health, Huzhou Center for Disease Control and Prevention, Huzhou 313000, Zhejiang, PR China
| | - Chun Fan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Dongbei Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Qiuying An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Guangshun Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Hao Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Yi Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Wei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Xiaoxuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Ran Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnotics, School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China.
| |
Collapse
|
9
|
Sustainable Application of Biosorption and Bioaccumulation of Persistent Pollutants in Wastewater Treatment: Current Practice. Processes (Basel) 2021. [DOI: 10.3390/pr9101696] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Persistent toxic substances including persistent organic pollutants and heavy metals have been released in high quantities in surface waters by industrial activities. Their presence in environmental compartments is causing harmful effects both on the environment and human health. It was shown that their removal from wastewaters using conventional methods and adsorbents is not always a sustainable process. In this circumstance, the use of microorganisms for pollutants uptake can be seen as being an environmentally-friendly and cost-effective strategy for the treatment of industrial effluents. However, in spite of their confirmed potential in the remediation of persistent pollutants, microorganisms are not yet applied at industrial scale. Thus, the current paper aims to synthesize and analyze the available data from literature to support the upscaling of microbial-based biosorption and bioaccumulation processes. The industrial sources of persistent pollutants, the microbial mechanisms for pollutant uptake and the significant results revealed so far in the scientific literature are identified and covered in this review. Moreover, the influence of different parameters affecting the performance of the discussed systems and also very important in designing of treatment processes are highly considered. The analysis performed in the paper offers an important perspective in making decisions for scaling-up and efficient operation, from the life cycle assessment point of view of wastewater microbial bioremediation. This is significant since the sustainability of the microbial-based remediation processes through standardized methodologies such as life cycle analysis (LCA), hasn’t been analyzed yet in the scientific literature.
Collapse
|
10
|
Rahman Z, Thomas L. Chemical-Assisted Microbially Mediated Chromium (Cr) (VI) Reduction Under the Influence of Various Electron Donors, Redox Mediators, and Other Additives: An Outlook on Enhanced Cr(VI) Removal. Front Microbiol 2021; 11:619766. [PMID: 33584585 PMCID: PMC7875889 DOI: 10.3389/fmicb.2020.619766] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Chromium (Cr) (VI) is a well-known toxin to all types of biological organisms. Over the past few decades, many investigators have employed numerous bioprocesses to neutralize the toxic effects of Cr(VI). One of the main process for its treatment is bioreduction into Cr(III). Key to this process is the ability of microbial enzymes, which facilitate the transfer of electrons into the high valence state of the metal that acts as an electron acceptor. Many underlying previous efforts have stressed on the use of different external organic and inorganic substances as electron donors to promote Cr(VI) reduction process by different microorganisms. The use of various redox mediators enabled electron transport facility for extracellular Cr(VI) reduction and accelerated the reaction. Also, many chemicals have employed diverse roles to improve the Cr(VI) reduction process in different microorganisms. The application of aforementioned materials at the contaminated systems has offered a variety of influence on Cr(VI) bioremediation by altering microbial community structures and functions and redox environment. The collective insights suggest that the knowledge of appropriate implementation of suitable nutrients can strongly inspire the Cr(VI) reduction rate and efficiency. However, a comprehensive information on such substances and their roles and biochemical pathways in different microorganisms remains elusive. In this regard, our review sheds light on the contributions of various chemicals as electron donors, redox mediators, cofactors, etc., on microbial Cr(VI) reduction for enhanced treatment practices.
Collapse
Affiliation(s)
- Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, Delhi, India
| | - Lebin Thomas
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| |
Collapse
|
11
|
Tang X, Huang Y, Li Y, Wang L, Pei X, Zhou D, He P, Hughes SS. Study on detoxification and removal mechanisms of hexavalent chromium by microorganisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111699. [PMID: 33396030 DOI: 10.1016/j.ecoenv.2020.111699] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/01/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Extensive industrial activities have led to an increase of the content of chromium in the environment, which causes serious pollution to the surrounding water, soil and atmosphere. The enrichment of chromium in the environment through the food chain ultimately affects human health. Therefore, the remediation of chromium pollution is crucial to development of human society. A lot of scholars have paid attention to bioremediation technology owing to its environmentally friendly and low-cost. Previous reviews mostly involved pure culture of microorganisms and rarely discussed the optimization of bioreduction conditions. To make up for these shortcomings, we not only introduced in detail the conditions that affect microbial reduction but also innovatively introduced consortium which may be the cornerstone for future treatment of complex field environments. The aim of this study is to summary chromium toxicity, factors affecting microbial remediation, and methods for enhancing bioremediation. However, the actual application of bioremediation technology is still facing a major challenge. This study also put forward the current research problems and proposed future research directions, providing theoretical guidance and scientific basis for the application of bioremediation technology.
Collapse
Affiliation(s)
- Xue Tang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China; State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China.
| | - Ying Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Li Wang
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Xiangjun Pei
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Dan Zhou
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Peng He
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Scott S Hughes
- Department of Geosciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
12
|
Bala R, Sachdeva D, Kumar M, Prakash V. Advances in coordination chemistry of hexaurea complexes of chromium(III). J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1836363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ritu Bala
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Diksha Sachdeva
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur-Ambala, Haryana, India
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur-Ambala, Haryana, India
| | - Vinit Prakash
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur-Ambala, Haryana, India
| |
Collapse
|
13
|
Tan H, Wang C, Zeng G, Luo Y, Li H, Xu H. Bioreduction and biosorption of Cr(VI) by a novel Bacillus sp. CRB-B1 strain. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121628. [PMID: 31744729 DOI: 10.1016/j.jhazmat.2019.121628] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/09/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
This study reported an efficient novel chromium reducing bacteria (Bacillus sp. CRB-B1) and investigated its removal mechanism. Bacillus sp. CRB-B1 could effectively reduce high level Cr(VI), under a wide range of shaking velocity (125-200 rpm), temperature (33-41 °C), pH (6-9). The co-existing ions Cd2+ and NO3- inhibited its Cr(VI) reduction capacity, while Cu2+ enhanced the reduction efficiency. In addition, Bacillus sp. CRB-B1 could reduce Cr(VI) using glucose and fructose as an electron donor. Micro-characterization analysis confirmed the Cr(VI) reduction and adsorption ability of Bacillus sp. CRB-B1. Cells degeneration result indicated that Cr(VI) removal was mainly bioreduction rather than biosorption. The cell-free suspension had a Cr(VI) removal rate of 68.5.%, which was significantly higher than that of cell-free extracts and cell debris, indicating Cr(VI) reduction mainly occurs extracellularly, and possibly mediated by extracellular reductase. The reduced Cr was mainly distributed in the extracellular suspension, and a small amount was accumulated in the cells. In conclusion, Bacillus sp. CRB-B1 was a highly efficient Cr(VI) reducing bacteria, which has potential in the remediation of Cr(VI)-containing water and soil.
Collapse
Affiliation(s)
- Hang Tan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan PR China
| | - Can Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan PR China
| | - Guoquan Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan PR China
| | - Yao Luo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan PR China
| | - Hao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan PR China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan PR China.
| |
Collapse
|
14
|
Zapana-Huarache SV, Romero-Sánchez CK, Gonza APD, Torres-Huaco FD, Rivera AML. Chromium (VI) bioremediation potential of filamentous fungi isolated from Peruvian tannery industry effluents. Braz J Microbiol 2019; 51:271-278. [PMID: 31865533 DOI: 10.1007/s42770-019-00209-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022] Open
Abstract
The tannery is an important trade in various Peruvian regions; however, tannery effluents are a serious local environmental threat due to its highly toxics components and lack of efficient treatment. The untreated effluents produced by tannery factories in Arequipa Rio Seco Industrial Park (PIRS) have formed a lake in the region nearby. In this work, we study the capability of filamentous fungi species found in this effluents lake with potential for chromium (VI) bioremediation. Fourteen species of filamentous fungi were isolated; only two species were identified Penicillium citrinum and Trichoderma viride, and third strain identified as Penicillium sp. The filamentous fungi showed that are fully tolerant to chromium (VI) concentrations up to 100 mg/L. These fungal strains showed significant growth in chromium (VI) concentrations up to 250 mg/L. Tolerant index (TI) analysis revealed that P. citrinum and T. viride began adaptation to chromium (IV) concentrations of 250 and 500 mg/L, after 6 and 12 days, respectively. When exposed to higher Cr (VI) concentrations (1000 mg/L), only T. viride was able to show growth (enhance phase). Interestingly, one of the significant responses from these fungal strains to increasing chromium (VI) concentrations was an increment in secreted laccase enzymes. Our results show tolerance and adaptation to elevated concentrations of chromium (VI) of these fungal strains suggesting their potential as effective agents for bioremediation of tannery effluents.
Collapse
Affiliation(s)
- S V Zapana-Huarache
- Laboratorio de Biología Acuática, Departamento Académico de Biología, Av. Alcides Carrión, Universidad Nacional de San Agustín (UNSA), Arequipa, Peru
| | - C K Romero-Sánchez
- Laboratorio de Biología Acuática, Departamento Académico de Biología, Av. Alcides Carrión, Universidad Nacional de San Agustín (UNSA), Arequipa, Peru
| | - A P Dueñas Gonza
- Laboratorio de Biología Acuática, Departamento Académico de Biología, Av. Alcides Carrión, Universidad Nacional de San Agustín (UNSA), Arequipa, Peru
| | - Frank Denis Torres-Huaco
- Coordinación de Investigación, Universidad Continental, Avenida Los Incas s/n, Arequipa, Peru. .,Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Campinas, SP, Brazil.
| | - A M Lazarte Rivera
- Laboratorio de Biología Acuática, Departamento Académico de Biología, Av. Alcides Carrión, Universidad Nacional de San Agustín (UNSA), Arequipa, Peru
| |
Collapse
|
15
|
Feng M, Li H, You S, Zhang J, Lin H, Wang M, Zhou J. Effect of hexavalent chromium on the biodegradation of tetrabromobisphenol A (TBBPA) by Pycnoporus sanguineus. CHEMOSPHERE 2019; 235:995-1006. [PMID: 31561316 DOI: 10.1016/j.chemosphere.2019.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
The influence of Cr(VI) on the degradation of tetrabromobisphenol A (TBBPA) by a typical species of white rot fungi, Pycnoporus sanguineus, was investigated in this study. The results showed that P. sanguineus together with its intracellular and extracellular enzyme could effectively degrade TBBPA. The degradation efficiency of TBBPA by both P. sanguineus and its enzymes decreased significantly when Cr(VI) concentration increased from 0 to 40 mg/L. The subsequent analysis about cellular distribution of TBBPA showed that the extracellular amount of TBBPA increased with the increment of Cr(VI) concentration, but the content of TBBPA inside fungal cells exhibited an opposite variation tendency. The inhibition of TBBPA degradation by P. sanguineus was partly attributed to the increase of cell membrane permeability and the decrease of cell membrane fluidity caused by Cr(VI). In addition, the decline of H+-ATPase and Mg2+-ATPase activities was also an important factor contributing to the suppression of TBBPA degradation in the system containing concomitant Cr(VI). Moreover, the activities of two typical extracellular lignin-degrading enzymes of P. sanguineus, MnP and Lac, were found to descend with ascended Cr(VI) level. Cr(VI) could also obviously suppress the gene expression of four intracellular enzymes implicated in TBBPA degradation, including two cytochrome P450s, glutathione S-transferases and pentachlorophenol 4-monooxygenase, which resulted in a decline of TBBPA degradation efficiency by fungal cells and intracellular enzyme in the presence of Cr(VI). Overall, this study provides new insights into the characteristics and mechanisms involved in TBBPA biodegradation by white rot fungi in an environment where heavy metals co-exist.
Collapse
Affiliation(s)
- Mi Feng
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China.
| | - Haixiang Li
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| | - Shaohong You
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| | - Jun Zhang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| | - Hua Lin
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| | - Meiqian Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Jiahua Zhou
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| |
Collapse
|
16
|
Gonzalez Ibarra AA, Wrobel K, Yanez Barrientos E, Corrales Escobosa AR, Gutierrez Corona JF, Enciso Donis I, Wrobel K. Impact of Cr(VI) on the oxidation of polyunsaturated fatty acids in Helianthus annuus roots studied by metabolomic tools. CHEMOSPHERE 2019; 220:442-451. [PMID: 30594795 DOI: 10.1016/j.chemosphere.2018.12.145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/27/2018] [Accepted: 12/19/2018] [Indexed: 05/28/2023]
Abstract
The impact of Cr(VI) in sunflower roots has been studied, focusing on the oxidation of polyunsaturated fatty acids. Plants were grown hydroponically in the presence of 0, 1.0, 5.0 and 25 mgCr L-1. Methanolic root extracts were analyzed by capillary liquid chromatography coupled through negative electrospray ionization to a quadrupole-time of flight mass spectrometry (capHPLC-ESI-QTOF-MS). Using partial least squares algorithm, eighteen features strongly affected by Cr(VI) were detected and annotated as linoleic acid (LA), alpha-linolenic acid (ALA) and sixteen oxidation products containing hydroperoxy-, epoxy-, keto-, epoxyketo- or hydroxy-functionalities, all of them classified as oxylipins. Inspection of the MS/MS spectra acquired for features eluting at different retention times but assigned as a sole compound, confirmed isomers formation: three hydroperoxy-octadecadienoic acids (HpODE), two oxo-octadecadienoic acids (OxoODE) and four epoxyketo-octadecenoic acids (EKODE). Around 70% of metabolites in sunflower LA metabolic pathway were affected by Cr(VI) stress and additionally, four EKODE isomers not included in this pathway were found in the exposed roots. Among ALA-derived oxylipins, 13-epi-12-oxo-phytodienoic acid (OPDA) is of relevance, because of its participation in the activation of secondary metabolism. The abundances of all oxylipins were directly dependent on the Cr(VI) concentration in medium; furthermore, autooxidation of LA to HpODE isomers was observed after incubation with Cr(VI). These results point to the direct involvement of Cr(VI) in non-enzymatic oxidation of fatty acids; since oxylipins are signaling molecules important in plant defensive response, their synthesis under Cr(VI) exposure sustains the ability of sunflower to grow in Cr(VI)-contaminated environments.
Collapse
Affiliation(s)
| | - Katarzyna Wrobel
- Chemistry Department, University of Guanajuato, L. de Retana 5, 36000 Guanajuato, Mexico
| | | | | | | | - Israel Enciso Donis
- Chemistry Department, University of Guanajuato, L. de Retana 5, 36000 Guanajuato, Mexico
| | - Kazimierz Wrobel
- Chemistry Department, University of Guanajuato, L. de Retana 5, 36000 Guanajuato, Mexico.
| |
Collapse
|
17
|
Shoaib A, Nisar Z, Javaid A, Khurshid S, Javed S. Necrotrophic fungus Macrophomina phaseolina tolerates chromium stress through regulating antioxidant enzymes and genes expression (MSN1 and MT). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:12446-12458. [PMID: 30847809 DOI: 10.1007/s11356-019-04457-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
Cr(VI) tolerance level of phytopathogenic fungus viz., Macrophomina phaseolina (Tassi) Goid was assessed through growth, morphological, physiological, and metal accumulation assays. Initially, the fungus growth assays indicated that the fungus can grow over concentration range of 20-3000 ppm and exhibited high tolerance index (0.88-1.00) and minimum inhibitory concentration at 3500 ppm of Cr. Observations under compound and scanning electron microscope un-revealed the structural features of hyphae under Cr stress as thick-walled, aggregated, branched, short and broken, along with attachment of irregular objects on them. Metal accumulation analysis revealed reduction in Cr(VI) accumulation by the fungus with increase in metal concentration in the growth medium (500-3000 ppm). Cr stress induced upregulation of antioxidant enzyme activities (catalase, peroxidase and polyphenol oxidase), expression of genes (MSN1 and metallothionein) and appearnace of new protein bands suggesting the possible role in protection and survival of M. phaseolina against Cr(VI)-induced oxidative stress. This study concludes that interference of Cr with growth and physiological process of M. phaseolina could affect its infection level on its host plant, therefore, synergistic action of two factors needs to be addressed, which may aid to guide future research efforts in understanding impact of plant-pathogen-heavy metal interaction.
Collapse
Affiliation(s)
- Amna Shoaib
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| | - Zahra Nisar
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Arshad Javaid
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Saba Khurshid
- Lahore College for Women University, Lahore, Pakistan
| | - Sidrah Javed
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
18
|
Fernández PM, Viñarta SC, Bernal AR, Cruz EL, Figueroa LIC. Bioremediation strategies for chromium removal: Current research, scale-up approach and future perspectives. CHEMOSPHERE 2018; 208:139-148. [PMID: 29864705 DOI: 10.1016/j.chemosphere.2018.05.166] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/16/2018] [Accepted: 05/27/2018] [Indexed: 05/25/2023]
Abstract
Industrial applications and commercial processes release a lot of chromium into the environment (soil, surface water or atmosphere) and resulting in serious human diseases because of their toxicity. Biological Cr-removal offers an alternative to traditional physic-chemical methods. This is considered as a sustainable technology of lower impact on the environment. Resistant microorganisms (e.g. bacteria, fungi, and algae) have been most extensively studied from this characteristic. Several mechanisms were developed by microorganisms to deal with chromium toxicity. These tools include biotransformation (reduction or oxidation), bioaccumulation and/or biosorption, and are considered as an alternative to remove the heavy metal. The aim of this review is summarizes Cr(VI)-bioremediation technologies oriented on practical applications at larger scale technologies. In the same way, the most relevant results of several investigations focused on process feasibility and the robustness of different systems (reactors and pilot scale) designed for chromium-removal capacity are highlighted.
Collapse
Affiliation(s)
- Pablo M Fernández
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Caseros, T4001MVB San Miguel de Tucumán, Tucumán, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Av. Belgrano 300, 4700 San Fernando del Valle de Catamarca, Catamarca, Argentina.
| | - Silvana C Viñarta
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Caseros, T4001MVB San Miguel de Tucumán, Tucumán, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Av. Belgrano 300, 4700 San Fernando del Valle de Catamarca, Catamarca, Argentina.
| | - Anahí R Bernal
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Caseros, T4001MVB San Miguel de Tucumán, Tucumán, Argentina.
| | - Elías L Cruz
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Caseros, T4001MVB San Miguel de Tucumán, Tucumán, Argentina.
| | - Lucía I C Figueroa
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Caseros, T4001MVB San Miguel de Tucumán, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 450, 4000 San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
19
|
Lotlikar NP, Damare SR, Meena RM, Linsy P, Mascarenhas B. Potential of Marine-Derived Fungi to Remove Hexavalent Chromium Pollutant from Culture Broth. Indian J Microbiol 2018; 58:182-192. [PMID: 29651177 DOI: 10.1007/s12088-018-0719-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/08/2018] [Indexed: 01/26/2023] Open
Abstract
Chromium (Cr) released from industrial units such as tanneries, textile and electroplating industries is detrimental to the surrounding ecosystems and human health. The focus of the present study was to check the Cr(VI) removal efficiency by marine-derived fungi from liquid broth. Amongst the three Cr(VI) tolerant isolates, #NIOSN-SK56-S19 (Aspergillus sydowii) showed Cr-removal efficiency of 0.01 mg Cr mg-1 biomass resulting in 26% abatement of total Cr with just 2.8 mg of biomass produced during the growth in 300 ppm Cr(VI). Scanning Electron Microscopy revealed aggregation of mycelial biomass with exopolysaccharide, while Electron Dispersive Spectroscopy showed the presence of Cr2O3 inside the biomass indicating presence of active Cr(VI) removal mechanisms. This was further supported when the Cr(VI) removal was monitored using DPC (1,5-diphenylcarbazide) method. The results of this study point to the potential of marine-derived fungal isolates for Cr(VI) removal.
Collapse
Affiliation(s)
- Nikita P Lotlikar
- 1Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004 India
| | - Samir R Damare
- 1Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004 India
| | - Ram Murti Meena
- 1Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004 India
| | - P Linsy
- 2Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004 India
| | - Brenda Mascarenhas
- 2Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004 India
| |
Collapse
|
20
|
Long B, Ye B, Liu Q, Zhang S, Ye J, Zou L, Shi J. Characterization of Penicillium oxalicum SL2 isolated from indoor air and its application to the removal of hexavalent chromium. PLoS One 2018; 13:e0191484. [PMID: 29381723 PMCID: PMC5790237 DOI: 10.1371/journal.pone.0191484] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023] Open
Abstract
Removal of toxic Cr(VI) by microbial reduction is a promising approach to reducing its ecotoxicological impact. To develop bioremediation technologies, many studies have evaluated the application of microorganisms isolated from Cr(VI)-contaminated sites. Nonetheless, little attention has been given to microbes from the environments without a history of Cr(VI) contamination. In this study, we aimed to characterize the Cr(VI) tolerance and removal abilities of a filamentous fungus strain, SL2, isolated from indoor air. Based on phenotypic characterization and rDNA sequence analysis, SL2 was identified as Penicillium oxalicum, a species that has not been extensively studied regarding Cr(VI) tolerance and reduction abilities. SL2 showed high tolerance to Cr(VI) on solid and in liquid media, facilitating its application to Cr(VI)-contaminated environments. Growth curves of SL2 in the presence of 0, 100, 400, or 1000 mg/L Cr(VI) were well simulated by the modified Gompertz model. The relative maximal colony diameter and maximal growth rate decreased as Cr(VI) concentration increased, while the lag time increased. SL2 manifested remarkable efficacy of removing Cr(VI). Mass balance analysis indicated that SL2 removed Cr(VI) by reduction, and incorporated 0.79 mg of Cr per gram of dry biomass. In electroplating wastewater, the initial rate of Cr(VI) removal was affected by the initial contaminant concentration. In conclusion, P. oxalicum SL2 represents a promising new candidate for Cr(VI) removal. Our results significantly expand the knowledge on potential application of this microorganism.
Collapse
Affiliation(s)
- Bibo Long
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Binhui Ye
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Qinglin Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Shu Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jien Ye
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lina Zou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jiyan Shi
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang Province, China
| |
Collapse
|
21
|
Feng M, Yin H, Peng H, Liu Z, Lu G, Dang Z. Hexavalent chromium induced oxidative stress and apoptosis in Pycnoporus sanguineus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:128-139. [PMID: 28528260 DOI: 10.1016/j.envpol.2017.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/29/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
White rot fungi have been proved to be a promising option for the removal of heavy metals, understanding their toxic response to heavy metals is conducive to developing and popularizing fungi-based remediation technologies so as to lessen the hazard of heavy metals. In this study, Cr(VI)-induced oxidative stress and apoptosis in Pycnoporus sanguineus, a species of white rot fungi were investigated. The results suggested that high level of Cr(VI) promoted the formation of ROS, including H2O2, O2•- and ·OH. With the increment of Cr(VI) concentration, the SOD and CAT activity along with GSH content increased within the first 24 h, but decreased afterward, companied with a significant enhancement of MDA content. Cr(VI)-induced oxidative damage further caused and aggravated apoptosis in P. sanguineus, especially at Cr(VI) concentrations above 20 mg/L. Cr(VI)-induced apoptosis was involved with mitochondrial dysfunction including mitochondrial depolarization, the enhancement of mitochondrial permeability and release of cytochrome c. The early and late apoptosis hallmarks, such as metacaspase activation, phosphatidylserine (PS) externalization, DNA fragmentation and the nuclear condensation and fragmentation were observed. Moreover, we also found disturbances of ion homeostasis, which was featured by K+ effluxes and overload of cytoplasmic and mitochondrial Ca2+.Based on these results, we suggest that Cr(VI) induced oxidative stress and apoptosis in white rot fungi, P. sanguineus.
Collapse
Affiliation(s)
- Mi Feng
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zehua Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
22
|
Feng M, Yin H, Peng H, Liu X, Yang P, Lu G, Dang Z. Influence of co-existed tetrabromobisphenol A (TBBPA) and hexavalent chromium on the cellular characteristics of Pycnoporus sanguineus during their removal and reduction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:388-398. [PMID: 28441625 DOI: 10.1016/j.ecoenv.2017.04.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/20/2017] [Accepted: 04/14/2017] [Indexed: 06/07/2023]
Abstract
Simultaneous TBBPA removal and Cr(VI) reduction by Pycnoporus sanguineus together with the effect of these co-existed pollutants on the fungal cellular characteristics were investigated in this study, aiming at illuminating the mechanism involved in the interactions between contaminants and microbial cells. The results revealed that Cr(VI) reduction and TBBPA removal declined from 92.5%, 75.4-30.6%, 44.8% when Cr(VI) concentration increased from 5 to 40mg/L, respectively. The removal efficiencies for Cr(VI) and TBBPA reached 61.4% and 94% separately under the optimum concentration of TBBPA at 10mg/L. Subsequent analyses indicated that the negative effect of Cr(VI) of high concentrations on Cr(VI) reduction and TBBPA removal was mainly attributed to the inhibition of fungal growth, intracellular proteins synthesis, cell viability and ATP enzyme activity. Compared with the moderate impact of TBBPA, the cell membrane of P. sanguineus was impaired severely and the surface morphology and intracellular structure changed dramatically in the presence of high concentration of Cr(VI) (above 10mg/L). This study also suggested that high level of TBBPA (15 and 20mg/L) promoted the synthesis of intracellular proteins and improved ATP enzyme activity within the first 48h of the reaction for enhancing the transportation and transformation of TBBPA.
Collapse
Affiliation(s)
- Mi Feng
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xintong Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Pingping Yang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
23
|
Xu X, Xia L, Chen W, Huang Q. Detoxification of hexavalent chromate by growing Paecilomyces lilacinus XLA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:47-54. [PMID: 28347903 DOI: 10.1016/j.envpol.2017.03.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 06/06/2023]
Abstract
In the study, the capability of Paecilomyces lilacinus XLA (CCTCC: M2012135) to reduce Cr6+ and its main antagonistic mechanisms to Cr6+ were experimentally evaluated. Activated growing fungus XLA efficiently reduced over 90% Cr6+ in the media with Cr6+ concentration below 100 mg L-1 at pH 6 after 14 days. After 1-day exposure to 100 mg L-1 Cr6+, nearly 50% of Cr6+ was reduced. Moreover, SO42- stimulated Cr6+ reduction, whereas other interferential ions inhibited Cr6+ reduction. The interaction mechanisms between XLA and Cr6+ mainly involve biotransformation, biosorption, and bioaccumulation, as detected by electron microscopy and chemical methods. The lower concentrations of Cr6+ (5 and 50 mg L-1) stimulated the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) level in XLA, respectively, but the higher concentration of Cr6+ (150 mg L-1) decreased the enzymatic activities and GSH concentration. The results implied that SOD, CAT and GSH were defensive guards to the oxidant stress produced by Cr6+. All these extracellular/intracellular defense systems endowed XLA with the ability to resist and detoxify Cr6+ by transforming its valent species. The fungus XLA could efficiently reduce Cr6+ under different environmental conditions (pH, interferential ions, and concentration). Moreover, XLA could endure the high concentration of Cr6+ probably due to its high biotransformation capability of Cr6+ and intracellular antioxidant systems for the detoxification of ROS generated by external Cr6+. All these results suggested that the fungus XLA can be applied to remediation of Cr6+-contaminated environments.
Collapse
Affiliation(s)
- Xingjian Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lu Xia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
24
|
Fernández PM, Cruz EL, Viñarta SC, Castellanos de Figueroa LI. Optimization of Culture Conditions for Growth Associated with Cr(VI) Removal by Wickerhamomyces anomalus M10. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 98:400-406. [PMID: 27830289 DOI: 10.1007/s00128-016-1958-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
Chromate-resistant microorganisms with the ability of reducing toxic Cr(VI) to less toxic Cr(III), are candidates for bioremediation. An alternative culture medium to reduce Cr(VI) using Wickerhamomyces anomalus M10 was optimized. Using the Plackett-Burman design, it was determined that sucrose, K2HPO4 and inoculum size had significant effects on chromate removal (i.e., reduction) at 24 h. Concentrations of these significant factors were adjusted using a complete factorial design. In this case, only the K2HPO4 effect was significant at 12 h of culture, with greater Cr(VI) removal at low concentration (1.2 g L-1). The optimum medium was validated at the fermenter scale level. Optimal culture conditions for complete removal of Cr(VI) (1 mM) were 400 rpm agitation and air flow of 1 vvm. Moreover, W. anomalus M10 completely removed consecutively added pulses of Cr(VI) (1 mM). These results show interesting characteristics from the standpoint of biotechnology because the development of a future remediation process using W. anomalus M10 can represent an efficient and highly profitable technology for removing the toxic form of Cr.
Collapse
Affiliation(s)
| | | | | | - Lucía Inés Castellanos de Figueroa
- PROIMI-CONICET, Av. Belgrano y Caseros (T4001MVB), Tucumán, Argentina
- Microbiología Superior, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
25
|
Abstract
A wide range of fungicides (or antifungals) are used in agriculture and medicine, with activities against a spectrum of fungal pathogens. Unfortunately, the evolution of fungicide resistance has become a major issue. Therefore, there is an urgent need for new antifungal treatments. Certain metals have been used for decades as efficient fungicides in agriculture. However, concerns over metal toxicity have escalated over this time. Recent studies have revealed that metals like copper and chromate can impair functions required for the fidelity of protein synthesis in fungi. This occurs through different mechanisms, based on targeting of iron-sulphur cluster integrity or competition for uptake with amino acid precursors. Moreover, chromate at least acts synergistically with other agents known to target translation fidelity, like aminoglycoside antibiotics, causing dramatic and selective growth inhibition of several fungal pathogens of humans and plants. As such synergy allows the application of decreased amounts of metals for effective inhibition, it lessens concerns about nonspecific toxicity and opens new possibilities for metal applications in combinatorial fungicides targeting protein synthesis.
Collapse
Affiliation(s)
- Cindy Vallières
- School of Life Sciences, University of Nottingham University Park, Nottingham, United Kingdom
| | - Simon V Avery
- School of Life Sciences, University of Nottingham University Park, Nottingham, United Kingdom.
| |
Collapse
|
26
|
Thatoi HN, Pradhan SK. Detoxification and Bioremediation of Hexavalent Chromium Using Microbes and Their Genes: An Insight into Genomic, Proteomic and Bioinformatics Studies. Microb Biotechnol 2017. [DOI: 10.1007/978-981-10-6847-8_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
27
|
Gutiérrez-Corona JF, Romo-Rodríguez P, Santos-Escobar F, Espino-Saldaña AE, Hernández-Escoto H. Microbial interactions with chromium: basic biological processes and applications in environmental biotechnology. World J Microbiol Biotechnol 2016; 32:191. [DOI: 10.1007/s11274-016-2150-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/25/2016] [Indexed: 12/18/2022]
|
28
|
Mahmood S, Khalid A, Arshad M, Ahmad R. Effect of trace metals and electron shuttle on simultaneous reduction of reactive black-5 azo dye and hexavalent chromium in liquid medium by Pseudomonas sp. CHEMOSPHERE 2015; 138:895-900. [PMID: 25556007 DOI: 10.1016/j.chemosphere.2014.10.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/04/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
This study demonstrates the role of electron shuttles and trace metals in the biotransformation of azo dye reactive black-5 and hexavalent chromium (CrVI) that are released simultaneously in tannery effluent. Previously isolated bacterial strain Pseudomonas putida KI was used for the simultaneous reduction of the dye (100 mg L(-1)) and CrVI (2 mg L(-1)) in a mineral salts medium (MSM). Among various trace metals, only Cu(II) had a stimulating effect on the bacterial-mediated reduction process. Application of electron shuttles such as hydroquinone and uric acid at a low concentration (1mM) had a positive effect on the reduction process and caused simultaneous reduction of 100% dye and 97% CrVI in 12-18 h. Mannitol, EDTA and sodium benzoate at all concentrations (ranging from 1 to 9 mM) showed an inhibitory effect on the reduction of reactive black-5 and CrVI. An inverse linear relationship between the velocity of reaction (V) and the concentration [S] of electron shuttles was observed. The results imply that both types and concentration of an electron shuttle and trace metals can affect the simultaneous reduction of reactive black-5 and CrVI.
Collapse
Affiliation(s)
- Shahid Mahmood
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Azeem Khalid
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan.
| | - Muhammad Arshad
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Riaz Ahmad
- Quality Enhancement Cell, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
| |
Collapse
|
29
|
Romo-Rodríguez P, Acevedo-Aguilar FJ, Lopez-Torres A, Wrobel K, Wrobel K, Gutiérrez-Corona JF. Cr(VI) reduction by gluconolactone and hydrogen peroxide, the reaction products of fungal glucose oxidase: Cooperative interaction with organic acids in the biotransformation of Cr(VI). CHEMOSPHERE 2015; 134:563-570. [PMID: 25577697 DOI: 10.1016/j.chemosphere.2014.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/14/2014] [Accepted: 12/02/2014] [Indexed: 06/04/2023]
Abstract
The Cr(VI) reducing capability of growing cells of the environmental A. tubingensis Ed8 strain is remarkably efficient compared to reference strains A. niger FGSC322 and A. tubingensis NRRL593. Extracellular glucose oxidase (GOX) activity levels were clearly higher in colonies developed in solid medium and in concentrated extracts of the spent medium of liquid cultures of the Ed8 strain in comparison with the reference strains. In addition, concentrated extracts of the spent medium of A. tubingensis Ed8, but not those of the reference strains, exhibited the ability to reduce Cr(VI). In line with this observation, it was found that A. niger purified GOX is capable of mediating the conversion of Cr(VI) to Cr(III) in a reaction dependent on the presence of glucose that is stimulated by organic acids. Furthermore, it was found that a decrease in Cr(VI) may occur in the absence of the GOX enzyme, as long as the reaction products gluconolactone and hydrogen peroxide are present; this conversion of Cr(VI) is stimulated by organic acids in a reaction that generates hydroxyl radicals, which may involve the formation of an intermediate peroxichromate(V) complex. These findings indicated that fungal glucose oxidase acts an indirect chromate reductase through the formation of Cr(VI) reducing molecules, which interact cooperatively with other fungal metabolites in the biotransformation of Cr(VI).
Collapse
Affiliation(s)
- Pamela Romo-Rodríguez
- Departamento de Biología, DCNyE, Universidad de Guanajuato, Campus Guanajuato, Noria Alta s/n, C.P. 36000, Guanajuato, Gto, Mexico
| | - Francisco Javier Acevedo-Aguilar
- Departamento de Química, DCNyE, Universidad de Guanajuato, Campus Guanajuato, Noria Alta s/n, C.P. 36000, Guanajuato, Gto, Mexico
| | - Adolfo Lopez-Torres
- Departamento de Biología, DCNyE, Universidad de Guanajuato, Campus Guanajuato, Noria Alta s/n, C.P. 36000, Guanajuato, Gto, Mexico
| | - Kazimierz Wrobel
- Departamento de Química, DCNyE, Universidad de Guanajuato, Campus Guanajuato, Noria Alta s/n, C.P. 36000, Guanajuato, Gto, Mexico
| | - Katarzyna Wrobel
- Departamento de Química, DCNyE, Universidad de Guanajuato, Campus Guanajuato, Noria Alta s/n, C.P. 36000, Guanajuato, Gto, Mexico
| | - J Félix Gutiérrez-Corona
- Departamento de Biología, DCNyE, Universidad de Guanajuato, Campus Guanajuato, Noria Alta s/n, C.P. 36000, Guanajuato, Gto, Mexico.
| |
Collapse
|
30
|
Peng M, Yang X. Controlling diabetes by chromium complexes: The role of the ligands. J Inorg Biochem 2015; 146:97-103. [DOI: 10.1016/j.jinorgbio.2015.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 12/18/2022]
|
31
|
Mahmood S, Khalid A, Mahmood T, Arshad M, Loyola-Licea JC, Crowley DE. Biotreatment of simulated tannery wastewater containing Reactive Black 5, aniline and CrVI using a biochar packed bioreactor. RSC Adv 2015. [DOI: 10.1039/c5ra16809k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Azo dyes and CrVI in tannery wastewater can be treated by redox active bacteria. Dye decolorization and CrVI reduction are simultaneous under anaerobic conditions. Biochar is an effective support matrix for packed bed bioreactors used to treat dyes and CrVI.
Collapse
Affiliation(s)
- Shahid Mahmood
- Department of Environmental Sciences
- PMAS Arid Agriculture University
- Rawalpindi 46300
- Pakistan
| | - Azeem Khalid
- Department of Environmental Sciences
- PMAS Arid Agriculture University
- Rawalpindi 46300
- Pakistan
| | - Tariq Mahmood
- Department of Environmental Sciences
- PMAS Arid Agriculture University
- Rawalpindi 46300
- Pakistan
| | - Muhammad Arshad
- Institute of Soil and Environmental Sciences
- University of Agriculture
- Faisalabad
- Pakistan
| | | | - David E. Crowley
- Department of Environmental Sciences
- University of California
- Riverside
- USA
| |
Collapse
|
32
|
Thatoi H, Das S, Mishra J, Rath BP, Das N. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 146:383-399. [PMID: 25199606 DOI: 10.1016/j.jenvman.2014.07.014] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/03/2014] [Accepted: 07/10/2014] [Indexed: 05/14/2023]
Abstract
Hexavalent chromium is mobile, highly toxic and considered as a priority environmental pollutant. Chromate reductases, found in chromium resistant bacteria are known to catalyse the reduction of Cr(VI) to Cr(III) and have recently received particular attention for their potential use in bioremediation process. Different chromate reductases such as ChrR, YieF, NemA and LpDH, have been identified from bacterial sources which are located either in soluble fractions (cytoplasm) or bound to the membrane of the bacterial cell. The reducing conditions under which these enzymes are functional can either be aerobic or anaerobic or sometimes both. Enzymatic reduction of Cr(VI) to Cr(III) involves transfer of electrons from electron donors like NAD(P)H to Cr(VI) and simultaneous generation of reactive oxygen species (ROS). Based on the steps involved in electron transfer to Cr(VI) and the subsequent amount of ROS generated, two reaction mechanisms, namely, Class I "tight" and Class II "semi tight" have been proposed. The present review discusses on the types of chromate reductases found in different bacteria, their mode of action and potential applications in bioremediation of hexavalent chromium both under free and immobilize conditions. Besides, techniques used in characterization of the Cr (VI) reduced products were also discussed.
Collapse
Affiliation(s)
- Hrudayanath Thatoi
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India.
| | - Sasmita Das
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India
| | - Jigni Mishra
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India
| | - Bhagwat Prasad Rath
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India
| | - Nigamananda Das
- Department of Chemistry, North Orissa University, Takatpur, Baripada 757003, Odisha, India
| |
Collapse
|
33
|
Regulation of oxidative stress-induced cytotoxic processes of citrinin in the fission yeast Schizosaccharomyces pombe. Toxicon 2014; 90:155-66. [DOI: 10.1016/j.toxicon.2014.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 12/22/2022]
|
34
|
Abstract
Chromium is ubiquitous in the environment as Cr(III) and Cr(VI) oxidation states, which interconvert under environmentally and biologically relevant conditions (although Cr(III) usually predominates). While Cr(VI) is an established human carcinogen and a major occupational and environmental hazard, Cr(III) has long been regarded as an essential human micronutrient, although recent literature has cast serious doubts on the validity of this postulate. Despite five decades of research, no functional Cr-containing enzymes or cofactors have been characterized conclusively, and several hypotheses on their possible structures have been refuted. Gastrointestinal absorption pathways for both Cr(III) and Cr(VI) are apparent and whole-blood speciation can involve Cr(VI) uptake and reduction by red blood cells, as well as Cr(III) binding to both proteins and low-molecular-mass ligands in the plasma. DNA-damaging effects of Cr(VI) and anti-diabetic activities of Cr(III) are likely to arise from common mechanistic pathways that involve reactive Cr(VI/V/IV) intermediates and kinetically inert Cr(III)-protein and Cr(III)-DNA adducts. Both Cr(III) and Cr(VI) are toxic to plants and microorganisms, particularly Cr(VI) due to its higher bioavailability and redox chemistry. Some bacteria reduce Cr(VI) to Cr(III) without the formation of toxic Cr(V) intermediates and these bacteria are being considered for use in the bioremediation of Cr(VI)-polluted environments.
Collapse
Affiliation(s)
- Peter A. Lay
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia
| | - Aviva Levina
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
35
|
Gazdag Z, Kálmán N, Blaskó A, Virág E, Belágyi J, Pesti M. Regulation of the unbalanced redox state in a Schizosaccharomyces pombe tert-butyl hydroperoxide-resistant mutant. ACTA BIOLOGICA HUNGARICA 2014; 65:218-26. [PMID: 24873914 DOI: 10.1556/abiol.65.2014.2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The one-gene mutation in the tert-butyl hydroperoxide-resistant mutant hyd1-190 of the fission yeast Schizosaccharomyces pombe led to a 4-fold increase in resistance to t-BuOOH and decreased specific concentrations of superoxide and total thiols in comparison with the parental strain hyd+. It suggested an unbalanced redox state of the cells, which induced continuously increased specific activities of glutathione peroxidase, glutathione reductase and glutathione S-transferase and decreased activities of the antioxidant enzymes superoxide dismutases and glucose-6-phosphate dehydrogenase to regulate the redox balance of the mutation-induced permanent, low-level but tolerable internal stress. These results may contribute to the understanding of internal, oxidative stress-related human diseases.
Collapse
Affiliation(s)
- Z Gazdag
- University of Pécs Department of General and Environmental Microbiology, Faculty of Sciences Pécs Hungary
| | - Nikoletta Kálmán
- University of Pécs Department of General and Environmental Microbiology, Faculty of Sciences Pécs Hungary
| | - Agnes Blaskó
- University of Pécs Institute of Bioanalysis, Faculty of Medicine Pécs Hungary
| | - Eszter Virág
- University of Pécs Department of General and Environmental Microbiology, Faculty of Sciences Pécs Hungary
| | - J Belágyi
- University of Pécs Institute of Biophysics, Faculty of Medicine Pécs Hungary
| | - M Pesti
- University of Pécs Department of General and Environmental Microbiology, Faculty of Sciences Pécs Hungary
| |
Collapse
|
36
|
Gazdag Z, Máté G, Certik M, Türmer K, Virág E, Pócsi I, Pesti M. tert-Butyl hydroperoxide-induced differing plasma membrane and oxidative stress processes in yeast strains BY4741 and erg5Δ. J Basic Microbiol 2014; 54 Suppl 1:S50-62. [PMID: 24687861 DOI: 10.1002/jobm.201300925] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/28/2014] [Indexed: 11/06/2022]
Abstract
The molecular mechanism of tert-butyl hydroperoxide (t-BuOOH) elicited cytotoxicity and the background of t-BuOOH sensitivity were studied in the Saccharomyces cerevisiae ergosterol-less gene deletion mutant erg5Δ and its parental strain BY4741. In comparison to BY4741, untreated erg5Δ cells exhibited alterations in sterol and fatty acid compositions of the plasma membrane, as reflected by the inherent amphotericin B resistance, an elevated level (31%) of plasma membrane rigidity and a decreased uptake of glycerol. Surprisingly, the untreated erg5Δ cells exhibited an unbalanced intracellular redox state, accompanied by the continuous upregulation of the antioxidant enzymes Mn superoxide dismutase, catalase, and glutathione S-transferase, which resulted in decreased specific concentrations of superoxide and peroxides and elevated levels of the hydroxyl radical and thiols. The 2.5-fold sensitivity of erg5Δ to t-BuOOH suggested that the oxidative stress adaptation processes of the mutant could not restore the redox homeostasis of the cells and there is an overlap between sterol and redox homeostases. t-BuOOH treatment of both strains induced adaptive modification of the sterol and fatty acid compositions, increased the plasma membrane fluidity and elevated the specific activities of most antioxidant enzymes through specific regulation processes in a strain-dependent manner.
Collapse
Affiliation(s)
- Zoltán Gazdag
- Faculty of Sciences, Department of General and Environmental Microbiology, University of Pécs, Pécs, Hungary
| | | | | | | | | | | | | |
Collapse
|
37
|
Karimi MA, Lee E, Bachmann MH, Salicioni AM, Behrens EM, Kambayashi T, Baldwin CL. Measuring cytotoxicity by bioluminescence imaging outperforms the standard chromium-51 release assay. PLoS One 2014; 9:e89357. [PMID: 24586714 PMCID: PMC3929704 DOI: 10.1371/journal.pone.0089357] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 01/22/2014] [Indexed: 01/13/2023] Open
Abstract
The chromium-release assay developed in 1968 is still the most commonly used method to measure cytotoxicity by T cells and by natural killer cells. Target cells are loaded in vitro with radioactive chromium and lysis is determined by measuring chromium in the supernatant released by dying cells. Since then, alternative methods have been developed using different markers of target cell viability that do not involve radioactivity. Here, we compared and contrasted a bioluminescence (BLI)-based cytotoxicity assay to the standard radioactive chromium-release assay using an identical set of effector cells and tumor target cells. For this, we stably transduced several human and murine tumor cell lines to express luciferase. When co-cultured with cytotoxic effector cells, highly reproducible decreases in BLI were seen in an effector to target cell dose-dependent manner. When compared to results obtained from the chromium release assay, the performance of the BLI-based assay was superior, because of its robustness, increased signal-to-noise ratio, and faster kinetics. The reduced/delayed detection of cytotoxicity by the chromium release method was attributable to the association of chromium with structural components of the cell, which are released quickly by detergent solubilization but not by hypotonic lysis. We conclude that the (BLI)-based measurement of cytotoxicity offers a superior non-radioactive alternative to the chromium-release assay that is more robust and quicker to perform.
Collapse
Affiliation(s)
- Mobin A. Karimi
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Eric Lee
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Michael H. Bachmann
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ana Maria Salicioni
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Edward M. Behrens
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Cynthia L. Baldwin
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| |
Collapse
|
38
|
Hexavalent molybdenum reduction to mo-blue by a sodium-dodecyl-sulfate-degrading Klebsiella oxytoca strain DRY14. BIOMED RESEARCH INTERNATIONAL 2013; 2013:384541. [PMID: 24383052 PMCID: PMC3872019 DOI: 10.1155/2013/384541] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 11/17/2022]
Abstract
Bacteria with the ability to tolerate, remove, and/or degrade several xenobiotics simultaneously are urgently needed for remediation of polluted sites. A previously isolated bacterium with sodium dodecyl sulfate- (SDS-) degrading capacity was found to be able to reduce molybdenum to the nontoxic molybdenum blue. The optimal pH, carbon source, molybdate concentration, and temperature supporting molybdate reduction were pH 7.0, glucose at 1.5% (w/v), between 25 and 30 mM, and 25°C, respectively. The optimum phosphate concentration for molybdate reduction was 5 mM. The Mo-blue produced exhibits an absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. None of the respiratory inhibitors tested showed any inhibition to the molybdenum-reducing activity suggesting that the electron transport system of this bacterium is not the site of molybdenum reduction. Chromium, cadmium, silver, copper, mercury, and lead caused approximately 77, 65, 77, 89, 80, and 80% inhibition of the molybdenum-reducing activity, respectively. Ferrous and stannous ions markedly increased the activity of molybdenum-reducing activity in this bacterium. The maximum tolerable concentration of SDS as a cocontaminant was 3 g/L. The characteristics of this bacterium make it a suitable candidate for molybdenum bioremediation of sites cocontaminated with detergent pollutant.
Collapse
|
39
|
Viti C, Marchi E, Decorosi F, Giovannetti L. Molecular mechanisms of Cr(VI) resistance in bacteria and fungi. FEMS Microbiol Rev 2013; 38:633-59. [PMID: 24188101 DOI: 10.1111/1574-6976.12051] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/13/2013] [Accepted: 10/28/2013] [Indexed: 11/28/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] contamination is one of the main problems of environmental protection because the Cr(VI) is a hazard to human health. The Cr(VI) form is highly toxic, mutagenic, and carcinogenic, and it spreads widely beyond the site of initial contamination because of its mobility. Cr(VI), crossing the cellular membrane via the sulfate uptake pathway, generates active intermediates Cr(V) and/or Cr(IV), free radicals, and Cr(III) as the final product. Cr(III) affects DNA replication, causes mutagenesis, and alters the structure and activity of enzymes, reacting with their carboxyl and thiol groups. To persist in Cr(VI)-contaminated environments, microorganisms must have efficient systems to neutralize the negative effects of this form of chromium. The systems involve detoxification or repair strategies such as Cr(VI) efflux pumps, Cr(VI) reduction to Cr(III), and activation of enzymes involved in the ROS detoxifying processes, repair of DNA lesions, sulfur metabolism, and iron homeostasis. This review provides an overview of the processes involved in bacterial and fungal Cr(VI) resistance that have been identified through 'omics' studies. A comparative analysis of the described molecular mechanisms is offered and compared with the cellular evidences obtained using classical microbiological approaches.
Collapse
Affiliation(s)
- Carlo Viti
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente - sezione di Microbiologia, Università degli Studi di Firenze, Florence, Italy
| | | | | | | |
Collapse
|
40
|
Kálmán N, Gazdag Z, Čertík M, Belágyi J, Selim SA, Pócsi I, Pesti M. Adaptation totert-butyl hydroperoxide at a plasma membrane level in the fission yeastSchizosaccharomyces pombeparental strain and itst-BuOOH-resistant mutant. J Basic Microbiol 2013; 54:215-25. [DOI: 10.1002/jobm.201200580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/23/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Nikoletta Kálmán
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | | | | | | | | | | | | |
Collapse
|
41
|
Papp G, Horváth E, Mike N, Gazdag Z, Belágyi J, Gyöngyi Z, Bánfalvi G, Hornok L, Pesti M. Regulation of patulin-induced oxidative stress processes in the fission yeast Schizosaccharomyces pombe. Food Chem Toxicol 2012; 50:3792-8. [PMID: 22796319 DOI: 10.1016/j.fct.2012.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/29/2012] [Accepted: 07/01/2012] [Indexed: 10/28/2022]
Abstract
Patulin (PAT), is one of the most widely disseminated mycotoxins found in agricultural products. In this study the PAT-induced accumulation of reactive oxygen species (ROS) and the regulation of the specific activities of antioxidant enzymes were investigated in the single cell eukaryotic organism Schizosaccharomyces pombe. In comparison with the untreated cells, 500 μM PAT treatment caused a 43% decrease in the concentration of the main intracellular antioxidant, glutathione (GSH); this depletion of GSH initiated a 2.44- and a 2.6-fold accumulation of superoxide anion and hydrogen peroxide, respectively, but did not increase the concentration of hydroxyl radicals; the reduction of ROS-induced adaptation processes via the activation of Pap1 transcription factor resulted in significantly increased specific activities of Cu/Zn superoxide dismutase, catalase and glutathione S-transferase to protect the cells against the ROS-induced unbalanced redox state. However, no change was measured in the activities of glutathione reductase, glutathione peroxidase and glucose-6-phosphate dehydrogenase. It seems reasonable to assume that the temporary PAT-induced ROS accumulation plays a crucial role in adaptation processes. The adverse effects of PAT may be exerted mainly through the destruction of cellular membranes and protein/enzyme functions.
Collapse
Affiliation(s)
- Gábor Papp
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, H-7602 Pécs, POB 266, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Katsaveli K, Vayenas D, Tsiamis G, Bourtzis K. Bacterial diversity in Cr(VI) and Cr(III)-contaminated industrial wastewaters. Extremophiles 2012; 16:285-96. [PMID: 22258276 DOI: 10.1007/s00792-012-0429-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/05/2012] [Indexed: 11/28/2022]
Abstract
The bacterial community structure of a chromium water bath, a chromium drainage waste system, a chromium pretreatment tank, and a trivalent chromium precipitation tank from the Hellenic Aerospace Industry S.A. was assessed using 16S rRNA libraries and a high-density DNA microarray (PhyloChip). 16S rRNA libraries revealed a bacterial diversity consisting of 14 distinct operational taxonomic units belonging to five bacterial phyla: Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, and Bacteroidetes. However, employing a novel microarray-based approach (PhyloChip), a high bacterial diversity consisting of 30 different phyla was revealed, with representatives of 181 different families. This made it possible to identify a core set of genera present in all wastewater treatment stages examined, consisting of members of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Epsilonproteobacteria, and Bacteroidetes. In the chromium pretreatment tank, where the concentration of Cr(VI) is high (2.3 mg/l), we identified the presence of Pseudomonadales, Actinomycetales, and Enterobacteriales in abundance. In the chromium precipitation tank, where the concentration of Cr(III) is high, the dominant bacteria consortia were replaced by members of Rhodocyclales and Chloroflexi. The bacterial community structure changed significantly with changes in the chromium concentration. This in-depth analysis should prove useful for the design and development of improved bioremediation strategies.
Collapse
Affiliation(s)
- Katerina Katsaveli
- Department of Environmental and Natural Resources Management, University of Ioannina, 2 Seferi St., 30100, Agrinio, Greece.
| | | | | | | |
Collapse
|
43
|
Gazdag Z, Fujs S, Koszegi B, Kálmán N, Papp G, Emri T, Belágyi J, Pócsi I, Raspor P, Pesti M. The abc1-/coq8- respiratory-deficient mutant of Schizosaccharomyces pombe suffers from glutathione underproduction and hyperaccumulates Cd2+. Folia Microbiol (Praha) 2011; 56:353-9. [PMID: 21818608 DOI: 10.1007/s12223-011-0058-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/28/2011] [Indexed: 11/26/2022]
Abstract
The abc1(-)/coq8(-) gene deletion respiratory-deficient mutant NBp17 of fission yeast Schizosaccharomyces pombe displayed a phenotypic fermentation pattern with enhanced production of glycerol and acetate, and also possessed oxidative stress-sensitive phenotypes to H(2)O(2), menadione, tBuOOH, Cd(2+), and chromate in comparison with its parental respiratory-competent strain HNT. As a consequence of internal stress-inducing mutation, adaptation processes to restore the redox homeostasis of mutant NBp17 cells were detected in minimal glucose medium. Mutant NBp17 produced significantly increased amounts of O(2)•- and H(2)O(2) as a result of the decreased internal glutathione concentration and the only slightly increased glutathione reductase activity. The Cr(VI) reduction capacity and hence the •OH production ability were decreased. The mutant cells demonstrated increased specific activities of superoxide dismutases and glutathione reductase (but not catalase) to detoxify at least partially the overproduction of reactive oxygen species. All these features may be explained by the decreased redox capacity of the mutant cells. Most notably, mutant NBp17 hyperaccumulated yellow CdS.
Collapse
Affiliation(s)
- Zoltan Gazdag
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Decorosi F, Lori L, Santopolo L, Tatti E, Giovannetti L, Viti C. Characterization of a Cr(VI)-sensitive Pseudomonas corrugata 28 mutant impaired in a pyridine nucleotide transhydrogenase gene. Res Microbiol 2011; 162:747-55. [PMID: 21807093 DOI: 10.1016/j.resmic.2011.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 06/23/2011] [Indexed: 11/29/2022]
Abstract
Bacteria are known to adopt complex metabolic strategies in an effort to counteract the impact of numerous toxic compounds. In this study, a Cr(VI)-sensitive mutant of the Cr(VI)-hyperresistant bacterium Pseudomonas corrugata 28, obtained by insertional mutagenesis using the EZ-Tn5™ <R6Kγori/KAN-2>Tnp, was employed to gain a greater understanding of Cr(VI) resistance in bacteria. The insertion of the transposon, which occurred 16 bp upstream from the start codon of an ORF encoding a soluble pyridine nucleotide transhydrogenase (STH), negatively affected expression of the sth gene. The compromised expression of the sth gene in the mutant had two main effects on the pyridine nucleotide pools: (i) a decrease in NADPH and NADH fractions with a consequent shift in the redox state toward oxidation; and (ii) a decrease in the total concentration of the pyridine nucleotides. In the absence of a suitable pool of NADPH, the mutant failed to sustain an effective defense against the oxidative stress induced by Cr(VI).
Collapse
Affiliation(s)
- Francesca Decorosi
- Dipartimento di Biotecnologie Agrarie, Sezione di Microbiologia and Laboratorio Genexpress, Università degli Studi di Firenze, Piazzale delle Cascine, 24, I-50144 Florence, Italy
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Li L, Niu S, Shi Z, Wu H, Zhu W, Jin J, Chi Y, Xing Y. A Series of CrIII Coordination Supramolecules: Synthesis, Structure and Study of Surface Electron Behaviors. J Inorg Organomet Polym Mater 2010. [DOI: 10.1007/s10904-010-9430-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|