1
|
Yu H, Liu S, Wang S, Gu X. The involvement of HDAC3 in the pathogenesis of lung injury and pulmonary fibrosis. Front Immunol 2024; 15:1392145. [PMID: 39391308 PMCID: PMC11464298 DOI: 10.3389/fimmu.2024.1392145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Acute lung injury (ALI) and its severe counterpart, acute respiratory distress syndrome (ARDS), are critical respiratory conditions with high mortality rates due primarily to acute and intense pulmonary inflammation. Despite significant research advances, effective pharmacological treatments for ALI and ARDS remain unavailable, highlighting an urgent need for therapeutic innovation. Notably, idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease characterized by the irreversible progression of fibrosis, which is initiated by repeated damage to the alveolar epithelium and leads to excessive extracellular matrix deposition. This condition is further complicated by dysregulated tissue repair and fibroblast dysfunction, exacerbating tissue remodeling processes and promoting progression to terminal pulmonary fibrosis. Similar to that noted for ALI and ARDS, treatment options for IPF are currently limited, with no specific drug therapy providing a cure. Histone deacetylase 3 (HDAC3), a notable member of the HDAC family with four splice variants (HD3α, -β, -γ, and -δ), plays multiple roles. HDAC3 regulates gene transcription through histone acetylation and adjusts nonhistone proteins posttranslationally, affecting certain mitochondrial and cytoplasmic proteins. Given its unique structure, HDAC3 impacts various physiological processes, such as inflammation, apoptosis, mitochondrial homeostasis, and macrophage polarization. This article explores the intricate role of HDAC3 in ALI/ARDS and IPF and evaluates its therapeutic potential the treatment of these severe pulmonary conditions.
Collapse
Affiliation(s)
| | | | | | - Xiu Gu
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of
China Medical University, Shenyang, China
| |
Collapse
|
2
|
Khazdouz M, Safarzadeh R, Hejrani B, Hasani M, Mahdavi FS, Ejtahed HS, Qorbani M. The association between junk foods consumption and attention deficit hyperactivity disorder in children and adolescents: a systematic review and meta-analysis of observational studies. Eur Child Adolesc Psychiatry 2024:10.1007/s00787-024-02521-8. [PMID: 39037467 DOI: 10.1007/s00787-024-02521-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
The adverse effects of junk foods on the risk of attention deficit hyperactivity disorder (ADHD) symptoms were reported in several studies. In this meta-analysis, the association between junk food consumption and the risk of ADHD was investigated in children and adolescents. A comprehensive systematic search was conducted to find all relevant literature via four databases, including PubMed, Web of Science, Scopus, and Google scholar, up to September 2022. Two independent authors screened all documents based on inclusion criteria. The overall effect sizes and related 95% confidence interval (CI) were pooled with the random effect approach. Subgroup analysis was done to measure potential sources of heterogeneity between studies. The quality of the included studies was evaluated with The Newcastle-Ottawa scale (NOS). Nine observational studies with 58,296 children /adolescents were eligible to be include in the meta-analysis. According to the random effect model, there was a positive relation between the consumption of junk foods and ADHD symptoms (odds ratio (OR): 1.24, 95%CI 1.15-1.34, P < 0.001, I2: 37.4%, P = 0.085). A similar significant positive association was shown in the subgroups analysis by different junk foods (sweetened beverages/soft drinks, sweets/candies, and other types of junk foods). This meta-analysis finding demonstrated that consuming junk foods, especially sweetened beverages/soft drinks, and sweets/candies is associated with ADHD symptoms.
Collapse
Affiliation(s)
- Maryam Khazdouz
- Ali Asghar Children's Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Safarzadeh
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
- Social Determinants of Health Research Center, Alborz University of Medical Sciences, Tehran, Iran
| | - Bahram Hejrani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Motahareh Hasani
- Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Sadat Mahdavi
- Clinical Research Development Unit, Shahid Rajaei Educational and Medical Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
3
|
Mohammadpour YH, Khodayar MJ, Khorsandi L, Kalantar H. Betaine alleviates doxorubicin-related cardiotoxicity via suppressing oxidative stress and inflammation via the NLRP3/SIRT1 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03261-x. [PMID: 38953971 DOI: 10.1007/s00210-024-03261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Cardiotoxicity is one of the side effects of the anti-cancer drug doxorubicin (DOX) that limits its clinical application. Betaine (BT) is a natural agent with promising useful effects against inflammation and oxidative stress (OS). We assessed the effects of BT on DOX-induced cardiotoxicity in mice. Forty-two male NMRI mice were assigned to six groups: I: control; II: BT (200 mg/kg; orally, alone); III: DOX (2.5 mg/kg; six injections (ip)) for two weeks; IV, V, VI: BT (50 mg/kg, 100 mg/kg, and 200 mg/kg; orally, once a day for two weeks, respectively) plus DOX administration. The cardiac enzymes like cardiac troponin-I (cTn-I), lactate dehydrogenase (LDH), and creatine kinase-MB (CK-MB) were assessed in serum. Oxidative/inflammatory markers like nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), reduced glutathione level (GSH), and glutathione peroxidase (GPx) activities were determined in cardiac tissue. The expressions of NOD-like receptor protein 3 (NLRP3), caspase-1, interleukin (IL)-1β, and silent information regulator 1 (SIRT1) proteins were also evaluated in cardiac tissue. The results indicated that DOX significantly increased LDH, CK-MB, cTn-I, MDA, and NO levels and also the caspase-1, NLRP3, and IL-1β expression. Furthermore, DOX caused a significant reduction in the GSH levels and SOD, CAT, GPX activities, and the expression of SIRT1 protein in heart tissue. However, BT significantly improved all studied parameters. The findings were confirmed by histopathological assessments of the heart. BT can protect against DOX-induced cardiotoxicity by suppressing the activation of NLRP3 and OS by stimulating the SIRT1 pathway.
Collapse
Affiliation(s)
- Yasaman Hamidavi Mohammadpour
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Kalantar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Liu D, Wang T, Zhao X, Chen J, Yang T, Shen Y, Zhou YD. Saturated fatty acids stimulate cytokine production in tanycytes via the PP2Ac-dependent signaling pathway. J Cereb Blood Flow Metab 2024; 44:985-999. [PMID: 38069840 PMCID: PMC11318396 DOI: 10.1177/0271678x231219115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/18/2023] [Accepted: 11/10/2023] [Indexed: 05/18/2024]
Abstract
The hypothalamic tanycytes are crucial for free fatty acids (FFAs) detection, storage, and transport within the central nervous system. They have been shown to effectively respond to fluctuations in circulating FFAs, thereby regulating energy homeostasis. However, the precise molecular mechanisms by which tanycytes modulate lipid utilization remain unclear. Here, we report that the catalytic subunit of protein phosphatase 2 A (PP2Ac), a serine/threonine phosphatase, is expressed in tanycytes and its accumulation and activation occur in response to high-fat diet consumption. In vitro, tanycytic PP2Ac responds to palmitic acid (PA) exposure and accumulates and is activated at an early stage in an AMPK-dependent manner. Furthermore, activated PP2Ac boosts hypoxia-inducible factor-1α (HIF-1α) accumulation, resulting in upregulation of an array of cytokines. Pretreatment with a PP2Ac inhibitor, LB100, prevented the PA-induced elevation of vascular endothelial growth factor (VEGF), fibroblast growth factor 1 (FGF1), hepatocyte growth factor (HGF), and dipeptidyl peptidase IV (DPPIV or CD26). Our results disclose a mechanism of lipid metabolism in tanycytes that involves the activation of PP2Ac and highlight the physiological significance of PP2Ac in hypothalamic tanycytes in response to overnutrition and efficacious treatment of obesity.
Collapse
Affiliation(s)
- Danyang Liu
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
- Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Tao Wang
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Xingqi Zhao
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Juan Chen
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Tianqi Yang
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yi Shen
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Dong Zhou
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Lingang Laboratory, Shanghai 200031, China
- Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
5
|
Liang Y, Chen L, Huang Y, Xie L, Liu X, Zhou W, Cao W, Chen Z, Zhong X. Betaine eliminates CFA-induced depressive-like behaviour in mice may be through inhibition of microglia and astrocyte activation and polarization. Brain Res Bull 2024; 206:110863. [PMID: 38145759 DOI: 10.1016/j.brainresbull.2023.110863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/03/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Chronic pain can induce not only nociceptive but also depressive emotions. A previous study demonstrated that betaine, a commonly used nutrient supplement, has an anti-nociceptive effect, but whether betaine can alleviate chronic pain-induced depressive emotion is elusive. Our current study found that betaine administration significantly eliminated complete Freund's adjuvant (CFA)-induced pain-related depressive-like behaviour. Mechanistically, betaine treatment inhibited microglia and astrocyte activation. Furthermore, betaine significantly promoted the transition of microglia from the M1 to the M2 phenotype, as well as the transition of astrocytes from the A1 to the A2 phenotype. Additionally, the release of pro-inflammatory factors such as IL-18, IL-1β and IL-6 and anti-inflammatory factors such as IL-10 in the hippocampus induced by CFA were also reversed by betaine administration. Overall, betaine has therapeutic effects on pain-related depressive-like phenotypes caused by CFA, possibly through altering the polarization of microglia and astrocytes to reduce neuroinflammation.
Collapse
Affiliation(s)
- Yue Liang
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Ling Chen
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yanmei Huang
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Lihua Xie
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Xueqin Liu
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Wenyan Zhou
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Wenyu Cao
- Department of Human Anatomy, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Zuyao Chen
- The First Affiliated Hospital, Department of Otorhinolaryngology, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.
| | - Xiaolin Zhong
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.
| |
Collapse
|
6
|
Shi MM, Xu XF, Sun QM, Luo M, Liu DD, Guo DM, Chen L, Zhong XL, Xu Y, Cao WY. Betaine prevents cognitive dysfunction by suppressing hippocampal microglial activation in chronic social isolated male mice. Phytother Res 2023; 37:4755-4770. [PMID: 37846157 DOI: 10.1002/ptr.7944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 10/18/2023]
Abstract
Chronic social isolation (SI) stress, which became more prevalent during the COVID-19 pandemic, contributes to abnormal behavior, including mood changes and cognitive impairment. Known as a functional nutrient, betaine has potent antioxidant and anti-inflammatory properties in vivo. However, whether betaine can alleviate the abnormal behavior induced by chronic SI in mice remains unknown. In this study, we investigated the efficacy of betaine in the treatment of behavioral changes and its underlying mechanism. Three-week-old male mice were randomly housed for 8 weeks in either group housing (GH) or SI. The animals were divided into normal saline-treated GH, normal saline-treated SI, and betaine-treated SI groups in the sixth week. The cognitive and depression-like behavior was determined in the eighth week. We found that long-term betaine administration improved cognitive behavior in SI mice but failed to prevent depression-like behavior. Moreover, long-term betaine administration inhibited hippocampal microglia over-activation and polarized microglia toward the M2 phenotype, which effectively inhibited the expression of inflammatory factors in SI mice. Finally, the protective effect of betaine treatment in SI mice might not be due to altered activity of the hypothalamic-pituitary-adrenal axis. Collectively, our findings reveal that betaine can improve SI-induced cognitive impairment, thus providing an alternative natural source for the prevention of memory loss caused by SI or loneliness.
Collapse
Affiliation(s)
- Meng Meng Shi
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao Fan Xu
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qiu Min Sun
- Department of Nursing, Yiyang Medical College, Yiyang, Hunan, China
| | - Mingying Luo
- Department of Anatomy and Histology and Embryology, Kunming Medical University, Kunming, Yunnan, China
| | - Dan Dan Liu
- Institute of Clinical Medicine, The First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Dong Min Guo
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ling Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Xiao Lin Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wen Yu Cao
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
7
|
Cargnin-Carvalho A, da Silva MR, Costa AB, Engel NA, Farias BX, Bressan JB, Backes KM, de Souza F, da Rosa N, de Oliveira Junior AN, Goldim MPDS, Correa MEAB, Venturini LM, Fortunato JJ, Prophiro JS, Petronilho F, Silveira PCL, Ferreira GK, Rezin GT. High concentrations of fructose cause brain damage in mice. Biochem Cell Biol 2023; 101:313-325. [PMID: 36947832 DOI: 10.1139/bcb-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Excessive fructose consumption is associated with the incidence of obesity and systemic inflammation, resulting in increased oxidative damage and failure to the function of brain structures. Thus, we hypothesized that fructose consumption will significantly increase inflammation, oxidative damage, and mitochondrial dysfunction in the mouse brain and, consequently, memory damage. The effects of different fructose concentrations on inflammatory and biochemical parameters in the mouse brain were evaluated. Male Swiss mice were randomized into four groups: control, with exclusive water intake, 5%, 10%, and 20% fructose group. The 10% and 20% fructose groups showed an increase in epididymal fat, in addition to higher food consumption. Inflammatory markers were increased in epididymal fat and in some brain structures. In the evaluation of oxidative damage, it was possible to observe significant increases in the hypothalamus, prefrontal cortex, and hippocampus. In the epididymal fat and in the prefrontal cortex, there was a decrease in the activity of the mitochondrial respiratory chain complexes and an increase in the striatum. Furthermore, short memory was impaired in the 10% and 20% groups but not long memory. In conclusion, excess fructose consumption can cause fat accumulation, inflammation, oxidative damage, and mitochondrial dysfunction, which can damage brain structures and consequently memory.
Collapse
Affiliation(s)
- Anderson Cargnin-Carvalho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Mariella Reinol da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Ana Beatriz Costa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Nicole Alessandra Engel
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Bianca Xavier Farias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Joice Benedet Bressan
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Kassiane Mathiola Backes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Francielly de Souza
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Aloir Neri de Oliveira Junior
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | | | - Ligia Milanez Venturini
- Laboratory of Experimental Phisiopatology, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Santa Catarina, Brazil
| | - Jucélia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Josiane Somariva Prophiro
- Immunoparasitology Research Group, Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Fabrícia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Phisiopatology, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Santa Catarina, Brazil
| | | | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| |
Collapse
|
8
|
Liu D, Wang Q, Li Y, Yuan Z, Liu Z, Guo J, Li X, Zhang W, Tao Y, Mei J. Fructus gardeniae ameliorates anxiety-like behaviors induced by sleep deprivation via regulating hippocampal metabolomics and gut microbiota. Front Cell Infect Microbiol 2023; 13:1167312. [PMID: 37377643 PMCID: PMC10291143 DOI: 10.3389/fcimb.2023.1167312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Fructus gardeniae (FG) is a traditional Chinese medicine and health food for thousands of years of application throughout Chinese history and is still widely used in clinical Chinese medicine. FG has a beneficial impact on anxiety, depression, insomnia, and psychiatric disorders; however, its mechanism of action requires further investigation. This study aimed to investigate the effects and mechanisms of FG on sleep deprivation (SD)-induced anxiety-like behavior in rats. A model of SD-induced anxiety-like behavior in rats was established by intraperitoneal injection of p-chlorophenylalanine (PCPA). This was accompanied by neuroinflammation and metabolic abnormalities in the hippocampus and disturbance of intestinal microbiota. However reduced SD-induced anxiety-like behavior and decreased levels of pro-inflammatory cytokines including TNF-α and IL-1β were observed in the hippocampus of rats after 7 days of FG intervention. In addition, metabolomic analysis demonstrated that FG was able to modulate levels of phosphatidylserine 18, Phosphatidylinositol 18, sn-glycero-3-phosphocholine, deoxyguanylic acid, xylose, betaine and other metabolites in the hippocampus. The main metabolic pathways of hippocampal metabolites after FG intervention involve carbon metabolism, glycolysis/gluconeogenesis, pentose phosphate, and glycerophospholipid metabolism. 16S rRNA sequencing illustrated that FG ameliorated the dysbiosis of gut microbiota in anxious rats, mainly increased the abundance of Muribaculaceae and Lactobacillus, and decreased the abundance of Lachnospiraceae_NK4A136_group. In addition, the correlation analysis demonstrated that there was a close relationship between hippocampal metabolites and intestinal microbiota. In conclusion, FG improved the anxiety behavior and inhibited of neuroinflammation in sleep-deprived rats, and the mechanism may be related to the FG regulation of hippocampal metabolites and intestinal microflora composition.
Collapse
Affiliation(s)
- Dong Liu
- Department of Emergency, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Department of Traditional Chinese Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Qianfei Wang
- Department of Emergency, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Ying Li
- Department of Pharmacy, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Zhenshuang Yuan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiliang Liu
- Department of Emergency, Hebei Yiling Hospital, Shijiazhang, Hebei, China
| | - Junli Guo
- Department of Emergency, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Xin Li
- Department of Emergency, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Weichao Zhang
- Department of Emergency, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yulei Tao
- Department of Emergency, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jianqiang Mei
- Department of Emergency, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
9
|
Di Credico A, Gaggi G, Izzicupo P, Vitucci D, Buono P, Di Baldassarre A, Ghinassi B. Betaine Treatment Prevents TNF-α-Mediated Muscle Atrophy by Restoring Total Protein Synthesis Rate and Morphology in Cultured Myotubes. J Histochem Cytochem 2023; 71:199-209. [PMID: 37013268 PMCID: PMC10149894 DOI: 10.1369/00221554231165326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 04/05/2023] Open
Abstract
Skeletal muscle atrophy is represented by a dramatic decrease in muscle mass, and it is related to a lower life expectancy. Among the different causes, chronic inflammation and cancer promote protein loss through the effect of inflammatory cytokines, leading to muscle shrinkage. Thus, the availability of safe methods to counteract inflammation-derived atrophy is of high interest. Betaine is a methyl derivate of glycine and it is an important methyl group donor in transmethylation. Recently, some studies found that betaine could promote muscle growth, and it is also involved in anti-inflammatory mechanisms. Our hypothesis was that betaine would be able to prevent tumor necrosis factor-α (TNF-α)-mediated muscle atrophy in vitro. We treated differentiated C2C12 myotubes for 72 hr with either TNF-α, betaine, or a combination of them. After the treatment, we analyzed total protein synthesis, gene expression, and myotube morphology. Betaine treatment blunted the decrease in muscle protein synthesis rate exerted by TNF-α, and upregulated Mhy1 gene expression in both control and myotube treated with TNF-α. In addition, morphological analysis revealed that myotubes treated with both betaine and TNF-α did not show morphological features of TNF-α-mediated atrophy. We demonstrated that in vitro betaine supplementation counteracts the muscle atrophy led by inflammatory cytokines.
Collapse
Affiliation(s)
- Andrea Di Credico
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology, Chieti, Italy
| | - Giulia Gaggi
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology, Chieti, Italy
| | - Pascal Izzicupo
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Daniela Vitucci
- Department of Movement Sciences and Wellness, University Parthenope, Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Napoli, Italy
| | - Pasqualina Buono
- Department of Movement Sciences and Wellness, University Parthenope, Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Napoli, Italy
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology, Chieti, Italy
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology, Chieti, Italy
| |
Collapse
|
10
|
Sewaybricker LE, Huang A, Chandrasekaran S, Melhorn SJ, Schur EA. The Significance of Hypothalamic Inflammation and Gliosis for the Pathogenesis of Obesity in Humans. Endocr Rev 2023; 44:281-296. [PMID: 36251886 DOI: 10.1210/endrev/bnac023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/12/2022] [Indexed: 11/19/2022]
Abstract
Accumulated preclinical literature demonstrates that hypothalamic inflammation and gliosis are underlying causal components of diet-induced obesity in rodent models. This review summarizes and synthesizes available translational data to better understand the applicability of preclinical findings to human obesity and its comorbidities. The published literature in humans includes histopathologic analyses performed postmortem and in vivo neuroimaging studies measuring indirect markers of hypothalamic tissue microstructure. Both support the presence of hypothalamic inflammation and gliosis in children and adults with obesity. Findings predominantly point to tissue changes in the region of the arcuate nucleus of the hypothalamus, although findings of altered tissue characteristics in whole hypothalamus or other hypothalamic regions also emerged. Moreover, the severity of hypothalamic inflammation and gliosis has been related to comorbid conditions, including glucose intolerance, insulin resistance, type 2 diabetes, and low testosterone levels in men, independent of elevated body adiposity. Cross-sectional findings are augmented by a small number of prospective studies suggesting that a greater degree of hypothalamic inflammation and gliosis may predict adiposity gain and worsening insulin sensitivity in susceptible individuals. In conclusion, existing human studies corroborate a large preclinical literature demonstrating that hypothalamic neuroinflammatory responses play a role in obesity pathogenesis. Extensive or permanent hypothalamic tissue remodeling may negatively affect the function of neuroendocrine regulatory circuits and promote the development and maintenance of elevated body weight in obesity and/or comorbid endocrine disorders.
Collapse
Affiliation(s)
| | - Alyssa Huang
- Department of Pediatrics, University of Washington, Division of Endocrinology and Diabetes, Seattle Children's Hospital, Seattle, WA 98015, USA
| | | | - Susan J Melhorn
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ellen A Schur
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Sonnefeld L, Rohmann N, Geisler C, Laudes M. Is human obesity an inflammatory disease of the hypothalamus? Eur J Endocrinol 2023; 188:R37-R45. [PMID: 36883605 DOI: 10.1093/ejendo/lvad030] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/23/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Obesity and its comorbidities are long-standing, challenging global health problems. Lack of exercise, overnutrition, and especially the consumption of fat-rich foods are some of the most important factors leading to an increase in prevalence in modern society. The pathophysiology of obesity as a metabolic inflammatory disease has moved into focus since new therapeutic approaches are required. The hypothalamus, a brain area responsible for energy homeostasis, has recently received special attention in this regard. Hypothalamic inflammation was identified to be associated with diet-induced obesity and new evidence suggests that it may be, beyond that, a pathological mechanism of the disease. This inflammation impairs the local signaling of insulin and leptin leading to dysfunction of the regulation of energy balance and thus, weight gain. After a high-fat diet consumption, activation of inflammatory mediators such as the nuclear factor κB or c-Jun N-terminal kinase pathway can be observed, accompanied by elevated secretion of pro-inflammatory interleukins and cytokines. Brain resident glia cells, especially microglia and astrocytes, initiate this release in response to the flux of fatty acids. The gliosis occurs rapidly before the actual weight gain. Dysregulated hypothalamic circuits change the interaction between neuronal and non-neuronal cells, contributing to the establishment of inflammatory processes. Several studies have reported reactive gliosis in obese humans. Although there is evidence for a causative role of hypothalamic inflammation in the obesity development, data on underlying molecular pathways in humans are limited. This review discusses the current state of knowledge on the relationship between hypothalamic inflammation and obesity in humans.
Collapse
Affiliation(s)
- Lena Sonnefeld
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| | - Nathalie Rohmann
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| | - Corinna Geisler
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| |
Collapse
|
12
|
D’Ambrosio C, Cigliano L, Mazzoli A, Matuozzo M, Nazzaro M, Scaloni A, Iossa S, Spagnuolo MS. Fructose Diet-Associated Molecular Alterations in Hypothalamus of Adolescent Rats: A Proteomic Approach. Nutrients 2023; 15:nu15020475. [PMID: 36678346 PMCID: PMC9862284 DOI: 10.3390/nu15020475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The enhanced consumption of fructose as added sugar represents a major health concern. Due to the complexity and multiplicity of hypothalamic functions, we aim to point out early molecular alterations triggered by a sugar-rich diet throughout adolescence, and to verify their persistence until the young adulthood phase. METHODS Thirty days old rats received a high-fructose or control diet for 3 weeks. At the end of the experimental period, treated animals were switched to the control diet for further 3 weeks, and then analyzed in comparison with those that were fed the control diet for the entire experimental period. RESULTS Quantitative proteomics identified 19 differentially represented proteins, between control and fructose-fed groups, belonging to intermediate filament cytoskeleton, neurofilament, pore complex and mitochondrial respiratory chain complexes. Western blotting analysis confirmed proteomic data, evidencing a decreased abundance of mitochondrial respiratory complexes and voltage-dependent anion channel 1, the coregulator of mitochondrial biogenesis PGC-1α, and the protein subunit of neurofilaments α-internexin in fructose-fed rats. Diet-associated hypothalamic inflammation was also detected. Finally, the amount of brain-derived neurotrophic factor and its high-affinity receptor TrkB, as well as of synaptophysin, synaptotagmin, and post-synaptic protein PSD-95 was reduced in sugar-fed rats. Notably, deregulated levels of all proteins were fully rescued after switching to the control diet. CONCLUSIONS A short-term fructose-rich diet in adolescent rats induces hypothalamic inflammation and highly affects mitochondrial and cytoskeletal compartments, as well as the level of specific markers of brain function; above-reported effects are reverted after switching animals to the control diet.
Collapse
Affiliation(s)
- Chiara D’Ambrosio
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, 80121 Naples, Italy
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, 80121 Naples, Italy
| | - Monica Matuozzo
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
| | - Martina Nazzaro
- Department of Biology, University of Naples Federico II, 80121 Naples, Italy
| | - Andrea Scaloni
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, 80121 Naples, Italy
| | - Maria Stefania Spagnuolo
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
- Correspondence:
| |
Collapse
|
13
|
Vratarić M, Šenk V, Bursać B, Gligorovska L, Ignjatović D, Kovačević S, Veličković N, Djordjevic A. Fructose diet ameliorate effects of macrophage migration inhibitory factor deficiency on prefrontal cortex inflammation, neural plasticity, and behavior in male mice. Biofactors 2023; 49:90-107. [PMID: 34767656 DOI: 10.1002/biof.1802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that represents a link between diet-induced inflammation and insulin resistance. Our aim was to examine whether fructose diet affects inflammation and insulin signaling in the prefrontal cortex (PFC) of Mif knockout mice (MIF-KO), and their possible link to neural plasticity and behavior. We analyzed nuclear factor κB (NF-κB) and glucocorticoid signaling, expression of F4/80, IL-1β, TNF-α, TLR-4, MyD88, arginase 1 (Arg-1), mannose receptor (Mrc-1), and leukemia inhibitory factor (Lif) to assess inflammation in the PFC of C57/BL6J and MIF-KO mice consuming 20% fructose solution for 9 weeks. Insulin receptor (IR), IRS-1 serine phosphorylations (307 and 1101) and activity of PKCα, Akt, GSK-3β and AMPKα were used to analyze insulin signaling. Brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1) mRNA levels, together with synapthophysin and PSD-95 protein level and calcium calmodulin-dependent kinase 2 (CaMKII) activity, were used as plasticity markers. Behavior was examined in elevated plus maze, light dark box and novel object recognition test. The results showed concomitant increase of Tnf-α, Tlr-4, MyD88 and M2 microglia markers (Arg-1, Mrc-1, Lif) in the PFC of MIF-KO, paralleled with unchanged glucocorticoid and insulin signaling. Increase of BDNF and IGF-1 was paralleled with increased CaMKII activity, decreased PSD-95 protein level, anxiogenic behavior, and impaired memory in MIF-KO mice. Fructose feeding restored these parameters in the PFC to the control level and mitigated behavioral changes, suggesting that ameliorating effects of fructose on neuroinflammation and behavior depend on the presence of MIF.
Collapse
Affiliation(s)
- Miloš Vratarić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vladimir Šenk
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Biljana Bursać
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljupka Gligorovska
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Djurdjica Ignjatović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nataša Veličković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Belanova A, Chmykhalo V, Shkurat T, Trotsenko A, Zolotukhin P. Trimethylglycine betaine effects on NFκB, HIF1A and NFE2L2/AP-1 pathways, mitochondrial activity, glucose import, and levels of ROS, thiols and lipids in HeLa cells. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Pan S, Wang X, Lin L, Chen J, Zhan X, Jin C, Ou X, Gu T, Jing J, Cai L. Association of sugar-sweetened beverages with executive function in autistic children. Front Nutr 2022; 9:940841. [PMID: 36082034 PMCID: PMC9447427 DOI: 10.3389/fnut.2022.940841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
The association between sugar-sweetened beverages (SSBs) consumption and executive function (EF) among typically developing (TD) children has been investigated in previous studies but with inconsistent results. Furthermore, this relationship has been less investigated among autistic children who perform worse in EF compared with TD children. In this study, we aimed to investigate the association between SSB consumption and EF in autistic children, and whether the association between SSB and EF in autistic children is different from that in TD children. We recruited 106 autistic children and 207 TD children aged 6–12 years in Guangzhou, China. Children’s EF was assessed by using the Chinese version of parent-reported Behavior Rating Inventory of Executive Function, Stroop Color–Word Test, and working memory subscales of the Chinese version of Wechsler Intelligence Scale for children, Fourth edition. Meanwhile, we assessed children’s dietary intake and SSB consumption with a validated Food Frequency Questionnaire. In this study, 70 (66.0%) autistic children consumed SSB and 20 (18.9%) of them consumed more than two servings SSB a week. Among autistic children, over two servings per week SSB consumption was associated with poorer performance in emotional control [β = 7.20, 95% confidence interval (CI): 0.94–13.46] and plan/Organize (β = 6.45, 95% CI: 0.27–12.63). The association between over two servings/week SSB consumption and emotional control among autistic children was significantly different from that among TD children (βASD = 7.20; βTD = −3.09, Z = 2.72, p = 0.006). Results of this study show that SSB consumption was associated with an impairment in some subscales of EF in autistic children. Furthermore, the association between SSB and EF in autistic children might be different from that in TD children.
Collapse
Affiliation(s)
- Shuolin Pan
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xin Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Lizi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiajie Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaoling Zhan
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chengkai Jin
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxuan Ou
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Tingfeng Gu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jin Jing
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Jin Jing,
| | - Li Cai
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Li Cai,
| |
Collapse
|
16
|
Meneses MJ, Sousa-Lima I, Jarak I, Raposo JF, Alves MG, Macedo MP. Distinct impacts of fat and fructose on the liver, muscle, and adipose tissue metabolome: An integrated view. Front Endocrinol (Lausanne) 2022; 13:898471. [PMID: 36060961 PMCID: PMC9428722 DOI: 10.3389/fendo.2022.898471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Objective In the last years, changes in dietary habits have contributed to the increasing prevalence of metabolic disorders, such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM). The differential burden of lipids and fructose on distinct organs needs to be unveiled. Herein, we hypothesized that high-fat and high-fructose diets differentially affect the metabolome of insulin-sensitive organs such as the liver, muscle, and different adipose tissue depots. Methods We have studied the impact of 12 weeks of a control (11.50% calories from fat, 26.93% from protein, and 61.57% from carbohydrates), high-fat/sucrose (HFat), or high-fructose (HFruct) feeding on C57Bl/6J male mice. Besides glucose homeostasis, we analyzed the hepatic levels of glucose and lipid-metabolism-related genes and the metabolome of the liver, the muscle, and white (WAT) and brown adipose tissue (BAT) depots. Results HFat diet led to a more profound impact on hepatic glucose and lipid metabolism than HFruct, with mice presenting glucose intolerance, increased saturated fatty acids, and no glycogen pool, yet both HFat and HFruct presented hepatic insulin resistance. HFat diet promoted a decrease in glucose and lactate pools in the muscle and an increase in glutamate levels. While HFat had alterations in BAT metabolites that indicate increased thermogenesis, HFruct led to an increase in betaine, a protective metabolite against fructose-induced inflammation. Conclusions Our data illustrate that HFat and HFruct have a negative but distinct impact on the metabolome of the liver, muscle, WAT, and BAT.
Collapse
Affiliation(s)
- Maria João Meneses
- iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, Lisbon, Portugal
- Portuguese Diabetes Association - Education and Research Center (APDP-ERC), Lisbon, Portugal
| | - Inês Sousa-Lima
- iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ivana Jarak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - João F. Raposo
- iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, Lisbon, Portugal
- Portuguese Diabetes Association - Education and Research Center (APDP-ERC), Lisbon, Portugal
| | - Marco G. Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Maria Paula Macedo
- iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, Lisbon, Portugal
- Portuguese Diabetes Association - Education and Research Center (APDP-ERC), Lisbon, Portugal
- Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
17
|
Frausto DM, Forsyth CB, Keshavarzian A, Voigt RM. Dietary Regulation of Gut-Brain Axis in Alzheimer's Disease: Importance of Microbiota Metabolites. Front Neurosci 2021; 15:736814. [PMID: 34867153 PMCID: PMC8639879 DOI: 10.3389/fnins.2021.736814] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that impacts 45 million people worldwide and is ranked as the 6th top cause of death among all adults by the Centers for Disease Control and Prevention. While genetics is an important risk factor for the development of AD, environment and lifestyle are also contributing risk factors. One such environmental factor is diet, which has emerged as a key influencer of AD development/progression as well as cognition. Diets containing large quantities of saturated/trans-fats, refined carbohydrates, limited intake of fiber, and alcohol are associated with cognitive dysfunction while conversely diets low in saturated/trans-fats (i.e., bad fats), high mono/polyunsaturated fats (i.e., good fats), high in fiber and polyphenols are associated with better cognitive function and memory in both humans and animal models. Mechanistically, this could be the direct consequence of dietary components (lipids, vitamins, polyphenols) on the brain, but other mechanisms are also likely to be important. Diet is considered to be the single greatest factor influencing the intestinal microbiome. Diet robustly influences the types and function of micro-organisms (called microbiota) that reside in the gastrointestinal tract. Availability of different types of nutrients (from the diet) will favor or disfavor the abundance and function of certain groups of microbiota. Microbiota are highly metabolically active and produce many metabolites and other factors that can affect the brain including cognition and the development and clinical progression of AD. This review summarizes data to support a model in which microbiota metabolites influence brain function and AD.
Collapse
Affiliation(s)
- Dulce M. Frausto
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Christopher B. Forsyth
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ali Keshavarzian
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
- Department of Physiology, Rush University Medical Center, Chicago, IL, United States
| | - Robin M. Voigt
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
18
|
Rosas-Rodríguez JA, Valenzuela-Soto EM. The glycine betaine role in neurodegenerative, cardiovascular, hepatic, and renal diseases: Insights into disease and dysfunction networks. Life Sci 2021; 285:119943. [PMID: 34516992 DOI: 10.1016/j.lfs.2021.119943] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 12/15/2022]
Abstract
Glycine betaine (N, N, N-trimethyl amine) is an osmolyte accumulated in cells that is key for cell volume and turgor regulation, is the principal methyl donor in the methionine cycle and is a DNA and proteins stabilizer. In humans, glycine betaine is synthesized from choline and can be obtained from some foods. Glycine betaine (GB) roles are illustrated in chemical, metabolic, agriculture, and clinical medical studies due to its chemical and physiological properties. Several studies have extensively described GB role and accumulation related to specific pathologies, focusing mainly on analyzing its positive and negative role in these pathologies. However, it is necessary to explain the relationship between glycine betaine and different pathologies concerning its role as an antioxidant, ability to methylate DNA, interact with transcription factors and cell receptors, and participate in the control of homocysteine concentration in liver, kidney and brain. This review summarizes the most important findings and integrates GB role in neurodegenerative, cardiovascular, hepatic, and renal diseases. Furthermore, we discuss GB impact on other dysfunctions as inflammation, oxidative stress, and glucose metabolism, to understand their cross-talks and provide reliable data to establish a base for further investigations.
Collapse
Affiliation(s)
- Jesús A Rosas-Rodríguez
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Sur, Navojoa, Sonora, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo 83304, Sonora, Mexico.
| |
Collapse
|
19
|
Coulibaly SM, Mesfioui A, Berkiks I, Ennaciri A, Chahirou Y, Diagana Y, Ouichou A, El Midaoui A, El Hessni A. Effects of the Methyl Donors Supplementation on Hippocampal Oxidative Stress, Depression and Anxiety in Chronically High Fructose-treated Rats. Neuroscience 2021; 476:1-11. [PMID: 34543673 DOI: 10.1016/j.neuroscience.2021.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022]
Abstract
Evidence suggests that oxidative stress plays an important role in the development of anxiety and depression. The aim of the present study was to investigate whether methyl donors supplementation could exert beneficial effects on hippocampal oxidative stress, anxiety and depression in chronically high fructose-treated rats, a new animal model of anxiety and mood disorders. Rats were divided into two groups and treated for 10 weeks as follows: Group 1 represents the control group and Group 2 was treated with 23% fructose. After 10 weeks, the fructose-fed animals were divided into two groups and treated for 8 weeks as follows: Group 2 continued to receive fructose while Group 3 was treated with methyl donors and fructose. High fructose-fed rats showed increases in glucose, triglycerides, total cholesterol as well as in the final body weight and the adipose tissue weight. High fructose induced anxiety- and depression-like behaviors. High fructose caused an increase of the nitrite content and the Malondialdehyde (MDA) levels in the hippocampus tissue in association with an induction of damage in the dorsal hippocampus neurons. The 8-weeks dietary supplementation with methyl donors normalized the depression-like behavior, oxidative stress in the hippocampus, reversed the damage observed in the hippocampal neurons. These findings demonstrate that high fructose induced depression in association with the induction of a hippocampal oxidative stress. The anti-depressive action of methyl donors appears to be associated to their anti-oxidative properties since they normalized the nitrite content and the MDA levels at the hippocampus in the high fructose-fed female rats.
Collapse
Affiliation(s)
- Sidi Mohamed Coulibaly
- Laboratory of Genetics, Neuro-endocrinology and Biotechnology, Department of Life Sciences, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Genetics, Neuro-endocrinology and Biotechnology, Department of Life Sciences, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Inssaf Berkiks
- Laboratoire Biologie et Santé, FSK Kénitra and Division of Immunology, University of Cape Town Medical School, South Africa
| | - Abdeljabbar Ennaciri
- Laboratory of Genetics, Neuro-endocrinology and Biotechnology, Department of Life Sciences, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Yassine Chahirou
- Laboratory of Genetics, Neuro-endocrinology and Biotechnology, Department of Life Sciences, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Yacouba Diagana
- Faculté des sciences, Université Noukchott Al Aasriya, Mauritania
| | - Ali Ouichou
- Laboratory of Genetics, Neuro-endocrinology and Biotechnology, Department of Life Sciences, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Adil El Midaoui
- Research Team "Biology, Environment and Health", Department of Biology, FST Errachidia, Moulay Ismail University of Meknes, Morocco.
| | - Aboubaker El Hessni
- Laboratory of Genetics, Neuro-endocrinology and Biotechnology, Department of Life Sciences, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
20
|
Dakic T, Lakic I, Zec M, Takic M, Stojiljkovic M, Jevdjovic T. Fructose-rich diet and walnut supplementation differently regulate rat hypothalamic and hippocampal glucose transporters expression. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5984-5991. [PMID: 33856052 DOI: 10.1002/jsfa.11252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Nutritional modulations may be considered a strategy to protect mental health. Neuronal homeostasis is highly dependent on the availability of glucose, which represents the primary energy source for the brain. In this study, we evaluated the effects of walnut intake and fructose-rich diet on the expression of glucose transporters (GLUTs) in two rat brain regions: hypothalamus and hippocampus. RESULTS Our results show that walnut supplementation of fructose-fed animals restored the hypothalamic content of GLUT1 and GLUT3 protein. Furthermore, walnut intake did not affect increased hypothalamic GLUT2 content upon fructose consumption. These effects were accompanied by distinctive alterations of hippocampal GLUTs levels. Specifically, walnut intake increased GLUT1 content, whereas GLUT2 protein was decreased within the rat hippocampus after both individual and combined treatments. CONCLUSION Overall, our study suggests that walnut supplementation exerted modulatory effects on the glucose transporters within specific brain regions in the presence of developed metabolic disorder. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry 'Ivan Djaja', Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Iva Lakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry 'Ivan Djaja', Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Manja Zec
- Centre of Excellence for Nutrition and Metabolism Research, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Takic
- Centre of Excellence for Nutrition and Metabolism Research, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mojca Stojiljkovic
- Department for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry 'Ivan Djaja', Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
21
|
Yajun W, Jin C, Zhengrong G, Chao F, Yan H, Weizong W, Xiaoqun L, Qirong Z, Huiwen C, Hao Z, Jiawei G, Xinchen Z, Shihao S, Sicheng W, Xiao C, Jiacan S. Betaine Attenuates Osteoarthritis by Inhibiting Osteoclastogenesis and Angiogenesis in Subchondral Bone. Front Pharmacol 2021; 12:723988. [PMID: 34658862 PMCID: PMC8511433 DOI: 10.3389/fphar.2021.723988] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/13/2021] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis with no effective therapy. Subchondral bone and overlying articular cartilage are closely associated and function as “osteo-chondral unit” in the joint. Abnormal mechanical load leads to activated osteoclast activity and increased bone resorption in the subchondral bone, which is implicated in the onset of OA pathogenesis. Thus, inhibiting subchondral bone osteoclast activation could prevent OA onset. Betaine, isolated from the Lycii Radicis Cortex (LRC), has been demonstrated to exert anti-inflammatory, antifibrotic and antiangiogenic properties. Here, we evaluated the effects of betaine on anterior cruciate ligament transection (ACLT)-induced OA mice. We observed that betaine decreased the number of matrix metalloproteinase 13 (MMP-13)-positive and collagen X (Col X)-positive cells, prevented articular cartilage proteoglycan loss and lowered the OARSI score. Betaine decreased the thickness of calcified cartilage and increased the expression level of lubricin. Moreover, betaine normalized uncoupled subchondral bone remodeling as defined by lowered trabecular pattern factor (Tb.pf) and increased subchondral bone plate thickness (SBP). Additionally, aberrant angiogenesis in subchondral bone was blunted by betaine treatment. Mechanistically, we demonstrated that betaine suppressed osteoclastogenesis in vitro by inhibiting reactive oxygen species (ROS) production and subsequent mitogen-activated protein kinase (MAPK) signaling. These data demonstrated that betaine attenuated OA progression by inhibiting hyperactivated osteoclastogenesis and maintaining microarchitecture in subchondral bone.
Collapse
Affiliation(s)
- Wang Yajun
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Cui Jin
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Gu Zhengrong
- Department of Orthopedics, Luodian Hospital, Shanghai, China
| | - Fang Chao
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hu Yan
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.,Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Weng Weizong
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Li Xiaoqun
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhou Qirong
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen Huiwen
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhang Hao
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guo Jiawei
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhuang Xinchen
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sheng Shihao
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wang Sicheng
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,Department of Orthopedics, Zhongye Hospital, Shanghai, China
| | - Chen Xiao
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Su Jiacan
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.,Institute of Translational Medicine, Shanghai University, Shanghai, China.,Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China
| |
Collapse
|
22
|
Fei M, Li Z, Cao Y, Jiang C, Lin H, Chen Z. MicroRNA-182 improves spinal cord injury in mice by modulating apoptosis and the inflammatory response via IKKβ/NF-κB. J Transl Med 2021; 101:1238-1253. [PMID: 34059758 PMCID: PMC8367816 DOI: 10.1038/s41374-021-00606-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/14/2023] Open
Abstract
Spinal cord injury (SCI) is one common neurological condition which involves primary injury and secondary injury. Neuron inflammation and apoptosis after SCI is the most important pathological process of this disease. Here, we tried to explore the influence and mechanism of miRNAs on the neuron inflammatory response and apoptosis after SCI. First, by re-analysis of Gene Expression Omnibus dataset (accession GSE19890), miR-182 was selected for further study because of its suppressive effects on the inflammatory response in the various types of injuries. Functional experiments demonstrated that miR-182 overexpression promoted functional recovery, reduced histopathological changes, and alleviated spinal cord edema in mice. It was also observed that miR-182 overexpression reduced apoptosis and attenuated the inflammatory response in spinal cord tissue, as evidenced by the reduction of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β, and the induction of IL-10. Using a lipopolysaccharide (LPS)-induced SCI model in BV-2 cells, we found that miR-182 was downregulated in the BV-2 cells following LPS stimulation, and upregulation of miR-182 improved LPS-induced cell damage, as reflected by the inhibition of apoptosis and the inflammatory response. IκB kinase β (IKKβ), an upstream target of the NF-κB pathway, was directly targeted by miR-182 and miR-182 suppressed its translation. Further experiments revealed that overexpression of IKKβ reversed the anti-apoptosis and anti-inflammatory effects of miR-182 in LPS stimulated BV-2 cells. Finally, we found that miR-182 overexpression blocked the activation of the NF-κB signaling pathway in vitro and in vivo, as demonstrated by the downregulation of phosphorylated (p‑) IκB-α and nuclear p-p65. Taken together, these data indicate that miR-182 improved SCI-induced secondary injury through inhibiting apoptosis and the inflammatory response by blocking the IKKβ/NF-κB pathway. Our findings suggest that upregulation of miR-182 may be a novel therapeutic target for SCI.
Collapse
Affiliation(s)
- Min Fei
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Li
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanwu Cao
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chang Jiang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haodong Lin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Zixian Chen
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Khan T, Khan S, Akhtar M, Ali J, Najmi AK. Empagliflozin nanoparticles attenuates type2 diabetes induced cognitive impairment via oxidative stress and inflammatory pathway in high fructose diet induced hyperglycemic mice. Neurochem Int 2021; 150:105158. [PMID: 34391818 DOI: 10.1016/j.neuint.2021.105158] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 01/21/2023]
Abstract
There is snowballing evidence that type 2 diabetes (T2D) predisposes to neuropathophysiological alterations including oxidative stress and triggered inflammatory responses in brain that eventually culminates into cognitive impairment.Accumulating evidences suggest that SGLT2 inhibitor can be a promising intervention for cognitive decline in T2DM. In the present paper, the potential effects of Empagliflozin (EMPA), a SGLT2 inhibitor, against T2D induced cognitive dysfunction have been explored. The effect of EMPA on array of inflammatory mediators including Interleukin-6(IL-6), Interleukin -1β (IL-1β), and Tumour necrosis factor-α(TNF-α)), neuronal proteins including glycogen synthase kinase-3β (GSK- 3β), Phosphorylated tau (p-tau), amyloid beta (Aβ) (1-40, 1-42) and altered oxidative parameters including SOD, catalase, TBARS was determined in the high fructose diet induced hyperglycaemic mice. The obtained results were compared with EMPA nanoparticles (Nps) formulated in our laboratory and found that EMPA Nps significantly showed reduced levels of inflammatory mediators and oxidative stress. Further, decrease in levels of p-tau, Aβ (1-40) and Aβ (1-42) were also observed with EMPA nanoparticles.Thus, the study has demonstrated that EMPA Nps could be a promising therapy to alleviate the progression of cognitive decline in T2D.
Collapse
Affiliation(s)
- Tahira Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi, India
| | - Sana Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi, India.
| |
Collapse
|
24
|
Ning L, Rui X, Bo W, Qing G. The critical roles of histone deacetylase 3 in the pathogenesis of solid organ injury. Cell Death Dis 2021; 12:734. [PMID: 34301918 PMCID: PMC8302660 DOI: 10.1038/s41419-021-04019-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Histone deacetylase 3 (HDAC3) plays a crucial role in chromatin remodeling, which, in turn, regulates gene transcription. Hence, HDAC3 has been implicated in various diseases, including ischemic injury, fibrosis, neurodegeneration, infections, and inflammatory conditions. In addition, HDAC3 plays vital roles under physiological conditions by regulating circadian rhythms, metabolism, and development. In this review, we summarize the current knowledge of the physiological functions of HDAC3 and its role in organ injury. We also discuss the therapeutic value of HDAC3 in various diseases.
Collapse
Affiliation(s)
- Li Ning
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Xiong Rui
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Wang Bo
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Geng Qing
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| |
Collapse
|
25
|
Alhotan RA, Al Sulaiman AR, Alharthi AS, Abudabos AM. Protective influence of betaine on intestinal health by regulating inflammation and improving barrier function in broilers under heat stress. Poult Sci 2021; 100:101337. [PMID: 34329984 PMCID: PMC8335656 DOI: 10.1016/j.psj.2021.101337] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 12/27/2022] Open
Abstract
This research was executed to study the impacts of adding betaine (BT) to broiler diets on intestinal inflammatory response and barrier integrity under heat stress (HS). At 21 d of age, 150 male broilers (Ross 308) were randomly assigned to 3 treatment groups: control (CON) group, in which broilers were provided standard finisher feed under thermoneutral condition (22 ± 1°C); HS group and HS + BT group, in which broilers were given the standard feed supplied with 0 and 1,000 mg/kg BT, respectively, under cyclic HS condition (33 ± 1°C for 8 h from 08:00 to 16:00 h and the thermoneutral temperature for the residual hours). Each treatment was replicated ten times with 5 broilers per replicate. The HS group showed an elevation (P < 0.05) in serum corticosterone (CORT) concentration, D-lactate acid (D-LA) content, and diamine oxidase (DAO) activity, mucosal interleukin-1β (IL-1β) level, and expression of heat shock protein 70 (HSP70) gene, and a reduction (P < 0.05) in mucosal interleukin-10 (IL-10) level and secretory immunoglobulin A (SIgA) content and relative abundance of mRNA for occludin (OCLN), zonula occludens-1 (ZO-1), claudin-1 (CLDN1), and claudin-4 (CLDN4). In contrast, broilers in the HS + BT group exhibited a raise (P < 0.05) in mucosal IL-10 level and SIgA content and relative expression of OCLN and ZO-1 genes, and a decline (P < 0.05) in serum CORT concentration and DAO activity, mucosal IL-1β level, and expression of HSP70 mRNA. These results indicate that supplemental BT can ameliorate intestinal injury in heat-challenged broilers by suppressing inflammatory responses and enhancing mucosal barrier function.
Collapse
Affiliation(s)
- Rashed A Alhotan
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ali R Al Sulaiman
- National Center for Environmental Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Abdulrahman S Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Alaeldein M Abudabos
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
26
|
Mazzoli A, Spagnuolo MS, Nazzaro M, Gatto C, Iossa S, Cigliano L. Fructose Removal from the Diet Reverses Inflammation, Mitochondrial Dysfunction, and Oxidative Stress in Hippocampus. Antioxidants (Basel) 2021; 10:487. [PMID: 33804637 PMCID: PMC8003595 DOI: 10.3390/antiox10030487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Young age is often characterized by high consumption of processed foods and fruit juices rich in fructose, which, besides inducing a tendency to become overweight, can promote alterations in brain function. The aim of this study was therefore to (a) clarify brain effects resulting from fructose consumption in juvenile age, a critical phase for brain development, and (b) verify whether these alterations can be rescued after removing fructose from the diet. Young rats were fed a fructose-rich or control diet for 3 weeks. Fructose-fed rats were then fed a control diet for a further 3 weeks. We evaluated mitochondrial bioenergetics by high-resolution respirometry in the hippocampus, a brain area that is critically involved in learning and memory. Glucose transporter-5, fructose and uric acid levels, oxidative status, and inflammatory and synaptic markers were investigated by Western blotting and spectrophotometric or enzyme-linked immunosorbent assays. A short-term fructose-rich diet induced mitochondrial dysfunction and oxidative stress, associated with an increased concentration of inflammatory markers and decreased Neurofilament-M and post-synaptic density protein 95. These alterations, except for increases in haptoglobin and nitrotyrosine, were recovered by returning to a control diet. Overall, our results point to the dangerous effects of excessive consumption of fructose in young age but also highlight the effect of partial recovery by switching back to a control diet.
Collapse
Affiliation(s)
- Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Naples, Italy; (A.M.); (M.N.); (C.G.); (S.I.)
| | - Maria Stefania Spagnuolo
- Department of Bio-Agrofood Science, Institute for the Animal Production System, National Research Council, 80147 Naples, Italy;
| | - Martina Nazzaro
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Naples, Italy; (A.M.); (M.N.); (C.G.); (S.I.)
| | - Cristina Gatto
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Naples, Italy; (A.M.); (M.N.); (C.G.); (S.I.)
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Naples, Italy; (A.M.); (M.N.); (C.G.); (S.I.)
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Naples, Italy; (A.M.); (M.N.); (C.G.); (S.I.)
| |
Collapse
|
27
|
Sweet but Bitter: Focus on Fructose Impact on Brain Function in Rodent Models. Nutrients 2020; 13:nu13010001. [PMID: 33374894 PMCID: PMC7821920 DOI: 10.3390/nu13010001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Fructose consumption has drastically increased during the last decades due to the extensive commercial use of high-fructose corn syrup as a sweetener for beverages, snacks and baked goods. Fructose overconsumption is known to induce obesity, dyslipidemia, insulin resistance and inflammation, and its metabolism is considered partially responsible for its role in several metabolic diseases. Indeed, the primary metabolites and by-products of gut and hepatic fructolysis may impair the functions of extrahepatic tissues and organs. However, fructose itself causes an adenosine triphosphate (ATP) depletion that triggers inflammation and oxidative stress. Many studies have dealt with the effects of this sugar on various organs, while the impact of fructose on brain function is, to date, less explored, despite the relevance of this issue. Notably, fructose transporters and fructose metabolizing enzymes are present in brain cells. In addition, it has emerged that fructose consumption, even in the short term, can adversely influence brain health by promoting neuroinflammation, brain mitochondrial dysfunction and oxidative stress, as well as insulin resistance. Fructose influence on synaptic plasticity and cognition, with a major impact on critical regions for learning and memory, was also reported. In this review, we discuss emerging data about fructose effects on brain health in rodent models, with special reference to the regulation of food intake, inflammation, mitochondrial function and oxidative stress, insulin signaling and cognitive function.
Collapse
|
28
|
Glioma progression is suppressed by Naringenin and APO2L combination therapy via the activation of apoptosis in vitro and in vivo. Invest New Drugs 2020; 38:1743-1754. [PMID: 32767162 DOI: 10.1007/s10637-020-00979-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
Naringenin (NG) is a natural antioxidant flavonoid which is isolated from citrus fruits, and has been reported to inhibit colon cancer proliferation. However, the effects of NG treatment on glioma remain to be elucidated. The present study aimed to explore the effects of NG on glioma in vitro and in vivo. Also, the interactions between NG and APO2 ligand (APO2L; also known as tumor necrosis factor-related apoptosis-inducing ligand) were investigated in glioma. A synergistic effect of NG and APO2L combination on apoptotic induction was observed, though glioma cells were insensitive to APO2L alone. After NG treatment, glioma cells resumed the sensitivity to APO2L and cell apoptosis was induced via the activation of caspases, elevation of decoy receptors 4 and 5 (DR4 and DR5) and induction of p53. Coadministration of NG and APO2L decreased levels of anti-apoptotic B cell lymphoma 2 (Bcl-2) family members Bcl-2 and Bcl-extra large (Bcl-xL), while increased levels of proapoptotic factors Bcl-2-associated agonist of cell death (Bad) and Bcl-2 antagonist/killer 1 (Bak). Furthermore, an in vivo mouse xenograft model demonstrated that NG and APO2L cotreatment markedly suppressed glioma growth by activating apoptosis in tumor tissues when compared with NG or APO2L monotherapy. The present study provides a novel therapeutic strategy for glioma by potentiating APO2L-induced apoptosis via the combination with NG in glioma tumor cells.
Collapse
|
29
|
Cargnin-Carvalho A, de Mello AH, Bressan JB, Backes KM, Uberti MF, Fogaça JB, da Rosa Turatti C, Cavalheiro EKFF, Vilela TC, Rezin GT. Can fructose influence the development of obesity mediated through hypothalamic alterations? J Neurosci Res 2020; 98:1662-1668. [PMID: 32524664 DOI: 10.1002/jnr.24628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
Epidemiological data from the last decades point to an exponential growth in the number of obese people. Different behavioral factors, mainly associated with food consumption, appear to contribute significantly to its development. Concomitant with increased obesity rates, an increase in the consumption of fructose has been observed; therefore, fructose consumption has been implicated as an important obesogenic factor. However, changes in brain activity due to fructose consumption are possible, especially in relation to hypothalamic satiety mechanisms. In addition, the obese state may provide an environment of chronic inflammation and further contribute to the discontinuation of satiety mechanisms in the hypothalamus. We briefly review the intrinsic alterations to the increased adipose tissue, its connections with the hypothalamus in the control of energy signaling mechanisms and, consequently, the participation of fructose as a co-adjuvant or trigger. Presenting the current context with clinical trials involving human and animal studies, we seek to contribute to a better understanding of the role of fructose in the progression of obesity.
Collapse
Affiliation(s)
- Anderson Cargnin-Carvalho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Aline Haas de Mello
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Joice Benedet Bressan
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Kassiane Mathiola Backes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Marcela Fornari Uberti
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Jéssica Benedet Fogaça
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Cristini da Rosa Turatti
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Eulla Keimili Fernandes Ferreira Cavalheiro
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Thais Ceresér Vilela
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| |
Collapse
|
30
|
Qian Y, Lei G, Wen L. Brain-specific deletion of TRIM13 promotes metabolic stress-triggered insulin resistance, glucose intolerance, and neuroinflammation. Biochem Biophys Res Commun 2020; 527:138-145. [PMID: 32446357 DOI: 10.1016/j.bbrc.2020.03.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/12/2020] [Indexed: 11/26/2022]
Abstract
Diabetes has been associated with metabolic disorder, insulin resistance and neuroinflammation. However, the pathogenesis for HFD-induced injury of central nervous system (CNS) is still unclear. Tripartite Motif Containing 13 (TRIM13), also known as RFP2, is a member of TRIM proteins, and is associated with multiple cellular processes, such as apoptosis, survival and inflammation. However, the effects of TRIM13 on brain injury, especially the HFD-induced CNS damage, have not been investigated. To address this issue, the TRIM13flox/flox (fl/fl) mice were produced and then crossed them with Nestin-Cre mice to delete TRIM13 specifically in the brain (cKO). Then, T2D mice with obesity were established by chronic feeding of HFD. We found that brain-specific deletion of TRIM13 accelerated HFD-induced metabolic disorder, insulin resistance and systematic inflammatory response. In addition, HFDcKO mice exhibited significantly higher pro-inflammatory cytokines, including interleukin (IL)-6, IL-1β and tumor necrosis factor-α (TNF-α), in cortex, hippocampus and hypothalamus tissues, which were comparable to the HFDfl/fl mice. Consistently, the activation of nuclear factor-κB (NF-κB) induced by HFD was further aggravated in mice with brain-specific loss of TRIM13. Moreover, glial activation in CNS stimulated by HFD was further promoted by TRIM13 knockout in brain, as evidenced by the up-regulated expression of glial fibrillary acidic protein (GFAP) and Iba-1. In hypothalamus, HFD reduced proopiomelanocortin (POMC) and enhanced neuropeptide Y (NPY) expression, which were further promoted in mice with brain-specific deletion of TRIM13. Meanwhile, insulin signaling pathway was disrupted by HFD in hypothalamus of mice, and these effects were exacerbated in HFDcKO mice. The in vitro analysis confirmed that TRIM13 knockout in glial cells considerably promoted palmitate (PAL)-induced inflammatory response by accelerating NF-κB signal, contributing to the insulin resistance in the isolated primary neurons. Together, these findings demonstrated that TRIM13 was involved in HFD-induced CNS injury and insulin resistance through regulating neuroinflammatory response, contributing to the modulation of peripheral metabolic disorders.
Collapse
Affiliation(s)
- Yang Qian
- Department of Endocrine, The 521 Hospital of the China North Industries Group, Xi'an City, Shaanxi Province, 710065, China
| | - Gao Lei
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710004, China
| | - Liu Wen
- Department of Geriatric, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, 116011, China.
| |
Collapse
|
31
|
Jamar G, Ribeiro DA, Pisani LP. High-fat or high-sugar diets as trigger inflammation in the microbiota-gut-brain axis. Crit Rev Food Sci Nutr 2020; 61:836-854. [DOI: 10.1080/10408398.2020.1747046] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Giovana Jamar
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, Santos, SP, Brazil
- Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Daniel Araki Ribeiro
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Luciana Pellegrini Pisani
- Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Santos, SP, Brazil
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Santos, SP, Brazil
| |
Collapse
|
32
|
Li ZG, Shui SF, Han XW, Yan L. NLRP10 ablation protects against ischemia/reperfusion-associated brain injury by suppression of neuroinflammation. Exp Cell Res 2020; 389:111912. [PMID: 32084391 DOI: 10.1016/j.yexcr.2020.111912] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/19/2022]
Abstract
Ischemic stroke leads to neuronal cell death and induces a cascade of inflammatory signals that results in secondary brain damage. Although constant efforts to develop therapeutic strategies and to reveal the molecular mechanism resulting in the physiopathology of this disease, much still remains unclear. Membrane-bound Toll-like receptors (TLRs) and cytosolic nucleotide binding oligomerization domain (NOD)-like receptors (NLRs) are two major families of pattern recognition receptors that initiate pro-inflammatory signaling pathways. In the present study, we explored the role of NLRP10 in regulating inflammatory responses in acute ischemic stroke using the wild type (WT) and NLRP10 knockout (KO) mice by inducing middle cerebral artery occlusion/reperfusion (MCAO) injuries. The study first showed that NLRP10 was over-expressed in the ischemic penumbra of WT mice. Then, the brain infarct volume was significantly decreased, and the moving activity was improved post-MCAO in mice with NLRP10 knockout. Apoptosis was also alleviated by NLRP10-knockout, as evidenced by the decreased number of TUNEL-staining cells. Further, NLRP10 deficiency attenuated the activation of glia cells in hippocampus of mice with MCAO operation. NLRP10 inhibition ameliorated the levels of inflammatory factors in peripheral blood serum and hippocampus of mice after stroke. The activation of toll-like receptor (TLR)-4/nuclear factor-κB (NF-κB) signaling pathways was markedly suppressed by NLRP10 ablation in mice after MCAO treatment. Importantly, inflammasome, including NLRP12, ASC and Caspase-1, induced by MCAO in hippocampus of mice was clearly impeded by the loss of NLRP10. The results above were mainly verified in LPS-incubated astrocytes in the absence of NLRP10. Correspondingly, in LPS-treated astrocytes, NLRP10 knockout-reduced inflammation via impairing TLR-4/NF-κB and NLRP12/ASC/Caspase-1 pathways was evidently restored by over-expressing NLRP10. Therefore, the results above indicated an essential role of NLRP10 in regulating ischemic stroke, presenting NLRP10 as a promising target to protect human against stroke.
Collapse
Affiliation(s)
- Zhi-Guo Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450052, China.
| | - Shao-Feng Shui
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450052, China
| | - Xin-Wei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450052, China
| | - Lei Yan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450052, China
| |
Collapse
|
33
|
Matheson R, Chida K, Lu H, Clendaniel V, Fisher M, Thomas A, Lo EH, Selim M, Shehadah A. Neuroprotective Effects of Selective Inhibition of Histone Deacetylase 3 in Experimental Stroke. Transl Stroke Res 2020; 11:1052-1063. [PMID: 32016769 DOI: 10.1007/s12975-020-00783-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
Histone deacetylase 3 (HDAC3) has been implicated as neurotoxic in several neurodegenerative conditions. However, the role of HDAC3 in ischemic stroke has not been thoroughly explored. We tested the hypothesis that selective inhibition of HDAC3 after stroke affords neuroprotection. Adult male Wistar rats (n = 8/group) were subjected to 2 h of middle cerebral artery occlusion (MCAO), and randomly selected animals were treated intraperitoneally twice with either vehicle (1% Tween 80) or a selective HDAC3 inhibitor (RGFP966, 10 mg/kg) at 2 and 24 h after MCAO. Long-term behavioral tests were performed up to 28 days after MCAO. Another set of rats (n = 7/group) were sacrificed at 3 days for histological analysis. Immunostaining for HDAC3, acetyl-Histone 3 (AcH3), NeuN, TNF-alpha, toll-like receptor 4 (TLR4), cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP), Akt, and TUNEL were performed. Selective HDAC3 inhibition improved long-term functional outcome (p < 0.05) and reduced infarct volume (p < 0.0001). HDAC3 inhibition increased levels of AcH3 in the ischemic brain (p = 0.016). Higher levels of AcH3 were significantly correlated with better neurological scores and smaller infarct volumes (r = 0.74, p = 0.002; r = 0.6, p = 0.02, respectively). The RGFP966 treatment reduced apoptosis-TUNEL+, cleaved caspase-3+, and cleaved PARP+ cells-and neuroinflammation-TNF-alpha+ and TLR4+ cells-in the ischemic border compared to vehicle control (p < 0.05). The RGFP966 treatment also increased Akt expression in the ipsilateral cortex (p < 0.001). Selective HDAC3 inhibition after stroke improves long-term neurological outcome and decreases infarct volume. The neuroprotective effects of HDAC3 inhibition are associated with a reduction in apoptosis and inflammation and upregulation of the Akt pathway.
Collapse
Affiliation(s)
- Rudy Matheson
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Kohei Chida
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Hui Lu
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.,Xuan Wu Hospital/Capital Medical University, Xicheng district, Beijing, 100053, People's Republic of China
| | - Victoria Clendaniel
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ajith Thomas
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Magdy Selim
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Amjad Shehadah
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
34
|
Zhang Y, Yu Y, Ou C, Ma J, Wang Q, Du S, Xu Z, Li R, Guo F. Alleviation of infectious-bursal-disease-virus-induced bursal injury by betaine is associated with DNA methylation in IL-6 and interferon regulatory factor 7 promoter. Poult Sci 2019; 98:4457-4464. [PMID: 31162616 DOI: 10.3382/ps/pez280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Infectious bursal disease virus (IBDV) often infects young chickens and causes severe immunosuppression and inflammatory injury. Betaine is an antiviral and anti-inflammatory ingredient that may exert functions through epigenetic regulation. However, the effects of betaine on an IBDV-induced bursal injury and their underlying mechanisms have not been investigated. In this study, betaine was supplemented to the drinking water of newly hatched commercial broilers for 3 wk. Afterward, the chickens were infected with the IBDV. After 5 D of infection, the bursal lesions were examined. The mRNA expression levels of IBDV VP2 gene, pro-inflammatory cytokines, and interferons were detected. Furthermore, the 5-methylcytosine level of the CpG island in the promoter region of IL-6 and interferon regulatory factor 7 (IRF7) were determined. The IBDV induced the depletion of lymphocytes and inflammation in the bursal follicles. IBDV infection considerably elevated the mRNA levels of VP2, IL-6, types I (IFNα and IFNβ) and II (IFNγ) interferons, and IRF7. The CpG island methylation in the promoter regions of IL-6 and IRF7 were substantially decreased after IBDV infection. Betaine administration attenuated the IBDV-induced bursal lesions. Meanwhile, the IBDV-induced mRNA expression levels of IL-6, IFNβ, and IRF7 were suppressed by betaine consumption. Furthermore, the hypomethylation effects of IBDV infection to the promoter regions of IL-6 and IRF7 genes were eliminated and relieved by betaine administration. Our results indicated that the IBDV-induced expression levels of IL-6 and IRF7 genes are associated with the suppression of methylation in the promoter region. Betaine administration through drinking water may alleviate the IBDV-induced bursal injury via epigenetic regulation.
Collapse
Affiliation(s)
- Yanhong Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Changbo Ou
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Qiuxia Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Shouyang Du
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Zhiyong Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Renfeng Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Feng Guo
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China.,Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| |
Collapse
|
35
|
Vacuum Belt Dehydration of Chopped Beetroot (Beta vulgaris) and Optimization of Powder Production Based on Physical and Chemical Properties. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Kovačević S, Nestorov J, Matić G, Elaković I. Chronic Stress Combined with a Fructose Diet Reduces Hypothalamic Insulin Signaling and Antioxidative Defense in Female Rats. Neuroendocrinology 2019; 108:278-290. [PMID: 30572328 DOI: 10.1159/000496391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/19/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Increased fructose consumption and chronic exposure to stress have been associated with the development of obesity and insulin resistance. In the hypothalamus, a crossroad of stress responses and energy balance, insulin and glucocorticoids regulate the expression of orexigenic neuropeptides, neuropeptide Y (NPY) and agouti-related protein (AgRP), and anorexigenic neuropeptides, proopio-melanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART). OBJECTIVES We investigated whether chronic stress and fructose diet disrupt these hormonal signaling pathways and appetite control in the hypothalamus, contributing to the development of insulin resistance and obesity. Potential roles of hypothalamic inflammation and oxidative stress in the development of insulin resistance were also analyzed. METHODS Insulin, glucocorticoid, and leptin signaling, expression of orexigenic and anorexigenic neuropeptides, and antioxidative and inflammatory statuses in the whole hypothalamus of fructose-fed female rats exposed to unpredictable stress for 9 weeks were analyzed using quantitative PCR and Western blotting. RESULTS Chronic stress combined with a fructose-enriched diet reduced protein content and stimulatory phosphorylation of Akt kinase, and elevated 11β-hydroxysteroid dehydrogenase 1 and glucocorticoid receptor expression, while alterations in appetite regulation (NPY, AgRP, POMC, CART, leptin receptor, and SOCS3 expression) were not observed. The expression of antioxidative defense enzymes (mitochondrial manganese superoxide dismutase 2, glutathione reductase, and catalase) and proinflammatory cytokines (IL-1β, IL-6, and TNFα) was reduced. CONCLUSIONS Our results underline the combination of long-term stress exposure and fructose overconsumption as more detrimental for hypothalamic function than for either of the factors separately, as it enhanced glucocorticoid and impaired insulin signaling, antioxidative -defense, and inflammatory responses of this homeostasis- regulating center.
Collapse
Affiliation(s)
- Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research Siniša Stanković, University of Belgrade, Belgrade, Serbia
| | - Jelena Nestorov
- Department of Biochemistry, Institute for Biological Research Siniša Stanković, University of Belgrade, Belgrade, Serbia
| | - Gordana Matić
- Department of Biochemistry, Institute for Biological Research Siniša Stanković, University of Belgrade, Belgrade, Serbia
| | - Ivana Elaković
- Department of Biochemistry, Institute for Biological Research Siniša Stanković, University of Belgrade, Belgrade, Serbia,
| |
Collapse
|
37
|
Xia Y, Chen S, Zhu G, Huang R, Yin Y, Ren W. Betaine Inhibits Interleukin-1β Production and Release: Potential Mechanisms. Front Immunol 2018; 9:2670. [PMID: 30515160 PMCID: PMC6255979 DOI: 10.3389/fimmu.2018.02670] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022] Open
Abstract
Betaine is a critical nutrient for mammal health, and has been found to alleviate inflammation by lowering interleukin (IL)-1β secretion; however, the underlying mechanisms by which betaine inhibits IL-1β secretion remain to be uncovered. In this review, we summarize the current understanding about the mechanisms of betaine in IL-1β production and release. For IL-1β production, betaine affects canonical and non-canonical inflammasome-mediated processing of IL-1β through signaling pathways, such as NF-κB, NLRP3 and caspase-8/11. For IL-1β release, betaine inhibits IL-1β release through blocking the exocytosis of IL-1β-containing secretory lysosomes, reducing the shedding of IL-1β-containing plasma membrane microvesicles, suppressing the exocytosis of IL-1β-containing exosomes, and attenuating the passive efflux of IL-1β across hyperpermeable plasma membrane during pyroptotic cell death, which are associated with ERK1/2/PLA2 and caspase-8/A-SMase signaling pathways. Collectively, this review highlights the anti-inflammatory property of betaine by inhibiting the production and release of IL-1β, and indicates the potential application of betaine supplementation as an adjuvant therapy in various inflammatory diseases associating with IL-1β secretion.
Collapse
Affiliation(s)
- Yaoyao Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Shuai Chen
- University of Chinese Academy of Sciences, Beijing, China.,Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoo Noses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ruilin Huang
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.,Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Academics Working Station at The First Affiliated Hospital, Changsha Medical University, Changsha, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoo Noses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
38
|
Mulberrin (Mul) reduces spinal cord injury (SCI)-induced apoptosis, inflammation and oxidative stress in rats via miroRNA-337 by targeting Nrf-2. Biomed Pharmacother 2018; 107:1480-1487. [DOI: 10.1016/j.biopha.2018.07.082] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/07/2018] [Accepted: 07/15/2018] [Indexed: 11/23/2022] Open
|
39
|
Ávalos Y, Kerr B, Maliqueo M, Dorfman M. Cell and molecular mechanisms behind diet-induced hypothalamic inflammation and obesity. J Neuroendocrinol 2018; 30:e12598. [PMID: 29645315 DOI: 10.1111/jne.12598] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/07/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
Diet-induced obesity (DIO) is associated with chronic, low-grade inflammation in the hypothalamus, a key regulator of energy homeostasis. Current studies have revealed the involvement of different cell types, as well as cell and molecular mechanisms, that contribute to diet-induced hypothalamic inflammation (DIHI) and DIO. Subsequent to the discovery that high-fat diet and saturated fatty acids increase the expression of hypothalamic cytokines prior to weight gain, research has focused on understanding the cellular and molecular mechanisms underlying these changes, in addition to the role of inflammation in the pathogenesis of obesity. Recent studies have proposed that the inhibition of pro-inflammatory pathways in microglia and astrocytes is sufficient to protect against DIHI and prevent obesity. In addition, impairment of intracellular and epigenetic mechanisms, such as hypothalamic autophagy and changes in the methylation pattern of certain genes, have been implicated in susceptibility to DIHI and DIO. Interestingly, a sexual dimorphism has been found during DIO in hypothalamic inflammation, glial activation and metabolic diseases, and recent data support an important role of sex steroids in DIHI. These new exciting findings uncover novel obesity pathogenic mechanisms and provide targets to develop therapeutic approaches.
Collapse
Affiliation(s)
- Y Ávalos
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - B Kerr
- Centro de Estudios Científicos, Valdivia, Chile
| | - M Maliqueo
- Endocrinology and Metabolism Laboratory, Department of Medicine West Division, School of Medicine, University of Chile, Santiago, Chile
| | - M Dorfman
- Department of Medicine, University of Washington Diabetes Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
40
|
Xu MX, Qin YT, Ge CX, Gu TT, Lou DS, Li Q, Hu LF, Li YY, Yang WW, Tan J. Activated iRhom2 drives prolonged PM2.5 exposure-triggered renal injury in Nrf2-defective mice. Nanotoxicology 2018; 12:1045-1067. [DOI: 10.1080/17435390.2018.1513093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Min-Xuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, PR China
| | - Yu-Ting Qin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Chen-Xu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, PR China
| | - Ting-Ting Gu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, PR China
| | - De-Shuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, PR China
| | - Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, PR China
| | - Lin-Feng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, PR China
| | - Yuan-Yuan Li
- School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, PR China
| | - Wei-Wei Yang
- Department of Nephrology, Huai’an First People’s Hospital, Nanjing Medical University, Nanjing, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, PR China
| |
Collapse
|
41
|
iRhom2 promotes atherosclerosis through macrophage inflammation and induction of oxidative stress. Biochem Biophys Res Commun 2018; 503:1897-1904. [DOI: 10.1016/j.bbrc.2018.07.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022]
|
42
|
Liu Y, Wen PH, Zhang XX, Dai Y, He Q. Breviscapine ameliorates CCl4‑induced liver injury in mice through inhibiting inflammatory apoptotic response and ROS generation. Int J Mol Med 2018; 42:755-768. [PMID: 29717768 PMCID: PMC6034936 DOI: 10.3892/ijmm.2018.3651] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 04/05/2018] [Indexed: 01/06/2023] Open
Abstract
Acute liver injury is characterized by fibrosis, inflammation and apoptosis, leading to liver failure, cirrhosis or cancer and affecting the clinical outcome in the long term. However, no effective therapeutic strategy is currently available. Breviscapine, a mixture of flavonoid glycosides, has been reported to have multiple biological functions. The present study aimed to investigate the effects of breviscapine on acute liver injury induced by CCl4 in mice. C57BL/6 mice were subjected to intraperitoneal injection with CCl4 for 8 weeks with or without breviscapine (15 or 30 mg/kg). Mice treated with CCl4 developed acute liver injury, as evidenced by histological analysis, Masson trichrome and Sirius Red staining, accompanied with elevated levels of alanine aminotransferase and aspartate aminotransferase. Furthermore, increases in pro‑inflammatory cytokines, chemokines and apoptotic factors, including caspase‑3 and poly(ADP ribose) polymerase‑2 (PARP‑2), were observed. Breviscapine treatment significantly and dose‑dependently reduced collagen deposition and the fibrotic area. Inflammatory cytokines were downregulated by breviscapine through inactivating Toll‑like receptor 4/nuclear factor-κB signaling pathways. In addition, co‑administration of breviscapine with CCl4 decreased the apoptotic response by enhancing B‑cell lymphoma-2 (Bcl‑2) levels, while reducing Bcl‑2‑associated X protein, apoptotic protease activating factor 1, caspase‑3 and PARP activity. Furthermore, CCl4‑induced oxidative stress was blocked by breviscapine through improving anti‑oxidants and impeding mitogen‑activated protein kinase pathways. The present study highlighted that breviscapine exhibited liver‑protective effects against acute hepatic injury induced by CCl4 via suppressing inflammation and apoptosis.
Collapse
Affiliation(s)
- Yu Liu
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital University of Medical Science, Beijing 100000, P.R. China
| | - Pei-Hao Wen
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital University of Medical Science, Beijing 100000, P.R. China
| | - Xin-Xue Zhang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital University of Medical Science, Beijing 100000, P.R. China
| | - Yang Dai
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital University of Medical Science, Beijing 100000, P.R. China
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital University of Medical Science, Beijing 100000, P.R. China
| |
Collapse
|
43
|
Spagnuolo MS, Bergamo P, Crescenzo R, Iannotta L, Treppiccione L, Iossa S, Cigliano L. Brain Nrf2 pathway, autophagy, and synaptic function proteins are modulated by a short-term fructose feeding in young and adult rats. Nutr Neurosci 2018; 23:309-320. [DOI: 10.1080/1028415x.2018.1501532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Maria Stefania Spagnuolo
- Department of Bio-Agrofood Science, Institute for the Animal Production System in Mediterranean Environment, National Research Council (CNR-ISPAAM), Naples, Italy
| | - Paolo Bergamo
- Department of Bio-Agrofood Science, Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | | | - Lucia Iannotta
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Lucia Treppiccione
- Department of Bio-Agrofood Science, Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
44
|
Qiu YL, Cheng XN, Bai F, Fang LY, Hu HZ, Sun DQ. Aucubin protects against lipopolysaccharide-induced acute pulmonary injury through regulating Nrf2 and AMPK pathways. Biomed Pharmacother 2018; 106:192-199. [PMID: 29958143 DOI: 10.1016/j.biopha.2018.05.070] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/12/2022] Open
Abstract
Aucubin (Ai), a natural compound isolated from plants, including Aucuba japonica and Eucommia ulmoides, shows significant anti-inflammatory and anti-oxidative bioactivities. Here, we attempted to explore the protect effects of Ai on LPS-induced acute lung injury (ALI). Our results indicated that Ai increased the survival rate and ameliorated pathogenic processes in lipopolysaccharide (LPS)-induced mice. However, nuclear factor erythroid 2-related factor 2 (Nrf2) deletion may impede protective effect of Ai. Additionally, Ai reduced oxidative stress by down-regulating malondialdehyde (MDA) and O2· activity, and enhancing Nrf2-targeted signals, including heme oxygenase-1 (HO-1) and quinone oxidoreductase-1 (NQO-1). Also, Ai inhibited pro-inflammatory cytokines and phosphorylated-nuclear factor-κB (NF-κB) expression in LPS-administrated mice. However, these protective effects of Ai were suppressed in Nrf2-knockout mice. Importantly, Nrf2-deficiency showed no effects on phosphorylated AMP-activated protein kinase (p-AMPK) expression in mice treated with LPS and Ai. Similarly, in LPS-induced macrophages, Ai reduced reactive oxygen species (ROS) generation, elevated NQO-1 and HO-1 expression. LPS-stimulated pro-inflammatory cytokines and p-NF-κB were reversed by Ai. Of note, we found that Ai-induced Nrf2 activation was dependent on AMPK activation. Suppression of AMPK levels may inhibit Nrf2 activation, finally leading to up regulation of inflammatory response and oxidative stress. Thus, our findings indicated the crosstalk between Nrf2 and AMPK signaling pathways, and the interaction was essential for the anti-oxidant and anti-inflammatory effects of Ai in LPS-induced macrophages, which might be beneficial for finding new treatments against ALI.
Collapse
Affiliation(s)
- Yan-Ling Qiu
- Department of Pediatric, Baoji Maternal and Child Health Hospital, Baoji City 721000, Shaanxi, China
| | - Xiao-Ning Cheng
- Department of Pediatric, The Second Affiliated Hospital, Shaanxi University of Traditional Chinese Medicine, Xianyang 712000, China
| | - Feng Bai
- Department of Child Healthcare, Northwest Women and Children Hospital, Xi'an, 716000, China
| | - Li-Yun Fang
- Department of Pediatric, The NO.3 Hospital of Xi'an, Xi'an 716000, China
| | - Hui-Zhong Hu
- Department of Pediatric, The NO.3 Hospital of Xi'an, Xi'an 716000, China
| | - Da-Qing Sun
- Department of Pediatric, The NO.3 Hospital of Xi'an, Xi'an 716000, China.
| |
Collapse
|
45
|
Yang W, Liu W, Yu W, Fei D, Meng X, Yang S, Meng S, Zhao M. Angptl2 deficiency attenuates paraquat (PQ)-induced lung injury in mice by altering inflammation, oxidative stress and fibrosis through NF-κB pathway. Biochem Biophys Res Commun 2018; 503:94-101. [PMID: 29852175 DOI: 10.1016/j.bbrc.2018.05.186] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022]
Abstract
Paraquat (PQ) is one of the most extensively used herbicides, possessing high toxicity for humans and animals. The lung is the main target organ by the poisoning of PQ resulting in acute lung injury. Nonetheless, molecular mechanisms underlying PQ-induced lung injury remain unclear. Here, we ask if angiopoietin-like protein 2 (Angptl2), a pro-inflammatory protein, contributes to inflammation that accelerates acute lung injury. The results indicated that abundant Angptl2 expression was observed in lung tissues of PQ-treated mice. Histological analysis revealed that PQ-induced histological changes were alleviated by Angptl2 knockout (Angptl2-/-). Angptl2-/- in PQ-treated mice attenuated acute lung injury progression by reducing the number of total cells, total leukocytes, neutrophils and macrophages in bronchoalveolar lavage fluid (BALF) and reducing inflammatory response through the inactivation of nuclear factor kappa B (NF-κB) pathway. Angptl2-/- reduced oxidative stress in PQ-treated mice, as evidenced by the enhanced superoxide dismutase (SOD) activity and reduced malondialdehyde (MDA) levels in serum or lung tissue samples, which was accompanied with increased expressions of nuclear respiratory factor 2 (Nrf-2), heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO-1). PQ-induced fibrosis was also improved in Angptl2-/- mice by decreasing pulmonary transforming growth factor (TGF)-β1 expressions. In vitro, we found that Angptl2 knockdown-suppressed inflammation, oxidative stress and fibrosis was restored by increasing NF-κB activation in PQ-incubated A549 cells; however, the results above were significantly reversed by inactivating NF-κB using its inhibitor, Bay 11-7085 or LY2409881. Therefore, Angptl2 could provide therapeutic effects on PQ-induced acute lung injury through inhibiting inflammation, oxidative stress and fibrosis by regulating NF-κB pathway.
Collapse
Affiliation(s)
- Wei Yang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Street, Nangang District, Harbin, 150001, China
| | - Wen Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Street, Nangang District, Harbin, 150001, China; Department of General Surgery, Xinxiang Medical University, No. 601, New Yan Road, Xinxiang 453000, China
| | - Wei Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Street, Nangang District, Harbin, 150001, China
| | - Dongsheng Fei
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Street, Nangang District, Harbin, 150001, China
| | - Xianglin Meng
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Street, Nangang District, Harbin, 150001, China
| | - Songlin Yang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Street, Nangang District, Harbin, 150001, China
| | - Shishuai Meng
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Street, Nangang District, Harbin, 150001, China
| | - Mingyan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
46
|
The effects of Mucuna pruriens on the renal oxidative stress and transcription factors in high-fructose-fed rats. Food Chem Toxicol 2018; 118:526-531. [PMID: 29860019 DOI: 10.1016/j.fct.2018.05.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 12/30/2022]
Abstract
In the present study, we evaluated the effects of M. pruriens administration on metabolic parameters, oxidative stress and kidney nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling pathways in high-fructose fed rats. Male rats (n = 28) were divided into 4 groups as control, M. pruriens, fructose, and M. pruriens plus fructose. All rats were fed a standard diet supplemented or no supplemented with M. pruriens (200 mg/kg/d by gavage). Fructose was given in drinking water for 8 weeks. High fructose consumption led to an increase in the serum level of glucose, triglyceride, urea and renal malondialdehyde (MDA) levels. Although M. pruriens treatment reduced triglyceride and MDA levels, it did not affect other parameters. M. pruriens supplementation significantly decreased the expression of NF-ҡB and decreased expression of Nrf2 and HO-1 proteins in the kidney. This study showed that the adverse effects of high fructose were alleviated by M. pruriens supplementation via modulation of the expression of kidney nuclear transcription factors in rats fed high fructose diet.
Collapse
|
47
|
Zhao G, He F, Wu C, Li P, Li N, Deng J, Zhu G, Ren W, Peng Y. Betaine in Inflammation: Mechanistic Aspects and Applications. Front Immunol 2018; 9:1070. [PMID: 29881379 PMCID: PMC5976740 DOI: 10.3389/fimmu.2018.01070] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Betaine is known as trimethylglycine and is widely distributed in animals, plants, and microorganisms. Betaine is known to function physiologically as an important osmoprotectant and methyl group donor. Accumulating evidence has shown that betaine has anti-inflammatory functions in numerous diseases. Mechanistically, betaine ameliorates sulfur amino acid metabolism against oxidative stress, inhibits nuclear factor-κB activity and NLRP3 inflammasome activation, regulates energy metabolism, and mitigates endoplasmic reticulum stress and apoptosis. Consequently, betaine has beneficial actions in several human diseases, such as obesity, diabetes, cancer, and Alzheimer's disease.
Collapse
Affiliation(s)
- Guangfu Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Fang He
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Chenlu Wu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Pan Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Nengzhang Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, Subtropical Institute of Animal Nutrition and Feed, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, Subtropical Institute of Animal Nutrition and Feed, South China Agricultural University, Guangzhou, Guangdong, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuanyi Peng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
48
|
Ma XJ, Xing HZ, Ren GF, Rao XJ, Li ZZ. JIP3 knockout protects mice against high fat diet-induced liver injury. Biochem Biophys Res Commun 2018; 497:819-826. [DOI: 10.1016/j.bbrc.2018.01.178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023]
|
49
|
Pan ZG, An XS. SARM1 deletion restrains NAFLD induced by high fat diet (HFD) through reducing inflammation, oxidative stress and lipid accumulation. Biochem Biophys Res Commun 2018; 498:416-423. [PMID: 29454967 DOI: 10.1016/j.bbrc.2018.02.115] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022]
Abstract
SARM1 (Sterile alpha and armadillo motif-containing protein 1) is the recently identified TIR domain-containing cytosolic protein, which is involved in toll-like receptors (TLRs) signaling transduction. In the present study, the role of SARM1 in high fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) progression was explored. We found that SARM1 was expressed highly in fatty liver. And SARM1-knockout (KO) reduced steatohepatitis and metabolic disorders induced by HFD. SARM1-deletion decreased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in HFD-fed mice. Additionally, inflammatory response caused by HFD was alleviated by SARM1-deletion through inactivating TLR4/7/9 and nuclear factor kappa B (NF-κB) pathways. Of note, SARM1-deletion also reduced the expressions of inflammation-associated molecules in hypothalamus of HFD-fed mice. Furthermore, HFD administration led to oxidative stress in liver of mice, while being decreased in SARM1-KO mice. Moreover, SARM1-ablation improved lipid dyslipidemia by suppressing the mRNA levels of genes, linked to glycolysis, lipogenesis and transcriptional regulation. Insulin resistance was also attenuated by SARM1-deficiency through enhancing the activation of liver Akt/glycogen synthase kinase-3β (GSK3β) and insulin receptor substrate-1 (IRS1)/FOXO1 pathways in HFD-fed mice. Also, SARM1-knockout improved neuropeptide Y (NPY), Pro-Opiomelanocortins (POMC), Agouti-related Protein (AGRP) and Cocaine-and-Amphetamine Responsive Transcript 1 (CART1) expressions in hypothalamus of mice after HFD administration. In vitro, we found that the reduction of inflammatory response, oxidative stress and dyslipidemia induced by SARM1-knockout in primary hepatocytes after fructose stimulation was largely attributed to its suppression to TLR4/7/9. Together, the findings demonstrated that SARM1 might be an effective target for developing effective therapeutic strategies against NAFLD.
Collapse
Affiliation(s)
- Zhen-Guo Pan
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, PR China
| | - Xu-Sheng An
- Intensive Care Unit, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, PR China.
| |
Collapse
|
50
|
Batista LO, Ramos VW, Rosas Fernández MA, Concha Vilca CM, Albuquerque KTD. Oral solution of fructose promotes SREBP-1c high-expression in the hypothalamus of Wistar rats. Nutr Neurosci 2018; 22:648-654. [PMID: 29366380 DOI: 10.1080/1028415x.2018.1427659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: We evaluate whether the consumption of fructose for 8 weeks affects enzymes and transcription factors of the lipogenic and inflammatory pathways in the hypothalamus of Wistar rats. Methods: At 30 days, the animals were divided into groups: Control (C) and Fructose (F) and maintained with free access to feed and filtered water (C) or aqueous solution of purified fructose at 20% (F). RT-PCR and Western blotting were performed for the target genes and proteins. Results: In F group, results showed a lower feed intake, an increase in glycemia (146.20 ± 6.09 vs. 102.32 ± 4.58; n: 9) and triacylglycerol (F: 191.65 ± 13.51 vs. C: 131.69 ± 6.49; n: 9) and there was no difference in water and energy consumption. We identified a higher content of acetyl-CoA carboxylase (ACC) (F: 133.93 ± 5.58 vs. C: 100 ± 0.0; n: 9-10) and NFκB (F: 125.5 ± 8.85 vs. C: 100 ± 0; n: 14) in group F, whereas fatty acid synthase (FAS) was lower (F: 85.90 ± 4.81 vs. C: 100 ± 0.0; n: 4-6). SREBP-1c gene expression was higher in F vs. C group (F: 4.08 ± 0.44 vs. C: 1.13 ± 0.15; n: 5-6), although we did not found difference between groups in the gene expression for ACC, SREBP-2, and NFκB. Discussion: Dietary fructose can change important lipogenic and inflammatory factors in the hypothalamus of rats and it leads to regulation of transcription factors before changes in body mass are evident.
Collapse
Affiliation(s)
- Leandro Oliveira Batista
- a Laboratório de Nutrição Experimental, Universidade Federal do Rio de Janeiro - Campus UFRJ Macaé , Av. Aloísio da Silva Gomes, 50 - Macaé, 27930-560 Rio de Janeiro , Brazil.,b Programa de Pós-graduação em Nutrição, Universidade Federal do Rio de Janeiro , Av. Carlos Chagas Filho, 373, CCS, Bloco J / 2° andar, 21941-902 Rio de Janeiro , Brazil
| | - Viviane Wagner Ramos
- a Laboratório de Nutrição Experimental, Universidade Federal do Rio de Janeiro - Campus UFRJ Macaé , Av. Aloísio da Silva Gomes, 50 - Macaé, 27930-560 Rio de Janeiro , Brazil.,b Programa de Pós-graduação em Nutrição, Universidade Federal do Rio de Janeiro , Av. Carlos Chagas Filho, 373, CCS, Bloco J / 2° andar, 21941-902 Rio de Janeiro , Brazil
| | - Mariana Alejandra Rosas Fernández
- a Laboratório de Nutrição Experimental, Universidade Federal do Rio de Janeiro - Campus UFRJ Macaé , Av. Aloísio da Silva Gomes, 50 - Macaé, 27930-560 Rio de Janeiro , Brazil.,c Programa de Pós-graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro - Campus UFRJ Macaé , Av. Aloísio da Silva Gomes, 50 - Macaé, 27930-560 Rio de Janeiro , Brazil
| | - Carlos Marcelo Concha Vilca
- a Laboratório de Nutrição Experimental, Universidade Federal do Rio de Janeiro - Campus UFRJ Macaé , Av. Aloísio da Silva Gomes, 50 - Macaé, 27930-560 Rio de Janeiro , Brazil.,b Programa de Pós-graduação em Nutrição, Universidade Federal do Rio de Janeiro , Av. Carlos Chagas Filho, 373, CCS, Bloco J / 2° andar, 21941-902 Rio de Janeiro , Brazil
| | - Kelse Tibau de Albuquerque
- a Laboratório de Nutrição Experimental, Universidade Federal do Rio de Janeiro - Campus UFRJ Macaé , Av. Aloísio da Silva Gomes, 50 - Macaé, 27930-560 Rio de Janeiro , Brazil.,b Programa de Pós-graduação em Nutrição, Universidade Federal do Rio de Janeiro , Av. Carlos Chagas Filho, 373, CCS, Bloco J / 2° andar, 21941-902 Rio de Janeiro , Brazil.,c Programa de Pós-graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro - Campus UFRJ Macaé , Av. Aloísio da Silva Gomes, 50 - Macaé, 27930-560 Rio de Janeiro , Brazil
| |
Collapse
|