1
|
No effect of subthalamic deep brain stimulation on metacognition in Parkinson's disease. Sci Rep 2023; 13:10. [PMID: 36593254 PMCID: PMC9807631 DOI: 10.1038/s41598-022-26980-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a powerful treatment in Parkinson's disease (PD), which provides a positive effect on motor symptoms although the way it operates on high cognitive processes such as metacognition remains unclear. To address this issue, we recorded electroencephalogram (EEG) of PD patients treated with STN-DBS that performed a reversal learning (RL) paradigm endowed with metacognitive self-assessment. We considered two stimulation conditions, namely DBS-ON (stimulation on) and DBS-OFF (stimulation off), and focused our EEG-analysis on the frontal brain region due to its involvement on high cognitive processes. We found a trend towards a significant difference in RL ability between stimulation conditions. STN-DBS showed no effect on metacognition, although a significant association between accuracy and decision confidence level held for DBS OFF, but not in the case of DBS ON. In summary, our study revealed no significant effect of STN-DBS on RL or metacognition.
Collapse
|
2
|
Kamińska K, Lenda T, Konieczny J, Lorenc-Koci E. Behavioral and neurochemical interactions of the tricyclic antidepressant drug desipramine with L-DOPA in 6-OHDA-lesioned rats. Implications for motor and psychiatric functions in Parkinson's disease. Psychopharmacology (Berl) 2022; 239:3633-3656. [PMID: 36178508 PMCID: PMC9584871 DOI: 10.1007/s00213-022-06238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 09/12/2022] [Indexed: 11/11/2022]
Abstract
RATIONALE The pharmacological effects of antidepressants in modulating noradrenergic transmission as compared to serotonergic transmission in a rat model of Parkinson's disease under chronic L-DOPA therapy are insufficiently explored. OBJECTIVES The aim of the present study was to investigate the effect of the tricyclic antidepressant desipramine administered chronically alone or jointly with L-DOPA, on motor behavior and monoamine metabolism in selected brain structures of rats with the unilateral 6-OHDA lesion. METHODS The antiparkinsonian activities of L-DOPA and desipramine were assessed behaviorally using a rotation test and biochemically based on changes in the tissue concentrations of noradrenaline, dopamine and serotonin and their metabolites, evaluated separately for the ipsi- and contralateral motor (striatum, substantia nigra) and limbic (prefrontal cortex, hippocampus) structures of rat brain by HPLC method. RESULTS Desipramine administered alone did not induce rotational behavior, but in combination with L-DOPA, it increased the number of contralateral rotations more strongly than L-DOPA alone. Both L-DOPA and desipramine + L-DOPA significantly increased DA levels in the ipsilateral striatum, substantia nigra, prefrontal cortex and the ipsi- and contralateral hippocampus. The combined treatment also significantly increased noradrenaline content in the ipsi- and contralateral striatum, while L-DOPA alone decreased serotonin level on both sides of the hippocampus. CONCLUSIONS The performed analysis of the level of monoamines and their metabolites in the selected brain structures suggests that co-modulation of noradrenergic and dopaminergic transmission in Parkinson's disease by the combined therapy with desipramine + L-DOPA may have some positive implications for motor and psychiatric functions but further research is needed to exclude potential negative effects.
Collapse
Affiliation(s)
- Kinga Kamińska
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland
| | - Tomasz Lenda
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland
| | - Jolanta Konieczny
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland
| | - Elżbieta Lorenc-Koci
- Department of Neuro-Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna street 12, 31-343, Kraków, Poland.
| |
Collapse
|
3
|
Barch DM, Boudewyn MA, Carter CC, Erickson M, Frank MJ, Gold JM, Luck SJ, MacDonald AW, Ragland JD, Ranganath C, Silverstein SM, Yonelinas A. Cognitive [Computational] Neuroscience Test Reliability and Clinical Applications for Serious Mental Illness (CNTRaCS) Consortium: Progress and Future Directions. Curr Top Behav Neurosci 2022; 63:19-60. [PMID: 36173600 DOI: 10.1007/7854_2022_391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The development of treatments for impaired cognition in schizophrenia has been characterized as the most important challenge facing psychiatry at the beginning of the twenty-first century. The Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) project was designed to build on the potential benefits of using tasks and tools from cognitive neuroscience to better understanding and treat cognitive impairments in psychosis. These benefits include: (1) the use of fine-grained tasks that measure discrete cognitive processes; (2) the ability to design tasks that distinguish between specific cognitive domain deficits and poor performance due to generalized deficits resulting from sedation, low motivation, poor test taking skills, etc.; and (3) the ability to link cognitive deficits to specific neural systems, using animal models, neuropsychology, and functional imaging. CNTRICS convened a series of meetings to identify paradigms from cognitive neuroscience that maximize these benefits and identified the steps need for translation into use in clinical populations. The Cognitive Neuroscience Test Reliability and Clinical Applications for Schizophrenia (CNTRaCS) Consortium was developed to help carry out these steps. CNTRaCS consists of investigators at five different sites across the country with diverse expertise relevant to a wide range of the cognitive systems identified as critical as part of CNTRICs. This work reports on the progress and current directions in the evaluation and optimization carried out by CNTRaCS of the tasks identified as part of the original CNTRICs process, as well as subsequent extensions into the Positive Valence systems domain of Research Domain Criteria (RDoC). We also describe the current focus of CNTRaCS, which involves taking a computational psychiatry approach to measuring cognitive and motivational function across the spectrum of psychosis. Specifically, the current iteration of CNTRaCS is using computational modeling to isolate parameters reflecting potentially more specific cognitive and visual processes that may provide greater interpretability in understanding shared and distinct impairments across psychiatric disorders.
Collapse
Affiliation(s)
- Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| | | | | | | | | | - James M Gold
- Maryland Psychiatric Research Center, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Berardelli I, Belvisi D, Nardella A, Falcone G, Lamis DA, Fabbrini G, Berardelli A, Girardi P, Pompili M. Suicide in Parkinson's Disease: A Systematic Review. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:466-477. [PMID: 31269887 DOI: 10.2174/1871527318666190703093345] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 06/01/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
Abstract
Psychiatric disorders and suicide have been reported in patients suffering from Parkinson's disease. The aims of the present paper were to determine whether patients with Parkinson's disease have an increased rate of suicide and to identify the clinical features possibly associated with suicide risk in Parkinson's disease. We also reviewed the studies on suicide risk in Parkinson's disease in patients after deep brain stimulation. We performed a Medline, Excerpta Medica, PsycLit, PsycInfo and Index Medicus search to identify all articles published on this topic from 1970 to 2019. The following search terms were used: suicide OR suicide attempt OR suicidal ideation OR suicide risk AND Parkinson's disease AND Parkinson's disease and deep brain stimulation. The studies we identified that assessed the suicide rate associated with Parkinson's disease yielded contrasting results, although an increase in suicidal ideation did emerge. The studies on the effect of deep brain stimulation on suicide risk in Parkinson's disease also reported mixed findings. Psychiatric symptoms, including depression, appear to be associated with suicide risk in patients with Parkinson's disease undergoing medical and after surgical treatment. The studies reviewed suggest that suicidal ideation is increased in Parkinson's disease. Further longitudinal studies designed to assess suicidality in this condition are still needed.
Collapse
Affiliation(s)
- Isabella Berardelli
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | | | - Adele Nardella
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Giulia Falcone
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Dorian A Lamis
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30303, United States
| | - Giovanni Fabbrini
- IRCSS Neuromed Institute Pozzilli, IS, Italy.,Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy
| | - Alfredo Berardelli
- IRCSS Neuromed Institute Pozzilli, IS, Italy.,Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy
| | - Paolo Girardi
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Irmen F, Horn A, Mosley P, Perry A, Petry-Schmelzer JN, Dafsari HS, Barbe M, Visser-Vandewalle V, Schneider GH, Li N, Kübler D, Wenzel G, Kühn AA. Left Prefrontal Connectivity Links Subthalamic Stimulation with Depressive Symptoms. Ann Neurol 2020; 87:962-975. [PMID: 32239535 DOI: 10.1002/ana.25734] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD) not only stimulates focal target structures but also affects distributed brain networks. The impact this network modulation has on non-motor DBS effects is not well-characterized. By focusing on the affective domain, we systematically investigate the impact of electrode placement and associated structural connectivity on changes in depressive symptoms following STN-DBS, which have been reported to improve, worsen, or remain unchanged. METHODS Depressive symptoms before and after STN-DBS surgery were documented in 116 patients with PD from 3 DBS centers (Berlin, Queensland, and Cologne). Based on individual electrode reconstructions, the volumes of tissue activated (VTAs) were estimated and combined with normative connectome data to identify structural connections passing through VTAs. Berlin and Queensland cohorts formed a training and cross-validation dataset used to identify structural connectivity explaining change in depressive symptoms. The Cologne data served as the test-set for which depressive symptom change was predicted. RESULTS Structural connectivity was linked to depressive symptom change under STN-DBS. An optimal connectivity map trained on the Berlin cohort could predict changes in depressive symptoms in Queensland patients and vice versa. Furthermore, the joint training-set map predicted changes in depressive symptoms in the independent test-set. Worsening of depressive symptoms was associated with left prefrontal connectivity. INTERPRETATION Fibers connecting the electrode with left prefrontal areas were associated with worsening of depressive symptoms. Our results suggest that for the left STN-DBS lead, placement impacting fibers to left prefrontal areas should be avoided to maximize improvement of depressive symptoms. ANN NEUROL 2020;87:962-975.
Collapse
Affiliation(s)
- Friederike Irmen
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Biological Psychology and Cognitive Neuroscience, Freie Universität Berlin, Berlin, Germany
| | - Andreas Horn
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philip Mosley
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Herston, Australia.,Queensland Brain Institute, University of Queensland, St. Lucia, Australia
| | - Alistair Perry
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Jan Niklas Petry-Schmelzer
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Haidar S Dafsari
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Michael Barbe
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ningfei Li
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dorothee Kübler
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gregor Wenzel
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin, Germany
| |
Collapse
|
6
|
Berardelli I, Belvisi D, Pasquini M, Fabbrini A, Petrini F, Fabbrini G. Treatment of psychiatric disturbances in hypokinetic movement disorders. Expert Rev Neurother 2019; 19:965-981. [PMID: 31241368 DOI: 10.1080/14737175.2019.1636648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: We reviewed studies that assessed the treatment of psychiatric disturbances in Parkinson's disease and atypical parkinsonisms. Neuropsychiatric disturbances in these conditions are frequent and have a profound impact on quality of life of patients and of their caregivers. It is therefore important to be familiar with the appropriate pharmacological and non-pharmacological interventions for treating these disorders. Areas covered: The authors searched for papers in English in Pubmed using the following keywords: Parkinson's disease, multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration, Lewy body dementia, depression, apathy, anxiety, fatigue, sleep disorders, obsessive compulsive disorders, psychosis, hallucinations, delusions, impulse control disorders. Expert opinion: In Parkinson's disease, depression may benefit from the optimization of dopaminergic therapy, from the use of antidepressants acting on both the serotoninergic and noradrenergic pathways and from cognitive behavioral therapy. Psychosis in Parkinson's disease may improve with the use of clozapine; the serotonin inverse agonist pimavanserin has been shown to be effective. Treatment of impulse control disorders is primarily based on the removal of dopamine agonists. No controlled studies have investigated the treatment of neuropsychiatric disorders in multiple system atrophy, progressive supranuclear palsy or corticobasal degeneration. Acethylcholinesterase inhibitors may be used to treat hallucinations in Lewy body dementia.
Collapse
Affiliation(s)
- Isabella Berardelli
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome , Rome , Italy
| | | | - Massimo Pasquini
- Department of Human Neurosciences, Sapienza University of Rome , Rome , Italy
| | - Andrea Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome , Rome , Italy
| | - Federica Petrini
- Department of Neurosciences and Mental Health, Azienda Universitaria Policlinico Umberto I° , Rome , Italy
| | - Giovanni Fabbrini
- IRCCS Neuromed , Pozzilli , Italy.,Department of Human Neurosciences, Sapienza University of Rome , Rome , Italy
| |
Collapse
|
7
|
Patterson L, Rushton SP, Attems J, Thomas AJ, Morris CM. Degeneration of dopaminergic circuitry influences depressive symptoms in Lewy body disorders. Brain Pathol 2019; 29:544-557. [PMID: 30582885 PMCID: PMC6767514 DOI: 10.1111/bpa.12697] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/06/2018] [Indexed: 12/14/2022] Open
Abstract
Aims Depression is commonly observed even in prodromal stages of Lewy body disorders (LBD), and is associated with cognitive impairment and a faster rate of cognitive decline. Given the role of dopamine in the development of movement disorders, but also in motivation and reward, we investigated neurodegenerative pathology in dopaminergic circuitry in Parkinson's disease (PD), PD with dementia (PDD) and dementia with Lewy bodies (DLB) patients in relation to depressive symptoms. Methods α‐synuclein, hyperphosphorylated tau and amyloid‐beta pathology was assessed in 17 DLB, 14 PDD and 8 PD cases within striatal and midbrain subregions, with neuronal cell density assessed in substantia nigra and ventral tegmental area. Additionally, we used a structural equation modeling (SEM) approach to investigate the extent to which brain connectivity might influence the deposition of pathological proteins within dopaminergic pathways. Results A significantly higher α‐synuclein burden was observed in the substantia nigra (P = 0.006), ventral tegmental area (P = 0.011) and nucleus accumbens (P = 0.031) in LBD patients with depression. Significant negative correlations were observed between cell density in substantia nigra with Lewy body (LB) Braak stage (P = 0.013), whereas cell density in ventral tegmental area showed negative correlations with LB Braak stage (P = 0.026) and neurofibrillary tangle Braak stage (P = 0.007). Conclusions Dopaminergic α‐synuclein pathology appears to drive depression. Selective targeting of dopaminergic pathways may therefore provide symptomatic relief for depressive symptoms in LBD patients.
Collapse
Affiliation(s)
- Lina Patterson
- Alzheimer's Society Doctoral Training Centre, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Steven P Rushton
- School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne, UK
| | - Johannes Attems
- Alzheimer's Society Doctoral Training Centre, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Alan J Thomas
- Alzheimer's Society Doctoral Training Centre, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK.,Gateshead Health NHS Foundation Trust, Queen Elizabeth Hospital, Gateshead, UK
| | - Christopher M Morris
- NIHR Biomedical Research Centre Newcastle, Biomedical Research Building, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Martínez-Fernández R, Kibleur A, Chabardès S, Fraix V, Castrioto A, Lhommée E, Moro E, Lescoules L, Pelissier P, David O, Krack P. Different effects of levodopa and subthalamic stimulation on emotional conflict in Parkinson's disease. Hum Brain Mapp 2018; 39:5014-5027. [PMID: 30259598 DOI: 10.1002/hbm.24341] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/02/2018] [Accepted: 07/22/2018] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease impairs the decoding of emotional stimuli reflecting alterations of the limbic cortico-subcortical network. The objective of this study was to assess and compare the behavioral and electrophysiological effects of both levodopa and subthalamic stimulation on emotional processing in Parkinson's disease. Operated patients (n =16) and matched healthy subjects performed an emotional Stroop task, in which the emotion expressed by a face must be recognized while ignoring an emotional distractive word and that includes a neutral control sub-task. Patients were tested in the four possible treatment conditions (off stim/off med; on stim/off med; off stim/on med; and on stim/on med). High-resolution electroencephalography was recorded while performing the task. Patients made significantly more mistakes in facial emotion recognition than healthy subjects (p < .005). Untreated patients performed worse in the emotional trials than in the control sub-task (p < .05). Fearful faces induced significantly slower reaction times than happy faces in patients (p = .0002), but not in the healthy subjects. The emotional Stroop effect with levodopa was significantly higher than with subthalamic stimulation when fearful faces were assessed (p = .0243). Conversely, treatments did not modulate the Stroop effect of the control sub-task. EEG demonstrated that, compared with the untreated state, levodopa but not subthalamic stimulation significantly increases the amplitude of the event-related potential N170 (p = .002 vs. p = .1, respectively), an electrophysiological biomarker of early aspects of facial processing. The activity of the N170 cortical sources within the right fusiform gyrus was increased by levodopa (p < .05) but not by stimulation. While levodopa normalizes the recognition of emotional facial expression and early EEG markers of emotional processing, subthalamic stimulation does not. Thus, operated patients require dopaminergic medication in addition to stimulation to treat emotional symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Raul Martínez-Fernández
- CINAC-Hospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU San Pablo, Madrid, Spain.,Movement Disorders Unit, CHU Grenoble Alpes, Grenoble, France.,U1216, Grenoble Institut des Neurosciences, Inserm, Université Grenoble Alpes, Grenoble, France
| | - Astrid Kibleur
- U1216, Grenoble Institut des Neurosciences, Inserm, Université Grenoble Alpes, Grenoble, France
| | - Stéphan Chabardès
- U1216, Grenoble Institut des Neurosciences, Inserm, Université Grenoble Alpes, Grenoble, France.,Neurosurgery Department, CHU Grenoble Alpes, Grenoble, France
| | - Valérie Fraix
- Movement Disorders Unit, CHU Grenoble Alpes, Grenoble, France.,U1216, Grenoble Institut des Neurosciences, Inserm, Université Grenoble Alpes, Grenoble, France
| | - Anna Castrioto
- Movement Disorders Unit, CHU Grenoble Alpes, Grenoble, France.,U1216, Grenoble Institut des Neurosciences, Inserm, Université Grenoble Alpes, Grenoble, France
| | - Eugénie Lhommée
- Movement Disorders Unit, CHU Grenoble Alpes, Grenoble, France.,U1216, Grenoble Institut des Neurosciences, Inserm, Université Grenoble Alpes, Grenoble, France
| | - Elena Moro
- Movement Disorders Unit, CHU Grenoble Alpes, Grenoble, France.,U1216, Grenoble Institut des Neurosciences, Inserm, Université Grenoble Alpes, Grenoble, France
| | - Lucas Lescoules
- U1216, Grenoble Institut des Neurosciences, Inserm, Université Grenoble Alpes, Grenoble, France
| | - Pierre Pelissier
- Movement Disorders Unit, CHU Grenoble Alpes, Grenoble, France.,U1216, Grenoble Institut des Neurosciences, Inserm, Université Grenoble Alpes, Grenoble, France
| | - Olivier David
- U1216, Grenoble Institut des Neurosciences, Inserm, Université Grenoble Alpes, Grenoble, France
| | - Paul Krack
- Movement Disorders Unit, CHU Grenoble Alpes, Grenoble, France.,U1216, Grenoble Institut des Neurosciences, Inserm, Université Grenoble Alpes, Grenoble, France.,Neurosurgery Department, CHU Grenoble Alpes, Grenoble, France.,Division of Neurology, Department of Neuroscience, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
9
|
Trenado C, Boschheidgen M, Rübenach J, N'Diaye K, Schnitzler A, Mallet L, Wojtecki L. Assessment of Metacognition and Reversal Learning in Parkinson's Disease: Preliminary Results. Front Hum Neurosci 2018; 12:343. [PMID: 30254576 PMCID: PMC6141660 DOI: 10.3389/fnhum.2018.00343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
Reversal learning (RL) has been widely used for assessment of behavioral adaptation, impulsivity, obsession, and compulsion in healthy controls as well as people suffering from psychiatric and neurological disorders such as Parkinson’s disease (PD). Nevertheless, studies addressing high cognitive functions such as metacognition in PD are scarce. Here, we address for the first time the effect of levodopa and PD on metacognition within the framework of a RL paradigm. In agreement with previous reports, PD patients exhibited reversal shifting impairment with respect to healthy controls (CTRL) regardless of medication condition (MED-ON and MED-OFF), which was supported by a well-known model of learning conditioning (Rescorla–Wagner). In spite that we found a significant association between accuracy and decision confidence level for MED-OFF and CTRL, analysis of metacognitive sensitivity assessed by type 2 signal detection theory (SDT) revealed only a significant underperformance for patients without medication (MED-OFF). This finding points toward a non-compromising positive effect of dopaminergic medication on metacognition for PD.
Collapse
Affiliation(s)
- Carlos Trenado
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Center for Movement Disorders and Neuromodulation, Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Psychology and Neurosciences, Translational Neuromodulation Unit, Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Dortmund, Germany
| | - Matthias Boschheidgen
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Rübenach
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karim N'Diaye
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, Paris, France
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Center for Movement Disorders and Neuromodulation, Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Luc Mallet
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, Paris, France
| | - Lars Wojtecki
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Center for Movement Disorders and Neuromodulation, Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
10
|
Piccoli A, Rossettini G, Cecchetto S, Viceconti A, Ristori D, Turolla A, Maselli F, Testa M. Effect of Attentional Focus Instructions on Motor Learning and Performance of Patients with Central Nervous System and Musculoskeletal Disorders: a Systematic Review. J Funct Morphol Kinesiol 2018; 3:E40. [PMID: 33466969 PMCID: PMC7739330 DOI: 10.3390/jfmk3030040] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/26/2022] Open
Abstract
Exercise is one of the main rehabilitative interventions, commonly used to improve performance and motor learning. During the application of attentional focus strategies, External Focus of Attention (EFA) aiming at the movement effect has been reported to have more efficacy than Internal Focus of Attention (IFA) aiming at movement characteristics in healthy subjects. There are not many studies that compare the EFA and IFA instructions in people with Musculoskeletal (MSK) and Central Nervous System disorders (CNS). The purpose of this systematic review is to determine if IFA or EFA, in patients with CNS or MSK, may improve performance and have some effects on motor learning. Databases used for research: PubMed, CINAHL, Cochrane Library, PEDro, PsycINFO, SCOPUS. Inclusion criteria: Randomized Controlled Trial, quasi-Randomized Controlled Trial, enrolled subjects with CNS or with MSK and compared the efficacy of EFA and IFA. The studies suggest that the EFA is better than IFA in affecting the movement execution in patients with MSK, while conflicted findings emerge in presence of CNS disorders. Studies included in the qualitative analysis showed heterogeneous methodological features in study design and conductance, so results must be interpreted with caution.
Collapse
Affiliation(s)
- Alessandro Piccoli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Campus of Savona, 17100 Savona, Italy
| | - Giacomo Rossettini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Campus of Savona, 17100 Savona, Italy
| | | | - Antonello Viceconti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Campus of Savona, 17100 Savona, Italy
| | - Diego Ristori
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Campus of Savona, 17100 Savona, Italy
| | - Andrea Turolla
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Campus of Savona, 17100 Savona, Italy
- Fondazione Ospedale San Camillo IRCCS, 30126 Venezia, Italy
| | - Filippo Maselli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Campus of Savona, 17100 Savona, Italy
| | - Marco Testa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Campus of Savona, 17100 Savona, Italy
| |
Collapse
|
11
|
Vo A, Ganjavi H, MacDonald PA. Levodopa has mood-enhancing effects in healthy elderly adults. Int J Geriatr Psychiatry 2018; 33:674-675. [PMID: 29498779 DOI: 10.1002/gps.4824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/25/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Andrew Vo
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada.,Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - Hooman Ganjavi
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Penny A MacDonald
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada.,Department of Psychology, University of Western Ontario, London, Ontario, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
12
|
Jazaeri SZ, Azad A, Mehdizadeh H, Habibi SA, Mandehgary Najafabadi M, Saberi ZS, Rahimzadegan H, Moradi S, Behzadipour S, Parnianpour M, Taghizadeh G, Khalaf K. The effects of anxiety and external attentional focus on postural control in patients with Parkinson's disease. PLoS One 2018; 13:e0192168. [PMID: 29390029 PMCID: PMC5794142 DOI: 10.1371/journal.pone.0192168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/17/2018] [Indexed: 11/24/2022] Open
Abstract
Background Although anxiety is a common non-motor outcome of Parkinson's disease (PD) affecting 40% of patients, little attention has been paid so far to its effects on balance impairment and postural control. Improvement of postural control through focusing on the environment (i.e. external focus) has been reported, but the role of anxiety, as a confounding variable, remains unclear. Objectives This study aimed to investigate the influence of anxiety and attentional focus instruction on the standing postural control of PD patients. Methods Thirty-four patients with PD (17 with high anxiety (HA-PD) and 17 with low anxiety (LA-PD)), as well as 17 gender- and age-matched healthy control subjects (HC) participated in the study. Postural control was evaluated using a combination of two levels of postural difficulty (standing on a rigid force plate surface with open eyes (RO) and standing on a foam surface with open eyes (FO)), as well as three attentional focus instructions (internal, external and no focus). Results Only the HA-PD group demonstrated significant postural control impairment as compared to the control, as indicated by significantly greater postural sway measures. Moreover, external focus significantly reduced postural sway in all participants especially during the FO condition. Conclusion The results of the current study provide evidence that anxiety influences balance control and postural stability in patients with PD, particularly those with high levels of anxiety. The results also confirmed that external focus is a potential strategy that significantly improves the postural control of these patients. Further investigation of clinical applicability is warranted towards developing effective therapeutic and rehabilitative treatment plans.
Collapse
Affiliation(s)
- Seyede Zohreh Jazaeri
- Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Akram Azad
- Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hajar Mehdizadeh
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Occupational Therapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amirhassan Habibi
- Department of Neurology, Movement Disorder Clinic, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahbubeh Mandehgary Najafabadi
- Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Zakieh Sadat Saberi
- Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hawre Rahimzadegan
- Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Moradi
- Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Behzadipour
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
- Mowafaghian Research Center in Neurorehabilitation Technologies, Tehran, Iran
| | - Mohamad Parnianpour
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Ghorban Taghizadeh
- Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
- Rehabilitation Research Center, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
- * E-mail: ,
| | - Kinda Khalaf
- Department of Biomedical Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi, UAE
| |
Collapse
|
13
|
Faggiani E, Naudet F, Janssen ML, Temel Y, Benazzouz A. Serotonergic neurons mediate the anxiolytic effect of l -DOPA: Neuronal correlates in the amygdala. Neurobiol Dis 2018; 110:20-28. [DOI: 10.1016/j.nbd.2017.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/11/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022] Open
|
14
|
Bargiotas P, Eugster L, Oberholzer M, Debove I, Lachenmayer ML, Mathis J, Pollo C, Schüpbach WMM, Bassetti CL. Sleep-wake functions and quality of life in patients with subthalamic deep brain stimulation for Parkinson's disease. PLoS One 2017; 12:e0190027. [PMID: 29253029 PMCID: PMC5734707 DOI: 10.1371/journal.pone.0190027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/06/2017] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Sleep-wake disturbances (SWD) are frequent in Parkinson's disease (PD). The effect of deep brain stimulation (DBS) on SWD is poorly known. In this study we examined the subjective and objective sleep-wake profile and the quality of life (QoL) of PD patients in the context of subthalamic DBS. PATIENTS AND METHODS We retrospectively analyzed data from PD patients and candidates for DBS in the nucleus suthalamicus (STN). Pre-DBS, sleep-wake assessments included subjective and objective (polysomnography, vigilance tests and actigraphy) measures. Post-DBS, subjective measures were collected. QoL was assessed using the Parkinson's Disease Questionnaire (PDQ-39) and the RAND SF-36-item Health Survey (RAND SF-36). RESULTS Data from 74 PD patients (62% male, mean age 62.2 years, SD = 8.9) with a mean UPDRS-III (OFF) of 34.2 (SD = 14.8) and 11.8 (SD = 4.5) years under PD treatment were analyzed. Pre-DBS, daytime sleepiness, apathy, fatigue and depressive symptoms were present in 49%, 34%, 38% and 25% of patients respectively but not always as co-occurring symptoms. Sleep-wake disturbances were significantly correlated with QoL scores. One year after STN DBS, motor signs, QoL and sleepiness improved but apathy worsened. Changes in QoL were associated with changes in sleepiness and apathy but baseline sleep-wake functions were not predictive of STN DBS outcome. CONCLUSION In PD patients presenting for STN DBS, subjective and objective sleep-wake disturbances are common and have a negative impact on QoL before and after neurosurgery. Given the current preliminary evidence, prospective observational studies assessing subjective and objective sleep-wake variables prior to and after DBS are needed.
Collapse
Affiliation(s)
- Panagiotis Bargiotas
- Department of Neurology, University Hospital (Inselspital) and University of Bern, Bern, Switzerland
- * E-mail:
| | - Lukas Eugster
- Department of Neurology, University Hospital (Inselspital) and University of Bern, Bern, Switzerland
| | - Michael Oberholzer
- Department of Neurology, University Hospital (Inselspital) and University of Bern, Bern, Switzerland
| | - Ines Debove
- Department of Neurology, University Hospital (Inselspital) and University of Bern, Bern, Switzerland
| | - M. Lenard Lachenmayer
- Department of Neurology, University Hospital (Inselspital) and University of Bern, Bern, Switzerland
| | - Johannes Mathis
- Department of Neurology, University Hospital (Inselspital) and University of Bern, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, University Hospital (Inselspital) and University of Bern, Bern, Switzerland
| | - W. M. Michael Schüpbach
- Department of Neurology, University Hospital (Inselspital) and University of Bern, Bern, Switzerland
| | - Claudio L. Bassetti
- Department of Neurology, University Hospital (Inselspital) and University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Chabardes S, Krack P, Polosan M. Commentaries on "Subthalamic Deep Brain Stimulation in Obsessive-Compulsive Disorder: First German Experience and Future Outlook". World Neurosurg 2017; 95:609-610. [PMID: 27923468 DOI: 10.1016/j.wneu.2016.08.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Stephan Chabardes
- Université Grenoble Alpes, Grenoble, France; Clinique de Neurochirurgie, Centre Hospitalier Universitaire Grenoble Alpes (CHU) de Grenoble, Grenoble, France; CEA Clinatec-Minatec, Grenoble, France; Inserm, Grenoble Institut des Neurosciences, Grenoble, France.
| | - Paul Krack
- Clinique de Neurologie, Centre Hospitalier (CH) de Geneve, Geneve, France
| | - Mircea Polosan
- Université Grenoble Alpes, Grenoble, France; Inserm, Grenoble Institut des Neurosciences, Grenoble, France; Clinique de Psychiatrie, Centre Hospitalier Universitaire Grenoble Alpes (CHU) de Grenoble, Grenoble, France
| |
Collapse
|
16
|
Abstract
Deep brain stimulation (DBS) is effective for Parkinson's disease (PD), dystonia, and essential tremor (ET). While motor benefits are well documented, cognitive and psychiatric side effects from the subthalamic nucleus (STN) and globus pallidus interna (GPi) DBS for PD are increasingly recognized. Underlying disease, medications, microlesions, and post-surgical stimulation likely all contribute to non-motor symptoms (NMS).
Collapse
|
17
|
Buhmann C, Huckhagel T, Engel K, Gulberti A, Hidding U, Poetter-Nerger M, Goerendt I, Ludewig P, Braass H, Choe CU, Krajewski K, Oehlwein C, Mittmann K, Engel AK, Gerloff C, Westphal M, Köppen JA, Moll CKE, Hamel W. Adverse events in deep brain stimulation: A retrospective long-term analysis of neurological, psychiatric and other occurrences. PLoS One 2017; 12:e0178984. [PMID: 28678830 PMCID: PMC5497949 DOI: 10.1371/journal.pone.0178984] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 05/22/2017] [Indexed: 11/18/2022] Open
Abstract
Background and objective The extent to which deep brain stimulation (DBS) can improve quality of life may be perceived as a permanent trade-off between neurological improvements and complications of therapy, comorbidities, and disease progression. Patients and methods We retrospectively investigated 123 consecutive and non-preselected patients. Indications for DBS surgery were Parkinson's disease (82), dystonia (18), tremor of different etiology (21), Huntington's disease (1) and Gilles de la Tourette syndrome (1). AEs were defined as any untoward clinical occurrence, sign or patient complaint or unintended disease if related or unrelated to the surgical procedures, implanted devices or ongoing DBS therapy. Results Over a mean/median follow-up period of 4.7 years (578 patient-years) 433 AEs were recorded in 106 of 123 patients (86.2%). There was no mortality or persistent morbidity from the surgical procedure. All serious adverse events (SAEs) that occurred within 4 weeks of surgery were reversible. Neurological AEs (193 in 85 patients) and psychiatric AEs (78 in 48 patients) were documented most frequently. AEs in 4 patients (suicide under GPI stimulation, weight gain >20 kg, impairment of gait and speech, cognitive decline >2 years following surgery) were severe or worse, at least possibly related to DBS and non reversible. In PD 23.1% of the STN-stimulated patients experienced non-reversible (or unknown reversibility) AEs that were at least possibly related to DBS in the form of impaired speech or gait, depression, weight gain, cognitive disturbances or urinary incontinence (severity was mild or moderate in 15 of 18 patients). Age and Hoehn&Yahr stage of STN-simulated PD patients, but not preoperative motor impairment or response to levodopa, showed a weak correlation (r = 0.24 and 0.22, respectively) with the number of AEs. Conclusions DBS-related AEs that were severe or worse and non-reversible were only observed in PD (4 of 82 patients; 4.9%), but not in other diseases. PD patients exhibited a significant risk for non-severe AEs most of which also represented preexisting and progressive axial and non-motor symptoms of PD. Mild gait and/or speech disturbances were rather frequent complaints under VIM stimulation. GPI stimulation for dystonia could be applied with negligible DBS-related side effects.
Collapse
Affiliation(s)
- Carsten Buhmann
- Klinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Torge Huckhagel
- Klinik für Neurochirurgie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Katja Engel
- Klinik für Neurochirurgie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandro Gulberti
- Institut für Neurophysiologie und Pathophysiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ute Hidding
- Klinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Ines Goerendt
- Klinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Ludewig
- Klinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Braass
- Klinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Chi-un Choe
- Klinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Kara Krajewski
- Klinik für Neurochirurgie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Andreas K. Engel
- Institut für Neurophysiologie und Pathophysiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Klinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Klinik für Neurochirurgie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes A. Köppen
- Klinik für Neurochirurgie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Christian K. E. Moll
- Institut für Neurophysiologie und Pathophysiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Hamel
- Klinik für Neurochirurgie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
18
|
Wang X, Li J, Yuan Y, Wang M, Ding J, Zhang J, Zhu L, Shen Y, Zhang H, Zhang K. Altered putamen functional connectivity is associated with anxiety disorder in Parkinson's disease. Oncotarget 2017; 8:81377-81386. [PMID: 29113397 PMCID: PMC5655292 DOI: 10.18632/oncotarget.18996] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/16/2017] [Indexed: 01/27/2023] Open
Abstract
In this study, we used resting state-functional magnetic resonance imaging (rs-fMRI) to explore altered putamen functional connectivity (FC) in Parkinson's disease patients with anxiety disorder. We divided 65 Parkinson's disease patients into anxiety (PD-A; n=18) and non-anxiety (PD-NA; n=45) groups based on a Hamilton Anxiety Rating Scale cutoff score of 12. The PD-A patients exhibited altered putamen FC with cortical and subcortical regions. The PD-A patients showed enhanced putamen FC with the caudatum, which correlated with increased emotional processing during anxiety. Decreased putamen FC with the orbitofrontal gyrus and cerebellum also correlated with increased anxiety in Parkinson's disease. Our findings demonstrate that anxiety disorder in Parkinson's disease is associated with abnormal putamen FC networks, especially with caudatum, orbitofrontal gyrus and cerebellum.
Collapse
Affiliation(s)
- Xixi Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junyi Li
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongsheng Yuan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Ding
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiejin Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Zhu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuting Shen
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Fabbri M, Coelho M, Guedes LC, Rosa MM, Abreu D, Gonçalves N, Antonini A, Ferreira JJ. Acute response of non-motor symptoms to subthalamic deep brain stimulation in Parkinson's disease. Parkinsonism Relat Disord 2017; 41:113-117. [PMID: 28528805 DOI: 10.1016/j.parkreldis.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/03/2017] [Accepted: 05/06/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Subthalamic deep brain stimulation (STN-DBS) is an established treatment for the motor complications of Parkinson's disease (PD) and may have beneficial effects on non-motor symptoms (NMS). However, the acute effect of STN stimulation on NMS has only been explored in small PD cohorts with short post-surgical follow-up. OBJECTIVE To study NMS response to an acute stimulation challenge in an STN-DBS PD population with a medium/long-term post-surgical follow-up. METHODS 32 STN-DBS PD patients were tested twice (MED OFF/STIM OFF and MED OFF/STIM ON). MDS-UPDRS-III, blood pressure (BP) assessment, a visual analogue scale for pain and fatigue and State Trait Anxiety Scale score were evaluated during both stimulation conditions. NMS were assessed with MDS-UPDRS-I, Non-Motor Symptoms Scale, Geriatric Depression Scale and the Neuropsychiatric Inventory scale. RESULTS Mean (SD) age was 62.5 (±13.3) years, mean disease duration 18.7 (±5.1) years, mean post-surgical follow-up 4.6 (±1.3) years, and the mean reduction of levodopa equivalent daily dose after surgery was 58.9% (±25.4%). Mean (SD) motor response to stimulation was 40% (15%). STN stimulation significantly improved anxiety (mean 18% ± 19%, P < 0.005) and fatigue (mean 25% ± 51%; P < 0.05), while pain, although improved did not reach statistical significance. With stimulation ON, BP significantly decreased during orthostatism (P < 0.05) and there was a significant increase in asymptomatic orthostatic hypotension (P < 0.05). CONCLUSIONS Acute STN stimulation improves anxiety and fatigue but decreases orthostatic BP in PD, several years after surgery. These effects should be considered when assessing long-term effect of DBS.
Collapse
Affiliation(s)
- Margherita Fabbri
- Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Portugal
| | - Miguel Coelho
- Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Portugal; Neurology Service, Department of Neurosciences, Hospital Santa Maria, Lisbon, Portugal
| | - Leonor Correia Guedes
- Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Portugal; Neurology Service, Department of Neurosciences, Hospital Santa Maria, Lisbon, Portugal
| | - Mario M Rosa
- Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Portugal; Neurology Service, Department of Neurosciences, Hospital Santa Maria, Lisbon, Portugal; Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Medicine, University of Lisbon, Portugal
| | - Daisy Abreu
- Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Portugal
| | - Nilza Gonçalves
- Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Portugal
| | - Angelo Antonini
- Fondazione Ospedale San Camillo"-I.R.C.C.S., Parkinson and Movement Disorders Unit, Venice, Italy; Department of Neurosciences (DNS), Padova University, Padova, Italy
| | - Joaquim J Ferreira
- Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Portugal; Neurology Service, Department of Neurosciences, Hospital Santa Maria, Lisbon, Portugal; Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Medicine, University of Lisbon, Portugal.
| |
Collapse
|
20
|
Krack P, Martinez-Fernandez R, del Alamo M, Obeso JA. Current applications and limitations of surgical treatments for movement disorders. Mov Disord 2017; 32:36-52. [DOI: 10.1002/mds.26890] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 12/11/2022] Open
Affiliation(s)
- Paul Krack
- Neurology Division, Department of Clinical Neurosciences; University Hospital of Geneva; Geneva Switzerland
| | | | - Marta del Alamo
- CINAC-Hospital Universitario HM Puerta del Sur; CEU-San Pablo University; Madrid Spain
- Neurosurgery Department; Hospital Universitario Ramon y Cajal; Madrid Spain
| | - Jose A. Obeso
- CINAC-Hospital Universitario HM Puerta del Sur; CEU-San Pablo University; Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas; Madrid Spain
| |
Collapse
|
21
|
Kehagia AA. A neurological perspective on the enhancement debate: Lessons learned from Parkinson's disease. J Psychopharmacol 2016; 30:957-66. [PMID: 27604630 DOI: 10.1177/0269881116665328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cognitive enhancement is signified by adaptive behavioural change following an intervention that targets the brain. Although much of the discussion and research into cognitive enhancement focuses on the effects of neural interventions in healthy individuals, it is useful to consider evidence from clinical populations. Diseases of the central nervous system represent the primary and richest source of evidence on the effects of brain manipulations, which are in the first instance therapeutic. Parkinson's disease (PD) is used as a model for understanding the effects of pharmacological agents that target systems with a central role in cognition. The mixed outcomes of deep brain stimulation on cognition will also be discussed. By illustrating the psychopharmacological principle of diverse and malleable neurochemical optima for different cognitive functions, and the role of individual differences, it will be argued that the entire spectrum of cognitive effects in any one individual following any given manipulation, such as the administration of a drug, often includes enhancement as well as impairment. Predicting these effects represents a complex multivariate problem, and the accuracy of this predictive effort, as well as the harm prevention it connotes, is determined by our evolving understanding of the brain and cognition. A manipulation can be said to confer cognitive enhancement; however, it is argued that using the global term cognitive enhancer to refer to such a manipulation without qualification is of limited utility.
Collapse
Affiliation(s)
- Angie A Kehagia
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
22
|
Deep brain stimulation and sleep-wake functions in Parkinson's disease: A systematic review. Parkinsonism Relat Disord 2016; 32:12-19. [PMID: 27605426 DOI: 10.1016/j.parkreldis.2016.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/19/2016] [Accepted: 08/05/2016] [Indexed: 01/27/2023]
Abstract
Sleep-wake disturbances (SWD) are common nonmotor symptoms (NMS) and have a great impact on quality of life of patients with Parkinson's disease (PD). Deep brain stimulation (DBS) is an established treatment in PD. While the beneficial effects of DBS on cardinal PD motor symptoms are indisputable, the data for several NMS, including sleep-wake functions, are limited and often controversial. Our primary objective was to review the literature on the impact of DBS on sleep-wake functions in patients with PD. A systematic review of articles, published in PubMed between January 1st, 2000 and December 31st, 2015 was performed to identify studies addressing the evolution of sleep-wake functions after DBS in patients with PD. Only 38 of 208 studies, involving a total of 1443 subjects, met the inclusion criteria. Most of them reported a positive effect of subthalamic DBS on sleep quality and consequently on quality of life. Seven studies used polysomnography to objectively assess sleep parameters. The data concerning subthalamic DBS and wake functions are controversial and studies using objective, laboratory-based measures for the assessment of wake functions are lacking. Very few studies assessed the impact of other DBS targets (e.g. pallidal stimulation) on SWD. Further prospective observational DBS studies assessing subjectively and objectively specific sleep-wake parameters in patients with PD are needed.
Collapse
|
23
|
Meissner SN, Südmeyer M, Keitel A, Pollok B, Bellebaum C. Facilitating effects of deep brain stimulation on feedback learning in Parkinson's disease. Behav Brain Res 2016; 313:88-96. [PMID: 27374161 DOI: 10.1016/j.bbr.2016.06.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/24/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) provides an effective treatment for Parkinson's disease (PD) motor symptoms. However, findings of effects on cognitive function such as feedback learning remain controversial and rare. The aim of the present study was to gain a better understanding of cognitive alterations associated with STN-DBS. Therefore, we investigated effects of STN-DBS on active and observational feedback learning in PD. 18 PD patients with STN-DBS and 18 matched healthy controls completed active and observational feedback learning tasks. Patients were investigated ON and OFF STN-DBS. Tasks consisted of learning (with feedback) and test phases (without feedback). STN-DBS improved active learning during feedback trials and PD patients ON (but not OFF) STN-DBS showed comparable performance patterns as healthy controls. No STN-DBS effect was found when assessing performance during active test trials without feedback. In this case, however, STN-DBS effects were found to depend on symptom severity. While more impaired patients benefited from STN-DBS, stimulation had no facilitating effect on patients with less severe symptoms. Along similar lines, the severity of motor symptoms tended to be significantly correlated with differences in active test performance due to STN-DBS. For observational feedback learning, there was a tendency for a positive STN-DBS effect with patients reaching the performance level of healthy controls only ON STN-DBS. The present data suggest that STN-DBS facilitates active feedback learning in PD patients. Furthermore, they provide first evidence that STN-DBS might not only affect learning from own but also from observed actions and outcomes.
Collapse
Affiliation(s)
- Sarah Nadine Meissner
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University, Medical Faculty, Universitaetsstraße 1, 40225 Duesseldorf, Germany.
| | - Martin Südmeyer
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University, Medical Faculty, Universitaetsstraße 1, 40225 Duesseldorf, Germany; Department of Neurology, Heinrich-Heine-University, Medical Faculty, Moorenstraße 5, 40225 Duesseldorf, Germany
| | - Ariane Keitel
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University, Medical Faculty, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Bettina Pollok
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University, Medical Faculty, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Christian Bellebaum
- Institute for Experimental Psychology, Heinrich-Heine-University, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| |
Collapse
|
24
|
Abstract
OBJECTIVE Apathy has been reported as a possible adverse effect of deep brain stimulation of the subthalamic nucleus (STN-DBS). We investigated the prevalence and severity of apathy in 22 patients with Parkinson's disease (PD) who underwent STN-DBS, as well as the effects of apathy on quality of life (QOL). METHODS All patients were assessed with the Lille Apathy Rating Scale (LARS), the Apathy Scale (AS), and the Parkinson's Disease Questionnaire and were compared to a control group of 38 patients on pharmacotherapy alone. RESULTS There were no significant differences in the prevalence or severity of apathy between patients who had undergone STN-DBS and those on pharmacotherapy alone. Significant correlations were observed between poorer QOL and degree of apathy, as measured by the LARS (p<0.001) and the AS (p=0.021). PD-related disability also correlated with both apathy ratings (p<0.001 and p=0.017, respectively). CONCLUSION Our findings suggest that STN-DBS is not necessarily associated with apathy in the PD population; however, more severe apathy appears to be associated with a higher level of disability due to PD and worse QOL, but no other clinico-demographic characteristics.
Collapse
|
25
|
Starkstein SE, Brockman S, Hatch KK, Bruce DG, Almeida OP, Davis WA, Robinson RG. A Randomized, Placebo-Controlled, Double-Blind Efficacy Study of Nefiracetam to Treat Poststroke Apathy. J Stroke Cerebrovasc Dis 2016; 25:1119-1127. [DOI: 10.1016/j.jstrokecerebrovasdis.2016.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/21/2016] [Indexed: 10/22/2022] Open
|
26
|
Martinez-Fernandez R, Pelissier P, Quesada JL, Klinger H, Lhommée E, Schmitt E, Fraix V, Chabardes S, Mertens P, Castrioto A, Kistner A, Broussolle E, Pollak P, Thobois S, Krack P. Postoperative apathy can neutralise benefits in quality of life after subthalamic stimulation for Parkinson's disease. J Neurol Neurosurg Psychiatry 2016; 87:311-8. [PMID: 25934016 DOI: 10.1136/jnnp-2014-310189] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/17/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Subthalamic nucleus deep brain stimulation (STN-DBS) improves motor symptoms of Parkinson's disease, leading to improvement in health-related quality of life (HRQoL). However, an excessive decrease in dopaminergic medication can lead to a withdrawal syndrome with apathy as the predominant feature. The present study aims to assess the impact of postoperative apathy on HRQoL. METHODS A cohort of 88 patients who underwent STN-DBS was divided into two groups, those who were apathetic at 1 year and those who were not, as measured by the Starkstein scale. HRQoL was assessed using the Parkinson's disease questionnaire 39 (PDQ-39) and was compared between the two groups. We also compared activities of daily living, motor improvement and motor complications (Unified Parkinson's Disease Rating Scale, UPDRS), depression and anxiety, as well as cognition and drug dosages. Baseline characteristics and postoperative complications were recorded. RESULTS One year after surgery, 27.1% of patients suffered from apathy. While motor improvement was significant and equivalent in both the apathy (-40.4% of UPDRS motor score) and non-apathy groups (-48.6%), the PDQ-39 score did not improve in the apathy group (-5.5%; p=0.464), whereas it improved significantly (-36.7%; p≤0.001) in the non-apathy group. Change in apathy scores correlated significantly with change in HRQoL scores (r=0.278, p=0.009). Depression and anxiety scores remained unchanged from baseline in the apathy group (p=0.409, p=0.075), while they improved significantly in patients without apathy (p=0.006, p≤0.001). A significant correlation was found between changes in apathy and depression (r=0.594, p≤0.001). CONCLUSIONS The development of apathy after STN-DBS can cancel out the benefits of motor improvement in terms of HRQoL. Systematic evaluation and management of apathy occurring after subthalamic stimulation appears mandatory.
Collapse
Affiliation(s)
- Raul Martinez-Fernandez
- Movement Disorders Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Université de Grenoble Alpes, Grenoble, France INSERM, U386, Grenoble Institut de Neurosciences, Grenoble, France CINAC-HM Puerta del Sur, CEU-San Pablo University, Madrid, Spain
| | - Pierre Pelissier
- Movement Disorders Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Université de Grenoble Alpes, Grenoble, France INSERM, U386, Grenoble Institut de Neurosciences, Grenoble, France
| | - Jean-Louis Quesada
- Centre d'Investigation Clinique, CHU de Grenoble, Univesité Joseph Fourier, Grenoble, France Direction de la recherche clinique, Département scientifique, CHU Grenoble, Grenoble, France
| | - Hélène Klinger
- Hospices Civils de Lyon, Hôpital Neurologique, Neurologie C, Lyon, France Faculté de Médecine et de Maïeutique Lyon Sud Charles Mérieux, Université de Lyon 1, Lyon, France CNRS, UMR 5229, Centre de Neurosciences Cognitives, Bron, France
| | - Eugénie Lhommée
- Movement Disorders Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Université de Grenoble Alpes, Grenoble, France INSERM, U386, Grenoble Institut de Neurosciences, Grenoble, France
| | - Emmanuelle Schmitt
- Movement Disorders Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Université de Grenoble Alpes, Grenoble, France INSERM, U386, Grenoble Institut de Neurosciences, Grenoble, France
| | - Valerie Fraix
- Movement Disorders Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Université de Grenoble Alpes, Grenoble, France INSERM, U386, Grenoble Institut de Neurosciences, Grenoble, France
| | - Stephan Chabardes
- Movement Disorders Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Université de Grenoble Alpes, Grenoble, France INSERM, U386, Grenoble Institut de Neurosciences, Grenoble, France Deparment of Neurosurgery, CHU de Grenoble, Grenoble, France
| | - Patrick Mertens
- Faculté de Médecine et de Maïeutique Lyon Sud Charles Mérieux, Université de Lyon 1, Lyon, France Hospices Civils de Lyon, Hôpital Neurologique, Neurochirurgie A, Lyon, France
| | - Anna Castrioto
- Movement Disorders Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Université de Grenoble Alpes, Grenoble, France INSERM, U386, Grenoble Institut de Neurosciences, Grenoble, France
| | - Andrea Kistner
- Movement Disorders Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Université de Grenoble Alpes, Grenoble, France INSERM, U386, Grenoble Institut de Neurosciences, Grenoble, France
| | - Emmanuel Broussolle
- Hospices Civils de Lyon, Hôpital Neurologique, Neurologie C, Lyon, France Faculté de Médecine et de Maïeutique Lyon Sud Charles Mérieux, Université de Lyon 1, Lyon, France CNRS, UMR 5229, Centre de Neurosciences Cognitives, Bron, France
| | - Pierre Pollak
- Movement Disorders Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Université de Grenoble Alpes, Grenoble, France INSERM, U386, Grenoble Institut de Neurosciences, Grenoble, France Service de Neurologie, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Stéphane Thobois
- Hospices Civils de Lyon, Hôpital Neurologique, Neurologie C, Lyon, France Faculté de Médecine et de Maïeutique Lyon Sud Charles Mérieux, Université de Lyon 1, Lyon, France CNRS, UMR 5229, Centre de Neurosciences Cognitives, Bron, France
| | - Paul Krack
- Movement Disorders Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Université de Grenoble Alpes, Grenoble, France INSERM, U386, Grenoble Institut de Neurosciences, Grenoble, France
| |
Collapse
|
27
|
Cognition and Depression Following Deep Brain Stimulation of the Subthalamic Nucleus and Globus Pallidus Pars Internus in Parkinson’s Disease: A Meta-Analysis. Neuropsychol Rev 2015; 25:439-54. [DOI: 10.1007/s11065-015-9302-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/05/2015] [Indexed: 01/19/2023]
|
28
|
Gesquière-Dando A, Guedj E, Loundou A, Carron R, Witjas T, Fluchère F, Delfini M, Mundler L, Regis J, Azulay JP, Eusebio A. A preoperative metabolic marker of parkinsonian apathy following subthalamic nucleus stimulation. Mov Disord 2015; 30:1767-76. [DOI: 10.1002/mds.26349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/12/2015] [Accepted: 06/21/2015] [Indexed: 11/05/2022] Open
Affiliation(s)
- Aude Gesquière-Dando
- APHM; CHU Timone, Department of Neurology and Movement Disorders; Aix Marseille Université; Marseille France
- Institut de Neurosciences de la Timone UMR 7289; Aix Marseille Université; CNRS Marseille France
| | - Eric Guedj
- Institut de Neurosciences de la Timone UMR 7289; Aix Marseille Université; CNRS Marseille France
- APHM; CHU Timone, Service Central de Biophysique et Médecine Nucléaire; Aix Marseille Université; Marseille France
- CERIMED; Aix-Marseille Université; Marseille France
| | - Anderson Loundou
- APHM; CHU Timone, Unité d'Aide méthodologique à la Recherche Clinique et Epidémiologique; DRRC Marseille France
| | - Romain Carron
- APHM; CHU Timone, Department of Functional and Stereotactic Neurosurgery; Aix Marseille Université; Marseille France
| | - Tatiana Witjas
- APHM; CHU Timone, Department of Neurology and Movement Disorders; Aix Marseille Université; Marseille France
- Institut de Neurosciences de la Timone UMR 7289; Aix Marseille Université; CNRS Marseille France
| | - Frédérique Fluchère
- APHM; CHU Timone, Department of Neurology and Movement Disorders; Aix Marseille Université; Marseille France
| | - Marie Delfini
- APHM; CHU Timone, Department of Neurology and Movement Disorders; Aix Marseille Université; Marseille France
| | - Laura Mundler
- APHM; CHU Timone, Department of Neurology and Movement Disorders; Aix Marseille Université; Marseille France
| | - Jean Regis
- APHM; CHU Timone, Department of Functional and Stereotactic Neurosurgery; Aix Marseille Université; Marseille France
| | - Jean-Philippe Azulay
- APHM; CHU Timone, Department of Neurology and Movement Disorders; Aix Marseille Université; Marseille France
- Institut de Neurosciences de la Timone UMR 7289; Aix Marseille Université; CNRS Marseille France
| | - Alexandre Eusebio
- APHM; CHU Timone, Department of Neurology and Movement Disorders; Aix Marseille Université; Marseille France
- Institut de Neurosciences de la Timone UMR 7289; Aix Marseille Université; CNRS Marseille France
| |
Collapse
|
29
|
Faggiani E, Delaville C, Benazzouz A. The combined depletion of monoamines alters the effectiveness of subthalamic deep brain stimulation. Neurobiol Dis 2015. [PMID: 26206409 DOI: 10.1016/j.nbd.2015.07.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Non-motor symptoms of Parkinson's disease are under-studied and therefore not well treated. Here, we investigated the role of combined depletions of dopamine, norepinephrine and/or serotonin in the manifestation of motor and non-motor deficits in the rat. Then, we studied the impact of these depletions on the efficacy of deep brain stimulation of the subthalamic nucleus (STN-DBS). We performed selective depletions of dopamine, norepinephrine and serotonin, and the behavioral effects of different combined depletions were investigated using the open field, the elevated plus maze and the forced swim test. Bilateral dopamine depletion alone induced locomotor deficits associated with anxiety and mild "depressive-like" behaviors. Although additional depletions of norepinephrine and/or serotonin did not potentiate locomotor and anxiety disorders, combined depletions of the three monoamines dramatically exacerbated "depressive-like" behavior. STN-DBS markedly reversed locomotor deficits and anxiety behavior in animals with bilateral dopamine depletion alone. However, these improvements were reduced or lost by the additional depletion of norepinephrine and/or serotonin, indicating that the depletion of these monoamines may interfere with the antiparkinsonian efficacy of STN-DBS. Furthermore, our results showed that acute STN-DBS improved "depressive-like" disorder in animals with bilateral depletion of dopamine and also in animals with combined depletions of the three monoamines, which induced severe immobility in the forced swim test. Our data highlight the key role of monoamine depletions in the pathophysiology of anxiety and depressive-like disorders and provide the first evidence of their negative consequences on the efficacy of STN-DBS upon the motor and anxiety disorders in the context of Parkinson's disease.
Collapse
Affiliation(s)
- Emilie Faggiani
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Claire Delaville
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Abdelhamid Benazzouz
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France.
| |
Collapse
|
30
|
Virtually-induced threat in Parkinson's: Dopaminergic interactions between anxiety and sensory-perceptual processing while walking. Neuropsychologia 2015; 79:322-31. [PMID: 26004056 DOI: 10.1016/j.neuropsychologia.2015.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 11/20/2022]
Abstract
Research evidence has suggested that anxiety influences gait in PD, with an identified dopa-sensitive gait response in highly anxious PD. It has been well-established that accurate perception of the environment and sensory feedback is essential for gait. Arguably since sensory and perceptual deficits have been noted in PD, anxiety has the potential to exacerbate movement impairments, since one might expect that reducing resources needed to overcome or compensate for sensory-perceptual deficits may lead to even more severe gait impairments. It is possible that anxiety in threatening situations might consume more processing resources, limiting the ability to process information about the environment or one's own movement (sensory feedback) especially in highly anxious PD. Therefore, the current study aimed to (i) evaluate whether processing of threat-related aspects of the environment was influenced by anxiety, (ii) evaluate whether anxiety influences the ability to utilize sensory feedback in PD while walking in threatening situations, and (iii) further understand the role of dopaminergic medication on these processes in threatening situations in PD. Forty-eight participants (24 HC; 12 Low Anxious [LA-PD], 12 Highly Anxious [HA-PD]) completed 20 walking trials in virtual reality across a plank that was (i) located on the ground (GROUND) (ii) located above a deep pit (ELEVATED); while provided with or without visual feedback about their lower limbs (+VF; -VF). After walking across the plank, participants were asked to judge the width of the plank they had just walked across. The plank varied in size from 60-100 cm. Both ON and OFF dopaminergic medication states were evaluated in PD. Gait parameters, judgment error and self-reported anxiety levels were measured. Results showed that HA-PD reported greater levels of anxiety overall (p<0.001) compared to HC and LA-PD, and all participants reported greater anxiety during the ELEVATED condition compared to GROUND (p=0.01). PD had similar judgment error as HC. Additionally, medication state did not significantly influence judgment error in PD. More importantly, HA-PD were the only group that did not adjust their step width when feedback was provided during the GROUND condition. However, medication facilitated a reduction in ST-CV when visual feedback was available only in the HA-PD group. Therefore, the current study provides evidence that anxiety may interfere with information processing, especially utilizing sensory feedback while walking. Dopaminergic medication appears to improve utilization of sensory feedback in stressful situations by reducing anxiety and/or improving resource allocation especially in those with PD who are highly anxious.
Collapse
|
31
|
The Quantitative Measurement of Reversible Acute Depression after Subthalamic Deep Brain Stimulation in a Patient with Parkinson Disease. Case Rep Neurol Med 2015; 2015:165846. [PMID: 26090244 PMCID: PMC4450288 DOI: 10.1155/2015/165846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/30/2015] [Indexed: 12/04/2022] Open
Abstract
Background. Depression is the most commonly reported mood symptom affecting 2–8% of patients after deep brain stimulation (DBS). Usually, symptoms develop gradually; however there have been cases of reproducible events that the mood symptoms were elicited within seconds to minutes after stimulation and were immediately reversible upon cessation of the stimulus. In the current study, we applied a self-reported questionnaire to assess the patient's mood state. Objective. To objectively measure the reversible acute depression induced by DBS in a patient with Parkinson disease (PD). Methods. A statistically validated Spanish version of the Beck Depression Inventory Short Form (BDI-SF) was used. The questionnaire was administered three times. Results. The patient became acutely depressed within ninety seconds of monopolar stimulation on the right side. His symptoms resolved immediately after changing the setting to bipolar stimulation. The BDI-SF scores during stimulation off, on, and off again were 15, 19, and 6, respectively. Conclusions. The BDI-SF scores increased during stimulation and decreased after cessation. This is consistent with a reversible depressive state. The poststimulation BDI-SF score decreased to less than half of the baseline score. This may suggest that the depression was more severe than the patient was able to express during the stimulation.
Collapse
|
32
|
Rodent Models of Treatment-Related Complications in Parkinson Disease. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
33
|
Tommasi G, Fiorio M, Yelnik J, Krack P, Sala F, Schmitt E, Fraix V, Bertolasi L, Le Bas JF, Ricciardi GK, Fiaschi A, Theeuwes J, Pollak P, Chelazzi L. Disentangling the Role of Cortico-Basal Ganglia Loops in Top-Down and Bottom-Up Visual Attention: An Investigation of Attention Deficits in Parkinson Disease. J Cogn Neurosci 2014; 27:1215-37. [PMID: 25514652 DOI: 10.1162/jocn_a_00770] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
It is solidly established that top-down (goal-driven) and bottom-up (stimulus-driven) attention mechanisms depend on distributed cortical networks, including prefrontal and frontoparietal regions. On the other hand, it is less clear whether the BG also contribute to one or the other of these mechanisms, or to both. The current study was principally undertaken to clarify this issue. Parkinson disease (PD), a neurodegenerative disorder primarily affecting the BG, has proven to be an effective model for investigating the contribution of the BG to different brain functions; therefore, we set out to investigate deficits of top-down and bottom-up attention in a selected cohort of PD patients. With this objective in mind, we compared the performance on three computerized tasks of two groups of 12 parkinsonian patients (assessed without any treatment), one otherwise pharmacologically treated and the other also surgically treated, with that of a group of controls. The main behavioral tool for our study was an attentional capture task, which enabled us to tap the competition between top-down and bottom-up mechanisms of visual attention. This task was suitably combined with a choice RT and a simple RT task to isolate any specific deficit of attention from deficits in motor response selection and initiation. In the two groups of patients, we found an equivalent increase of attentional capture but also comparable delays in target selection in the absence of any salient distractor (reflecting impaired top-down mechanisms) and movement initiation compared with controls. In contrast, motor response selection processes appeared to be prolonged only in the operated patients. Our results confirm that the BG are involved in both motor and cognitive domains. Specifically, damage to the BG, as it occurs in PD, leads to a distinct deficit of top-down control of visual attention, and this can account, albeit indirectly, for the enhancement of attentional capture, reflecting weakened ability of top-down mechanisms to antagonize bottom-up control.
Collapse
|
34
|
Laumann K, Boas U, Larsen HM, Heegaard PMH, Bergström AL. Urea and thiourea modified polypropyleneimine dendrimers clear intracellular α-synuclein aggregates in a human cell line. Biomacromolecules 2014; 16:116-24. [PMID: 25418683 DOI: 10.1021/bm501244m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synucleinopathies are neurodegenerative pathologies in which disease progression is closely correlated to brain accumulation of insoluble α-synuclein, a small protein abundantly expressed in neural tissue. Here, two types of modified polypropyleneimine (PPI) dendrimers having either urea or methylthiourea (MTU) surface functional groups were investigated in a cellular model of synucleinopathy. Dendrimers are synthetic macromolecules that may be produced in a range of well-defined molecular sizes. Using cellomics array scan high-content screening, we show that both types of dendrimers are able to significantly reduce intracellular levels of α-synuclein aggregates dependent on the concentration, the type and molecular size of the dendrimer with the bigger size MTU-dendrimers having the highest potency. The intracellular clearance of α-synuclein aggregates by dendrimers was achieved at noncytotoxic concentrations.
Collapse
Affiliation(s)
- Kristoffer Laumann
- Innate Immunology Group, National Veterinary Institute, Technical University of Denmark , 1870 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
35
|
Cicchetti F, Barker RA. The glial response to intracerebrally delivered therapies for neurodegenerative disorders: is this a critical issue? Front Pharmacol 2014; 5:139. [PMID: 25071571 PMCID: PMC4090753 DOI: 10.3389/fphar.2014.00139] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/24/2014] [Indexed: 12/20/2022] Open
Abstract
The role of glial cells in the pathogenesis of many neurodegenerative conditions of the central nervous system (CNS) is now well established (as is discussed in other reviews in this special issue of Frontiers in Neuropharmacology). What is less clear is whether there are changes in these same cells in terms of their behavior and function in response to invasive experimental therapeutic interventions for these diseases. This has, and will continue to become more of an issue as we enter a new era of novel treatments which require the agent to be directly placed/infused into the CNS such as deep brain stimulation (DBS), cell transplants, gene therapies and growth factor infusions. To date, all of these treatments have produced variable outcomes and the reasons for this have been widely debated but the host astrocytic and/or microglial response induced by such invasively delivered agents has not been discussed in any detail. In this review, we have attempted to summarize the limited published data on this, in particular we discuss the small number of human post-mortem studies reported in this field. By so doing, we hope to provide a better description and understanding of the extent and nature of both the astrocytic and microglial response, which in turn could lead to modifications in the way these therapeutic interventions are delivered.
Collapse
Affiliation(s)
- Francesca Cicchetti
- Axe Neurosciences, Centre de Recherche du CHU de Québec Québec, QC, Canada ; Département de Psychiatrie et Neurosciences, Université Laval Québec, QC, Canada
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge Cambridge, UK
| |
Collapse
|
36
|
Shin KS, Zhao TT, Choi HS, Hwang BY, Lee CK, Lee MK. Effects of gypenosides on anxiety disorders in MPTP-lesioned mouse model of Parkinson׳s disease. Brain Res 2014; 1567:57-65. [DOI: 10.1016/j.brainres.2014.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/17/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
|
37
|
Bloch J, Brunet JF, McEntire CRS, Redmond DE. Primate adult brain cell autotransplantation produces behavioral and biological recovery in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonian St. Kitts monkeys. J Comp Neurol 2014; 522:2729-40. [PMID: 24610674 DOI: 10.1002/cne.23579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/25/2013] [Accepted: 11/04/2013] [Indexed: 02/03/2023]
Abstract
The potential for "replacement cells" to restore function in Parkinson's disease has been widely reported over the past 3 decades, rejuvenating the central nervous system rather than just relieving symptoms. Most such experiments have used fetal or embryonic sources that may induce immunological rejection and generate ethical concerns. Autologous sources, in which the cells to be implanted are derived from recipients' own cells after reprogramming to stem cells, direct genetic modifications, or epigenetic modifications in culture, could eliminate many of these problems. In a previous study on autologous brain cell transplantation, we demonstrated that adult monkey brain cells, obtained from cortical biopsies and kept in culture for 7 weeks, exhibited potential as a method of brain repair after low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) caused dopaminergic cell death. The present study exposed monkeys to higher MPTP doses to produce significant parkinsonism and behavioral impairments. Cerebral cortical cells were biopsied from the animals, held in culture for 7 weeks to create an autologous neural cell "ecosystem" and reimplanted bilaterally into the striatum of the same six donor monkeys. These cells expressed neuroectodermal and progenitor markers such as nestin, doublecortin, GFAP, neurofilament, and vimentin. Five to six months after reimplantation, histological analysis with the dye PKH67 and unbiased stereology showed that reimplanted cells survived, migrated bilaterally throughout the striatum, and seemed to exert a neurorestorative effect. More tyrosine hydroxylase-immunoreactive neurons and significant behavioral improvement followed reimplantation of cultured autologous neural cells as a result of unknown trophic factors released by the grafts.
Collapse
Affiliation(s)
- Jocelyne Bloch
- Department of Clinical Neurosciences, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | | | | | | |
Collapse
|
38
|
Castrioto A, Lhommée E, Moro E, Krack P. Mood and behavioural effects of subthalamic stimulation in Parkinson's disease. Lancet Neurol 2014; 13:287-305. [PMID: 24556007 DOI: 10.1016/s1474-4422(13)70294-1] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Deep-brain stimulation (DBS) of the subthalamic nucleus (STN) is an established treatment for motor complications in Parkinson's disease. 20 years of experience with this procedure have contributed to improved understanding of the role of the STN in motor, cognitive, and emotional control. In Parkinson's disease, the pathological STN neuronal activity leads to motor, cognitive, and emotional inhibition. Deafferentation of the STN by DBS can reverse such behavioural inhibition. The release of this brake allows both motor and non-motor improvement, but can also be associated with excessive motor, cognitive, and emotional behavioural disinhibition. Conversely, the notable reduction in anti-parkinsonian drug dose allowed by motor improvement can unveil mesolimbic hypodopaminergic behaviours such as apathy, anxiety, or depression. Fine-tuning of stimulation parameters with dopaminergic drugs is necessary to prevent or improve pathological behaviours.
Collapse
Affiliation(s)
- Anna Castrioto
- Movement Disorder Unit, Department of Psychiatry and Neurology, Centre Hospitalier Universitaire de Grenoble, Joseph Fourier University, Grenoble, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unit 836, Grenoble Institut des Neurosciences, Grenoble, France; Clinica Neurologica, Università di Perugia, Ospedale Santa Maria della Misericordia, Perugia, Italy
| | - Eugénie Lhommée
- Movement Disorder Unit, Department of Psychiatry and Neurology, Centre Hospitalier Universitaire de Grenoble, Joseph Fourier University, Grenoble, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unit 836, Grenoble Institut des Neurosciences, Grenoble, France
| | - Elena Moro
- Movement Disorder Unit, Department of Psychiatry and Neurology, Centre Hospitalier Universitaire de Grenoble, Joseph Fourier University, Grenoble, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unit 836, Grenoble Institut des Neurosciences, Grenoble, France
| | - Paul Krack
- Movement Disorder Unit, Department of Psychiatry and Neurology, Centre Hospitalier Universitaire de Grenoble, Joseph Fourier University, Grenoble, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unit 836, Grenoble Institut des Neurosciences, Grenoble, France.
| |
Collapse
|
39
|
Boller JK, Barbe MT, Pauls KAM, Reck C, Brand M, Maier F, Fink GR, Timmermann L, Kalbe E. Decision-making under risk is improved by both dopaminergic medication and subthalamic stimulation in Parkinson's disease. Exp Neurol 2014; 254:70-7. [PMID: 24444545 DOI: 10.1016/j.expneurol.2014.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Inconsistent findings regarding the effects of dopaminergic medication (MED) and deep brain stimulation (DBS) of the subthalamic nucleus (STN) on decision making processes and impulsivity in Parkinson's disease (PD) patients have been reported. This study investigated the influence of MED and STN-DBS on decision-making under risk. Eighteen non-demented PD patients, treated with both MED and STN-DBS (64.3±10.2years, UPDRS III MED off, DBS off 45.5±17.1) were tested with the Game of Dice Task (GDT) which probes decision-making under risk during four conditions: MED on/DBS on, MED on/DBS off, MED off/DBS on, and MED off/DBS off. Task performance across conditions was compared analyzing two GDT-parameters: (i) the "net score" indicating advantageous decisions, and (ii) the patient's ability to use negative feedback. Significantly higher GDT net scores were observed in Med on in contrast to Med off conditions as well as in DBS on versus DBS off conditions. However, no effect of therapy for the patient's ability to make use of negative feedback could be detected. The data suggest a positive influence of both MED and STN-DBS on making decisions under risk in PD patients, an effect which seems to be mediated by mechanisms other than the use of negative feedback.
Collapse
Affiliation(s)
- Jana K Boller
- Department of Neurology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany.
| | - Michael T Barbe
- Department of Neurology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; Institute of Neurosciences and Medicine (INM-3), Cognitive Neurology Section, Research Centre Jülich, Wilhelm-Johnen-Strasse, 52428 Jülich, Germany.
| | - K Amande M Pauls
- Department of Neurology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany.
| | - Christiane Reck
- Department of Neurology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany.
| | - Matthias Brand
- General Psychology: Cognition, Faculty of Engineering, University of Duisburg-Essen, Campus Duisburg, Forsthausweg 2, 47048 Duisburg, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, Ahrendahls Wiese 199, 45141 Essen, Germany.
| | - Franziska Maier
- Department of Neurology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany.
| | - Gereon R Fink
- Department of Neurology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; Institute of Neurosciences and Medicine (INM-3), Cognitive Neurology Section, Research Centre Jülich, Wilhelm-Johnen-Strasse, 52428 Jülich, Germany.
| | - Lars Timmermann
- Department of Neurology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany.
| | - Elke Kalbe
- Department of Neurology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany; Institute of Gerontology & Center for Neuropsychological Diagnostics and Intervention (CeNDI), University of Vechta, Driverstrasse 22, 49377 Vechta, Germany.
| |
Collapse
|
40
|
Vaillancourt DE, Schonfeld D, Kwak Y, Bohnen NI, Seidler R. Dopamine overdose hypothesis: evidence and clinical implications. Mov Disord 2013; 28:1920-9. [PMID: 24123087 DOI: 10.1002/mds.25687] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/15/2013] [Accepted: 08/22/2013] [Indexed: 11/11/2022] Open
Abstract
About a half a century has passed since dopamine was identified as a neurotransmitter, and it has been several decades since it was established that people with Parkinson's disease receive motor symptom relief from oral levodopa. Despite the evidence that levodopa can reduce motor symptoms, there has been a developing body of literature that dopaminergic therapy can improve cognitive functions in some patients but make them worse in others. Over the past two decades, several laboratories have shown that dopaminergic medications can impair the action of intact neural structures and impair the behaviors associated with these structures. In this review, we consider the evidence that has accumulated in the areas of reversal learning, motor sequence learning, and other cognitive tasks. The purported inverted-U shaped relationship between dopamine levels and performance is complex and includes many contributory factors. The regional striatal topography of nigrostriatal denervation is a critical factor, as supported by multimodal neuroimaging studies. A patient's individual genotype will determine the relative baseline position on this inverted-U curve. Dopaminergic pharmacotherapy and individual gene polymorphisms can affect the mesolimbic and prefrontal cortical dopaminergic functions in a comparable, inverted-U dose-response relationship. Depending on these factors, a patient can respond positively or negatively to levodopa when performing reversal learning and motor sequence learning tasks. These tasks may continue to be relevant as our society moves to increased technological demands of a digital world that requires newly learned motor sequences and adaptive behaviors to manage daily life activities.
Collapse
Affiliation(s)
- David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA; Department of Neurology, University of Florida, Gainesville, Florida, USA; Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | | | | | | | | |
Collapse
|
41
|
Voon V, Howell NA, Krack P. Psychiatric considerations in deep brain stimulation for Parkinson’s disease. HANDBOOK OF CLINICAL NEUROLOGY 2013; 116:147-54. [DOI: 10.1016/b978-0-444-53497-2.00012-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
42
|
Torta DME, Vizzari V, Castelli L, Zibetti M, Lanotte M, Lopiano L, Geminiani G. Impulsivities and Parkinson's disease: delay aversion is not worsened by Deep Brain Stimulation of the subthalamic nucleus. PLoS One 2012; 7:e43261. [PMID: 22984415 PMCID: PMC3439437 DOI: 10.1371/journal.pone.0043261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 07/18/2012] [Indexed: 12/13/2022] Open
Abstract
Deep Brain Stimulation (DBS) of the Subthalamic Nucleus (STN) improves motor symptoms in Parkinson's disease (PD), but can exert detrimental effects on impulsivity. These effects are especially related to the inability to slow down when high-conflict choices have to be made. However, the influence that DBS has on delay aversion is still under-investigated. Here, we tested a group of 21 PD patients on and off stimulation (off medication) by using the Cambridge Gamble Task (CGT), a computerized task that allows the investigation of risk-related behaviours and delay aversion, and psychological questionnaires such as the Barratt Impulsiveness Scale (BIS), the Sensitivity to Punishment and to Reward Questionnaire (SPSRQ), and the Quick Delay Questionnaire (QDQ). We found that delay aversion scores on the CGT were no higher when patients were on stimulation as compared to when they were off stimulation. In contrast, PD patients reported feeling more impulsive in the off stimulation state, as revealed by significantly higher scores on the BIS. Higher scores on the sensitivity to punishment subscale of the SPSRQ highlighted that possible punishments influence patients' behaviours more than possible rewards. Significant correlations between delay aversion scores on the CGT and QDQ delay aversion subscale suggest that these two instruments can be used in synergy to reach a convergent validity. In conclusion, our results show that not all impulsivities are detrimentally affected by DBS of the STN and that the joint use of experimental paradigms and psychological questionnaires can provide useful insights in the study of impulsivity.
Collapse
Affiliation(s)
- Diana M E Torta
- Department of Psychology, University of Turin, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
43
|
Mondillon L, Mermillod M, Musca SC, Rieu I, Vidal T, Chambres P, Auxiette C, Dalens H, Marie Coulangeon L, Jalenques I, Lemaire JJ, Ulla M, Derost P, Marques A, Durif F. The combined effect of subthalamic nuclei deep brain stimulation and L-dopa increases emotion recognition in Parkinson's disease. Neuropsychologia 2012; 50:2869-2879. [PMID: 22944002 DOI: 10.1016/j.neuropsychologia.2012.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 07/17/2012] [Accepted: 08/19/2012] [Indexed: 11/28/2022]
Abstract
Deep brain stimulation of the subthalamic nucleus (DBS) is a widely used surgical technique to suppress motor symptoms in Parkinson's disease (PD), and as such improves patients' quality of life. However, DBS may produce emotional disorders such as a reduced ability to recognize emotional facial expressions (EFE). Previous studies have not considered the fact that DBS and l-dopa medication can have differential, common, or complementary consequences on EFE processing. A thorough way of investigating the effect of DBS and l-dopa medication in greater detail is to compare patients' performances after surgery, with the two therapies either being administered ('on') or not administered ('off'). We therefore used a four-condition (l-dopa 'on'/DBS 'on', l-dopa 'on'/DBS 'off', l-dopa 'off'/DBS 'on', and l-dopa 'off'/DBS 'off') EFE recognition paradigm and compared implanted PD patients to healthy controls. The results confirmed those of previous studies, yielding a significant impairment in the detection of some facial expressions relative to controls. Disgust recognition was impaired when patients were 'off' l-dopa and 'on' DBS, and fear recognition impaired when 'off' of both therapies. More interestingly, the combined effect of both DBS and l-dopa administration seems much more beneficial for EFE recognition than the separate administration of each individual therapy. We discuss the implications of these findings in the light of the inverted U curve function that describes the differential effects of dopamine level on the right orbitofrontal cortex (OFC). We propose that, while l-dopa could "overdose" in dopamine the ventral stream of the OFC, DBS would compensate for this over-activation by decreasing OFC activity, thereby restoring the necessary OFC-amygdala interaction. Another finding is that, when collapsing over all treatment conditions, PD patients recognized more neutral faces than the matched controls, a result that concurs with embodiment theories.
Collapse
Affiliation(s)
- Laurie Mondillon
- LAPSCO (UMR 6024), Blaise Pascal University, Clermont-Ferrand 63000, France.
| | - Martial Mermillod
- LAPSCO (UMR 6024), Blaise Pascal University, Clermont-Ferrand 63000, France; Institut Universitaire de France, Paris 75005, France
| | - Serban C Musca
- CRPCC (EA 1285), European University of Brittany, Rennes 35000, France
| | - Isabelle Rieu
- Neurology Department, CHU Clermont-Ferrand, Clermont-Ferrand F-63001, France; UFR Medecine, University of Clermont 1, Clermont-Ferrand F-63009, France
| | - Tiphaine Vidal
- Neurology Department, Resource and Research Memory Center (CMRR), CHU Clermont-Ferrand, Clermont-Ferrand F-63001, France
| | - Patrick Chambres
- LAPSCO (UMR 6024), Blaise Pascal University, Clermont-Ferrand 63000, France
| | - Catherine Auxiette
- Neurology Department, CHU Clermont-Ferrand, Clermont-Ferrand F-63001, France
| | - Hélène Dalens
- Ophtalmology Department, CHU Clermont-Ferrand, Clermont-Ferrand F-63001, France
| | | | - Isabelle Jalenques
- UFR Medecine, University of Clermont 1, Clermont-Ferrand F-63009, France; Psychiatry A Department, CHU Clermont-Ferrand, Clermont-Ferrand F-63001, France
| | - Jean-Jacques Lemaire
- UFR Medecine, University of Clermont 1, Clermont-Ferrand F-63009, France; Neurosurgery Department, CHU Clermont-Ferrand, Clermont-Ferrand F-63001, France
| | - Miguel Ulla
- Neurology Department, CHU Clermont-Ferrand, Clermont-Ferrand F-63001, France
| | - Philippe Derost
- Neurology Department, CHU Clermont-Ferrand, Clermont-Ferrand F-63001, France
| | - Ana Marques
- Neurology Department, CHU Clermont-Ferrand, Clermont-Ferrand F-63001, France; UFR Medecine, University of Clermont 1, Clermont-Ferrand F-63009, France
| | - Franck Durif
- Neurology Department, CHU Clermont-Ferrand, Clermont-Ferrand F-63001, France; UFR Medecine, University of Clermont 1, Clermont-Ferrand F-63009, France
| |
Collapse
|
44
|
Miller N. Speech, voice and language in Parkinson’s disease: changes and interventions. Neurodegener Dis Manag 2012. [DOI: 10.2217/nmt.12.15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
SUMMARY This article covers recent developments in the understanding of communication changes in idiopathic Parkinson’s disease and selected issues in intervention. By contrast to earlier narrow considerations of voice and speech, the effects on communication of cognitive–linguistic and prosody perception and production are also highlighted. Decline can occur from the earliest stages, even when listeners perceive no frank changes. Communication may be relatively trouble-free in one-to-one quiet clinical situations but declines in multi-talker, dual/competing task situations. Assessment should reflect this to gain more accurate insights into daily living performance. Currently, therapies focusing on attention-to-effort in voice production and on monitoring the sense of effort and loudness production appear to be most successful. Medical and surgical treatments have little effect on intelligibility and communication and may even exacerbate the situation.
Collapse
Affiliation(s)
- Nick Miller
- Institute of Health & Society, Speech & Language Sciences, George VI Building, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
45
|
The prevalence of fatigue following deep brain stimulation surgery in Parkinson's disease and association with quality of life. PARKINSONS DISEASE 2012; 2012:769506. [PMID: 22666631 PMCID: PMC3359731 DOI: 10.1155/2012/769506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 03/06/2012] [Accepted: 03/06/2012] [Indexed: 11/20/2022]
Abstract
Fatigue is a common and disabling nonmotor symptom seen in Parkinson's disease (PD). While deep brain stimulation surgery (DBS) improves motor symptoms, it has also been associated with non-motor side effects. To date no study has utilized standardized instruments to evaluate fatigue following DBS surgery. Our objective was to determine the prevalence of fatigue following DBS surgery in PD its impact on quality of life and explore predictive factors. We recruited 44 PD subjects. At least one year following DBS placement, we administered the Fatigue Severity Scale (FSS), the Parkinson's Disease Questionnaire (PDQ-39), the Beck Depression Inventory, the Beck Anxiety Inventory, the UPDRS, and a neuropsychological battery. Fifty-eight percent of subjects had moderate to severe fatigue. Fatigue was significantly associated with quality of life, depression, and anxiety. Depression preoperatively was the only predictive factor of fatigue. Fatigue is common following DBS surgery and significantly impacts quality of life.
Collapse
|
46
|
Lhommée E, Klinger H, Thobois S, Schmitt E, Ardouin C, Bichon A, Kistner A, Fraix V, Xie J, Aya Kombo M, Chabardès S, Seigneuret E, Benabid AL, Mertens P, Polo G, Carnicella S, Quesada JL, Bosson JL, Broussolle E, Pollak P, Krack P. Subthalamic stimulation in Parkinson's disease: restoring the balance of motivated behaviours. ACTA ACUST UNITED AC 2012; 135:1463-77. [PMID: 22508959 DOI: 10.1093/brain/aws078] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Addictions to dopaminergic drugs or to pleasant behaviours are frequent and potentially devastating neuropsychiatric disorders observed in Parkinson's disease. They encompass impulse control disorders, punding and dopamine dysregulation syndrome. A relationship with dopaminergic treatment is strongly suggested. Subthalamic stimulation improves motor complications and allows for drastic reductions in medication. This treatment might, therefore, be considered for patients with behavioural addictions, when attempts to reduce dopaminergic medication have failed. However, conflicting data have reported suppression, alleviation, worsening or new onset of behavioural addictions after subthalamic stimulation. Non-motor fluctuations are also a disabling feature of the disease. We prospectively investigated behaviour in a cohort of 63 patients with Parkinson's disease, before and 1 year after subthalamic stimulation using the Ardouin scale, with systematic evaluation of functioning in overall appetitive or apathetic modes, non-motor fluctuations, dopaminergic dysregulation syndrome, as well as behavioural addictions (including impulse control disorders and punding) and compulsive use of dopaminergic medication. Defined drug management included immediate postoperative discontinuation of dopamine agonists and reduction in levodopa. Motor and cognitive statuses were controlled (Unified Parkinson's Disease Rating Scale, Mattis Dementia Rating Scale, frontal score). After surgery, the OFF medication motor score improved (-45.2%), allowing for a 73% reduction in dopaminergic treatment, while overall cognitive evaluation was unchanged. Preoperative dopamine dysregulation syndrome had disappeared in 4/4, behavioural addictions in 17/17 and compulsive dopaminergic medication use in 9/9 patients. New onset of levodopa abuse occurred in one patient with surgical failure. Non-motor fluctuations were significantly reduced with improvements in off-dysphoria (P ≤ 0.001) and reduction in on-euphoria (P ≤ 0.001). There was an inversion in the number of patients functioning in an overall appetitive mode (29 before versus 2 after surgery, P ≤ 0.0001) to an overall apathetic mode (3 before versus 13 after surgery, P < 0.05). Two patients attempted suicide. Improvement in motor fluctuations is linked to the direct effect of stimulation on the sensory-motor subthalamic territory, while improvement in dyskinesias is mainly explained by an indirect effect related to the decrease in dopaminergic drugs. Our data suggest that non-motor fluctuations could similarly be directly alleviated through stimulation of the non-motor subthalamic territories, and hyperdopaminergic side effects might improve mainly due to the decrease in dopaminergic medication. We show an overall improvement in neuropsychiatric symptomatology and propose that disabling non-motor fluctuations, dopaminergic treatment abuse and drug-induced behavioural addictions in Parkinson's disease may be considered as new indications for subthalamic stimulation.
Collapse
Affiliation(s)
- Eugénie Lhommée
- CHU de Grenoble, Pavillon de neurology, Grenoble Cedex 9, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wojtecki L, Timmermann L, Groiss SJ, Elben S, Reck C, Südmeyer M, Sturm V, Schnitzler A. Long-term time course of affective lability after subthalamic deep brain stimulation electrode implantation. Neurocase 2011; 17:527-32. [PMID: 21707232 DOI: 10.1080/13554794.2010.547507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The mechanism and time course of emotional side effects of subthalamic deep brain stimulation in Parkinson's disease are a matter for discussion. We report a 53-month follow-up of a patient with affective lability. Postoperative lesion plus bilateral stimulation strongly influenced mood in the first week in terms of laughing behavior, while voltage changes had only minor long-term impact up to 37 months on negative emotion, possibly caused by the right electrode stimulating the subthalamic nucleus and adjacent fiber tracts involving the internal capsule. Thus we conclude that affective lability can occur with different temporal dynamics of microlesion, and early and chronic stimulation.
Collapse
Affiliation(s)
- Lars Wojtecki
- Institute of Clinical Neuroscience and Medical Psychology & Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Prediger RDS, Matheus FC, Schwarzbold ML, Lima MMS, Vital MABF. Anxiety in Parkinson's disease: a critical review of experimental and clinical studies. Neuropharmacology 2011; 62:115-24. [PMID: 21903105 DOI: 10.1016/j.neuropharm.2011.08.039] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting about 1% of the population older than 60 years. Classically, PD is considered as a movement disorder, and its diagnosis is based on the presence of a set of cardinal motor signs that are the consequence of a pronounced death of dopaminergic neurons in the substantia nigra pars compacta. There is now considerable evidence showing that the neurodegenerative processes leading to sporadic PD begin many years before the appearance of the characteristic motor symptoms, and that additional neuronal fields and neurotransmitter systems are also involved in PD, including olfactory structures, amygdala, caudal raphe nuclei, locus coeruleus, and hippocampus. Accordingly, adrenergic and serotonergic neurons are also lost, which seems to contribute to the anxiety in PD. Non-motor features of PD usually do not respond to dopaminergic medication and probably form the major current challenge in the clinical management of PD. Additionally, most studies performed with animal models of PD have investigated their ability to induce motor alterations associated with advanced phases of PD, and some studies begin to assess non-motor behavioral features of the disease. The present review attempts to examine results obtained from clinical and experimental studies to provide a comprehensive picture of the neurobiology and current and potential treatments for anxiety in PD. The data reviewed here indicate that, despite their high prevalence and impact on the quality of life, anxiety disorders are often under-diagnosed and under-treated in PD patients. Moreover, there are currently few clinical and pre-clinical studies underway to investigate new pharmacological agents for relieving these symptoms, and we hope that this article may inspire clinicians and researchers devote to the studies on anxiety in PD to change this scenario. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- Rui D S Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), 88049-900 Florianópolis, SC, Brazil.
| | | | | | | | | |
Collapse
|
49
|
van Wouwe NC, Ridderinkhof KR, van den Wildenberg WPM, Band GPH, Abisogun A, Elias WJ, Frysinger R, Wylie SA. Deep brain stimulation of the subthalamic nucleus improves reward-based decision-learning in Parkinson's disease. Front Hum Neurosci 2011; 5:30. [PMID: 21519377 PMCID: PMC3075890 DOI: 10.3389/fnhum.2011.00030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 03/08/2011] [Indexed: 11/13/2022] Open
Abstract
Recently, the subthalamic nucleus (STN) has been shown to be critically involved in decision-making, action selection, and motor control. Here we investigate the effect of deep brain stimulation (DBS) of the STN on reward-based decision-learning in patients diagnosed with Parkinson's disease (PD). We determined computational measures of outcome evaluation and reward prediction from PD patients who performed a probabilistic reward-based decision-learning task. In previous work, these measures covaried with activation in the nucleus caudatus (outcome evaluation during the early phases of learning) and the putamen (reward prediction during later phases of learning). We observed that stimulation of the STN motor regions in PD patients served to improve reward-based decision-learning, probably through its effect on activity in frontostriatal motor loops (prominently involving the putamen and, hence, reward prediction). In a subset of relatively younger patients with relatively shorter disease duration, the effects of DBS appeared to spread to more cognitive regions of the STN, benefiting loops that connect the caudate to various prefrontal areas importantfor outcome evaluation. These results highlight positive effects of STN stimulation on cognitive functions that may benefit PD patients in daily-life association-learning situations.
Collapse
|
50
|
Locus coeruleus and dorsal raphe neuron activity and response to acute antidepressant administration in a rat model of Parkinson's disease. Int J Neuropsychopharmacol 2011; 14:187-200. [PMID: 20426885 DOI: 10.1017/s146114571000043x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In addition to noradrenergic and serotonergic systems, dopaminergic neurotransmission seems to play an important role in the aetiopathogenesis of, and recovery from, depression. Moreover, the incidence of depression is higher in patients affected by diseases where the dopaminergic system is highly impaired, such us Parkinson's disease. Here, we investigated the effects of dopamine degeneration on the activity and response to antidepressants of locus coeruleus (LC) noradrenergic and dorsal raphe nucleus (DRN) serotonergic neurons. To this end, single-unit extracellular recordings were performed in control and 6-hydroxydopamine (6-OHDA)-lesioned animals. In this latter group, LC neurons showed a lower basal firing rate as well as less sensitivity to the administration of the serotonin reuptake inhibitor, fluoxetine. The rest of electrophysiological parameters and the response to the administration of the α2-adrenoceptor agonist, clonidine and the noradrenaline reuptake inhibitor, reboxetine remained unaltered. In the DRN, dopamine depletion did not modify the basal electrophysiological characteristics and the response to clonidine or fluoxetine administration. In contrast, the administration of reboxetine more efficiently induced an inhibitory effect in the lesioned group. In additional analyses it was observed that while in control animals, LC and DRN basal firing rate was significantly correlated, this relationship was lost after the 6-OHDA lesion. In conclusion, dopaminergic degeneration alters LC neuron basal activity, the relationship/synteny between both nuclei, and their response to antidepressants. These findings shed fresh light on our understanding of the role of dopamine in depression and the mechanism action of antidepressants.
Collapse
|