1
|
Anitha M, Kumar SM, Koo I, Perdew GH, Srinivasan S, Patterson AD. Modulation of Ceramide-Induced Apoptosis in Enteric Neurons by Aryl Hydrocarbon Receptor Signaling: Unveiling a New Pathway beyond ER Stress. Int J Mol Sci 2024; 25:8581. [PMID: 39201268 PMCID: PMC11354200 DOI: 10.3390/ijms25168581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a persistent organic pollutant and a potent aryl hydrocarbon receptor (AHR) ligand, causes delayed intestinal motility and affects the survival of enteric neurons. In this study, we investigated the specific signaling pathways and molecular targets involved in TCDD-induced enteric neurotoxicity. Immortalized fetal enteric neuronal (IM-FEN) cells treated with 10 nM TCDD exhibited cytotoxicity and caspase 3/7 activation, indicating apoptosis. Increased cleaved caspase-3 expression with TCDD treatment, as assessed by immunostaining in enteric neuronal cells isolated from WT mice but not in neural crest cell-specific Ahr deletion mutant mice (Wnt1Cre+/-/Ahrb(fl/fl)), emphasized the pivotal role of AHR in this process. Importantly, the apoptosis in IM-FEN cells treated with TCDD was mediated through a ceramide-dependent pathway, independent of endoplasmic reticulum stress, as evidenced by increased ceramide synthesis and the reversal of cytotoxic effects with myriocin, a potent inhibitor of ceramide biosynthesis. We identified Sptlc2 and Smpd2 as potential gene targets of AHR in ceramide regulation by a chromatin immunoprecipitation (ChIP) assay in IM-FEN cells. Additionally, TCDD downregulated phosphorylated Akt and phosphorylated Ser9-GSK-3β levels, implicating the PI3 kinase/AKT pathway in TCDD-induced neurotoxicity. Overall, this study provides important insights into the mechanisms underlying TCDD-induced enteric neurotoxicity and identifies potential targets for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Mallappa Anitha
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.A.); (I.K.); (G.H.P.)
| | - Supriya M. Kumar
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.A.); (I.K.); (G.H.P.)
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.A.); (I.K.); (G.H.P.)
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.A.); (I.K.); (G.H.P.)
| | - Shanthi Srinivasan
- Department of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (M.A.); (I.K.); (G.H.P.)
| |
Collapse
|
2
|
Arslan ME, Baba C, Tozlu OO. Boron Compounds Mitigate 2,3,7,8-Tetrachlorodibenzo-p-dioxin-Induced Toxicity in Human Peripheral Blood Mononuclear Cells. TOXICS 2024; 12:98. [PMID: 38393193 PMCID: PMC10891549 DOI: 10.3390/toxics12020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) stands as one of the most potent halogenated polycyclic hydrocarbons, known to inflict substantial cytotoxic effects on both animal and human tissues. Its widespread presence and recalcitrance make it an environmental and health concern. Efforts are being intensively channeled to uncover strategies that could mitigate the adverse health outcomes associated with TCDD exposure. In the realm of counteractive agents, boron compounds are emerging as potential candidates. These compounds, which have found applications in a spectrum of industries ranging from agriculture to pharmaceutical and cosmetic manufacturing, are known to modulate several cellular processes and enzymatic pathways. However, the dose-response relationships and protective potentials of commercially prevalent boron compounds, such as boric acid (BA), ulexite (UX), and borax (BX), have not been comprehensively studied. In our detailed investigation, when peripheral blood mononuclear cells (PBMCs) were subjected to TCDD exposure, they manifested significant cellular disruptions. This was evidenced by compromised membrane integrity, a marked reduction in antioxidant defense mechanisms, and a surge in the malondialdehyde (MDA) levels, a recognized marker for oxidative stress. On the genomic front, increased 8-OH-dG levels and chromosomal aberration (CA) frequency suggested that TCDD had the potential to cause DNA damage. Notably, our experiments have revealed that boron compounds could act as protective agents against these disruptions. They exhibited a pronounced ability to diminish the cytotoxic, genotoxic, and oxidative stress outcomes instigated by TCDD. Thus, our findings shed light on the promising role of boron compounds. In specific dosages, they may not only counteract the detrimental effects of TCDD but also serve as potential chemopreventive agents, safeguarding the cellular and genomic integrity of PBMCs.
Collapse
Affiliation(s)
- Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Sciences, Erzurum Technical University, 25050 Erzurum, Turkey; (C.B.); (O.O.T.)
| | | | | |
Collapse
|
3
|
Griffith BD, Frankel TL. The Aryl Hydrocarbon Receptor: Impact on the Tumor Immune Microenvironment and Modulation as a Potential Therapy. Cancers (Basel) 2024; 16:472. [PMID: 38339226 PMCID: PMC10854841 DOI: 10.3390/cancers16030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ubiquitous nuclear receptor with a broad range of functions, both in tumor cells and immune cells within the tumor microenvironment (TME). Activation of AhR has been shown to have a carcinogenic effect in a variety of organs, through induction of cellular proliferation and migration, promotion of epithelial-to-mesenchymal transition, and inhibition of apoptosis, among other functions. However, the impact on immune cell function is more complicated, with both pro- and anti-tumorigenic roles identified. Although targeting AhR in cancer has shown significant promise in pre-clinical studies, there has been limited efficacy in phase III clinical trials to date. With the contrasting roles of AhR activation on immune cell polarization, understanding the impact of AhR activation on the tumor immune microenvironment is necessary to guide therapies targeting the AhR. This review article summarizes the state of knowledge of AhR activation on the TME, limitations of current findings, and the potential for modulation of the AhR as a cancer therapy.
Collapse
Affiliation(s)
- Brian D. Griffith
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Timothy L. Frankel
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Mandal A, Biswas N, Alam MN. Implications of xenobiotic-response element(s) and aryl hydrocarbon receptor in health and diseases. Hum Cell 2023; 36:1638-1655. [PMID: 37329424 DOI: 10.1007/s13577-023-00931-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
The effect of air pollution on public health is severely detrimental. In humans; the physiological response against pollutants is mainly elicited via the activation of aryl hydrocarbon receptor (AhR). It acts as a prime sensor of xenobiotic chemicals, also functioning as a transcription factor regulating a variety of gene expressions. Along with AhR, another pivotal element of the pollution stress pathway is Xenobiotic Response Elements (XREs). XRE, as studied are some conserved sequences in the DNA, responsible for the physiological response against pollutants. XRE is present at the upstream of the inducible target genes of AhR and it regulates the function of the AhR. XRE(s) are highly conserved in species as it has only eight specific sequences found so far in humans, mice, and rats. Inhalation of toxicants like dioxins, gaseous industrial effluents, and smoke from burning fuel and tobacco leads to predominant damage to the lungs. However, scientists are exploring the involvement of AhR in chronic diseases for example chronic obstructive pulmonary disease (COPD) and also other lethal diseases like lung cancer. In this review, we summarise what is known at this time about the roles played by the XRE and AhR in our molecular systems that have a defined control in the normal maintenance of homeostasis as well as dysfunctions.
Collapse
Affiliation(s)
- Avijit Mandal
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Nabendu Biswas
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Md Nur Alam
- Department of Life Sciences, Presidency University, Kolkata, 700073, India.
| |
Collapse
|
5
|
Buñay J, Kossai M, Damon-Soubeyrant C, De Haze A, Saru JP, Trousson A, de Joussineau C, Bouchareb E, Kocer A, Vialat M, Dallel S, Degoul F, Bost F, Clavel S, Penault-Llorca F, Valli MP, Guy L, Matthews J, Renaud Y, Ittmann M, Jones J, Morel L, Lobaccaro JM, Baron S. Persistent organic pollutants promote aggressiveness in prostate cancer. Oncogene 2023; 42:2854-2867. [PMID: 37587334 DOI: 10.1038/s41388-023-02788-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Increasing evidence points towards a causal link between exposure to persistent organic pollutants (POPs) with increased incidence and aggressivity of various cancers. Among these POPs, dioxin and PCB-153 are widely found in our environment and represent a significant source of contamination. Dioxin exposure has already been linked to cancer such as non-Hodgkin's lymphoma, but remains to be more extensively investigated in other cancers. Potential implications of dioxin and PCB-153 in prostate cancer progression spurred us to challenge both ex vivo and in vivo models with low doses of these POPs. We found that dioxin or PCB-153 exposure increased hallmarks of growth and metastasis of prostate cancer cells ex vivo and in grafted NOD-SCID mice. Exposure induced histopathological carcinoma-like patterns in the Ptenpc-/- mice. We identified up-regulation of Acetyl-CoA Acetyltransferase-1 (ACAT1) involved in ketone bodies pathway as a potential target. Mechanistically, genetic inhibition confirmed that ACAT1 mediated dioxin effect on cell migration. Using public prostate cancer datasets, we confirmed the deregulation of ACAT1 and associated gene encoded ketone bodies pathway enzymes such as OXCT1, BDH1 and HMGCL in advanced prostate cancer. To further explore this link between dioxin and ACAT1 deregulation, we analyzed a unique prostate-tumour tissue collection from the USA veterans exposed to agent orange, known to be highly contaminated by dioxin because of industrial production. We found that ACAT1 histoscore is significantly increased in exposed patients. Our studies reveal the implication of dioxin and PCB-153 to induce a prometastatic programme in prostate tumours and identify ACAT1 deregulation as a key event in this process.
Collapse
Affiliation(s)
- Julio Buñay
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Myriam Kossai
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre Jean Perrin, Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000, Clermont Ferrand, France
| | - Christelle Damon-Soubeyrant
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Angélique De Haze
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Jean-Paul Saru
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Amalia Trousson
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Cyrille de Joussineau
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Erwan Bouchareb
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Ayhan Kocer
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Marine Vialat
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Sarah Dallel
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Françoise Degoul
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Frédéric Bost
- Université Côte d'Azur, INSERM U1065, C3M, Equipe Labellisée Ligue Nationale contre le Cancer, 2022, F-06204, Nice, France
| | - Stephan Clavel
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRS UMR7275, Sophia-Antipolis, Valbonne, France
| | - Frédérique Penault-Llorca
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre Jean Perrin, Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000, Clermont Ferrand, France
| | - Marie-Pierre Valli
- Service d'Urologie, CHU Clermont-Ferrand, UMR1240 INSERM, Université Clermont-Auvergne, Clermont Ferrand, France
| | - Laurent Guy
- Service d'Urologie, CHU Clermont-Ferrand, UMR1240 INSERM, Université Clermont-Auvergne, Clermont Ferrand, France
| | - Jason Matthews
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Yoan Renaud
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Michael Ittmann
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Center for Metabolism and Experimental Therapeutics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, and Michael E. DeBakey VAMC Houston, Houston, TX, 77030, USA
| | - Jeffrey Jones
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Urology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Operative Care Line, Urology Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, 77030, USA
| | - Laurent Morel
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Jean-Marc Lobaccaro
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Silvère Baron
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France.
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France.
| |
Collapse
|
6
|
Grishanova AY, Klyushova LS, Perepechaeva ML. AhR and Wnt/β-Catenin Signaling Pathways and Their Interplay. Curr Issues Mol Biol 2023; 45:3848-3876. [PMID: 37232717 DOI: 10.3390/cimb45050248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
As evolutionarily conserved signaling cascades, AhR and Wnt signaling pathways play a critical role in the control over numerous vital embryonic and somatic processes. AhR performs many endogenous functions by integrating its signaling pathway into organ homeostasis and into the maintenance of crucial cellular functions and biological processes. The Wnt signaling pathway regulates cell proliferation, differentiation, and many other phenomena, and this regulation is important for embryonic development and the dynamic balance of adult tissues. AhR and Wnt are the main signaling pathways participating in the control of cell fate and function. They occupy a central position in a variety of processes linked with development and various pathological conditions. Given the importance of these two signaling cascades, it would be interesting to elucidate the biological implications of their interaction. Functional connections between AhR and Wnt signals take place in cases of crosstalk or interplay, about which quite a lot of information has been accumulated in recent years. This review is focused on recent studies about the mutual interactions of key mediators of AhR and Wnt/β-catenin signaling pathways and on the assessment of the complexity of the crosstalk between the AhR signaling cascade and the canonical Wnt pathway.
Collapse
Affiliation(s)
- Alevtina Y Grishanova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| | - Lyubov S Klyushova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| | - Maria L Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| |
Collapse
|
7
|
van Gerwen M, Vasan V, Genden E, Saul SR. Human 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure and thyroid cancer risk. Toxicology 2023; 488:153474. [PMID: 36868552 DOI: 10.1016/j.tox.2023.153474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023]
Abstract
Thyroid cancer incidence has been steadily rising since the 1970s and exposure to environmental pollutants, including persistent organic pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other dioxins, has emerged as a potential explanation for this increase. This study aimed to summarize available human studies on the association between TCDD exposure and thyroid cancer. A systematic review of the literature was performed searching the National Library of Medicine and National Institutes of Health PubMed, Embase, and Scopus databases, through January 2022, using the following keywords: "thyroid", "2,3,7,8-tetrachlorodibenzo-p-dioxin", "TCDD", "dioxin", and "Agent Orange". Six studies were included in this review. Three studies evaluated the acute exposure to the chemical factory accident in Seveso, Italy, and found a non-significant increase in the risk of thyroid cancer. Two studies investigating Agent Orange exposure among United States Vietnam War veterans found a significant risk of thyroid cancer following exposure. No association was found in one study evaluating TCDD exposure through herbicides. The current study highlights the limited information on the potential association between TCDD exposure and thyroid cancer and thus the need for future human studies, especially considering the persistent human exposure to dioxins in the environment.
Collapse
Affiliation(s)
- Maaike van Gerwen
- Department of Otolaryngology - Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Vikram Vasan
- Department of Otolaryngology - Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric Genden
- Department of Otolaryngology - Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shira R Saul
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Endocrinology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| |
Collapse
|
8
|
Cholico GN, Orlowska K, Fling RR, Sink WJ, Zacharewski NA, Fader KA, Nault R, Zacharewski T. Consequences of reprogramming acetyl-CoA metabolism by 2,3,7,8-tetrachlorodibenzo-p-dioxin in the mouse liver. Sci Rep 2023; 13:4138. [PMID: 36914879 PMCID: PMC10011583 DOI: 10.1038/s41598-023-31087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant that induces the progression of steatosis to steatohepatitis with fibrosis in mice. Furthermore, TCDD reprograms hepatic metabolism by redirecting glycolytic intermediates while inhibiting lipid metabolism. Here, we examined the effect of TCDD on hepatic acetyl-coenzyme A (acetyl-CoA) and β-hydroxybutyrate levels as well as protein acetylation and β-hydroxybutyrylation. Acetyl-CoA is not only a central metabolite in multiple anabolic and catabolic pathways, but also a substrate used for posttranslational modification of proteins and a surrogate indicator of cellular energy status. Targeted metabolomic analysis revealed a dose-dependent decrease in hepatic acetyl-CoA levels coincident with the phosphorylation of pyruvate dehydrogenase (E1), and the induction of pyruvate dehydrogenase kinase 4 and pyruvate dehydrogenase phosphatase, while repressing ATP citrate lyase and short-chain acyl-CoA synthetase gene expression. In addition, TCDD dose-dependently reduced the levels of hepatic β-hydroxybutyrate and repressed ketone body biosynthesis gene expression. Moreover, levels of total hepatic protein acetylation and β-hydroxybutyrylation were reduced. AMPK phosphorylation was induced consistent with acetyl-CoA serving as a cellular energy status surrogate, yet subsequent targets associated with re-establishing energy homeostasis were not activated. Collectively, TCDD reduced hepatic acetyl-CoA and β-hydroxybutyrate levels eliciting starvation-like conditions despite normal levels of food intake.
Collapse
Affiliation(s)
- Giovan N Cholico
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Karina Orlowska
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Russell R Fling
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Warren J Sink
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Nicholas A Zacharewski
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
| | - Kelly A Fader
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Rance Nault
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Tim Zacharewski
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
9
|
Pracht K, Wittner J, Kagerer F, Jäck HM, Schuh W. The intestine: A highly dynamic microenvironment for IgA plasma cells. Front Immunol 2023; 14:1114348. [PMID: 36875083 PMCID: PMC9977823 DOI: 10.3389/fimmu.2023.1114348] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
To achieve longevity, IgA plasma cells require a sophisticated anatomical microenvironment that provides cytokines, cell-cell contacts, and nutrients as well as metabolites. The intestinal epithelium harbors cells with distinct functions and represents an important defense line. Anti-microbial peptide-producing paneth cells, mucus-secreting goblet cells and antigen-transporting microfold (M) cells cooperate to build a protective barrier against pathogens. In addition, intestinal epithelial cells are instrumental in the transcytosis of IgA to the gut lumen, and support plasma cell survival by producing the cytokines APRIL and BAFF. Moreover, nutrients are sensed through specialized receptors such as the aryl hydrocarbon receptor (AhR) by both, intestinal epithelial cells and immune cells. However, the intestinal epithelium is highly dynamic with a high cellular turn-over rate and exposure to changing microbiota and nutritional factors. In this review, we discuss the spatial interplay of the intestinal epithelium with plasma cells and its potential contribution to IgA plasma cell generation, homing, and longevity. Moreover, we describe the impact of nutritional AhR ligands on intestinal epithelial cell-IgA plasma cell interaction. Finally, we introduce spatial transcriptomics as a new technology to address open questions in intestinal IgA plasma cell biology.
Collapse
Affiliation(s)
- Katharina Pracht
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jens Wittner
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fritz Kagerer
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
Vernez D, Oltramare C, Sauvaget B, Demougeot-Renard H, Aicher L, Roth N, Rossi I, Radaelli A, Lerch S, Marolf V, Berthet A. Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) soil contamination in Lausanne, Switzerland: Combining pollution mapping and human exposure assessment for targeted risk management. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120441. [PMID: 36349640 DOI: 10.1016/j.envpol.2022.120441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
In December 2020, high soil concentrations of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) were discovered across large parts of Lausanne, Switzerland. Concentrations reached up to 640 ng TEQWHO-2005/kg dry weight. The most likely source was a former municipal waste incinerator. A three-step, multidisciplinary approach to human health risk assessment was conducted to determine the potential population exposure to PCDD/Fs and identify appropriate preventive measures. First, exposure scenarios were developed based on contaminated land uses. Second, the toxicological risks of different scenarios were evaluated using a toxicokinetic model estimating increases in blood serum PCDD/F concentrations over background concentrations from the general population's food consumption. Third, a detailed geostatistical mapping of PCDD/F soil contamination was performed. Stochastic simulations with an external drift and an anisotropic model of the variogram were generated to incorporate the effects of distance from emission source, topography, and main wind directions on the spatial distribution of PCDD/Fs in topsoil. Three main scenarios were assessed: i) direct ingestion of soil by children in playgrounds; ii) consumption of vegetables from private gardens by children and adults; and iii) consumption of food from livestock and poultry raised on contaminated soil. The worst exposure scenario involved the consumption of eggs from private hen houses, resulting in PCDD/F concentrations in serum an order of magnitude higher than might normally be expected. No relevant increases in serum concentrations were calculated for direct soil ingestion and vegetable consumption, except for cucurbitaceous vegetables. Combining mapping and exposure scenario assessment resulted in targeted protective measures for land users, especially concerning food consumption. The results also raised concerns about the potential unsafe consumption of products derived from animals raised on land with PCDD/F concentrations only moderately over environmental background levels.
Collapse
Affiliation(s)
- David Vernez
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, CH-1066 Epalinges, Switzerland.
| | - Christelle Oltramare
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, CH-1066 Epalinges, Switzerland
| | | | | | - Lothar Aicher
- Swiss Centre for Applied Human Toxicology (SCAHT) and Department of Pharmaceutical Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Nicolas Roth
- Swiss Centre for Applied Human Toxicology (SCAHT) and Department of Pharmaceutical Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Isabelle Rossi
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Arianna Radaelli
- Public Health Service, Canton of Vaud, CH-1014 Lausanne, Switzerland
| | - Sylvain Lerch
- Ruminant Research Group, Agroscope, CH-1725 Posieux, Switzerland
| | | | - Aurélie Berthet
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, CH-1066 Epalinges, Switzerland
| |
Collapse
|
11
|
Zhou X, Chakraborty D, Murray IA, Coslo D, Kehs Z, Vijay A, Ton C, Desai D, Amin SG, Patterson AD, Perdew GH. Aryl Hydrocarbon Receptor Activation Coordinates Mouse Small Intestinal Epithelial Cell Programming. J Transl Med 2023; 103:100012. [PMID: 37039146 DOI: 10.1016/j.labinv.2022.100012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 01/11/2023] Open
Abstract
In the face of mechanical, chemical, microbial, and immunologic pressure, intestinal homeostasis is maintained through balanced cellular turnover, proliferation, differentiation, and self-renewal. Here, we present evidence supporting the role of the aryl hydrocarbon receptor (AHR) in the adaptive reprogramming of small intestinal gene expression, leading to altered proliferation, lineage commitment, and remodeling of the cellular repertoire that comprises the intestinal epithelium to promote intestinal resilience. Ahr gene/protein expression and transcriptional activity exhibit marked proximalHI to distalLO and cryptHI to villiLO gradients. Genetic ablation of Ahr impairs commitment/differentiation of the secretory Paneth and goblet cell lineages and associated mucin production, restricts expression of secretory/enterocyte differentiation markers, and increases crypt-associated proliferation and villi-associated enterocyte luminal exfoliation. Ahr-/- mice display a decrease in intestinal barrier function. Ahr+/+ mice that maintain a diet devoid of AHR ligands intestinally phenocopy Ahr-/- mice. In contrast, Ahr+/+ mice exposed to AHR ligands reverse these phenotypes. Ligand-induced AHR transcriptional activity positively correlates with gene expression (Math1, Klf4, Tff3) associated with differentiation of the goblet cell secretory lineage. Math1 was identified as a direct target gene of AHR, a transcription factor critical to the development of goblet cells. These data suggest that dietary cues, relayed through the transcriptional activity of AHR, can reshape the cellular repertoire of the gastrointestinal tract.
Collapse
|
12
|
Li Y, Xie HQ, Guo TL, Liu Y, Zhang W, Ma H, Ma D, Xu L, Yu S, Chen G, Ji J, Jiang S, Zhao B. Subacute exposure to dechlorane 602 dysregulates gene expression and immunity in the gut of mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114462. [PMID: 38321681 DOI: 10.1016/j.ecoenv.2022.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 02/08/2024]
Abstract
Dechlorane 602 (Dec 602) has biomagnification potential. Our previous studies suggested that exposure to Dec 602 for 7 days induced colonic inflammation even after 7 days of recovery. To shed some light on the underlying mechanisms, disturbances of gut immunity and gene expression were further studied. Adult C57BL/6 mice were administered orally with Dec 602 for 7 days, then allowed to recover for another 7 days. Colonic type 3 innate lymphoid cells (ILC3s) in lamina propria lymphocytes (LPLs) and lymphocytes in mesenteric lymph nodes (MLNs) were examined by flow cytometry. Expressions of genes in the gut were determined by RNA-Seq. It was found that Dec 602 exposure up-regulated the percentage of CD4+ T cells in MLNs. The mean fluorescent intensity (MFI) of interleukin (IL)- 22 in LPLs was decreased, while the MFI of IL-17a as well as the percentage of IL-17a+ ILC3s in LPLs were increased after exposure to Dec 602. Genes involved in the formation of blood vessels and epithelial-mesenchymal transition were up-regulated by Dec 602. Ingenuity pathway analysis of differentially expressed genes predicted that exposure to Dec 602 resulted in the activation of liver X receptor/retinoid X receptor (LXR/RXR) and suppression of muscle contractility. Our results, on one hand, verified that the toxic effects of Dec 602 on gut immunity could last for at least 14 days, and on the other hand, these results predicted other adverse effects of Dec 602, such as muscle dysfunction. Overall, our studies provided insights for the further investigation of Dec 602 and other emerging environmental pollutants.
Collapse
Affiliation(s)
- Yunping Li
- School of environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tai L Guo
- Department of Veterinary Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Yin Liu
- School of environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Wanglong Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Hui Ma
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory of TCM Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Dan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyuan Yu
- Environment and Health Department, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Guomin Chen
- Environment and Health Department, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Jiajia Ji
- Environment and Health Department, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Shuai Jiang
- Environment and Health Department, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Bin Zhao
- School of environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
13
|
Mittal A, Mohanty SK, Gautam V, Arora S, Saproo S, Gupta R, Sivakumar R, Garg P, Aggarwal A, Raghavachary P, Dixit NK, Singh VP, Mehta A, Tayal J, Naidu S, Sengupta D, Ahuja G. Artificial intelligence uncovers carcinogenic human metabolites. Nat Chem Biol 2022; 18:1204-1213. [PMID: 35953549 DOI: 10.1038/s41589-022-01110-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/07/2022] [Indexed: 12/14/2022]
Abstract
The genome of a eukaryotic cell is often vulnerable to both intrinsic and extrinsic threats owing to its constant exposure to a myriad of heterogeneous compounds. Despite the availability of innate DNA damage responses, some genomic lesions trigger malignant transformation of cells. Accurate prediction of carcinogens is an ever-challenging task owing to the limited information about bona fide (non-)carcinogens. We developed Metabokiller, an ensemble classifier that accurately recognizes carcinogens by quantitatively assessing their electrophilicity, their potential to induce proliferation, oxidative stress, genomic instability, epigenome alterations, and anti-apoptotic response. Concomitant with the carcinogenicity prediction, Metabokiller is fully interpretable and outperforms existing best-practice methods for carcinogenicity prediction. Metabokiller unraveled potential carcinogenic human metabolites. To cross-validate Metabokiller predictions, we performed multiple functional assays using Saccharomyces cerevisiae and human cells with two Metabokiller-flagged human metabolites, namely 4-nitrocatechol and 3,4-dihydroxyphenylacetic acid, and observed high synergy between Metabokiller predictions and experimental validations.
Collapse
Affiliation(s)
- Aayushi Mittal
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, Okhla, Phase III, New Delhi, Delhi, India
| | - Sanjay Kumar Mohanty
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, Okhla, Phase III, New Delhi, Delhi, India
| | - Vishakha Gautam
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, Okhla, Phase III, New Delhi, Delhi, India
| | - Sakshi Arora
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, Okhla, Phase III, New Delhi, Delhi, India
| | - Sheetanshu Saproo
- Department of Bio-Medical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Ria Gupta
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, Okhla, Phase III, New Delhi, Delhi, India
| | - Roshan Sivakumar
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, Okhla, Phase III, New Delhi, Delhi, India
| | - Prakriti Garg
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, Okhla, Phase III, New Delhi, Delhi, India
| | - Anmol Aggarwal
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, Okhla, Phase III, New Delhi, Delhi, India
| | - Padmasini Raghavachary
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, Okhla, Phase III, New Delhi, Delhi, India
| | - Nilesh Kumar Dixit
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, Okhla, Phase III, New Delhi, Delhi, India
| | - Vijay Pal Singh
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, Delhi, India
| | - Anurag Mehta
- Rajiv Gandhi Cancer Institute & Research Centre, New Delhi, Delhi, India
| | - Juhi Tayal
- Rajiv Gandhi Cancer Institute & Research Centre, New Delhi, Delhi, India
| | - Srivatsava Naidu
- Department of Bio-Medical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Debarka Sengupta
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, Okhla, Phase III, New Delhi, Delhi, India.
| | - Gaurav Ahuja
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi, Okhla, Phase III, New Delhi, Delhi, India.
| |
Collapse
|
14
|
Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022; 11:2828. [PMID: 36140952 PMCID: PMC9497933 DOI: 10.3390/foods11182828] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Benjamin P. C. Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Gary M. Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
15
|
Yan L, Messner CJ, Tian M, Gou X, Suter-Dick L, Zhang X. Evaluation of dioxin induced transcriptomic responses in a 3D human liver microtissue model. ENVIRONMENTAL RESEARCH 2022; 210:112906. [PMID: 35181307 DOI: 10.1016/j.envres.2022.112906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Three-dimensional human liver microtissue model provides a promising method for predicting the human hepatotoxicity of environmental chemicals. However, the dynamics of transcriptional responses of 3D human liver microtissue model to dioxins exposure remain unclear. Herein, time-series transcriptomic analysis was used to characterize modulation of gene expression over 14 days in 3D human liver microtissues exposed to 2,3,7,8-tetra-chlorodibenzo-p-dioxin (TCDD, 31 nM, 10 ng/ml). Changes in gene expression and modulation of biological pathways were evaluated at several time points. The results showed that microtissues stably expressed genes related to toxicological pathways (e.g. highly of genes involved in external stimuli and maintenance of cell homeostasis pathways) during the 14-day culture period. Furthermore, a weekly phenomenon pattern was observed for the number of the differentially expressed genes in microtissues exposed to TCDD at each time point. TCDD led to an induction of genes involved in cell cycle regulation at day three. Metabolic pathways were the main significantly induced pathways during the subsequent days, with the immune/inflammatory response enriched on the fifth day, and the cellular response to DNA damage was identified at the end of the exposure. Finally, relevant transcription patterns identified in microtissues were compared with published data on rodent and human cell-line studies to elucidate potential species-specific responses to TCDD over time. Cell development and cytochrome P450 pathway were mainly affected after a 3-day exposure, with the DNA damage response identified at the end of exposure in the human microtissue system but not in mouse/rat primary hepatocytes models. Overall, the 3D human liver microtissue model is a valuable tool to predict the toxic effects of environmental chemicals with a relatively long exposure.
Collapse
Affiliation(s)
- Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Catherine Jane Messner
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Mingming Tian
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xiao Gou
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Laura Suter-Dick
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
16
|
Cancer risk in the residents of a town near three industrial waste incinerators in Korea: a retrospective cohort study. Int Arch Occup Environ Health 2022; 95:1829-1843. [PMID: 35585357 DOI: 10.1007/s00420-022-01875-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/22/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Three industrial waste incinerators (IWIs) were built in 1999, 2001, and 2010, within a 3 km radius of a town with a population of around 5000 in Korea. This study evaluated whether residents near these three IWIs had increased cancer incidence than those from other areas in Korea using regional health data. METHODS Standardized incidence ratios (SIR) were calculated using the frequency of cancer cases in the National Cancer Registry of the exposed area (Buki-myeon), Chungcheongbuk-do (Chungbuk, state including Buki-myeon), and whole Korea from 1999 to 2017. A retrospective cohort was created using National Health Insurance System data from 2002 to 2018. The exposed group was defined as those having a residential history in the exposed area. The control group was defined as those having a residential history in nearby towns or counties in Chungbuk, excluding counties having living and cultural areas in other provinces and cities. Hazard ratio (HR) and 95% confidence intervals (CI) were estimated using the Cox proportional hazard model adjusted for age, level of health insurance fee, and smoking history. RESULTS In the ecological study using National Cancer Registry data, the risk of all cancers, all cancers excluding thyroid, esophageal, stomach, and lung cancers in the exposed area were 1.13 (95% CI 1.03-1.24), 1.15 (95% CI 1.04-1.26), 1.91 (95% CI 1.13-2.89), 1.39 (95% CI 1.14-1.66), and 1.29 (95% CI 1.03-1.57) times higher than in whole Korea among exposed males, respectively. In the retrospective cohort, 4300 males (26,821 person-years) and 3796 females (24,746 person-years) in exposed group, 150,964 males (1,212,010 person-years) and 134,535 females (1,104,025 person-years) in control group were analyzed. After adjusting for several confounding factors, the risks for gallbladder cancer among males and kidney cancer among females were 2.65 (95% CI 1.38-5.06) and 2.82 (95% CI 1.13-7.03) times higher in the exposed group versus the control group, respectively. CONCLUSIONS Cancer risk was higher in Koreans having residential history living near IWIs compared to the other areas. Further study warrants nationwide effects and longer follow-up of WIs for cancers in Korea.
Collapse
|
17
|
Xu L, Liu Y, Chen Y, Zhu R, Li S, Zhang S, Zhang J, Xie HQ, Zhao B. Emodin inhibits U87 glioblastoma cells migration by activating aryl hydrocarbon receptor (AhR) signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113357. [PMID: 35272197 DOI: 10.1016/j.ecoenv.2022.113357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-activated receptor to mediates the biological reactions of many environmental and natural compounds, which is highly expressed in glioblastoma. Although it has been reported that AhR agonist emodin can suppress some kinds of tumors, its inhibitory effect on glioblastoma migration and its relationship with AhR remain unclear. Based on the complexity of tumor pathogenesis and the tissue specificity of AhR, we hope can further understand the effect of emodin on glioblastoma and explore its mechanism. We found that the inhibitory effect of emodin on the migration of U87 glioblastoma cells increased with time, and the cell migration ability was inhibited by about 25% after 36 h exposure. In this process, emodin promoted the expression of the tumor suppressor IL24 by activating the AhR signaling pathway. Reducing the expression of AhR or IL24 by interfering RNA could block or relieve the inhibitory effect of emodin on the U87 cells migration, which indicates the inhibition of emodin on the migration of glioblastoma is mediated by the AhR-IL24 axis. Our data proved the AhR-IL24 signal axis is an important pathway for emodin to inhibit the migration of glioblastoma, and the AhR signaling pathway can be used as a key target to research the regulation effect and its mechanism of compounds on glioblastoma migration.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yiyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Ruihong Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Siqi Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Songyan Zhang
- Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jian Zhang
- Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
18
|
Han H, Safe S, Jayaraman A, Chapkin RS. Diet-Host-Microbiota Interactions Shape Aryl Hydrocarbon Receptor Ligand Production to Modulate Intestinal Homeostasis. Annu Rev Nutr 2021; 41:455-478. [PMID: 34633858 PMCID: PMC8667662 DOI: 10.1146/annurev-nutr-043020-090050] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated basic-helix-loop-helix transcription factor that binds structurally diverse ligands and senses cues from environmental toxicants and physiologically relevant dietary/microbiota-derived ligands. The AhR is an ancient conserved protein and is widely expressed across different tissues in vertebrates and invertebrates. AhR signaling mediates a wide range of cellular functions in a ligand-, cell type-, species-, and context-specific manner. Dysregulation of AhR signaling is linked to many developmental defects and chronic diseases. In this review, we discuss the emerging role of AhR signaling in mediating bidirectional host-microbiome interactions. We also consider evidence showing the potential for the dietary/microbial enhancement ofhealth-promoting AhR ligands to improve clinical pathway management in the context of inflammatory bowel diseases and colon tumorigenesis.
Collapse
Affiliation(s)
- Huajun Han
- Program in Integrative Nutrition and Complex Diseases and Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA;
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Stephen Safe
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases and Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA;
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
19
|
Sadowska A, Nynca A, Ruszkowska M, Paukszto L, Myszczynski K, Swigonska S, Orlowska K, Molcan T, Jastrzebski JP, Ciereszko RE. Transcriptional profiling of Chinese hamster ovary (CHO) cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Reprod Toxicol 2021; 104:143-154. [PMID: 34363982 DOI: 10.1016/j.reprotox.2021.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a man-made chemical compound contaminating the environment. An exposure of organisms to TCDD results in numerous disorders. The main mechanism of TCDD action involves the induction of the aryl hydrocarbon receptor (AhR) pathway followed by the increase in the expression and activity of cytochrome P450 family 1 (CYP1) enzymes. The main aim of the present study was to identify, by means of RNA sequencing, transcripts involved in the mechanism of TCDD action in Chinese hamster ovary (CHO) cells, known to not express CYP1A1 enzyme. The CHO cells were treated with TCDD for 3, 12 or 24 h, and total RNA was isolated and sequenced. Thirty six (padjusted < 0.05) or six (padjusted < 0.05, log2FC ≥ 1.0/log2FC≤-1.0) differentially expressed genes (DEGs) were identified in TCDD-treated cells depending on the assumed statistical criteria. The dioxin up- and downregulated the expression of genes associated with ovarian follicle functions, development, cardiovascular system, signal transduction, inflammation and carcinogenesis. TCDD did not affect the expression of any of 522 miRNAs which were identified in the cells. The expression of CYP1A1, CYP1A2 and CYP1B1 was demonstrated neither in control nor in TCDD-treated CHO cells, although the respective genes were found in the cell genome. Twenty two other CYP enzymes were identified in CHO cells, however their expression was also not affected by TCDD.
Collapse
Affiliation(s)
- Agnieszka Sadowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Anna Nynca
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Monika Ruszkowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Kamil Myszczynski
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Sylwia Swigonska
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Karina Orlowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Tomasz Molcan
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Jan P Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Renata E Ciereszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland; Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| |
Collapse
|
20
|
Walczak K, Kazimierczak P, Szalast K, Plech T. UVB Radiation and Selected Tryptophan-Derived AhR Ligands-Potential Biological Interactions in Melanoma Cells. Int J Mol Sci 2021; 22:ijms22147500. [PMID: 34299117 PMCID: PMC8307169 DOI: 10.3390/ijms22147500] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/12/2022] Open
Abstract
Excessive UV exposure is considered the major environmental factor in melanoma progression. Human skin is constantly exposed to selected tryptophan-derived aryl hydrocarbon receptor (AhR) ligands, including kynurenine (KYN) and kynurenic acid (KYNA), as they are endogenously produced and present in various tissues and body fluids. Importantly, recent studies confirmed the biological activity of KYN and KYNA toward melanoma cells in vitro. Thus, in this study, the potential biological interactions between UVB and tryptophan metabolites KYN and KYNA were studied in melanoma A375, SK-MEL-3, and RPMI-7951 cells. It was shown that UVB enhanced the antiproliferative activity of KYN and KYNA in melanoma cells. Importantly, selected tryptophan-derived AhR ligands did not affect the invasiveness of A375 and RPMI-7951 cells; however, the stimulatory effect was observed in SK-MEL-3 cells exposed to UVB. Thus, the effect of tryptophan metabolites on metabolic activity, cell cycle regulation, and cell death in SK-MEL-3 cells exposed to UVB was assessed. In conclusion, taking into account that both UVB radiation and tryptophan-derived AhR ligands may have a crucial effect on skin cancer formation and progression, these results may have a significant impact, revealing the potential biological interactions in melanoma cells in vitro.
Collapse
Affiliation(s)
- Katarzyna Walczak
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland; (K.S.); (T.P.)
- Correspondence: ; Tel.: +48-814-486-774
| | - Paulina Kazimierczak
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20093 Lublin, Poland;
| | - Karolina Szalast
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland; (K.S.); (T.P.)
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland; (K.S.); (T.P.)
| |
Collapse
|
21
|
Nothdurft S, Thumser-Henner C, Breitenbücher F, Okimoto RA, Dorsch M, Opitz CA, Sadik A, Esser C, Hölzel M, Asthana S, Forster J, Beisser D, Kalmbach S, Grüner BM, Bivona TG, Schramm A, Schuler M. Functional screening identifies aryl hydrocarbon receptor as suppressor of lung cancer metastasis. Oncogenesis 2020; 9:102. [PMID: 33214553 PMCID: PMC7677369 DOI: 10.1038/s41389-020-00286-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023] Open
Abstract
Lung cancer mortality largely results from metastasis. Despite curative surgery many patients with early-stage non-small cell lung cancer ultimately succumb to metastatic relapse. Current risk reduction strategies based on cytotoxic chemotherapy and radiation have only modest activity. Against this background, we functionally screened for novel metastasis modulators using a barcoded shRNA library and an orthotopic lung cancer model. We identified aryl hydrocarbon receptor (AHR), a sensor of xenobiotic chemicals and transcription factor, as suppressor of lung cancer metastasis. Knockdown of endogenous AHR induces epithelial–mesenchymal transition signatures, increases invasiveness of lung cancer cells in vitro and metastasis formation in vivo. Low intratumoral AHR expression associates with inferior outcome of patients with resected lung adenocarcinomas. Mechanistically, AHR triggers ATF4 signaling and represses matrix metalloproteinase activity, both counteracting metastatic programs. These findings link the xenobiotic defense system with control of lung cancer progression. AHR-regulated pathways are promising targets for innovative anti-metastatic strategies.
Collapse
Affiliation(s)
- Silke Nothdurft
- Laboratory of Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Clotilde Thumser-Henner
- Laboratory of Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Frank Breitenbücher
- Laboratory of Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ross A Okimoto
- Department of Medicine, University of California, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Madeleine Dorsch
- Laboratory of Molecular Tumor Pathology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Christiane A Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| | - Ahmed Sadik
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
| | - Charlotte Esser
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Saurabh Asthana
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Jan Forster
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Beisser
- Department of Biodiversity, University Duisburg-Essen, Essen, Germany
| | - Sophie Kalmbach
- Laboratory of Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Barbara M Grüner
- Laboratory of Molecular Tumor Pathology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Alexander Schramm
- Laboratory of Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Martin Schuler
- Laboratory of Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| |
Collapse
|
22
|
Koual M, Tomkiewicz C, Cano-Sancho G, Antignac JP, Bats AS, Coumoul X. Environmental chemicals, breast cancer progression and drug resistance. Environ Health 2020; 19:117. [PMID: 33203443 PMCID: PMC7672852 DOI: 10.1186/s12940-020-00670-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/21/2020] [Indexed: 05/04/2023]
Abstract
Breast cancer (BC) is one of the most common causes of cancer in the world and the second leading cause of cancer deaths among women. Mortality is associated mainly with the development of metastases. Identification of the mechanisms involved in metastasis formation is, therefore, a major public health issue. Among the proposed risk factors, chemical environment and pollution are increasingly suggested to have an effect on the signaling pathways involved in metastatic tumor cells emergence and progression. The purpose of this article is to summarize current knowledge about the role of environmental chemicals in breast cancer progression, metastasis formation and resistance to chemotherapy. Through a scoping review, we highlight the effects of a wide variety of environmental toxicants, including persistent organic pollutants and endocrine disruptors, on invasion mechanisms and metastatic processes in BC. We identified the epithelial-to-mesenchymal transition and cancer-stemness (the stem cell-like phenotype in tumors), two mechanisms suspected of playing key roles in the development of metastases and linked to chemoresistance, as potential targets of contaminants. We discuss then the recently described pro-migratory and pro-invasive Ah receptor signaling pathway and conclude that his role in BC progression is still controversial. In conclusion, although several pertinent pathways for the effects of xenobiotics have been identified, the mechanisms of actions for multiple other molecules remain to be established. The integral role of xenobiotics in the exposome in BC needs to be further explored through additional relevant epidemiological studies that can be extended to molecular mechanisms.
Collapse
Affiliation(s)
- Meriem Koual
- INSERM UMR-S1124, 3TS, Toxicologie Pharmacologie et Signalisation Cellulaire, Université de Paris, Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Chirurgie Cancérologique Gynécologique et du Sein, Paris, France.
- Faculté de Médecine, Université de Paris, Paris, France.
| | - Céline Tomkiewicz
- INSERM UMR-S1124, 3TS, Toxicologie Pharmacologie et Signalisation Cellulaire, Université de Paris, Paris, France
- Faculté de Médecine, Université de Paris, Paris, France
| | | | | | - Anne-Sophie Bats
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Chirurgie Cancérologique Gynécologique et du Sein, Paris, France
- Faculté de Médecine, Université de Paris, Paris, France
- INSERM UMR-S1147, Equipe labellisée Ligue Nationale Contre le Cancer, Université de Paris, Paris, France
| | - Xavier Coumoul
- INSERM UMR-S1124, 3TS, Toxicologie Pharmacologie et Signalisation Cellulaire, Université de Paris, Paris, France.
- Faculté de Médecine, Université de Paris, Paris, France.
| |
Collapse
|
23
|
1-Methyl-D-tryptophan activates aryl hydrocarbon receptor, a pathway associated with bladder cancer progression. BMC Cancer 2020; 20:869. [PMID: 32907554 PMCID: PMC7488063 DOI: 10.1186/s12885-020-07371-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Background Indoleamine 2, 3-dioxygenase-1 (IDO1) is a promising target for immunotherapy in bladder cancer (BC). IDO1 breaks-down tryptophan to generate kynurenine derivatives, which may activate the aryl hydrocarbon receptor (AHR). AHR is an important target for carcinogens, but its association with BC progression was unknown. Two IDO1 inhibitors used in clinical trials are 1-methyl-D-tryptophan (MT) and INCB240360. Because MT is an aromatic hydrocarbon, it may be a ligand for AHR. We hypothesized that AHR could be associated with BC progression and that MT could activate AHR in BC. Methods BC patients (n = 165) were selected from the Gene Expression Omnibus database. A cut-off point for relative expression of AHR and cytochrome 450 enzymes (CYP1A1, CYP1A2, and CYP1B1; markers of AHR activation) was determined to compare with the grade, stage, and tumor progression. For in vitro experiments, RT4 (grade 1) and T24 (grade 3) BC cells were incubated with MT and INCB240360 to evaluate the expression of AHR and CYP1A1. Results AHR activation was associated with grade, stage, and progression of BC. T24 cells express more CYP1A1 than RT4 cells. Although IDO1 expression and kynurenine production are elevated in T24 cells concomitantly to CYP1A1 expression, IDO1 inhibitors were not able to decrease CYP1A1 expression, in contrast, MT significantly increased it in both cell lines. Conclusion In conclusion, it is rational to inhibit IDO1 in BC, among other factors because it contributes to AHR activation. However, MT needs to be carefully evaluated for BC because it is an AHR pathway agonist independently of its effects on IDO1.
Collapse
|
24
|
Svobodová J, Procházková J, Kabátková M, Krkoška M, Šmerdová L, Líbalová H, Topinka J, Kléma J, Kozubík A, Machala M, Vondráček J. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Disrupts Control of Cell Proliferation and Apoptosis in a Human Model of Adult Liver Progenitors. Toxicol Sci 2020; 172:368-384. [PMID: 31536130 DOI: 10.1093/toxsci/kfz202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) activation has been shown to alter proliferation, apoptosis, or differentiation of adult rat liver progenitors. Here, we investigated the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated AhR activation on a human model of bipotent liver progenitors, undifferentiated HepaRG cells. We used both intact undifferentiated HepaRG cells, and the cells with silenced Hippo pathway effectors, yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), which play key role(s) in tissue-specific progenitor cell self-renewal and expansion, such as in liver, cardiac, or respiratory progenitors. TCDD induced cell proliferation in confluent undifferentiated HepaRG cells; however, following YAP, and, in particular, double YAP/TAZ knockdown, TCDD promoted induction of apoptosis. These results suggested that, unlike in mature hepatocytes, or hepatocyte-like cells, activation of the AhR may sensitize undifferentiated HepaRG cells to apoptotic stimuli. Induction of apoptosis in cells with silenced YAP/TAZ was associated with upregulation of death ligand TRAIL, and seemed to involve both extrinsic and mitochondrial apoptosis pathways. Global gene expression analysis further suggested that TCDD significantly altered expression of constituents and/or transcriptional targets of signaling pathways participating in control of expansion or differentiation of liver progenitors, including EGFR, Wnt/β-catenin, or tumor growth factor-β signaling pathways. TCDD significantly upregulated cytosolic proapoptotic protein BMF (Bcl-2 modifying factor) in HepaRG cells, which could be linked with an enhanced sensitivity of TCDD-treated cells to apoptosis. Our results suggest that, in addition to promotion of cell proliferation and alteration of signaling pathways controlling expansion of human adult liver progenitors, AhR ligands may also sensitize human liver progenitor cells to apoptosis.
Collapse
Affiliation(s)
- Jana Svobodová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 61137, Czech Republic
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno 62100, Czech Republic
| | - Markéta Kabátková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| | - Martin Krkoška
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 61137, Czech Republic
| | - Lenka Šmerdová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| | - Helena Líbalová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Jan Topinka
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Jiří Kléma
- Department of Computer Science, Czech Technical University, Prague 12135, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno 62100, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| |
Collapse
|
25
|
Ženata O, Vrzalová A, Bachleda P, Janečková J, Panáček A, Kvítek L, Vrzal R. The effect of graphene oxide on signalling of xenobiotic receptors involved in biotransformation. CHEMOSPHERE 2020; 253:126753. [PMID: 32464781 DOI: 10.1016/j.chemosphere.2020.126753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Graphene oxide (GO) is an engineered nanomaterial which was demonstrated to have outstanding capacity for adsorption of organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), the ligands and activators of the aryl hydrocarbon receptor (AhR). Due to the partially overlapping ligand capacity of AhR and pregnane X receptor (PXR), we tested the impact of GO particles on their signalling. While reporter gene assay revealed potentiating effect of GO on ligand-activated AhR-dependent luciferase activity, there was no effect for PXR. However, inducible target genes for AhR (CYP1A1) or PXR (ABCB1) were decreased at mRNA as well as protein levels by the presence of GO in HepG2 (for AhR), LS180 (for PXR) or primary human hepatocytes (both receptors). Moreover, the presence of GO diminished PXR and AhR protein levels in primary cultures of human hepatocytes. This was partially reversed by proteasome inhibitor MG132 for AhR but not for PXR. In conclusion, GO decreases ligand-stimulated activities of AhR and PXR in human cells.
Collapse
Affiliation(s)
- Ondřej Ženata
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic
| | - Aneta Vrzalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic
| | - Petr Bachleda
- Department of Surgery, University Hospital, I.P. Pavlova 6, 775 15, Olomouc, Czech Republic
| | - Jana Janečková
- Department of Surgery, University Hospital, I.P. Pavlova 6, 775 15, Olomouc, Czech Republic
| | - Aleš Panáček
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Libor Kvítek
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic.
| |
Collapse
|
26
|
Dai Q, Xu X, Eskenazi B, Asante KA, Chen A, Fobil J, Bergman Å, Brennan L, Sly PD, Nnorom IC, Pascale A, Wang Q, Zeng EY, Zeng Z, Landrigan PJ, Bruné Drisse MN, Huo X. Severe dioxin-like compound (DLC) contamination in e-waste recycling areas: An under-recognized threat to local health. ENVIRONMENT INTERNATIONAL 2020; 139:105731. [PMID: 32315892 DOI: 10.1016/j.envint.2020.105731] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 02/05/2023]
Abstract
Electrical and electronic waste (e-waste) burning and recycling activities have become one of the main emission sources of dioxin-like compounds (DLCs). Workers involved in e-waste recycling operations and residents living near e-waste recycling sites (EWRS) are exposed to high levels of DLCs. Epidemiological and experimental in vivo studies have reported a range of interconnected responses in multiple systems with DLC exposure. However, due to the compositional complexity of DLCs and difficulties in assessing mixture effects of the complex mixture of e-waste-related contaminants, there are few studies concerning human health outcomes related to DLC exposure at informal EWRS. In this paper, we have reviewed the environmental levels and body burdens of DLCs at EWRS and compared them with the levels reported to be associated with observable adverse effects to assess the health risks of DLC exposure at EWRS. In general, DLC concentrations at EWRS of many countries have been decreasing in recent years due to stricter regulations on e-waste recycling activities, but the contamination status is still severe. Comparison with available data from industrial sites and well-known highly DLC contaminated areas shows that high levels of DLCs derived from crude e-waste recycling processes lead to elevated body burdens. The DLC levels in human blood and breast milk at EWRS are higher than those reported in some epidemiological studies that are related to various health impacts. The estimated total daily intakes of DLCs for people in EWRS far exceed the WHO recommended total daily intake limit. It can be inferred that people living in EWRS with high DLC contamination have higher health risks. Therefore, more well-designed epidemiological studies are urgently needed to focus on the health effects of DLC pollution in EWRS. Continuous monitoring of the temporal trends of DLC levels in EWRS after actions is of highest importance.
Collapse
Affiliation(s)
- Qingyuan Dai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, China
| | - Brenda Eskenazi
- School of Public Health, University of California, Berkeley, USA
| | | | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, USA
| | - Julius Fobil
- School of Public Health, University of Ghana, Ghana
| | - Åke Bergman
- Department of Environmental Science, Stockholm University, Sweden; Department of Science and Technology, Örebro University, Sweden; College of Environmental Science and Engineering, Tongji University, China
| | - Lesley Brennan
- Department of Obstetrics and Gynaecology, University of Alberta, Canada
| | - Peter D Sly
- Child Health Research Centre, University of Queensland, Australia
| | | | - Antonio Pascale
- Department of Toxicology, University of the Republic, Uruguay
| | - Qihua Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, China
| | | | - Marie-Noel Bruné Drisse
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Xia Huo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, China.
| |
Collapse
|
27
|
Zhang Z, Zhou M, He J, Shi T, Zhang S, Tang N, Chen W. Polychlorinated dibenzo-dioxins and polychlorinated dibenzo-furans exposure and altered lung function: The mediating role of oxidative stress. ENVIRONMENT INTERNATIONAL 2020; 137:105521. [PMID: 32007688 DOI: 10.1016/j.envint.2020.105521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/26/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
The lung has been reported to be one of the target organs of polychlorinated dibenzo-dioxins and polychlorinated dibenzo-furans (PCDD/Fs) in many toxicological studies. While the associations between PCDD/Fs exposure and lung function levels have not been investigated thoroughly. This study aimed to explore these associations and the potential mediating role of oxidative stress. In this study, 201 foundry workers and 222 non-exposed general residents were recruited from central China, and their lung function parameters were measured. Air and food samples were collected to determine the PCDD/Fs levels for individual PCDD/Fs exposure estimation. Serum PCDD/Fs levels were determined in a subgroup of individuals randomly selected from the study population to reflect the body burden. It was found that each 1-unit increase in ln-transformed concentration of PCDD/Fs exposure (fg TEQ/bw/day) was associated with a 0.47 L decrease in FVC and a 0.25 L decrease in FEV1. Each 1-unit increase in ln-transformed concentration of serum PCDD/Fs (fg TEQ/g lipid) was associated with a 0.36 L decrease in FVC and a 0.24 L decrease in FEV1. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) was not only positively related to PCDD/Fs exposure, but also inversely associated with FVC and FEV1 are FVC (β = -0.15, 95% CI: -0.22 to -0.08) and FEV1 (β = -0.07, 95% CI: -0.13 to -0.02). Mediation analysis revealed that urinary 8-OHdG mediated 12.22% of the associations of external PCDD/Fs exposure with FVC levels, 28.61% and 27.87% of the associations of serum PCDD/Fs with FVC and FEV1 levels respectively. Our findings suggested that PCDD/Fs exposure was associated with decreased lung function levels by a mechanism partly involving oxidatively generated damage to DNA.
Collapse
Affiliation(s)
- Zhuang Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jintong He
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Zhuhai Center for Chronic Disease Control, Zhuhai, Guangdong 519060, China
| | - Tingming Shi
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Sukun Zhang
- Center for Research on Urban Environment, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection (MEP), Guangzhou 510655, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
28
|
Al-Zoughool M, Bird M, Rice J, Baan RA, Billard M, Birkett N, Krewski D, Zielinski JM. Development of a database on key characteristics of human carcinogens. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:264-287. [PMID: 31379270 DOI: 10.1080/10937404.2019.1642593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A database on mechanistic characteristics of human carcinogenic agents was developed by collecting mechanistic information on agents identified as human carcinogens (Group 1) by the International Agency for Research on Cancer (IARC) in the IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. A two-phase process is described for the construction of the database according to 24 toxicological endpoints, derived from appropriate test systems that were acquired from data obtained from the mechanisms sections of the IARC Monographs (Section 4) and a supplementary PubMed search. These endpoints were then aligned with 10 key characteristics of human carcinogens that reflect the broader attributes of these agents relating to the development of cancer in humans. The considerations involved in linking of toxicological endpoints to key characteristics are described and specific examples of the determination of key characteristics for six specific agents (tamoxifen, hepatitis B virus, arsenic, ultraviolet and solar radiation, tobacco smoking, and dioxin) are provided. Data for humans and animals were tabulated separately, as were results for in-vivo and for in-vitro sources of information. The database was constructed to support a separate analysis of the expression of these endpoints by 86 Group 1 carcinogens, in-vivo and in-vitro along with an analysis of the key characteristics of these agents.
Collapse
Affiliation(s)
- Mustafa Al-Zoughool
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Department of Community and Environmental Health, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Michael Bird
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Jerry Rice
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Georgetown, DC, USA
| | - Robert A Baan
- International Agency for Research on Cancer (retired), Lyon, France
| | - Mélissa Billard
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Nicholas Birkett
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- Risk Sciences International, Ottawa, Canada
| | - Jan M Zielinski
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
29
|
Zhang Z, He J, Shi T, Tang N, Zhang S, Wen S, Liu X, Zhao M, Wang D, Chen W. Associations between polychlorinated dibenzo-dioxins and polychlorinated dibenzo-furans exposure and oxidatively generated damage to DNA and lipid. CHEMOSPHERE 2019; 227:237-246. [PMID: 30991198 DOI: 10.1016/j.chemosphere.2019.04.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Polychlorinated dibenzo-dioxins and polychlorinated dibenzo-furans (PCDD/Fs) have been reported to induce reactive oxygen species and oxidative stress, but the dose-response relationships have not been explored in molecular epidemiological studies. In this study, a total of 602 participants were recruited, comprising of 215 foundry workers, 171 incineration workers and 216 residents living more than 5 km away from the plants as the reference group. Individual PCDD/Fs exposures were estimated according to PCDD/Fs levels of working and living ambient air and daily foods. Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-iso-prostaglandin-F2α (8-isoPGF2α) were determined to reflect oxidatively generated damage to DNA and lipid. Generalized linear models were used to access the associations between PCDD/Fs exposure and oxidative stress biomarkers. We found that PCDD/Fs exposure and urinary oxidative stress biomarkers of workers were all higher than those of the reference group. Significantly positive exposure-response relationships between individual PCDD/Fs exposures and urinary 8-oxodG and 8-iso-PGF2α were found. Each 1-unit increase in ln-transformed levels of PCDD/Fs exposure generated a 0.78 nmol/mmol creatinine increase in ln-transformed 8-oxodG and a 0.50 ng/mmol creatinine increase in ln-transformed 8-isoPGF2α in foundry workers, a 0.49 nmol/mmol creatinine increase in ln-transformed 8-oxodG and a 0.26 ng/mmol creatinine increase in ln-transformed 8-isoPGF2α in incineration workers, compared with the reference group. And such associations were not modified by tobacco use. Our findings could help to understand the dose-response relationships between PCDD/Fs and oxidatively generated damage to DNA and lipid, and provide an epidemiologic basis for conducting research on the carcinogenesis and other toxicity mechanisms of PCDD/Fs.
Collapse
Affiliation(s)
- Zhuang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jintong He
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Zhuhai Center for Chronic Disease Control, Zhuhai, Guangdong, 519060, China
| | - Tingming Shi
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Sukun Zhang
- South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection (MEP), Guangzhou, 510655, China
| | - Sheng Wen
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Xiao Liu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Ming Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
30
|
Deuster E, Mayr D, Hester A, Kolben T, Zeder-Göß C, Burges A, Mahner S, Jeschke U, Trillsch F, Czogalla B. Correlation of the Aryl Hydrocarbon Receptor with FSHR in Ovarian Cancer Patients. Int J Mol Sci 2019; 20:ijms20122862. [PMID: 31212758 PMCID: PMC6628023 DOI: 10.3390/ijms20122862] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022] Open
Abstract
Expression of the aryl hydrocarbon receptor (AhR) has been described in various tumor entities from different organs. However, its role in ovarian cancer has not been thoroughly investigated. We aimed to elucidate the prognostic impact of AhR, its correlation with the follicle-stimulating hormone receptor (FSHR), and their functional role in ovarian cancer. By immunohistochemistry, AhR staining was analyzed in a subset of 156 samples of ovarian cancer patients. AhR staining was assessed in the nucleus and the cytoplasm using the semi-quantitative immunoreactive score (IRS), and the scores were grouped into high- and low-level expression. AhR expression was detected in all histological subtypes, with clear cell ovarian cancer displaying the highest staining intensity. Low cytoplasmic expression of AhR was associated with longer overall survival (median 183.46 vs. 85.07 months; p = 0.021). We found a positive correlation between AhR and FSHR (p = 0.005). Ovarian cancer patients with high cytoplasmic AhR and concurrent FSHR expression had the worst outcome (median 69.72 vs. 43.32 months; p = 0.043). Consequently, low cytoplasmic AhR expression seems to be associated with improved survival in ovarian cancer patients. Our data suggest that AhR and FSHR levels correlate with each other, and their concurrent expression was observed in ovarian cancer patients with the worst outcome. Further investigation of the interaction of both receptors and their functional role might better predict the impact of endocrine therapy in ovarian cancer.
Collapse
Affiliation(s)
- Eileen Deuster
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Doris Mayr
- Institute of Pathology, Faculty of Medicine, LMU Munich, 81377 Munich, Germany.
| | - Anna Hester
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Christine Zeder-Göß
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany.
| |
Collapse
|
31
|
Vorontsova JE, Cherezov RO, Kuzin BA, Simonova OB. Aryl-Hydrocarbon Receptor as a Potential Target for Anticancer Therapy. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2019. [DOI: 10.1134/s1990750819010116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Bian Y, Li Y, Shrestha G, Wen X, Cai B, Wang K, Wan X. ITE, an endogenous aryl hydrocarbon receptor ligand, suppresses endometrial cancer cell proliferation and migration. Toxicology 2019; 421:1-8. [PMID: 30953668 DOI: 10.1016/j.tox.2019.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/16/2019] [Accepted: 03/29/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Identification of new molecular targets for the treatment of endometrial cancer (EC) is an important clinical goal, especially for the patients which were resistant to conventional therapies. The aryl hydrocarbon receptor (AhR) is a ligand- activated transcription factor known primarily as the mediator of dioxin toxicity. However, the AhR can also inhibit cellular proliferation in a ligand-dependent manner and act as a tumor suppressor in mice, thus may be a potential anticancer target. In this study, we investigated if the endogenous AhR ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) regulated proliferation and migration of EC cells via AhR. METHODS We used quantitative real-time PCR and western blot to assess the expression of AhR in EC tissues and paired adjacent normal tissues. In addition, we conducted transwell assay to test whether the treatment of ITE altered the locomotive potential and proliferation of EC cells. Next, we conducted mouse xenograft models to further explore the in vivo effect of ITE. RESULTS We found that the AhR protein and RNA levels were increased mildly in EC tissues relative to the para-tumor normal endometrial tissues. Besides, ITE suppressed EC cells proliferation and migration in vitro, and also suppressed EC cells xenograft growth in mice. CONCLUSIONS Our results strongly supported the possibility of using the ITE as a small molecular compound for the treatment of EC.
Collapse
Affiliation(s)
- Yiding Bian
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yiran Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Garima Shrestha
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xiaoli Wen
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Bailian Cai
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China.
| |
Collapse
|
33
|
Danjou AMN, Coudon T, Praud D, Lévêque E, Faure E, Salizzoni P, Le Romancer M, Severi G, Mancini FR, Leffondré K, Dossus L, Fervers B. Long-term airborne dioxin exposure and breast cancer risk in a case-control study nested within the French E3N prospective cohort. ENVIRONMENT INTERNATIONAL 2019; 124:236-248. [PMID: 30658268 DOI: 10.1016/j.envint.2019.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Dioxins, Group 1 carcinogens, are emitted by industrial chlorinated combustion processes and suspected to increase breast cancer risk through receptor-mediated pathways. OBJECTIVES We estimated breast cancer risk associated with airborne dioxin exposure, using geographic information system (GIS) methods and historical exposure data. METHODS We designed a case-control study (429 breast cancer cases diagnosed between 1990 and 2008, matched to 716 controls) nested within the E3N (Etude Epidémiologique auprès de femmes de la Mutuelle Générale de l'Education Nationale) cohort. Airborne dioxin exposure was assessed using a GIS-based metric including participants' residential history, technical characteristics of 222 dioxin sources, residential proximity to dioxin sources, exposure duration and wind direction. Odds ratios (OR) and 95% confidence intervals (CI) associated with quintiles of cumulative exposure were estimated using multivariate logistic regression models. RESULTS We observed no increased risk of breast cancer for higher dioxin exposure levels overall and according to hormone-receptor status. We however observed a statistically significant OR for Q2 versus Q1 overall (1.612, 95% CI: 1.042-2.493) and for estrogen-receptor (ER) positive breast cancer (1.843, 95% CI: 1.033-3.292). CONCLUSIONS Overall, as well as according to hormone-receptor status, no increased risk was observed for higher airborne dioxin exposure. The increased risk for low exposure levels might be compatible with non-monotonic dose-response relationship. Confirmation of our findings is required. Our GIS-based metric may provide an alternative in absence of ambient dioxin monitoring and may allow assessing exposure to other pollutants.
Collapse
Affiliation(s)
- Aurélie Marcelle Nicole Danjou
- Département Cancer Environnement, Centre Léon Bérard, 28 rue Laënnec, 69373 Lyon Cedex 08, France; Université de Lyon, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne, France.
| | - Thomas Coudon
- Département Cancer Environnement, Centre Léon Bérard, 28 rue Laënnec, 69373 Lyon Cedex 08, France; Université de Lyon, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne, France.
| | - Delphine Praud
- Département Cancer Environnement, Centre Léon Bérard, 28 rue Laënnec, 69373 Lyon Cedex 08, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 28 rue Laënnec, 69373 Lyon Cedex 08, France.
| | - Emilie Lévêque
- Université de Bordeaux, Institut de Santé Publique, d'Épidémiologie et de Développement, Centre Inserm U1219 Epidemiology and Biostatistics, 146 rue Léo Saignat, 33076 Bordeaux, France.
| | - Elodie Faure
- Département Cancer Environnement, Centre Léon Bérard, 28 rue Laënnec, 69373 Lyon Cedex 08, France.
| | - Pietro Salizzoni
- Laboratoire de Mécanique des Fluides et d'Acoustique, UMR CNRS 5509, Université de Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, 36 avenue Guy de Collongue, 69134 Ecully Cedex, France.
| | - Muriel Le Romancer
- Université de Lyon, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 28 rue Laënnec, 69373 Lyon Cedex 08, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 28 rue Laënnec, 69373 Lyon Cedex 08, France.
| | - Gianluca Severi
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, 114 rue Edouard-Vaillant, 94805 Villejuif Cedex, France.
| | - Francesca Romana Mancini
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, 114 rue Edouard-Vaillant, 94805 Villejuif Cedex, France.
| | - Karen Leffondré
- Université de Bordeaux, Institut de Santé Publique, d'Épidémiologie et de Développement, Centre Inserm U1219 Epidemiology and Biostatistics, 146 rue Léo Saignat, 33076 Bordeaux, France.
| | - Laure Dossus
- Département Cancer Environnement, Centre Léon Bérard, 28 rue Laënnec, 69373 Lyon Cedex 08, France; Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, 114 rue Edouard-Vaillant, 94805 Villejuif Cedex, France.
| | - Béatrice Fervers
- Département Cancer Environnement, Centre Léon Bérard, 28 rue Laënnec, 69373 Lyon Cedex 08, France; Université de Lyon, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 28 rue Laënnec, 69373 Lyon Cedex 08, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 28 rue Laënnec, 69373 Lyon Cedex 08, France.
| |
Collapse
|
34
|
Zha S, Shi W, Su W, Guan X, Liu G. Exposure to 2,3,7,8-tetrachlorodibenzo-paradioxin (TCDD) hampers the host defense capability of a bivalve species, Tegillarca granosa. FISH & SHELLFISH IMMUNOLOGY 2019; 86:368-373. [PMID: 30502462 DOI: 10.1016/j.fsi.2018.11.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Though increasing reports of deleterious impacts of dioxins and polychlorinated biphenyls (PCBs) on a variety of marine organisms have been described, their effects on the host defense capability of marine bivalve mollusks remain poorly understood. In the present study we used 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as a representative of dioxins and PCBs to investigate its impacts on the host defense capability of the blood clam, Tegillarca granosa. After exposure of clams to a range (0, 0.01, 0.1, 1, and 10 μg/L) of TCDD for 96 h, the total count, cell type composition, and phagocytic rate of haemocytes were analyzed. In addition, alkaline phosphatase (ALP) activity, cell viability, and the extent of DNA damage of haemocytes were also investigated. Our results showed that exposure to relatively high TCDD concentrations led to significant reductions in the total count and phagocytic activity of haemocytes, which could be accounted by aggravated DNA damage and reduced cell viability. In addition, the percentage of red granulocyte was significantly decreased whereas that of basophil granulocyte was significantly increased upon high doses TCDD exposure (effective concentrations are 1 μg/L and 10 μg/L for red and basophil granulocytes, respectively). Moreover, clams exposed to TCDD had a significant higher activity of ALP, may also indicate an enhanced ability to eliminate pathogens through direct dephosphorylation process whereas a suppressed inflammatory response through indirect regulating of downstream molecular cascade reaction. These findings suggest that TCDD may hamper the host defense capability and therefore render bivalve mollusks more vulnerable to pathogen infections.
Collapse
Affiliation(s)
- Shanjie Zha
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Wenhao Su
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiaofan Guan
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
35
|
Genetic background and window of exposure contribute to thyroid dysfunction promoted by low-dose exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice. Sci Rep 2018; 8:16324. [PMID: 30397221 PMCID: PMC6218492 DOI: 10.1038/s41598-018-34427-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 09/24/2018] [Indexed: 01/02/2023] Open
Abstract
Genetic and environmental factors contribute to thyroid diseases. Although still debated, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is thought to induce thyroid dysfunction in humans and rodents. The data here reported point out the contribution of the exposure window and genetic background in mediating the low-dose TCDD effects on thyroid. Indeed, early (from E0.5 to PND30) and low-dose (0,001 μg/kg/day) TCDD exposure reduced the circulating fT4 and altered the expression of thyroid specific transcripts. The role of genetic components was estimated monitoring the same markers in Pax8+/- and Nkx2-1+/- mice, susceptible to thyroid dysfunction, exposed to 0, 1 μg/kg/day TCDD from E15.5 to PND60. Haploinsufficiency of either Pax8 or Nkx2-1 genes exacerbated the effects of the exposure impairing the thyroid enriched mRNAs in sex dependent manner. Such effect was mediated by mechanisms involving the Nkx2-1/p53/p65/IĸBα pathway in vitro and in vivo. Foetal exposure to TCDD impaired both thyroid function and genes expression while thyroid development and differentiation did not appear significantly affected. In mouse, stronger effects were related to earlier exposure or specific genetic background such as either Pax8 or Nkx2-1 haploinsufficiency, both associated to hypothyroidism in humans. Furthermore, our data underline that long exposure time are needed to model in vitro and in vivo results.
Collapse
|
36
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Fürst P, Håkansson H, Halldorsson T, Lundebye AK, Pohjanvirta R, Rylander L, Smith A, van Loveren H, Waalkens-Berendsen I, Zeilmaker M, Binaglia M, Gómez Ruiz JÁ, Horváth Z, Christoph E, Ciccolallo L, Ramos Bordajandi L, Steinkellner H, Hoogenboom LR. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J 2018; 16:e05333. [PMID: 32625737 PMCID: PMC7009407 DOI: 10.2903/j.efsa.2018.5333] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of dioxins (PCDD/Fs) and DL-PCBs in feed and food. The data from experimental animal and epidemiological studies were reviewed and it was decided to base the human risk assessment on effects observed in humans and to use animal data as supportive evidence. The critical effect was on semen quality, following pre- and postnatal exposure. The critical study showed a NOAEL of 7.0 pg WHO2005-TEQ/g fat in blood sampled at age 9 years based on PCDD/F-TEQs. No association was observed when including DL-PCB-TEQs. Using toxicokinetic modelling and taking into account the exposure from breastfeeding and a twofold higher intake during childhood, it was estimated that daily exposure in adolescents and adults should be below 0.25 pg TEQ/kg bw/day. The CONTAM Panel established a TWI of 2 pg TEQ/kg bw/week. With occurrence and consumption data from European countries, the mean and P95 intake of total TEQ by Adolescents, Adults, Elderly and Very Elderly varied between, respectively, 2.1 to 10.5, and 5.3 to 30.4 pg TEQ/kg bw/week, implying a considerable exceedance of the TWI. Toddlers and Other Children showed a higher exposure than older age groups, but this was accounted for when deriving the TWI. Exposure to PCDD/F-TEQ only was on average 2.4- and 2.7-fold lower for mean and P95 exposure than for total TEQ. PCDD/Fs and DL-PCBs are transferred to milk and eggs, and accumulate in fatty tissues and liver. Transfer rates and bioconcentration factors were identified for various species. The CONTAM Panel was not able to identify reference values in most farm and companion animals with the exception of NOAELs for mink, chicken and some fish species. The estimated exposure from feed for these species does not imply a risk.
Collapse
|
37
|
Vorontsova JE, Cherezov RO, Kuzin BA, Simonova OB. [Aryl-hydrocarbon receptor as a potential target for anticancer therapy]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2018; 64:397-415. [PMID: 30378556 DOI: 10.18097/pbmc20186405397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aryl-hydrocarbon receptor (Aryl Hydrocarbon Receptor, AHR) is a ligand-dependent transcription factor, whose functions are related to xenobiotic detoxification, response to inflammation, and maintenance of tissue homeostasis. Recent investigations suggest that AHR also plays an important role in the processes of carcinogenesis. Increased expression of AHR is observed in several types of tumors and tumor cell lines. In addition, it turned out that the composition of pharmaceutical drugs used in oncotherapy includes some ligands AHR. These facts allow us to consider an aryl-hydrocarbon receptor as a potential target for anticancer therapy, especially for the treatment of severe cancers whose treatment options are very limited or do not exist at all. In this review the examples of AHR ligands' effect on tumor cell cultures and on model mice lines with AHR-dependent response are discussed.
Collapse
Affiliation(s)
- J E Vorontsova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - R O Cherezov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - B A Kuzin
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - O B Simonova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
38
|
Wang L, Kumar M, Deng Q, Wang X, Liu M, Gong Z, Zhang S, Ma X, Xu-Monette ZY, Xiao M, Yi Q, Young KH, Ramos KS, Li Y. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces peripheral blood abnormalities and plasma cell neoplasms resembling multiple myeloma in mice. Cancer Lett 2018; 440-441:135-144. [PMID: 30343114 DOI: 10.1016/j.canlet.2018.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/11/2018] [Accepted: 10/09/2018] [Indexed: 01/18/2023]
Abstract
Although epidemiologic studies have suggested a possible association between occupational exposures to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the risk of development of multiple myeloma, definitive evidence in support of this association is lacking. In the present study, we employed the Vk*Myc mouse model of multiple myeloma to assess the impact of TCDD exposure on multiple myeloma pathogenesis. TCDD induced splenomegaly and multiple peripheral blood abnormalities, including anemia and high serum IgG levels. In addition, TCDD triggered bone lytic lesions, as well as renal tubular casts, a phenomenon associated with human myeloma kidney disease. Even in wild-type C57BL/6 mice, TCDD increased serum IgG levels, induced anemia, and increased plasma cell presence in the spleen and bone marrow, hallmarks of benign monoclonal gammopathy. Lastly, TCDD induced AKT activation and the DNA damage response, key pathogenic events in myeloma pathogenesis, in animal spleen and/or bone marrow. These data indicate that TCDD accelerates monoclonal gammopathy development and promotes progression to multiple myeloma in genetically-predisposed mice. This work offers the first direct experimental evidence establishing TCDD as an environmental risk factor for monoclonal gammopathy of undetermined significance and multiple myeloma.
Collapse
Affiliation(s)
- Lei Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Munish Kumar
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Raman Fellow (UGC), Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Qipan Deng
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xu Wang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ming Liu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhaojian Gong
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaodong Ma
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Xiao
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qing Yi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth S Ramos
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
39
|
Yu J, Feng Y, Wang Y, An R. Aryl hydrocarbon receptor enhances the expression of miR-150-5p to suppress in prostate cancer progression by regulating MAP3K12. Arch Biochem Biophys 2018; 654:47-54. [PMID: 30009782 DOI: 10.1016/j.abb.2018.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
It has been reported that mircoRNAs (miRNAs) can act as tumor inhibitors in multiple malignant tumors. As a tumor suppressor, miR-150-5p has been reported in some cancers. However, the biological impacts of miR-150-5p in prostate cancer is not fully elaborated. This study aims to explore the biological role and mechanism of miR-150-5p in prostate cancer. The expression level of miR-150-5p was examined with Quantitative real time polymerase chain reaction (qRT-PCR). Moreover, Kaplan Meier analysis revealed that downregulation of miR-150-5p predicted unfavorable prognosis for patients with prostate cancer. To identify the inhibitory effects of miR-150-5p on the cellular processes of prostate cancer, gain-of function assay was conducted. Next, the inhibitory effects of Tetrachlorodibenzo-p-dioxin (TCDD) and 3,3'-Diindolylmethane (DIM) on the proliferation and invasion of prostate cancer cells were demonstrated. Knockdown of Ahr reversed the TCDD/DIM-mediated proliferation and invasion. The expression level of CYP1A1 also was measured to confirm that Ahr was activated by TCDD or DIM in prostate cancer cells. Mechanism experiments revealed that MAP3K12 is a target mRNA of miR-150-5p in prostate cancer cells. In conclusion, Aryl hydrocarbon receptor enhances the expression of miR-150-5p to suppress cell proliferation and invasion in prostate cancer by regulating MAP3K12.
Collapse
Affiliation(s)
- Jingsong Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yue Feng
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yan Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ruihua An
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
40
|
Towards Resolving the Pro- and Anti-Tumor Effects of the Aryl Hydrocarbon Receptor. Int J Mol Sci 2018; 19:ijms19051388. [PMID: 29735912 PMCID: PMC5983651 DOI: 10.3390/ijms19051388] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/11/2022] Open
Abstract
We have postulated that the aryl hydrocarbon receptor (AHR) drives the later, more lethal stages of some cancers when chronically activated by endogenous ligands. However, other studies have suggested that, under some circumstances, the AHR can oppose tumor aggression. Resolving this apparent contradiction is critical to the design of AHR-targeted cancer therapeutics. Molecular (siRNA, shRNA, AHR repressor, CRISPR-Cas9) and pharmacological (AHR inhibitors) approaches were used to confirm the hypothesis that AHR inhibition reduces human cancer cell invasion (irregular colony growth in 3D Matrigel cultures and Boyden chambers), migration (scratch wound assay) and metastasis (human cancer cell xenografts in zebrafish). Furthermore, these assays were used for a head-to-head comparison between AHR antagonists and agonists. AHR inhibition or knockdown/knockout consistently reduced human ER−/PR−/Her2− and inflammatory breast cancer cell invasion, migration, and metastasis. This was associated with a decrease in invasion-associated genes (e.g., Fibronectin, VCAM1, Thrombospondin, MMP1) and an increase in CDH1/E-cadherin, previously associated with decreased tumor aggression. Paradoxically, AHR agonists (2,3,7,8-tetrachlorodibenzo-p-dioxin and/or 3,3′-diindolylmethane) similarly inhibited irregular colony formation in Matrigel and blocked metastasis in vivo but accelerated migration. These data demonstrate the complexity of modulating AHR activity in cancer while suggesting that AHR inhibitors, and, under some circumstances, AHR agonists, may be useful as cancer therapeutics.
Collapse
|
41
|
Xue P, Fu J, Zhou Y. The Aryl Hydrocarbon Receptor and Tumor Immunity. Front Immunol 2018; 9:286. [PMID: 29487603 PMCID: PMC5816799 DOI: 10.3389/fimmu.2018.00286] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/31/2018] [Indexed: 01/31/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is an important cytosolic, ligand-dependent transcription factor. Emerging evidence suggests the promoting role of the AhR in the initiation, promotion, progression, invasion, and metastasis of cancer cells. Studies on various tumor types and tumor cell lines have shown high AhR expression, suggesting that AhR is activated constitutively in tumors and facilitates their growth. Interestingly, immune evasion has been recognized as an emerging hallmark feature of cancer. A connection between the AhR and immune system has been recognized, which has been suggested as an immunosuppressive effector on different types of immune cells. Certain cancers can escape immune recognition via AhR signaling pathways. This review discusses the role of the AhR in tumor immunity and its potential mechanism of action in the tumor microenvironment.
Collapse
Affiliation(s)
- Ping Xue
- Children's Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinrong Fu
- Children's Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yufeng Zhou
- Children's Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Neonatal Diseases, Ministry of Health, Shanghai, China
| |
Collapse
|
42
|
Wilde EC, Chapman KE, Stannard LM, Seager AL, Brüsehafer K, Shah UK, Tonkin JA, Brown MR, Verma JR, Doherty AT, Johnson GE, Doak SH, Jenkins GJS. A novel, integrated in vitro carcinogenicity test to identify genotoxic and non-genotoxic carcinogens using human lymphoblastoid cells. Arch Toxicol 2018; 92:935-951. [PMID: 29110037 PMCID: PMC5818597 DOI: 10.1007/s00204-017-2102-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/24/2017] [Indexed: 02/03/2023]
Abstract
Human exposure to carcinogens occurs via a plethora of environmental sources, with 70-90% of cancers caused by extrinsic factors. Aberrant phenotypes induced by such carcinogenic agents may provide universal biomarkers for cancer causation. Both current in vitro genotoxicity tests and the animal-testing paradigm in human cancer risk assessment fail to accurately represent and predict whether a chemical causes human carcinogenesis. The study aimed to establish whether the integrated analysis of multiple cellular endpoints related to the Hallmarks of Cancer could advance in vitro carcinogenicity assessment. Human lymphoblastoid cells (TK6, MCL-5) were treated for either 4 or 23 h with 8 known in vivo carcinogens, with doses up to 50% Relative Population Doubling (maximum 66.6 mM). The adverse effects of carcinogens on wide-ranging aspects of cellular health were quantified using several approaches; these included chromosome damage, cell signalling, cell morphology, cell-cycle dynamics and bioenergetic perturbations. Cell morphology and gene expression alterations proved particularly sensitive for environmental carcinogen identification. Composite scores for the carcinogens' adverse effects revealed that this approach could identify both DNA-reactive and non-DNA reactive carcinogens in vitro. The richer datasets generated proved that the holistic evaluation of integrated phenotypic alterations is valuable for effective in vitro risk assessment, while also supporting animal test replacement. Crucially, the study offers valuable insights into the mechanisms of human carcinogenesis resulting from exposure to chemicals that humans are likely to encounter in their environment. Such an understanding of cancer induction via environmental agents is essential for cancer prevention.
Collapse
Affiliation(s)
- Eleanor C Wilde
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Katherine E Chapman
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK.
| | - Leanne M Stannard
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Anna L Seager
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Katja Brüsehafer
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Ume-Kulsoom Shah
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - James A Tonkin
- College of Engineering, Bay Campus, Swansea University, Swansea, SA1 8EN, UK
| | - M Rowan Brown
- College of Engineering, Bay Campus, Swansea University, Swansea, SA1 8EN, UK
| | - Jatin R Verma
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Ann T Doherty
- AstraZeneca, Discovery Safety, DSM, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - George E Johnson
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Gareth J S Jenkins
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| |
Collapse
|
43
|
Vacher S, Castagnet P, Chemlali W, Lallemand F, Meseure D, Pocard M, Bieche I, Perrot-Applanat M. High AHR expression in breast tumors correlates with expression of genes from several signaling pathways namely inflammation and endogenous tryptophan metabolism. PLoS One 2018; 13:e0190619. [PMID: 29320557 PMCID: PMC5761880 DOI: 10.1371/journal.pone.0190619] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/18/2017] [Indexed: 12/02/2022] Open
Abstract
Increasing epidemiological and animal experimental data provide substantial support for the role of aryl hydrocarbon receptor (AhR) in mammary tumorigenesis. The effects of AhR have been clearly demonstrated in rodent models of breast carcinogenesis and in several established human breast cancer cell lines following exposure to AhR ligands or AhR overexpression. However, relatively little is known about the role of AhR in human breast cancers. AhR has always been considered to be a regulator of toxic and carcinogenic responses to environmental contaminants such as TCDD (dioxin) and benzo[a]pyrene (BaP). The aim of this study was to identify the type of breast tumors (ERα-positive or ERα-negative) that express AHR and how AhR affects human tumorigenesis. The levels of AHR, AHR nuclear translocator (ARNT) and AHR repressor (AHRR) mRNA expression were analyzed in a cohort of 439 breast tumors, demonstrating a weak association between high AHR expression and age greater than fifty years and ERα-negative status, and HR-/ERBB2 breast cancer subtypes. AHRR mRNA expression was associated with metastasis-free survival, while AHR mRNA expression was not. Immunohistochemistry revealed the presence of AhR protein in both tumor cells (nucleus and/or cytoplasm) and the tumor microenvironment (including endothelial cells and lymphocytes). High AHR expression was correlated with high expression of several genes involved in signaling pathways related to inflammation (IL1B, IL6, TNF, IL8 and CXCR4), metabolism (IDO1 and TDO2 from the kynurenine pathway), invasion (MMP1, MMP2 and PLAU), and IGF signaling (IGF2R, IGF1R and TGFB1). Two well-known ligands for AHR (TCDD and BaP) induced mRNA expression of IL1B and IL6 in an ERα-negative breast tumor cell line. The breast cancer ER status likely influences AhR activity involved in these signaling pathways. The mechanisms involved in AhR activation and target gene expression in breast cancers are also discussed.
Collapse
Affiliation(s)
- Sophie Vacher
- Department of Genetics, Pharmacogenomics Unit, Institut Curie, Paris, France
- * E-mail:
| | - Patrice Castagnet
- Department of Pathology, Lariboisière-Saint Louis Hospital, Paris, France
| | - Walid Chemlali
- Department of Genetics, Pharmacogenomics Unit, Institut Curie, Paris, France
| | - François Lallemand
- Department of Genetics, Pharmacogenomics Unit, Institut Curie, Paris, France
| | | | - Marc Pocard
- INSERM U965, Lariboisière-Saint Louis Hospital, Paris, France
- University of Paris Diderot-Paris 7, Paris, France
| | - Ivan Bieche
- Department of Genetics, Pharmacogenomics Unit, Institut Curie, Paris, France
- EA7331, University of Paris Descartes, Paris, France
| | - Martine Perrot-Applanat
- INSERM U965, Lariboisière-Saint Louis Hospital, Paris, France
- University of Paris Diderot-Paris 7, Paris, France
| |
Collapse
|
44
|
Rodgers KM, Udesky JO, Rudel RA, Brody JG. Environmental chemicals and breast cancer: An updated review of epidemiological literature informed by biological mechanisms. ENVIRONMENTAL RESEARCH 2018; 160:152-182. [PMID: 28987728 DOI: 10.1016/j.envres.2017.08.045] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Many common environmental chemicals are mammary gland carcinogens in animal studies, activate relevant hormonal pathways, or enhance mammary gland susceptibility to carcinogenesis. Breast cancer's long latency and multifactorial etiology make evaluation of these chemicals in humans challenging. OBJECTIVE For chemicals previously identified as mammary gland toxicants, we evaluated epidemiologic studies published since our 2007 review. We assessed whether study designs captured relevant exposures and disease features suggested by toxicological and biological evidence of genotoxicity, endocrine disruption, tumor promotion, or disruption of mammary gland development. METHODS We systematically searched the PubMed database for articles with breast cancer outcomes published in 2006-2016 using terms for 134 environmental chemicals, sources, or biomarkers of exposure. We critically reviewed the articles. RESULTS We identified 158 articles. Consistent with experimental evidence, a few key studies suggested higher risk for exposures during breast development to dichlorodiphenyltrichloroethane (DDT), dioxins, perfluorooctane-sulfonamide (PFOSA), and air pollution (risk estimates ranged from 2.14 to 5.0), and for occupational exposure to solvents and other mammary carcinogens, such as gasoline components (risk estimates ranged from 1.42 to 3.31). Notably, one 50-year cohort study captured exposure to DDT during several critical windows for breast development (in utero, adolescence, pregnancy) and when this chemical was still in use. Most other studies did not assess exposure during a biologically relevant window or specify the timing of exposure. Few studies considered genetic variation, but the Long Island Breast Cancer Study Project reported higher breast cancer risk for polycyclic aromatic hydrocarbons (PAHs) in women with certain genetic variations, especially in DNA repair genes. CONCLUSIONS New studies that targeted toxicologically relevant chemicals and captured biological hypotheses about genetic variants or windows of breast susceptibility added to evidence of links between environmental chemicals and breast cancer. However, many biologically relevant chemicals, including current-use consumer product chemicals, have not been adequately studied in humans. Studies are challenged to reconstruct exposures that occurred decades before diagnosis or access biological samples stored that long. Other problems include measuring rapidly metabolized chemicals and evaluating exposure to mixtures.
Collapse
Affiliation(s)
- Kathryn M Rodgers
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States.
| | - Julia O Udesky
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States.
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States.
| | - Julia Green Brody
- Silent Spring Institute, 320 Nevada Street, Newton, MA 02460, United States.
| |
Collapse
|
45
|
Lee HM, Hwang KA, Choi KC. Diverse pathways of epithelial mesenchymal transition related with cancer progression and metastasis and potential effects of endocrine disrupting chemicals on epithelial mesenchymal transition process. Mol Cell Endocrinol 2017; 457:103-113. [PMID: 28042023 DOI: 10.1016/j.mce.2016.12.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 01/04/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are natural or synthetic compounds that interfere with normal functions of natural hormones in the body, leading to a disruption of the endocrine system. Specifically, EDCs have the potential to cause formation of several hormone-dependent cancers, including breast, ovarian, and prostate cancers. Epithelial mesenchymal transition (EMT) process by which epithelial cells lose their cell polarity and cell-cell adhesion and acquire mesenchymal phenotype is closely associated with malignant transformation and the initiation of cancer metastasis. As a key epithelial marker responsible for adherens junction, E-cadherin enables the cells to maintain epithelial phenotypes. EMT event is induced by E-cadherin loss which can be carried out by many transcription factors (TFs), including Snail, Slug, ZEB1, ZEB2, Kruppel-like factor 8 (KLF8), and Twist. N-cadherin, fibronectin, and vimentin are mesenchymal markers needed for cellular migration. The EMT process is regulated by several signaling pathways mediated by transforming growth factor β (TGF-β), Wnt-β-catenin, Notch, Hedgehog, and receptor tyrosine kinases. In the present article, we reviewed the current understanding of cancer progression effects of synthetic chemical EDCs such as bisphenol A (BPA), phthalates, tetrachlorodibenzo-p-dioxin (TCDD), and triclosan by focusing their roles in the EMT process. Collectively, the majority of previous studies revealed that BPA, phthalates, TCDD, and triclosan have the potential to induce cancer metastasis through regulating EMT markers and migration via several signaling pathways associated with the EMT program. Therefore, it is considered that the exposure to these EDCs can increase the risk aggravating the disease for the patients suffering cancer and that more regulations about the use of these EDCs are needed.
Collapse
Affiliation(s)
- Hae-Miru Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
46
|
Abdu SB, Abdu F, Khalil WKB. Ginger Nanoparticles Modulate the Apoptotic Activity in Male Rats Exposed to Dioxin-Induced Cancer Initiation. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.946.957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Rainey NE, Saric A, Leberre A, Dewailly E, Slomianny C, Vial G, Zeliger HI, Petit PX. Synergistic cellular effects including mitochondrial destabilization, autophagy and apoptosis following low-level exposure to a mixture of lipophilic persistent organic pollutants. Sci Rep 2017; 7:4728. [PMID: 28680151 PMCID: PMC5498599 DOI: 10.1038/s41598-017-04654-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/25/2017] [Indexed: 12/13/2022] Open
Abstract
Humans are exposed to multiple exogenous environmental pollutants. Many of these compounds are parts of mixtures that can exacerbate harmful effects of the individual mixture components. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is primarily produced via industrial processes including incineration and the manufacture of herbicides. Both endosulfan and TCDD are persistent organic pollutants which elicit cytotoxic effects by inducing reactive oxygen species generation. Sublethal concentrations of mixtures of TCDD and endosulfan increase oxidative stress, as well as mitochondrial homeostasis disruption, which is preceded by a calcium rise and, in fine, induce cell death. TCDD+Endosulfan elicit a complex signaling sequence involving reticulum endoplasmic destalilization which leads to Ca2+ rise, superoxide anion production, ATP drop and late NADP(H) depletion associated with a mitochondrial induced apoptosis concomitant early autophagic processes. The ROS scavenger, N-acetyl-cysteine, blocks both the mixture-induced autophagy and death. Calcium chelators act similarly and mitochondrially targeted anti-oxidants also abrogate these effects. Inhibition of the autophagic fluxes with 3-methyladenine, increases mixture-induced cell death. These findings show that subchronic doses of pollutants may act synergistically. They also reveal that the onset of autophagy might serve as a protective mechanism against ROS-triggered cytotoxic effects of a cocktail of pollutants in Caco-2 cells and increase their tumorigenicity.
Collapse
Affiliation(s)
- Nathan E Rainey
- Laboratoire de Toxicologie, Pharmacologie et Signalisation Cellulaire, INSERM S-1124, Université Paris-Descartes, Centre Universitaire des Saints-Pères, 45 Rue des Saints-Pères, F-75270, Paris, Cedex 06, France
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, X. Bichat Hospital, Université Paris 13, UFR SMBH Sorbonne Paris Cité, 75018, Paris, France
| | - Ana Saric
- Laboratoire de Toxicologie, Pharmacologie et Signalisation Cellulaire, INSERM S-1124, Université Paris-Descartes, Centre Universitaire des Saints-Pères, 45 Rue des Saints-Pères, F-75270, Paris, Cedex 06, France
- Division of Molecular Medicine, Rudger Boskovic Institute, Zagreb, Croatia
| | - Alexandre Leberre
- Laboratoire de Toxicologie, Pharmacologie et Signalisation Cellulaire, INSERM S-1124, Université Paris-Descartes, Centre Universitaire des Saints-Pères, 45 Rue des Saints-Pères, F-75270, Paris, Cedex 06, France
| | - Etienne Dewailly
- Laboratoire de Physiologie cellulaire, INSERM U800, Université des Sciences et Techniques de Lille 1, F-59655, Villeneuve d'Ascq, Cedex, France
| | - Christian Slomianny
- Laboratoire de Physiologie cellulaire, INSERM U800, Université des Sciences et Techniques de Lille 1, F-59655, Villeneuve d'Ascq, Cedex, France
| | - Guillaume Vial
- Unité 1060 INSERM CarMen/Univ.Lyon1/INRA 1235, INSA, Bât. IMBL, La Doua 11 Avenue Jean Capelle, 69100, Villeurbanne, France
| | - Harold I Zeliger
- Zeliger Chemical, Toxicological and Environmental Research, 41 Wildwood Drive, Cape Elizabeth, Maine, 04107, USA
| | - Patrice X Petit
- Laboratoire de Toxicologie, Pharmacologie et Signalisation Cellulaire, INSERM S-1124, Université Paris-Descartes, Centre Universitaire des Saints-Pères, 45 Rue des Saints-Pères, F-75270, Paris, Cedex 06, France.
| |
Collapse
|
48
|
Role of the aryl hydrocarbon receptor in carcinogenesis and potential as an anti-cancer drug target. Arch Toxicol 2017; 91:2497-2513. [PMID: 28508231 DOI: 10.1007/s00204-017-1981-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/08/2017] [Indexed: 12/31/2022]
Abstract
The aryl hydrocarbon receptor (AhR) was initially identified as the receptor that binds and mediates the toxic effects induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and structurally related halogenated aromatics. Other toxic compounds including some polynuclear aromatic hydrocarbons act through the AhR; however, during the last 25 years, it has become apparent that the AhR plays an essential role in maintaining cellular homeostasis. Moreover, the scope of ligands that bind the AhR includes endogenous compounds such as multiple tryptophan metabolites, other endogenous biochemicals, pharmaceuticals and health-promoting phytochemicals including flavonoids, indole-3-carbinol and its metabolites. It has also been shown that like other receptors, the AhR is a drug target for multiple diseases including cancer, where both AhR agonists and antagonists effectively block many of the critical hallmarks of cancer in multiple tumor types. This review describes the anti-cancer activities of AhR ligands and demonstrates that it is time to separate the AhR from TCDD and exploit the potential of the AhR as a novel target for cancer chemotherapy.
Collapse
|
49
|
Pilsner JR, Parker M, Sergeyev O, Suvorov A. Spermatogenesis disruption by dioxins: Epigenetic reprograming and windows of susceptibility. Reprod Toxicol 2017; 69:221-229. [PMID: 28286111 DOI: 10.1016/j.reprotox.2017.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/24/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023]
Abstract
Dioxins are a group of highly persistent chemicals that are generated as by-products of industrial and natural processes. Reduction in sperm counts is among the most sensitive endpoints of dioxin toxicity. The exact mechanism by which dioxins reduce sperm counts is not known. Recent data implicate the role of epididymal factors rather than disruption of spermatogenesis. Studies reviewed here demonstrate that dioxins induce the transfer of environmental conditions to the next generation via male germline following exposures during the window of epigenetic reprogramming of primordial germ cells. Increased incidence of birth defects in offspring of male veterans exposed to dioxin containing, Agent Orange, suggest that dioxins may induce epigenomic changes in male germ cells of adults during spermatogenesis. This is supported by recent animal data that show that environmental conditions can cause epigenetic dysregulation in sperm in the context of specific windows of epigenetic reprogramming during spermatogenesis.
Collapse
Affiliation(s)
- J Richard Pilsner
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 686 N. Pleasant St., 171 Goessmann, Amherst, MA 01003-9303, USA.
| | - Mikhail Parker
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 686 N. Pleasant St., 171 Goessmann, Amherst, MA 01003-9303, USA.
| | - Oleg Sergeyev
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina St., 119991 Moscow, Russia; Chapaevsk Medical Association, 3a Meditsinskaya St., 446100 Chapaevsk, Samara Region, Russia.
| | - Alexander Suvorov
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 686 N. Pleasant St., 171 Goessmann, Amherst, MA 01003-9303, USA.
| |
Collapse
|
50
|
Nohmi T, Masumura K, Toyoda-Hokaiwado N. Transgenic rat models for mutagenesis and carcinogenesis. Genes Environ 2017; 39:11. [PMID: 28174618 PMCID: PMC5289047 DOI: 10.1186/s41021-016-0072-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 12/08/2016] [Indexed: 01/18/2023] Open
Abstract
Rats are a standard experimental animal for cancer bioassay and toxicological research for chemicals. Although the genetic analyses were behind mice, rats have been more frequently used for toxicological research than mice. This is partly because they live longer than mice and induce a wider variety of tumors, which are morphologically similar to those in humans. The body mass is larger than mice, which enables to take samples from organs for studies on pharmacokinetics or toxicokinetics. In addition, there are a number of chemicals that exhibit marked species differences in the carcinogenicity. These compounds are carcinogenic in rats but not in mice. Such examples are aflatoxin B1 and tamoxifen, both are carcinogenic to humans. Therefore, negative mutagenic/carcinogenic responses in mice do not guarantee that the chemical is not mutagenic/carcinogenic to rats or perhaps to humans. To facilitate research on in vivo mutagenesis and carcinogenesis, several transgenic rat models have been established. In general, the transgenic rats for mutagenesis are treated with chemicals longer than transgenic mice for more exact examination of the relationship between mutagenesis and carcinogenesis. Transgenic rat models for carcinogenesis are engineered mostly to understand mechanisms underlying chemical carcinogenesis. Here, we review papers dealing with the transgenic rat models for mutagenesis and carcinogenesis, and discuss the future perspective.
Collapse
Affiliation(s)
- Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
- Present address: Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| | - Naomi Toyoda-Hokaiwado
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| |
Collapse
|