1
|
Elsayed N, Sabry BA, Mohammed DM. Novel cookies formula with Malva parviflora L. leaves powder as functional food: Evaluation of functional and technological properties. APPLIED FOOD RESEARCH 2025; 5:100792. [DOI: 10.1016/j.afres.2025.100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
2
|
Pallavi BV, Prashanth KVH, Ashok IA. Impact of different milling techniques towards vitamin D 3 fortification in wheat flour. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:751-762. [PMID: 40109688 PMCID: PMC11914633 DOI: 10.1007/s13197-024-06066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/18/2024] [Accepted: 08/13/2024] [Indexed: 03/22/2025]
Abstract
This study was to provide innovative information on bio-fortification and to implement strategies for improving vitamin D3 in wheat products. The commercially available wheat grains were passed through different milling processes via Hammer mill (HM) and Roller mill (RM) to yield wheat flour of different particle sizes (HM-CWF, HM-FWF, RM-WF and RM-MF). The obtained flours were fortified with commercially available vitamin D3 oil premix. Fortification efficiency was higher in finer flour (HM-FWF and RM-MF). Fortification had no significant effect on the color of the flour. Physico-chemical analysis revealed higher damaged starch in HM flour than in RM which was confirmed through scanning electron microscope. Water absorption capacity enhanced with larger particle size with simultaneous reduction in dough development time. Chapatis were prepared with fortified HM-CWF, HM-FWF, and RM-WF, whereas bread was made with RM-MF. Fortification has no significant effect on the texture and color of prepared chapati and bread. Sensory analysis revealed a slightly higher positive effect in the fortified sample with overall acceptability. HM-FWF Chapatis had the best retention of vitamin D3 (85%), and the fortified bread prepared from RM-MF had 70% retention. This research suggests that fortifying fine flour with vitamin D3 is more effective than using coarse flour. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06066-1.
Collapse
Affiliation(s)
- B V Pallavi
- Department of Flour Milling Baking & Confectionery Technology, CSIR - Central Food Technological Research Institute, Mysore, 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - K V Harish Prashanth
- Department of Biochemistry, CSIR - Central Food Technological Research Institute, Mysore, Karnataka 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Inamdar Aashitosh Ashok
- Department of Flour Milling Baking & Confectionery Technology, CSIR - Central Food Technological Research Institute, Mysore, 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
3
|
Yuksel F, Çağlar S. In vitro glycemic index, acrylamide content, and some physicochemical and sensorial properties of special dried bread (Peksimet) enriched with einkorn wheat ( Tiriticum monococcum L.) flour. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:368-376. [PMID: 39868390 PMCID: PMC11757807 DOI: 10.1007/s13197-024-06035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 03/14/2024] [Accepted: 07/02/2024] [Indexed: 01/28/2025]
Abstract
In the present study, einkorn wheat flour (Tiriticum monococcum L.) was incorporated into a special dried bread (peksimet) formulation produced from sourdough breads at different concentrations (0-10-20-30-40 and 50 g 100 g-1) and some physicochemical and nutritional (total dietary fiber, resistant starch, glycemic index, acrylamide content) characteristics and sensory properties of the samples were investigated. The total dietary fiber content of the bread samples ranged from 3.00 to 6.17 g 100 g-1. The highest acrylamide content (247.54 µg/kg) was obtained using an einkorn flour level of 40 g 100 g-1. Einkorn wheat flour resulted in a significant decrease (from 94.61 to 89.23) in the glycemic index level of the bread samples (p < 0.05). Bread enriched with einkorn wheat flour (50.0 g 100 g-1) received the highest overall acceptability score. In conclusion, einkorn wheat flour could be used in a special dried bread formulation to enhance its nutritional quality.
Collapse
Affiliation(s)
- Ferhat Yuksel
- Food Engineering Department, Faculty of Engineering and Natural Science, Gumushane University, 29100 Gumushane, Turkey
- Nutrition and Dietetics Department, Faculty of Health Science, Nigde Omer Halisdemir University, 51700 Nigde, Turkey
| | - Sümeyye Çağlar
- Food Engineering Department, Faculty of Engineering and Natural Science, Gumushane University, 29100 Gumushane, Turkey
| |
Collapse
|
4
|
Mercatante D, Santoni M, Nissen L, Didos S, Salvatori G, D’Ambrosio GJ, Farneti A, Chiarello E, Casciano F, Picone G, Mouchtaropoulou E, Bordoni A, Danesi F, Argiriou A, Ayfantopoulou G, Gianotti A, Rodriguez-Estrada MT. Nutritional, Chemical, and Functional Properties of Wholegrain Einkorn Pasta Through Cooking and Digestion: A Comparative Study with Wholegrain Durum Wheat Pasta. Foods 2025; 14:370. [PMID: 39941963 PMCID: PMC11817464 DOI: 10.3390/foods14030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Despite growing interest in ancient wheat varieties, the functional and nutritional properties of einkorn (Triticum monococcum) in cereal-based foods remain not fully elucidated. This study examined the chemical composition and functional properties of wholegrain einkorn pasta through cooking and simulated gastrointestinal digestion, comparing it with conventional Triticum durum wheat pasta. While sharing similar macronutrient profiles, einkorn pasta demonstrated higher retention of key compounds including phenolics, tocopherols, and phytosterols throughout cooking and in vitro digestion. Notable findings include enhanced prebiotic activity specifically targeting bifidobacteria populations and preserved antioxidant capacity despite thermal processing. These results demonstrated einkorn's potential as a functional food ingredient, suggesting its capacity to deliver enhanced nutritional benefits through its unique matrix properties. Our findings provide mechanistic insights into ancient grain functionality in modern food applications, with implications for developing nutritionally enhanced pasta products.
Collapse
Affiliation(s)
- Dario Mercatante
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
| | - Mattia Santoni
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
| | - Lorenzo Nissen
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
- Interdepartmental Centre of Agrifood Industry Research (CIRI Agrifood), University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Spyros Didos
- Department of Food Science and Nutrition, University of the Aegean (UOA-FNS), University Hill, 81100 Mytilene, Greece; (S.D.); (E.M.); (A.A.)
| | - Giulia Salvatori
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
| | - Gianni Jan D’Ambrosio
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
| | - Alice Farneti
- Scientific High School “Augusto Righi”, Piazza Aldo Moro 20, 47521 Cesena, Italy;
| | - Elena Chiarello
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
| | - Flavia Casciano
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
| | - Gianfranco Picone
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
| | - Evangelia Mouchtaropoulou
- Department of Food Science and Nutrition, University of the Aegean (UOA-FNS), University Hill, 81100 Mytilene, Greece; (S.D.); (E.M.); (A.A.)
| | - Alessandra Bordoni
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
- Interdepartmental Centre of Agrifood Industry Research (CIRI Agrifood), University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Francesca Danesi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
- Interdepartmental Centre of Agrifood Industry Research (CIRI Agrifood), University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Anagnostis Argiriou
- Department of Food Science and Nutrition, University of the Aegean (UOA-FNS), University Hill, 81100 Mytilene, Greece; (S.D.); (E.M.); (A.A.)
| | - Georgia Ayfantopoulou
- Centre for Research and Technology Hellas, Hellenic Institute of Transport (CERTH/HIT), 6th km Charilaou, Thermi Rd., Thermi, 57001 Thessaloniki, Greece;
| | - Andrea Gianotti
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
- Interdepartmental Centre of Agrifood Industry Research (CIRI Agrifood), University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Maria Teresa Rodriguez-Estrada
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.S.); (L.N.); (G.S.); (G.P.); (A.B.); (A.G.); (M.T.R.-E.)
- Interdepartmental Centre of Agrifood Industry Research (CIRI Agrifood), University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| |
Collapse
|
5
|
Maoloni A, Cirlini M, Del Vecchio L, Torrijos R, Carini E, Rampanti G, Cardinali F, Milanović V, Garofalo C, Osimani A, Aquilanti L. A Novel Non-Alcoholic Einkorn-Based Beverage Produced by Lactic Acid Fermentation: Microbiological, Chemical, and Sensory Assessment. Foods 2024; 13:3923. [PMID: 39682995 DOI: 10.3390/foods13233923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Einkorn (Triticum monococcum L. ssp. monococcum) is gaining renewed interest for its high nutritional value and digestibility. Lactic acid fermentation could enhance these properties by improving micronutrient bioavailability, sensory properties, and shelf life. This study aimed to develop a novel non-alcoholic einkorn-based beverage through lactic acid fermentation. A multiple-strain starter was selected based on acidifying properties and inoculated into an einkorn-based substrate to produce a yogurt-like beverage. Prototypes were evaluated through physico-chemical, chemical, and microbiological analyses and compared to uninoculated controls. A sensory analysis was also performed to assess flavor attributes before and after lactic acid fermentation. The inoculated starter culture reached a load of approximately 9 Log CFU g⁻¹ and remained viable throughout storage, leading to an increase in lactic acid concentration and high titratable acidity, corresponding to low pH values. Total polyphenol content increased during fermentation and remained stable during storage, whereas antioxidant activity did not show significant differences over time. An increase in monosaccharides, acids, and ketones was observed during fermentation and storage. The prototypes exhibited a distinctive proximate composition, along with yogurt and fruity aroma notes. These results suggest the feasibility of producing a safe and stable non-alcoholic einkorn-based fermented beverage with appealing sensory characteristics.
Collapse
Affiliation(s)
- Antonietta Maoloni
- Dipartimento di Scienze Agrarie, Alimentari, e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Martina Cirlini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Lorenzo Del Vecchio
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Raquel Torrijos
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Eleonora Carini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Giorgia Rampanti
- Dipartimento di Scienze Agrarie, Alimentari, e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari, e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari, e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari, e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari, e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari, e Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
6
|
Chandra T, Sahu J, Jaiswal S, Iquebal MA, Kumar D. Current research status and emerging trends in wheat: An integrated scientometric analysis based on ploidy uncovers hidden footprints in the scientific landscape. Heliyon 2024; 10:e36375. [PMID: 39253144 PMCID: PMC11381822 DOI: 10.1016/j.heliyon.2024.e36375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Wheat, a highly versatile staple crop cultivated extensively for its grains on a global scale, is poised to experience increased demand to sustain the burgeoning population, owing to its superior nutritional potential. Modern wheat, a hexaploid species, has evolved through the introgression of numerous preceding ploidies, including Einkorn, Emmer, Aegilops, and others, each possessing distinct qualitative and quantitative traits. Scientometric and topical analyses serve as effective tools to quantitatively evaluate scientific research by measuring the knowledge expressed in scientific publications and keywords. Thus, comprehending the research status regarding wheat domestication events within primary, secondary, and tertiary gene pools is paramount for enhancing wheat production. In this study, we analyze data retrieved from PubMed to elucidate the research status and identify bottlenecks across different ploidy of genomic pools of wheat. The publication trends on wheat have experienced exponential growth over the past three decades, with China emerging as a leading center for publications. In contrast to the publication frequency observed in hexaploid common wheat, scholarly output concerning Einkorn and Aegilops is approximately tenfold lesser, with emmer trailing behind at three times fewer publications. This discrepancy underscores the prioritization of expedited research initiatives targeting these species, aimed at elucidating latent biological characteristics and optimizing their breeding capabilities. Keywords such as "stress," "GWAS," and "gene" are prominent, reflecting the challenges posed by climatic factors on wheat production and their mitigation through molecular breeding and gene manipulation. Notably, the keyword "einkorn" highlights its potential as a donor for fine-tuning traits related to wheat adaptation processes and quality, crucial for modern wheat's survivability under adverse climates. Conversely, higher publication rates on emmer are primarily associated with Italy, possibly due to its favorable Mediterranean climate for tetraploid wheat. Keywords like "Pasta" and "Ochratoxin, DON" are prevalent, with the former being derived from durum wheat and the latter being reported in higher amounts in durum compared to other wheat species, rendering it less suitable for consumption. Enriched keywords such as "genome" and "resistance" underscore the critical characteristics of Aegilops. Other significant keywords like "Aceria tosichella" possibly indicate multiple stages of resistance conferred by Aegilops, while the presence of the grain softness protein "puroindoline" enhances its acceptability for donation by Aegilops. Spelt, a close relative of common wheat, exhibits a research trend with thousands of annual publications and enriched keywords such as "stress" and "yield" reflect the current scientific emphasis on wheat research. Furthermore, hierarchical keywords like "bio-control" and "celiac disease" merit consideration for future research on hexaploid wheat.
Collapse
Affiliation(s)
- Tilak Chandra
- Division for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Jagajjit Sahu
- Division for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Mir Asif Iquebal
- Division for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Dinesh Kumar
- Division for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| |
Collapse
|
7
|
Radaelli M, Scalabrin E, Roman M, Buffa G, Griffante I, Capodaglio G. Characterization of Ancient Cereals Cultivated by Intensive and Organic Procedures for Element Content. Molecules 2024; 29:3645. [PMID: 39125049 PMCID: PMC11313877 DOI: 10.3390/molecules29153645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
According to their nutritional value, their ability to adapt to the various environmental conditions, and their versatility, cereals are among the most cultivated plants in the world. However, the ongoing climate changes subject crops to important environmental stress that for some varieties leads to high production losses. Therefore, the selection of species and varieties that are more versatile and adaptable to different environmental conditions can be important. However, the characteristics of some cereals are not completely known; this is a priority before aiming to improve their cultivation. The aim of this study is to characterize select species that are potentially suitable for local environmental conditions and that possess nutritional value. The elemental composition was assessed in different cereal species grown following intensive and organic agriculture practices. Six species were grown for this study with techniques of intensive agriculture: Triticum monococcum L., Triticum dicoccum L., Triticum aestivum L., variety Verna, Triticum durum Desf., variety Senatore Cappelli, Triticum durum Desf., variety Claudio, and Avena strigosa Schreb.; four of these were also grown following organic procedures: Triticum monococcum L., Triticum dicoccum L., Triticum aestivum L., variety Verna, and Triticum durum Desf., variety Senatore Cappelli. The study considered twenty elements, including major nutrients (Ca, K, Mg, P, and S), seven micronutrients (B, Cu, Fe, Mn, Mo, Se, and Zn), and trace elements with toxic properties (Al, Ba, Cd, Cr, Na, Rb, Sc, and Sr) that can be accumulated at the seed level. The results highlight the differences in the element concentrations in the cereal seeds in relation to the genus and species; the highest concentrations of the major nutrients appeared in T. monococcum; the concentrations were 6.9, 2.09, 7.2, and 2.9 mg/g for K, Mg, P, and S, respectively. The highest concentrations of certain micronutrients, B, Ca, Mo, and Se (16, 785, 3.69, and 0.34 μg/g), were in A. strigosa. There is also evidence that the element content can be affected by the adopted cultivation procedure; however, the effects of the growing procedure can be significantly different when different species are considered. T. monococcum, grown by an organic procedure, presented lower concentrations of the major nutrients, while it demonstrated a modest increase in the micronutrients in the T. durum variety organic S. Cappelli, and the production procedure did not affect the elemental composition of the T. aestivum variety Verna. The survey also highlights that the studied species and the growing procedure affected the capacity to accumulate and translocate trace hazardous elements for human health at the seed level.
Collapse
Affiliation(s)
- Marta Radaelli
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari Venice, Via Torino 155, 30172 Venezia, Italy; (M.R.); (M.R.); (G.B.); (I.G.)
| | | | - Marco Roman
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari Venice, Via Torino 155, 30172 Venezia, Italy; (M.R.); (M.R.); (G.B.); (I.G.)
| | - Gabriella Buffa
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari Venice, Via Torino 155, 30172 Venezia, Italy; (M.R.); (M.R.); (G.B.); (I.G.)
| | - Irene Griffante
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari Venice, Via Torino 155, 30172 Venezia, Italy; (M.R.); (M.R.); (G.B.); (I.G.)
| | - Gabriele Capodaglio
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari Venice, Via Torino 155, 30172 Venezia, Italy; (M.R.); (M.R.); (G.B.); (I.G.)
| |
Collapse
|
8
|
Mandrioli M, Poggi GM, Cai G, Faleri C, Maccaferri M, Tuberosa R, Aloisi I, Toschi TG, Corneti S. Lipids and Fatty Acid Composition Reveal Differences between Durum Wheat Landraces and Modern Cultivars. PLANTS (BASEL, SWITZERLAND) 2024; 13:1817. [PMID: 38999657 PMCID: PMC11244281 DOI: 10.3390/plants13131817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Durum wheat (Triticum turgidum L. ssp. durum) landraces, traditional local varieties representing an intermediate stage in domestication, are gaining attention due to their high genetic variability and performance in challenging environments. While major kernel metabolites have been examined, limited research has been conducted on minor bioactive components like lipids, despite their nutritional benefits. To address this, we analyzed twenty-two tetraploid accessions, comprising modern elite cultivars and landraces, to (i) verify if the selection process for yield-related traits carried out during the Green Revolution has influenced lipid amount and composition; (ii) uncover the extent of lipid compositional variability, giving evidence that lipid fingerprinting effectively identifies evolutionary signatures; and (iii) identify genotypes interesting for breeding programs to improve yield and nutrition. Interestingly, total fat did not correlate with kernel weight, indicating lipid composition as a promising trait for selection. Tri- and di-acylglycerol were the major lipid components along with free fatty acids, and their relative content varied significantly among genotypes. In particular, landraces belonging to T. turanicum and carthlicum ecotypes differed significantly in total lipid and fatty acid profiles. Our findings provide evidence that landraces can be a genetically relevant source of lipid variability, with potential to be exploited for improving wheat nutritional quality.
Collapse
Affiliation(s)
- Mara Mandrioli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy
| | - Giovanni Maria Poggi
- Council for Agricultural Research and Economics (CREA), Research Centre for Agriculture and Environment, 40128 Bologna, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy
| | - Roberto Tuberosa
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Tullia Gallina Toschi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy
| | - Simona Corneti
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
9
|
Mystkowska I, Plażuk E, Szepeluk A, Dmitrowicz A. Gluten-containing flours and gluten-free flours as a source of calcium, magnesium, iron and zinc. Sci Rep 2024; 14:14643. [PMID: 38918421 PMCID: PMC11199505 DOI: 10.1038/s41598-024-65530-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Wheat flour is widely used in Poland for the preparation of bread, pasta and other foods. Due to the increasing number of people diagnosed with diet-related diseases, consumer awareness of health-promoting issues and interest in gluten-free products (GFP). There is a dynamic development of the market for these foods with high quality and nutritional value and minerals that benefit human health and prevent deficiencies in patients on a gluten-free diet. The aim of this study was to determine the content of minerals: Ca, Fe, Mg and Zn in flours using the ICP-OES method. The mineral composition of selected GF flours available on the Polish market was analysed. It was tested how they supplement the mineral requirements compared to gluten-containing flours. It was found that these products can be a valuable source of essential minerals, which are often in short supply, especially in patients with gastrointestinal disorders. As our study has shown, flours from the GFP group are a good source of essential minerals, especially in the case of chia and flax flours, as well as buckwheat, amaranth, quinoa, lupin or almonds flours.
Collapse
Grants
- PB/14/2022 John Paul II University in Biala Podlaska, Sidorska 95/97, 21-500 Biala Podlaska, Poland
- PB/14/2022 John Paul II University in Biala Podlaska, Sidorska 95/97, 21-500 Biala Podlaska, Poland
- PB/14/2022 John Paul II University in Biala Podlaska, Sidorska 95/97, 21-500 Biala Podlaska, Poland
- PB/14/2022 John Paul II University in Biala Podlaska, Sidorska 95/97, 21-500 Biala Podlaska, Poland
Collapse
Affiliation(s)
- Iwona Mystkowska
- Department of Dieteties, John Paul II University in Biala Podlaska, Sidorska Street 95/97, 21-500, Biala Podlaska, Poland
| | - Ewa Plażuk
- Regional Research Centre On Environment, Agriculture and Innovative Technologies, EKO-AGRO-TECH, John Paul II University in Biala Podlaska, Sidorska 95/97, 21-500, Biala Podlaska, Poland
| | - Adam Szepeluk
- Department of Nursing, John Paul II University in Biala Podlaska, Sidorska Street 95/97, 21-500, Biala Podlaska, Poland
| | - Aleksandra Dmitrowicz
- Regional Research Centre On Environment, Agriculture and Innovative Technologies, EKO-AGRO-TECH, John Paul II University in Biala Podlaska, Sidorska 95/97, 21-500, Biala Podlaska, Poland.
| |
Collapse
|
10
|
Kaushik M, Mulani E, Kumar A, Chauhan H, Saini MR, Bharati A, Gayatri, Iyyappan Y, Madhavan J, Sevanthi AM, Mandal PK. Starch and storage protein dynamics in the developing and matured grains of durum wheat and diploid progenitor species. Int J Biol Macromol 2024; 267:131177. [PMID: 38583842 DOI: 10.1016/j.ijbiomac.2024.131177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Durum wheat, less immunogenically intolerant than bread wheat, originates from diploid progenitors known for nutritional quality and stress tolerance. Present study involves the analysis of major grain parameters, viz. size, weight, sugar, starch, and protein content of Triticum durum (AABB genome) and its diploid progenitors, Triticum monococcum (AA genome) and Aegilops speltoides (BB genome). Samples were collected during 2-5 weeks after anthesis (WAA), and at maturity. The investigation revealed that T. durum displayed the maximum grain size and weight. Expression analysis of Grain Weight 2 (GW2) and Glutamine Synthase (GS2), negative and positive regulators of grain weight and size, respectively, revealed higher GW2 expression in Ae. speltoides and higher GS2 expression in T. durum. Further we explored total starch, sugar and protein content, observing higher levels of starch and sugar in durum wheat while AA genome species exhibited higher protein content dominated by the fractions of albumin/globulin. HPLC profiling revealed unique sub-fractions in all three genome species. Additionally, a comparative transcriptome analysis also corroborated with the starch and protein content in the grains. This study provides valuable insights into the genetic and biochemical distinctions among durum wheat and its diploid progenitors, offering a foundation for their nutritional composition.
Collapse
Affiliation(s)
- Megha Kaushik
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Ekta Mulani
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Amit Kumar
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Harsh Chauhan
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Manish Ranjan Saini
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Alka Bharati
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Gayatri
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Yuvaraj Iyyappan
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Jayanthi Madhavan
- Division of Genetics, ICAR - Indian Agriculture Research Institute, Pusa Campus, New Delhi 110012, India
| | - Amitha Mithra Sevanthi
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Pranab Kumar Mandal
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India.
| |
Collapse
|
11
|
Moisa C, Brata AM, Muresan IC, Dragan F, Ratiu I, Cadar O, Becze A, Carbunar M, Brata VD, Teusdea AC. Comparative Analysis of Vitamin, Mineral Content, and Antioxidant Capacity in Cereals and Legumes and Influence of Thermal Process. PLANTS (BASEL, SWITZERLAND) 2024; 13:1037. [PMID: 38611566 PMCID: PMC11013170 DOI: 10.3390/plants13071037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Cereals, as the world's most consumed food, face challenges related to nutrient quality due to climate change and increased production impacting soil health. In this study, we investigated the vitamin and mineral content, polyphenols, and antioxidant activity in cereals from Western Romania, analyzing whole and hulled wheat, rye, oat, and soybeans before and after heat treatment. Samples from 2022 crops were processed into dough and subjected to 220 °C for 30 min. The results reveal that, despite efforts to optimize nutrient content, cereals, particularly after heat processing, exhibited lower vitamin and mineral levels than the recommended daily intake. The decrease in polyphenols and antioxidant capacity was notable, with rye flour experiencing the largest decline (15%). Mineral analysis showed copper levels in decorticated wheat decreased by 82.5%, while iron in rye decreased by 5.63%. Soy flour consistently displayed the highest calcium, magnesium, and potassium levels, whereas oat flour had the highest zinc and copper levels before and after heat processing. The study highlights the concerningly low vitamins and minerals contents in cereals, as well as in the final products reaching consumers in the Western part of Romania, and contributes to the assessment of measures that are meant to improve the contents of these minerals.
Collapse
Affiliation(s)
- Corina Moisa
- Department of Pharmacy, Medicine and Pharmacy Faculty, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (C.M.); (F.D.)
| | - Anca Monica Brata
- Department of Engineering of Food Products, Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru St., 410087 Oradea, Romania
| | - Iulia C. Muresan
- Department of Economic Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3–5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Felicia Dragan
- Department of Pharmacy, Medicine and Pharmacy Faculty, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (C.M.); (F.D.)
| | - Ioana Ratiu
- Department of Medicine, Medicine and Pharmacy Faculty, University of Oradea, 1 University Street, 410087 Oradea, Romania;
| | - Oana Cadar
- INCDO INOE 2000, Research Institute for Analytical Instrumentation Subsidiary, 67 Donath Street, 400293 Cluj-Napoca, Romania; (O.C.); (A.B.)
| | - Anca Becze
- INCDO INOE 2000, Research Institute for Analytical Instrumentation Subsidiary, 67 Donath Street, 400293 Cluj-Napoca, Romania; (O.C.); (A.B.)
| | - Mihai Carbunar
- Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru St., 410087 Oradea, Romania; (M.C.)
| | - Vlad Dumitru Brata
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania;
| | - Alin Cristian Teusdea
- Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru St., 410087 Oradea, Romania; (M.C.)
| |
Collapse
|
12
|
De Sena V, Mazzarella G, Rossi M. Effects of transamidation vs. fermentation to reduce the gluten content of the Triticum monococcum wheat cultivar Hammurabi: analysis of biochemical, baking and sensory parameters. Int J Food Sci Technol 2024; 59:1927-1934. [DOI: 10.1111/ijfs.16945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2025]
Abstract
SummaryThe Triticum monococcum cultivar Hammurabi has been considered a wheat with reduced gluten toxicity for intolerant people. To further reduce gluten toxicity, we tested two biotechnological treatments on Hammurabi flour, fermentation by endogenous microbiota and transamidation by microbial transglutaminase. After 1 day of fermentation, the detectable gluten content dropped to 51.4% ± 6.4% (R5‐ELISA). Interestingly, microbial hydrolysis did not change the content of the water‐insoluble gliadin fraction. Transamidation of Hammurabi caused a greater reduction of the native gluten to 33.5% ± 3.3% (P < 0.01) and changed its physical properties, as it became water soluble. Interestingly, only dough from transamidated Hammurabi flour could leaven, similarly to the untreated dough, while in fermented Hammurabi dough, the rising activity of the added yeast was inhibited. Baking analysis indicated no substantial difference between transamidated and untreated Hammurabi breads. Descriptive sensory analysis showed that darkness appearance parameters and texture parameters were significantly altered in transamidated bread. Importantly, the treatment did not influence wheaty flavour or cereal odour, two mainly expected organoleptic features. Our data may have important implications in the perspective of manufacturing innovative foods for people predisposed to or suffering from gluten intolerance.
Collapse
Affiliation(s)
- Vincenzo De Sena
- Institute of Food Sciences, CNR via Roma 64 83100 Avellino Italy
| | | | - Mauro Rossi
- Institute of Food Sciences, CNR via Roma 64 83100 Avellino Italy
| |
Collapse
|
13
|
Liu X, Jiang X, Zhang J, Ye H, Shen M, Wu L, Miao Y, Chen L, Zhou K, Hao M, Jiang B, Huang L, Ning S, Chen X, Chen X, Liu D, Zhang L. Molecular cytogenetic identification and nutritional composition evaluation of newly synthesized Triticum turgidum- Triticum boeoticum amphiploids (AABBA bA b). FRONTIERS IN PLANT SCIENCE 2023; 14:1285847. [PMID: 38143580 PMCID: PMC10748598 DOI: 10.3389/fpls.2023.1285847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Triticum boeoticum Boiss. (AbAb, 2n = 2x = 14) is a wheat-related species with the blue aleurone trait. In this study, 18 synthetic Triticum turgidum-Triticum boeoticum amphiploids were identified, which were derived from crosses between T. boeoticum and T. turgidum. Three probes (Oligo-pTa535, Oligo-pSc119.2, and Oligo-pTa713) for multicolor fluorescence in situ hybridization (mc-FISH) were combined with genomic in situ hybridization (GISH) to identify chromosomal composition. Seven nutritional indices (anthocyanins, protein, total essential amino acids TEAA, Fe, Zn, Mn and Cu) were measured, and the nutritional components of 18 synthetic amphiploids were comprehensively ranked by principal component analysis (PCA). The results showed that all three synthetic amphiploids used for cytological identification contained 42 chromosomes, including 14 A, 14 B, and 14 Ab chromosomes. The average anthocyanin content was 82.830 μg/g to 207.606 μg/g in the whole meal of the 17 blue-grained lines (Syn-ABAb-1 to Syn-ABAb-17), which was obviously higher than that in the yellow-grained line Syn-ABAb-18 (6.346 μg/g). The crude protein content was between 154.406 and 180.517 g/kg, and the EAA content was 40.193-63.558 mg/g. The Fe, Zn, Mn and Cu levels in the 17 blue-grained lines were 60.55 to 97.41 mg/kg, 60.55-97.41 mg/kg, 35.11 to 65.20 mg/kg and 5.74 to 7.22 mg/kg, respectively, which were higher than those in the yellow-grained line. The contribution of the first three principal components reached 84%. The first principal component was mainly anthocyanins, Fe, Zn and Mn. The second principal component contained protein and amino acids, and the third component contained only Cu. The top 5 Triticum turgidum-Triticum boeoticum amphiploids were Syn-ABAb-11, Syn-ABAb-17, Syn-ABAb-5, Syn-ABAb-8 and Syn-ABAb-4. These amphidiploids exhibited the potential to serve as candidates for hybridization with common wheat, as indicated by comprehensive score rankings, toward enhancing the nutritional quality of wheat.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaomei Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Junqing Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hong Ye
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mang Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lei Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yongping Miao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Longyu Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Afzal M, Sielaff M, Distler U, Schuppan D, Tenzer S, Longin CFH. Reference proteomes of five wheat species as starting point for future design of cultivars with lower allergenic potential. NPJ Sci Food 2023; 7:9. [PMID: 36966156 PMCID: PMC10039927 DOI: 10.1038/s41538-023-00188-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/06/2023] [Indexed: 03/27/2023] Open
Abstract
Wheat is an important staple food and its processing quality is largely driven by proteins. However, there is a sizable number of people with inflammatory reactions to wheat proteins, namely celiac disease, wheat allergy and the syndrome of non-celiac wheat sensitivity. Thus, proteome profiles should be of high importance for stakeholders along the wheat supply chain. We applied liquid chromatography-tandem mass spectrometry-based proteomics to establish the flour reference proteome for five wheat species, ancient to modern, each based on 10 cultivars grown in three diverse environments. We identified at least 2540 proteins in each species and a cluster analyses clearly separated the species based on their proteome profiles. Even more, >50% of proteins significantly differed between species - many of them implicated in products' quality, grain-starch synthesis, plant stress regulation and proven or potential allergic reactions in humans. Notably, the expression of several important wheat proteins was found to be mainly driven by genetics vs. environmental factors, which enables selection and refinement of improved cultivars for the wheat supply chain as long as rapid test methods will be developed. Especially einkorn expressed 5.4 and 7.2-fold lower quantities of potential allergens and immunogenic amylase trypsin inhibitors, respectively, than common wheat, whereas potential allergen content was intermediate in tetraploid wheat species. This urgently warrants well-targeted clinical studies, where the developed reference proteomes will help to design representative test diets.
Collapse
Affiliation(s)
- Muhammad Afzal
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany
| | - Malte Sielaff
- Institute for Immunology and Research Center for Immune Therapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Ute Distler
- Institute for Immunology and Research Center for Immune Therapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Stefan Tenzer
- Institute for Immunology and Research Center for Immune Therapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - C Friedrich H Longin
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany.
| |
Collapse
|
15
|
Gao H, Jorgensen R, Raghunath R, Chandra S, Othman A, Olson E, Ng PKW, Gangur V. Intrinsic Allergenicity Potential of Salt-Soluble Protein Extracts from the Diploid, Tetraploid and Hexaploid Wheats: Validation Using an Adjuvant-Free Mouse Model. Int J Mol Sci 2023; 24:ijms24065453. [PMID: 36982527 PMCID: PMC10051541 DOI: 10.3390/ijms24065453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
Wheat allergies are potentially life-threatening and, therefore, have become a major health concern at the global level. It is largely unknown at present whether genetic variation in allergenicity potential exists among hexaploid, tetraploid and diploid wheat species. Such information is critical in establishing a baseline allergenicity map to inform breeding efforts to identify hyper-, hypo- and non-allergenic varieties. We recently reported a novel mouse model of intrinsic allergenicity using the salt-soluble protein extract (SSPE) from durum, a tetraploid wheat (Triticum durum). Here, we validated the model for three other wheat species [hexaploid common wheat (Triticum aestivum), diploid einkorn wheat (Triticum monococcum), and the ancient diploid wheat progenitor, Aegilops tauschii], and then tested the hypothesis that the SSPEs from wheat species will exhibit differences in relative allergenicities. Balb/c mice were repeatedly exposed to SSPEs via the skin. Allergic sensitization potential was assessed by specific (s) IgE antibody responses. Oral anaphylaxis was quantified by the hypothermic shock response (HSR). The mucosal mast cell response (MMCR) was determined by measuring mast cell protease in the blood. While T. monococcum elicited the least, but significant, sensitization, others were comparable. Whereas Ae. taushcii elicited the least HSR, the other three elicited much higher HSRs. Similarly, while Ae. tauschii elicited the least MMCR, the other wheats elicited much higher MMCR as well. In conclusion, this pre-clinical comparative mapping strategy may be used to identify potentially hyper-, hypo- and non-allergenic wheat varieties via crossbreeding and genetic engineering methods.
Collapse
Affiliation(s)
- Haoran Gao
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (H.G.); (R.J.); (R.R.); (S.C.); (A.O.)
| | - Rick Jorgensen
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (H.G.); (R.J.); (R.R.); (S.C.); (A.O.)
| | - Rajsri Raghunath
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (H.G.); (R.J.); (R.R.); (S.C.); (A.O.)
| | - Shivam Chandra
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (H.G.); (R.J.); (R.R.); (S.C.); (A.O.)
| | - Aqilah Othman
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (H.G.); (R.J.); (R.R.); (S.C.); (A.O.)
| | - Eric Olson
- Wheat Breeding & Genetics Laboratory, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Perry K. W. Ng
- Cereal Science Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, USA;
| | - Venu Gangur
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (H.G.); (R.J.); (R.R.); (S.C.); (A.O.)
- Correspondence: ; Tel.: +1-517-353-3330
| |
Collapse
|
16
|
Șerban LR, Păucean A, Chiș MS, Pop CR, Man SM, Pușcaș A, Ranga F, Socaci SA, Alexa E, Berbecea A, Semeniuc CA, Mureșan V. Metabolic Profile of Einkorn, Spelt, Emmer Ancient Wheat Species Sourdough Fermented with Strain of Lactiplantibacillus plantarum ATCC 8014. Foods 2023; 12:foods12051096. [PMID: 36900613 PMCID: PMC10001257 DOI: 10.3390/foods12051096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The continuous development of bakery products as well as the increased demands from consumers transform ancient grains into alternatives with high nutritional potential for modern wheat species. The present study, therefore, follows the changes that occur in the sourdough obtained from these vegetable matrices fermented by Lactiplantibacillus plantarum ATCC 8014 during a 24 h. period. The samples were analyzed in terms of cell growth dynamics, carbohydrate content, crude cellulose, minerals, organic acids, volatile compounds, and rheological properties. The results revealed significant microbial growth in all samples, with an average value of 9 log cfu/g but also a high accumulation of organic acids with the increase in the fermentation period. Lactic acid content ranged from 2.89 to 6.65 mg/g, while acetic acid recorded values between 0.51 and 1.1 mg/g. Regarding the content of simple sugars, maltose was converted into glucose, and fructose was used as an electron acceptor or carbon source. Cellulose content decreased as a result of the solubilization of soluble fibers into insoluble fibers under enzymatic action, with percentages of 3.8 to 9.5%. All sourdough samples had a high content of minerals; the highest of which-Ca (246 mg/kg), Zn (36 mg/kg), Mn (46 mg/kg), and Fe (19 mg/kg)-were recorded in the einkorn sourdough.
Collapse
Affiliation(s)
- Larisa Rebeca Șerban
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Adriana Păucean
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
- Correspondence:
| | - Maria Simona Chiș
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Simona Maria Man
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Andreea Pușcaș
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Floricuța Ranga
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Sonia Ancuța Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Ersilia Alexa
- Department of Food Control, Faculty of Agro-Food Technologies, University of Life Sciences “King Michael I of Romania”, 119 Aradului Avenue, 300641 Timişoara, Romania
| | - Adina Berbecea
- Department of Soil Sciences, Faculty of Agriculture, University of Life Sciences “King Michael I of Romania”, 119 Aradului Avenue, 300641 Timişoara, Romania
| | - Cristina Anamaria Semeniuc
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Vlad Mureșan
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| |
Collapse
|
17
|
Mavroeidis A, Roussis I, Kakabouki I. The Role of Alternative Crops in an Upcoming Global Food Crisis: A Concise Review. Foods 2022; 11:3584. [PMID: 36429176 PMCID: PMC9689872 DOI: 10.3390/foods11223584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Achieving Food Security (FS) is perhaps our most challenging aspiration. Despite our best efforts, millions of people around the globe are malnourished or live with hunger. The state of the geo-political scene, as well as the COVID-19 pandemic, have recently brought forth fears of a Global Food Crisis (GFC). Here, we present the factors that threaten FS and could trigger a GFC, examine the potential of alternative crops (ACs) as a measure against an upcoming GFC, and highlight the key aspects of the ACs introduction process in new regions. ACs could enhance FS, yet their success is premised on the adoption of sustainable practices and the implementation of food strategies that aim to promote healthy consumer behaviours.
Collapse
Affiliation(s)
| | | | - Ioanna Kakabouki
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
18
|
Suitability of Improved and Ancient Italian Wheat for Bread-Making: A Holistic Approach. Life (Basel) 2022; 12:life12101613. [PMID: 36295048 PMCID: PMC9605622 DOI: 10.3390/life12101613] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Ancient and old wheat grains are gaining interest as a genetic reservoir to develop improved Italian genotypes with peculiar features. In this light, the aim of this study was to assess the baking performance of two improved einkorn (Monlis and Norberto) and two improved emmer (Padre Pio and Giovanni Paolo) genotypes in comparison with two Italian landraces (Garfagnana and Cappelli) and Khorasan. This set was evaluated following a holistic approach considering the flour, dough, and bread properties. The results showed that the flour properties, dough rheology, pasting, and fermentation parameters, as well as the bread properties, significantly differed among the studied genotypes. Cappelli produced the bread with the best quality, i.e., the highest volume and lowest firmness. Despite having the same pedigrees, Giovanni Paolo and Padre Pio resulted in significantly different technological properties. Giovanni Paolo flour showed the highest protein content and provided a dough with a high gas production capacity, resulting in the bread having a similar firmness to Cappelli. Padre Pio flour provided bread having a similar volume to Cappelli but a high firmness similar to Khorasan and Garfagnana. The einkorn genotypes, Monlis and Norberto, showed poor fermentation properties and high gelatinization viscosity that resulted in bread with poor quality. Alternatively, they could be more suitable for making non-fermented flatbreads. Our results showed that the improved wheat showed a high versatility of features, which offers bakers a flexible material to make a genotype of bread types.
Collapse
|
19
|
Cooking Quality and Chemical and Technological Characteristics of Wholegrain Einkorn Pasta Obtained from Micronized Flour. Foods 2022; 11:foods11182905. [PMID: 36141038 PMCID: PMC9498463 DOI: 10.3390/foods11182905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
The increased demand for healthier foods, the recognition of dry pasta as an ideal carrier of functional ingredients, and the current interest for ancient wheats such as einkorn motivated the present research. Two varieties of Triticum monococcum, namely cv Norberto and the free-threshing cv Hammurabi, were milled by ultra-fine milling process (micronization) to produce wholegrain spaghetti. Einkorn pasta was assessed in terms of technological and biochemical properties and cooking and sensorial quality and compared to durum wheat semolina pasta. Wholewheat einkorn pasta showed a threefold increase in total dietary fibre content as well as in total antioxidant capacity in comparison to the control. The level of resistant starch in cv Norberto resulted significantly higher respect to semolina and einkorn cv Hammurabi pasta. Despite the very weak einkorn gluten network, the sensory and instrumental assessment of pasta quality highlighted that einkorn spaghetti presented good sensorial properties related to their technological quality, in particular, for the overall judgment and firmness. Cultivar Hammurabi emerged as the preeminent compromise on the basis of technological performances together with chemical and sensorial aspects.
Collapse
|
20
|
Rotondi Aufiero V, Sapone A, Mazzarella G. Diploid Wheats: Are They Less Immunogenic for Non-Celiac Wheat Sensitive Consumers? Cells 2022; 11:2389. [PMID: 35954233 PMCID: PMC9368055 DOI: 10.3390/cells11152389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Non-celiac wheat sensitivity (NCWS) is a clinical entity induced by the ingestion of gluten that leads to intestinal and/or extraintestinal symptoms, and is diagnosed when celiac disease and wheat allergy have been ruled out. In addition to gluten, other grains' components, including amylase trypsin inhibitors (ATIs) and fermentable short-chain carbohydrates (FODMAPs), may trigger symptoms in NCWS subjects. Several studies suggest that, compared with tetraploid and hexaploid modern wheats, ancient diploid wheats species could possess a lower immunogenicity for subjects suffering from NCWS. This review aims to discuss available evidence related to the immunological features of diploid wheats compared to common wheats, and at outlining new dietary opportunities for NCWS subjects.
Collapse
Affiliation(s)
| | - Anna Sapone
- Center for Celiac Research and Treatment, Massachusetts General Hospital, Boston, MA 02114, USA;
| | | |
Collapse
|
21
|
Sun T, Zhang Y, Wang S, Guo B, Yang Q, Zhao H. Study on spatio‐temporal variation mechanism of phytic acid contents of wheat grains. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Tianjia Sun
- College of Food Science and Engineering, Qingdao Agricultural University No. 700, Changcheng 5 Road Qingdao 266109 People’s Republic of China
| | - Yingquan Zhang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Shuang Wang
- College of Food Science and Engineering, Qingdao Agricultural University No. 700, Changcheng 5 Road Qingdao 266109 People’s Republic of China
| | - Boli Guo
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University No. 700, Changcheng 5 Road Qingdao 266109 People’s Republic of China
| | - Haiyan Zhao
- College of Food Science and Engineering, Qingdao Agricultural University No. 700, Changcheng 5 Road Qingdao 266109 People’s Republic of China
| |
Collapse
|
22
|
Garutti M, Nevola G, Mazzeo R, Cucciniello L, Totaro F, Bertuzzi CA, Caccialanza R, Pedrazzoli P, Puglisi F. The Impact of Cereal Grain Composition on the Health and Disease Outcomes. Front Nutr 2022; 9:888974. [PMID: 35711559 PMCID: PMC9196906 DOI: 10.3389/fnut.2022.888974] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Whole grains are a pivotal food category for the human diet and represent an invaluable source of carbohydrates, proteins, fibers, phytocompunds, minerals, and vitamins. Many studies have shown that the consumption of whole grains is linked to a reduced risk of cancer, cardiovascular diseases, and type 2 diabetes and other chronic diseases. However, several of their positive health effects seem to disappear when grains are consumed in the refined form. Herein we review the available literature on whole grains with a focus on molecular composition and health benefits on many chronic diseases with the aim to offer an updated and pragmatic reference for physicians and nutrition professionals.
Collapse
Affiliation(s)
- Mattia Garutti
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Gerardo Nevola
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Roberta Mazzeo
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Linda Cucciniello
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Fabiana Totaro
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Carlos Alejandro Bertuzzi
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Riccardo Caccialanza
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Puglisi
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
23
|
Cirlincione F, Venturella G, Gargano ML, Ferraro V, Gaglio R, Francesca N, Rizzo BA, Russo G, Moschetti G, Settanni L, Mirabile G. Functional bread supplemented with Pleurotus eryngii powder: A potential new food for human health. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2021.100449] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Ancient Wheat Species: Biochemical Profile and Impact on Sourdough Bread Characteristics—A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9112008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In recent years, the attention of farmers, bakers and consumers towards ancient wheat species has been increasing. Low demands of pedo-climatic growth factors, the suitability for organic cultivation along with their high nutritional quality and their content in pro-health compounds make them extremely attractive for bakers and modern consumers, equally. On the other hand, in recent years, sourdough has gained attention due to its ability to produce new functionally active molecules with higher bioaccessibility and thus to produce bread with enhanced nutritional quality. This paper highlights the relevant nutritional profile of einkorn, spelt, emmer and Khorasan which could lead to bread with improved textural, sensorial, microbial and nutritional characteristics through sourdough fermentation. The ancient wheat species could be used as promising substitutes for common wheat flour for the design of innovative types of bread, even for special needs.
Collapse
|
25
|
Dall'Asta M, Dodi R, Pede GD, Marchini M, Spaggiari M, Gallo A, Righetti L, Brighenti F, Galaverna G, Dall'Asta C, Ranieri R, Folloni S, Scazzina F. Postprandial blood glucose and insulin responses to breads formulated with different wheat evolutionary populations (Triticum aestivum L.): A randomized controlled trial on healthy subjects. Nutrition 2021; 94:111533. [PMID: 34936948 DOI: 10.1016/j.nut.2021.111533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/03/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
This study aimed to evaluate the effect of breads made with two different wheat evolutionary populations (EPs), compared with a modern variety, on postprandial blood glucose and insulin responses. A randomized controlled crossover postprandial study involving 12 healthy subjects was conducted. Seven non-commercial breads produced with flours from two different bread wheat (T. aestivum L.) EPs (Bio2, ICARDA) and a modern bread wheat variety (Bologna) were considered controls, with two different bread-making processes (Saccharomyces cerevisiae and sourdough), and were specifically formulated for the study. Postprandial incremental curves, incremental area under the curve (IAUC), maximum postprandial peaks for blood glucose and plasma insulin over 2 h after administration of isoglucidic portions of breads (50 g of available carbohydrates) were evaluated. The comparison of incremental curves, IAUC, and maximum postprandial peaks after consumption of breads formulated with EPs and control breads showed no differences among samples. Neither the flour nor the leavening technic used for the baking were effective in inducing a different postprandial response compared with the Bologna variety. EPs, being characterized by higher degree of crop genetic diversity, may have a relevant agronomic role to guarantee good and stable yields and quality under low input management in a changing climate; however, future studies are needed to better investigate their potential positive effect on human health.
Collapse
Affiliation(s)
- Margherita Dall'Asta
- Department of Food and Drug, University of Parma, Parma, Italy; Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Rossella Dodi
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | | | - Marco Spaggiari
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Antonio Gallo
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Laura Righetti
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Furio Brighenti
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Sharma S, Schulthess AW, Bassi FM, Badaeva ED, Neumann K, Graner A, Özkan H, Werner P, Knüpffer H, Kilian B. Introducing Beneficial Alleles from Plant Genetic Resources into the Wheat Germplasm. BIOLOGY 2021; 10:982. [PMID: 34681081 PMCID: PMC8533267 DOI: 10.3390/biology10100982] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/02/2022]
Abstract
Wheat (Triticum sp.) is one of the world's most important crops, and constantly increasing its productivity is crucial to the livelihoods of millions of people. However, more than a century of intensive breeding and selection processes have eroded genetic diversity in the elite genepool, making new genetic gains difficult. Therefore, the need to introduce novel genetic diversity into modern wheat has become increasingly important. This review provides an overview of the plant genetic resources (PGR) available for wheat. We describe the most important taxonomic and phylogenetic relationships of these PGR to guide their use in wheat breeding. In addition, we present the status of the use of some of these resources in wheat breeding programs. We propose several introgression schemes that allow the transfer of qualitative and quantitative alleles from PGR into elite germplasm. With this in mind, we propose the use of a stage-gate approach to align the pre-breeding with main breeding programs to meet the needs of breeders, farmers, and end-users. Overall, this review provides a clear starting point to guide the introgression of useful alleles over the next decade.
Collapse
Affiliation(s)
- Shivali Sharma
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, D-53113 Bonn, Germany; (S.S.); (P.W.)
| | - Albert W. Schulthess
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Filippo M. Bassi
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco;
| | - Ekaterina D. Badaeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey;
| | - Peter Werner
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, D-53113 Bonn, Germany; (S.S.); (P.W.)
| | - Helmut Knüpffer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Benjamin Kilian
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, D-53113 Bonn, Germany; (S.S.); (P.W.)
| |
Collapse
|
27
|
de Sousa T, Ribeiro M, Sabença C, Igrejas G. The 10,000-Year Success Story of Wheat! Foods 2021; 10:2124. [PMID: 34574233 PMCID: PMC8467621 DOI: 10.3390/foods10092124] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Wheat is one of the most important cereal crops in the world as it is used in the production of a diverse range of traditional and modern processed foods. The ancient varieties einkorn, emmer, and spelt not only played an important role as a source of food but became the ancestors of the modern varieties currently grown worldwide. Hexaploid wheat (Triticum aestivum L.) and tetraploid wheat (Triticum durum Desf.) now account for around 95% and 5% of the world production, respectively. The success of this cereal is inextricably associated with the capacity of its grain proteins, the gluten, to form a viscoelastic dough that allows the transformation of wheat flour into a wide variety of staple forms of food in the human diet. This review aims to give a holistic view of the temporal and proteogenomic evolution of wheat from its domestication to the massively produced high-yield crop of our day.
Collapse
Affiliation(s)
- Telma de Sousa
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (M.R.); (C.S.)
- Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, 2825-149 Lisbon, Caparica, Portugal
| | - Miguel Ribeiro
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (M.R.); (C.S.)
- Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, 2825-149 Lisbon, Caparica, Portugal
| | - Carolina Sabença
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (M.R.); (C.S.)
- Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, 2825-149 Lisbon, Caparica, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (M.R.); (C.S.)
- Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, 2825-149 Lisbon, Caparica, Portugal
| |
Collapse
|
28
|
Ayvaz H, Korkmaz F, Polat H, Ayvaz Z, Barış Tuncel N. Detection of einkorn flour adulteration in flour and bread samples using Computer-Based Image Analysis and Near-Infrared Spectroscopy. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Hadnađev M, Tomić J, Škrobot D, Dapčević‐Hadnađev T. Rheological behavior of emmer, spelt and khorasan flours. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jelena Tomić
- Institute of Food Technology University of Novi Sad Novi Sad Serbia
| | - Dubravka Škrobot
- Institute of Food Technology University of Novi Sad Novi Sad Serbia
| | | |
Collapse
|
30
|
Kumar A, Anju T, Kumar S, Chhapekar SS, Sreedharan S, Singh S, Choi SR, Ramchiary N, Lim YP. Integrating Omics and Gene Editing Tools for Rapid Improvement of Traditional Food Plants for Diversified and Sustainable Food Security. Int J Mol Sci 2021; 22:8093. [PMID: 34360856 PMCID: PMC8348985 DOI: 10.3390/ijms22158093] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
Indigenous communities across the globe, especially in rural areas, consume locally available plants known as Traditional Food Plants (TFPs) for their nutritional and health-related needs. Recent research shows that many TFPs are highly nutritious as they contain health beneficial metabolites, vitamins, mineral elements and other nutrients. Excessive reliance on the mainstream staple crops has its own disadvantages. Traditional food plants are nowadays considered important crops of the future and can act as supplementary foods for the burgeoning global population. They can also act as emergency foods in situations such as COVID-19 and in times of other pandemics. The current situation necessitates locally available alternative nutritious TFPs for sustainable food production. To increase the cultivation or improve the traits in TFPs, it is essential to understand the molecular basis of the genes that regulate some important traits such as nutritional components and resilience to biotic and abiotic stresses. The integrated use of modern omics and gene editing technologies provide great opportunities to better understand the genetic and molecular basis of superior nutrient content, climate-resilient traits and adaptation to local agroclimatic zones. Recently, realizing the importance and benefits of TFPs, scientists have shown interest in the prospection and sequencing of TFPs for their improvements, cultivation and mainstreaming. Integrated omics such as genomics, transcriptomics, proteomics, metabolomics and ionomics are successfully used in plants and have provided a comprehensive understanding of gene-protein-metabolite networks. Combined use of omics and editing tools has led to successful editing of beneficial traits in several TFPs. This suggests that there is ample scope for improvement of TFPs for sustainable food production. In this article, we highlight the importance, scope and progress towards improvement of TFPs for valuable traits by integrated use of omics and gene editing techniques.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Science, Central University of Kerala, Kasaragod 671316, Kerala, India; (T.A.); (S.S.)
| | - Thattantavide Anju
- Department of Plant Science, Central University of Kerala, Kasaragod 671316, Kerala, India; (T.A.); (S.S.)
| | - Sushil Kumar
- Department of Botany, Govt. Degree College, Kishtwar 182204, Jammu and Kashmir, India;
| | - Sushil Satish Chhapekar
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| | - Sajana Sreedharan
- Department of Plant Science, Central University of Kerala, Kasaragod 671316, Kerala, India; (T.A.); (S.S.)
| | - Sonam Singh
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| | - Su Ryun Choi
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| | - Yong Pyo Lim
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| |
Collapse
|
31
|
Current Trends in Enrichment of Wheat Pasta: Quality, Nutritional Value and Antioxidant Properties. Processes (Basel) 2021. [DOI: 10.3390/pr9081280] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Wheat pasta is one of the most important cereal products and is becoming increasingly popular worldwide because of its convenience, simple formulation, long shelf life, and high energetic value. Wheat pasta is usually obtained from refined flour rich in carbohydrates but with low content of phytochemicals, micronutrients, and fibre. The increased demand of consumers for healthy foods has generated interest among both researchers and food producers in developing functional food products. This review showcases the current trends in pasta fortification. Changes in the nutritional value, cooking quality, sensory attributes, and antioxidant properties of durum and common wheat pasta enriched with both plant and animal raw materials are discussed.
Collapse
|
32
|
Comparison of yield, chemical composition and farinograph properties of common and ancient wheat grains. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03729-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe chemical composition of 4 spring wheat species was analyzed: einkorn (Triticum monococcum) (local cv.), emmer (Triticum dicoccon) (Lamella cv.), spelt (Triticum spelta) (Wirtas cv.), and common wheat (Triticum aestivum) (Rospuda cv.). Mean emmer and einkorn yield was significantly lower than that of common wheat. The analyses of the wheat grain included the content of total protein, crude ash, crude fat, crude fibre, carbohydrates, phosphorus, potassium, magnesium, calcium, copper, iron, manganese, and zinc. The grains of the tested ancient wheats were richer in protein, lipids, crude fibre, and crude ash than the common wheat grains. The significantly highest levels of crude protein, ether extract, and crude ash were found in einkorn. As the protein concentration in the grain increased, the calcium, magnesium, and potassium levels increased, and the zinc and manganese levels decreased. Genotypic differences between the studied wheats were reflected in the concentrations of the minerals and nutrients, an observation which can be useful in further cross-linkage studies. Dough made from common wheat and spelt flour showed better performance quality classifying it to be used for bread production. In turn, flour from emmer and einkorn wheat may be intended for pastry products, due to short dough development time and constancy as well as high softening.
Collapse
|
33
|
Reinvigorating Modern Breadmaking Based on Ancient Practices and Plant Ingredients, with Implementation of a Physicochemical Approach. Foods 2021; 10:foods10040789. [PMID: 33916902 PMCID: PMC8067625 DOI: 10.3390/foods10040789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, the potential use of ancient plant ingredients in emerging bakery products based on possible prehistoric and/or ancient practices of grinding and breadmaking was explored. Various ancient grains, nuts and seeds (einkorn wheat, barley, acorn, lentil, poppy seeds, linseed) were ground using prehistoric grinding tool replicas. Barley-based sourdough prepared by multiple back-slopping steps was added to dough made from einkorn alone or mixed with the above ingredients (20% level) or commercial flours alone (common wheat, spelt, barley). Sieving analysis showed that 40% of the einkorn flour particles were >400 μm, whereas commercial barley and common wheat flours were finer. Differential scanning calorimetry revealed that lentil flour exhibited higher melting peak temperature and lower apparent enthalpy of starch gelatinization. Among all bread formulations tested, barley dough exhibited the highest elastic modulus and complex viscosity, as determined by dynamic rheometry; einkorn breads fortified with linseed and barley had the softest and hardest crust, respectively, as indicated by texture analysis; and common wheat gave the highest loaf-specific volume. Barley sourdough inclusion into einkorn dough did not affect the extent of starch retrogradation in the baked product. Generally, incorporation of ancient plant ingredients into contemporary bread formulations seems to be feasible.
Collapse
|
34
|
Salvador-Reyes R, Rebellato AP, Lima Pallone JA, Ferrari RA, Clerici MTPS. Kernel characterization and starch morphology in five varieties of Peruvian Andean maize. Food Res Int 2021; 140:110044. [PMID: 33648270 DOI: 10.1016/j.foodres.2020.110044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/20/2023]
Abstract
Peruvian Andean maize (PAM) has been commonly used as an ingredient that confers color, flavor, and texture in culinary. Nevertheless, no studies are focusing on agro-industrial interest characteristics to develop new products. This study aimed to evaluate the physicochemical, nutritional, and technological characteristics of kernels and the starch granule morphology of the five main PAM varieties: Chullpi, Piscorunto, Giant Cuzco, Sacsa, and Purple. PAM's characterization was performed according to the official methods, and its morphology was observed by scanning electron microscopy (SEM). Physically, the varieties of larger kernels (Giant Cuzco and Sacsa) presented a higher 1000-kernel weight and a lower hectoliter weight than those of smaller size (Piscorunto, Purple, and Chullpi). Nutritionally, PAM had higher ether extract (5%) and ash (2%) contents than other pigmented maizes. Likewise, they presented more significant amounts of essential amino acids, as leucine (10 mg/g protein) and tryptophan (up to 2 mg/g protein); unsaturated fatty acids, oleic (30%) and linoleic (53%); and minerals, as magnesium (104 mg/100 g). SEM showed that endosperm structure and starch morphology vary according to maize types and their grain location. Starch granules of floury PAM varieties were small and polyhedral in the sub-aleurone endosperm, whereas those of the central area were bigger and spherical. In Chullpi, it was observed a portion of vitreous endosperm with a compact structure. The low protein content (8.3%) and the endosperm structure of floury varieties of PAM influenced their pasting properties. Their pasting temperature was <69 to 71 °C>, peak viscosity < 3200 to 4400 cP>, and seatback <1250 to 1706 cP>; therefore, they do not retrograde easily. The results suggest that PAM has characteristics that would help elaborate regional products with added value, such as soups, willows, beverages, and porridges.
Collapse
Affiliation(s)
- Rebeca Salvador-Reyes
- Department of Food Tecnology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP: 13083-862 Campinas, São Paulo, Brazil.
| | - Ana Paula Rebellato
- Department of Food Tecnology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP: 13083-862 Campinas, São Paulo, Brazil
| | - Juliana Azevedo Lima Pallone
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP: 13083-862 Campinas, São Paulo, Brazil
| | - Roseli Aparecida Ferrari
- Institute of Food Technology (ITAL), Food Science and Quality Center (CCQA), Campinas, São Paulo, Brazil
| | - Maria Teresa Pedrosa Silva Clerici
- Department of Food Tecnology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP: 13083-862 Campinas, São Paulo, Brazil.
| |
Collapse
|
35
|
Nocente F, Natale C, Galassi E, Taddei F, Gazza L. Using Einkorn and Tritordeum Brewers' Spent Grain to Increase the Nutritional Potential of Durum Wheat Pasta. Foods 2021; 10:foods10030502. [PMID: 33652761 PMCID: PMC7996885 DOI: 10.3390/foods10030502] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
Brewers' spent grain (BSG), the major by-product of the brewing industry, can be used as a functional ingredient to increase the nutritional value of cereal-based products. In this work, micronized BSG from the einkorn and tritordeum brewing processes were characterized and used to produce four macaroni pasta formulations enriched with BSG at ratios of 5 g and 10 g/100 g of semolina. Einkorn BSG showed the highest values for all the parameters analyzed-proteins, total dietary fiber (TDF) and total antioxidant capacity (TAC)-except for β-glucan. TDF increased up to 42 and 68% in pasta samples enriched with 10% of BSG from tritordeum and einkorn, respectively. The replacement of 10% of semolina with BSG from both cereals significantly increased the β-glucan content and TAC values. Finally, the addition of BSG from einkorn and tritordeum affected to a minimal extent the sensory properties of cooked pasta, which showed higher values of optimal cooking time and cooking loss, but lower total organic matter compared to semolina pasta. Results from the sensorial judgment fell in the good quality ranges for durum wheat pasta; the incorporation of 10% of einkorn BSG resulted in the best compromise in terms of technological, nutritional and sensorial aspects of enriched pasta.
Collapse
|
36
|
Yildiz A, Hajyzadeh M, Ozbek K, Nadeem MA, Hunter D. Molecular characterisation of the oldest domesticated Turkish einkorn wheat landraces with simple sequence repeat (SSR) markers. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1970023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Ayse Yildiz
- The National Botanical Garden of Turkey, Rebublic of Turkey Ministry of Agriculture and Forestry, Üniversiteler Mah. Dumlupınar Boulevard, Ankara, Turkey
| | - Mortaza Hajyzadeh
- Department of Field Crops, Faculty of Agriculture, Şirnak University, Şirnak, Turkey
| | - Kursad Ozbek
- The National Botanical Garden of Turkey, Rebublic of Turkey Ministry of Agriculture and Forestry, Üniversiteler Mah. Dumlupınar Boulevard, Ankara, Turkey
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Danny Hunter
- Alliance of Bioversity International and CIAT, Via di San Domenico, Rome, Italy
| |
Collapse
|
37
|
Biochemical characteristics and potential applications of ancient cereals - An underexploited opportunity for sustainable production and consumption. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Abstract
There have been tremendous marketing efforts and consumer interest in the so-called ancient grains. Einkorn, emmer and spelt, which are sometimes referred to as ancient wheats, are frequently included in this category, and have gained some attention among brewers. The objective of the current study was to compare the malting behavior and quality of einkorn, emmer and spelt cultivars obtained from the same growing environment. Aside from standard malt quality traits, the levels of β-amylase, protease, xylanase, wort arabinoxylans and wort phenolic acids were measured. While protein levels of the samples were higher (11.4–14.0%) than normally selected for wheat malt, the results indicated that malts of acceptable quality in terms of extract and amylolytic activity can be prepared from the three grain types. However, the ideal malting protocol will likely differ between the grains. The kernels of einkorn are significantly smaller, and steep hydration and malt modification are quicker. In terms of potential health benefits from antioxidant capacity and dietary fiber, wort from einkorn trended to higher levels of free and conjugated ferulic acid, as well as high-molecular-weight arabinoxylan.
Collapse
|
39
|
Arif Yılmaz V, Faik Koca A. Quality, sensorial and textural properties of einkorn and durum bulgur produced with several methods. Int J Gastron Food Sci 2020. [DOI: 10.1016/j.ijgfs.2020.100263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Kulathunga J, Reuhs BL, Simsek S. A review: Novel trends in hulled wheat processing for value addition. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
41
|
Van Boxstael F, Aerts H, Linssen S, Latré J, Christiaens A, Haesaert G, Dierickx I, Brusselle J, De Keyzer W. A comparison of the nutritional value of Einkorn, Emmer, Khorasan and modern wheat: whole grains, processed in bread, and population-level intake implications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4108-4118. [PMID: 32246458 DOI: 10.1002/jsfa.10402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/06/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Interest in alternatives to the traditional wheat Triticum aestivum among farmers, millers, bakers, and consumers is increasing. The Altergrain project aimed to compare the Belgian-soil cultivated Einkorn (1K), Emmer (EMM), Khorasan (KH), and modern wheat (MW) with respect to nutritional values of kernels, breads made from these cereals, and population-level nutrient intake implications. RESULTS Ancient wheats 1K, EMM, and KH contain lower total carbohydrate content than MW. Further, ancient wheats are higher in both protein and crude ash content. Vitamin E levels in breads prepared using 1K and EMM were higher than those in MW, but those prepared from KH had lower vitamin E levels than MW. Breads prepared using ancient wheats have higher total phenol content (TPC) than those from MW. Baking caused a decrease in vitamin E and TPC in bread prepared from ancient wheat, the exception being the one prepared using KH, which had a higher TPC than MW. When replacing bread made from MW with those made from ancient grains, no differences were observed with respect to conformance with the Belgian Recommend Daily Requirements. CONCLUSION Ancient wheats from Belgian soil are as nutritive as MWs even after being processed into bread. At the kernel level, nutritional differences are present, but only small differences are present in terms of nutritional intake when nutrition parameters are calculated for consumed bread. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Frank Van Boxstael
- School of Bioscience and Industrial Technology, University of Applied Sciences and Arts (HOGENT), Ghent, Belgium
| | - Hanna Aerts
- School of Bioscience and Industrial Technology, University of Applied Sciences and Arts (HOGENT), Ghent, Belgium
- School of Healthcare, University of Applied Sciences and Arts (HOGENT), Ghent, Belgium
| | - Sarah Linssen
- School of Bioscience and Industrial Technology, University of Applied Sciences and Arts (HOGENT), Ghent, Belgium
| | - Joos Latré
- School of Bioscience and Industrial Technology, University of Applied Sciences and Arts (HOGENT), Ghent, Belgium
| | - Anneline Christiaens
- School of Bioscience and Industrial Technology, University of Applied Sciences and Arts (HOGENT), Ghent, Belgium
| | - Geert Haesaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University (UGent), Ghent, Belgium
| | - Isabelle Dierickx
- School of Business and Management, University of Applied Sciences and Arts (HOGENT), Ghent, Belgium
| | - Joeri Brusselle
- School of Business and Management, University of Applied Sciences and Arts (HOGENT), Ghent, Belgium
| | - Willem De Keyzer
- School of Bioscience and Industrial Technology, University of Applied Sciences and Arts (HOGENT), Ghent, Belgium
| |
Collapse
|
42
|
|
43
|
Çakır E, Arıcı M, Durak MZ, Karasu S. The molecular and technological characterization of lactic acid bacteria in einkorn sourdough: effect on bread quality. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00412-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
44
|
Differential Physiological Responses Elicited by Ancient and Heritage Wheat Cultivars Compared to Modern Ones. Nutrients 2019; 11:nu11122879. [PMID: 31779167 PMCID: PMC6950659 DOI: 10.3390/nu11122879] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Although ancient, heritage, and modern wheat varieties appear rather similar from a nutritional point of view, having a similar gluten content and a comparable toxicity linked to their undigested gluten peptide, whenever the role of ancient end heritage wheat grains has been investigated in animal studies or in clinical trials, more anti-inflammatory effects have been associated with the older wheat varieties. This review provides a critical overview of existing data on the differential physiological responses that could be elicited in the human body by ancient and heritage grains compared to modern ones. The methodology used was that of analyzing the results of relevant studies conducted from 2010 through PubMed search, by using as keywords “ancient or heritage wheat”, “immune wheat” (protein or peptides), and immune gluten (protein or peptides). Our conclusion is that, even if we do not know exactly which molecular mechanisms are involved, ancient and heritage wheat varieties have different anti-inflammatory and antioxidant proprieties with respect to modern cultivars. It is, therefore, reasonable to assume that the health proprieties attributed to older cultivars could be related to wheat components which have positive roles in the modulation of intestinal inflammation and/or permeability.
Collapse
|
45
|
Ceccarini C, Antognoni F, Biondi S, Fraternale A, Verardo G, Gorassini A, Scoccianti V. Polyphenol-enriched spelt husk extracts improve growth and stress-related biochemical parameters under moderate salt stress in maize plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:95-104. [PMID: 31136935 DOI: 10.1016/j.plaphy.2019.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/26/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Biostimulants improve yield, quality, and stress acclimation in crops. In this work, we tested the possibility of using phenolics-rich extracts from spelt (Triticum dicoccum L.) husks to attenuate the effects of salt stress (100-200 mM NaCl) in maize. Two methanolic extracts were prepared from the soluble-conjugated (SC), and the insoluble-bound (IB) phenolic acid fractions of the spelt husk, and their effects were investigated on several stress-associated biochemical parameters, such as proline, lipid peroxidation, H2O2, GSH levels, and ion content. Results show that SC and IB fractions of husk extracts behaved very differently, no doubt due to their greatly divergent chemical composition, as revealed by both GC-MS and HPLC analyses. The efficacy of treatments in mitigating salt stress was also dose- and timing-dependent. IB, even at the lower concentration tested, was able to recover the performance of stressed plants in terms of growth, photosynthetic pigments content, and levels of salt stress markers. Recovery of shoot growth to control levels and reduction of stress-induced proline accumulation occurred regardless of whether plants were pre-treated or post-treated with IB, whereas only pre-treatment with the higher dose of IB was effective in mitigating oxidative stress. Although in some cases SC and even methanol alone exerted some positive effects, they could also be deleterious whereas IB never was. Overall, results indicate that a polyphenol-containing extract obtained from spelt by-products can behave as biostimulant in maize plants and can mitigate their response to salt stress, by acting on different biochemical targets.
Collapse
Affiliation(s)
- Chiara Ceccarini
- Dipartimento di Scienze Biomolecolari, Università di Urbino Carlo Bo, 61029, Urbino, Italy
| | - Fabiana Antognoni
- Dipartimento di Scienze per La Qualità della Vita, Università di Bologna, 47921, Rimini, Italy.
| | - Stefania Biondi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, 40126, Bologna, Italy
| | - Alessandra Fraternale
- Dipartimento di Scienze Biomolecolari, Università di Urbino Carlo Bo, 61029, Urbino, Italy
| | - Giancarlo Verardo
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, 33100, Udine, Italy
| | - Andrea Gorassini
- Dipartimento di Studi Umanistici e del Patrimonio Culturale, Università di Udine, 33100, Udine, Italy
| | - Valeria Scoccianti
- Dipartimento di Scienze Biomolecolari, Università di Urbino Carlo Bo, 61029, Urbino, Italy
| |
Collapse
|
46
|
Hidalgo A, Lucisano M, Mariotti M, Brandolini A. Physico‐chemical and nutritional characteristics of einkorn flour cookies. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Alyssa Hidalgo
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS) Università degli Studi di Milano Milan Italy
| | - Mara Lucisano
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS) Università degli Studi di Milano Milan Italy
| | - Manuela Mariotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS) Università degli Studi di Milano Milan Italy
| | - Andrea Brandolini
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA) Sant'Angelo Lodigiano Italy
| |
Collapse
|
47
|
Akar T, Cengiz M, Tekin M. A comparative study of protein and free amino acid contents in some important ancient wheat lines. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2019. [DOI: 10.3920/qas2018.1382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- T. Akar
- Akdeniz University, Faculty of Agriculture, Department of Field Crops, 07058 Antalya, Turkey
| | - M.F. Cengiz
- Akdeniz University, Faculty of Agriculture, Department of Agricultural Biotechnology, 07058 Antalya, Turkey
| | - M. Tekin
- Akdeniz University, Faculty of Agriculture, Department of Field Crops, 07058 Antalya, Turkey
| |
Collapse
|
48
|
Rocco M, Tartaglia M, Izzo FP, Varricchio E, Arena S, Scaloni A, Marra M. Comparative proteomic analysis of durum wheat shoots from modern and ancient cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:253-262. [PMID: 30590259 DOI: 10.1016/j.plaphy.2018.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/10/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
Durum wheat is widespread cultivated in the Mediterranean basin, where it is used to produce high-quality semolina for pasta. Although over the years local and ancient wheat cultivars have been replaced by new ones, better suited to intensive cultivation, the increasing demand of consumers for nutritional and sensory qualities, as well as their attention to sustainable agronomic practices, renewed the interest toward traditional varieties. In order to fully exploit their agronomical and nutritional potential, a systematic analysis of molecular traits would be desirable. Nowadays, this examination is greatly facilitated by the current availability of high-throughput genomic and proteomic methods, which are integrated with classical measurements on plant physiology. To this purpose, we performed a comparative study on germination performances, hormone level variations, and differential protein representations of three-days germinated shoots of two traditional wheat cultivars from Southern Italy, namely Senatore Cappelli and Saragolla, and the commercial elite variety Svevo. Two-dimensional electrophoresis- and nanoLC-ESI-LIT-MS/MS-based proteomic analysis revealed 45 differentially represented spots, which were associated with 32 non-redundant protein species grouping into storage, stress/defense and metabolism/energy production functional categories. Major differences in the traditional varieties concerned over-representation of glutenins, gamma-gliadin and some enzymes of glycolysis and TCA cycle, as well as a down-representation of proteins involved in the response to stress conditions. These features were here discussed in relation to the hormone profile and the known agronomic features of traditional varieties, as compared to the commercial one.
Collapse
Affiliation(s)
- Mariapina Rocco
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy
| | - Maria Tartaglia
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy
| | - Francesco Paolo Izzo
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy
| | - Ettore Varricchio
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy
| | - Simona Arena
- Proteomics &Mass Spectrometry Laboratory ISPAAM, National Research Council, Naples 80147, Italy
| | - Andrea Scaloni
- Proteomics &Mass Spectrometry Laboratory ISPAAM, National Research Council, Naples 80147, Italy
| | - Mauro Marra
- Department of Biology, University of Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
49
|
Hendek Ertop M. Comparison of industrial and homemade bulgur produced from einkorn wheat ( Triticum monococcum
) and durum wheat ( Triticum durum
): Physicochemical, nutritional and microtextural properties. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Müge Hendek Ertop
- Faculty of Engineering and Architecture, Department of Food Engineering; Kastamonu University; Kastamonu Turkey
| |
Collapse
|
50
|
Silletti S, Morello L, Gavazzi F, Gianì S, Braglia L, Breviario D. Untargeted DNA-based methods for the authentication of wheat species and related cereals in food products. Food Chem 2019; 271:410-418. [DOI: 10.1016/j.foodchem.2018.07.178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/02/2018] [Accepted: 07/25/2018] [Indexed: 11/15/2022]
|