1
|
İlhan Z, Zengin M, Bacaksız OK, Demir E, Ekin İH, Azman MA. Hypericum perforatum L. (St. John's Wort) in broilers diet improve growth performance, intestinal microflora and immunity. Poult Sci 2024; 103:104419. [PMID: 39427421 DOI: 10.1016/j.psj.2024.104419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024] Open
Abstract
Hypericum perforatum L. (St. John's Wort) extract (HPE), powdered H. perforatum (PHP), and selenium (Se) on growth, intestinal flora, and immunity of broiler chicks were investigated. In total, 504 one-day-old broiler chicks were randomly allocated into 6 dietary treatments, which were then denoted as negative control (NC) group (basal diet), containing organic Se 0.2% in the starter and grower period as positive control (PC), containing 1% PHP in the starter and grower period, and HPE I, HPE II, and HPE III groups containing respectively, 1.5, 3.0, and 4.5 mL / kg HPE in the starter and grower period. The results on performance showed that a significant (P < 0.05) higher body weight of chickens in the HPE III group was observed when compared with that of the NC and PHP groups. Although average daily weight gain and feed intake are significant in the HPE III group, the difference in terms of total feed conversion rate was insignificant (P > 0.05). The liver weights in PC and HPE III were lower compared to HPE I (P < 0.05). The difference in total lactic acid bacteria count (TLABC) between the NC group and all HPE groups was found to be significant (P ˂ 0.05), in addition to TLABC was higher in the HPE III group than other groups (P = 0.001). The highest serum antibody titers to the Newcastle disease vaccine were determined in the HPE III group on the 24th, 35th, and 42nd days of age. IL-1B and IL-6 were found to be insignificant between the groups in chickens (P ˃ 0.05). TNF-α in the HPE III group was greatly increased than the other groups and significant compared to the NC and HPE I groups (P = 0.018). In conclusion, 4.5 mL / kg HPE, which has a low production cost and is easy to extract and without causing environmental problems, varied significantly in their impact on growth performance, intestinal microflora, and immunity of growing broilers.
Collapse
Affiliation(s)
- Ziya İlhan
- Faculty of Veterinary Medicine, Department of Microbiology, Cagıs Campus, Balıkesir University, Altıeylül, Balıkesir 10100, Türkiye.
| | - Muhittin Zengin
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Cagıs Campus, Balıkesir University, Altıeylül, Balıkesir 10100, Türkiye; Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, Görükle Campus, Bursa Uludağ University, Nilüfer, Bursa 16059, Türkiye
| | - Oğuz Koray Bacaksız
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Cagıs Campus, Balıkesir University, Altıeylül, Balıkesir 10100, Türkiye
| | - Ergün Demir
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Cagıs Campus, Balıkesir University, Altıeylül, Balıkesir 10100, Türkiye
| | - İsmail Hakkı Ekin
- Faculty of Veterinary Medicine, Department of Microbiology, Zeve Campus, Van Yüzüncu Yıl University, Van 65040, Türkiye
| | - Mehmet Ali Azman
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Cagıs Campus, Balıkesir University, Altıeylül, Balıkesir 10100, Türkiye
| |
Collapse
|
2
|
Tang W, Luo X, Fan F, Sun X, Jiang X, Li P, Ding J, Lin Q, Zhao S, Cheng Y, Fang Y. Zein and gum arabic nanoparticles: potential enhancers of immunomodulatory functional activity of selenium-containing peptides. Food Funct 2024; 15:9972-9982. [PMID: 39268750 DOI: 10.1039/d4fo02572e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Food-derived nanomaterials optimizing bioactive peptides is an emerging route in the functional food field. Zein and gum arabic (GA) possess favorable encapsulation properties for controlled release, targeted delivery and stabilization of food bioactive ingredients, and thus are considered as promising carriers for delivery systems. In order to improve the bioavailability of rice selenium-containing peptide TSeMMM (T), the nanoparticles (ZTGNs) containing peptide T, zein and GA have been previously prepared. This study focused on evaluating the immunomodulatory capacity of ZTGNs. The results showed that ZTGNs significantly alleviated cyclophosphamide-induced reduction in immune organ indices and liver glutathione content of mice. There was a significant upregulation observed in the levels of immune-related cytokines IL-6, TNF-α, and IFN-γ as well as their mRNA expression. Moreover, ZTGNs enriched the diversity of the intestinal flora and promoted the proportion of beneficial bacteria. In conclusion, ZTGNs have potential as immunomodulatory enhancers for food bioactive ingredients, providing prospects for further optimization of dietary supplements.
Collapse
Affiliation(s)
- Wenqian Tang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xieqi Luo
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xiaoyi Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Jian Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
3
|
Hankins RA, Lukesh JC. An Examination of Chemical Tools for Hydrogen Selenide Donation and Detection. Molecules 2024; 29:3863. [PMID: 39202942 PMCID: PMC11356831 DOI: 10.3390/molecules29163863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Hydrogen selenide (H2Se) is an emerging biomolecule of interest with similar properties to that of other gaseous signaling molecules (i.e., gasotransmitters that include nitric oxide, carbon monoxide, and hydrogen sulfide). H2Se is enzymatically generated in humans where it serves as a key metabolic intermediate in the production of selenoproteins and other selenium-containing biomolecules. However, beyond its participation in biosynthetic pathways, its involvement in cellular signaling or other biological mechanisms remains unclear. To uncover its true biological significance, H2Se-specific chemical tools capable of functioning under physiological conditions are required but lacking in comparison to those that exist for other gasotransmitters. Recently, researchers have begun to fill this unmet need by developing new H2Se-releasing compounds, along with pioneering methods for selenide detection and quantification. In combination, the chemical tools highlighted in this review have the potential to spark groundbreaking explorations into the chemical biology of H2Se, which may lead to its branding as the fourth official gasotransmitter.
Collapse
Affiliation(s)
| | - John C. Lukesh
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, 455 Vine Street, Winston-Salem, NC 27101, USA
| |
Collapse
|
4
|
Jing J, Xiang X, Tang J, Wang L, Jia G, Liu G, Chen X, Tian G, Cai J, Kang B, Zhao H. Hydroxy Selenomethionine Exert Different Protective Effects Against Dietary Oxidative Stress-Induced Inflammatory Responses in Spleen and Thymus of Pigs. Biol Trace Elem Res 2024; 202:3107-3118. [PMID: 37910261 DOI: 10.1007/s12011-023-03925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
Oxidative stress (OS) is widespread in animal husbandry, which causes edema in immune organs and suppresses immune function of animals. Selenium (Se) is an essential trace element involved in immune regulation and improves animals' immunity. In present study, growing and finishing pigs were used to determine the protective effects of the new organic Se (hydroxy selenomethionine, OH-SeMet) on dietary oxidative stress (DOS) induced inflammatory responses, and the corresponding response of selenotranscriptome in spleen and thymus. Forty castrated male pigs (25.0 ± 3.0 kg) were randomly grouped into 5 dietary treatments (n = 8) and fed on basal diet (formulated with normal corn and normal oils) or oxidized diet (formulated with aged corn and oxidized oils) supplied with 0.0, 0.3, 0.6, or 0.9 mg Se/kg OH-SeMet, after 16 weeks, the corresponding indicators were determined. Results showed that DOS moderately increased the spleen and thymus index, decreased the antioxidant capacity of serum, spleen and thymus, and increased the concentration of serum inflammatory cytokines (IL-6 and TNF-α). The inflammatory response in spleen and thymus under DOS were discrepancies, DOS increased the expression of inflammation-related gene (IFN-β and TNF-α) in thymus, while exhibited no impact on that of the spleen. Dietary OH-SeMet supplementation exhibited protective effects, which decreased the spleen and thymus index, improved the antioxidant capacity of serum, spleen and thymus, and decreased the serum IL-1β and IL-6 levels. Se supplementation exhibited limited impact on the inflammation-related genes in spleen, except decreased the mRNA expression of IL-8. On the contrary, Se supplementation showed more impact on that of the thymus, which decreased the mRNA expression of IL-8 and TNF-α, increased the expression of IFN-β, IL-6, IL-10, and MCP1. In addition, selenotranscriptome responsive to dietary Se levels in spleen and thymus were discrepancies. Se supplementation increased the mRNA expression of the selenotranscriptome in thymus, while exhibited limited impact on that of in spleen. In conclusion, dietary OH-SeMet supplementation mitigates the DOS-induced immunological stress by increasing the antioxidant capacity and altering the expression of inflammation-related genes and selenotranscriptome in immune organs, and these response in spleen and thymus were discrepancies.
Collapse
Affiliation(s)
- Jinzhong Jing
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoyu Xiang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jiayong Tang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Longqiong Wang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Jia
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guangmang Liu
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoling Chen
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Tian
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jingyi Cai
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hua Zhao
- Animal Nutrition Institute, Key Laboratory of Animal Disease-resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
5
|
Li H, Dong J, Wang Z, Cui L, Liu K, Guo L, Li J, Wang H. Development potential of selenium in the prevention and treatment of bovine endometritis. Reprod Domest Anim 2024; 59:e14647. [PMID: 38924282 DOI: 10.1111/rda.14647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Endometritis is a common postpartum disease in cows. It delays uterine involution and impairs normal physiological function. This can result in long-term or even lifelong infertility and cause significant losses to the dairy farming industry. Traditional treatments like antibiotics possess certain shortcomings, such as antibiotic residues, the abuse of antibiotics, and increased antimicrobial resistance of pathogens. Alternative treatment strategies are needed to minimize the utilization of antibiotics in dairy production. As an essential trace element in animals, selenium (Se) plays a vital role in regulating immune function, the inflammatory response, and oxidative stress, affecting the speed and completeness of tissue repair. This paper reviewed previous studies to analyse the potential of Se in the prevention and treatment of bovine endometritis, aiming to provide a new direction to increase production capacity in the future.
Collapse
Affiliation(s)
- Hanqing Li
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Junsheng Dong
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Zi Wang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Luying Cui
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Kangjun Liu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Long Guo
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Jianji Li
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Heng Wang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Das S, Khan R, Banerjee S, Ray S, Ray S. Alterations in Circadian Rhythms, Sleep, and Physical Activity in COVID-19: Mechanisms, Interventions, and Lessons for the Future. Mol Neurobiol 2024:10.1007/s12035-024-04178-5. [PMID: 38702566 DOI: 10.1007/s12035-024-04178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
Although the world is acquitting from the throes of COVID-19 and returning to the regularity of life, its effects on physical and mental health are prominently evident in the post-pandemic era. The pandemic subjected us to inadequate sleep and physical activities, stress, irregular eating patterns, and work hours beyond the regular rest-activity cycle. Thus, perturbing the synchrony of the regular circadian clock functions led to chronic psychiatric and neurological disorders and poor immunological response in several COVID-19 survivors. Understanding the links between the host immune system and viral replication machinery from a clock-infection biology perspective promises novel avenues of intervention. Behavioral improvements in our daily lifestyle can reduce the severity and expedite the convalescent stage of COVID-19 by maintaining consistent eating, sleep, and physical activity schedules. Including dietary supplements and nutraceuticals with prophylactic value aids in combating COVID-19, as their deficiency can lead to a higher risk of infection, vulnerability, and severity of COVID-19. Thus, besides developing therapeutic measures, perpetual healthy practices could also contribute to combating the upcoming pandemics. This review highlights the impact of the COVID-19 pandemic on biological rhythms, sleep-wake cycles, physical activities, and eating patterns and how those disruptions possibly contribute to the response, severity, and outcome of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sandip Das
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India
| | - Rajni Khan
- National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, Hajipur, 844102, Bihar, India
| | - Srishti Banerjee
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401, India.
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India.
| |
Collapse
|
7
|
Markousis-Mavrogenis G, Baumhove L, Al-Mubarak AA, Aboumsallem JP, Bomer N, Voors AA, van der Meer P. Immunomodulation and immunopharmacology in heart failure. Nat Rev Cardiol 2024; 21:119-149. [PMID: 37709934 DOI: 10.1038/s41569-023-00919-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/16/2023]
Abstract
The immune system is intimately involved in the pathophysiology of heart failure. However, it is currently underused as a therapeutic target in the clinical setting. Moreover, the development of novel immunomodulatory therapies and their investigation for the treatment of patients with heart failure are hampered by the fact that currently used, evidence-based treatments for heart failure exert multiple immunomodulatory effects. In this Review, we discuss current knowledge on how evidence-based treatments for heart failure affect the immune system in addition to their primary mechanism of action, both to inform practising physicians about these pleiotropic actions and to create a framework for the development and application of future immunomodulatory therapies. We also delineate which subpopulations of patients with heart failure might benefit from immunomodulatory treatments. Furthermore, we summarize completed and ongoing clinical trials that assess immunomodulatory treatments in heart failure and present several therapeutic targets that could be investigated in the future. Lastly, we provide future directions to leverage the immunomodulatory potential of existing treatments and to foster the investigation of novel immunomodulatory therapeutics.
Collapse
Affiliation(s)
- George Markousis-Mavrogenis
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lukas Baumhove
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ali A Al-Mubarak
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joseph Pierre Aboumsallem
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
8
|
Wilk A, Setkowicz Z, Banas D, Fernández-Ruiz R, Marguí E, Matusiak K, Wrobel P, Wudarczyk-Mocko J, Janik-Olchawa N, Chwiej J. Glioblastoma multiforme influence on the elemental homeostasis of the distant organs: the results of inter-comparison study carried out with TXRF method. Sci Rep 2024; 14:1254. [PMID: 38218977 PMCID: PMC10787745 DOI: 10.1038/s41598-024-51731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Glioblastoma (GBM) is a fast-growing and aggressive brain tumor which invades the nearby brain tissue but generally does not spread to the distant organs. Nonetheless, if untreated, GBM can result in patient death in time even less than few months from the diagnosis. The influence of the tumor progress on organs other than brain is obvious but still not well described. Therefore, we examined the elemental abnormalities appearing in selected body organs (kidney, heart, spleen, lung) in two rat models of GBM. The animals used for the study were subjected to the implantation of human GBM cell lines (U87MG and T98G) characterized by different levels of invasiveness. The elemental analysis of digested organ samples was carried out using the total reflection X-ray fluorescence (TXRF) method, independently, in three European laboratories utilizing various commercially available TXRF spectrometers. The comparison of the data obtained for animals subjected to T98G and U87MG cells implantation showed a number of elemental anomalies in the examined organs. What is more, the abnormalities were found for rats even if neoplastic tumor did not develop in their brains. The most of alterations for both experimental groups were noted in the spleen and lungs, with the direction of the found element changes in these organs being the opposite. The observed disorders of element homeostasis may result from many processes occurring in the animal body as a result of implantation of cancer cells or the development of GBM, including inflammation, anemia of chronic disease or changes in iron metabolism. Tumor induced changes in organ elemental composition detected in cooperating laboratories were usually in a good agreement. In case of elements with higher atomic numbers (Fe, Cu, Zn and Se), 88% of the results were classified as fully compliant. Some discrepancies between the laboratories were found for lighter elements (P, S, K and Ca). However, also in this case, the obtained results fulfilled the requirements of full (the results from three laboratories were in agreement) or partial agreement (the results from two laboratories were in agreement).
Collapse
Affiliation(s)
- Aleksandra Wilk
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Zuzanna Setkowicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Dariusz Banas
- Institute of Physics, Jan Kochanowski University, Kielce, Poland
- Holy Cross Cancer Center, Kielce, Poland
| | - Ramón Fernández-Ruiz
- Interdepartmental Research Service (SIdI), Autonomous University of Madrid, Madrid, Spain
| | - Eva Marguí
- Department of Chemistry, University of Girona, Girona, Spain
| | - Katarzyna Matusiak
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Pawel Wrobel
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | | | - Natalia Janik-Olchawa
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Joanna Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland.
| |
Collapse
|
9
|
Sullivan KE, Swanhall A, Livingston S. Interpretation of Serum Analytes for Nutritional Evaluation. Vet Clin North Am Exot Anim Pract 2024; 27:135-154. [PMID: 37735025 DOI: 10.1016/j.cvex.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Serum micronutrient analysis can provide insight into diet and clinical assessment, despite the complicated interplay between micronutrients and species idiosyncrasies. Approach serum nutrient analytes with skepticism, before jumping to alter diets or offering supplementation. Utilize across species but know that some exotics have exceptions to typical ranges, such as calcium in rabbits or iron in reptiles. Make sure you trust that referenced ranges reflect normal and healthy for that species. Micronutrients are integral to every bodily process, so measurement of serum analytes can tell a story that aids in the clinical picture, when one can recognize what stands out.
Collapse
Affiliation(s)
- Kathleen E Sullivan
- Disney's Animals, Science and Environment, 1180 North Savannah Circle, Lake Buena Vista, FL 32830, USA.
| | - Alyxandra Swanhall
- Disney's Animals, Science and Environment, 1180 North Savannah Circle, Lake Buena Vista, FL 32830, USA
| | - Shannon Livingston
- Disney's Animals, Science and Environment, 1180 North Savannah Circle, Lake Buena Vista, FL 32830, USA
| |
Collapse
|
10
|
O’Doherty J, Dowley A, Conway E, Sweeney T. Nutritional Strategies to Mitigate Post-Weaning Challenges in Pigs: A Focus on Glucans, Vitamin D, and Selenium. Animals (Basel) 2023; 14:13. [PMID: 38200743 PMCID: PMC10778565 DOI: 10.3390/ani14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
This review examines the challenges faced by the pig industry, with a specific focus on improving the health and growth of weaned pigs. It emphasizes the immediate necessity of investigating alternative approaches to managing pig nutrition and health due to restrictions on the use of antibiotics and the prohibition of zinc oxide in weaned pig diets. The weaning phase is identified as a critical stage in piglet development, characterized by stressors that affect their gastrointestinal health, immune responses, and overall physiology. The primary challenge during weaning arises from transitioning piglets from a digestible milk-based diet to a less digestible cereal-based feed, causing nutritional stress. This manifests as reduced feed intake, leading to gastrointestinal disturbances, intestinal inflammation, and adverse effects on intestinal structure and microbiota. To address these challenges and optimize piglet development, various nutritional strategies have been explored. Notably, glucans, particularly β-glucans from fungi, cereals, algae, and yeast, show promise in alleviating weaning-related issues. Furthermore, it is important to highlight the critical roles played by Vitamin D and selenium in piglet nutrition. These essential nutrients can be sourced naturally from enriched mushrooms that are specifically enriched with Vitamin D and selenium, providing a sustainable dietary option. In conclusion, effective nutritional strategies, including glucans, Vitamin D, selenium, and enriched mushrooms, are beneficial for addressing weaning-related challenges.
Collapse
Affiliation(s)
- John O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland; (A.D.); (E.C.)
| | - Alison Dowley
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland; (A.D.); (E.C.)
| | - Eadaoin Conway
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland; (A.D.); (E.C.)
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| |
Collapse
|
11
|
Khazdouz M, Daryani NE, Cheraghpour M, Alborzi F, Hasani M, Ghavami SB, Shidfar F. The effect of selenium supplementation on disease activity and immune-inflammatory biomarkers in patients with mild-to-moderate ulcerative colitis: a randomized, double-blind, placebo-controlled clinical trial. Eur J Nutr 2023; 62:3125-3134. [PMID: 37525068 DOI: 10.1007/s00394-023-03214-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE Selenium (Se) supplementation may help reduce inflammation and disease activity in ulcerative colitis (UC) patients. We investigated the therapeutic effects of Se administration in cases with mild-to-moderate active UC. METHODS A multicenter, double-blind, randomized clinical trial (RCT) was conducted on 100 cases with active mild-to-moderate UC. The patients were randomly allocated to be given an oral selenomethionine capsule (200 mcg/day, n = 50) or a placebo capsule (n = 50) for 10 weeks. The primary outcome was defined as disease activity via the Simple Clinical Colitis Activity Index (SCCAI), and secondary outcomes were measured at the end of the study. RESULTS After 10 weeks, the SCCAI score's mean was reduced in the Se group (P < 0.001). At the end of the intervention, clinical improvement (decline of 3 ≥ score from baseline score) was observed in 19 patients (38%) of the Se group and 3 patients (6%) of the placebo group. The patients with clinical remission (defined as SCCAI ≤ 2) were assigned in the Se group (P = 0.014). The Se group's quality of life and Se serum levels were enhanced at the end of the study (P < 0/001). In the Se group, the mean concentration of interleukin-17 decreased (P < 0/001). However, the levels of interleukin-10 showed no considerable change between the two groups in the 10th week (P = 0.23). CONCLUSION Se supplementation as add-on therapy with medical management induced remission and improved the quality of life in patients with active mild-to-moderate UC. TRIAL REGISTRATION NUMBER AND DATE OF REGISTRATION IRCT20091114002709N51; 2020-04-13.
Collapse
Affiliation(s)
- Maryam Khazdouz
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ebrahimi Daryani
- Department of Gastroenterology and Hepatology, Imam Khomeini Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Makan Cheraghpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Foroogh Alborzi
- Department of Gastroenterology and Hepatology, Imam Khomeini Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Motahareh Hasani
- Department of Nutrition, School of Public Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Zhou C, Zhang H, Wu Y, Ahmed N. Effect of Nano-selenium on exosomes secretion associated with sperm maturation within the epididymis. Micron 2023; 175:103545. [PMID: 37801986 DOI: 10.1016/j.micron.2023.103545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
Selenium is commonly used as a supplement in the poultry diet and plays an important role in male fertility. However, the effect of selenium nanoparticles (Se-NPs) on exosome secretion associated with spermatozoa in the epididymis is largely unknown. H&E staining, Immunohistochemistry, Immunofluorescence and Western blot were performed to study the effect of Se-NPs on exosomes secretion associated with sperm maturation in epididymis. The results indicated that the Se-NPs showed a significant contribution to sperm concentration by light microscopy. It was observed that there was an increase in the spermatozoa concentration in the epididymis of the treated group as compared to the control group. Furthermore, exosome secretion, the expression of tumor susceptibility gene-101 (TSG-101) and cluster of differentiation (CD-63) proteins was identified by immunochemistry, immunofluorescence assay, and western blotting. After nano-selenium treatment, the exosome markers TSG-101 and CD-63 were strong positive immunoreactivity and immunosignaling in the lumen followed by epithelial lining of the epididymis. However weak positive immunoreactivity and immunosignaling were seen of TSG-101 and CD63 in the control group. In addition, highly significant protein expression of TSG-101 and CD63 in the treated group as compared to the control group was confirmed by western blotting. In conclusion, the above findings provide rich evidence about the Se-NPs play a dynamic role in exosome secretion that might be essential for sperm motility and maturation within epididymis.
Collapse
Affiliation(s)
- Chuang Zhou
- Jiangsu Vocational College of Agriculture and Forestry, No. 19 Wenchang East Road, Jurong 212400, China
| | - Hua Zhang
- Jiangsu Vocational College of Agriculture and Forestry, No. 19 Wenchang East Road, Jurong 212400, China.
| | - Yi Wu
- Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Nisar Ahmed
- Faculty of Veterinary & Animal Sciences, LUAWMS, Uthal 90150, Pakistan
| |
Collapse
|
13
|
Bach-Faig A, Ferreres Giménez I, Pueyo Alamán MG. [Immunonutrition and (its impact on) health. Micronutrients and debilitating factors]. NUTR HOSP 2023; 40:3-8. [PMID: 37929894 DOI: 10.20960/nh.04945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Introduction Introduction: the interaction between immunity and nutrition is complex and multifaceted. Micronutrients, including vitamins and minerals, are essential for immune function. In turn, immune function and lifestyle habits can affect nutritional needs and micronutrient utilization, creating an interdependence between nutrition and immunity that can be modulated by both external and internal factors. Objectives: to examine the relationship between micronutrient intake and immune function, and how debilitating factors such as aging, disease, and stress can impact this relationship. Methods: a review of scientific evidence and recommendations from major international scientific societies was conducted to identify the importance of micronutrients in immune function and how debilitating factors can alter their impact. Results: the effect of different micronutrients on immune function is described. Debilitating factors like aging, stress, and chronic diseases can compromise the immune system and make the body more susceptible to infections. However, adequate intake of micronutrients and healthy habits can help to strengthen immunity and mitigate the effects of these debilitating factors. Conclusion: immunonutrition is a critical component for maintaining a strong and healthy immune system. Sufficient intake of micronutrients and healthy lifestyle habits can help improve immunity, especially in the presence of debilitating factors.
Collapse
Affiliation(s)
- Anna Bach-Faig
- Grupo de Investigación FoodLab (2017SGR 83), Estudios de Ciencias de la Salud, Universitat Oberta de Catalunya (UOC), Spain
| | | | | |
Collapse
|
14
|
Hafizi M, Kalanaky S, Fakharzadeh S, Karimi P, Fakharian A, Lookzadeh S, Mortaz E, Mirenayat MS, Heshmatnia J, Karam MB, Zamani H, Nadji A, Toutkaboni MP, Oraee-Yazdani S, Akbari ME, Jamaati H, Nazaran MH. Beneficial effects of the combination of BCc1 and Hep-S nanochelating-based medicines on IL-6 in hospitalized moderate COVID-19 adult patients: a randomized, double-blind, placebo-controlled clinical trial. Trials 2023; 24:720. [PMID: 37951972 PMCID: PMC10638761 DOI: 10.1186/s13063-023-07624-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/05/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND In the severe forms of COVID-19 and many other infectious diseases, the patients develop a cytokine storm syndrome (CSS) where pro-inflammatory cytokines such as IL-6 and TNF-α play a key role in the development of this serious process. Selenium and iron are two important trace minerals, and their metabolism is tightly connected to immune system function. Numerous studies highlight the role of selenium and iron metabolism changes in the procedure of COVID-19 inflammation. The immunomodulator effect of nanomedicines that are synthesized based on nanochelating technology has been proved in previous studies. In the present study, the effects of the combination of BCc1(with iron-chelating property) and Hep-S (containing selenium) nanomedicines on mentioned cytokines levels in hospitalized moderate COVID-19 patients were evaluated. METHODS Laboratory-confirmed moderate COVID-19 patients were enrolled to participate in a randomized, double-blind, placebo-controlled study in two separate groups: combination of BCc1 and Hep-S (N = 62) (treatment) or placebo (N = 60) (placebo). The blood samples were taken before medications on day zero, at discharge, and 28 days after consumption to measure hematological and biochemical parameters and cytokine levels. The clinical symptoms of all the patients were recorded according to an assessment questionnaire before the start of the treatment and on days 3 and discharge day. RESULTS The results revealed that consumption of the nanomedicines led to a significant decrease in the mean level of IL-6 cytokine, and at the end of the study, there was a 77% downward trend in IL-6 in the nanomedicine group, while an 18% increase in the placebo group (p < 0.05). In addition, the patients in the nanomedicines group had lower TNF-α levels; accordingly, there was a 21% decrease in TNF-α level in the treatment group, while a 31% increase in this cytokine level in the placebo was observed (p > 0.05). On the other hand, in nanomedicines treated groups, clinical scores of coughing, fatigue, and need for oxygen therapy improved. CONCLUSIONS In conclusion, the combination of BCc1 and Hep-S inhibits IL-6 as a highly important and well-known cytokine in COVID-19 pathophysiology and presents a promising view for immunomodulation that can manage CSS. TRIAL REGISTRATION Iranian Registry of Clinical Trials RCT20170731035423N2 . Registered on June 12, 2020.
Collapse
Affiliation(s)
- Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Pegah Karimi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Atefeh Fakharian
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Lookzadeh
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Mirenayat
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Heshmatnia
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Bakhshayesh Karam
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Zamani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Nadji
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mihan Pourabdollah Toutkaboni
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Comprehensive Neurosurgical Center of Excellence, Shohada Tajrish, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamidreza Jamaati
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
15
|
Singh DN, Bohra JS, Dubey TP, Shivahre PR, Singh RK, Singh T, Jaiswal DK. Common foods for boosting human immunity: A review. Food Sci Nutr 2023; 11:6761-6774. [PMID: 37970422 PMCID: PMC10630845 DOI: 10.1002/fsn3.3628] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 11/17/2023] Open
Abstract
We are frequently exposed to potentially harmful microbes of various types on a daily basis. Our immune system is an amazing collection of unique organs and cells that defends us from hazardous germs as well as certain diseases. It plays a crucial role in protecting the body against external invaders, including bacteria, viruses, and parasites. Maintaining a healthy immune system requires consuming a balanced diet that provides a variety of macro- and micronutrients. By consuming sufficient amounts of water, minerals such as zinc and magnesium, micronutrients, herbs, and foods rich in vitamins C, D, and E, and adopting a healthy lifestyle, one can enhance their health and immunity, and prevent infections. This article provides a comprehensive review of the scientific literature on common foods known for their potential to boost human immunity. The review begins by discussing the various components of the immune system and their functions. It then delves into the current understanding of how nutrition can influence immune response, highlighting the importance of a well-balanced diet in supporting optimal immune function. The article presents an extensive analysis of a range of common foods that have been studied for their immune-boosting properties. These foods include fruits, vegetables, whole grains, and animal-based foods. Each food category is explored in terms of its specific nutrients and bioactive compounds that contribute to immune support. Foods such as milk, eggs, fruits, leafy greens, and spices like onion, garlic, and turmeric contain beneficial compounds that can enhance the immune system's function, activate and inhibit immune cells, and interfere with multiple pathways that eventually lead to improved immune responses and defense. The available literature on the issue was accessed via online resources and evaluated thoroughly as a methodology for preparing this manuscript.
Collapse
Affiliation(s)
| | - Jitendra Singh Bohra
- Department of Agronomy, Institute of Agricultural SciencesBanaras Hindu UniversityVaranasiIndia
| | - Tej Pratap Dubey
- Council for Technical Education and Vocational Training (CTEVT)BhaktapurNepal
| | - Pushp Raj Shivahre
- Department of Animal Husbandry and DairyingUdai Pratap Autonomous CollegeVaranasiIndia
| | - Ram Kumar Singh
- Department of Agronomy, Institute of Agricultural SciencesBanaras Hindu UniversityVaranasiIndia
| | - Tejbal Singh
- Department of Agronomy, Institute of Agricultural SciencesBanaras Hindu UniversityVaranasiIndia
| | | |
Collapse
|
16
|
Wang W, Jiang QL, Xu Q, Zeng Y, Jiang R, Jiang J. Selenium regulates T cell differentiation in experimental autoimmune thyroiditis in mice. Int Immunopharmacol 2023; 124:110993. [PMID: 37776772 DOI: 10.1016/j.intimp.2023.110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Selenium (Se) is an essential trace element that plays an important role in thyroid physiology. Se supplementation can reduce levels of autoimmune thyroid antibodies, which may be beneficial in Hashimoto's thyroiditis (HT). However, the long-term benefits of Se supplementation for HT patients are controversial and there is no clear clinical evidence to support it, so further basic and clinical research is needed. The effect of Se on immune cells, especially T cells, in autoimmune thyroiditis (AIT) has not been elucidated. Here, we replicated a mouse model of experimental autoimmune thyroiditis (EAT) on a high-iodine diet and treated it with Se supplementation. At week 8 of the experiment, Se supplementation reduced the destruction of thyroid follicles and the infiltration rate of lymphocytes in EAT mice, and reversed the disturbance of peripheral blood thyroxine and thyroid autoantibody levels. Further examination revealed that Se had broad effects on T-cell subsets. Its effects include reducing the production of pro-inflammatory cytokines by Th1 cells, inhibiting the differentiation and production of cytokines by Th2 and Th17 cells, and upregulating the differentiation and production of cytokines by Treg cells. These changes help alleviate thyroid follicle damage during EAT. In conclusion, selenium supplementation has the potential to improve the prognosis of AIT by altering the subset differentiation and/or function of CD4+ T cells.
Collapse
Affiliation(s)
- Wei Wang
- Department of General Surgery/Thyroid Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Thyroid, Head, Neck and Maxillofacial Surgery, Third Hospital of Mianyang & Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Qi-Lan Jiang
- Department of Clinical Nutrition, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qin Xu
- Department of General Surgery/Thyroid Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Zeng
- Department of Orthodontics, Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Rui Jiang
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jun Jiang
- Department of General Surgery/Thyroid Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
17
|
Fan L, Cui Y, Liu Z, Guo J, Gong X, Zhang Y, Tang W, Zhao J, Xue Q. Zinc and selenium status in coronavirus disease 2019. Biometals 2023; 36:929-941. [PMID: 37079168 PMCID: PMC10116102 DOI: 10.1007/s10534-023-00501-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023]
Abstract
We systematically analyzed and attempted to discuss the possibility that deficiencies of zinc or selenium were associated with the incidence and severity of COVID-19. We searched for published and unpublished articles in PubMed, Embase, Web of Science and Cochrane up to 9 February 2023. And we selected healthy individuals, mild/severe, and even deceased COVID-19 patients to analyze their serum data. Data related to 2319 patients from 20 studies were analyzed. In the mild/severe group, zinc deficiency was associated with the degree of severe disease (SMD = 0.50, 95% CI 0.32-0.68, I2 = 50.5%) and we got an Egger's test of p = 0.784; but selenium deficiency was not associated with the degree of severe disease (SMD = - 0.03, 95% CI - 0.98-0.93, I2 = 96.7%). In the surviving/death group, zinc deficiency was not associated with mortality of COVID-19 (SMD = 1.66, 95%CI - 1.42-4.47), nor was selenium (SMD = - 0.16, 95%CI - 1.33-1.01). In the risk group, zinc deficiency was positively associated with the prevalence of COVID-19 (SMD = 1.21, 95% CI 0.96-1.46, I2 = 54.3%) and selenium deficiency was also positively associated with the prevalence of it (SMD = 1.16, 95% CI 0.71-1.61, I2 = 58.3%). Currently, serum zinc and selenium deficiencies increase the incidence of COVID-19 and zinc deficiency exacerbates the disease; however, neither zinc nor selenium was associated with mortality in patients with COVID-19. Nevertheless, our conclusions may change when new clinical studies are published.
Collapse
Affiliation(s)
- Liding Fan
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Yanshuo Cui
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Zonghao Liu
- Shandong University, No.27, Shanda Nanshan Road, Jinan, 250100, Shandong, China
| | - Jiayue Guo
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Xiaohui Gong
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Yunfei Zhang
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Weihao Tang
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Jiahe Zhao
- Binzhou Medical University, No.346 Guanhai Road, Binzhou, 256699, Shandong, China
| | - Qingjie Xue
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China.
- Department of Pathogenic Biology, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
18
|
Chillon TS, Demircan K, Hackler J, Heller RA, Kaghazian P, Moghaddam A, Schomburg L. Combined copper and zinc deficiency is associated with reduced SARS-CoV-2 immunization response to BNT162b2 vaccination. Heliyon 2023; 9:e20919. [PMID: 37886755 PMCID: PMC10597833 DOI: 10.1016/j.heliyon.2023.e20919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
The essential trace elements copper, selenium and zinc are of relevance for immunity and immune response to vaccination. In this longitudinal study, adult healthcare workers (n = 126) received two doses of an mRNA vaccine (BNT162b2), and longitudinal serum samples were prepared. Vaccine-induced antibodies and their neutralizing activity were analyzed, and the trace elements copper, zinc, and selenium along with the copper transporter ceruloplasmin were measured. Subjects with combined deficiency of copper and zinc, i.e. both in the lowest tertiles at baseline, displayed particularly low antibody titers at three (Double Q1: 13 AU/mL vs. not double Q1: 29 AU/mL) and six (Double Q1: 200 AU/mL vs. not double Q1: 425 AU/mL) weeks after vaccination (p < 0.05). The results indicate the potential importance of an adequate trace element status of copper and zinc for raising a strong vaccine-induced SARS-CoV-2 antibody response, and highlights the importance of considering combined micronutrient insufficiencies, as single deficiencies may synergize.
Collapse
Affiliation(s)
- Thilo Samson Chillon
- Max Rubner Center for Cardiovascular Metabolic Renal Research (CMR), Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straße 3-4, D-10115 Berlin, Germany
| | - Kamil Demircan
- Max Rubner Center for Cardiovascular Metabolic Renal Research (CMR), Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straße 3-4, D-10115 Berlin, Germany
| | - Julian Hackler
- Max Rubner Center for Cardiovascular Metabolic Renal Research (CMR), Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straße 3-4, D-10115 Berlin, Germany
| | - Raban A. Heller
- Max Rubner Center for Cardiovascular Metabolic Renal Research (CMR), Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straße 3-4, D-10115 Berlin, Germany
- Bundeswehr Hospital Berlin, Clinic of Traumatology and Orthopaedics, D-10115 Berlin, Germany
| | - Peyman Kaghazian
- Orthopedic and Trauma Surgery, Frohsinnstraße 12, D-63739 Aschaffenburg, Germany
| | - Arash Moghaddam
- Orthopedic and Trauma Surgery, Frohsinnstraße 12, D-63739 Aschaffenburg, Germany
| | - Lutz Schomburg
- Max Rubner Center for Cardiovascular Metabolic Renal Research (CMR), Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straße 3-4, D-10115 Berlin, Germany
| |
Collapse
|
19
|
Sumana SL, Chen H, Shui Y, Zhang C, Yu F, Zhu J, Su S. Effect of Dietary Selenium on the Growth and Immune Systems of Fish. Animals (Basel) 2023; 13:2978. [PMID: 37760378 PMCID: PMC10525757 DOI: 10.3390/ani13182978] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Dietary selenium (Se) is an essential component that supports fish growth and the immune system. This review attempts to provide insight into the biological impacts of dietary Se, including immunological responses, infection defense, and fish species growth, and it also identifies the routes via which it enters the aquatic environment. Dietary Se is important in fish feed due to its additive, antioxidant, and enzyme properties, which aid in various biological processes. However, excessive intake of it may harm aquatic ecosystems and potentially disrupt the food chain. This review explores the diverse natures of dietary Se, their impact on fish species, and the biological methods for eliminating excesses in aquatic environments. Soil has a potential role in the distribution of Se through erosion from agricultural, industrial, and mine sites. The research on dietary Se's effects on fish immune system and growth can provide knowledge regarding fish health, fish farming strategies, and the health of aquatic ecosystems, promoting the feed industry and sustainable aquaculture. This review provides data and references from various research studies on managing Se levels in aquatic ecosystems, promoting fish conservation, and utilizing Se in farmed fish diets.
Collapse
Affiliation(s)
- Sahr Lamin Sumana
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (S.L.S.); (Y.S.); (J.Z.)
| | - Huangen Chen
- Jiangsu Fishery Technology Promotion Center, Nanjing 210017, China;
| | - Yan Shui
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (S.L.S.); (Y.S.); (J.Z.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (C.Z.); (F.Y.)
| | - Chengfeng Zhang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (C.Z.); (F.Y.)
| | - Fan Yu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (C.Z.); (F.Y.)
| | - Jian Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (S.L.S.); (Y.S.); (J.Z.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (C.Z.); (F.Y.)
| | - Shengyan Su
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (S.L.S.); (Y.S.); (J.Z.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (C.Z.); (F.Y.)
| |
Collapse
|
20
|
Khurana A, Allawadhi P, Singh V, Khurana I, Yadav P, Sathua KB, Allwadhi S, Banothu AK, Navik U, Bharani KK. Antimicrobial and anti-viral effects of selenium nanoparticles and selenoprotein based strategies: COVID-19 and beyond. J Drug Deliv Sci Technol 2023; 86:104663. [PMID: 37362903 PMCID: PMC10249347 DOI: 10.1016/j.jddst.2023.104663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Deficiency of selenium (Se) has been described in a significant number of COVID-19 patients having a higher incidence of mortality, which makes it a pertinent issue to be addressed clinically for effective management of the COVID-19 pandemic. Se nanoparticles (SeNPs) provide a unique option for managing the havoc caused by the COVID-19 pandemic. SeNPs possess promising anti-inflammatory and anti-fibrotic effects by virtue of their nuclear factor kappa-light-chain-stimulator of activated B cells (NFκB), mitogen-activated protein kinase (MAPKs), and transforming growth factor-beta (TGF-β) modulatory activity. In addition, SeNPs possess remarkable immunomodulatory effects, making them a suitable option for supplementation with a much lower risk of toxicity compared to their elemental counterpart. Further, SeNPs have been shown to curtail viral and microbial infections, thus, making it a novel means to halt viral growth. In addition, it can be administered in the form of aerosol spray, direct injection, or infused thin-film transdermal patches to reduce the spread of this highly contagious viral infection. Moreover, a considerable decrease in the expression of selenoprotein along with enhanced expression of IL-6 in COVID-19 suggests a potential association among selenoprotein expression and COVID-19. In this review, we highlight the unique antimicrobial and antiviral properties of SeNPs and the immunomodulatory potential of selenoproteins. We provide the rationale behind their potentially interesting properties and further exploration in the context of microbial and viral infections. Further, the importance of selenoproteins and their role in maintaining a successful immune response along with their association to Se status is summarized.
Collapse
Affiliation(s)
- Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Kshirod Bihari Sathua
- Department of Pharmacology, College of Pharmaceutical Sciences, Konark Marine Drive Road, Puri, 752002, Odisha, India
| | - Sachin Allwadhi
- Department of Computer Science and Engineering, University Institute of Engineering and Technology (UIET), Maharshi Dayanand University (MDU), Rohtak, 124001, Haryana, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India
| |
Collapse
|
21
|
Li J, Huang C, Lai L, Wang L, Li M, Tan Y, Zhang T. Selenium hyperaccumulator plant Cardamine enshiensis: from discovery to application. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5515-5529. [PMID: 37355493 DOI: 10.1007/s10653-023-01595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/25/2023] [Indexed: 06/26/2023]
Abstract
Selenium (Se) is an essential trace element for animals and humans. Se biofortification and Se functional agriculture are emerging strategies to satisfy the needs of people who are deficient in Se. With 200 km2 of Se-excess area, Enshi is known as the "world capital of Se." Cardamine enshiensis (C. enshiensis) is a Se hyperaccumulation plant discovered in the Se mine drainage area of Enshi. It is edible and has been approved by National Health Commission of the People's Republic of China as a new source of food, and the annual output value of the Se-rich industry in Enshi City exceeds 60 billion RMB. This review will mainly focus on the discovery and mechanism underlying Se tolerance and Se hyperaccumulation in C. enshiensis and highlight its potential utilization in Se biofortification agriculture, graziery, and human health.
Collapse
Affiliation(s)
- Jiao Li
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuying Huang
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.
| | - Lin Lai
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Li Wang
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Minglong Li
- Second Geological Brigade of Hubei Geological Bureau, Enshi, 445000, Hubei, China
| | - Yong Tan
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Tao Zhang
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
22
|
Brecht P, Dring JC, Yanez F, Styczeń A, Mertowska P, Mertowski S, Grywalska E. How Do Minerals, Vitamins, and Intestinal Microbiota Affect the Development and Progression of Heart Disease in Adult and Pediatric Patients? Nutrients 2023; 15:3264. [PMID: 37513682 PMCID: PMC10384570 DOI: 10.3390/nu15143264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, far ahead of cancer. Epidemiological data emphasize the participation of many risk factors that increase the incidence of CVDs, including genetic factors, age, and sex, but also lifestyle, mainly nutritional irregularities and, connected with them, overweight and obesity, as well as metabolic diseases. Despite the importance of cardiovascular problems in the whole society, the principles of prevention of CVDs are not widely disseminated, especially among the youngest. As a result, nutritional neglect, growing from childhood and adolescence, translates into the occurrence of numerous disease entities, including CVDs, in adult life. This review aimed to draw attention to the role of selected minerals and vitamins in health and the development and progression of CVDs in adults and children. Particular attention was paid to the effects of deficiency and toxicity of the analyzed compounds in the context of the cardiovascular system and to the role of intestinal microorganisms, which by interacting with nutrients, may contribute to the development of cardiovascular disorders. We hope this article will draw the attention of society and the medical community to emphasize promoting healthy eating and proper eating habits in children and adults, translating into increased awareness and a reduced risk of CVD.
Collapse
Affiliation(s)
- Peet Brecht
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8, 20-093 Lublin, Poland
| | - James Curtis Dring
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8, 20-093 Lublin, Poland
| | - Felipe Yanez
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8, 20-093 Lublin, Poland
| | - Agnieszka Styczeń
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8, 20-093 Lublin, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
23
|
Cui L, Zhang J, Guo J, Zhang M, Li W, Dong J, Liu K, Guo L, Li J, Wang H, Li J. Selenium suppressed the LPS-induced inflammation of bovine endometrial epithelial cells through NF-κB and MAPK pathways under high cortisol background. J Cell Mol Med 2023; 27:1373-1383. [PMID: 37042086 PMCID: PMC10183709 DOI: 10.1111/jcmm.17738] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/01/2023] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
The bovine uterus is susceptible to infection, and the elevated cortisol level due to stress are common in cows after delivery. The essential trace element selenium plays a pivotal role in the antioxidant and anti-inflammatory defence system of body. This study investigated whether selenium supplementation protected endometrial cells from inflammation in the presence of high-level cortisol. The primary bovine endometrial epithelial cells were subjected to Escherichia coli lipopolysaccharide to establish cellular inflammation model. The gene expression of inflammatory mediators and proinflammatory cytokines was measured by quantitative PCR. The key proteins of NF-κB and MAPK signalling pathways were detected by Western blot and immunofluorescence. The result showed that pre-treatment of Na2 SeO3 (1, 2 and 4 μΜ) decreased the mRNA expression of proinflammatory genes, inhibited the activation of NF-κB and suppressed the phosphorylation of extracellular signal-regulated kinase, P38MAPK and c-Jun N-terminal kinase. This inhibition of inflammation was more apparent in the presence of high-level cortisol (30 ng/mL). These results indicated that selenium has an anti-inflammatory effect, which is mediated via NF-κB and MAPK signalling pathways and is augmented by cortisol in bovine endometrial epithelial cells.
Collapse
Affiliation(s)
- Luying Cui
- College of Veterinary Medicine, Yangzhou UniversityJiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of EducationYangzhouJiangsu225009China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhou225009China
| | - Jiaqi Zhang
- College of Veterinary Medicine, Yangzhou UniversityJiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of EducationYangzhouJiangsu225009China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhou225009China
| | - Jing Guo
- College of Veterinary Medicine, Yangzhou UniversityJiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of EducationYangzhouJiangsu225009China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhou225009China
| | - Min Zhang
- College of Veterinary Medicine, Yangzhou UniversityJiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of EducationYangzhouJiangsu225009China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhou225009China
| | - Wenjie Li
- College of Veterinary Medicine, Yangzhou UniversityJiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of EducationYangzhouJiangsu225009China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhou225009China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou UniversityJiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of EducationYangzhouJiangsu225009China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhou225009China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou UniversityJiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of EducationYangzhouJiangsu225009China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhou225009China
| | - Long Guo
- College of Veterinary Medicine, Yangzhou UniversityJiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of EducationYangzhouJiangsu225009China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhou225009China
| | - Jun Li
- College of Veterinary Medicine, Yangzhou UniversityJiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of EducationYangzhouJiangsu225009China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhou225009China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou UniversityJiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of EducationYangzhouJiangsu225009China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhou225009China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou UniversityJiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of EducationYangzhouJiangsu225009China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhou225009China
| |
Collapse
|
24
|
Abu Jamra SR, Komatsu CG, Barbosa F, Roxo-Junior P, Navarro AM. Proposal to Screen for Zinc and Selenium in Patients with IgA Deficiency. Nutrients 2023; 15:2145. [PMID: 37432290 DOI: 10.3390/nu15092145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
The increase in life expectancy can be a consequence of the world's socioeconomic, sanitary and nutritional conditions. Some studies have demonstrated that individuals with a satisfactory diet variety score present a lower risk of malnutrition and better health status. Zinc and selenium are important micronutrients that play a role in many biochemical and physiological processes of the immune system. Deficient individuals can present both innate and adaptive immunity abnormalities and increased susceptibility to infections. Primary immunodeficiency diseases, also known as inborn errors of immunity, are genetic disorders classically characterized by an increased susceptibility to infection and/or dysregulation of a specific immunologic pathway. IgA deficiency (IgAD) is the most common primary antibody deficiency. This disease is defined as serum IgA levels lower than 7 mg/dL and normal IgG and IgM levels in individuals older than four years. Although many patients are asymptomatic, selected patients suffer from different clinical complications, such as pulmonary infections, allergies, autoimmune diseases, gastrointestinal disorders and malignancy. Knowing the nutritional status as well as the risk of zinc and selenium deficiency could be helpful for the management of IgAD patients. OBJECTIVES to investigate the anthropometric, biochemical, and nutritional profiles and the status of zinc and selenium in patients with IgAD. METHODS in this descriptive study, we screened 16 IgAD patients for anthropometric and dietary data, biochemical evaluation and determination of plasma and erythrocyte levels of zinc and selenium. RESULTS dietary intake of zinc and selenium was adequate in 75% and 86% of the patients, respectively. These results were consistent with the plasma levels (adequate levels of zinc in all patients and selenium in 50% of children, 25% of adolescents and 100% of adults). However, erythrocyte levels were low for both micronutrients (deficiency for both in 100% of children, 75% of adolescents and 25% of adults). CONCLUSION our results highlight the elevated prevalence of erythrocyte zinc and selenium deficiency in patients with IgAD, and the need for investigation of these micronutrients in their follow-up.
Collapse
Affiliation(s)
- Soraya Regina Abu Jamra
- Department of Pediatrics, Ribeirão Preto Medical School-University of São Paulo-FMRP/USP, Sao Paulo 05508-090, Brazil
| | - Camila Gomes Komatsu
- Department of Food and Nutrition, Faculty of Pharmaceutical Sciences, São Paulo State University UNESP, Araraquara 14800-060, Brazil
| | - Fernando Barbosa
- Laboratory of Toxicology and Metal Essentiality, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Sao Paulo 05508-090, Brazil
| | - Persio Roxo-Junior
- Department of Pediatrics, Ribeirão Preto Medical School-University of São Paulo-FMRP/USP, Sao Paulo 05508-090, Brazil
| | - Anderson Marliere Navarro
- Department of Health Sciences, Division of Nutrition and Metabolism, Ribeirão Preto Medical School-University of São Paulo-FMRP/USP, Sao Paulo 05508-090, Brazil
| |
Collapse
|
25
|
Porta M, Pumarega J, Gasull M, Aguilar R, Henríquez-Hernández LA, Basagaña X, Zumbado M, Villar-García J, Rius C, Mehta S, Vidal M, Jimenez A, Campi L, Lop J, Pérez Luzardo OL, Dobaño C, Moncunill G. Individual blood concentrations of persistent organic pollutants and chemical elements, and COVID-19: A prospective cohort study in Barcelona. ENVIRONMENTAL RESEARCH 2023; 223:115419. [PMID: 36740154 PMCID: PMC9898057 DOI: 10.1016/j.envres.2023.115419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND There is wide, largely unexplained heterogeneity in immunological and clinical responses to SARS-CoV-2 infection. Numerous environmental chemicals, such as persistent organic pollutants (POPs) and chemical elements (including some metals, essential trace elements, rare earth elements, and minority elements), are immunomodulatory and cause a range of adverse clinical events. There are no prospective studies on the effects of such substances on the incidence of SARS-CoV-2 infection and COVID-19. OBJECTIVE To investigate the influence of blood concentrations of POPs and elements measured several years before the pandemic on the development of SARS-CoV-2 infection and COVID-19 in individuals from the general population. METHODS We conducted a prospective cohort study in 154 individuals from the general population of Barcelona. POPs and elements were measured in blood samples collected in 2016-2017. SARS-CoV-2 infection was detected by rRT-PCR in nasopharyngeal swabs and/or by antibody serology using eighteen isotype-antigen combinations measured in blood samples collected in 2020-2021. We analyzed the associations between concentrations of the contaminants and SARS-CoV-2 infection and development of COVID-19, taking into account personal habits and living conditions during the pandemic. RESULTS Several historically prevalent POPs, as well as arsenic, cadmium, mercury, and zinc, were not associated with COVID-19, nor with SARS-CoV-2 infection. However, DDE (adjusted OR = 5.0 [95% CI: 1.2-21]), lead (3.9 [1.0-15]), thallium (3.4 [1.0-11]), and ruthenium (5.0 [1.8-14]) were associated with COVID-19, as were tantalum, benzo(b)fluoranthene, DDD, and manganese. Thallium (3.8 [1.6-8.9]), and ruthenium (2.9 [1.3-6.7]) were associated with SARS-CoV-2 infection, and so were lead, gold, and (protectively) iron and selenium. We identified mixtures of up to five substances from several chemical groups, with all substances independently associated to the outcomes. CONCLUSIONS Our results provide the first prospective and population-based evidence of an association between individual concentrations of some contaminants and COVID-19 and SARS-CoV-2 infection. POPs and elements may contribute to explain the heterogeneity in the development of SARS-CoV-2 infection and COVID-19 in the general population. If the associations are confirmed as causal, means are available to mitigate the corresponding risks.
Collapse
Affiliation(s)
- Miquel Porta
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
| | - José Pumarega
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Magda Gasull
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Ruth Aguilar
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Luis A Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences, Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Xavier Basagaña
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; ISGlobal - PSMar - PRBB, Barcelona, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences, Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | | | - Cristina Rius
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Agència de Salut Pública de Barcelona, Barcelona, Spain
| | - Sneha Mehta
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; Columbia Mailman School of Public Health, New York, USA
| | - Marta Vidal
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Alfons Jimenez
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Laura Campi
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Lop
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain
| | - Octavio L Pérez Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences, Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Carlota Dobaño
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
26
|
Selenium, Stroke, and Infection: A Threefold Relationship; Where Do We Stand and Where Do We Go? Nutrients 2023; 15:nu15061405. [PMID: 36986135 PMCID: PMC10054895 DOI: 10.3390/nu15061405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Stroke is currently the second most common cause of death worldwide and a major cause of serious long-term morbidity. Selenium is a trace element with pleotropic effects on human health. Selenium deficiency has been associated with a prothrombotic state and poor immune response, particularly during infection. Our aim was to synthesize current evidence on the tripartite interrelationship between selenium levels, stroke, and infection. Although evidence is contradictory, most studies support the association between lower serum selenium levels and stroke risk and outcomes. Conversely, limited evidence on the role of selenium supplementation in stroke indicates a potentially beneficial effect of selenium. Notably, the relationship between stroke risk and selenium levels is bimodal rather than linear, with higher levels of serum selenium linked to disturbances of glucose metabolism and high blood pressure, morbidities which are, in turn, substrates for stroke. Another such substrate is an infection, albeit forming a bidirectional relationship with both stroke and the consequences of impaired selenium metabolism. Perturbed selenium homeostasis leads to impaired immune fitness and antioxidant capacity, which both favor infection and inflammation; specific pathogens may also contend with the host for transcriptional control of the selenoproteome, adding a feed-forward loop to this described process. Broader consequences of infection such as endothelial dysfunction, hypercoagulation, and emergent cardiac dysfunction both provide stroke substrates and further feed-forward feedback to the consequences of deficient selenium metabolism. In this review, we provide a synthesis and interpretation of these outlined complex interrelationships that link selenium, stroke, and infection and attempt to decipher their potential impact on human health and disease. Selenium and the unique properties of its proteome could provide both biomarkers and treatment options in patients with stroke, infection, or both.
Collapse
|
27
|
Antibody response and abomasal histopathology of lambs with haemonchosis during supplementation with medicinal plants and organic selenium. Vet Anim Sci 2023; 19:100290. [PMID: 36845851 PMCID: PMC9945810 DOI: 10.1016/j.vas.2023.100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
We evaluated the effects of dietary supplementation with medicinal plants (Herbmix) or organic selenium (Selplex) on the immune responses and histopathology of lambs infected with Haemonchus contortus. Twenty-seven lambs were infected and reinfected with approximately 11,000 third-stage larvae of H. contortus during the experiment (on days 0, 49 and 77). Lambs were divided into two supplemented experimental groups (Herbmix and Selplex) and unsupplemented group (Control). The abomasal worm counts at necropsy on day 119 were lower for Herbmix (4230) and Selplex group (3220) than to the Control (6613) which resulted in 51.3% and 36.0% of reduction, respectively. The mean length of adult female worms was in the order Control > Herbmix > Selplex (2.1, 2.08, and 2.01 cm, respectively). The specific IgG response against adults was significantly affected by time (P < 0.001). Serum-specific and total mucus levels of IgA in the Herbmix group were highest on day 15. Mean levels of serum IgM against adults were influenced by treatment (P = 0.048) and time (P < 0.001). The Herbmix group had strong local inflammation in the abomasal tissue, with the formation of lymphoid aggregates and the infiltration of immune cells, but the tissues of the Selplex group had higher numbers of eosinophils, globule leukocytes, and plasma cells. The lymph nodes of each animal had reactive follicular hyperplasia due to the infection. Dietary nutritional supplementation with a mixture of medicinal plants or organic selenium could improve local immune responses and thus enhance the resistance of animals to this parasitic infection.
Collapse
|
28
|
Abstract
Fatigue is defined as a symptom leading to the inability to continue functioning at the expected activity level. It is a highly prevalent symptom, challenging to frame into monodimensional pathophysiological mechanisms. As a result, fatigue is often underestimated in the clinical setting and is wrongly considered an unavoidable consequence of ageing. Several potential mechanisms responsible for fatigue have been proposed, including sleep patterns, autonomic nervous system abnormalities and biological complexity. Inflammation and mitochondrial dysfunction are among the most promising mechanisms through which malnutrition may cause fatigue. Not surprisingly, fatigue is highly prevalent in inflammatory conditions (e.g. COVID-19 infection). The nutritional status may also represent a critical factor in the development and presentation of fatigue, which may mimic the exhaustion of the individual's metabolic reserves. For example, the insufficient dietary intake of energy and proteins may determine the catabolism of body fat and muscles, disrupt the homeostatic balance and cause the onset of fatigue. It is necessary to conduct research on fatigue. By characterising its pathophysiological mechanisms, it will be possible to (1) support the design and development of targeted interventions, (2) improve the quality of life of many persons by acting on the symptom and (3) reduce the direct and indirect costs of a burdening condition typical of advancing age. In the present review, we provide an overview of the role that nutrition may play as a determinant of fatigue in older people, also in the context of the COVID-19 pandemic.
Collapse
|
29
|
Abstract
Selenium is found at the active centre of twenty-five selenoproteins which have a variety of roles, including the well-characterised function of antioxidant defense, but it also is claimed to be involved in the immune system. However, due to limited and conflicting data for different parameters of immune function, intakes of selenium that have an influence on immune function are uncertain. This review covers the relationship between selenium and immune function in man, focusing on the highest level of evidence, namely that generated by randomised controlled trials (RCT), in which the effect of selective administration of selenium, in foods or a supplement, on immune function was assessed. A total of nine RCT were identified from a systematic search of the literature, and some of these trials reported effects on T and natural killer cells, which were dependent on the dose and form of selenium administered, but little effect of selenium on humoral immunity. There is clearly a need to undertake dose-response analysis of cellular immunity data in order to derive quantitative relationships between selenium intake and measures of immune function. Overall, limited effects on immunity emerged from experimental studies in human subjects, though additional investigation on the potential influence of selenium status on cellular immunity appears to be warranted.
Collapse
|
30
|
de Paiva EL, Ruttens A, Waegeneers N, Laing GD, Morgano MA, Cheyns K, Arisseto-Bragotto AP. Selenium in selected samples of infant formulas and milk commercialized in Belgium and Brazil: Total content, speciation and estimated intake. Food Res Int 2023; 164:112289. [PMID: 36737897 DOI: 10.1016/j.foodres.2022.112289] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Total selenium (Se) and Se species concentrations were determined in 50 infant formulas and milk samples commercialized in Brazil and Belgium. Infant formula categories were starter, follow-up, specialized and plant-based (soy and rice), while milk samples included whole, skimmed, semi-skimmed and plant-based products. Total Se content was determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS), after microwave digestion. An enzymatic extraction method was applied to evaluate the Se species, mostly selenomethionine (SeMet), Se(IV) and Se(VI), through High Performance Liquid Chromatography coupled to ICP-MS (LC-ICP-MS). Starters and follow-up samples presented the highest total Se concentrations and values up to 30 µg/kg were observed in the reconstituted product. The lowest level (below the LOQ = 10 µg/kg) was verified in an anti-regurgitation specialized formula. The relative agreement between the measured total Se and the Se content declared on the label varied from 55 % to 317 %. Concentrations in infant formulas were not markedly different from concentrations in milk except for rice and oat milk samples that showed values below the LOQ. SeMet was the main species found in milks, while in infant formulas the species concentrations varied according to the product. The daily intake (DI) of Se via infant formula consumption was calculated and compared with the Adequate Intake (AI) value and the Dietary Reference Intake (DRI) established by the EFSA NDA Panel and ANVISA, respectively. Estimated maximum intakes of total Se obtained for reconstituted infant formula were 40.6 mg/day, corresponding to 400 % and 202 % of the DRI and AI, respectively.
Collapse
Affiliation(s)
- Esther Lima de Paiva
- Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato 80, 13083-862 Campinas - SP, Brazil; Sciensano, Leuvensesteenweg 17, 3080 Tervuren, Belgium.
| | - Ann Ruttens
- Sciensano, Leuvensesteenweg 17, 3080 Tervuren, Belgium
| | | | - Gijs Du Laing
- Ghent University, Laboratory of Analytical Chemistry and Applied Ecochemistry, Coupure links 653, 9000 Ghent, Belgium
| | - Marcelo Antônio Morgano
- Institute of Food Technology (ITAL), Avenida Brasil 2880, C. P. 139, 13070-178 Campinas - SP, Brazil
| | | | | |
Collapse
|
31
|
Differentially Expressed Genes and Signalling Pathways Regulated by High Selenium Involved in Antioxidant and Immune Functions of Goats Based on Transcriptome Sequencing. Int J Mol Sci 2023; 24:ijms24021124. [PMID: 36674636 PMCID: PMC9864924 DOI: 10.3390/ijms24021124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/10/2023] Open
Abstract
The objective of this study is to observe the effect of high selenium on the antioxidant and immune functions of growing goats based on transcriptome sequencing. Eighteen goats were randomly divided into three groups: (1) the control (CON) group was fed a basal diet, and (2) the treatment 1 group (LS) and treatment 2 group (HS) were fed a basal diet with 2.4 and 4.8 mg/kg selenium-yeast (SY), respectively. The results indicate that HS treatment significantly (p < 0.05) increased the apparent digestibility of either extract and significantly increased (p < 0.05) total antioxidant capacity, whereas it significantly (p < 0.05) decreased plasma aspartate aminotransferase and malondialdehyde relative to the control group. The LS treatment had significantly (p < 0.05) increased glutathione S-transferase and catalase compared to CON. A total of 532 differentially expressed genes (DEGs) between the CON and HS were obtained using transcriptome sequencing. Kyoto Encyclopedia of Genes and Genomes analysis identified upregulated (p < 0.05) DEGs mainly related to vascular smooth muscle contraction, alpha-linolenic acid metabolism, biosynthesis of unsaturated fatty acids, the VEGF signalling pathway, and proteoglycans in cancer; downregulated (p < 0.05) DEGs mainly related to the NOD-like receptor signalling pathway, influenza A, cytokine-cytokine receptor interaction, haematopoietic cell lineage, and African trypanosomiasis. Ontology analyses of the top genes show that the identified DEGs are mainly involved in the regulation of granulocyte macrophage colony-stimulating factor production for biological processes, the external side of the plasma membrane for cellular components, and carbohydrate derivative binding for molecular functions. Seven genes are considered potential candidate genes for regulating antioxidant activity, including selenoprotein W, 1, glutathione peroxidase 1, glutathione S-transferase A1, tumour necrosis factor, tumour necrosis factor superfamily member 10, tumour necrosis factor superfamily member 8, and tumour necrosis factor superfamily member 13b. The experimental observations indicate that dietary supplementation with 4.8 mg/kg SY can enhance antioxidant and immune functions by improving muscle immunity, reducing the concentrations of inflammatory molecules, and modulating antioxidant and inflammatory signalling pathways in growing goats.
Collapse
|
32
|
Kemal R, Fauzi IA, Nuryati S, Wardani WW, Suprayudi MA. Evaluation of Selenoprotein Supplementation on Digestibility, Growth, and Health Performance of Pacific White Shrimp Litopenaeus vannamei. AQUACULTURE NUTRITION 2023; 2023:2008517. [PMID: 36860982 PMCID: PMC9973150 DOI: 10.1155/2023/2008517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 06/18/2023]
Abstract
Selenoprotein is a feed additive that can overcome oxidative stress in intensive Pacific white shrimp (Litopenaeus vannamei) culture. This study evaluated the effects of selenoprotein supplementation at various doses on Pacific white shrimp's digestibility, growth, and health performance. The experimental design used was a completely randomized design consisting of four feed treatments, namely, control and treatments with selenoprotein supplementation of 2.5, 5, and 7.5 g kg feed-1 with four replications. Shrimps (1.5 g) were reared for 70 days and challenged for 14 days by the bacteria Vibrio parahaemolyticus (107 CFU mL-1). Shrimps used in the digestibility performance evaluation (6.1 g) were reared until sufficient quantities of feces were collected for analysis. Shrimp supplemented with selenoprotein exhibited superior digestibility, growth, and health performance compared to the control (P < 0.05). The use of selenoprotein at a dose of 7.5 g kg of feed-1 (2.72 mg Se kg of feed-1) was considered the most effective for increasing productivity and preventing disease attacks in intensive shrimp culture.
Collapse
Affiliation(s)
- Rafi Kemal
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University, Bogor 16680, Indonesia
| | - Ichsan Achmad Fauzi
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University, Bogor 16680, Indonesia
| | - Sri Nuryati
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University, Bogor 16680, Indonesia
| | - Wira Wisnu Wardani
- PT Aquacell Indo Pasifik, Jl. Pedurenan 5, Gunung Sindur, Bogor 16340, Indonesia
| | - Muhammad Agus Suprayudi
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
33
|
Golin A, Tinkov AA, Aschner M, Farina M, da Rocha JBT. Relationship between selenium status, selenoproteins and COVID-19 and other inflammatory diseases: A critical review. J Trace Elem Med Biol 2023; 75:127099. [PMID: 36372013 PMCID: PMC9630303 DOI: 10.1016/j.jtemb.2022.127099] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The antioxidant effects of selenium as a component of selenoproteins has been thought to modulate host immunity and viral pathogenesis. Accordingly, the association of low dietary selenium status with inflammatory and immunodeficiency has been reported in the literature; however, the causal role of selenium deficiency in chronic inflammatory diseases and viral infection is still undefined. The COVID-19, characterized by acute respiratory syndrome and caused by the novel coronavirus 2, SARS-CoV-2, has infected millions of individuals worldwide since late 2019. The severity and mortality from COVID-19 have been associated with several factor, including age, sex and selenium deficiency. However, available data on selenium status and COVID-19 are limited, and a possible causative role for selenium deficiency in COVID-19 severity has yet to be fully addressed. In this context, we review the relationship between selenium, selenoproteins, COVID-19, immune and inflammatory responses, viral infection, and aging. Regardless of the role of selenium in immune and inflammatory responses, we emphasize that selenium supplementation should be indicated after a selenium deficiency be detected, particularly, in view of the critical role played by selenoproteins in human health. In addition, the levels of selenium should be monitored after the start of supplementation and discontinued as soon as normal levels are reached. Periodic assessment of selenium levels after supplementation is a critical issue to avoid over production of toxic metabolites of selenide because under normal conditions, selenoproteins attain saturated expression levels that limits their potential deleterious metabolic effects.
Collapse
Affiliation(s)
- Anieli Golin
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia; Institute of Bioelementology, Orenburg, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil; Departamento de Bioquímica, Instituto Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
34
|
Lessard M, Talbot G, Bergeron N, Lo Verso L, Morissette B, Yergeau É, Matte JJ, Bissonnette N, Blais M, Gong J, Wang Q, Quessy S, Guay F. Weaning diet supplemented with health-promoting feed additives influences microbiota and immune response in piglets challenged with Salmonella. Vet Immunol Immunopathol 2023; 255:110533. [PMID: 36563567 DOI: 10.1016/j.vetimm.2022.110533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/09/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
The aim of this study was to evaluate the potential of micronutrients and feed additives to modulate intestinal microbiota and systemic and mucosal immune responses in weaned pigs infected with Salmonella. At weaning, 32 litters of 12 piglets each were allocated to four dietary treatments: 1) control diet (CTRL), 2) CTRL supplemented with chlortetracycline (ATB), 3) CTRL supplemented with a cocktail of feed additives (CKTL); and 4) CKTL diet containing bovine colostrum in replacement of spray-dry animal plasma (CKTL+COL). The CKTL supplement included cranberry extract, encapsulated carvacrol and yeast-derived products and an enriched selenium and vitamin premix. Three weeks after weaning, four pigs per litter were orally inoculated with Salmonella Typhimurium DT104. Half of them were euthanized 3 days post-infection (dpi) and the other half, 7 dpi. The expression of IL6, TNF, IL8, monocyte chemoattractant protein 1 (MCP1), IFNG, cyclooxygenase 2 (COX2), glutathione peroxidase 2 (GPX2) and β-defensin 2 (DEFB2) showed a peaked response at 3 dpi (P < 0.05). Results also revealed that DEFB2 expression was higher at 3 dpi in CTRL and CKTL groups than in ATB (P = 0.01 and 0.06, respectively) while GPX2 gene was markedly increased at 3 and 7 dpi in pigs fed CKTL or CKTL+COL diet compared to CTRL pigs (P < 0.05). In piglets fed CKTL or CKTL+COL diet, intestinal changes in microbial communities were less pronounced after exposure to Salmonella compared to CTRL and progressed faster toward the status before Salmonella challenge (AMOVA P < 0.01). Furthermore, the relative abundance of several families was either up- or down-regulated in pigs fed CKTL or CKTL+COL diet after Salmonella challenge. In conclusion, weaning diet enriched with bovine colostrum, vitamins and mixture of feed additives mitigated the influence of Salmonella infection on intestinal microbial populations and modulate systemic and intestinal immune defences.
Collapse
Affiliation(s)
- Martin Lessard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine (FMV), Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada; Département de Biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada; Faculté des sciences de l'agriculture et de l'alimentation, Département de sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - Guylaine Talbot
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine (FMV), Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada; Département de Biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.
| | - Nadia Bergeron
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine (FMV), Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada
| | - Luca Lo Verso
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; Faculté des sciences de l'agriculture et de l'alimentation, Département de sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - Bruno Morissette
- Département de Biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Étienne Yergeau
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine (FMV), Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada; Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Université du Québec, Laval, QC, Canada
| | - Jacques J Matte
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada
| | - Mylène Blais
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada; Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine (FMV), Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Qi Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Sylvain Quessy
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine (FMV), Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada
| | - Frédéric Guay
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine (FMV), Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada; Faculté des sciences de l'agriculture et de l'alimentation, Département de sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
35
|
A Randomized, Double-Blind, Placebo-Controlled Investigation of Selenium Supplementation in Women at Elevated Risk for Breast Cancer: Lessons for Re-Emergent Interest in Selenium and Cancer. Biomedicines 2022; 11:biomedicines11010049. [PMID: 36672557 PMCID: PMC9855926 DOI: 10.3390/biomedicines11010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Damage to cellular macromolecules such as DNA and lipid, induced via reactive oxygen species, and indicators of cell proliferation potential such as insulin-like growth factor (IGF) metabolic status are intermediate biomarkers of breast cancer risk. Based on reports that selenium status can affect these markers, a randomized, placebo-controlled, double-blind experiment was conducted to investigate the potential of selenium supplementation to modulate breast cancer risk. Using a placebo tablet or a tablet containing 200 μg selenium provided as high-selenium yeast daily for one year, concentrations of the biomarkers in blood or urine were assessed at baseline and after 6 and 12 months of intervention. The selenium intervention used in this study is presumed to mediate its effect via the induction of glutathione peroxidase activity and the consequential impact of the active form of this protein on oxidative damage. We found no evidence to support this hypothesis or to indicate that systemic IGF metabolic status was affected. Critical knowledge gaps must be addressed for the resurgence of interest in selenium and cancer to garner clinical relevance. Those knowledge gaps include the identification of a specific, high-affinity selenium metabolite and the cellular target(s) to which it binds, and the demonstration that the cellular determinant that the selenium metabolite binds plays a critical role in the initiation, promotion, or progression of a specific type of cancer.
Collapse
|
36
|
Khanam A, Kizhakayil D, Platel K. Influence of vitamin E on the cellular uptake and transport of selenium from wheat and pearl millet across Caco-2 cell monolayer. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
37
|
Sebastiano M, Eens M, Bustamante P, Chastel O, Costantini D. Seabirds under environmental pressures: Food supplementation has a larger impact than selenium on chicks exposed to mercury and a viral disease. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.963512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although infectious disease outbreaks represent a serious threat for wildlife population viability, the environmental factors that underlie such outbreaks are poorly investigated. The French Guiana breeding population of Magnificent frigatebird Fregata magnificens is subjected to recurrent episodes of chicks’ mortality likely caused by a viral disease. We hypothesized that high mercury (Hg) concentrations may be responsible for the emergence of clinical signs. We therefore investigated whether healthy and sick chicks show different Hg concentrations in blood. Because the essential element selenium (Se) may be highly depleted during Hg poisoning, we further experimentally tested whether an increased intake of dietary Se has an effect on blood levels of Hg, increases circulating Se, and improves the oxidative status of chicks. Finally, we compared the results of this experiment with a previous food supplementation experiment. Our results show similar Hg concentrations between healthy and sick chicks with visible clinical signs of the disease. Se concentrations were significantly depleted in sick chicks. Se concentrations increased while Hg concentrations simultaneously decreased in chicks that naturally recovered from the disease. Both the Se and fish supplementation experiments significantly increased Se concentrations in blood, while Hg levels were only modestly affected. Providing food to chicks appeared to have greater benefits than only supplementing chicks with Se pills as, although food supplementation had an impact on blood Se similar to that of supplementation with Se pills, it also reduced the vulnerability of chicks to the viral disease, possibly by reducing nutritional stress and providing essential nutrients.
Collapse
|
38
|
Khalid W, Arshad MS, Ranjha MMAN, Różańska MB, Irfan S, Shafique B, Rahim MA, Khalid MZ, Abdi G, Kowalczewski PŁ. Functional constituents of plant-based foods boost immunity against acute and chronic disorders. Open Life Sci 2022; 17:1075-1093. [PMID: 36133422 PMCID: PMC9462539 DOI: 10.1515/biol-2022-0104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
Plant-based foods are becoming an increasingly frequent topic of discussion, both scientific and social, due to the dissemination of information and exchange of experiences in the media. Plant-based diets are considered beneficial for human health due to the supply of many valuable nutrients, including health-promoting compounds. Replacing meat-based foods with plant-based products will provide many valuable compounds, including antioxidants, phenolic compounds, fibers, vitamins, minerals, and some ω3 fatty acids. Due to their high nutritional and functional composition, plant-based foods are beneficial in acute and chronic diseases. This article attempts to review the literature to present the most important data on nutrients of plant-based foods that can then help in the prevention of many diseases, such as different infections, such as coronavirus disease, pneumonia, common cold and flu, asthma, and bacterial diseases, such as bronchitis. A properly structured plant-based diet not only provides the necessary nutrients but also can help in the prevention of many diseases.
Collapse
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Sajid Arshad
- Department of Food Science, Government College University, Faisalabad, 38000, Pakistan
| | | | - Maria Barbara Różańska
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 60-624 Poznań, Poland
| | - Shafeeqa Irfan
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan
| | - Bakhtawar Shafique
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan
| | - Muhammad Abdul Rahim
- Department of Food Science, Government College University, Faisalabad, 38000, Pakistan
| | | | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran
| | | |
Collapse
|
39
|
Zheng S, Hameed Sultan A, Kurtas PT, Kareem LA, Akbari A. Comparison of the effect of vitamin C and selenium nanoparticles on gentamicin-induced renal impairment in male rats: A biochemical, molecular and histological study. Toxicol Mech Methods 2022; 33:260-270. [PMID: 36093943 DOI: 10.1080/15376516.2022.2124136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Renal failure caused by gentamicin is mainly mediated through oxidative damage, inflammation, and apoptosis. Hence, vitamin C and selenium, which have antioxidant, anti-inflammatory, and anti-apoptotic properties, and their nanoparticle forms, which have recently received attention, may reduce gentamicin-induced side effects. Therefore, the aim of this study was to investigate the therapeutic effects of vitamin C and selenium, and their nanoparticles on gentamicin-induced renal damage in male rats. 128 adult male Wistar rats were randomly divided into equal sixteen controlled and treated groups. Serum levels of uric acid, blood urea nitrogen, urea, and creatinine were measured. Renal levels of oxidative parameters such as MDA, SOD, and CAT and inflammatory parameters including IL-1β, and TNF-α were measured. Renal expression of Nrf2, NF-κB, Bcl-2, caspase-3, BAX and mTORc1 was also evaluated. The results showed that gentamicin causes oxidative damage, inflammation, apoptosis and disruption of autophagy in kidney tissue in a dose-dependent manner. However, treatment with vitamin C, selenium and their nanoparticles could significantly improve these effects. Also, the results showed that the inflammatory and oxidative parameters and the expression of genes involved in them and apoptosis in the gentamicin groups treated with vitamin C nanoparticles and selenium nanoparticles reduced significantly compared to those treated with vitamin C and selenium. It can be concluded that vitamin C, selenium and their nanoparticles can improve gentamicin-induced kidney damage by inhibiting oxidative damage, inflammation and apoptosis-induced by autophagy, and can be a good option for kidney damage caused by gentamicin or as an adjunctive treatment to reduce its side effects.
Collapse
Affiliation(s)
- Su Zheng
- Department of Pathology, Baoji Hi-tech People's Hospital, Baoji, 721000, China
| | - Afrah Hameed Sultan
- Anatomy and Histology Unit, Basic Science Department, College of Medicine, Hawler Medical University, Erbil, Kurdistan Region-Iraq.
| | - Prshng Tofiq Kurtas
- General Histology, Basic Science Department, College of Dentistry, Hawler Medical University, Erbil, Kurdistan Region-Iraq.
| | - Layla Abdulsattar Kareem
- Medical Laboratory Technology Department, Health and Medical Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region-Iraq.
| | - Abolfazl Akbari
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
40
|
Liao S, Omage SO, Börmel L, Kluge S, Schubert M, Wallert M, Lorkowski S. Vitamin E and Metabolic Health: Relevance of Interactions with Other Micronutrients. Antioxidants (Basel) 2022; 11:antiox11091785. [PMID: 36139859 PMCID: PMC9495493 DOI: 10.3390/antiox11091785] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
A hundred years have passed since vitamin E was identified as an essential micronutrient for mammals. Since then, many biological functions of vitamin E have been unraveled in both cell and animal models, including antioxidant and anti-inflammatory properties, as well as regulatory activities on cell signaling and gene expression. However, the bioavailability and physiological functions of vitamin E have been considerably shown to depend on lifestyle, genetic factors, and individual health conditions. Another important facet that has been considered less so far is the endogenous interaction with other nutrients. Accumulating evidence indicates that the interaction between vitamin E and other nutrients, especially those that are enriched by supplementation in humans, may explain at least some of the discrepancies observed in clinical trials. Meanwhile, increasing evidence suggests that the different forms of vitamin E metabolites and derivates also exhibit physiological activities, which are more potent and mediated via different pathways compared to the respective vitamin E precursors. In this review, possible molecular mechanisms between vitamin E and other nutritional factors are discussed and their potential impact on physiological and pathophysiological processes is evaluated using published co-supplementation studies.
Collapse
Affiliation(s)
- Sijia Liao
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Sylvia Oghogho Omage
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Lisa Börmel
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Stefan Kluge
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Martin Schubert
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Maria Wallert
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
- Correspondence:
| |
Collapse
|
41
|
Fath MK, Naderi M, Hamzavi H, Ganji M, Shabani S, Ghahroodi FN, Khalesi B, Pourzardosht N, Hashemi ZS, Khalili S. Molecular mechanisms and therapeutic effects of different vitamins and minerals in COVID-19 patients. J Trace Elem Med Biol 2022; 73:127044. [PMID: 35901669 PMCID: PMC9297660 DOI: 10.1016/j.jtemb.2022.127044] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022]
Abstract
COVID-19 is a rapidly spreading disease, which has caught the world by surprise. Millions of people suffer from illness, and the mortality rates are dramatically high. Currently, there is no specific and immediate treatment for this disease. Remedies are limited to supportive regiments and few antiviral and anti-inflammatory drugs. The lack of a definite cure for COVID-19 is the reason behind its high mortality and global prevalence. COVID-19 can lead to a critical illness with severe respiratory distress and cytokine release. Increased oxidative stress and excessive production of inflammatory cytokines are vital components of severe COVID-19. Micronutrients, metalloids, and vitamins such as iron, manganese, selenium, Zinc, Copper, vitamin A, B family, and C are among the essential and trace elements that play a pivotal role in human nutrition and health. They participate in metabolic processes that lead to energy production. In addition, they support immune functions and act as antioxidants. Therefore, maintaining an optimal level of micronutrients intake, particularly those with antioxidant activities, is essential to fight against oxidative stress, modulate inflammation, and boost the immune system. Therefore, these factors could play a crucial role in COVID-19 prevention and treatment. In this review, we aimed to summarize antiviral properties of different vitamins and minerals. Moreover, we will investigate the correlation between them and their effects in COVID-19 patients.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Malihe Naderi
- Department of Microbiology and Microbial Biotechnology, Faculty of life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran; Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hosna Hamzavi
- Department of Biology, Shahed University, Tehran, Iran
| | - Mahmoud Ganji
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shima Shabani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Faezeh Noorabad Ghahroodi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran. Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| |
Collapse
|
42
|
Zhou S, Zhang X, Fu Q, Cheng Z, Ji W, Liu H. The use of selenomethionine to reduce ammonia toxicity in porcine spleen by inhibiting endoplasmic reticulum stress and autophagy mediated by oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113887. [PMID: 35849905 DOI: 10.1016/j.ecoenv.2022.113887] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Ammonia (NH3) is a typical pollutant in the atmosphere and is well known for its harmful effects on plants, animals as well as human health. Previous studies have shown that NH3 exposure can cause damage to immune organs and impaired immune function in animals. Selenomethionine is a kind of organic selenium, which can not only promote the growth and development of the body, but also inhibit the generation of intracellular reactive oxygen species (ROS), and effectively improve the immune function of the body. Therefore, this study evaluated the toxic effect of NH3 exposure on spleen from a new perspective and investigated the protective effect of selenomethionine on ammonia-induced immunotoxicity. Twenty-four Large White*Duroc*Min pigs were randomly assigned to 4 groups: control group, NH3 group, selenium group, and NH3 + selenium group. Our results showed that NH3 inhalation caused autophagy in the pig spleen, a decrease in lymphocytes, and an increase in autophagic vesicles. Also, NH3 exposure led to a decrease in the activity of some antioxidant enzymes (decreased by about 50%) and a significant increase in the expression of genes related to oxidative stress and endoplasmic reticulum stress (ERS). Our results indicated that selenomethionine mitigated ammonia toxicity in pigs (alleviated about 20-55%). In summary, our findings should be of value in providing a theoretical basis for revealing the toxicity of the high-risk gas NH3, and providing a new perspective on the mechanism of Se against toxic substances.
Collapse
Affiliation(s)
- Sitong Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiaohong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qin Fu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zheng Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Wenbo Ji
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang 150030, People's Republic of China.
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang 150030, People's Republic of China.
| |
Collapse
|
43
|
Rojekar S, Abadi LF, Pai R, Prajapati MK, Kulkarni S, Vavia PR. Mannose-Anchored Nano-Selenium Loaded Nanostructured Lipid Carriers of Etravirine for Delivery to HIV Reservoirs. AAPS PharmSciTech 2022; 23:230. [PMID: 35978154 DOI: 10.1208/s12249-022-02377-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
The present investigation aims to develop and explore mannosylated lipid-based carriers to deliver an anti-HIV drug, Etravirine (TMC) and Selenium nanoparticles (SeNPs), to the HIV reservoirs via the mannose receptor. The successful mannosylation was evaluated by the change in zeta potential and lectin binding assay using fluorescence microscopy. Electron microscopy and scattering studies were employed to study the structure and surface of the nanocarrier system. The presence of selenium at the core-shell of the nanocarrier system was confirmed by X-ray photoelectron spectroscopy and energy dispersive X-ray analysis. Further, the in vitro anti-HIV1 efficacy was assessed using HIV1 infected TZM-bl cells followed by in vivo biodistribution studies to evaluate distribution to various reservoirs of HIV. The results exhibited higher effectiveness and a significant increase in the therapeutic index as against the plain drug. The confocal microscopy and flow cytometry studies exhibited the efficient uptake of the coumarin-6 tagged respective formulations. The protective effect of nano selenium toward oxidative stress was evaluated in rats, demonstrating the potential of the lipidic nanoparticle-containing selenium in mitigating oxidative stress in all the major organs. The in vivo biodistribution assessment in rats showed a 12.44, 8.05 and 9.83-fold improvement in the brain, ovary, and lymph node biodistribution, respectively as compared with plain TMC. Delivery of such a combination via mannosylated nanostructured lipid carriers could be an efficient approach for delivering drugs to reservoirs of HIV while simultaneously reducing the oxidative stress induced by such long-term therapies by co-loading Nano-Selenium.
Collapse
Affiliation(s)
- Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India
| | - Leila Fotooh Abadi
- Department of Virology, Indian Council of Medical Research, National AIDS Research Institute, Pune, 411 026, India
| | - Rohan Pai
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, India
| | - Mahendra Kumar Prajapati
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India
| | - Smita Kulkarni
- Department of Virology, Indian Council of Medical Research, National AIDS Research Institute, Pune, 411 026, India
| | - Pradeep R Vavia
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| |
Collapse
|
44
|
Sari MHM, Ferreira LM, Prado VC, Nogueira CW, Cruz L. Nano-based formulations as an approach for providing a novel identity for organoselenium compounds. Eur J Pharm Biopharm 2022; 178:69-81. [PMID: 35932964 DOI: 10.1016/j.ejpb.2022.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/18/2022]
Abstract
The organoselenium compounds belong to a class of synthetic molecules that displays a remarkable spectrum of promising pharmacological properties. Despite the huge amount of preclinical data that supports a bright outlook for organoselenium compounds, some toxicity issues and physicochemical limitations delay the development of more advanced studies. Currently, several scientific reports demonstrated that the association of nanotechnology has emerged as an alternative to improve solubility and safety issues of these molecules as well as enhance pharmacological properties. Therefore, our main objective was to address studies that reported the development and biological evaluations of nano-based formulations to synthetic organoselenium compounds incorporation by constructing an integrative literature review. The data survey was performed using the Science Direct, PubMed, Web of Science, and SCOPUS online databases, covering studies that were published from January 2011 up to October 2021. In the last decade, there has been an exponential growth in research regarding the incorporation of synthetic organoselenium compounds into distinct nanocarrier systems such as nanocapsules, nanoemulsions, micelles, and others, reinforcing that the association of such molecules and nanotechnology is a promising alliance. The reports investigated many nanosystems containing selenium organic molecules intending oral, intravenous, and cutaneous applications. Besides that, these systems were evaluated in a variety of in vitro techniques and in vivo models, concerning their pharmacological potential, biodistribution profile, and safety. In summary, the findings indicate that the production of nano-based formulations containing organoselenium compounds either improved physicochemical and biological properties or minimize toxicological issues of compounds.
Collapse
Affiliation(s)
- Marcel Henrique Marcondes Sari
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil; Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Luana Mota Ferreira
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil; Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Vinicius Costa Prado
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Letícia Cruz
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
45
|
Egyptian propolis and selenium nanoparticles against murine trichinosis: a novel therapeutic insight. J Helminthol 2022; 96:e50. [PMID: 35856263 DOI: 10.1017/s0022149x22000359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Trichinosis is a serious zoonotic disease that causes human morbidity and mortality. New effective natural remedies with minimal side effects that are well tolerated are needed to treat both enteral and parenteral trichinosis. This study evaluated the efficacy of selenium (Se), Se nanoparticles (SeNPs) and Egyptian propolis compared with albendazole as antiparasitic, anti-inflammatory and anti-angiogenic agents for treating murine trichinosis. We used parasitological, histopathological and immunohistochemical assays, as well as scanning electron microscopy, to examine adult worms. Overall, 80 Swiss albino male mice were divided into eight groups, with ten mice in each group, as follows: negative control, positive control, albendazole, propolis, Se, combination of propolis and Se, SeNPs and combination of SeNPs and propolis. Mice were slaughtered seven and 35 days after infection to examine the intestinal and muscular phases, respectively. This study demonstrated the efficacy of the combination of SeNPs and propolis. As revealed by electron microscopy, this combination caused damage to the adult worm cuticle. Additionally, compared with albendazole, it resulted in a significant reduction in adult worm and total larval counts; moreover, it caused a decrease in the number of larvae deposited in muscles, with a highly significant decrease in the inflammatory cell infiltrate around the larvae and a considerable decrease in the expression of the angiogenic marker vascular endothelial growth factor in muscles. In conclusion, the combination of SeNPs and propolis had antiparasitic, anti-inflammatory and anti-angiogenic effects on trichinosis. Consequently, this combination could be used as a natural alternative therapy to albendazole for treating trichinosis.
Collapse
|
46
|
Thyroid Dysfunction and COVID-19: The Emerging Role of Selenium in This Intermingled Relationship. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116912. [PMID: 35682497 PMCID: PMC9180529 DOI: 10.3390/ijerph19116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
COVID-19 represents a worldwide public health emergency, and, beyond the respiratory symptoms characterizing the classic viral disease, growing evidence has highlighted a possible reciprocal relationship between SARS-CoV-2 infection and thyroid dysfunction. The updated data discussed in this review suggests a role of SARS-CoV-2 infection on the thyroid gland, with multiple thyroid pictures described. Conversely, no conclusion can be drawn on the association between pre-existing thyroid disease and increased risk of SARS-CoV-2 infection. In this scenario, selenium (Se), an essential trace element critical for thyroid function and known as an effective agent against viral infections, is emerging as a potential novel therapeutic option for the treatment of COVID-19. Large multicentre cohort studies are required to elucidate the mechanisms underlying thyroid dysfunction during or following recovery from COVID-19, including Se status. Meanwhile, clinical trials should be performed to evaluate whether adequate intake of Se can help address COVID-19 in Se-deficient patients, also avoiding thyroid complications that can contribute to worsening outcomes during infection.
Collapse
|
47
|
Cao Z, Yang F, Lin Y, Shan J, Cao H, Zhang C, Zhuang Y, Xing C, Hu G. Selenium Antagonizes Cadmium-Induced Inflammation and Oxidative Stress via Suppressing the Interplay between NLRP3 Inflammasome and HMGB1/NF-κB Pathway in Duck Hepatocytes. Int J Mol Sci 2022; 23:ijms23116252. [PMID: 35682929 PMCID: PMC9181349 DOI: 10.3390/ijms23116252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 12/14/2022] Open
Abstract
Cadmium (Cd) is a toxic heavy metal that can accumulate in the liver of animals, damaging liver function. Inflammation and oxidative stress are considered primary causes of Cd-induced liver damage. Selenium (Se) is an antioxidant and can resist the detrimental impacts of Cd on the liver. To elucidate the antagonism of Se on Cd against hepatocyte injury and its mechanism, duck embryo hepatocytes were treated with Cd (4 μM) and/or Se (0.4 μM) for 24 h. Then, the hepatocyte viability, oxidative stress and inflammatory status were assessed. The findings manifested that the accumulation of reactive oxygen species (ROS) and the levels of pro-inflammatory factors were elevated in the Cd group. Simultaneously, immunofluorescence staining revealed that the interaction between NOD-like receptor pyran domain containing 3 (NLRP3) and apoptosis-associated speck-like protein (ASC) was enhanced, the movement of high-mobility group box 1 (HMGB1) from nucleus to cytoplasm was increased and the inflammatory response was further amplified. Nevertheless, the addition of Se relieved the above-mentioned effects, thereby alleviating cellular oxidative stress and inflammation. Collectively, the results suggested that Se could mitigate Cd-stimulated oxidative stress and inflammation in hepatocytes, which might be correlated with the NLRP3 inflammasome and HMGB1/nuclear factor-κB (NF-κB) signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chenghong Xing
- Correspondence: (C.X.); (G.H.); Tel.: +86-18770046182 (C.X.); +86-13807089905 (G.H.)
| | - Guoliang Hu
- Correspondence: (C.X.); (G.H.); Tel.: +86-18770046182 (C.X.); +86-13807089905 (G.H.)
| |
Collapse
|
48
|
Castellini JM, Rea LD, Avery JP, O’Hara TM. Total Mercury, Total Selenium, and Monomethylmercury Relationships in Multiple Age Cohorts and Tissues of Steller Sea Lions (Eumetopias jubatus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1477-1489. [PMID: 35274766 PMCID: PMC9433051 DOI: 10.1002/etc.5329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/24/2021] [Accepted: 03/07/2022] [Indexed: 06/03/2023]
Abstract
Steller sea lion (Eumetopias jubatus) tissue mercury concentrations increasingly above thresholds of concern occur in regions of Alaska where lack of population recovery is noted. Selenium-monomethylmercury interactions may mitigate toxicosis but may also result in functional selenium deficiency, impacting essential selenium-dependent processes. Physiologically driven differences in tissue concentrations (organotropism) of total mercury ([THg]), total selenium ([TSe]), and monomethylmercury ([MeHg+ ]) confound interpretation for various age cohorts. Archived tissues from Alaska Steller sea lions (2002-2016) were used to compare [THg], [MeHg+ ], and [TSe] across age cohorts and tissue types. Liver [THg] ranged from 0.05 to 63.7 µg/g. Fetal and pup livers had significantly lower [THg] and [TSe], higher percentage MeHg+ , and greater range of molar TSe:THg than subadult and adult livers. Molar Se:MeHg+ ratios, including Se in excess of nonmethylmercury, were dependent on [MeHg+ ] in fetuses and pups. While [THg] varied significantly by muscle type (heart vs. skeletal) and anatomical location, concentrations were strongly correlated. Biomagnification and/or bioaccumulation of THg in liver of older animals confounded comparison with other tissues; however, in fetal and pup liver [THg] correlated with other tissues. In contrast, liver [MeHg+ ] correlated with other tissues across all age classes. Fetal and pup tissues, which reflect in utero exposure and are subject to limited bioaccumulation, are ideal for assessing mercury exposure related to dam diet, including intertissue comparison, and represent key cohorts of concern. Evaluating [MeHg+ ] and [TSe] in tissues from multiple age cohorts allows better intertissue comparison, providing insight into time courses, routes of exposure, and potential for adverse effects. Environ Toxicol Chem 2022;41:1477-1489. © 2022 SETAC.
Collapse
Affiliation(s)
- J. Margaret Castellini
- Department of Veterinary Medicine, College of Natural Sciences and Mathematics, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Lorrie D. Rea
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Julie P. Avery
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Todd M. O’Hara
- Department of Veterinary Medicine, College of Natural Sciences and Mathematics, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
49
|
Zhang Y, Xu Y, Chen B, Zhao B, Gao XJ. Selenium Deficiency Promotes Oxidative Stress-Induced Mastitis via Activating the NF-κB and MAPK Pathways in Dairy Cow. Biol Trace Elem Res 2022; 200:2716-2726. [PMID: 34455543 DOI: 10.1007/s12011-021-02882-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Selenium (Se) is an antioxidant and immunomodulator that can participate in the control of specific endocrine pathways. Disturbance of redox homeostasis is closely related to the pathogenesis of many diseases. Se is also an important nutrient element for dairy cows. First, oxidative stress (OS) induced by Se deficiency was investigated along with a possible mechanism of its induction of mammary gland inflammation. This investigation used in vivo and in vitro experiments for verification. Once the OS response was triggered, the activity of antioxidant enzymes was reduced by regulation of the concentration of Se, which led to the accumulation of ROS. TNF-α, IL-1β, and IL-6 secretion was promoted to activate the NF-κB/MAPK signaling pathway. This process further promoted the accumulation of cytokines that aggravated the inflammatory response. Herein, it was verified that Se deficiency induces OS, which leads to ROS accumulation and the secretion of inflammatory factors to activate the NF-κB/MAPK signaling pathway and promote the occurrence of mastitis.
Collapse
Affiliation(s)
- Yanhe Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yueqi Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Bowen Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Bing Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xue-Jiao Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
50
|
Gawor A, Ruszczyńska A, Konopka A, Wryk G, Czauderna M, Bulska E. Label-Free Mass Spectrometry-Based Proteomic Analysis in Lamb Tissues after Fish Oil, Carnosic Acid, and Inorganic Selenium Supplementation. Animals (Basel) 2022; 12:ani12111428. [PMID: 35681892 PMCID: PMC9179315 DOI: 10.3390/ani12111428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Advances in proteomics and bioinformatics analysis offer the potential to investigate nutrients’ influence on protein expression profiles, and consequently on biological processes, molecular functions, and cellular components. However, knowledge in this area, particular about the exact way selenium modulates protein expression, remains limited. Therefore, in this project, global differential proteomic experiments were carried out in order to identify changes in the expression of proteins in animal tissues obtained from lambs on a specific diet involving the addition of a combination of different supplements, namely, inorganic selenium compounds, fish oil, and carnosic acid. Following inorganic selenium supplementation, a protein-protein interaction network analysis of forty differentially-expressed proteins indicated two significant clusters. Abstract Selenium is an essential nutrient, building twenty five identified selenoproteins in humans known to perform several important biological functions. The small amount of selenium in the earth’s crust in certain regions along with the risk of deficiency in organisms have resulted in increasingly popular dietary supplementation in animals, implemented via, e.g., inorganic selenium compounds. Even though selenium is included in selenoproteins in the form of selenocysteine, the dietary effect of selenium may result in the expression of other proteins or genes. Very little is known about the expression effects modulated by selenium. The present study aimed to examine the significance of protein expression in lamb tissues obtained after dietary supplementation with selenium (sodium selenate) and two other feed additives, fish oil and carnosic acid. Label-free mass spectrometry-based proteomic analysis was successfully applied to examine the animal tissues. Protein-protein interaction network analysis of forty differently-expressed proteins following inorganic selenium supplementation indicated two significant clusters which are involved in cell adhesion, heart development, actin filament-based movement, plasma membrane repair, and establishment of organelle localization.
Collapse
Affiliation(s)
- Andrzej Gawor
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.R.); (A.K.); (G.W.)
| | - Anna Ruszczyńska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.R.); (A.K.); (G.W.)
| | - Anna Konopka
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.R.); (A.K.); (G.W.)
| | - Grzegorz Wryk
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.R.); (A.K.); (G.W.)
| | - Marian Czauderna
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Ewa Bulska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.R.); (A.K.); (G.W.)
- Correspondence:
| |
Collapse
|